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ARTICLE OPEN

Comprehensive subtyping of Parkinson’s disease patients with
similarity fusion: a case study with BioFIND data
Matthew Brendel 1, Chang Su2, Yu Hou3, Claire Henchcliffe4 and Fei Wang 3✉

Parkinson’s disease (PD) is a complex neurodegenerative disorder with diverse clinical manifestations. To better understand this
disease, research has been done to categorize, or subtype, patients, using an array of criteria derived from clinical assessments and
biospecimen analyses. In this study, using data from the BioFIND cohort, we aimed at identifying subtypes of moderate-to-
advanced PD via comprehensively considering motor and non-motor manifestations. A total of 103 patients were included for
analysis. Through the use of a patient-wise similarity matrix fusion technique and hierarchical agglomerative clustering analysis,
three unique subtypes emerged from the clustering results. Subtype I, comprised of 60 patients (~58.3%), was characterized by mild
symptoms, both motor and non-motor. Subtype II, comprised of 20 (~19.4%) patients, was characterized by an intermediate
severity, with a high tremor score and mild non-motor symptoms. Subtype III, comprised of 23 (~22.3%) patients, was characterized
by more severe motor and non-motor symptoms. These subtypes show statistically significant differences when looking at motor
(on and off medication) clinical features and non-motor clinical features, while there was no clear difference in demographics,
biomarker levels, and genetic risk scores.

npj Parkinson’s Disease            (2021) 7:83 ; https://doi.org/10.1038/s41531-021-00228-0

INTRODUCTION
Parkinson’s disease (PD) is a complex and progressively debilitat-
ing neurodegenerative disease with distinct clinical manifestations
of motor and non-motor characteristics1. Despite its common core
characteristics, it is heterogeneous in terms of clinical manifesta-
tions, progression course, treatment response, genetic under-
pinnings, and biomarker readouts and pathology. Identification of
PD subtypes may therefore lead to further insights into mechan-
isms of disease, potential therapeutic targets, and could drama-
tically enhance patient care and clinical trial design2–4. The
rationale of this study is to comprehensively integrate hetero-
geneous data provided by the BioFIND observational study, a
cohort of patients with “typical” PD at moderate-to-advanced
stages, in order to identify meaningful subtypes of PD patients5.
Conventionally, PD subtypes have been identified empirically

based on clinical observations and analyses of cohort studies, by
focusing on informative motor and non-motor variables6–8. For
example, PD can be divided into tremor-dominant (TD), and
postural instability and gait difficulty (PIGD) subtypes based on
motor manifestations as measured by the Movement Disorder
Society Unified PD rating scale (MDS-UPDRS)6, and such standar-
dized rating scales may also be used to classify patients according
to rates of progression. PD subclassification may also be based on
associated non-motor manifestations, for example, REM sleep
behavior disorder (RBD)9. There have been recent efforts to
develop treatment based upon genetic subtypes, for example,
GBA or LRRK2-associated PD10. However, these conventional
subtypes methods only characterize patients based on a very
limited aspect of this complex disease. More comprehensive
approaches that can consider multiple different aspects of patient
characteristics are needed.
In this context, researchers have turned to data-driven

perspectives, where patient subtyping is transformed into a

typical clustering problem11–16. These works have focused on
several different types of data collected from patients besides just
clinical assessments, which include neuroimaging data17–19,
genomic data20, and neurophysiological assessment data21. With-
out any prior assumption patients are grouped into clusters, each
of which corresponds to a specific subtype, such that patients
within the same subtype manifest similar PD characteristics while
those from different subtypes are distinct. Generally, the existing
data-driven PD subtyping approaches represented each patient by
an array of all or some of his/her features (e.g., motor and non-
motor assessments), which is then directly fed into the standard
clustering models, e.g., k-means and hierarchical agglomerative
clustering22 to derive the subtypes. However, a typical limitation
of these methods is that, by directly aggregating heterogeneous
data as input, they are not able to capture the underlying patterns
and interactions within a specific type of data (such as MDS-
UPDRS I, REM Behavioral Disorder (RBD) score and Montreal
Cognitive Assessment score, all non-motor data) and that between
different types of data (such as non-motor and motor data).
Previous methods that have aimed to tackle this problem have
used similarity matrix fusion approaches23,24.
In this paper, we propose a data-driven subtyping method

which integrates both motor and non-motor characteristics of PD
patients. More precisely, we first calculated two similarity matrices
in terms of motor and non-motor manifestations, which indicate
the pairwise similarities between all patients with respect to each
set of features. Then we integrated the two similarity matrices
through an optimization based fusion method, which generates a
final pairwise patient similarity measure that can be used for
further analyses. Third, hierarchical agglomerative clustering was
performed over the integrated similarity matrix to identify the
comprehensive subtypes of PD patients. Finally, we evaluated
differences in demographics, clinical characteristics (motor and
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non-motor), biomarkers and genetic information (genetic risk
score) between subtypes/clusters by statistical testing.

RESULTS
Patients and baseline description
Of the 118 PD participants in the BioFIND study, 103 patients had
complete clinical data and were included in this study, consisting
of 63 (61.2%) males and 40 (38.8%) females with an average age of
71.87 ± 6.44. The participants’ years of education were 16.87 ±
2.95. A family history of PD (either grandparents, parents, siblings,
or children with a diagnosis of PD) was reported in 19 (18.4%)
participants. The mean MDS-UPDRS I and II and the MDS-UPDRS III
on and off medication scores were 9.65 ± 5.82, 11.24 ± 6.59,
28.43 ± 14.22, and 38.59 ± 13.21, respectively.

PD subtypes
Through jointly tuning cluster number and MBBS hyperpara-
meters, the Silhouette index suggested three distinct clusters:
Subtype I, comprised of 60 patients (58.3%); Subtype II, comprised
of 20 (19.4%) patients; and Subtype III, comprised of 23 (~22.3%)
patients. Through cluster stability analysis, we show that these
clusters represent distinct patient populations (Supplementary Fig.
1). We also see that the most incorrect clustering during subset
analysis is true subtype II clusters being clustered as Subtype I. In
addition, by adding an additional biomarker matrix to the
optimization process, the clusters stay relatively the same, with
a rand index of 0.9052. Interestingly, we see that the coefficient for
the added biomarker matrix had the lowest coefficient, showing
that it had the lowest contribution to the clustering results.

Subtype Characteristics
Statistical testing was used to determine how the subtype
populations differed and violin plots were used to visualize the
data distributions per clusters (Table 1 and Fig. 1). For this section,
a difference in values will refer to a statistically significant
difference based on the statistical methods discussed in the
previous section.
There were no significant differences in mean age, sex, years of

education, nor ethnicity between the three subgroups. We note,
however, that there is very little diversity in ethnicity for this PD
cohort.
PD duration (time since diagnosis) and symptom duration were

both significantly longer in Subtype III than in Subgroups I and II
(8.478 ± 4.241, 10.391 ± 3.775, p= 0.024, 0.009 for Subtype III,
compared to 5.967 ± 2.604, 7.833 ± 2.799 and 5.55 ± 2.929, 7.75 ±
2.173 for I and II, respectively). Study participants in Subtype III
were also treated with a significantly greater anti-PD medication
dose, measured as LEDD (986.3 ± 426.1, p= 0.005) when com-
pared to the Subtypes I and II (705.695 ± 360.549 and 634.25 ±
421.231 for Subtype I and II, respectively).
There was a significant difference between subtypes for the

MDS-UPDRS II score with Subtype I least affected, Subtype III most
affected, and Subtype II intermediate (7.267 ± 4.129, 14.45 ± 3.62,
18.826 ± 5.646 for Subtype I, II, and III, p < 0.0001). This corre-
sponds to a difference in Schwab and England Assessment of
Daily Living scores, also a self-reported assessment (p= < 0.0001).
There were also significant differences between subtypes in the
MDS-UPDRS III scores both on and off medication with Subtype I
least affected, but with Subtype II more affected than Subtype III
(20.983 ± 7.961, 47.7 ± 8.998, 31.087 ± 14.177, p < 0.0001 and
34.0 ± 11.423, 48.1 ± 11.742, and 42.304 ± 13.636, p < 0.0001).
There was no significant difference between the subtypes for
overall MDS-UPDRS IV scores, although numerically Subtype III has
the most severe score, Subtype II the mildest, and Subtype I is
intermediate (3.517 ± 2.593, 2.8 ± 2.876, 4.739 ± 3.596, p= 0.196

for Subtype I, II, and III respectively). The Hoehn and Yahr stage for
Subtype II also has the lowest difference of the three subtypes
between the on and off medication states (2.15 ± 0.587 off vs.
2.25 ± 0.786 on). Of note, there is a higher Tremor score for
subtype II (0.995 ± 0.625), and this does not change between “on”
and “off” states in this Subtype, in contrast to Subtypes I and II
(0.4 ± 0.338 and 0.557 ± 0.389 for Subtype I and II respectively).
We analyzed differences between phenotypic subtypes tremor

dominant (TD), postural instability-gait disturbance (PIGD) and
indeterminate between subgroups in the on and off states. Based
on previous literature, individuals may shift from one phenotypic
subtype to another between the on and off states7. If a patient
goes from a TD classification while off medication, to another
classification while on medication, the patient is considered a “TD-
shifter”, and similarly for PIGD. Patients who were indeterminate in
the off state, were grouped into a separate category. Supplemen-
tary Fig. 3 demonstrates that TD patients in Subgroup III are more
likely to shift to another phenotypic subtype in response to
medication, in contrast to Subgroups I and particularly II, in which
the majority of TD individuals do not shift in response to
medication.
A number of differences in non-motor features were also

evident between the subtypes. For the overall MDS-UPDRS Part I
score as well as 8/13 individual questions (cognition, anxiety,
apathy, depression, fatigue, pain, lightheadedness on standing,
constipation), there was a significantly worse score in Subtype III
compared with Subtype I, with subtype II having an intermediate
value (7.25 ± 4.049, 10.7 ± 4.769, and 15.0 ± 6.822, p < 0.0001 for
Subtype I, II, and III). Those in Subtype III were more likely to have
clinically diagnosed depression (56.5%, p= 0.02) than those in
Subtypes I and II (26.7% and 20% respectively). Differences in
individual scores for individual questions on hallucinations and
psychosis, night time sleep problems, daytime sleepiness, and the
presence of dopamine dysregulation syndrome did not meet
significance, and were of borderline statistical significance for
urinary problems, although we note that as for the other non-
motor items above, scores for each of these features were
numerically best for Subtype I, worst for Subtype III and typically
intermediate for Subtype II. Independent of the MDS-UPDRS
measures, mean score from the RBD questionnaire was signifi-
cantly higher (more affected) in Subtype III compared with
Subtypes I and II (3.45 ± 3.127, 3.75 ± 3.143, and 6.348 ± 3.284, p=
0.003 for Subtype I, II, and III). Subtype I and II have a 35% RBD-
positive subtype, whereas Subtype III had a much higher
proportion of patients with the RBD-positive subtype (78.3%).
Cognition was also more affected in Subtype III compared with
Subtypes I and II as rated by Montreal Cognitive Assessment
Scores (27.283 ± 2.373, 26.9 ± 2.532, and 25.565 ± 2.519, p= 0.016
for Subtype I, II, and III).

Biomarkers and genetic factors
No differences were observed in both classic biomarker measure-
ments (α-Synuclein, Aβ, and Tau) and genetic risk score. However,
when analyzing a more exploratory set of biomarkers from taken
from mass-spectrometry data from our patient cohort, we did
identify a set of protein biomarkers that are significantly different
in subtype III, compared to subtype I and II. Of note, we see a
significant increase in levels of the proteins for AMBP, APOA4, C9,
F11, FGA, LYZ, MBL2, PLD4, and SERPINA10, and the protein that
was lower was FTL (Table 2 and Supplementary Fig. 2).

DISCUSSION
In this study, we developed a data-driven subtyping method for
moderate-to-advanced PD, via comprehensively considering the
motor and non-motor manifestations in a cross-sectional cohort.
Different from the existing data-driven subtyping studies11 which
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Fig. 1 Violin plots showing characteristics of the identified subtypes. Feature distributions of (a) demographics, (b) motor clinical
assessments, (c) non-motor clinical assessments, and (d) biospecimen measurements/genetic risk score. The violin plots show a kernel density
estimate of the feature distribution. The white dot within each plot represents the median, the edges of the box represent the interquartile
and the line represents 1.5 times the interquartile range.
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concatenated motor and non-motor variables to derive clusters,
we calculated patient-wise similarity matrices based on motor and
non-motor manifestations separately and, using our MBBS
algorithm25, produced a comprehensive, integrated algorithm
via improving the cluster structures. The weights of the motor and
non-motor matrices to construct the integrated similarity matrix
are 0.6994 and 0.3006, respectively, indicating motor symptoms
have a major contribution to defining the PD subtypes we have
determined in this study. This study can be applicable to many
other diseases, as well as different modes of data collected from
patients. The MBBS algorithm can include more than 3 datasets for
fusion, so it may be of interest in future studies to combine
neuroimaging and genomic data, in addition to clinical data, to
analyze PD subpopulations.
Through the use of the data-driven method, we have identified

three PD subtypes within the BioFIND cohort. Significant
differences in motor and non-motor signs and symptoms were
observed among the three subtypes, in addition to differences in
medication response. Specifically, we can interpret the three
subtypes as follows. Subtype I demonstrated the mildest motor
and non-motor symptoms, best patient-reported outcomes,
consistent with shortest disease duration. In contrast, Subtype III,
which we have defined as a severe subtype, had worse non-motor
symptoms, and reported worse motor experiences of daily living
than others consistent with the longest disease duration, while
Subtype II had intermediate scores on most symptoms. An
interesting finding emerges from Subtype II when examining
MDS-UPDRS II and MDS-UPDRS III scores, and although the MDS-
UPDRS II and MDS-UPDRS III score is different for all 3 groups, the

trends do not match. For MDS-UPDRS II, the patient-reported
motor experiences, subtype III has a more severe phenotype
compared to Subtype II. However, direct assessment of motor
signs, the MDS-UPDRS III score, shows that Subtype II has a more
“severe” motor phenotype in both the on and off medication
states. Moreover, Subtype II does not have a change in score
between the on and off medication states, in contrast to Subtypes
I and III, and Subtype II also has the lowest difference of the three
Subtypes between the on and off medication states. We consider
this may be at least in part due to the presence of a greater
degree of tremor that is poorly medication-responsive in Subtype
II. This poor response could also be partly due to a lower dosage of
medication for patients for Subtype II. Nonetheless, our results
strongly suggest that we have identified a subgroup, Subtype II,
with intermediate scores on the majority of symptom items but
with medication-resistant tremor, and possibly other medication-
resistant motor features.
Significant work has been done previously to identify motor

subtypes in PD patients, most notably subdividing PD into TD,
PIGD, and indeterminate classes. To explore the relationship
between these established phenotypic subtypes and our Subtypes
I-III in the present study, we examined associations in both “on”
and “off” medication states. The PIGD score is highest and the TD
score is the lowest in Subtype III compared with Subtypes I and II,
consistent with previous studies that demonstrated that a higher
PIGD score is associated with older patients who have had PD for a
longer period of time26. Specific non-motor features, including
RBD and depression are also highly represented in Subtype III.
Overall our findings indicate that patients of Subtype III suffered

Table 2. List of statistically significant proteins between clusters (Numerical values are relative quantification of each protein in CSF).

Protein Subtype I (n = 60) Subtype II (n = 20) Subtype III (n = 23) ANOVA P-value FDR-corrected P-value Post-Hoc (Tukey-
HSD)

AMBP, mean (SD) 1.1038 (0.3206) 1.1635 (0.3499) 1.4268 (0.4255) 0.0013 0.0439 III vs rest

APOA4, mean (SD) 1.0654 (0.3505) 1.0794 (0.2420) 1.3963 (0.5126) 0.0017 0.0491 III vs rest

C9, mean (SD) 1.2819 (0.4093) 1.2747 (0.4344) 1.7141 (0.6859) 0.0014 0.0439 III vs rest

F11, mean (SD) 1.0155 (0.3206) 0.9608 (0.2000) 1.3286 (0.4481) 0.0003 0.0288 III vs rest

FGA, mean (SD) 1.1921 (0.4835) 0.9537 (0.3375) 1.5521 (0.6936) 0.0009 0.0439 III vs rest

FTL, mean (SD) 1.1146 (0.2791) 1.2598 (0.4105) 0.9328 (0.1245) 0.0012 0.0439 III vs rest

LYZ, mean (SD) 1.0037 (0.2379( 1.0666 (0.2040) 1.3162 (0.4367) 0.0001 0.0168 III vs rest

MBL2, mean (SD) 0.8587 (0.4244) 0.8595 (0.2951) 1.5076 (0.7946) <0.00001 0.0009 III vs rest

PLD4, mean (SD) 1.0010 (0.2070) 1.1444 (0.2176) 1.3071 (0.5469) 0.0057 0.0370 I vs III

SERPINA1, mean (SD) 1.1309 (0.3593) 1.1220 (0.2959) 1.4475 (0.4428) 0.0226 0.0491 III vs rest

Fig. 2 Overall workflow of PD subtyping. Two patient similarity matrices (K(motor) and K(non-motor)) were first derived using motor and non-
motor manifestation data, respectively. Then our similarity matrix fusion algorithm was performed to produce integrated similarity matrix (i.e.,
K*). Finally, hierarchical clustering analysis was applied to K* to identify PD subtypes.
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from both worse patient-reported motor and non-motor symp-
toms than Subtypes I and II. However, there is a disconnect
between directly observed motor scores on examination (MDS-
UPDRS III) and patient-reported motor experiences of daily living
(MDS-UPDRS II), suggesting that differences between groups do
not simply reflect the global extent of PD severity. Moreover,
examination of the motor scores also gives a unique insight to
how patients respond to therapy, by comparing phenotypic
subtypes based upon MDS-UPDRS III scores in the “off medication”
versus “on medication” states. Individuals in Subtype II had a
minimal response of motor symptom score in response to
medication, and the minimal response of the tremor subscore,
in contrast to Subtypes I and III. We also examined the response of
the identified subtypes to medication treatment. Individuals
within Subtype III were more likely to shift motor phenotypes in
response to PD medication.
The biomarker measurements, CSF alpha-synuclein, CSF amy-

loid-Beta, CSF pTau and total Tau, and plasma alpha-synuclein did
not associate with specific subtypes to the level of statistical
significance. There is a question of whether any association could
have been confounded by treatment, and although biospecimens
were collected in the off state, they were only taken approximately
12 h after the last dose5. Moreover, biospecimen levels are stable
over 6 months to a year while on medication and previous work
has shown that there are little changes in these biomarkers while
on medication27, which may be related to the lack of significant
changes in this analysis. However, when analyzing DEEP SEQ
mass-spectrometry data from the BioFIND study, we did identify
several proteins that were present at different levels for subtype III
compared to the other two subtypes. Interestingly, some of the
protein biomarkers that we have identified fit with previous
literature. FTL, seen to be significantly lower in the most severe
subtype, has been shown to be downregulated in late-stage PD
dopamine neurons28, and iron metabolism changes have been
shown to be associated with PD29. Both APOA4 and C9 were also
increased in the most severe phenotype. APOA4 upregulation has
been associated with PD, and C9 has been shown to be higher
expressed in PD patients as compared to Alzheimer’s Disease
patients30,31. Further studies can be done to study these markers
in more detail to understand the mechanistic changes that occur
in patients with more severe disease. In addition, we found no
difference in genetic risk scores between groups.
This study is an initial attempt to comprehensively integrate

heterogeneous clinical study data, including motor and non-
motor, for the identification of PD subtypes. Our approach has
demonstrated the strong potentials of the identification of
meaningful PD subtypes based upon cross-sectional data in the
BioFIND cohort. However, there are still some limitations in the
current study. Firstly, the subtyping approach taken in this study is
data-driven without the utilization of any clinical domain knowl-
edge. Appropriately combining data-driven approach with clinical
domain knowledge will help the data-driven model to capture
pathology and etiology, and hence enhance the subtyping results.
Secondly, the study only focuses on the BioFIND population,
which has limited PD samples (103 patients). One key next step
would be to see if this method for subtyping generalizes well for
other cohorts of moderate-to-late stage PD.
In conclusion, a comprehensive subtyping method which is

based on similarity fusion was used in our study. Two kernels were
first calculated to model PD patient similarity interns of motor and
non-motor manifestations. Then the kernels were integrated and
fed to clustering analysis. Within the BioFIND population, three
clinical subtypes of PDs were detected. The identified subtypes
show distinct characteristics: one subtype shows more severe
motor and non-motor deficits than others; one shows mild
symptoms; and one shows moderate symptoms. We also
compared the newly identified subtypes with the traditional

motor and sleep disorder subtypes and reveals interesting
relationships.

METHODS
Study population
BioFIND (http://biofind.loni.usc.edu) is an observational, multi-center,
cross-sectional study of moderate-to-advanced PD participants evaluated
with standardized clinical and biospecimen acquisition protocols5. Enrolled
PD participants met the United Kingdom PD Society Brain Bank (UKPDBB)
clinical diagnostic criteria, modified to require all three classic motor signs
of PD (tremor, bradykinesia, and rigidity) instead of just two signs. The
duration of the disease in the enrolled subjects was 5–18 years since the
onset of motor symptoms, and those who had undergone deep brain
stimulation or ablative surgeries for PD were excluded. BioFIND inclusion
was limited to 50–75 years of age at the onset of the disease (age 55 to 93
at the time of enrollment). BioFIND contains two different patient states in
the database for MDS-UPDRS III and IV scores (IV scores were incomplete
for visit 2 and not used). The baseline or visit 1 assessment is performed
while the patient is on medication and visit 2 represents a period of time
when the patient is off medication. The institutional review board of
BioFIND approved the study protocol. Written informed consent was
obtained from each study participant.

Data collection
We included a wide range of data available from the BioFIND study for
analysis as follows:

● Demographics: age, sex, race, family history and education year.
● Motor manifestations: Movement Disorder Society Unified PD rating

scale (MDS-UPDRS) Part II (motor experiences of daily living) and Part
III (motor examination), Schwab & England Activities of Daily Living
Scale, total tremor score, postural instability-gait difficulty (PIGD) score,
and tremor/PIGD phenotype8. For other motor features lacking specific
rating scales in this cohort (dyskinesias and dystonia), we used the
single items from MDS-UPDRS Part IV (motor complications).

● Non-motor manifestations: MDS-UPDRS Part I (non-motor experiences
of daily living), Montreal Cognitive Assessment (MoCA), REM sleep
behavior disorder (RBD) Questionnaire, and RBD phenotype9,32. For
other non-motor features lacking specific rating scales for measure-
ment in this cohort (hallucination, apathy, pain and fatigue), we used
the single items from MDS-UPDRS Part I.

● Medications: Levodopa Equivalent Dose. The medication was taken
from the BioFIND concomitant medication log, and was derived based
on the frequency of drug taken, the amount of drug per dosage, and
the type of drug administered33.

● Biospecimen: CSF (Cerebrospinal fluid) Aβ1-42, total Tau (t-tau) and
phosphorylated Tau (p-tau) were performed by Luminex xMAP
technology using INNO-BIA Alz Bio3 kits—Fujirebio Diagnostic INC.
The concentration of alpha-synuclein in CSF and Plasma samples
collected for BioFind were analyzed using an ELISA assay available
commercially from BioLegend5. All data was directly extracted from
the BioFIND database.

● Genetic information: The genetic risk score was calculated previously,
and described below34. The effects of the risk loci were reported in
BioFIND as a single genetic risk score, calculated by summing the risk
allele counts for the 28 common risk loci identified in the most recent
large-scale meta-analysis of PD genome-wide association study
(GWAS) data, as well as including the p.N370S risk variant in the
GBA gene, and the p.G2019S mutation in the LRRK2 gene5,35. The
allele counts per variant were normalized based on the log odds ratios,
and effect estimates for each variant were taken from previous
literature, with information for the two added alleles for GBA and
LRRK2 coming from the PDgene database and 23andMe.

● Mass-spectrometry: DEEP SEQ mass-spectrometry was performed at
Dana-Farber Cancer Institute and is described in depth in the BioFIND
database. To analyze this data, we removed any proteins that had
missing data and removed all proteins that had very small changes
between datapoints (standard deviation of less than 0.3), leaving 261
proteins of interest.

Specifically for clustering, the motor features used were the MDS-UPDRS
II score, the MDS-UPDRS III score at baseline on medication (chosen to
correspond to the medication state for all other measures), and the
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Schwab and England Activities of Daily Living Score, and the non-motor
features used were the MDS-UPDRS I score, the Montreal Cognitive
Assessment (MoCA) score, and REM sleep behavior disorder (RBD)
Questionnaire score.

Subtyping methods overview
Figure 2 illustrates the overall workflow of our subtyping technique. Two
patient similarity matrices were first derived based on motor and non-
motor features respectively. Then our similarity matrix fusion algorithm
was performed to produce an integrated similarity matrix. Finally,
hierarchical agglomerative clustering analysis was performed on the
integrated similarity matrix to identify PD subtypes.

Data preparation
All data were collected from BioFIND study (http://biofind.loni.usc.edu) and
is publicly available. Data extraction was performed using Python version
3.7.1 (http://www.python.org). Clinical data, including motor and non-
motor, were used to derive PD subtypes. Data was cleaned such that
patients with any missing information in terms of motor and non-motor
data were excluded for analysis (N= 15). A small sample (n= 2) patients
were missing drug information and were mean imputed. All feature values
were normalized using z-score using the python package sci-kit learn.

Patient similarity matrices calculation and fusion
For a specific type of data, i.e., motor or non-motor, we derived a N × N
patient similarity matrix K (N is the total number of patients) and apply a
gaussian kernel to each matrix. In this way, we derived two similarity
matrices K(motor) and K(non-motor), using motor and non-motor manifesta-
tion data, respectively (see Fig. 2). In order to appropriately combine motor
and non-motor symptoms to identify subtypes, a multiple similarity matrix
fusion technique, the Multiple Bregmanian Bi-Stochastication (MBBS)
algorithm25, was performed based on K(motor) and K(non-motor). Specifically,
MBBS is able to learn an optimal linear convex combination of multiple
similarity matrices to derive an integrated one, K+, on which the data
cluster structure can be best revealed. The optimal set of combination
coefficients can be interpreted as the importance of each type of data for
measuring patient-wise similarity (more detailed information in the
Supplementary Notes).

Cluster analysis
The integrated patient similarity matrix was converted to a distance/
dissimilarity matrix, by simply taking 1−K*. Agglomerative hierarchical
clustering was performed on the distance matrix to identify PD subgroups
(scipy)36. In order to determine the optimal number of cluster as well as
hyperparameters of similarity matrix fusion, the Silhouette index (sci-kit
learn)37 was used to estimate clustering performance (see more details in
the Supplementary Notes). According to the Silhouette index, the optimal
cluster number is three, where the integrated similarity matrix
K� ¼ 0:6994´K motorð Þ þ 0:3006 ´K non�motorð Þ .

Cluster stability
To evaluate stability and robustness of identified subtypes, sensitivity
analyses were conducted. We performed both patient-based sensitivity as
well as data type-based sensitivity. More specifically for the patient-based
analysis, the original patient population was subset at random 10 times so
that 10% of the population was removed. Each time the fusion and
clustering algorithm with hyperparameter tuning was performed using 100
different parameter tunes per subset. The Kuhn–Munrkres algorithm was
used to match the new clusters generated from the subset of data with the
corresponding cluster assignments for each patient from the original full
dataset38. We evaluated the overlap between the clusters produced by the
sensitivity analysis and that by the primary analysis. For the data type-
based analysis, we determined how the addition of a different type of data
would affect our analysis. We added a biomarker based matrix consisting
of Aβ from CSF, α-synuclein from CSF, α-synuclein from plasma, p-Tau from
CSF and Tau from CSF, to form a third separate similarity matrix. All data
was z-scored normalized using sci-kit-learn. The optimization process was
identical to the baseline method, but the optimization metric changed.
Instead of optimizing silhouette score, rand index (sci-kit learn), which is a
measure of how similar two sets of clusters are, was optimized for 50
rounds. Using this process, we obtained hyperparameters such that the

coefficients for each matrix were K� ¼ 0:4337´K motorð Þ þ 0:3600 ´
K non�motorð Þ þ 0:2063 ´K biomarkerð Þ.

Statistical analysis
We further assessed the differences in demographics, clinical character-
istics (motor and non-motor), biomarkers and genetic information (genetic
risk score) among the identified subtypes/clusters. Continuous/discrete
data were described using means (standard deviations), while categorical
data were described using frequency counts. Several different statistical
tests were performed depending on the feature value distributions.
To analyze continuous variables, first, a QQ plot and a Levene Test were

performed to look at the normality of the data as well as the homogeneity
of variance respectively. If the null hypothesis for the Levene Test was
rejected, an ANOVA was performed with white adjustment to account for
the unequal variances. In addition, a two-sided pairwise t-test with unequal
variance assumptions were done with Benjamini-Hochberg correction for a
post-hoc analysis. If the null hypothesis for the Levene test could not be
rejected, and the QQ plot showed a normal distribution, an analysis of
variance (ANOVA) test was performed, and a Tukey’s HSD test was used for
post-hoc analysis if the ANOVA p-value < 0.05. If the null hypothesis could
not be rejected, and the QQ plot did not show a normal distribution, a
Kruskal-Wallis test with Wilcoxon rank sum test with Benjamini-Hochberg
correction. Fisher’s Exact Tests were performed for categorical data, with
Benjamini-Hochberg post-hoc tests performed for multiple hypothesis
correction for each cluster comparison. For data in which an ANOVA test
could be performed, analysis of covariance (ANCOVA) was performed
adjusting age and disease duration at baseline. The nominal p-values were
also corrected using Bejamini-Hochberg FDR correction.
For mass-spectrometry analysis, an ANOVA test was performed for each

protein, and FDR correction was performed to identify proteins with a
corrected p-value of less than 0.05. Using the statsmodels package in
python, multiple comparison testing with Benjamini–Hochberg post-hoc
analysis was used to identify the subtypes that were statistically
significantly different.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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