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ABSTRACT OF THE DISSERTATION 

Landscape Genetics of African Malaria Parasite and Its Vectors 
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Professor Guiyun Yan, Chair 
 
 
 

During a time of intensive antimalarial campaigns, it is crucial to understand the effects these 

campaigns have on the population genetics of malaria parasites and mosquitoes, particularly with 

respect to genes associated with drug and insecticide resistance. In addition, as countries 

approach malaria elimination, it will be critically important to understand the underlying factors 

that cause malaria epidemics or help to sustain malaria transmission in order to effectively 

control malaria and achieve elimination. Therefore, my dissertation research aims to A) evaluate 

the impact that public health interventions have on the population genetics of malaria parasites 

and mosquitoes; and B) assess the relative impact that key ecological factors have on the 

dispersal, measured through gene flow, of malaria parasites and vectors. To address these aims, I 

collected malaria parasite and mosquito samples in Kenya and genotyped them for molecular 

markers associated with drug and insecticide resistance, as well as neutral markers to infer gene 

flow. I tested the link between key ecological factors (temperature, precipitation, vegetation 

index, topographic wetness index, human population density, and distance to roads) and spatial 

genetic structure between populations using landscape genetic analytic methods. I found a recent 

increase in drug resistance markers associated with the antimalarial drug used to prevent malaria 
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in pregnancy, as well as an increase in polymorphisms associated with increased tolerance to the 

partner drug of the first-line treatment for malaria. I found a key mutation to be associated with 

insecticide resistance in Anopheles arabiensis in Kenya, as well as that this mutation is common 

throughout Western Kenya. Finally, I found that high human population density promotes 

dispersal of An. gambiae s.s., high temperatures and low vegetation indices promote dispersal of 

An. arabiensis, and that physical barriers to human travel, such as lakes, may prevent dispersal of 

P. falciparum in Kenya. These findings allow us to identify areas susceptible to the introduction 

of malaria parasites and malaria vectors, as well as drug and insecticide resistance.  
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INTRODUCTION 

Optimistic from the promising potential of DDT as an effective insecticide for malaria 

vectors, the World Health Organization (WHO) initiated the Global Malaria Eradication Program 

(GMEP) in 1955. GMEP interventions were largely focused on indoor residual spraying (IRS) of 

DDT with little flexibility to adapt eradication programs to local malaria epidemiology 

situations.
1
 Within just fourteen years, after multiple resurgences of malaria, the notion of 

worldwide malaria eradication was abandoned.
1
 The failure of the GMEP has since largely been 

attributed to a lack of scientific research to support antimalarial interventions.
1
 In addition, 

decreased susceptibility to DDT and waning monetary interest in malaria eradication further 

contributed to the disbandment of the GMEP.
1 

Today, approximately 1.2 billion people worldwide remain at high risk of malaria.
2
 

Recently, there has been resurgence in monetary support to eradicate malaria, especially from the 

Bill and Melinda Gates Foundation.
3
 As countries approach malaria elimination and pre-

elimination phases, it will be critically important to understand the underlying factors which 

promote and prevent migration of malaria parasites and vectors in order to effectively sustain 

local malaria control and elimination. In addition to understanding potential susceptibilities to 

malaria parasite reintroduction, knowledge of how malaria parasites and vectors migrate is 

significant to understanding how insecticide and drug resistance spreads. Moreover, during a 

time of intensive antimalarial campaigns, it is crucial to understand the effects these campaigns 

have on the genetic structure of malaria parasites and mosquitoes, particularly with respect to 

genes associated with drug and insecticide resistance. Therefore, through this dissertation, I aim 

to A) assess the impact that public health interventions have on malaria parasites and 

mosquitoes; and B) evaluate the relative impact that key ecological factors have on the dispersal 
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of malaria parasites and vectors. These findings will help to inform antimalarial interventions in 

Kenya. In addition, these methods and findings may be broadly applicable to informing 

interventions in other countries, especially as malaria eradication is being considered.  

Landscape genetics can be an extremely useful approach to improve our understanding of 

how vector-borne diseases spread.
4
 Broadly, landscape genetics aims to quantify the effects of 

landscape heterogeneity on microevolutionary processes, such as gene flow, genetic drift, and/or 

natural selection.
5
 Landscape genetics has primarily and traditionally been used by conservation 

biologists, such as to identify vulnerable populations and identify areas where corridors are 

needed to promote gene flow.
6
 More recently, landscape genetics has been used to study various 

infectious diseases, such as chronic wasting disease,
7,8

 rabies in domestic dogs,
9
 raccoon 

rabies,
10-13

 hantavirus,
14,15

 H5N1 avian influenza,
16

 and malaria.
17-19

 Landscape genetic analysis 

begins by developing hypotheses of how landscape factors resist gene flow.
20

 To test isolation-

by-resistance hypotheses, landscape genetics integrates analytical tools across multiple 

disciplines, including landscape ecology, population genetics, and spatial statistics. It requires 

the use of molecular markers to measure genetic variation and to infer gene flow. Other tools 

needed are geographic information systems, remote sensing, population genetics, and statistical 

and mathematical modeling techniques.
21

 Moreover, landscape genetics analysis of vector-borne 

diseases is particularly complex, as several factors must be considered when designing a study, 

such as those related to the environment, vector mobility, and human and pathogen mobility. 

However, for this same reason, this method can be useful to parse out numerous factors and 

identify potential hotspot areas of disease movement for targeted public health interventions and 

containment of disease and drug resistance.
22
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Kenya provides an ideal setting for my proposed research because of its heterogeneous 

landscape, from the malaria endemic lowlands spanning the coastline of the Indian ocean, that 

rise inland to an arid interior. Further west leads to the malaria epidemic highlands which are 

bisected by the Rift Valley, and finally to the west are the malaria endemic lowlands surrounding 

Lake Victoria. Kenya has a warm and humid climate along the eastern coastline, with wildlife-

rich savannah grasslands inland towards the central highland.  Toward the west, there is a warm 

and humid climate around Lake Victoria, hilly areas and temperate forested, Kakamega Forest, 

which is relic of an East African rainforest. The land cover varies from the dense tropical forests 

of the reserve and the mangrove forests along the coastline of Indian Ocean, to the shrubbery of 

the arid desert lands of the North to the thick mountainous forests and alpine vegetation along the 

slopes of the snow-capped mountains.  

Kenya is in the control phase of malaria with 70% of the total population of 44.9 million 

people living in areas of high malaria transmission.
23

 Although significant progress has been 

made in decreasing malaria cases and malaria deaths, malaria still remains a major public health 

problem in Kenya accounting for 18% of outpatient visits an 6% of hospital admission.
24

 The 

most common method of malaria protection in Kenya is insecticide treated bed nets (ITN). In 

2014, 34% of households had at least one ITN for every two people.
24

 Artemether-lumefantrine 

is the first-line treatment for P. falciparum malaria. The major malaria species is Plasmodium 

falciparum and the major vector species are An. gambiae s.s., An. arabiensis, and An. funestus. 
 

The overall goal of my dissertation is to gain knowledge of how ecological factors and 

public health interventions impact population genetic structure of malaria parasites and 

mosquitoes in Kenya. My dissertation is therefore divided into four chapters: chapters one and 

two consider public health interventions; and chapters three and four focus on ecological factors 
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influencing population structure. In the first chapter, I investigate how antimalarial drug policies 

and use have impacted P. falciparum molecular markers associated with increased drug tolerance 

over a thirteen year period. In the second chapter, I examine insecticide resistance in An. 

arabiensis populations across Kenya through the geographic distribution of knockdown 

resistance mutations and bioassays. In chapter three, I investigate the landscape, climatic, and 

social factors driving the population structure of Anopheles gambiae s.s. and An. arabiensis. 

Finally, in the fourth chapter, I consider the factors influencing the population structure of P. 

falciparum. 

Through this research, I found a recent increase in drug resistance markers associated 

with the antimalarial drug used to prevent malaria in pregnancy, as well as an increase in 

polymorphisms associated with increased tolerance to the partner drug of the first-line treatment 

for malaria. I found a key mutation to be associated with insecticide resistance in Anopheles 

arabiensis in Kenya, as well as that this mutation is common throughout Western Kenya. I 

identified high human population density as the factor primarily promoting dispersal of An. 

gambiae s.s., while high temperatures and low vegetation indices drive the dispersal patterns of 

An. arabiensis. Finally, I found that physical barriers to human travel, such as lakes, may prevent 

dispersal of P. falciparum in Kenya. These findings related to prevalent genetic markers 

associated with antimalarial drug and insecticide resistance have important implications for 

maintaining effective public health policies. In addition, by identifying factors important for 

promoting the dispersal of malaria vectors and parasites, we improve our understanding of the 

areas which would be susceptible to the re-introduction of malaria parasites and malaria vectors 

following antimalarial interventions, as well as the areas which are most susceptible to the 

invasion of drug resistant parasites and insecticide resistant mosquitoes.  
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CHAPTER 1 

Impacts of antimalarial drugs on Plasmodium falciparum drug resistance markers, Western 

Kenya, 2003-2015 

 

 

Originally published in the American Journal of Tropical Medicine and Hygiene 

(2018). 98(3): 692 – 699. doi: 10.4269/ajtmh.17-0763 
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Abstract 

Antimalarial drug resistance has threatened global malaria control since chloroquine 

resistant Plasmodium falciparum emerged in Asia in the 1950s. Understanding the impacts of 

changing antimalarial drug policy on resistance is critical for resistance management. 

Plasmodium falciparum isolates were collected from 2003-2015 in Western Kenya and analyzed 

for genetic markers associated with resistance to chloroquine (Pfcrt), sulfadoxine-pyrimethamine 

(Pfdhfr/Pfdhps), and artemether-lumefantrine (PfKelch13/Pfmdr1) antimalarials. In addition, 

household antimalarial drug use surveys were administered. Pfcrt 76T prevalence decreased 

from 76% to 6% from 2003 to 2015. Pfdhfr/Pfdhps quintuple mutants decreased from 70% in 

2003 to 14% in 2008, but increased to near fixation by 2015. SP ‘super resistant’ alleles Pfdhps 

581G and 613S/T were not detected in the 2015 samples that were assessed. The Pfmdr1 N86-

184F-D1246 haplotype associated with decreased lumefantrine susceptibility increased 

significantly from 4% in 2005 to 51% 2015.  No PfKelch13 mutations that have been previously 

associated with artemisinin resistance were detected in the study populations. The increase in 

Pfdhfr/Pfdhps quintuple mutants that associates with sulfadoxine-pyrimethamine resistance may 

be resulted from the increased usage of sulfadoxine-pyrimethamine for intermittent preventative 

therapy in pregnancy (IPTp) and for malaria treatment in the community. Prevalent 

Pfdhfr/Pfdhps mutations call for careful monitoring of sulfadoxine-pyrimethamine resistance and 

effectiveness of the current IPTp program in Kenya. Additionally, the commonly occurring 

Pfmdr1 N86-184F-D1246 haplotype associated with increased lumefantrine tolerance calls for 

surveillance of AL efficacy in Kenya, as well as consideration for a rotating ACT regimen.  
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Introduction 

Antimalarial drug resistance has significantly hindered malaria control efforts and played 

a key role in shaping global drug policies since the first reports of chloroquine (CQ) resistance 

arose from Southeast Asia in 1957.
1
 Since then, due to widespread drug resistance, global 

recommendations for the first-line treatment of malaria have changed from CQ to sulfadoxine-

pyrimethamine (SP), and again, most recently, from SP to artemisinin-combination therapy 

(ACT).
1
 Since both CQ and SP drug resistance arose in Southeast Asia before spreading to 

Africa,
2
 the emergence of ACT resistance in several Southeast Asian countries and recent report 

on the emergence of indigenous artemisinin-resistant P. falciparum in Africa
3
 triggers major 

concern on the efficacy of malaria control programs in Africa where most of the global malaria 

burden falls.
4
 

Though delayed clearance of the parasite following artemisinin treatment has been 

reported in African countries, such as Kenya,
5
 Nigeria,

6
 and Angola,

7
 the association of African 

PfKelch13mutations with clinical resistance is not clear and mutations associated with 

artemisinin resistance in Southeast Asia have yet to be commonly observed in Africa.
8, 9, 10, 11, 12

 

Close monitoring and resistance validation of PfKelch13 mutations, as well monitoring for 

mutations associated with ACT partner drug resistance in East Africa will be critical to detecting 

the spread of ACT resistance from Southeast Asia to Africa or indigenous emergence. 

Additionally, although ACTs have been implemented as first-line treatment for malaria in Kenya 

since 2006, other antimalarial drugs, including SP and CQ, continue to be used for treating 

malaria,
13

 further complicating malaria treatment in Kenya. Moreover, intermittent preventative 

treatment of malaria in pregnancy (IPTp) with SP as prophylaxis for malaria in pregnancy was 
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adopted as Kenya national policy in 1998,
14

 which may lead to continued selection pressure for 

mutations associated with SP resistance. 

 Here, we investigated the dynamics of antimalarial drug resistance markers in response to 

changing antimalarial drug policy in Western Kenya. Plasmodium falciparum samples across the 

years 2003, 2005, 2008, and 2015 were examined, before and after the first mass distribution of 

artemether-lumefantrine (AL) in Kenya in 2006. Frequencies of amino acid polymorphisms in 

genes including Pfcrt for CQ resistance,
2
 Pfdhfr and Pfdhps for SP resistance,

15
 Pfmdr1 for 

lumefantrine tolerance,
16

 and PfKelch13 for artemisinin resistance 
17

 were assessed. We 

examined whether the observed amino acid changes have been undergoing selection through a 

longitudinal comparison of mutation frequencies in these drug resistance genes. Understanding 

the impacts of antimalarial drug policy on molecular markers of drug resistance and monitoring 

for artemisinin resistance are critical to informing antimalarial drug policy in Kenya. 

 

Methods 

Study design and participants 

This study was conducted in two sites in Western Kenya: Kakamega (0.282º N, 34.752º 

E), a low malaria transmission site and Kombewa (0.105º S, 34.520º E), a high malaria 

transmission site. The differences in malaria transmission intensities is partly attributed to the 

differences in altitude between sites, where Kakamega is in the highlands (1,430-1,580-m 

elevation) and Kombewa is a lowland site (1,170-1,300 m). Blood samples were collected from 

asymptomatic school children between the ages of 6-15 years old in 2003, 2005, 2008, and 2015. 

Sampling methods were consistent across the years studied. School-aged children were studied 

because they are among the age groups with the highest risk of malaria infection. A total of 705 
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P. falciparum isolates were collected between 2003 and 2015 at the two study sites, ranging from 

29 to 194 isolates per site per year. Samples with more than one mixed (mutation/wildtype) 

mutation site were discarded from haplotype analyses, but were included in individual SNP 

analyses. Blood dots were made on filter paper for genotyping and stored at -20°C until use. 

Scientific and ethical clearance was given by the institutional scientific and ethical review 

boards of the Kenya Medical Research Institute, Kenya and the University of California, Irvine, 

USA. Written informed consent/assent for study participation was obtained from all consenting 

heads of households and each individual who was willing to participate in the study. 

 

Procedures 

The Saponin/Chelex method was used to extract parasite DNA from dried blood 

samples.
18

 Quantitative polymerase chain reaction (qPCR) of P. falciparum-specific 18S rRNA 

was used to detect P. falciparum infections.
19

 P. falciparum isolates were genotyped at Pfcrt for 

CQ resistance; Pfdhfr and Pfdhps for SP resistance; Pfmdr1 for lumefantrine tolerance; and 

PfKelch13 for artemisinin resistance (see Supplementary Table 2 for codon positions). For genes 

Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps, a restriction enzyme digestion protocol was used to detect 

specific mutations among samples collected in 2003, 2005, and 2008 
20

 and a subset of mutations 

were confirmed by direct sequencing; for samples in 2015, the mutations of these target genes 

were assessed by PCR and sequencing.
21, 22

 For PfKelch13, samples were amplified and 

sequenced using the published protocol.
17

 We used the Pfcrt76T mutation as a proxy for CQ 

resistance and Pfdhfr51I-59R-108N/Pfdhps437G-540E quintuple mutant for SP resistance 

because of their strong associations with antimalarial resistance.
2, 15

 In addition SP ‘super 

resistant’ alleles Pfdhps 581G, Pfdhps 613S/T, and Pfdhfr 164L were examined in 2015 
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isolates
15

.The Pfmdr1 N86-184F-D1246 haplotype was used as a proxy for reduced AL 

susceptibility because of evidence that lumefantrine selects for this haplotype.
23, 24, 25

 

Nonsynonymous mutations in the PfKelch13 propeller region were assessed for artemisinin 

resistance, given that single amino acid changes in this region have been associated with in vivo 

and ex vivo resistance.
8, 17, 26, 27

 Amplified PCR fragments were purified and sequenced from both 

ends by Sanger sequencing (GENEWIZ, Inc.). All sequences were blasted against NCBI 

GeneBank database for verification. Sequences were visualized using Chromas v2.5.0, aligned 

with ClustalX v2.1, and manually edited in Bioedit v7.2.5. Sequences were deposited to 

Genbank (accession numbers MF344967-MF345825). 

 

Household antimalarial usage surveys 

A cross-sectional survey was conducted for a total of 10,519 randomly selected 

households in Western Kenya in the years 2003, 2007, 2011, and 2016 to assess antimalarial 

drug usage. For the years 2003 and 2007, surveys were conducted in Kakamega and Kisii 

counties, and in 2010 and 2016, surveys were conducted in Kakamega and Vihiga counties. No 

significant differences between sites within years were observed, and so results from multiple 

sites were pooled for visualization and analysis. Questionnaires were administered to an adult 

member of each surveyed household. Specifically, in the questionnaires, household heads were 

asked to name which medicine was used for the family member whom had the most recent 

malaria episode.  
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Data Analysis 

Two-tailed chi-square tests and Fisher’s exact tests were conducted to make pairwise 

comparisons for mutation frequencies between sites and years for all haplotypes and individual 

polymorphisms assessed. A Bonferonni correction for 28 tests was applied, placing significance 

at 0.0018. The 95% confidence intervals (CI) were computed using the binomial distribution. 

Linkage disequilibrium was tested for all samples with complete genotypes after omitting 

samples from mixed infections (n=168). Linkage disequilibrium estimates were calculated in 

Genepop 4.2 for all possible pairs of loci.
28

 P-values were calculated using Fisher’s tests with a 

Bonferonni correction for 36 tests across nine loci, placing significance at 0.0014. 

 

Results 

Significant changes in frequencies of drug resistance molecular markers were observed 

with changes in antimalarial drug policy and reported use over the thirteen-year study period in 

Western Kenya. A decreasing trend in Pfcrt 76T mutation, associated with CQ resistance,
2
 was 

observed from 2003 to 2015 at both study sites (Figure 1.1A). However, differences were 

observed between the sites in 2008 when the Pfcrt 76T mutation was observed at a significantly 

higher frequency in Kakamega at 91.9% than in Kombewa at 61.0%. By 2015, Pfcrt76T 

mutation frequencies declined to 2.7% and 11.8% in Kombewa and Kakamega, respectively.  

Individual mutations important for SP resistance
15

 revealed varying trends over the years 

at both study sites (Figure 2). For instance, the frequency of Pfdhfr N51I mutation decreased 

significantly between 2003 and 2008, but rebounded and increased significantly in 2015 (Figure 

1.2). Likewise, a significant decrease in Pfdhfr C59R mutation was detected at Kombewa from 

2003 to 2008, but the mutation frequency bounced back in 2015 to a high level as seen in 2003 
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(Figure 1.2). While, for Pfdhfr S108N, the most important mutation for in vitro pyrimethamine 

resistance,
2
 there was relatively little change in mutation frequencies across the years at both 

study sites (Figure 1.2). Pfdhps A437G, and Pfdhps K540E showed a similar trend of little 

change across the years (Figures 1.2). The Pfdhfr triple mutant and Pfdhps double mutant were 

also found to be most prevalent haplotypes among the 2015 samples. The ‘super resistant’ alleles 

Pfdhps 581G and Pfdhps 613S/T were not detected in 2015 samples, which was also the result of 

a 2005 study in Western Kenya.
29

 The ‘super resistant’ allele Pfdhfr 164L was detected in one 

2015 isolate. 

For Pfdhfr/Pfdhps haplotype analysis, a total of 300 samples were excluded for having 

either multiple mixed mutation sites or incomplete haplotypes. While the quintuple 

Pfdhfr/Pfdhps mutant, considered to be fully resistant to SP,
15

 decreased between 2005 and 2008 

following the policy change to AL in 2004 (though AL was not distributed until 2006) (Figure 

1.1B), both study sites experienced a significant increase in Pfdhfr/Pfdhps quintuple mutants 

between 2008 and 2015, exceeding the frequencies seen in 2003 (Figure 1.1A). For instance, at 

Kombewa, Pfdhfr/Pfdhps quintuple mutant frequencies increased by 15-fold from 2008 to 2015; 

a three-fold increase was also found in Kakamega within the same time period.  By 2015, 

Pfdhfr/Pfdhps quintuple mutant frequencies were 96.7% at Kombewa and 77.8% at Kakamega.  

Pfmdr1 N86, 184F, and D1246 polymorphisms are associated with decreased 

lumefantrine susceptibility.
16, 23, 24, 25

 Though, N86 may be the most important polymorphism for 

increased lumefantrine tolerance.
16, 24 

A significant decrease in mutation prevalence was 

observed from 2008 to 2015 for Pfmdr1 N86Y and Pfmdr1 D1246Y at both study sites. While, 

for Pfmdr1 Y184F, at Kakamega, an increase in mutation frequencies was observed from 2005 to 
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2015. At Kombewa, there was no significant change in Pfmdr1 Y184F mutation frequencies 

across collection years (Figure 1.3).  

For Pfmdr1 haplotype analysis, a total of 154 samples were excluded for having either 

multiple mixed mutation sites or incomplete haplotypes. A significant increase in the Pfmdr1 

N86-184F-D1246 haplotype frequency, associated with lumefantrine tolerance,
23, 24, 25

 was 

observed at Kombewa and Kakamega between 2005 when frequencies were 4.2% and 4.5%, 

respectively, and 2015. By 2015, the Pfmdr1 N86-184F-D1246 frequency at Kombewa was 

42.7% and at Kakamega was 66.7%. Estimates of linkage disequilibrium revealed no significant 

linkage between any of the polymorphisms investigated. Though not statistically significant after 

applying a Bonferonni correction, locus pairs Pfdhps 437/Pfdhps 540 and Pfdhfr 59/Pfdphs 540 

were the most closely linked (p=0.006 and p=0.028, respectively). 

Eleven unique nonsynonymous mutations were observed in PfKelch13 among our 

samples (Figure 1.4). The most common mutations were A578S that was found in four isolates 

and E612D in three isolates (Figure 1.4). The remaining nine mutations were observed 

individually in only one isolate: I448M, L457I, C469W, N490S, R513S, S522C, A554S, A569S, 

and I590F. 

According to the self-reported antimalarial drug use for treatment household survey 

(Figure 1.1B), SP drug use was less than 2% in 2007, one year after the distribution of AL. 

Nevertheless, the SP drug use increased to 10.8% in 2011 and 12% in 2016, despite the fact that 

AL was increasingly used as the first-line treatment from 2007 (49.2%) to 2016 (81%; Figure 

1.1B). CQ use was at 4.8% in 2003, but was not reported in any of the following years. 

Antimalarial drug use surveys also revealed that in 2016, 92% of women who were pregnant in 

the past four months (n=109) took at least one dose of SP as intermittent preventative treatment 
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of malaria in pregnancy (IPTp) while pregnant (Table 1.1). This level of IPTp-SP coverage is 

increased from previous years in Western Kenya when coverage was 16% in 2001
30

, and 51% in 

2008
31

. 

  

Discussion 

This study examined the impact of past and current antimalarial drug policy and usage on 

drug resistance genetic markers of P. falciparum, the most common and deadly malarial parasite 

in sub-Saharan Africa.
4
 We found that mutations associated with resistance have declined for 

CQ, but have increased for SP following an initial decline. In addition, the prevalence of 

polymorphisms associated with lumefantrine tolerance have increased since pre-AL distribution 

levels. No known mutations associated with artemisinin resistance in Asia were detected. 

CQ was retracted as first line antimalarial treatment in 1998 due to increasing and 

widespread reports of CQ resistance in sub-Saharan Africa.
32

 Its resistance is primarily attributed 

to the mutation Pfcrt K76T.
2
 As expected, we observed a significant decline in Pfcrt K76T 

prevalence to very low levels by 2015. Our findings corroborated the results from the community 

surveys that indicated very low CQ usage for antimalarial treatment over the past twelve years. 

Reduced selection pressure might no longer favor chloroquine resistance mutations, and thus a 

drastic reduction in mutants was observed from 2003 to 2015. Additionally, AL has been 

demonstrated to select for chloroquine susceptible parasites.
33

 Thus, the observed increase in AL 

coverage could also favor the wildtype Pfcrt polymorphism. The decline of Pfcrt K76T mutation 

in Kenya, which was also reported in  previous studies,
32, 34, 35

 as well as nearby countries 

Tanzania
36

 and Rwanda;
37

 calls for careful study into the possibility for CQ to be reintroduced, 
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such as in a combination therapy or in limited cases. However, the risk of rapid re-emergence of 

CQ resistance should be cautiously evaluated prior to a potential reintroduction.   

 SP replaced CQ as the first-line treatment for malaria in Kenya in 1999. However, by 

2003, reports showed that SP effectiveness was also faltering.
38

 Quintuple mutants consisting of 

Pfdhps 437/540 and Pfdhfr 51/59/108 are considered to be fully resistant to SP 
15

. These 

quintuple mutants were present in 91.3% of the isolates collected in 2015, which was remarkably 

higher than that observed in 2008 (13.8%). The striking increase in Pfdhps/Pfdhfr mutants could 

be partly explained by the observed increase in SP usage from less than 2% in 2007 to 12% in 

2016, even though the frequency of SP use in 2016 was still less than that observed in 2003 

(45.2%). Another explanation for the drastic rise in quintuple Pfdhps/Pfdhfr mutants could be the 

increased use of SP as IPTp, a guideline put forth by the WHO.
39

 IPTp with SP as prophylaxis 

for malaria in pregnancy was adopted as Kenya national policy in 1998.
14

 IPTp coverage was 

low in the first few years, with only 16% of pregnant women in Western Kenya reported taking 

at least one dose of IPTp-SP in 2001.
30

 Since then, the IPT coverage has been increasing over the 

years with up to 51% of pregnant women in 2008
31 

and 92% in 2016 (this study) reported taking 

at least one dose of IPTp-SP. The substantial increase in coverage of IPTp-SP from 2001 to 

2016, coupled with the moderate increase in SP usage for malaria treatment from 2007 to 2016 

likely impose selection pressure for SP resistant parasites. 

 Apart from Kenya, the increasing Pfdhfr/Pfdhps mutation frequencies have also been 

reported in several other African countries.
15

 The dominance of fully resistant SP mutants is 

concerning because this could decrease IPTp-SP effectiveness and exacerbate malaria 

infections.
40

 Although WHO recommends the continuation of IPTp-SP in malaria endemic 

countries across Africa,
39

 it is imperative to monitor its effectiveness given the very high levels 
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of fully resistant mutants observed in this study.
15

 The emergence of ‘super resistant’ alleles, 

such as Pfdhfr164L, Pfdhps581G, and Pfdhps613S/T sextuple mutant haplotype may further 

diminish the effectiveness of IPTp-SP.
15, 41, 42

 For example, the 581G mutation has been 

associated with increased parasitemia in pregnant women in Tanzania.
43

 Notably, we did not 

detect such ‘super resistant’ haplotypes in our study populations despite that they have been 

previously detected in Western Kenya at varying frequencies.
44, 45

 Careful monitoring of SP 

resistance and emergence of ‘super resistant’ alleles is critical.  

 AL was first distributed in Kenya in 2006, following the policy change from SP to AL for 

first-line antimalarial treatment. Changes in lumefantrine sensitivity have been associated with 

polymorphisms in the Pfmdr1 gene.
16, 25

 For example, Tanzanian parasites having the Pfmdr1 

N86-184F-D1246 haplotype were able to withstand lumefantrine blood concentrations 15-fold 

higher than parasites with the 86Y-Y184-1246Y haplotype.
23

 Additionally, in Uganda, AL was 

demonstrated to select for haplotypes with N86 in combination with 184F, D1246, or both.
24

 Our 

findings of a significantly increased prevalence of N86-184F-Y1246 haplotypes since prior to the 

distribution of AL suggest that this haplotype is being selected for by AL. This finding of a 

commonly occurring haplotype associated with decreased lumefantrine susceptibility calls for 

continued surveillance of AL efficacy in Kenya. Additionally, since other ACTs such as 

artesunate-amodiaquine and dihydroartemisinin-piperaquine pose different selective pressures on 

Pfmdr1 haplotypes than AL, rotating ACT regimens may be an effective strategy for delaying 

ACT partner drug resistance in Kenya.
24, 46

 

 No mutations associated with artemisinin resistance in Asia have been observed in our 

study populations. However, other PfKelch13 mutations were observed at low frequencies. The 

nonsynonymous A578S PfKelch13 mutation observed in this and other studies
8, 9, 47, 48, 49

 was not 
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found to be associated with artemisinin resistance when introduced in the Dd2 line.
8
 The 

PfKelch13 E612D mutation observed in the present study has not been examined in regard to its 

association with AL resistance, but it has been observed in other parts of Africa.
50

 Seven other 

nonsynonymous mutations were detected in our isolates post-ACT distribution. The fact that 

none of the Southeast Asian PfKelch13 mutations were detected in our study populations 

suggests that there may be a combination of different factors that play a role in artemisinin 

resistance between the two continents.
47

 For example, artemisinin resistance may require 

additional mutations at secondary loci,
51

 such as those candidate SNPs identified by Chebon et 

al
52

 in Kenyan P. falciparum on chromosomes 12 and 14. This notion is underscored by the 

observance of common delayed clearance of the parasite following ACT treatment in Kenya.
5
 In 

addition, a five-year longitudinal study conducted in Uganda found that there was a correlation 

between the increased usages of ACT in communities with decreased sensitivities of the 

parasites to the drug.
53

  These results suggest the possibility of an independent emergence of 

artemisinin resistance in Africa, which is not associated with PfKelch13 mutations. As a result, 

closer surveillance of widespread ACT usage and deeper analyses of the parasite genome are 

needed to identify new or potential markers for artemisinin resistance in Africa. 

 Our study had certain limitations. The present study was limited to two study sites in 

Western Kenya. It is unclear whether a similar pattern is observed in other parts of Kenya or 

other countries. We did not examine Pfmdr1 copy number, which has been shown to be 

associated with lumefantrine tolerance.
54

 In addition, sample sizes for PfKelch13 were relatively 

small especially in 2003 due to limited DNA quantity and quality in some of those earlier 

samples, which limits our ability to detect rare mutations. Lastly, Sanger sequencing of PCR 

products used in the present study has a lower sensitivity in detecting rare mutations in infections 
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with multiple clones compared to deep sequencing methods. However, the overall trends 

reported here would not be affected by these limitations. 

 The findings from this study have significant implications for malaria control in Kenya. 

Firstly, the efficacy of IPTp-SP in Kenya could be diminished by the near fixation of fully 

resistant SP mutants. Secondly, approximately 10% of surveyed patients continue to use SP for 

malaria treatment despite the policy that AL is the recommended first-line drug. Since fully 

resistant SP mutants are predominant in this region, it is conceivable that these patients 

experience high malaria treatment failure rates. Thirdly, we found that artemisinin resistance has 

not yet spread from Southeast Asia to Western Kenya as evidenced by the absence of PfKelch13 

mutations in Kenya that are known to be associated with drug resistance in Southeast Asia. 

However, we detected a nonsynonymous mutation PfKelch13 E612D in multiple isolates that 

may be a potential candidate for in vitro validation for artemisinin resistance. Lastly, we found 

an increase in Pfmdr1 haplotypes associated with decreased lumefantrine susceptibility, which 

calls for continued monitoring of AL effectiveness and potentially implementing multiple first-

line ACTs to delay ACT partner drug resistance. 

 This study sheds light on the long-term dynamics of drug resistance markers in response 

to antimalarial policy. Our findings suggest that changes in first-line antimalarial treatment and 

IPTp policies have been followed by dramatic changes in molecular drug resistance markers. In 

addition, despite policy changes, ineffective drugs continue to be used for extended amounts of 

time, which may lead to the persistence of drug resistance markers. Understanding the interplay 

between drug resistance on a molecular level, antimalarial drug usage, and antimalarial drug 

policy is critical to informing antimalarial drug use policies. 
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Table 1.1. Intermittent preventative therapy in pregnancy (IPTp) antimalarial drug usage in 

Western Kenya (n (%)). n is the total number of pregnant women surveyed. 

 

 2001 

(n=903) 

2008 

(n=444) 

2016 

(n=109) 

Took at least one dose of 

IPTp-SP while pregnant 

147 (16%) 227 (51%) 100 (92%) 

Communities surveyed Kisii, Bondo Kisii, Bondo Kakamega, 

Vihiga 

Data source Guyatt et al 

2004
30

 

Gikandi et al 

2008
31

 

This study 
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Figure 1.1. A comparison of A) Plasmodium falciparum drug resistance molecular markers to 

B) reported antimalarial drug usage for treatment and antimalarial drug policy timeline in 

Western Kenya. CQ is chloroquine; SP is sulfadoxine-pyrimethamine; AL is artemether-

lumefantrine, AQ is amodiaquine. Pfhfr/Pfdhps quintuple mutant is Pfdhfr51I-59R-

108N/Pfdhps437G-540E. Error bars represent 95% confidence intervals. Shared lowercase 

letters between study sites/years indicate that they are not significantly different from each 

other. Differing lowercase letters indicate statistically significant differences between study 

sites/collection years. Statistical significance was determined from the results of Fisher’s exact 

tests with a Bonferroni correction for 28 tests between study sites and years (p <0.0018). The 

timelines for first-line antimalarial drugs are indicated by bold arrows, whereas the timeline for 

intermittent preventative therapy in pregnancy (IPTp) is indicated by the dashed arrow. 
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Figure 1.2. Mutation frequencies for genetic markers associated with sulfadoxine-

pyrimethamine resistance in Plasmodium falciparum samples collected in 2003-2015 at 

Kombewa and Kakamega. Differing lowercase letters indicate statistically significant 

differences between study sites/collection years. Statistical significance was determined from 

the results of Fisher’s exact tests with a Bonferroni correction for 28 tests (p <0.0018). 
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Figure 1.3. Mutation frequencies for genetic markers associated with lumefantrine resistance in 

Plasmodium falciparum samples collected in 2003-2015 at Kombewa and Kakamega. Differing 

lowercase letters indicate statistically significant differences between study sites/collection 

years. Statistical significance was determined from the results of Fisher’s exact tests with a 

Bonferroni correction for 28 tests (p <0.0018). 

 

 

Figure 1.4. Nonsynonymous PfKelch13 mutations in Western Kenya, 2003-2015. 
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Abstract 

Vector control programs, particularly in the form of insecticide treated bed nets, are 

essential to achieving malaria elimination goals. Recent reports of increasing knockdown 

resistance (kdr) mutation frequencies for Anopheles arabiensis in Western Kenya heightens the 

concern on the future effectiveness of insecticide treated bed nets in Kenya. We examined 

resistance in An. arabiensis populations across Kenya through kdr mutations and WHO-

recommended bioassays. We detected two kdr alleles, L1014F and L1014S. Kdr mutations were 

found in 5 of the 11 study sites, with mutation frequencies ranging from 3% to 63%. In two 

Western Kenya populations, the kdr L1014F allele frequency was as high as 10%. The L1014S 

frequency was highest at Chulaimbo at 55%. Notably, the kdr L1014F mutation was found to be 

associated with pyrethroid resistance at Port Victoria, but kdr mutations were not significantly 

associated with resistance at Chulaimbo, which had the highest kdr mutation frequency among 

all sites. This study demonstrated the emerging pyrethroid resistance in An. arabiensis and that 

pyrethroid resistance may be related to kdr mutations. Resistance monitoring and management 

are urgently needed for this species in Kenya where resistance is emerging and its abundance is 

becoming predominant. Kdr mutations may serve as a biomarker for pyrethroid resistance in An. 

arabiensis.  
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Introduction 

Despite intensive malaria control efforts, malaria remains a leading cause of morbidity 

and mortality in Kenya, especially among younger children and pregnant women.
1
 Vector 

control programs, particularly in the form of insecticide treated bed nets (ITNs) are essential to 

achieving malaria elimination goals
2,3

 and have coincided with a decrease in malaria-related 

morbidity rates in Kenya.
4
 However, increasing insecticide resistance threatens the efficacy of 

antimalarial interventions.
5
 

Pyrethroids are the only approved insecticide for use in ITNs.
6
 Its low mammalian 

toxicity and induction of paralysis using nerve stimulation of dysfunctional sodium channels 

makes it ideal for ITN usage.
5,7

 However, a single amino acid change at residue position 1014 in 

the voltage-gated sodium channel (VGSC) gene of insects has made the insecticide increasingly 

obsolete. This mutation has been shown to confer knockdown resistance (kdr) by decreasing 

sodium channel affinity for the insecticide binding site.
8
 The kdr mutations are found as L1014F 

(kdr-west) and L1014S (kdr-east) in Anopheles gambiae.
9
 L1014F refers to a point mutation 

from leucine to phenylalanine, whereas L1014S represents a mutation from leucine to serine.
9,10

 

Originally, L1014F was found in Western Africa, hence leading to its name kdr-west,
11,12,13,14

 

whereas, L1014S (kdr-east) was found in Eastern Africa.
10,15

 However, both mutations are now 

found throughout Africa and have not been solely concentrated geographically, thus suggesting a 

shift in kdr mutation frequencies in endemic countries.
16,17,18,19,20

 Additionally, both kdr 

mutations have been associated with increased susceptibility to Plasmodium falciparum, further 

heightening malaria risk in areas with high insecticide resistance.
21

   

Mass distribution of ITNs has been followed by a rapid increase in kdr alleles and 

insecticide resistance in An. gambiae s.s.
5
 In Kenya, where ITN coverage increased from below 
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10% in 2004
22

 to greater than 80% since 2013,
23

  kdr mutation frequencies in An. gambiae s.s. 

increased rapidly from 6% in 2001
15

 to near fixation at 98% in 2010.
5
 In addition to the rise of 

kdr mutation frequencies in An. gambiae s.s., higher ITN usage has led to a species shift from 

primarily An. gambiae s.s. to An. arabiensis.
2,24,25,26,27

 As such, the contribution of An. arabiensis 

to malaria transmission increases in malaria endemic areas under the current ITN program.  

Recently, kdr mutation frequencies in An. arabiensis from Western Kenya have been 

found to be increasing and were as high as 13% and 39% at certain localities in 2013.
6,23

 

Previously, in 2005, kdr mutation frequencies were not found to exceed 6% at any locality in 

Western Kenya
28

 and moreover, were not detected in 2009
29

. Although the evasion of ITNs 

might explain why the frequency of kdr mutations and physiological insecticide resistance in An. 

arabiensis has remained relatively low with respect to An. gambiae s.s., we expect an increasing 

in kdr mutations for An. arabiensis to continue. However, we do not expect kdr mutations to 

increase as rapidly in An. arabiensis  as they did in An. gambiae s.s. due to the reduced selection 

pressure imposed on An. arabiensis which more commonly feed outdoors. 

Although ITNs are currently the most cost-effective method of preventing malaria, 

increased insecticide resistance and outdoor biting reduce their efficacy and present a major 

threat to malaria control programs.
1
 Previous studies have examined the spatial distribution of 

kdr mutations in various An. arabiensis populations in Africa,
5, 6, 7, 12

 but the association between 

kdr mutations and phenotypic resistance is not well-established.  Therefore, this study aimed to 

examine the link between kdr mutations and pyrethroid resistance by comparing genotypes of 

phenotypically resistant and susceptible mosquitoes.  
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Materials and Methods 

Study design for kdr survey 

An. gambiae s.l. larvae were collected from eleven study sites across Kenya between May 

2014 and October 2014 (Figure 2.1). No more than five larvae were collected from a given 

habitat to reduce sampling bias. Sampling bias was tested by comparing mutation frequencies to 

frequencies when randomly selecting one larvae per habitat and no significant differences were 

found. Study sites were selected across the diverse geographical regions of Kenya. The major 

regions were the lowlands surrounding Lake Victoria in Western Kenya (Port Victoria, Homa 

Bay, Kanyawegi, Chulaimbo, and Miwani), the highlands in Western Kenya (Kamkuywa) the 

Great Rift Valley in Western Kenya (Kabernet and Marigat), and coastal Kenya (Malindi, 

Mtwapa, Gazi). 

 

WHO bioassays 

To explore the link between kdr mutations and pyrethroid resistance, we genotyped 

phenotypically resistant and susceptible An. arabiensis, determined by a standard WHO 

insecticide susceptibility bioassay.
30

 Anopheles gambiae s.l. larvae were collected from Port 

Victoria and Chulaimbo, study sites where kdr mutations in An. arabiensis had previously been 

detected,
22

 and reared to adults. Adult female mosquitoes 2-3 days old were aspirated into 

exposure tubes in batches of 15-20 mosquitoes per tube. Tubes were lined with insecticide-

impregnated paper, 0.05% deltamethrin. A subset of tubes was only lined with oil paper to serve 

as controls. In addition, the Kisumu susceptible An. gambiae s.s. strain was used as a control. 

After being held in their respective tubes for 60 minutes, mosquitoes were transferred to a 

holding tube with 10% sucrose solution and put to standard insectary conditions for 24 hours. 
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These mosquitoes were screened again. If after 24 hours mosquitoes were knocked down such 

that they were either dead or unable to fly, they were classified as susceptible.  

Procedures 

Genomic DNA was extracted from individual mosquitoes using standard ethanol 

extraction procedures with phenol:chloroform.
31

 The final DNA pellet was suspended in 20ul of 

TE buffer. A Nano Drop 1000 Spectrophotometer was used to quantify DNA concentrations and 

stock DNA was diluted to an approximate concentration of 1 μg/μl for use in PCR. Anopheles 

arabiensis and An. gambiae s.s. were identified within the An. gambiae s.l. complex using a 

ribosomal DNA PCR assay.
32

 We genotyped 683 An. arabiensis for kdr alleles: L1014 

(wildtype), L1014F (kdr-west), and L1014S (kdr-east) using a Taqman probe assay.
33

 For 

detection, the wildtype alleles were labeled with VIC at the 5' and the 1014F and 1014S kdr 

alleles were labeled with 6-FAM.  

 

Statistical analysis 

For the WHO bioassay, Fischer’s exact tests were performed to make pairwise 

comparisons for mutation frequencies between resistant and susceptible groups. Odds ratios 

(OR) were used to quantify the association between kdr genotype and insecticide resistance 

phenotype. Chulaimbo and Port Victoria populations were analyzed separately. 

 

Results 

Kdr Survey 

A total of 1425 An. gambiae s.l specimens were examined (Table 2.1). Anopheles 

arabiensis proportions ranged from 12.8% at Chulaimbo to 100% at Miwani, Bogoria, Gazi, 
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Mtwapa, and Malindi (Table 1). Kdr mutations were detected in five An. arabiensis populations: 

Port Victoria (10.3%), Homa Bay (2.3%), Kamkuywa (2.8%), Kanyawegi (15.8%), and 

Chulaimbo (63.2%) (Figure 2.1). The 1014F mutation prevalence was highest at Port Victoria 

(9.2%), Kanyawegi (10.5%), and Chulaimbo (8.5%), but also observed at Kamkuywa (2.9%) and 

Homa Bay (1.7%).  The 1014S mutation was prevalent at Chulaimbo (54.7%) and detected at 

low frequencies at Port Victoria (1.1%), Homa Bay (0.6%), and Kanyawegi (5.3%). No 

mutations were observed in populations outside Western Kenya. The population at Chulaimbo 

was the only population that significantly deviated from Hardy-Weinberg equilibrium with 

regards to kdr alleles (Table 2.1).  

 

WHO Bioassay 

The control Kisumu susceptible An. gambiae s.s. strain had a mortality rate of 100%. We 

observed a mortality rate of 82.8% (95% CI [0.792-0.859]) and 73.7% (95% CI [0.610-0.834]) 

for An. arabiensis at Port Victoria and Chulaimbo, respectively. Both mortality rates were lower 

than the WHO 90% threshold for resistance (Figure 2.2A).  

A comparison of kdr mutation frequencies between a subset of resistant and susceptible 

An. arabiensis revealed that deltamethrin-resistant mosquitoes had significantly higher 

frequencies of the L1014F mutation at Port Victoria (OR=3.495, 95% CI [1.809-7.102], p<0.001, 

Fischer’s exact test) (Figure 2.2B), supporting the link between the kdr mutation and pyrethroid 

resistance. Although both L1014F and L1014S mutations were detected at Chulaimbo, the 

highest resistant field population, there was no significant difference in allele frequencies 

between susceptible and resistant groups (p=0.078; Fischer’s exact test) (Figure 2.2B). When 

comparing only the L1014F frequency between groups at Chulaimbo, the difference is 
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marginally significant (OR=3.957, 95% CI [0.781-21.713], p=0.053; Fischer’s exact test) and 

could be limited by a low sample size in the resistance group (n=14).  Whereas there was no 

significant difference in L1014S frequencies between susceptible and resistant groups 

(OR=0.525, 95% CI [0.197-1.364], p=0.185, Fischer’s exact test).  

 

Discussion 

The observed high proportions of An. arabiensis in this study demonstrate the ongoing 

species composition shift from predominantly An. gambiae s.s. to An. arabiensis in East 

Africa.
2,24,25,26,27

 A decline in An. gambiae s.s. relative abundance yet stable population of An. 

arabiensis has been observed in the lowlands of Kenya in conjunction with an increase in ITN 

coverage.
2,7,23,27

 These findings underscore the importance of the role that An. arabiensis are 

playing in maintaining residual malaria transmission, and as such, will present a major barrier to 

malaria control and elimination. Understanding An. arabiensis insecticide resistance 

mechanisms, as well as monitoring for resistance are essential to achieving malaria elimination 

goals. 

The presence of kdr mutations at several sites in Western Kenya indicates the widespread 

occurrence of kdr mutations among An. arabiensis populations. In particular, the L1014F 

mutation, first detected in Kenya in 2012,
6
 was observed in four of the five Western Kenya 

populations in this study. The emergence of L1014F was also found in neighboring malaria 

endemic countries. L1014F has recently been detected in Tanzania in both An. gambiae and An. 

arabiensis populations.
35

 Moreover, high frequencies of the L1014F mutation in An. arabiensis 

have been reported from Ethiopia
36,37, 38

 and central Sudan.
39

 A continual increase in this 

mutation prevalence in Kenya may cause further concern on the future utility of ITNs.  
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The rise of the L1014F mutation may be particularly concerning given that this mutation 

was found to be associated with pyrethroid resistance in An. arabiensis in our Port Victoria study 

population. Kdr mutations at Chulaimbo were not significantly associated with pyrethroid 

resistance. This result could be due to the low frequency of L1014F and presence of the L1014S 

mutation at this site. The prevalence in L1014F mutations was higher in the resistant group at 

Chulaimbo, but the difference was not statistically significant. In An. gambiae s.s., the L1014S 

mutation has been found to be more weakly associated with pyrethroid resistance than the 

L1014F mutation.
40

 Similarly, the L1014F mutation may also have a stronger association with 

pyrethroid resistance in An. arabiensis. In Sudan, there was also a significant association found 

between the 1014F mutation and DDT and pyrethroid resistance in An. arabiensis, but the 1014S 

mutation was not detected in the populations tested.
39

 Further studies are needed to investigate 

the role of the 1014S and 104F mutations in An. arabiensis insecticide resistance. The result also 

suggests that other mechanisms such as metabolic detoxification or secondary mutations at 

alternative loci could be involved in pyrethroid resistance in An. arabiensis at Chulaimbo, 

especially given the high levels of resistance at this site. Metabolic resistance using rapid 

insecticide detoxification due to the overexpression of P450 enzymes has been found to be a 

common resistance mechanism for An. arabiensis.
34,36,41,42 

 

Interestingly, kdr mutations were only observed in An. arabiensis specimens from study 

sites where An. gambiae were also common at proportions exceeding 30%. Stump et al.
15

 first 

suggested the possibility that kdr alleles could have been introduced into Kenyan An. arabiensis 

populations through introgression. Adaptive introgression of kdr alleles has been supported by 

evidence of consequential contemporary gene flow between An. arabensis and An. gambiae in 

East Africa.
43,44

 This notion is underscored by findings of identical intron sequences in the 
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VGSC between the two species in Kenya.
29

 Our findings of kdr mutations occurring exclusively 

in An. arabiensis populations where An. gambiae are common are consistent with the hypothesis 

that An. arabiensis acquire kdr mutations through introgression with sympatric An. gambiae 

populations. 

Pyrethroid resistance in An. arabiensis has been reported in several countries, including 

Sudan,
 39

 Ethiopia,
 36,45

 Malawi,
46

 Tanzania,
47

  Zanzibar,
48,49

 and Kenya.
7
 Despite wide-spread 

resistance in major malaria vectors in sub-Saharan Africa, pyrethroids are the only approved 

insecticide for use in ITNs.
6
 The findings from this study and Abdalla et al.

38
 that the L1014F 

mutation is associated with pyrethroid resistance in An. arabiensis provide evidence on the utility 

of screening An. arabiensis populations for kdr mutations in informing pyrethroid resistance 

status and trends. Though, that kdr mutations were not associated with resistance at Chulaimbo 

also highlights the complexity of insecticide resistance and the need for further studies on 

resistance mechanisms in An. arabiensis. 

Kdr mutations could potentially increase and spread rapidly in a pattern like that 

observed for An. gambiae from 2001-2010.
5,15

 Our results of commonly occurring 1014F 

mutations associated with pyrethroid resistance in An. arabiensis underscores the importance in 

searching for alternative methods to pyrethroid impregnated bed nets for vector control. High 

levels of resistance in An. gambiae s.s
5
, An. arabiensis behavioral resistance to ITNs,

2
 an 

increased proportion of An. arabiensis, and frequent kdr mutations in An. arabiensis from 

Western Kenya could all contribute to compromised efficacy of ITNs. Therefore, complementary 

interventions targeting outdoor mosquitoes, such as attractive toxic sugar baited traps, habitat 

reduction, and/or biological larvicides, could be important to improving the overall efficacy of 
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antimalarial programs, as well as suppressing pyrethroid resistance. These interventions have 

been effective for vector control in areas such as Mali,
50

 Ecuador,
51

 Peru,
51

 and Kenya.
52

  

In summary, we found evidence of widespread kdr mutations in Western Kenya and an 

association between the kdr 1014F mutation and pyrethroid resistance in An. arabiensis. This 

result is concerning for the effectiveness of ITNs, especially since An. arabiensis is becoming the 

predominant malaria vector in Kenya and throughout Africa.
2
 Monitoring for the spread of 

insecticide resistance in An. arabiensis is critical for resistance management, and consequently, 

the success of vector control programs.  
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Table 2.1. Proportion of Anopheles arabiensis within the Anopheles gambiae s.l. species 

complex and knockdown resistance (kdr) genotype frequencies with Hardy-Weinberg 

equilibrium parameters for An. arabeiensis collected in Kenya, 2014. 

Site Elevation No. An. 

arabiensis 

(%) 

 Genotype frequencies (%)^ Hardy-

Weinberg 

equilibrium  
     LL LF FF LS SS H

E
‡ F

IS
§ 

Port Victoria 1139 168 56.5 80.4 18.5 0.0 0.0 0.0 0.187 0.013 
Homa Bay 1184 133 68.4 95.3 3.5 0.0 1.2 0.0 0.046 -0.019 
Kamkuywa 1487 72 52.8 91.9 5.4 0.0 0.0 0.0 0.054 0.000 
Kanyawegi 1214 129 47.3 71.1 15.8 2.6 10.5 0.0 0.028 0.050 
Chulaimbo 1377 446 12.8 26.9 17.3 0.0 0.0 55.8 0.558 0.690* 
Miwani 1161 120 100 100 0.0 0.0 0.0 0.0 0.000 - 
Marigat 1004 94 100 100 0.0 0.0 0.0 0.0 0.000 - 
Kabernet 1150 101 92.1 100 0.0 0.0 0.0 0.0 0.000 - 
Gazi 15 30 100 100 0.0 0.0 0.0 0.0 0.000 - 
Mtwapa 66 44 100 100 0.0 0.0 0.0 0.0 0.000 - 
Malindi 14 88 100 100 0.0 0.0 0.0 0.0 0.000 - 
 

^L is wildtype at L1014 codon; F is L1014F mutation; S is L1014S mutation 

‡H
E 

expected heterozygosity 

 §F
IS 

inbreeding coefficient 

* Significant deviation from Hardy-Weinberg equilibrium
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Figure 2.1. Knockdown resistance (kdr) allele frequencies in Anopheles arabiensis 

populations across Kenya, 2014. 1014F mutation prevalences: Kanyawegi (10.5%),  Port 

Victoria (9.2%), Chulaimbo (8.5%), Kamkuywa (2.9%), Homa Bay (1.7%), Kabernet (0.0%), 

Marigat (0.0%), Miwani (0.0%), Gazi (0.0%), Mtwapa (0.0%), Malindi (0.0%). 1014S mutation 

prevalences: Chulaimbo (54.7%),Port Victoria (1.1%), Homa Bay (0.6%), Kanyawegi (5.3%), 

Kamkuywa (0.0%), Kabernet (0.0%), Marigat (0.0%), Miwani (0.0%), Gazi (0.0%), Mtwapa 

(0.0%), Malindi (0.0%). 
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Figure 2.2. Mortality rates (A) and frequencies of knockdown resistance (kdr) alleles of 

susceptible and resistant groups (B) in Anopheles arabiensis populations in Kenya. The 

dotted line indicates WHO threshold for confirmed resistance (90%). *** indicates p<0.001. 

Error bars indicate 95% confidence interval. Mortality rates at Port Victoria: 82.8% (95% CI 

[0.792-0.859]); and Chulaimbo: 73.7% (95% CI [0.610-0.834]). 1014F mutation prevalences: 

Port Victoria Susceptible (13.3%), Port Victoria Resistant (35.2%), Chulaimbo Susceptible 

(5.1%), Chulaimbo Resistant (17.9%). 1014S mutation prevalences: Port Victoria Susceptible 

(0.0%), Port Victoria Resistant (0.0%), Chulaimbo Susceptible (59.0%), Chulaimbo Resistant 

(42.9%) 
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Abstract 

 Anopheles gambiae s.s. and An. arabiensis are major malaria vectors in sub-Saharan 

Africa. Knowledge of how geographical factors drive the dispersal of malaria vectors can help in 

insecticide resistance management efforts, as well as planning effective vector control 

interventions. Dispersal patterns can be inferred from measuring genetic relatedness among 

populations or inferred gene flow. Here, we collect Anopheles gambiae s.s., and An. arabiensis 

across Kenya and genotype specimens at nine microsatellite loci to measure relatedness. We test 

associations between pairwise genetic distance and ecological factors hypothesized to influence 

dispersal using linear mixed effects models. We found that for An. gambiae s.s.,  high population 

densities are primarily associated with increased gene flow. High annual precipitation was also 

associated with increased gene flow. For An. arabiensis, we found that high temperatures and 

low vegetation indices were associated with increased gene flow in Western Kenya. In Eastern 

Kenya, low vegetation indices were associated with increased gene flow for An. arabiensis. By 

identifying the factors that drive malaria vector dispersal, we improve our understanding of the 

areas which are susceptible to the invasion of insecticide resistant mosquitoes. In addition, this 

knowledge can be used to plan effective vector control interventions. 
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Introduction 

Anopheles gambiae s.s. and An. arabiensis mosquitoes are major malaria vectors, as well 

as the most widespread mosquitoes of the An. gambiae complex.
1
 While the species commonly 

occupy similar ecological niches, Anopheles gambiae s.s. are generally associated with more 

humid environments, whereas An. arabiensis have a higher tolerance for drier environments.
2,3 

Another notable difference between the two species is that An. gambiae s.s. are highly 

anthropophagic,
4,5

 whereas An. arabiensis are more catholic in their feeding behavior.
6
 Since 

mosquitoes primarily disperse to seek blood meals and oviposit,
7
 we expect that these differences 

in habitat and feeding preferences result in ecological variables differentially driving the 

dispersal patterns of these two malaria vectors. These differences may create a complex system 

influencing malaria parasite spread. Knowledge of how geographical factors influence the 

dispersal of malaria vectors can help in efforts to contain insecticide resistance, planning 

effective vector control interventions, and identifying potential areas susceptible to parasite re-

introduction from infected mosquitoes following antimalarial interventions.
8
 

Organism dispersal patterns and population connectedness can be inferred from 

measuring genetic relatedness among populations or gene flow. While studies have reported 

genetic differentiation between An. arabiensis populations, neither physical barriers nor 

geographic distance has been identified as factors responsible for An. arabiensis population 

structuring.
9-12

 Likewise, geographical distance alone does not appear to be a barrier to gene flow 

among populations of An. gambiae s.s.,
12

 as Lehmann et al.
13

 found high gene flow between 

populations in Kenya (East Africa) and Senegal (West Africa). However, An. gambiae s.s. 

populations were found to be highly differentiated between Western Kenya and coastal Kenya.
12

 

The Eastern arm of the Rift Valley, which bisects Kenya, has been speculated to be the cause of 
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genetic differentiation in An. gambiae s.s. populations due to its low temperatures and arid 

conditions making it inhospitable to agriculture, and as such, lacks human settlements.
12,14

 

Alternatively, An. gambiae s.s. structuring is thought to be largely influenced by environmental 

heterogeneity.
15

 Since the eastern arm of the Rift Valley is characterized by low temperatures, 

low precipitation, as well as low human population density,
12

 we cannot dismiss any of these 

factors for principally driving population structure of An. gambiae s.s.. Thus, here, we 

disentangle confounding environmental and landscape factors to test the hypothesis that low 

human population densities primarily restrict gene flow between populations of An. gambiae s.s. 

in Kenya. In addition, we test the hypothesis that alternative factors related to climate and 

landscape primarily restrict gene flow among An. arabiensis, the more zoophagic vector.  

Using a landscape genetics approach allows us to rigorously test the impacts of 

ecological variables on the dispersals of organisms through the inference of population 

movement from the distribution of genetic markers and the measurement of ecological factors 

hypothesized to promote or prevent dispersal.
16-20

 Thus, here, we use a landscape genetics 

approach to test two hypotheses related to malaria vector dispersal, measured by gene flow, in 

Kenya: 1) Low human population densities provide a significant barrier to gene flow for An. 

gambiae s.s., but not for An. arabiensis; 2) Climate and landscape factors primarily restrict gene 

flow for An. arabiensis. By testing relationships between population genetic structure of malaria 

vectors and ecological factors, we can parse out confounding factors and determine the 

importance of key variables influencing malaria vector dispersal.
8,16
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Methods 

Sample Collection 

An. gambiae s.l. larvae were collected between May 2014 and January 2015 from 

fourteen sites within three distinct geographical areas in Kenya: Western Kenya, Rift Valley, and 

Coastal Kenya (Table 3.1). Larvae were collected using a standard mosquito dipper. No more 

than five larvae were collected per habitat to reduce bias. Collected larvae were stored in 100% 

ethanol until DNA purification.  

 

DNA extraction and species identification 

Genomic DNA was extracted using standard ethanol extraction procedures with 

phenol:chloroform.
21

 DNA was eluted into 20 µl of TE buffer. Then, DNA was quantified using 

a NanoDrop 8000 Spectrophotomer and diluted to a concentration of 1µg/1µl sterile water. We 

identified An. arabiensis and An. gambiae s.s. species within the An. gambiae s.l. complex  using 

a ribosomal DNA polymerase chain reaction (PCR) assay.
22

  

 

Microsatellite genotyping 

Nine microsatellite loci were selected for genotyping An. gambiae s.s., An. arabiensis, P. 

falciparum based on evidence of polymorphism in previous studies, reliable amplification, and 

having an even distribution across chromosomes (Table 3.2).
24

 We used the M13 tailed primer 

method to fluorescently label our primers.
25

 Amplification was conducted in a total volume of 10 

µl with 5 µl of 2x DreamTaq Green PCR Master Mix (Thermo Fisher, USA), 0.5 µl of 10µM 

primer (forward primer with M13 tail), and 1 µl of DNA template. Thermocycling conditions for 

An. gambiae s.s. and An. arabiensis were as follows: initial denature of 94°C for 3 min, followed 
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by 35 amplification cycles of 94°C for 30 sec, annealing temperature (Table 3.2) for 30 sec, and 

72°C for 45 sec, and then a final extension of 72°C for 6 min. PCR products were analyzed on an 

automated 4300 DNA analyzer (Li-Cor, Lincoln, NE), and alleles were quantified with the use of 

Gene ImagIR 4.33 software (Li-Cor).  

 

Population genetic analysis 

We tested for deviation from Hardy-Weinberg equilibrium and allelic richness at each 

study site in Arlequin.
26

 To estimate population structure, we used a model-based approach and 

an exploratory approach for population clustering. First, we used the R package adegenet to do a 

standard principal component analysis (PCA) to determine genetic relationships among 

populations.
28

 Second, we estimated population structure using STRUCTURE v. 2.3.4, which 

uses a Bayesian algorithm to group samples into genetically distinct clusters.
29

 We tested K=1-7, 

with six replicates for each K-level, an initial burn-in of 200,000, and then 600,000 Monte Carlo 

Markov Chain iterations. The program was run using an admixture model. ∆K was used to detect 

the number of K (clusters).
30

 The output data for the best estimate of K were analyzed using 

CLUMMP to calculate the mean cluster membership coefficients across multiple runs.
31

 The 

CLUMMP output was visualized using DISTRUCT.
32

 Pairwise FST values were calculated in the 

R package adegenet and bootstrapping was done to determine statistical significance at p-value 

<0.05, with a Bonferonni correction.
28

   

 

Landscape genetic analysis 

Since population sampling was not evenly spread across the country, we analyzed 

Eastern Kenya separately from the rest of Kenya due to the biases uneven sampling can 
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introduce in analysis.
32

 Genetic distance between populations was calculated as the proportion of 

shared alleles (DPS) measured in the R package PopGenReport.
33,34

 When testing the effects of 

environmental factors on gene flow between populations, between-site characteristics are of the 

greatest concern.
35

 Hence, resistance surfaces were created based on factors hypothesized to 

prevent or promote gene flow. We created raster files in ArcGIS 10 using climate data from 

WorldClim (BIO1 and BIO12),
36

 vegetation index data from MODIS (MCD12Q1),
37,38

 

topographic wetness index data from NERC Environmental Information Data Centre,
39

 

population density from WorldPop (www.worldpop.org.uk), and roads from the Global Roads 

Open Access Data Set (Table 3.3). All raster files were resampled to a grain size of 1 km. 

Landscape distance among all pairs of sites was measured using electrical circuit theory in 

PopGenReport.
34,40

 Circuit theory incorporates multiple pathways into the analysis, providing an 

advantage over the least cost path method. A key shortcoming of landscape genetics has been 

identified in the methods used to assign resistance values to variables (e.g. forest cover or 

elevation).
41

 For continuous variables, such as precipitation, raw elevation numbers can be used 

to assign resistance values, but this method assumes a linear response to precipitation. For non-

continuous variables, assigning resistance values has most commonly relied upon expert opinion, 

but this approach introduces biases.
41

 To overcome these shortcomings, we used ResistanceGA a 

package in R to optimize resistance surfaces to our genetic data.
42,43

 ResistanceGA uses a genetic 

algorithm to unbiasedly optimize resistance surfaces. Lastly, linear mixed effects models with 

the maximum likelihood population effects were used to fit optimized resistance surfaces to 

genetic data.
44

 Akaike information criterion with a penalty for extra parameters (AICc) was used 

as the measure of model fitness to genetic data. 

 

http://www.worldpop.org.uk/
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Results 

Population genetic analysis 

An. gambiae s.s.: Mean allelic richness (AR) and expected heterozygosity (HE) were 

highest in the four highland sites (AR: 4.93-6.12;  HE: 0.60-0.68) compared to the three lowland 

sites (AR: 4.51-4.80;  HE: 0.42-0.55) (Table 3.4).  Mean observed heterozygosity (HO) was 

consistently lower than HE  across all populations (Table 3.4).We identified two clusters 

consistently across six runs in STRUCTURE (Figure 3.1C). PCA analysis of the first and second 

components (explaining 42.6 and 31.4% of the variance, respectively), revealed a similar 

clustering pattern as the STRUCTURE analysis (Figure 1B). The four highland populations 

clustered together along with a lowland population (‘Kan’). Whereas two of the westernmost 

lowland populations clustered together (‘Por’ and ‘Hom’) (Figure 3.1A). In addition, pairwise 

FST values were generally found to be higher among lowland sites, as well as between lowland 

and highland sites, than among highland sites (Table 3.5). 

An. arabiensis: Mean allelic richness (AR) ranged from 4.67 at ‘Jar’ in Eastern Kenya to 

8.42 at ‘Kan’ in Western Kenya. Expected heterozygosity (HE) was highest  at ‘Nak’ in the Rift 

Valley (0.73)  and lowest at ‘Kak’ in Eastern Kenya (0.44) (Table 3.4). Mean observed 

heterozygosity (HO) was consistently lower than HE  across all populations (Table 3.4). We 

identified four clusters consistently across six runs in STRUCTURE (Figure 3.2C). PCA analysis 

of the first and second components (explaining 39.8 and 26.3% of the variance, respectively), 

also revealed clustering pattern similar to that observed in STRUCTURE (Figure 3.2B). Five of 

the six Western Kenya populations clustered together, with ‘Miw’, the easternmost site in 

Western Kenya, as the exception (Figure 3.2A). Three sites in the Rift Valley (‘Nak’, ‘Gil’, and 

‘Nai’) clustered together. Two coastal Kenya populations clustered together, but the other two 
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clustered with Western Kenya and Rift Valley populations. The majority of pairwise FST values 

were significant with no clear trends across regions (Table 3.6).  

 

Landscape genetic anlaysis  

Of the six predictor variables tested, human population density, average temperature, and 

annual precipitation were significant in explaining population genetic structure of An. gambiae 

s.s. populations. For An. gambiae s.s., low human population density (AICc=0), high 

temperature (AICc=3.31), and low precipitation (AICc=3.54) were associated with an increase in 

landscape resistance to gene flow (Figure 3.3). For An. arabiensis, average temperature 

(AICc=0) and vegetation index (AICc=1.78) were significant in explaining population genetic 

structure in Western Kenya, while only vegetation index (AICc=0) was significant in explaining 

population genetic structure in Eastern Kenya (Table 3.7). Low average temperature and high 

vegetation index were associated with an increase in landscape resistance to gene flow for An. 

gambiae s.s. (Figure 3.4). 

Testing the fit of all combinations of the top single surface models revealed that a 

combination of all three variables (human population density, annual precipitation, and average 

temperature) had the highest model weight (0.24), followed by a combination of human 

population density and precipitation (0.23), and human population density and temperature 

(0.21) (Table 3.9). In the top model, human population density had the highest percent 

contribution (71%), followed by precipitation (18%), and temperature (11%) (Figure 3.5). In the 

second highest ranked model, human population density had the highest contribution (86%), 

followed by precipitation (14%). Finally in the third highest ranked model, human population 

density had the highest contribution (96%), followed by temperature (4%). Overall, human 
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population density and precipitation had the highest contributions in the multi surface models for 

An. gambiae s.s.. Testing the fit of the combinations of the top single surface models for An. 

arabiensis in Western Kenya revealed that combining the temperature and vegetation index 

surfaces did not improve the landscape resistance model (Table 3.8). 

 

Discussion 

Using a landscape genetics framework to test hypotheses related to whether climatic, 

landscape, or social factors predominantly influence the population structures of An. gambiae 

s.s., and An. arabiensis, we found that contrasting factors influence the population structures of 

the three species. For An. gambiae s.s., both social (low human population distribution) and 

climatic (low precipitation and high temperature) factors were the most important factors shaping 

population structure. While, for An. arabiensis, landscape (high vegetation index) and climatic 

(low temperature) factors were the most important factors for population structuring.  

An. gambiae s.s. and An. arabiensis are primary vectors of human malaria in sub-Saharan 

Africa, a disease responsible for 438,000 deaths worldwide annually, with around 90% occurring 

in Africa.
45

 Though the two species commonly co-occur, An. arabiensis mosquitoes are more 

well-adept to disturbed,
46

 hot,
47,48

 and arid environments.
46

 Additionally, An. arabiensis are more 

catholic in their feeding preferences taking blood meals from both human and non-human hosts, 

especially cattle.
49-51

 Therefore, our findings that gene flow between An. gambiae s.s. 

populations is primarily restricted by low human population densities, high temperatures, and 

low precipitation are consistent with the mosquito’s biology. Likewise, that gene flow between 

An. arabiensis populations is primarily restricted by low temperatures and high vegetation index 
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is also consistent the known ecology of An. arabienisis, a species which is known to thrive in 

arid conditions
46

 and feed on non-human hosts.
49-51

 

The lack of human settlement on the high plateaus of the eastern arm of the Great Rift 

Valley, which bisects Kenya, was thought to explain why populations of An. gambiae s.s. 

between Western Kenya and Eastern Kenya were much more distinct than between Western 

Kenya and Senegal in Western Africa, despite that the two countries are separated by more than 

5000 km.
12

 Whereas, Western Kenya and coastal Kenya populations are only 700 km apart.
 12

 

This hypothesis was formulated since unlike the eastern arm of the rift, human agricultural 

activity occurs in a broad band across the area between Senegal and Western Kenya.
 12

 We tested 

the long-standing hypothesis that low human population densities between An. gambiae s.s. 

populations provide a barrier to gene flow, and we provide evidence in support of this 

hypothesis. Moreover, we demonstrate that low human population densities influences An. 

gambiae s.s. structure on a smaller spatial scale than previously suggested, working among 

populations within Western Kenya. In addition, An. gambiae s.s. structuring was thought to be 

largely influenced by environmental heterogeneity.
15

 We provide evidence in support of this 

hypothesis, as well, though human population density was found to be the primary explanatory 

variable.   

 While populations of An. gambiae s.s. across the eastern arm of the rift have been found 

to be highly genetically differentiated, no such differentiation has been found between 

populations of An. arabiensis.
 12

 This result suggested that areas of low human population 

densities do not provide a barrier to gene flow for An. arabiensis.
 12

 In addition, no relationship 

between genetic differentiation and geographical distance was found for An. arabiensis,
 12

 posing 

the possibility that factors aside from distance and human population densities impact gene flow, 
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such as climate and geographical features.
1
 We provide evidence in support of this conjecture, as 

forests (high vegetation index) were an important barrier to gene flow in Western and Eastern 

Kenya and low temperatures were important for population structuring in Western Kenya. While 

low temperatures were not significant for population structuring in Eastern Kenya, the 

temperature range was very small in Eastern Kenya (23.5 – 26.7°C), compared to Western 

Kenya (10.8 – 26.6°C), which may help to explain why low temperatures were only important in 

driving population structure in Western Kenya. 

Overall, we detected significant genetic structuring between populations of An. gambiae 

s.s. and An. arabiensis which suggests that populations are more genetically isolated than 

observed in previous studies in Kenya.
12-14

 This trend of increasing fragmentation could be 

caused by the increase in ITN coverage since 2004 decreasing mosquito abundances.
52

 

Additionally, we found that genetic structuring for both species did not conform to the isolation-

by-distance model, a finding consistent with previous studies on An. gambiae s.s.
 12

 and An. 

arabiensis.
53

 In addition to geographical gene flow barriers contributing to a lack of isolation-by-

distance, genetic differentiation may also be caused by historical factors.
53

 This phenomenon 

may help to explain the close clustering of certain Eastern Kenya populations with some Western 

Kenya populations in An. arabiensis. Low FST  values between populations across the eastern 

Rift Valley may be attributed to a range expansion, facilitated by the expansion of human 

settlement and agriculture, rather than large amounts of contemporary gene flow.
54

 Moreover, 

large amounts of contemporary gene flow across the Rift Valley seems particularly unlikely 

given that mosquitoes rarely disperse more than a few kilometers throughout a lifetime.
7
 

While malaria prevention is primarily mediated through the use of insecticide-

impregnated bednets (ITNs), the overuse of these nets has increased resistance in mosquito 
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vectors.
55

 Understanding the population genetic structure of these vectors is useful for tracking 

the spread of resistant genes and in designing alternative methods of malaria prevention.
53

 

Additionally, in response to the scale-up in distribution of insecticide treated bednets (ITNs) 

throughout Kenya and sub-Saharan Africa, An. arabiensis have increased in proportional 

abundance, replacing the more historically dominant and anthropogenic species Anopheles 

gambiae s.s. and An. funestus.
56-59

 Anopheles arabiensis have been able to persist and thrive 

despite intensive antimalarial interventions due to their catholic feeding behavior, as well as their 

tendencies to more commonly feed outdoors where people are not under the protection of ITNs
46

 

and rest outdoors where they are not affected by indoor residual spraying (IRS).
56,57,60

 Since An. 

arabiensis are not as vulnerable to traditional antimalarial vector control interventions, they are 

likely to play a crucial role in maintaining residual malaria transmission in sub-Saharan Africa 

even as countries approach pre-elimination and elimination.
56,59

 Thus, understanding how 

ecological features influence An. arabiensis dispersal will likely become increasingly important 

to interrupting residual malaria transmission. 

Using a landscape genetics approach to identify important dispersal corridors has great 

potential for mitigating disease risk.
8,16

 In this study, we found that corridors for An. gambiae s.s. 

in Kenya are most likely to be areas of high human population density and high precipitation, 

whereas corridors for An. arabiensis are likely to be areas of low vegetation index and high 

temperatures. This knowledge is important to improving insecticide resistance management, as 

well as how parasites can become re-introduced to an area following public health interventions.  
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Table 3.1. Locality information and sample size by species used for analyses. 

     Sample size (n) 

Region Site  Longitude Latitude Elevation An. gambiae s.s. An. arabiensis 

Western 
Kenya 
Lowlands 

Por 34.012 -0.114 1139 58 58 

Ken 34.629 -0.385 1150 0 57 

Hom 34.465 -0.543 1184 42 58 

Kan 34.606 -0.122 1214 60 45 

Miw 34.943 -0.129 1161 0 58 

Western 
Kenya 
Highlands 

Emu 34.618 0.023 1520 51 0 

May 34.578 0.51 0.513 52 0 

Kai 34.899 0.156 1647 29 0 

Kam 34.807 0.571 1487 27 33 

Rift Valley Mar 36.018 0.484 1004 0 58 

Kab 35.663 0.498 1150 0 58 

Nak 35.945 -0.334 2163 0 18 

Gil 35.911 -0.495 2009 0 24 

Nai 36.459 -0.703 2036 0 14 

Eastern 
Kenya 

Mus 39.501 -4.394 15 0 36 

Jun 39.742 -3.852 66 0 45 

Jar 39.736 -3.616 16 0 30 

Kak 40.039 -3.170 14 0 57 
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Table 3.2. Microsatellite markers used for An. gambiae s.l. (Zheng et al 1996) genotyping. 

An. gambiae s.l. 

Locus Chromosome Annealing (°C) 

AG2H143 2L 60 

AG2H46 2R 55 

45C1 3L 60 

AG3H577 3L 60 

33C1 3R 55 

Ag3H249 3R 60 

AGXH7 X 57 

AGXH99 X 50 

1D1 X 50 
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Table 3.3. Predictor variables used for landscape genetic analysis. 

Category Variable Source 

Climate Average Temperature WorldClim BIO1 

 Annual Precipitation WorldClim BIO12 

Social Human Population Density Worldpop 

 Distance to Roads Global  Roads Open Access Data Set, version 1 

Landscape Vegetation Index NASA MCD12Q1 

 Topographic Wetness Index NERC Environmental Information Data Centre 
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Table 3.4. Genetic diversity indices for Anopheles gambiae s.s. and An. arabiensis in Kenya. 

AR is allelic richness; HO is observed heterozygosity; HE is expected heterozygosity; FIS is the 

fixation index. 

  An. gambiae s.s.    An. arabiensis  
Site A

R
 H

O
 H

E
 F

IS
   A

R
 H

O
 H

E
 F

IS
  

Por 4.68 0.26 0.42 0.35   7.62 0.29 0.64 0.56 

 Hom 4.51 0.30 0.48 0.37   6.52 0.22 0.53 0.45 

 Ken ̶ ̶ ̶ ̶   6.44 0.33 0.54 0.46 

 Kan 4.80 0.42 0.55 0.24   8.42 0.37 0.63 0.61 

 Kai 4.93 0.30 0.60 0.51   ̶ ̶ ̶ ̶ 
 

Kam 5.76 0.35 0.68 0.49   7.69 0.41  0.62 0.40 

 Emu 6.47 0.38 0.65 0.38   ̶ ̶ ̶ ̶ 
 

May 6.12 0.40 0.67  0.40   ̶ ̶ ̶ ̶ 
 

Kab ̶ ̶ ̶ ̶   6.91 0.30 0.55 0.57 

 Mar ̶ ̶ ̶ ̶   6.56 0.40 0.60 0.48 

 Nak ̶ ̶ ̶ ̶   6.63 0.50 0.73 -0.11 

 Gil ̶ ̶ ̶ ̶   6.15 0.49 0.63 0.54 

 Nai ̶ ̶ ̶ ̶   6.22 0.62 0.68 0.01 

 Kak ̶ ̶ ̶ ̶   5.58 0.25 0.44 0.78 

 Jar ̶ ̶ ̶ ̶   4.67 0.23 0.58 1.00  
Jun ̶ ̶ ̶ ̶   7.67 0.42 0.71 0.71  
Mus ̶ ̶ ̶ ̶   6.10 0.27 0.66 0.84  
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Table 3.5. Pairwise FST values for An. gambiae s.s. populations in Western Kenya. Lower 

triangle indicates pairwise FST value and upper triangle indicates statistical significance (P<0.05). 

 

Por Hom Kan Kai Kam Emu May 

Por 0 * * * * * * 

Hom 0.157 0 * * * * * 

Kan 0.228 0.15 0 * 

  

* 

Kai 0.3 0.148 0.104 0 

  

* 

Kam 0.192 0.092 0.07 0.041 0 

  
Emu 0.207 0.067 0.06 0.035 0.031 0 

 
May 0.19 0.109 0.093 0.085 0.036 0.043 0 
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Table 3.6. Pairwise FST values for An. arabiensis populations in Kenya. Lower triangle 

indicates pairwise FST value and upper triangle indicates statistical significance (P<0.05). 

 

Por Hom Ken Kan Miw Kam Kab Mar Nak Gil Nai Kak Jar Jun Mus 

Por 0 

     

*     * *  * 

Hom 0.08 0 

 

* * * * * * *  *  * * 

Ken 0.06 0.14 0 

  

* *  *  * * * * * 

Kan 0.02 0.09 0.04 0 * 

  

* *  * * *  * 

Miw 0.19 0.25 0.17 0.18 0 * * * * * * * * * * 

Kam 0.03 0.07 0.06 0.02 0.14 0 *  * * * * *  * 

Kab 0.12 0.18 0.13 0.09 0.25 0.13 0 * * * * * * * * 

Mar 0.25 0.24 0.19 0.18 0.07 0.14 0.25 0   * *   * 

Nak 0.10 0.16 0.10 0.10 0.20 0.09 0.18 0.17 0   *   * 

Gil 0.17 0.22 0.16 0.18 0.23 0.16 0.25 0.19 0.04 0  * *  * 

Nai 0.17 0.20 0.17 0.20 0.21 0.16 0.25 0.19 0.03 0.05 0 * *  * 

Kak 0.27 0.11 0.25 0.25 0.11 0.21 0.28 0.18 0.24 0.31 0.33 0 * * * 

Jar 0.16 0.19 0.20 0.18 0.22 0.21 0.25 0.18 0.13 0.19 0.17 0.27 0 * * 

Jun 0.10 0.18 0.12 0.11 0.18 0.09 0.17 0.15 0.08 0.14 0.11 0.23 0.14 0 * 

Mus 0.18 0.20 0.20 0.18 0.20 0.14 0.23 0.20 0.13 0.17 0.16 0.26 0.09 0.14 0 
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Table 3.7. Top single surface models for An. gambiae s.l. in Kenya. Models within 4 AICc 

points of the top model are displayed. Coefficient (Coeff.) indicates the relationship between the 

variable and landscape resistance to gene flow. 

  Coeff. LL AICc ΔAIcc 

An. gambiae s.s. (Western Kenya) 

 1) Human Population Density - 33.91 -60.82 0.00 

 2) Average Temperature + 32.25 -57.51 3.31 

 3) Annual Precipitation - 32.14 -57.28 3.54 

An. arabiensis (Western Kenya) 

 1) Average Temperature - 93.31 -18.129 0.00 

 2) Vegetation Index + 92.42 -179.35 1.78 

An. arabiensis (Eastern Kenya) 

 1) Vegetation Index + 25.08 -34.16 0 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

Table 3.8. Multi surface landscape resistance models for An. gambiae s.l. in Kenya 

 Surface LL AICc ΔAICc weight 

An. gambiae s.s. (Western Kenya) 

 Population + Precipitation + Temperature 34.24 -61.48 0 0.24 

 Population + Precipitation 34.21 -61.42 0.06 0.23 

 Population + Temperature 34.13 -61.25 0.22 0.21 

 Population 33.91 -60.82 0.66 0.17 

 Precipitation + Temperature 33.06 -59.12 2.36 0.07 

 Temperature 32.25 -57.51 3.97 0.03 

 Precipitation 32.14 -57.28 4.20 0.03 

 Geographic Distance 31.63 -56.27 5.21 0.02 

An. arabiensis (Western Kenya) 

 Temperature 93.31 -181.13 0 0.69 

 Vegetation Index 92.42 -179.35 1.78 0.28 

 Geographic Distance 89.27 -173.04 8.09 0.01 

 Vegetation Index + Temperature 89.13 -170.26 8.37 0.01 
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Figure 3.1. Population structure of An. gambiae s.s. in Western Kenya A) Map of An. 

gambiae s.s. sites. B) Principal component analysis (PCA) of genetic relatedness. C) Bayesian 

population structuring analysis from STRUCTURE. 
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Figure 3.2. Population structure of An. arabiensis in Kenya. A) Map of An. gambiae s.s. sites. 

B) Principal component analysis (PCA) of genetic relatedness. C) Bayesian population 

structuring analysis from STRUCTURE. 
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Figure 3.3. Top single surface models for An. gambiae s.s. in Western Kenya. A) Highest 

performing model. B) Second highest performing model. C) Third highest performing model. 

Surface is the landscape resistance raster map for the top performing surfaces following the best 

fit transformation. A higher number (yellow) indicates higher landscape resistance to gene flow. 

Model is the plot showing the transformation of the original, raw data (x-xis) to the optimized 

landscape resistance to gene flow value (y-axis). 

 

 



80 

 

 

Figure 3.4. Top single surface models for An. arabiensis in Western and Eastern Kenya. A) 

Highest performing model for Western Kenya. B) Second highest performing model for Western 

Kenya. C) Highest performing model for Eastern Kenya. Surface is the landscape resistance 

raster map for the top performing surfaces following the best fit transformation. A higher number 

(yellow) indicates higher landscape resistance to gene flow. Model is the plot showing the 

transformation of the original, raw data (x-xis) to the optimized landscape resistance to gene 

flow value (y-axis). 
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Figure 3.5. Top multi surface models for An. gambiae s.s. in Western Kenya A) Highest 

performing multi surface model. B) Second highest performing multi surface model. C) Third 

highest performing multi surface model. Surfaces are raster map for the top performing surfaces 

following the best fit transformation. Contribution is the mean proportion contribution of 

individual surfaces to the multi surface model with lower and upper 95% confidence intervals. 
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Abstract 

Malaria spread is complex in that it is affected by the movement of mosquitoes and 

people. Movement patterns can be inferred from measuring genetic relatedness among 

populations or inferred gene flow. Despite that an understanding of how malaria spreads across a 

landscape is critical for preventing re-introduction of malaria parasites, little is known on the 

factors shaping their genetic structure. We hypothesize that human population connectedness, 

measured by proximity to roads, primarily drives Plasmodium falciparum gene flow in Kenya, as 

opposed to factors related to mosquito movement. To test this hypothesis, we collected P. 

falciparum malaria parasites across Kenya and genotype specimens at nine microsatellite loci. 

We tested associations between pairwise genetic distance and ecological factors related to 

mosquito and human movement using linear mixed effects models. We observed genetic 

structuring, but did not find any associations between genetic structure and ecological factors 

tested. We found evidence of a gene flow barrier which coincides with Lake Victoria, suggesting 

that P. falciparum population structure may be largely influenced by human travel. Moreover, 

we found that populations proximal to large cities were dissimilar to nearby P. falciparum 

populations, which may be indicative of frequent human travel to large cities resulting in 

parasites being introduced from more distant populations. Knowledge of how malaria parasites 

spread geographically can be used to identify areas susceptible to malaria parasite re-

introductions following a public health intervention, as well as to predict the spread of 

antimalarial drug resistance. 
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Introduction 

Malaria parasite dispersal patterns are complex, as they are affected by both the 

movement of mosquitoes and people. Mosquitoes primarily disperse to seek blood meals and 

oviposit.
1
 Thus, factors associated with both larval habitat and blood meal host availability 

impact dispersal. Mosquito dispersal distance ranges from less than one kilometer to several 

kilometers throughout a lifetime.
1
 Whereas humans can carry malaria parasites over very long 

distances, though this distance may also depend on environmental or landscape factors, such as 

factors associated with agricultural capacity and accessibility.
2
 Therefore, dispersal patterns of 

malaria parasites are complex with potentially numerous factors contributing to parasite spread. 

Despite that an understanding of how malaria spreads across a landscape is critical for preventing 

malaria re-introduction and sustaining malaria elimination, there is limited knowledge on how 

malaria spreads geographically.
3,4

 

Organism dispersal patterns can be inferred from measuring genetic relatedness among 

populations or estimated gene flow. Population structure of P. falciparum in Kenya is thought to 

be shaped by human travel patterns which maintain high gene flow across the area.
5,6

 While 

Zhong et al.
7
 report small but statistically significant population structure between highland and 

lowland malaria populations, other studies have reported no genetic structure across the 

region.
5,6,8,9

 Similarly, no significant barriers to gene flow between P. falciparum populations 

were detected in the Democratic Republic of Congo.
4
 In Ethiopia, gene flow patterns of P. 

falciparum in Ethiopia were found to reflect seasonal human migration patterns coinciding with 

seasonal harvest.
10

 In addition, environmental heterogeneity and geographical distance were not 

found to constrain P. falciparum gene flow in Ethiopia.
10

 Though human movement is thought to 

largely drive P. falciparum gene flow, few geographic barriers to P. falciparum gene flow have 
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been identified. Here, we test if human population connectedness, measured by road 

accessibility, can explain P. falciparum genetic structuring in Kenya.  

Landscape genetic analysis allows us to test the impacts of ecological variables on the 

dispersals of organisms through the measurement of associations between inferred gene flow and 

ecological factors.
11-15

 Thus, here, we use a landscape genetics approach to test the hypothesis 

that accessibility (distance to roads) primarily drives P. falciparum population structure. As 

countries approach elimination, it is critically important to understand the underlying factors 

which promote and prevent migration of malaria parasites to sustain malaria control and 

elimination. Moreover, parasite resistance to antimalarial drugs poses a major threat to malaria 

elimination, and so understanding the factors which may facilitate resistance spread can help to 

inform resistance containment strategies. 

 

Methods 

Sample Collection 

P. falciparum parasites were collected between May 2014 and January 2015 from 

fourteen sites within three distinct geographical areas in Kenya: Western Kenya, Rift Valley, and 

Coastal Kenya (Table 4.1). Parasites were collected from symptomatic patients seen at clinics. 

Blood dots were collected on Whatman filter paper from patients who had a positive malaria 

rapid diagnostic test (RDT). Filter paper samples were stored at -20°C until use.  

DNA extraction and species identification 

The Saponin/Chelex method was used to extract the DNA.
16

 The final extracted volume 

was 200 μL. Quantitative polymerase chain reaction (qPCR) was used to detect and quantify the 
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P. falciparum DNA simultaneously.
17

 Amplification was conducted in a 20 μL mixture consisted 

of 2μL of DNA, 10μL of 2xSYBR Green qPCR Master Mix (Thermo Scientific, USA), and 

0.3μL of 10μM primer. Reactions were performed in the CFX96 Touch Real-Time PCR 

Detection System (Bio-Rad). Cycling conditions were as follows: initial denaturation at 95°C for 

3 min, followed by 45 cycles at 94°C for 30 sec, 55°C for 30 sec, 68°C for 1 min, and 95°C for 

10, followed  by a melting curve step from 65°C to 95°C with 0.5°C increments. Samples with a 

CQ value less than or equal to 40 were considered positive for P. falciparum.  

Microsatellite genotyping 

Nine microsatellite loci were selected for genotyping An. gambiae s.s., An. arabiensis, P. 

falciparum based on evidence of polymorphism in previous studies, reliable amplification, and 

having an even distribution across chromosomes.
18

 We used the M13 tailed primer method to 

fluorescently label our primers.
19

 Amplification was conducted in a total volume of 10 µl with 5 

µl of 2x DreamTaq Green PCR Master Mix (Thermo Fisher, USA), 0.5 µl of 10µM primer 

(forward primer with M13 tail), and 1 µl of DNA template. Thermocycling conditions were as 

follows: initial denature of 95°C for 5 min, followed by 45 amplification cycles of 95°C for 30 

sec, annealing temperature (Table 4.2) for 30 sec, and 65°C for 45 sec, and then a final extension 

of 65°C for 7 min.  PCR products were analyzed on an automated 4300 DNA analyzer (Li-Cor, 

Lincoln, NE), and alleles were quantified with the use of Gene ImagIR 4.33 software (Li-Cor).  

Population genetic analysis 

We calculated expected heterozygosity and Garza-Williamson Index in Arlequin.
20

 

Allelic richness at each study site was calculated in the hierfstat R package.
21

 To estimate 

population structure, we used a model-based approach and an exploratory approach for 
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population clustering. First, we used the R package adegenet to do a standard principal 

component analysis (PCA) to determine genetic relationships among populations.
22

 Second, we 

estimated population structure using STRUCTURE v. 2.3.4, which uses a Bayesian algorithm to 

group samples into genetically distinct clusters, K.
23

 We tested K=1-7, with six replicates for 

each K-level, an initial burn-in of 200,000, and then 600,000 Monte Carlo Markov Chain 

iterations. The program was run using an admixture model. ∆K was used to detect the number of 

K (clusters).
24

 The output data for the best estimate of K were analyzed using CLUMMP to 

calculate the mean cluster membership coefficients across multiple runs.
25

 The CLUMMP output 

was visualized using DISTRUCT.
26

 Pairwise FST values were calculated in the R package 

adegenet and bootstrapping was done to determine statistical significance at p-value <0.05, with 

a Bonferonni correction.
22

  

We also performed spatial clustering of individual analysis using a Bayesian clustering in 

a spatial geographic network with TESS under the admixture model.
27-29

 Individuals within a 

population were randomly assigned geographic coordinates over +/- 0.01 degree N-S and E-W, 

centered on the geographic coordinate of the population. The maximum number of clusters was 

set to K=5, with 100 replicates for each K-level, an initial burn-in of 10,000, and then 60,000 

sweeps. The optimal K was determined based on the Deviance Information Criterion (DIC), a 

statistical measure of model deviance penalized by the number of K. The runs with the lowest 

10% DIC scores for optimal K were further analyzed using CLUMMP and visualized in R using 

the script written by Jay et al.
28

 Finally, for P. falciparum, we identified barriers using 

Monmonier’s algorithm, which uses a maximum-difference method to determine genetically 

distinct groups in space where samples on either side of the barrier.
30,31

 Barriers were determined 

using the R package adegenet.
22
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Landscape genetic analysis 

Since population sampling was not evenly spread across the country, we analyzed 

Eastern Kenya separately from the rest of Kenya due to the biases uneven sampling can 

introduce in analysis.
32

 Genetic distance between populations was calculated as the proportion of 

shared alleles (DPS) measured in the R package PopGenReport.
33,34

 When testing the effects of 

environmental factors on gene flow between populations, between-site characteristics are of the 

greatest concern.
35

 Hence, resistance surfaces were created based on factors hypothesized to 

prevent or promote gene flow. We created raster files in ArcGIS 10 using climate data from 

WorldClim,
37

 vegetation index data from MODIS (MCD12Q1),
38,39

 population density from 

WorldPop (www.worldpop.org.uk), and roads from the Global Roads Open Access Data Set 

(Table 4.3). All raster files were resampled to a grain size of 1 km. Landscape distance among all 

pairs of sites was measured using electrical circuit theory in PopGenReport.
39,40

 Circuit theory 

incorporates multiple pathways into the analysis, providing an advantage over the least cost path 

method. A key shortcoming of landscape genetics has been identified in the methods used to 

assign resistance values to variables (e.g. forest cover or elevation).
40

 For continuous variables, 

such as precipitation, raw elevation numbers can be used to assign resistance values, but this 

method assumes a linear response to precipitation. For non-continuous variables, assigning 

resistance values has most commonly relied upon expert opinion, but this approach introduces 

biases.
40

 To overcome these shortcomings, we used ResistanceGA a package in R to optimize 

resistance surfaces to our genetic data.
41,42

 ResistanceGA uses a genetic algorithm to unbiasedly 

optimize resistance surfaces. Lastly, linear mixed effects models with the maximum likelihood 

population effects were used to fit optimized resistance surfaces to genetic data. Akaike 

http://www.worldpop.org.uk/
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information criterion with a penalty for extra parameters (AICc) was used as the measure of 

model fitness to genetic data. 

 

Results 

Population genetic analysis 

Allelic richness (AR) was highest at ‘Jun’ (5.26) and ‘Emu’ (5.20), while AR was lowest 

at ‘Por’ (3.11) and ‘Eld’ (3.47) (Table 4.4). Expected heterozygosity (HE) was highest at ‘Jun 

(0.78) and ‘Ken’ (0.78) and lowest at ‘Emu’ (0.43) and ‘Kab’ (0.45) (Table 4.4). Garza-

Williamson indexes (G-W) were low across all populations, indicative of recent bottleneck 

events (Table 4.4). We identified four clusters consistently across six runs in STRUCTURE 

(Figure 4.1C). PCA of the first and second components (explaining 28.2 and 16.6% of the 

variance, respectively) revealed a similar clustering pattern as the STRUCTURE analysis (Figure 

3.1B). All sites clustered together with the exceptions of ‘Emu’ and ‘Kab’ (Figure 4.1C). In 

addition, pairwise FST values were generally found to be non-significant, with the exceptions of 

pairwise comparisons with ‘Emu’, ‘Kab’, ‘Gil’ and ‘Jun’ (Table 4.5). In addition, FST values 

were significant between populations in Western Kenya: ‘Por’ and ‘Ken’ (0.09); ‘Hom’ and 

‘Ken’ (0.04); ‘Hom’ and ‘May’ (0.05); ‘Hom’ and ‘Eld’ (0.03). 

Landscape genetic analysis 

None of the single surface models performed higher than a null model for P. falciparum 

(Table 4.6), so we do not display any of the landscape resistance surfaces. We therefore 

conducted additional spatial analysis and display those outputs. Through analysis of spatial 

distribution of ancestry coefficients in Western Kenya, we consistently identified four distinct 

clusters (Figure 4.2A). Cluster one includes ‘Emu’; cluster two includes ‘Kab’; cluster three 
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includes ‘Por’, ‘May’, ‘Emu’, and ‘Mar’; and cluster four includes ‘Hom’, ‘Ken’, ‘Gil’, ‘Nak’ 

(Figure 4.2A). Barrier analysis revealed a significant barrier between ‘Hom’, ‘Ken’, ‘Emu’, and 

‘Por’, which partially coincides with Lake Victoria (Figure 4.2B). In Eastern Kenya, we 

identified two distinct clusters (Figure 4.3A). Cluster one includes ‘Jun’ and cluster two includes 

‘Mus’, ‘Jar’, and ‘Kak’ (Figure 4.3A). Barrier analysis revealed a significant barrier between 

‘Jun’ and ‘Jar’ populations (Figure 4.3B). 

 

Discussion 

 Little to no population genetic differentiation has been found for P. falciparum in Kenya, 

which is thought to be influenced by frequent human travel maintaining extensive gene flow 

between populations.
5-7

 While we detected population differentiation between populations of P. 

falciparum across Kenya, we did not identify any significant factors associated with population 

structuring. However, we detected a genetic barrier coinciding with Lake Victoria. Lake Victoria 

provides a natural barrier to human travel, and so this finding provides evidence to support that 

human travel may largely influence population structure of malaria parasites in Kenya.  

Additionally, we identified barriers surrounding ‘Jun’ in Eastern Kenya and ‘Emu’ in 

Eastern Kenya, as well as that these populations were not closely related to nearby populations. 

The reason for these divergences at ‘Jun’ and ‘Emu’ may be partly explained by their relatively 

close proximity to major cities, ‘Jun’ to Mombasa (28 km) and ‘Emu’ to Kisumu (30km). 

Mombasa is the second most populous city in Kenya, while Kisumu is the third most populous 

city in Kenya. Following the Gravity Model, where the amount of interaction between two cities 

is proportional to city size and distance, it is plausible that P. falciparum  population structure 

near Mombasa and Kisumu are heavily influenced by frequent human travel from more distant 
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populations not included in this study.
4,43-45

  Thus, close proximity to highly connected city 

centers may help to explain why parasites from ‘Jun’ and ‘Emu’ are not closely related to nearby 

populations. Rather, the population structure of these populations may be highly influenced by 

parasite introduction from more distant populations not included in this study, as a result of 

frequent human travel between larger cities. This notion of human travel characterizing the 

population structure of these populations is underscored by the finding that genetic diversity was 

highest at ‘Emu’ and ‘Jun’, as measured by allelic richness. The presence of a gene flow barrier 

across Lake Victoria, as well as the divergence observed in populations proximal to populous 

cities provide evidence in support of human travel driving the population structure of malaria 

parasites in Kenya. 

Overall, we detected significant genetic structuring between populations of P. 

falciparum, which suggests that populations are more genetically isolated than observed in 

previous studies in Kenya, which detected little to no structuring.
5,7,46

 This trend of increasing 

fragmentation, particularly in Western Kenya, could be caused by the increase in public health 

interventions since 2006
47,48

 decreasing parasite transmission intensity.
49,50

 This notion is 

underscored by the observed low Garza-Williamson indexes, which are indicative of recent 

bottleneck events. Malaria admissions in Kenya decreased from more than 500 admissions per 

100,000 people in 2009 to less than 100 admissions per 100,000 people in 2014 (the year of this 

study).
51

 Likewise, Anthony et al.
52

 reported significant P. falciparum genetic structuring 

following a period of decreasing malaria transmission in the Malaysia. This finding of increasing 

fragmentation in Kenya has implications for malaria control. For example, P. falciparum 

polymorphisms associated with antimalarial drug resistance may spread more slowly between 
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populations, as well as local interventions may be more effective at reducing local malaria 

incidence. 

Genetic structuring in Kenya did not conform to the isolation-by-distance model at the 

national level, a finding consistent with previous studies in Africa.
4,10,53

 Further, genetic 

structuring was not associated with environmental or landscape heterogeneity, a finding which is 

consistent with P. falciparum structuring in the Democratic Republic of Congo
4
 and Ethiopia.

10
 

These findings implicate the importance of human movement not easily captured by road 

networks in maintaining P. falciparum gene flow over large distances. For example, political and 

territorial conflicts, as well as linguistic and cultural diversity are major drivers of human 

interaction essential to parasite gene flow.
50,53,54

 Moreover, the presence of a gene flow barrier 

coinciding with Lake Victoria, a natural barrier to human movement further implicates the 

significance of travel in maintaining parasite movement. Similarly, other natural barriers to 

travel, such the mountainous terrain across the Malaysian Borneo region
52

 and the Andes 

separating Western and Central South America
55

 are thought to restrict parasite gene flow. Thus, 

it is likely that complex human movement plays a key role in shaping P. falciparum structure in 

Kenya.  

This study had certain limitations. First, parasite sampling from symptomatic patients 

may bias toward rare alleles, as symptomatic infections would be caused most frequently by 

infection with a parasite of an uncommon genotype.
56,57

 This may result in a higher observed 

genetic diversity than would be in parasites from asymptomatic infections. Second, different 

landscape or environmental drivers may drive P. falciparum dispersal at a smaller or larger scale 

than tested. Medley et al.
58

 found that gene flow of the Asian tiger mosquito was facilitated by 

highways at a broad spatial scale, but was hindered by forests at a small spatial scale. Therefore, 
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it is plausible that environmental or landscape factors associated with mosquito movement has a 

larger impact on P. falciparum population structure at a smaller scale, such as the village level. 

However, since parasite samples were collected at health facilities and not associated with a 

home address, we cannot test this hypothesis. Third, we are unable to test the hypothesis that the 

observed divergences in population structure at ‘Emu’ and ‘Jun’ is influenced by parasite 

introductions from more distant populations, since those potential populations were not included 

in this study.  

Using a landscape genetics approach to identify factors facilitating parasite dispersal has 

great potential for mitigating disease risk.
4,11,59

 While we did not identify significant corridors for 

P. falciparum in Kenya, physical barriers to human travel, such as lakes, may impede P. 

falciparum dispersal. In addition, large cities may facilitate the spread of parasites between more 

distant populations. These findings suggests the possibility that human travel not sufficiently 

captured by road networks shapes population structure in Kenya.  This knowledge is important to 

understanding how drug resistance spreads, as well as how parasites can become re-introduced to 

an area following public health interventions. Knowing which areas are most susceptible to 

parasite re-introduction is essential to planning effective antimalarial interventions and 

monitoring. 
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Table 4.1. Locality information and sample size. 

Region Site  Longitude Latitude Elevation Sample size 

Western 
Kenya 
Lowlands 

Por 34.012 -0.114 1139 57 

Ken 34.629 -0.385 1150 58 

Hom 34.465 -0.543 1184 57 

Western 
Kenya 
Highlands 

Emu 34.618 0.023 1520 57 

May 34.578 0.51 0.513 57 

Eld 35.177 0.325 2098 53 

Rift Valley Mar 36.018 0.484 1004 29 

Kab 35.663 0.498 1150 19 

Nak 35.945 -0.334 2163 11 

Gil 35.911 -0.495 2009 19 

Eastern 
Kenya 

Mus 39.501 -4.394 15 58 

Jun 39.742 -3.852 66 58 

Jar 39.736 -3.616 16 58 

Kak 40.039 -3.170 14 58 
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Table 4.2. Microsatellite markers used for P. falciparum (Anderson et al. 1999) genotyping. 

P. falciparum 

Locus Chromosome Annealing (°C) 

Ta87 NA 53 

Pfpk2 12 45 

Polya 4 51 

Pfpg377 12 51 

ARA2 11 45 

2490 NA 45 

TA42 NA 45 

TA81 5 45 

TA109 6 45 
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Table 4.3 Predictor variables used for landscape genetic analysis. 

Category Variable Source 

Climate Average Temperature WorldClim BIO1 

 Annual Precipitation WorldClim BIO12 

Social Human Population Density Worldpop 

 Distance to Roads Global  Roads Open Access Data Set, version 1 

Landscape Vegetation Index NASA MCD12Q1 

 Topographic Wetness Index NERC Environmental Information Data Centre 
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Table 4.4. Genetic diversity indices for P. falciparum in Kenya. AR is allelic richness; HE is 

expected heterozygosity; G-W is the Garza-Williamson Index. 

Site A
R
 H

E
 G-W 

Por 3.11 0.62 0.14 
Hom 4.84 0.69 0.16 
Ken 4.61 0.78 0.17 
Emu 5.20 0.43 0.07 
May 5.19 0.73 0.14 
Eld 3.47 0.73 0.17 
Kab 4.24 0.45 0.07 
Mar 4.99 0.59 0.10 
Nak 3.92 0.53 0.07 
Gil 4.11 0.61 0.09 
Kak 3.60 0.54 0.11 
Jar 4.41 0.62 0.14 
Jun 5.26 0.78 0.17 
Mus 4.64 0.65 0.15 
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Table 4.5. Pairwise FST values for P. falciparum populations in Kenya. Lower triangle 

indicates pairwise FST value and upper triangle indicates statistical significance (P<0.05). 

 
Por Ken Hom Emu May Eld Kab Gil Nak Mar Kak Jar Mus Jun 

Por 0 * 
 

* 
  

* 
   

* 
  

* 
Ken 0.09 0 * * 

  
* 

       

Hom 0.08 0.04 0 * * * * 
       

Emu 0.28 0.21 0.23 0 * * * * * * * * * * 
May 0.09 0.03 0.05 0.21 0 

 
* 

  
* 

   
* 

Eld 0.08 0.03 0.03 0.20 0.01 0 * 
      

* 
Kab 0.21 0.17 0.20 0.43 0.20 0.18 0 * 

 
* * * * * 

Gil 0.12 0.05 0.06 0.27 0.03 0.04 0.27 0 
 

* * * * * 
Nak 0.13 0.07 0.10 0.32 0.06 0.05 0.25 0.10 0 

     

Mar 0.06 0.02 0.02 0.11 0.03 0.02 0.16 0.05 0.06 0 
    

Kak 0.10 0.03 0.03 0.20 0.04 0.04 0.16 0.07 0.10 0.01 0 * 
  

Jar 0.09 0.02 0.04 0.21 0.03 0.03 0.14 0.04 0.01 0.02 0.03 0 
  

Mus 0.07 0.02 0.01 0.19 0.03 0.02 0.16 0.04 0.05 0.01 0.03 0.02 0 
 

Jun 0.11 0.03 0.05 0.20 0.06 0.06 0.19 0.08 0.09 0.00 0.03 0.06 0.03 0 
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Table 4.6. Single surface models for P. falciparum in Kenya. 

  AICc ΔAIcc weight 

Western Kenya 

 1) Null -189.05 0.00 0.34 

 2) Annual Precipitation -188.00 1.05 0.20 

 3) Average Temperature -187.18 1.87 0.13 

 4) Human Population Density -186.28 2.77 0.09 

 5) Vegetation Index -186.15 2.90 0.08 

 6) Distance to Roads -186.13 2.92 0.08 

 7) Geographic Distance -186.10 2.95 0.08 

Coastal Kenya 

 1) Null -23.93 0.00 0.82 

 2) Annual Precipitation -19.15 4.79 0.07 

 3) Distance to Roads -18.78 5.15 0.06 

 4) Average Temperature -17.28 6.66 0.03 

 5) Vegetation Index -14.05 9.89 0.01 

 6) Human Population Density -13.42 10.51 0.00 

 7) Geographic Distance -13.08 10.85 0.00 

 

 

 

 



108 

 

 

Figure 4.1. Population structure of P. falciparum in Kenya. A) Map of An. gambiae s.s. sites. 

B) Principal component analysis (PCA) of genetic relatedness. C) Bayesian population 

structuring analysis from STRUCTURE. 
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Figure 4.2. Spatial structure of P. falciparum populations in Western Kenya. A) Spatial 

distribution of ancestry coefficients using TESS and the admixture model B) Results of barrier 

analysis. The thick black line indicates a significant barrier to gene flow between populations. 
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Figure 4.3. Spatial structure of P. falciparum populations in Eastern Kenya. A) Spatial 

distribution of ancestry coefficients using TESS and the admixture model B) Results of barrier 

analysis. Thick black line indicates a significant barrier to gene flow between populations. 
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