
Lawrence Berkeley National Laboratory
Applied Math & Comp Sci

Title
Extracting ultra-scale Lattice Boltzmann performance via hierarchical and distributed auto-
tuning

Permalink
https://escholarship.org/uc/item/4gf5b5c0

ISBN
9781450307710

Authors
Williams, Samuel
Oliker, Leonid
Carter, Jonathan
et al.

Publication Date
2011-11-12

DOI
10.1145/2063384.2063458

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4gf5b5c0
https://escholarship.org/uc/item/4gf5b5c0#author
https://escholarship.org
http://www.cdlib.org/

Extracting Ultra-Scale Lattice Boltzmann Performance
via Hierarchical and Distributed Auto-Tuning

Samuel Williams, Leonid Oliker, Jonathan Carter, John Shalf
Computational Research Division, Lawrence Berkeley National Laboratory

{ SWWilliams, LOliker, JTCarter, JShalf } @ lbl.gov

ABSTRACT
We are witnessing a rapid evolution of HPC node archi-
tectures and on-chip parallelism as power and cooling con-
straints limit increases in microprocessor clock speeds. In
this work, we demonstrate a hierarchical approach towards
effectively extracting performance for a variety of emerg-
ing multicore-based supercomputing platforms. Our exam-
ined application is a structured grid-based Lattice Boltz-
mann computation that simulates homogeneous isotropic
turbulence in magnetohydrodynamics. First, we examine so-
phisticated sequential auto-tuning techniques including loop
transformations, virtual vectorization, and use of ISA-specific
intrinsics. Next, we present a variety of parallel optimization
approaches including programming model exploration (flat
MPI, MPI/OpenMP, and MPI/Pthreads), as well as data
and thread decomposition strategies designed to mitigate
communication bottlenecks. Finally, we evaluate the impact
of our hierarchical tuning techniques using a variety of prob-
lem sizes via large-scale simulations on state-of-the-art Cray
XT4, Cray XE6, and IBM BlueGene/P platforms. Results
show that our unique tuning approach improves performance
and energy requirements by up to 3.4× using 49,152 cores,
while providing a portable optimization methodology for a
variety of numerical methods on forthcoming HPC systems.

Keywords
Auto-tuning, Hybrid Programming Models, OpenMP, Lat-
tice Boltzmann, SIMD, BlueGene

1. INTRODUCTION
The multicore revolution has resulted in a vast diversity

of shared memory multicore architectures that are at the
heart of high-end computing platforms. An urgent chal-
lenge for the HPC community is developing methodologies
for optimizing scientific computation to effectively utilize
these complex and rapidly evolving systems. One key ques-
tion is appropriately addressing computation in the context
of a hybrid communication infrastructure: shared memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

within nodes and message passing between nodes. Our pa-
per presents a hierarchical and distributed approach towards
achieving performance portability on emerging supercomput-
ers by leveraging the system’s hybrid intra- and inter-node
communication capabilities. Our work explores a structured
grid-based Lattice Boltzmann (LBM) computation that sim-
ulates homogeneous isotropic turbulence in magnetohydro-
dynamics. Although this complex application has unique re-
quirements, its computational structure is similar to a large
class of explicit numerical methods. This is the first exten-
sive study to apply the ideas of automatic tuning (or auto-
tuning) in a two-stage hierarchical and distributed fashion
for this important class of numerical simulations.

We begin by exploring sequential optimizations via the
auto-tuning of several important parameters including un-
rolling depth, virtual vectorization length, and software pre-
fetching distance, as well as ISA-specific SIMDization and
tuning. After addressing optimized sequential performance,
we next explore the challenges in a parallel architectural en-
vironment, including NUMA (non-uniform memory access),
affinity, problem decomposition among processes, thread-
ing with MPI/OpenMP and MPI/Pthreads, as well as im-
proving communication performance using message aggrega-
tion and parallelized buffer packing. Having implemented a
broad set of potential optimizations, we then apply a hierar-
chical and distributed auto-tuner that intelligently explores
a subset of the tuning dimensions (sequential optimizations
in the first stage and parallel in the second) by running a
small problem at a moderate concurrency of 64 nodes.

Finally, having derived the optimal serial and parallel tun-
ing parameters, we validate our methodology at scale using
three state-of-the-art parallel platforms: Cray XT4, Cray
XE6, and IBM BlueGene/P. Detailed analysis based on the
machine architectures and LBMHD problem characteristics
demonstrate that our tuning approach achieves significant
and performance portable results: attaining up to a 3.4×
improvement in application performance using 49,152 cores
compared with a previous, highly-optimized reference im-
plementation. Additionally, exploration of varying problem
sizes and parallelization approaches provide insight into the
expected limitations of next-generation exascale systems,
and points to the importance of hierarchical auto-tuning
to effectively leverage emerging HPC resource in a portable
fashion. Finally, we quantify the energy efficiency of all three
platforms before and after performance optimization.

2. LATTICE BOLTZMANN MODELS
Variants of the Lattice Boltzmann equation have been ap-

plied to problems such as fluid flows, flows in porous me-
dia, and turbulent flows over about the past 25 years [25].
Emerging from lattice gas cellular automata techniques, the
model has been developed through several iterations into a
mature and computationally efficient technique today. Lat-
tice Boltzmann models that draw heavily from kinetic the-
ory, and typically make use of a Bhatnagar-Gross-Krook [1]
(BGK) inspired collision operator, have become the most
common form of the technique. In this form, a simplified
kinetic model is constructed that incorporates the essential
physics and reproduces correct macroscopic averaged prop-
erties. Implicit in the method is a discretization of space
and time (via velocities) onto a lattice, where a set of meso-
scopic quantities (density, momenta, etc.) and probability
distribution functions are associated with each lattice site.
The probability density functions represent fluid elements
at a specific time, location, and velocity as they move and
collide on the lattice, and the collective behavior reflects the
dynamics of fluid flow. These models may be characterized
as explicit, second-order, time-stepping algorithms.

Lattice Boltzmann models have grown in popularity due
to their flexibility in handling complex boundary conditions
via simple bounce-back formulations, and straightforward
inclusion of mesoscale effects that are hard to describe with
continuum approaches, such as porous media, or multiphase
and reactive flows.

The LBM equations break down into two separate terms,
each operating on a set of distribution functions; a linear
free-streaming operator and a local non-linear collision op-
erator. The BGK inspired approximation replaces the com-
plex integral collision operator of the exact theory by a re-
laxation to an equilibrium distribution function taking place
on a single timescale. For the fluid dynamics case, in dis-
cretized form, we write:

fa(x + ca∆t, t+ ∆t) = fa(x, t)− 1/τ (fa(x, t)− feq
a (x, t))

where fa(x, t) denotes the fraction of particles at time step t
moving with velocity ca, and τ the relaxation time which is
related to the fluid viscosity. feq is the local equilibrium dis-
tribution function, constructed from the macroscopic vari-
ables, the form of which is chosen to impose conservation of
mass and momentum, and impose isotropy. The velocities
ca arise from the basic structure of the lattice, so that a
particle travels from one lattice site to another in one time
step. The grid is chosen in concert with the collision op-
erator and equilibrium distribution function. A typical 3D
discretization is the D3Q27 model [37], which uses 27 dis-
tinct velocities (including zero velocity) is shown in Figure 1.

Conceptually, a LBM simulation proceeds by a sequence of
collision() and stream() steps, reflecting the structure of
the master equation. The collision() step involves data
local only to that spatial point; the macroscopic variables
at each point are calculated from the distribution functions
and from them the equilibrium distribution is formed. The
distribution functions are then updated. This is followed
by the stream() step that evolves the distribution functions
along the appropriate lattice vectors. In practice however,
most implementations incorporate the data movement of the
stream() step directly into the collision() step—an opti-
mization suggested by Wellein and co-workers [29]. In this
formulation, either the newly calculated particle distribution
function can be scattered to the correct neighbor as soon as
it is calculated, or equivalently, data can be gathered from

adjacent cells to calculate the updated value for the current
cell. Using this method, data movement is considerably re-
duced and programming the collision step begins to look
much more like a stencil kernel—in that data are accessed
from multiple nearby cells. A key difference is that there
is no temporal reuse of grid data between the processing of
one grid point and another, each variable at each grid point
is used only once.

In addition to conventional fluid dynamics, the Lattice
Boltzmann technique has been successfully extended to the
field of magnetohydrodynamics (MHD) [9, 16,21]. MHD ef-
fects play an important role in many branches of physics [2]:
from the earth’s core to astrophysical phenomena, from
plasma confinement to engineering design with electrically
conducting liquid metals in magnetic fusion devices. The
kernel of the algorithm is similar to that of the fluid flow
LBM except that the regular distribution functions are aug-
mented by magnetic field distribution functions, and the
macroscopic quantities augmented by the magnetic field.

We have chosen to study the behavior of an MHD LBM
code as they contain some of the more challenging kernels
as compared to the fluid dynamics case. The additional
macroscopic variables and distribution functions present a
severe test to most compilers and memory subsystems. The
LBMHD [14] code was developed using the D3Q27 lattice
to study MHD homogeneous isotropic turbulence in a sim-
ple system with periodic boundary conditions. In this case,
for the magnetic field distribution functions, the number of
phase space velocities needed to recover information on the
magnetic field is reduced from 27 to 15. The differing compo-
nents for particle and magnetic field are shown in Figure 1.

The original Fortran implementation of the code achieved
high sustained performance on vector architectures, but a
relatively low percentage of peak performance on superscalar
platforms [3] The application was rewritten in C for our
previous study [32], around two lattice data structures, rep-
resenting the state of the system, the various distribution
functions and macroscopic quantities, at time t and at time
t + 1. At each time step one lattice is updated from the
values contained in the other. The algorithm alternates be-
tween these each data structures as time is advanced. The
lattice data structure is a collection of arrays of pointers to
double precision arrays that contain a grid of values.

The code was parallelized using MPI, partitioning the
whole lattice onto a 3-dimensional processor grid. In this
implementation, the stream() function updates the ghost-
zones surrounding the lattice domain held by each task.
Rather than explicitly exchanging ghost-zone data with the
26 nearest neighboring subdomains, we use the shift algo-
rithm, which performs the exchange in three steps involving
only six neighbors. The shift algorithm makes use of the
fact that after the first exchange between processors along
one cartesian coordinate, the ghost cells along the border
of the other two directions can be partially populated. The
exchange in the next coordinate direction includes this data,
further populating the ghost cells, and so on. Palmer and
Nieplocha provide a summary [20] of the shift algorithm and
compare the trade-offs with explicitly exchanging data with
all neighbors using different parallel programming models.

3. RELATED WORK
As stencils and LBM’s form the core of many important

applications, researchers have continually worked to improve

14
4

13

16
5

8

9
21

12

2
25

1

3
24

23

22
26

0

18
6

17

19
7

10

11
20

15

14

13

16

21

12

25

24

23

22
26

18

17

19

20

15

momentum distribution

magnetic distribution

macroscopic variables

+Y

+Z

+X

+Y

+Z

+X

+Y

+Z

+X

Figure 1: Data structures for LBMHD. For each
point in space, in addition to the macroscopic quan-
tities of density, momentum, and magnetic field, two
lattice distributions are maintained.

their performance. Broadly speaking, these can be catego-
rized into optimizations designed to maximize instruction-
and data-level parallelism, avoid cache capacity misses, or
improve temporal locality. For example, our previous sten-
cil optimization work applied various unroll and jam as well
as cache (loop) blocking optimizations on various 3D sten-
cil kernels [7, 8, 12]. Moreover, Rüde and Wellein studied
optimal data structures and cache blocking strategies for
Bhatnagar-Gross-Krook [1] LBM for various problems in
CFD [22, 29]. To improve temporal locality of a method
that nominally has O(1) arithmetic intensity, researchers
have included the time or iteration loop in their optimiza-
tion. Thus, in theory, they may tesselate a 4D problem to
maximize locality within the cache. These range from ex-
plicit to cache oblivious approaches and are described as
time-skewing, temporal blocking, or wavefront paralleliza-
tion [6, 11,17,19,28,39].

Automatic performance tuning (Auto-tuning) is an empir-
ical, feedback-driven, performance optimization technique
developed over the last 15 years to tackle the optimiza-
tion state explosion arising from the breadth of possible
optimizations. Originally envisioned to facilitate the op-
timization matrix-matrix multiplication, it has since been
applied to a number of other computational kernels includ-
ing sparse matrix-vector multiplication and the fast fourier
transform [10, 27, 30]. Over the last decade, auto-tuning
has expanded from simple loop transformation (loop block-
ing, unroll and jam) to include exploration of alternate data
structures, optimizations for efficient shared memory par-
allelism (threading, data replication, data synchronization),
and exploration of algorithmic parameters (particles per box
in FMM, steps in communication-avoiding Krylov subspace
methods) [4, 15, 18, 27, 35]. Additionally, auto-tuners have
specialized to maximize performance or generality. For ex-
ample, auto-tuning premised on auto-generation via a do-
main specific languages [23] as well as compiler-based ap-
proaches have been developed, that through guidance can
apply a core set of optimizations to any application [5, 12].

Finally, our previous work focused on the creation of an
application-specific auto-tuner specifically for the colli-

sion() operator within LBMHD [32, 33]. That is, an auto-
tuner was created specifically for an entire LBMHD appli-
cation, because the existing library, compiler, and DSL so-
lutions do not adequately address the application’s compu-
tational characteristics. This paper builds upon preliminary
results discussed at the 2009 Cray User Group [34].

4. EXPERIMENTAL SETUP
Our study evaluates auto-tuned LBMHD performance on

three large supercomputers: NERSC’s Cray XT4“Franklin”,
NERSC’s Cray XE6 “Hopper”, and the BlueGene/P (BGP)
“Intrepid” located at the Argonne Leadership Computing
Facility. Although these machines span a variety of proces-
sor and network technologies, our hierarchical auto-tuning
approach allows us to deliver performance portability across
them. The details of these machines is shown in Table 1. To
explore possible changes to existing programming models
that could be required for changing hardware architecture,
we explore three popular models: flat MPI, MPI/OpenMP,
and MPI/Pthreads. Finally, to illustrate the impact of com-
munication on performance, and provide apples-to-apples
comparisons between architectures, we explore 3 progres-
sively larger datasets: 1, 4, and 16GB per node.

Cray XT4“Franklin”: Franklin is a Cray XT4 built from
single-chip, quad-core Opteron compute nodes. Each com-
pute node also contains one SeaStar2 network chip which
connects with others in the system to form a 3D torus. Each
Opteron chip instantiates four superscalar, out-of-order cores
capable of completing one (dual-slot) SIMD add and one
SIMD multiply per cycle. Additionally each core has private
64 KB L1 and 512 KB L2 caches. L2 latency is small and
easily hidden via out-of-order execution. The four cores on
a chip share a 2 MB L3 cache and dual DDR2-800 memory
controllers capable of providing an average STREAM [24]
bandwidth of 2.1 GB/s per core.

Cray XE6 “Hopper”: Hopper is a Cray XE6 built from
dual-socket, 12-core“Magny-cours”Opteron compute nodes.
In reality, each socket (multichip module) has two dual hex-
core chips, making each compute node effectively a four-
chip compute node with strong NUMA properties. Although
each core is virtually identical to those in Franklin, the L3
has been increased to 6 MB, a snoop filter was added, and
memory bandwidth has been increased. We thus observe a
similar STREAM bandwidth of 2.0 GB/s per core. Each
pair of compute nodes (8 chips) shares one Gemini network
chip. Like the XT4, the Gemini chips form a 3D torus.

IBM BlueGene/P“Intrepid”: Intrepid is a BlueGene/P
optimized for energy-efficient supercomputing. Instead of
using superscalar and out-of-order execution, the BlueGene
Compute chip is built from 4 power-efficienct, PowerPC
450d, dual-issue, in-order, embedded cores. Like the
Opterons, they implement two-way SIMD instructions. How-
ever, unlike the Opterons they implement fused-multiply
add. Each core includes a 32 KB L1, and each socket in-
cludes a 8 MB L2 cache. However, unlike the Opterons, the
L1 is write-through and the L1 miss penalty is more than
50 cycles, making locality in the L1 essential. The memory
is low-power DDR2-425 and provides about 2.1 GB/s per
core. Like the Cray machines, Intrepid compute nodes are
arrayed into a 3D torus. Although BlueGene’s per-core per-

Core IBM AMD AMD
Architecture PPC450d Opteron Opteron

dual-issue superscalar superscalar
Type in-order out-of-order out-of-order

SIMD SIMD SIMD
Clock (GHz) 0.85 2.3 2.1
DP GFlop/s 3.4 9.2 8.4
Cache/core 32 KB 64+512 KB 64+512 KB

Node Opteron Opteron
Architecture

BlueGene/P
1356 6172

Cores/chip 4 4 6
Chips/node 1 1 4

Last cache/chip 8 MB 2 MB 6 MB
STREAM Copy 8.3 GB/s 8.4 GB/s 49.4 GB/s

DP GFlop/s 13.6 36.8 201.6
Memory 2 GB 8 GB 32 GB
Power† 31W 120W 455W

System BlueGene/P XT4 XE6
Architecture “Intrepid” “Franklin” “Hopper”

custom SeaStar2 GeminiInterconnect
3D Torus 3D Torus 3D Torus

Compiler XL/C gcc‡ gcc‡

Year 2007 2008 2010

Table 1: Overview of Evaluated Supercomputing
Platforms. †Based on Top500 [26] data. ‡gcc delivered

the best performance.

formance is less than half that of the Opterons, the average
system power per core is also less than half. Thus, despite
being three years old, BlueGene/P continues to represent a
competitive, power-efficient design point.

Reference Implementation: The“reference”LBMHD ver-
sion used as a baseline is a highly-optimized implementa-
tion that was a 2005 Gordon Bell finalist [3]. It includes
the aforementioned optimization designed to cut the num-
ber of grid accesses per time step in half by incorporating
stream()’s data movement into collision(). In addition,
the inner loops over velocity components in collision()

were unrolled to maximize vectorization on the NEC Earth
Simulator hardware. Therefore, the goal of this paper is
start with a well optimized code and further improve upon
it to address the challenges at scale arising from multicore
parallelism via hierarchical and distributed auto-tuning.

Programming Models: In this paper, we explore the
performance and productivity challenges associated with
three parallel programming paradigms: Flat MPI, MPI/-
OpenMP, and MPI/Pthreads. The first has been the de
facto programming model for distributed memory applica-
tions, while the last two hybrid programming models have
emerged as solutions that can exploit the on-node hardware
support for shared memory to reduce replication and avoid
superfluous message passing. Both of these hybrid mod-
els generally nest a fork-join style of parallelism within the
process-level SPMD (Single Process, Multiple Data) paral-
lelism. However, in practice, our Pthreads approach mirrors
the process-level SPMD parallelism but adds a hybrid com-
munication paradigm (a thread must decide whether to pass
messages or access shared memory) with the caveat that we
only report the performance where we have initialized MPI
with MPI_THREAD_SERIALIZED, i.e., MPI sends and receives
are serialized per process. For the experiments conducted
in our study, all cores on a given compute note are uti-
lized. Thus, as we increase the number of threads per MPI
process, we proportionally decrease the number of processes

per node. This allows consistently expressing performance
in GFlop/s per core irrespective of programming model.

Evaluated Problem Sizes: Current scaling models show
that DRAM power will become an impediment to future
supercomputer scale. To mitigate this, designers have pro-
posed dramatically reducing the memory capacity per core
(or per flop). To explore this impact on applications with
computation and communication patterns similar to LBMHD,
we examine per-node aggregate problem (grid) sizes of 1GB,
4GB, 16GB where possible (note, actual memory utiliza-
tion inevitably exceeds this minimum). If there are multiple
processes per node, then each process is allotted a fraction
of this memory. Hopper, which contains 32GB of memory
per node, allows us to explore the full range of per-node
DRAM capacities, corresponding to a range of between 42
and 667MB per core. Conversely, with Intrepid’s 2GB (to-
tal) per node, we can only evaluate the 1GB grid size which
corresponds to 256MB per core.

5. PERFORMANCE CHARACTERISTICS
In the single core era, LBMHD performance was domi-

nated by the performance of the collision() operator with
relatively little time spent in communication. Since then,
processor performance has increased by an order of mag-
nitude (primarily via multicore) but memory and network
bandwidth have struggled to keep pace. As such, to un-
derstand the performance presented in this paper, it is im-
portant to qualify all results via a performance model that
examines the performance characteristics of both the col-

lision() and stream() operators.

5.1 Overview of collision()
Broadly speaking, collision() is comprised of two phases.

In the first, a weighted reduction of the previous lattice
distribution functions at neighboring sites is used to recon-
struct the macroscopic quantities. Effectively, this entails a
complex stencil (gather) operation with no temporal locality
from one point to the next resulting in low arithmetic inten-
sity. As distribution functions are distributed across 73 sep-
arate cubic grids, spatial locality is only observed on every
73rd memory access. Without obvious spatial locality, hard-
ware prefetchers will not engage, thereby exposing memory
latency that in turn reduces effective memory throughout —
motivating us to restructure this computation.

The second part of collision() is a streaming opera-
tion in which the previously gathered distribution functions
are combined with the reconstructed macroscopic quantities
to calculate the equilibrium distribution functions and up-
dated macroscopic quantities for the next time step. Ideally,
this phase should incur no additional reads from memory as
the needed variables were read by the previous (reduction)
phase. However, this phase will generate 72 new writes per
lattice update, perform hundreds of flops per lattice update,
and thus exhibits moderate arithmetic intensity. Neverthe-
less, as the writes are widely separated in memory (one per
array), this phase must also be restructured to exploit se-
quential locality and attain high memory bandwidth.

The lattice updates performed by collision() operator
are completely independent and free of data dependencies.
Such characteristics enable straightforward parallelization
among threads, instructions (loop unrolling), and SIMD lanes
(grouping of unrolled loop iterations into SIMD instruc-

tions). However, as there is no data overlap, memory traffic
cannot be reduced via shared cache or register files.

Overall, the collision() operator must, at a minimum,
read 72 distribution functions (27 scalar plus 15 3D cartesian
vectors), and then write 72 new distribution functions and
the 7 macroscopic quantities for each lattice update. To do
this, it performs 1300 floating-point operations including one
divide, resulting in arithmetic intensities of approximately
0.70 flops per byte for write-allocate caches and 1.07 flops
per byte for cache bypassed implementations. These arith-
metic intensities do not depend on problem size. As a re-
sult, using a Roofline model [31,36], we can state STREAM
bounds performance of the collision() operator to about
2.2 GFlop/s per core on all three machines. Furthermore,
the inability to universally exploit fused multiply-add fur-
ther bounds BlueGene performance to well under
1.7 GFlop/s per core. We also note that the lack of doc-
umentation on the intricacies of instruction-dispatch among
the PPC450d’s three execution pipelines make detailed BGP
performance modeling and analysis extremely challenging.

5.2 Overview of Stream()
The stream() operator has been reduced to performing a

ghost zone exchange among processes. Although this oper-
ator performs no floating point operations, it does require
traversing the faces of each distribution function to pack and
unpack the MPI buffers. These traversals exhibit progres-
sively more challenging memory access patterns: unit-stride,
kilobyte stanzas (access a contiguous kilobyte then jumping
megabytes), and striding by kilobytes. Prior work has shown
the relative performance impacts of these phases [13].

As the shift algorithm aggregates data into two large mes-
sages (10MB each) for each cartesian direction, we expect
bandwidth-limited MPI performance. However, an artifact
of the 3-phase shift algorithm on a 3D torus is that only
two links at a time will be utilized; as such, peak node
bandwidth is likely unattainable. Thus, the performance
of stream() is heavily tied to architecture and per-process
aspect ratios (amortizing stanza and strided memory access
patterns), while application-level performance impact is ad-
ditionally tied to problem size (surface:volume ratio).

6. SEQUENTIAL OPTIMIZATIONS
To maximize performance behavior, we first examine a

variety of sequential optimization strategies including un-
rolling, virtual vectorization, prefetching, and ISA-specific
transformations. Each of these optimizations has a corre-
sponding parameter range. Our auto-tuner, described in
Section 8 includes an application-specific code generator and
a benchmarking tool that explores these optimizations to de-
termine the best for the underlying machine.

We visualize the computational structure of the optimized
collision() operator in Figure 2. The gray boxes mark
the grid (lattice sites horizontally and distribution functions
vertically). The weighted reduction/stencil used to recon-
struct the macroscopic quantities and store them in a series
of temporary vectors is labeled “1”, while the streaming up-
date phase is labeled “2”. The width of the green boxes de-
notes simple unrolling, the width of the blue boxes highlights
vector length, and the red box area visualizes the requisite
cache working set and attained sequential locality. As one
increases unrolling or vector length to attain sequential lo-
cality, the necessitated cache working set (red box) increases

Grid Points (current time step)

Te
m

po
ra

ry

ve
ct

or
s

Ve
lo

ci
tie

s

2

Grid Points (next time step)

Ve
lo

ci
tie

s

1

Figure 2: Visualization of the computational struc-
ture of the collision() operator.

proportionally. In effect, the auto-tuner determines the rel-
ative importance of unrolling (green width), vectorization
(blue width), and cache pressure (red area). Note, the en-
tirety of step “1” must be completed before step “2” begins.

Unrolling and Reordering: Given the original imple-
mentation of collision(), we may unroll the spatial x-loop
by 1, 2, 4, 8, or 16, without modifying the loops through
velocity-space, as was described in detail in previous stud-
ies [31,32]. In essence, the width of the red, green, and blue
boxes in Figure 2 would all be equal to each other and limited
to 16. This can produce an explicit 16-way instruction-level-
parallelism that may be exploited by the compiler. Simul-
taneously, it improves spatial and TLB page locality as con-
tiguous 128 byte blocks of data may be accessed before the
distribution function jump necessitates a jump to another
address. In the simplest approach, the auto-tuner simply
unrolls each iteration in a velocity-space loop by a factor of
n; however, even this may be insufficient for some compilers.
Thus our auto-tuner is capable of reordering the statements
within each resultant iteration to pair up similar operations
and ensure successive operations access consecutive memory
locations within the same array.

Virtual Vectors: Although our auto-tuned loop unrolling
improves spatial locality, unfortunately, the resultant maxi-
mum 128 byte accesses (followed by effectively random jumps
in memory that also incur TLB misses) are insufficient to
fully utilize a hardware stream prefetcher, as prefetchers
require long-contiguous accesses to hide last-level cache or
DRAM latencies. Furthermore, additional loop unrolling
(more than 16) runs the risk of falling out of instruction
cache. Thus, rather than using loop variables (registers), we
create several “vectors” (central box in Figure 2) to hold the
values of these variables, and thereby allow array accesses.
In practice, rather than further unrolling of the spatial x-
loop, the x and y loops are fused (to form a plane) and a

vector loop is created to stream through the plane a vector
length’s worth of lattice sites at a time. In effect, we use the
cache hierarchy as a virtual vector register file. The auto-
tuner first explores all possible vector lengths in increments
of the cache line size, and then proceeds to examine powers
of two for larger configurations up to our chosen maximum
of 1K lattice sites. Unlike the simple unrolling of the pre-
vious section, increasing the vector length increases spatial
locality (width of the red and blue boxes in Figure 2) with-
out incurring an increase in the instruction cache working
set. The former improves memory bandwidth by effectively
utilizing hardware prefetchers, however, it comes with an
increased data cache working set (area of the red box). All
unrolling and reordering optimizations described in the pre-
vious section are applicable here as well (green box within a
blue box). Thus, auto-tuning plays a critical role as it bal-
ances the relative importance of increased bandwidth, L1
miss penalties from large vector lengths, and TLB misses.

Prefetching: To enhance the performance on the stream-
ing accesses resultant from the vectorization optimization,
we add the ability for the auto-tuner to explore software
prefetching via intrinsics. In our previous single node paper
software prefetching could prefetch the next cache line in the
spatial loop, the next vector in the spatial loop, or none at
all [32]. However, we found that although prefetching in the
velocity-space loop (rather than the spatial loop) could be
beneficial in some circumstances, the best x86 solution was
to prefetch a four cache lines ahead while the best BlueGene
solution was no software prefetching at all.

SIMDization: Examining the compiler generated code of
our evaluated platforms, showed that XL/C on BGP gener-
ated SIMD (single instruction, multiple data) double hum-
mer intrinsics, while gcc (Franklin/Hopper) failed to gener-
ate SSE (Streaming SIMD Extensions) intrinsics. Neverthe-
less, to maximize performance, we extended the auto-tuner
to generate both SSE and double hummer intrinsics. For
Franklin/Hopper, our analysis showed that unaligned SSE
loads were sufficient, while unaligned stores were obviated
via data structure transformations. Our auto-tuner also uses
SSE’s cache bypass instruction to eliminate write allocations
when updating the distribution functions. In the reference
implementation, the macroscopic quantities were directly ac-
cessed in the reduction phase. This wastes bandwidth as
it necessitates a write-allocate operation on each. To avoid
this, increments to the macroscopic variables are rerouted to
vectors (temporary arrays) that remain in cache. Our imple-
mented cache bypass intrinsics take the final data in these
temporary arrays and commit it to DRAM, thus avoiding
write allocations on the macroscopic variables and improv-
ing performance by roughly 13%. This technique builds on
previous work [7,32,38]. For BGP, results show that explicit
generation of double hummer intrinsics more effectively ex-
ploited the cross-copy SIMD variants.

BlueGene/P Specific Optimizations: Intuitively, one
may expect LBMHD to be sufficiently memory-bound that
the gains from the vectorization technique far outweigh the
inefficiencies associated with streaming increments to arrays
residing in the L1. Unfortunately, BGP defies these as-
sumptions. First, the L1 is write-through (instead of write-
back). Thus, each increment to the temporary arrays in
the vectorization technique is propagated all the way to the
last level cache — squandering cache bandwidth and po-

tentially stalling the prefetchers (further diminishing band-
width). To rectify this, our code generator produces an auto-
tuned, BGP specific implementation of collision(), which
restructures the reductions associated with reconstructing
the macroscopic quantities to minimize the number of writes
to temporary arrays by unrolling the velocity-space loops
in addition to the nominal unrolling and reordering. In
conjunction with the explicit generation of double-hummer
SIMD intrinsics and use of XL/C pragmas, this optimization
improved BGP performance by an additional 25%.

7. PARALLEL OPTIMIZATIONS
Given our extensive set of sequential auto-tuning opti-

mizations, we next describe the breadth of optimizations
designed to address the challenges found in parallel envi-
ronments. These include thread affinity, approaches to par-
allelization of computation on a node, and minimizing the
impact of inter-process communication.

Affinity: Appropriately addressing node-level NUMA is-
sues can be a critical performance issue. Of the machines
in our study, Hopper is the only NUMA architecture, com-
prised of four 6-core chips within each compute node. To en-
sure maximum performance, we used aprun affinity options
and confirmed that data is appropriately matched with the
threads tasked to process it. We found this was sufficient
and required no additional source code modifications.

MPI Decomposition: Given that the 1, 4, and 16GB
memory usage constraints translate into per-node grid sizes
of 963, 1443, and 2403 (the cubic nature arises from the
assumption that off-node bandwidth is isotropic and the ul-
timate constraint), the auto-tuner explores decompositions
of these per-node grid sizes into per-process grids. For a
target number of processes per node, our decomposition
strategy explores all possible ways to tesellate the per-node
grid among processes in x, y, and z, such that it uses the
requisite number of processes per node. This optimization
balances stream()’s asymmetric MPI buffer packing time
with communication time. For example, given a desired four
processes per node, the auto-tuner may evaluate a 4×1×1,
1×4×1, 1×1×4, 2×2×1, 1×2×2, or a 2×1×2 process grid
per node. For example, on a 2×2×1 process grid, the auto-
tuner will decompose a 1443 4GB per node problem into
four 72×72×144 subproblems (one per MPI process). This
state space can obviously grow quite large on Hopper, as it
may have up to 24 processes per node.

Thread Decomposition: When there are fewer processes
than cores per node, our auto-tuner uses multiple threads
(OpenMP or Pthreads) per process. For both OpenMP
and Pthreads, thread-level parallelism is applied only to the
spatial z-loop. In OpenMP, we use pragmas appropriately,
while in the SPMD Pthread model, there is a simple calcu-
lation to determine loop bounds. A visualization of process
and thread decomposition on a 4-core/node system (Intrepid
and Franklin) is shown in Figure 3. Observe there are 6
possible flat MPI implementations and eight hybrid imple-
mentations (four MPI/OpenMP and four MPI/Pthreads).

Optimization of stream(): In previous studies the com-
munication in stream() represented a small fraction of run-
time [3] However, as the collision() computation is opti-
mized, there is a corresponding increases in the fraction of
communication time. Recall that LBMHD’s stream() op-
erator implements a three phase (±x, ±y, ±z) ghost zone

“Flat MPI”
4 Processes per node

(no threading)

“Hybrid”
2 Processes per node,
2 threads per process

“Hybrid”
1 Processes per node,
4 threads per process

process 0 process 1 process 2 process 3

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 0

thread 1

thread 2

thread 3

thread 0

thread 1

pr
oc

es
s

0

pr
oc

es
s

1

pr
oc

es
s

2

pr
oc

es
s

3

process 0

process 1

process 2

process 3

pr
oc

es
s

0

pr
oc

es
s

1

process
0

process
2

process
1

process
3

pr
oc

es
s

0

pr
oc

es
s

1

process 0

process 1

pr
oc

es
s

0

process 0

process 1

process 3

pr
oc

es
s

3

pr
oc

es
s

0
pr

oc
es

s
1

Figure 3: Parallelization strategies on Intrepid
and Franklin. A per-node cube (minimal off-node
communication) is tessellated among processes and
threads. In effect, the auto-tuner balances the rel-
ative tradeoffs of inter- and intra-node MPI perfor-
mance, buffer packing, and reduced communication.

exchange among processes. Each face of each process’s grid
consists of 24 doubles (9 scalars for particle distribution
functions, 5 3D cartesian vectors for the magnetic field dis-
tribution function) culled from 24 different arrays using 3
progressively more challenging memory access patterns: unit-
stride, kilobyte stanzas, and striding by kilobytes. Each
node must exchange (send plus receive) as much as 126MB
per time step. This work optimizes these exchanges by
aggregating the distribution function components into one
large message, with the goal of maximizing effective MPI
bandwidth. We further improve performance by thread-
ing buffer packing and unpacking (in both OpenMP and
Pthreads) as well as via non-blocking sends. Furthermore,
the choice of a per-process aspect ratio can facilitate the non-
unit strides associated with buffer packing but increase the
total size of the MPI messages. Thus, an auto-tuner must
balance these contending forces to find an optimal solution.

8. HIERARCHICAL AUTO-TUNING
Having enumerated an enormous possible optimization

space in Sections 6 and 7, it is clear that attempting to
auto-tune the entire parameter space of optimizations for
LBMHD at scale would be grossly resource inefficient. Thus
a key contribution of our work is the implementation of a
two stage, application-specific, hierarchical auto-tuner that
efficiently explores this optimization space efficiently at a
reduced concurrency of 64 nodes. Both stages of the auto-
tuner are distributed and explore disjoint optimization sub-
spaces. We discuss their pertinent details below.

As the run time of the reference LBMHD implementa-
tion on Franklin is dominated by local computation, we
explore sequential optimizations first, by running a small
64-node problem and sweeping through the sequential op-

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

G
F

lo
p

/s
 p

e
r

C
o

re

Flat MPI MPI+OpenMP MPI+Pthreads

Intrepid Franklin Hopper

1G
B

1G
B

4G
B

1G
B

4G
B

16
G

B

Figure 4: Results from the auto-tuner’s exploration
of parallelism and problem decomposition. Each dot
in a problem size cluster represents one particular
combination of processes per node and dimensions
of those processes.

timizations and parameterizations. Our application-specific
code generator is written in perl. Not surprisingly, the auto-
tuner found the vectorized, SIMDized, ISA-specific (BGP
and x86) implementations to be optimal for their respective
platforms. Interestingly, Franklin and Hopper (both built
on nearly identical Opteron cores) preferred slightly differ-
ent variants. While both machines maximized performance
via unrolling of 8, Franklin preferred operations to be re-
ordered into groups of 4 (a blocks of 2 identical SIMD in-
structions) while Hopper preferred a reordering into groups
of 8 (blocks of 4 identical SIMD instructions). This differ-
ence again highlights the necessity of auto-tuners to obtain
performance portability — even on similar architectures.
Both Opteron machines benefited most from a vector length
of 256 which consume a little over half the L2 cache capacity
and provide stanza accesses of 2 KB. Interestingly, the BGP
machine also preferred an unrolling and grouping of 8 but a
vector length of 128. As vectors with a length of 128 clearly
will not fit in the L1, this is clearly a compromise between
the tension of L1 locality and large streaming accesses, i.e.,
kilobyte stanzas are attained at the cost of at least doubling
the L1 capacity misses.

The second auto-tuning stage explores threading and prob-
lem decomposition via the intuition that both the compute
and network performance characteristics at small scale (64
nodes / 1536 cores) perform similarly to those at large scales
(2048 nodes / 49,152 cores) — a reasonable assumption for
this weakly-scaled, structured grid application devoid of any
inherent scalability impediments such as collectives. The
data from the first stage, coupled with a desired per node
problem size (1, 4, 16GB) is fed into a perl script that pro-
duces and submits job files to run the full application on
64 nodes. A perl script was necessary to accommodate the
complex calculations of domain size and the different job

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

1G
B

1G
B

4G
B

1G
B

4G
B

16
G

B

Intrepid Franklin Hopper

G
Fl

op
/s

 p
er

 C
or

e
threading of stream()
threading of collision()
auto-tuned (ISA-specific)
auto-tuned (portable C)
reference

Figure 5: Performance results of the auto-tuned
LBMHD running at a scale of 2048 nodes (49,152
cores on Hopper) as a function of machine, problem
size per node, and progressive levels of optimization.

schedulers used on the various machines. This script enu-
merates all balances between processes per node and threads
per process for both OpenMP and Pthreads. For each com-
bination, it then examines all possible 3D process decompo-
sitions of the cubical problem and always selects a 1D thread
decomposition (see Figure 3). It then submits the job using
the best optimizations from the first stage.

Figure 4 visualizes the range in performance as a function
of platform, problem size per node, and threading model
produced by the second stage of the auto-tuner. Observe
that there is relatively little variation in performance on In-
trepid, a testament to the fact that combination of slow pro-
cessors with fast network results in ubiquitous dominance
of collision() regardless of aspect ratio or programming
model. However, on Franklin and Hopper, with more pow-
erful superscalar cores, performance can range by 15% and
75% respectively. On Hopper, optimal selection of thread-
ing and decomposition can improve performance by up to
30% over a communication minimizing flat MPI decompo-
sition. This variability highlights the value in utilizing an
auto-tuner similar to ours in a hierarchical fashion on exist-
ing and next-generation HPC platforms.

On Hopper, with 24 threads per process, cubical per-node
domains worked best (e.g. 2403). When using 6 threads
per process, partitioning the node cube in the least unit-
stride dimension worked best (e.g. 2402×60). For flat MPI,
we found that decomposing the 2403 per node grid into
120×80×60 grids per process worked best.

9. RESULTS AND ANALYSIS AT SCALE
Upon completion of the auto-tuning process that deter-

mines the optimal sequential and parallel tuning parame-
ters, we now evaluate performance at scale. For these ex-
periments we examine our three HPC platforms using 2048
nodes for each evaluated problem size.

9.1 Optimization Impact
To gain insight into optimization impact, Figure 5 presents

the results of progressively higher degrees of tuning on the
various combinations of machines and problem size. As
performance per node involves the design choices of cores
per chip and chips per node, all performance is expressed
in GFlop/s per core. The “auto-tuned (portable C)” re-
sults incorporate all the benefits reaped from auto-tuning
the unrolled and vectorized code in a flat MPI environment,
but does not include the SIMD or ISA-specific optimiza-
tions found in “auto-tuned (ISA-specific)”. The last two
data points show the benefit of threading collision() and
the benefit of threading the stream() operator. Thus the
first includes the full exploration of process- and thread-level
decomposition, and the latter enhances the effective MPI
performance. Note that moving to larger problem sizes,
improves the surface:volume ratio and thus amortizes the
performance impact of communication.

Overall, auto-tuned performances of 0.63, 1.85, and 1.50
GFlop/s per core is attained on Intrepid, Franklin, and Hop-
per respectively. As all machines run using 2K nodes, we
achieve 5.2, 15.2, and 73.7 TFlop/s on Intrepid, Franklin,
and Hopper. The impact of our auto-tuning approach im-
proves performance by an overall factor of 1.6-3.4×, com-
pared to a previously optimized reference implementation.

9.2 Performance Analysis
Observe that although the portable C auto-tuner can ex-

tract application-level performance benefits (e.g., 47% im-
provement on Intrepid), the sequential ISA-specific opti-
mizations (particularly cache bypass and manual SIMDiza-
tion) were essential as they could effectively double perfor-
mance. By effectively SIMDizing the code, these optimiza-
tions have the potential of doubling the computational ca-
pability of each core. By bypassing the cache, these opti-
mizations have potential of reducing memory traffic by 33%
(and thus improving performance by 50%).

In LBMHD, threading provides a benefit by replacing
message passing operations with cache coherent shared mem-
ory loads and stores. Thus the benefit of threading is heav-
ily tied to the fraction of time spent in communication. The
smaller the problem, the worse the surface:volume ratio and
the greater importance of threading.

For the largest problems, collision() dominates the run-
time spent in each time step. However, since collision()

has a relatively low arithmetic intensity operation (see Sec-
tion 5.1), a straightforward bandwidth–compute performance
model would predict this calculation to be memory bound.
We compute the effective memory bandwidth by machine as
31%, 94%, and 85% of their corresponding STREAM band-
widths for Intrepid, Franklin, and Hopper (respectively).
Thus, Franklin and Hopper’s collision() performance is
entirely bound by DRAM bandwidth, whereas Intrepid’s
performance is limited by a number of factors.

First, unlike the deep, low latency cache hierarchy found
on the Opterons, BGP effectively has a 2-level cache with
a 50 cycle L1 miss penalty. To hide this high latency, the
hardware stream prefetchers must be engaged. To engage,
the prefetchers must observe many (approaching hundreds)
of sequential accesses. Unfortunately, to attain N bytes
of streaming sequential accesses, the reduction component
within the collision() phase must keep more than 80N
bytes (all 72 distribution function components, 7 macro-

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
ef

er
en

ce

O
pt

im
iz

ed

Th
re

ad
ed

R
ef

er
en

ce

O
pt

im
iz

ed

Th
re

ad
ed

R
ef

er
en

ce

O
pt

im
iz

ed

Th
re

ad
ed

Intrepid (1GB) Franklin (1GB) Hopper (1GB)

Ti
m

e
R

el
at

iv
e

to
 R

ef
er

en
ce

 collision()
stream()

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
ef

er
en

ce

O
pt

im
iz

ed

Th
re

ad
ed

R
ef

er
en

ce

O
pt

im
iz

ed

Th
re

ad
ed

R
ef

er
en

ce

O
pt

im
iz

ed

Th
re

ad
ed

Intrepid (1GB) Franklin (4GB) Hopper (16GB)

Ti
m

e
R

el
at

iv
e

to
 R

ef
er

en
ce

 collision()
stream()

Figure 6: Wallclock breakdown into computation and communication using the 1GB (left) and largest possible
(right) per-node problems. All times are relative to time consumed by reference platform on that machine.

scopic quantities, and temporaries) in the cache for use when
updating the velocities. When combined with a small 32 KB
L1 (compared to the Opteron’s 576 KB L1+L2), the BGP
architecture is not capable of forming a sufficiently large
working set in the L1 required to attain the correspondingly
long sequential accesses. Moreover, the relatively weak dual-
issue cores may further limit performance as integer and
memory instructions consume floating-point slots. Nonethe-
less, it is possible that sheer multicore parallelism (instead
of deep cache hierarchies) will be enable forthcoming Blue-
Gene/Q systems to fully utilize their DRAM bandwidths.

Finally, all machines attain roughly 20% of their respec-
tive peak performances, although for different reasons. In-
trepid is heavily bound by computation and L2 latency,
while scaling experiments showed that Franklin is barely
memory bound, while Hopper becomes memory bound us-
ing four (of six) cores per chip. Thus, the time-skewing and
wavefront approaches discussed earlier may show little ben-
efit on this application.

9.3 Communication Analysis
To fully understand application-level performance, it is

important to analyze the interplay between per-node mem-
ory capacity, on-node computation, and off-node communi-
cation. We therefore examine the time spent in communi-
cation as a function of optimization (on-node computation),
machine, and problem sizes (memory capacity) ranging from
1GB to that machine’s maximum. Furthermore, technology
trends indicate that for future exascale machines, the ratio of
computation (GFlop/s) to capacity (GB) may reach 100:1.
Thus, the 1 and 4GB problems on Hopper are a reasonable
proxy for this exascale challenge.

Figure 6(left) presents the runtime (per timestep) in pro-
gressively optimized versions of collision() and stream()

relative to the wall clock time of the reference flat MPI im-
plementation using the 1GB/node dataset. Observe that in
the reference LBMHD version Intrepid and Franklin spend
about 10% or less of their time in MPI communication,
while Hopper spends 35% in MPI. This is not due to in-
ferior MPI performance on Hopper, but instead is a result
of its much higher per-node compute capability on a fixed

per-node problem size. After sequential optimization (“Op-
timized” on Figure 6), results show that communication ac-
counts for 55% of the wall clock time on Hopper, thus im-
peding application-level performance benefits seen from dou-
bling the performance of collision() (green bar).

Counterintuitively, threading does not improve the on-
node computation performance (“Threaded” in Figure 6).
Rather, by amalgamating processes on a node, threading
eliminates on-node message passing in favor of direct shared
memory accesses, thus improving the time spent in stream()

by reducing the volume of the MPI messages. Results show
that on machines like Intrepid and Franklin with few cores/-
nodes, this optimization provides small application-level
benefit. However, on the 24-thread Hopper nodes, threading
optimization eliminates well over half the MPI communica-
tion and provides significant application-level speedups of
1.8× compared with the reference version.

Given that Franklin and Hopper have far more memory
capacity per node than Intrepid, we can view Figure 6(left)
as a worst case scenario on the Opteron platforms. Fig-
ure 6(right) presents more appropriate test cases were each
node maximizes its use of available DRAM resources. In this
case, Intrepid, Franklin, and Hopper run the 1, 4, and 16GB
(per node) problems respectively. Here communication ac-
counts for less than 10% on the reference version; how-
ever, with auto-tuned sequential optimizations (which accel-
erate collision()), this fraction rises to 10-25%. Thread-
ing the application once again improves the performance of
stream(), and brings the communication fraction down to
7%, 11%, and 19% respectively. These correspond to effec-
tive MPI bandwidths (including the overhead of traversing
high-dimensional data structures for buffer packing and un-
packing) of 640, 800, and 1400MB/s respectively.

Comparing the OpenMP and Pthreads versions, results
show little difference while confined to a NUMA node. How-
ever, when processes span multiple NUMA nodes on Hop-
per, Pthreads delivered up to a 17% performance advantage
over OpenMP with the benefit centered on the problem sets
for which communication impedes performance. This was
due to a slight gain in Pthread performance coupled with
a moderate loss in OpenMP performance when compared

to using 6 threads (one NUMA node) per process. Future
HPC systems built from commodity processors (including
POWER7) will undoubtably contain multiple NUMA nodes.
Thus, although the combination of aprun and OpenMP par-
tially addressed the NUMA nature of Hopper, future work
must address OpenMP’s suboptimal performance as com-
pared to Pthreads or accept this performance loss.

9.4 Energy Efficiency
As power and energy are becoming significant impedi-

ments to future machine scale and performance, it is criti-
cal to evaluate behavior in the context of energy efficiency.
Figure 7 presents energy efficiency comparisons (sustained
performance per watt) as a function of machine, problem
size, and optimization. Performance is obtained by the em-
pirical measurements presented in this paper, while power is
derived from data within the latest (Nov. 2010) Top500 [26]
list. Surprisingly, all three platforms show similar efficiency
— less than a factor of two difference among them. Nev-
ertheless, it is important to note that the evaluated sys-
tems emerged over the last three years and span three differ-
ent process technologies: 90nm (Intrepid), 65nm (Franklin),
45nm (Hopper). Thus, we conclude that BGP’s removal of
many familiar architectural paradigms (superscalar, out-of-
order, generality, legacy support) allows it to attain energy
efficiency comparable to next generation lithography on ref-
erence codes, while exceeding energy efficiency on a systems
two technology generations ahead on auto-tuned code. Fur-
thermore, when examining progress within a family of pro-
cesses, we observe that the Opteron’s per-core performance
actually decreased. Conversely, although the Opteron peak
floating-point energy efficiency improved by about 43% in
two years (to 443 MFlop/s/W), the application-level effi-
ciency on this bandwidth-bound code only improved by 33%
to just under 80 MFlop/s/W. Although Hopper is more en-
ergy efficient than Franklin, the slow rate of progress does
not bode well MPP’s built from commodity processors.

Collectively, results demonstrate the fundamental shift
away from sequential performance and the worsening dis-
crepancy between the power efficiency of the memory sub-
system (bandwidth-limited) and the cores (flop-limited). Us-
ing a fraction of a node’s memory capacity may reduce power
slightly, but would dramatically reduce performance and en-
ergy efficiency. It is important to be cognizant of these rela-
tionships as the future designs may result in major changes
to DRAM power and network performance.

Overall results indicate that as applications become in-
creasingly memory bound, future computational platforms
would benefit from removal of core-level architectural para-
digms that do not enhance energy efficiency on compiled or
auto-generated memory-intensive codes.

10. CONCLUSIONS
As the computing community shifts towards hybrid ar-

chitectures premised on shared memory communication be-
tween dozens of cores on a node and message passing be-
tween nodes, elimination of communication via exploitation
of shared memory is becoming increasingly key to attain-
ing high performance. In this paper, we used LBMHD as a
testbed to evaluate, analyze, and optimize performance on
three important supercomputing platforms: the IBM Blue-
Gene/P, the Cray XT4, and the Cray XE6.

Our study also evaluates the attainable LBMHD perfor-

0
10
20
30
40
50
60
70
80
90

100

1G
B

1G
B

4G
B

1G
B

4G
B

16
G

B

Intrepid Franklin Hopper

M
Fl

op
/s

 p
er

 W
at

t

fully optimized
reference

Figure 7: Energy efficiency at 2048 nodes as a func-
tion of machine, problem size, and optimization.
System power is based on Top500 [26] data.

mance using three popular programming modes: flat MPI,
MPI/OpenMP, and MPI/Pthreads. We observe that on the
BGP performance is relatively stable regardless of program-
ming model, while on the NUMA-based XE6 nodes, MPI/-
Pthreads delivering up to a 13% performance advantage.

Finally, to quantify the relative importance of the commu-
nication and compute capabilities of the three architectures,
we explore three problem sizes. Despite the seemingly simple
communication structure, results show that small problems
relative to compute capability (a likely harbinger of future
exascale machines) can result in performance dominated by
communication. As such, further enhancements to on-node
performance, either via further optimization, faster memory,
more cores, use of GPUs, etc., will have diminishing bene-
fits. Thus, it is critical that architects carefully balance the
number of cores, memory bandwidth, memory capacity, and
network bandwidth apportioned to each compute node.

In order to provide performance portability and enhance
our productivity, we leverage hierarchical and distributed
automatic performance tuning to explore an extremely large
optimization space spanning both sequential and parallel op-
timizations. Results show that auto-tuning computation can
improve performance by 1.6-3.4×, while optimizing commu-
nication can further enhance performance by as much as
1.25×. The net is a 1.6-3.4× speedup at up to 49,152 cores,
compared with a previously optimized LBMHD version.

Energy, instead of per-core performance, is becoming the
great equalizer among ultrascale machines. Thus, perhaps
the most surprising result was that energy efficiency at scale
was remarkably similar across all platforms: 60-80 Mflop/s
per Watt. Unfortunately, these efficiencies pale in com-
parison to the peak energy efficiencies attained via LIN-
PACK [26] — a testament to the widening gulf between
peak flops and peak memory bandwidth.

Results show that hierarchical auto-tuning can effectively
leverage emerging ultra-scale computational resources in a
performance-portable, and resource-efficient manner. Fi-
nally, our methodology is broadly applicable for a wide array
of explicit numerical methods including CFD and QCD sim-
ulations, which will be explored in future work.

11. ACKNOWLEDGMENTS
All authors from Lawrence Berkeley National Laboratory

were supported by the DOE Office of Advanced Scientific
Computing Research under contract number DE-AC02-05-
CH11231. This research used resources of the Argonne Lead-
ership Computing Facility at Argonne National Laboratory,
which is supported by the Office of Science of the U.S. De-
partment of Energy under contract DE-AC02-06CH11357.

12. REFERENCES
[1] P. Bhatnagar, E. Gross, and M. Krook. A model for

collisional processes in gases I: small amplitude
processes in charged and neutral one-component
systems. Phys. Rev., 94:511, 1954.

[2] D. Biskamp. Magnetohydrodynamic Turbulence.
Cambridge University Press, 2003.

[3] J. Carter, M. Soe, L. Oliker, Y. Tsuda, G. Vahala,
L. Vahala, and A. Macnab. Magnetohydrodynamic
turbulence simulations on the earth simulator using
the lattice Boltzmann method. In SC05, Seattle, WA,
2005.

[4] A. Chandramowlishwaran, S. Williams, L. Oliker,
I. Lashuk, G. Biros, and R. Vuduc. Optimizing and
tuning the fast multipole method for state-of-the-art
multicore architectures. In Interational Conference on
Parallel and Distributed Computing Systems (IPDPS),
Atlanta, Georgia, 2010.

[5] C. Chen, J. Chame, and M. Hall. CHiLL: A
framework for composing high-level loop
transformations. Technical Report 08-897, University
of Southern California, June 2008.

[6] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf,
and K. A. Yelick. Optimization and performance
modeling of stencil computations on modern
microprocessors. SIAM Review, 51(1):129–159, 2009.

[7] K. Datta, M. Murphy, V. Volkov, S. Williams,
J. Carter, L. Oliker, D. Patterson, J. Shalf, and
K. Yelick. Stencil computation optimization and
autotuning on state-of-the-art multicore architectures.
In Proc. SC2008: High performance computing,
networking, and storage conference, nov 2008.

[8] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker,
J. Shalf, and K. Yelick. Auto-tuning the 27-point
stencil for multicore. In In Proc. iWAPT2009: The
Fourth International Workshop on Automatic
Performance Tuning, 2009.

[9] P. Dellar. Lattice kinetic schemes for
magnetohydrodynamics. J. Comput. Phys., 79, 2002.

[10] M. Frigo and S. G. Johnson. FFTW: An adaptive
software architecture for the FFT. In Proc. 1998 IEEE
Intl. Conf. Acoustics Speech and Signal Processing,
volume 3, pages 1381–1384. IEEE, 1998.

[11] M. Frigo and V. Strumpen. Evaluation of cache-based
superscalar and cacheless vector architectures for
scientific computations. In Proc. of the 19th ACM
International Conference on Supercomputing (ICS05),
Boston, MA, 2005.

[12] S. Kamil, C. Chan, L. Oliker, J. Shalf, and
S. Williams. An auto-tuning framework for parallel
multicore stencil computations. In Interational
Conference on Parallel and Distributed Computing
Systems (IPDPS), Atlanta, Georgia, 2010.

[13] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and
K. Yelick. Impact of modern memory subsystems on
cache optimizations for stencil computations. In
Memory Systen Performance, pages 36–43. ACM,
2005.

[14] A. Macnab, G. Vahala, L. Vahala, and P. Pavlo.
Lattice Boltzmann model for dissipative MHD. In
Proc. 29th EPS Conference on Controlled Fusion and
Plasma Physics, volume 26B, Montreux, Switzerland,
June 17-21, 2002.

[15] K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf,
E. Strohmaier, and K. Yelick. Memory-efficient
optimization of gyrokinetic particle-to-grid
interpolation for multicore processors. In Proc.
SC2009: High performance computing, networking,
and storage conference, 2009.

[16] D. Martinez, S. Chen, and W. Matthaeus. Lattice
Boltzmann magnetohydrodynamics. Physics of
Plasmas, 1:1850–1867, June 1994.

[17] J. McCalpin and D. Wonnacott. Time skewing: A
value-based approach to optimizing for memory
locality. Technical Report DCS-TR-379, Department
of Computer Science, Rugers University, 1999.

[18] M. Mohiyuddin, M. Hoemmen, J. Demmel, and
K. Yelick. Minimizing communication in sparse matrix
solvers. In Proc. SC2009: High performance
computing, networking, and storage conference, 2009.
http://dx.doi.org/10.1145/1654059.1654096.

[19] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and
P. Dubey. 3.5-D blocking optimization for stencil
computations on modern CPUs and GPUs. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–13,
Washington, DC, USA, 2010. IEEE Computer Society.

[20] B. Palmer and J. Nieplocha. Efficient algorithms for
ghost cell updates on two classes of MPP
architectures. In Proc. PDCS International
Conference on Parallel and Distributed Computing
Systems, pages 192–197, 2002.

[21] M. Pattison, K. Premnath, N. Morley, and M. Abdou.
Progress in lattice Boltzmann methods for
magnetohydrodynamic flows relevant to fusion
applications. Fusion Eng. Des., 83:557–572, 2008.

[22] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and
U. Rüde. Optimization and profiling of the cache
performance of parallel lattice Boltzmann codes.
Parallel Processing Letters, 13(4):S:549, 2003.

[23] SPIRAL Project. http://www.spiral.net.

[24] STREAM: Sustainable memory bandwidth in high
performance computers.
http://www.cs.virginia.edu/stream.

[25] S. Succi. The Lattice Boltzmann equation for fluids
and beyond. Oxford Science Publ., 2001.

[26] Top500 Supercomputer Sites.
http://www.top500.org.

[27] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library
of automatically tuned sparse matrix kernels. In Proc.
of SciDAC 2005, J. of Physics: Conference Series.
Institute of Physics Publishing, June 2005.

[28] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and
H. Fehske. Efficient temporal blocking for stencil

computations by multicore-aware wavefront
parallelization. In International Computer Software
and Applications Conference, pages 579–586, 2009.

[29] G. Wellein, T. Zeiser, G. Hager, and S. Donath. On
the single processor performance of simple lattice
Boltzmann kernels. computers & fluids,
35(8–9):910–919, Nov. 2006. ISSN 0045-7930.

[30] R. C. Whaley, A. Petitet, and J. Dongarra. Automated
empirical optimization of software and the ATLAS
project. Parallel Computing, 27(1-2):3–35, 2001.

[31] S. Williams. Auto-tuning Performance on Multicore
Computers. PhD thesis, EECS Department,
University of California, Berkeley, December 2008.

[32] S. Williams, J. Carter, L. Oliker, J. Shalf, and
K. Yelick. Lattice Boltzmann simulation optimization
on leading multicore platforms. In International
Parallel & Distributed Processing Symposium, 2008.

[33] S. Williams, J. Carter, L. Oliker, J. Shalf, and
K. Yelick. Lattice Boltzmann simulation optimization
on leading multicore platforms. Journal of Parallel
and Distributed Computing, 69(9):762–777, 2009.

[34] S. Williams, J. Carter, L. Oliker, J. Shalf, and
K. Yelick. Resource-efficient, hierarchical auto-tuning
of a hybrid lattice Boltzmann computation on the
Cray XT4. In Proc. CUG09: Cray User Group
meeting, 2009.

[35] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick,
and J. Demmel. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. In
Proc. SC2007: High performance computing,
networking, and storage conference, 2007.

[36] S. Williams, A. Watterman, and D. Patterson.
Roofline: An insightful visual performance model for
floating-point programs and multicore architectures.
Communications of the ACM, April 2009.

[37] D. Yu, R. Mei, W. Shyy, and L. Luo. Lattice
Boltzmann method for 3D flows with curved boundary.
Journal of Comp. Physics, 161:680–699, 2000.

[38] T. Zeiser, G. Hager, and G. Wellein. Benchmark
analysis and application results for lattice Boltzmann
simulations on NEC SXvector and Intel
Nehalemsystems. Parallel Processing Letters,
19(4):491–511, 2009.

[39] T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger,
U. Rude, and G. Hager. Introducing a parallel cache
oblivious blocking approach for the lattice Boltzmann
method. Progress in Computational Fluid Dynamics,
8, 2008.

