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Executive Summary

This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project:
Development of Hydrologic Characterization Technology of Fault Zones under
NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in
the Appendix 3.

Literature survey of published information on the relationship between geologic and
hydrologic characteristics of faults was conducted. The survey concluded that it may be
possible to classify faults by indicators based on various geometric and geologic attributes
that may indirectly relate to the hydrologic property of faults. Analysis of existing
information on the Wildcat Fault and its surrounding geology was performed. The Wildcat
Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern
boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the

Hayward Fault system but is considered inactive.

Three trenches were excavated at carefully selected locations mainly based on the
information from the past investigative work inside the LBNL property. At least one fault
was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI
(Central Research Institute for Electric Power Industries) and LBNL scientists. Some
intriguing and puzzling discoveries were made that may contradict with the published work
in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault
based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault
were proposed. The Wildcat Fault appears to have multiple splays and some low angled

faults may be part of the flower structure.

In parallel, surface geophysical investigations were conducted using electrical
resistivity survey and seismic reflection profiling along three lines on the north and south of
the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for
survey lines as it is desirable for them to be as straight as possible. One interpretation
suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault
may merge with the Hayward Fault at depth. However, due to the complex geology of the

Berkeley Hills, multiple interpretations of the geophysical surveys are possible.



An effort to construct a 3D GIS model is under way. The model will be used not so
much for visualization of the existing data because only surface data are available thus far,
but to conduct investigation of possible abutment relations of the buried formations offset by
the fault. A 3D model would be useful to conduct ‘what if* scenario testing to aid the

selection of borehole drilling locations and configurations.

Based on the information available thus far, a preliminary plan for borehole drilling is
outlined. The basic strategy is to first drill boreholes on both sides of the fault without
penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of
the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the

findings from the boreholes that do not intersect the fault.

Finally, the lessons learned from conducting the trenching and geophysical surveys are
listed. It is believed that these lessons will be invaluable information for NUMO when it
conducts preliminary investigations at yet-to-be selected candidate sites in Japan.
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1. Introduction

The Nuclear Waste Management Organization of Japan (NUMO) and the Department
of Energy of the United States of America (DOE) established a cooperative agreement in the
field of radioactive waste management on July 10, 2002. In May 2005, NUMO and the
Regents of the University of California as the DOE Management and Operating Contractor
for the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) entered into an
agreement to collaborate, and for LBNL to conduct work under the auspices of the bilateral

agreement.

In 2006, ANRE (Agency for Natural Resources and Energy) jointly with JAEA (Japan
Atomic Energy Agency) identified outstanding technological issues and needs regarding the
research and development for geologic disposal of HLW subsequent to the publication of the
Second Progress Report by JNC (Japan Nuclear Cycle Development Institute) in 1999.
Research organizations in Japan as well as NUMO have been conducting investigations on
these issues and needs. In the area of groundwater hydrology, four R&D needs were
identified and are currently being investigated: improvement of groundwater flow
characterization technology, development of testing and characterization technology in
coastal areas, development of testing equipment and technology, and field application of
testing and characterization technology. NUMO has been incorporating the results of the
outcome of these R&Ds as they become available and are deemed appropriate, and is in the
process of systematizing the testing and characterization technology to form a solid technical

foundation for selecting the sites for detailed investigation.

The first NUMO-LBNL collaborative project was entitled “Feature Detection,
Characterization and Confirmation Methodology,” which was designed to further develop
radioactive waste management technologies related to an investigation strategy and
technology for detection, characterization, and confirmation of key geologic features at
possible nuclear waste repository sites. The project was carried out from May 2005 through
March 2007. Among other important findings, the study has identified the hydrologic
properties of fault zones as one of the most important parameters that need to be evaluated
during the preliminary investigation stage. Based on the lessons learned at the Mizunami and
Horonobe URLSs, as well as at numerous mines, dams, and tunnels—and given the geologic

environment of the Japanese Islands—faults are likely to exist almost ubiquitously, which



need to be assessed both at the preliminary and the detailed investigation stage (the length
scale of the faults of interest would range from several kilometers in the former down to
several hundred meters in the latter). However, none of the four R&D activities mentioned
above sufficiently addresses the development of systematized hydrologic characterization
technology specifically tailored for fault zones. At present, it is necessary to use perhaps
overly conservative values for the hydrologic parameters of fault zones for the design and
performance assessment of a repository. Therefore, development of a more efficient and
reliable fault-zone characterization technology is highly desirable. The geologic properties of
faults and the relationships among their geometry, type, fault parameters, and internal
structures are being investigated mostly overseas. Hydrologic investigation of faults of
various sizes are also being conducted at foreign as well as at domestic characterization sites.
However, the relationship between the geologic and hydrologic properties of faults is not yet
studied sufficiently.

In light of the above recognition, NUMO and LBNL entered an agreement for LBNL to
conduct a study entitled “Development of Hydrologic Characterization Technology of Fault
Zones” in August 2007. For FY2007, the objectives of the study was to organize the
information available from overseas to ultimately establish an efficient and systematized
methodology for hydrologic investigation and characterization of faults at the scale of
interest during the preliminary investigation stage for more practical design and performance
assessment. LBNL’s study (Karasaki et al, 2008) concluded that there is very little available
in the literature that relates the geologic structure of faults to hydrology, that it still may be
feasible to classify faults based on geologic attributes to predict their hydrologic
characteristics, and that it is critical to establish field investigation technology of fault zone
hydrology. In July 2008, NUMO and LBNL agreed to continue the project and develop a
field site to study fault zone hydrology. This report is a summary of the study conducted by
LBNL from August 2008 through March 2009. The study is conducted as a collaborative
study between NUMO and USDOE/LBNL. It should be possible to apply/transfer the results
of the study obtained at a site in the West Coast of the United States, whose tectonic
environment is just as active as that in Japan, to the Japanese repository program when they

will be needed. These actions should also be beneficial to the U.S. program in the long run.
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2.1.2. Indicator Analysis
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Table 2-1 Attributes used for indicator analysis and fault structures (Kiho et al., 2009)
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Table 2-2 Correlations between the indicators and fault attributes and notable features (Kiho et al., 2009).
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2.1.3. Fault Classification
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2.1.4. Summary
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Table 2-3 Relationship between geologic and hydrologic characteristics (relative to position within a fault system), Kiho et al. (2009).
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Table 2-4 Relationship between geologic and hydrologic characteristics (relative to fault type), Kiho et al. (2009).
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Table 2-5 Relationship between geologic and hydrologic characteristics (relative to fault development stage), Kiho et al. (2009).
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Table 2-6 Relationship between geologic and hydrologic characteristics (relative to depth), Kiho et al. (2009).
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Table 2-7 Relationship between geologic and hydrologic characteristics (relative to protolith rock type), Kiho et al. (2009).
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Table 2-8 Relationship between geologic and hydrologic characteristics (relative to material type), Kiho et al. (2009).
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Table 2-9 Relationship between geologic and hydrologic characteristics (relative to regional stress field and hydrothermal alteration), Kiho et al.

(2009).
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Table 2-10 Type classification of faults (Kiho et al., 2009)
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Figure 2-1 Flow diagram for type classification determination. (Kiho et al., 2009)
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2.2. Procedure Development for Investigation and Characterization
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2.2.2. Hydrologic Investigation/Characterization Flow for Fault Zones

ATl (2009) IFHI TR AEELRE & Z D% OR— U » THEEMIZ B L, A— =T v 7 Ui - FHm2 7o b 2 E b EE L,
WD TEMET R_RXIEH & LT Fm 4HE 224057,

@ Bk - HPEE
@ KT x Ao

23



@ KEHEb/H T AR

@ WE7 7 v A

ARF1(2009)1% Z 4L 6 DIEH OFHET — X ITHDSNT, HRFAEEPEOET LV EZEIEL, H KRBT I L - T, FHliT&
HHE LML LEDLEDL Z LICXY, WERHTKREI~G 2 2 %8 L BRIy v AT DB 2 2 58T DU TR S g oo
IKERFEREM OB 2 O 7 0 —%EE LT % (Figure 2-5) . S HIZ, Wig O /KERFEFIAE 7 7 — & A0 MR A B S & %4
DR—V > Z PR L1253 TRLTWS  (Figure 2-6)

24



2.3. References

AR, EME—, BW)IALE, EAIKE, MHhERR, fex REik, EIERE, ARKIL, @IRIE(2009) : Wi o
KERRFMEOFRAL « FFAME IS B 2 BN D 2 )ITHR R4 - Mgy &, VA NE ) aafigept, 2009,

25



R E U . BT — 5 -t | [ masw |

HOEL
V=7 A Mk
el P HTTHER | HAORE - S > )@Pffg/#ﬂ%%ﬂ
WEo S | BIEOmEEE - SR — H A i PR |
b it R |
s wamE. GREs |
5778
N X —  R—ursmE |
(b, HEEA)
SN T
- : 4776 0> 6 HEER > AR |
T DI | g, Ay o
—> EORoEoE |
I e
> GE. i B L3l reerms |

R e —

Figure 2-3 Data flow diagram for fault distribution and characteristics that affect hydrology (Kiho et al., 2009)

26



| =@EER | | BEEE- BAT-5-4E | | AE |

| kaEosn s mekERE |

R | wTAEDEE |
Ko

LAt BRpr=rrrrr— R AEAE. YRR |

— TKORR AR — > wTaEREE AEEE |

KEEEE —— ARKERR AR, A |

EKE. KEBAR, ——>  J0-i—s4E. BEEELL |

¥ KERERALZOKERE | k. R ) 7EE 7Bk, T7ERE |

4,| I7ER I7EKAR, ITERE |
—{ N — AZEN |
%8 B8 SN ienEsE |

SN |

ANREHE, BKRAE

Figure 2-4 Data flow diagram for hydrologic characterization (Kiho et al., 2009)

27



BFafoEE

®
Y

| EHREAIACEAFAHT—FOEER

U — . VL A RO A 5 — 2 0 PR B
< WifB AL OB T T DT — 5 W8
AL IS L ORI BAR £ =5 )
Wi I D 1< $h DYIBREHE > s
B i M

MT-AM TP REERE

Y
T ~FIER

@ :EokiE, Tt

B3 7 7 B @O+ Fr v AT
@K E 1L/ Hh T K F 4L -  HhFKFEIEAERT
OFEHEIZT IR

T s LT R e AL THLUTF A

R R T e A R

— > KEBEETILOEE

WiBH L VEBRATOHR— Ly EEsE | Filorfiil

Y
u e IKIB - HEER KSR
FLM EEEr P ol
» 7 i — A— SR 3
- E AR
kA
« i o ek A
- FL— R IR
mT~ZFER
@:FE KM, FrE —» RIS ETILOIEE
O T i vILSH i
@B/ M T RER .
OERTTIuHR - i TFAKREN AR

Figure 2-5 Proposed approach to hydrologic characterization of faults. (Kiho et al., 2009)

28



—_———————

- - |y pa —
thxAZEtE| | WEOAM L _________ DHE S
Lliﬁkf‘]i&__} | bR | ____ > EesChE0ER
v A Yy 0 ) DHEBEREE T /
-y L F-—-——- _I___./
OMEHEE X1 ! |
- RETERE | !
B T T e ! ! !
| |
Bk | R OXXHE i : |
RFUT vl - KXEAE ! I I
3-8 > ! i
X - JKGIE | : I
I |
Bk IR OREEAERR X2 . !
AARHA 1 £ R > ! I
RFvovILDH < IKGLAIE : : :
1 | |
: " OEM/KIEEFE X2 ! I I
bk RES . Fa‘iﬂﬁ%iﬂlll_i ________________ I | I
R  EREKRR __?y____y____ !
|
O HAE / Eﬁ%%@tr"h\ﬂﬁﬁid) / |
KE 7&%%71& Ak, ————);’ 7KEE*§1‘E:ET)LT] . I
- LRKDIEAKSHT X8|  S--------- --== I
i B B v :
@Rt x5 /1
> ek} > TARBIs /|
ST U v L | |- T HEEHZEETIL I
B i
LK vy A |
|
V iﬂ’.—F7kml.§JJﬁ=F*ﬁ I{E%%zéﬁg%
W B D K IR | l
DL FT 1 ! |
e ST & .-
| | PR H T A
1 *I:I:: T3 EEE
OFLN/KEHER : —_——— e ____ >
Y P BKER | MEEACROES
A=t |, DERERET L,
OMERE BT - TAFURAIE A 7
CERRE MUY __________ > |
- BERE REFEvo vt KEEZAZYDY | |
- PR —— A SRR ,
aHErEs5o, | o BKEE - > EEatmLESD .
e - ISR BIE | /0 KEBEETIL /,
I _____________
BK R . O7 BT -Ir
K& s LK OBRKSHT X4 I
R EER Y
EEDQH T KGR EUL
eaisn SRR
s RTINS i
Y >l - B > y A
- KE
K TOMOWRRE (I3 AR < AR
— — = \
oF E:’%@Z@ﬁg%}g%zbn ® * XS KBRS T REO—HE
X3 —fRKE. BE i =
X4 —MKE. BRKRREAL. BHRE W DK IRES M D ETAM | X6 & Y EEMGHIEREEHEORIZXKE
T e

Figure 2-6 Investigation flow diagram for hydrologic characterization of faults. (Kiho et al.,

2009)
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3. Field Investigations

3.1. Evaluation of existing information

In this section we summarize the results of the evaluation of existing information on the
Wildcat Fault including aerial photos, published articles, project reports and other available

information. The analysis of aerial photos is an excerpt from Kiho et al (2009).

3.1.1. Aerial photo analysis

USGS (2 & T 1968 A= IZHRH SN =ME R 3 1D 1 OF J 7 v G E & ffi - TA It (2009)
II~A U — RETE RIS, LBNL OB 01253463 % Wildcat /g % His & L 72 & &35 25km
WZDOWTHEHRERHFZI 272> TW% (Figure 3-1) . Figure 3-2, Figure 3-3Figure 3-4 (21 &
DOHFELTZY =T A MR,
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Figure 3-1 Aerial photo analysis area by Kiho et al. (2009).
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Table 3-1 List of identified lineaments. (Kiho et al., 2009)

FL—RNo. |V RTE | ER | ESkm)| shiisfsae”
1-1 B NE 24 rs
1-2 C NE 24 rs, d
1-3 C NE 1.2 rs,s
1-4 C NE 0.7 ss
1-5 C o NE 9.1 v
1-6 B,C EW 1.0 Ro/r
1-7 AB NE 04 |rs
2-1 B,C NNE~NE| 5.3 ss,Ro/v
2-2 AB NE 1.7 rs
2-3 B,C ENE 2.7 rs,w
2-4 G NE 41 cV
2-5 G NE 3.2 Y
3-1 AB NE 50 |s,Ro/v,pr
3-2 AB,C NNE 36 [v,Ro/rRo/v
3-3 A NE 2.3 rs,Ro/v
3-4 C NS 0.7 Ro/v
3-5 A o NE 24 |p
3-6 B EW 1.0 ss

*ors Wi EEE, d WM, s B, ss ARhE, v EAUKRE, Rolr AT ILDEMR, Rolv
FREETNOR, w VAV RXxy v, ¢ 8%, pr 7Ly v—VU v, p EHE
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3.1.2. Analysis of site information
3.1.2.1. Geologic information

In FY 2007, a literature survey was conducted in an effort to develop fault
classification based on geologic and hydrologic properties. Results from this literature
survey (of published peer-review journals), which focused on fault hydrology, showed
that there was no clear correlation between the type of fault (i.e. normal, reverse, and
strike-slip) and hydrologic properties. However, a comprehensive study of fault
characteristics (such as change in fault properties along the fault length, variations in fault
geometry, spatial heterogeneity, and internal structure) may give indications of how fault

and fault zones could potentially affect local and regional hydrology.

As described in the report entitled “Development of Hydrologic Characterization
Technology of Fault Zones,” faults can directly affect the hydrology of a region by
obstructing flow, changing flow direction, and affecting fluid chemistry. Faults will also
change the physical properties of surrounding bedrock by changing rock porosity,
permeability, conductivity and stress field. In our previous study, we stated that there is a
lack of hydrologic data on fault zones at well scale in the literature. Most available
information on fault hydrologic properties, i.e., porosity and permeability, comes from
outcrop samples. The main problem with using these outcrop (and small core) samples
for measuring hydrologic properties is that they do not incorporate large faults and
fractures. Consequently, porosity and permeability values can be underestimated. In these
samples, hydrologic properties are affected by localized scale, stress-relief, and
weathering processes. Therefore, we emphasize the importance of drilling studies across

fault zones in determining the in situ transport properties.

In order to evaluate this subject in detail, which revealed to be limited, a site within
the Lawrence-Berkeley National Laboratory (LBNL) was selected to further examine the

relationship between fault and hydrology.

3.1.2.1.1. Regional Geology and Tectonics

The geology of the San Francisco Bay Area is intertwined with some of the most

complex and active geology in the world. The California geology is a result of plate
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subduction, active volcanoes, and faults along plate boundaries. The bedrock age ranges
from Jurassic to Pliocene (see Figure 3-5). The oldest rock in the Bay Area region is the
Jurassic to Cretaceous age (200-65 Ma) Franciscan assemblage, which was originally
deposited in a deep marine environment and trench deposits. It was subsequently accreted
during the plate subduction along the coast of Northern California. Over more than 100
million years of subduction, accretion brought together many types of Mesozoic rock we
now see in the Bay Area. Extensive tectonic activity uplifted and folded the Franciscan
mélanges, which consisted of exotic blocks of basalt, chert, limestone embedded in

matrix of sheared greywacke and shales.

To the east of the Bay Area, a thick sequence of clastic submarine fan and basin
plain deposits filled the forearc basin, between the accretionary wedge of the Franciscan
and subduction-related volcanic arc (the present location of the Sierra Nevada batolith).
This thick sequence of over 14,000 m is the Great Valley Sequence. The contact between
the Franciscan and Great Valley Sequence is by fault, where discontinuous and

dismembered fragments of the Coast Range Ophiolite crop out.

In the Eocene, about 25-30 millions year ago, there was a change in the tectonics
when the Pacific plate met the North American plate. Subduction stopped along the
contact of the two plates, and the Pacific plate began to slide northward past the North
American plate along a transform boundary, the San Andreas Fault (Atwater, 1998; Sloan
and Karachewski, 2006). These tectonics created shallow basins and mountain ranges.
The basins were filled by marine as well continental sediments. Many varieties of
sediments—future conglomerate, sandstone, shale, and chert—accumulated in these
basins. These include the deposition of the Claremont and Orinda formations. Most of
these sediments have been tightly folded. The diverse topography in the San Francisco
Bay Area region has been also affected by faulting that has occurred since the Cretaceous.
As the subduction continued into the Tertiary period, local faulting broke up extensive

trenches in which sediments had been accumulating.

During the late Tertiary, volcanic lava flows were produced by local vents associated
with fault movement. These flows created most of the volcanic rock in the San Francisco
Bay region, largely basalts and andesites. Examples of this volcanism are: Quien Sabe
volcanics (11-13 Ma), East Bay Hills volcanics (9—10.5 Ma), Sonoma volcanics (2.6-8
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Ma), and Clear Lake volcanics (2—10,000 Ma) (Graymer et al., 2002; Sloan, 2006).

Although the dominant movement between the Pacific and North America plates is

strike-slip, about 3.5 million years ago, a small change in plate motion took place. The
Pacific and North American plates begun to collide at a slight angle instead of just sliding
past each other, resulting in transpression (Atwater, 1998). Sloan and Karachewski
(2006) indicated that 90% of the movement between plates is strike-slip and 10% or less
is compressional. Folding and faulting are the main processes involved in transpression.

Good examples of hills in the San Francisco bay region resulting from transpression are
Mt. Diablo and Mt. Tamalpais.

Era Period Epoch Group Formation Lithology Deposition/Deformation
Pleistocene/ CoIIuv!um/ Clays and silts and |Resulted from
Quaternary Landslide - .
Holocene . weathered material |erosional process
deposits
. Volcanic flows of Lava flow related to
Late Miocene - |Contra L .
. Moraga basalt and andesite; |eruption of Bald Peak
Pliocene Costa
tuff and Round Top volcanoes
Io) Poorly consolidated Flood plan or aIIuv!a_I to
S Mi . . shallow lake depositional
N iocene-Plioce |Contra . sandsone, siltsone, -
S ne Costa Orinda claystone, occasional enwronmen.t.
S Late Tertiar con Iomérate Unconformity over
y g Claremont Fm.
Miocene-Plioce San Pablo |Briones (?) sandstones shal_low marine
ne environment
- Marine deposition;
o IMonte- Siliceous shale, chert, | it rhedded, folded,
Middle Miocene Claremont siltstone, occasional
rey fractured and faulted and
sandsotne
overturned beds.
CRO= rocks of upper
Coast Range mantle (serpentine) to
Ophiolite basalt o
Great GVS= marine Fore-arc basin sediments
(CRO) and . -
o Valley Great Valle sedimentary rocks  [over 10 km thick over
S Complex y (sandstone, shale, oceanic rocks.
N~ |Cretaceous to Sequence
2 Jurassic (GVS) conglo_merate,
§ volcanic eroded
material)
Pillow basaslts, From ocean spread center
. N to subduction and
Franciscan cherts, mélanges of .
reywacke and shale accretion process.
g Sheared and faulted.

In summary, the bedrock exposed in the Berkeley hills is highly deformed by
extensive folding and faulting that has occurred since Cretaceous time, with very strong
deformation occurring during the Pliocene epoch. The bedrock has been folded into a
series of northwest trending anticlines and synclines, which are offset by faulting (Page,

Figure 3-5

Regional stratigraphy

1950; Graymer et al., 2002; HWL, 1982).
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3.1.2.1.2. Geology of LBNL and Surrounding Areas

Lawrence-Berkeley National Laboratory (LBNL) is located in the hills of Berkeley,
eastern side of the San Francisco Bay Area, California. The bedrock at LBNL consists of
Cretaceous and Miocene sedimentary rock overlain by volcanic flows. They are part of a
homocline of the Great Valley sequence that gently dips 20-30° to the northeast. The
homocline is disrupted by the Wildcat Fault in the eastern part of LBNL (LBNL and
Parsons, 2000).

3.1.2.1.2.1. Claremont Formation

The oldest rock in the study area is the Miocene age Claremont Formation, which is
part of the Monterey Group. Rock from the Claremont formation is about 14—16 million
years old and consists of well-consolidated, moderately weathered, light yellow siliceous
shale and bedded chert, intercaleted with thin layers of siltstone. The Claremont
Formation is regionally and locally folded and commonly overturned; bedding dip varies
from northeast to southwest. Compared to surrounding bedrock, cherts are generally
weather-resistant, forming some of the steeply slopes hills in the area (Untermman, 1935;
Page, 1950; Graham et al., 1984).

Cherts at LBNL are described as light brown to yellow or gray and locally black
silicified, thin to thick bedded to laminated, and moderately weathered. The chert is
interbedded with gray to brown shale laminae and small amounts of light brown to white
sandstone that occurs as dikes, beds, and boudins. Both the cherts and sandstones are
weak to strong. All lithologies are intensely to closely fractured (LBNL and Parsons,
2000; Galpin, 1994).

3.1.2.1.2.2. Orinda Formation

The Orinda Formation is part of the Contra Costa Group and includes
alluvial-fluvial sequences and lacustrine sequences (Graham et al., 1984). In the study
area, it overlies the Claremont cherts unconformably (Jones and Curtis, 1991). The
Orinda Formation comprises a succession of stacked fluvial, fining upward sequences
(channelized gravel-to-cobble conglomerate, coarse grain sandstone to marron and

green-gray sandy mudstone) and lenticular conglomerate units, some of which are
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separated by thick mudstone intervals (Graham et al., 1984). The non-marine
unconsolidated sediments, primarily sandstone, siltstone, and conglomerate, are
interbeded with volcanic rock. The Orinda Formation was originally deposited in a
shallow lake or alluvial fan environment, except for the lowest portion, which may have
been deposited in a shallow marine basin. The sediments deposited in marine

environment is described as the San Pablo Group.

The Orinda Formation within LBNL is described as mudstone sand and fine- to
medium-grained sandstones ranging in color from blue-to greenish gray to reddish-brown,
and intensely-to-mildly fractured, friable, and little-to-moderately weathered (LBNL and
Parsons, 2000).

3.1.2.1.2.3. San Pablo Group

The San Pablo Group is characterized by fossiliferous shallow marine sandstones.
As described by Graham et al. (1984), the Orinda Formation is genetically linked to the
San Pablo Group as a shallow marine equivalent by widespread interfingering with the
Brione sandstone (Contra Costa Group). They both display the same Franciscan

provenance in the sandstone.

The presence of the San Pablo Group at LBNL is not well documented. This
fossiliferous marine sandstone, which contains bivalve and plant fossils, was discovered
in the eastern portion of LBNL near Building 85 (Geo/Resources Consultant, 1994), and
was thought by D.L. Jones to be part of the San Pablo Group (LBNL and Parsons, 2000).
However, there is still uncertainty in defining the extent of this Group within the study
area. A queried San Pablo Group is used by WLA (2008) trench studies near Building 74,
but J. Baldwin (personal communication, 2008) agreed that the lack of fossil makes it
difficult to differentiate the sediments of the San Pablo Group and Orinda Formation.
Therefore, given the lack of exposure and radiometric dating data from fossils found in

this group, there was no attempt to distinguish it from Orinda formation.

3.1.2.1.2.4. Moraga Volcanics

The Moraga volcanics overlies and interfingers with the Orinda Formation. It

consists of alternating volcanic flows of basalt, andesite, and agglomerate, along with
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occasional tuffaceous sediments. The Moraga volcanics consist of up to ten basaltic
volcanic flows, with interbedded volcaniclastic sediments (Curtis, 1989). It is primarily a
result of Lower Pliocene (9-10.2 Ma) activity. The eruption of the Grizzly Peak volcanics
constitutes the first evidence of fracturing along the Hayward trend (Graham et al., 1984).
Outcrops of the Moraga are found in the north to northwest part of the study area and are
typically highly fractured.

3.1.2.1.2.5. Colluvium and Landslide Material

The steep topography and high hills surrounding LNBL has been extensively
evaluated by geotechnical consultants. Their geological and geotechnical studies show
that a large part of the LBNL property is composed of landslide and colluvium deposits.
Large masses of landslide, composed primarily of the Moraga Formation, has been
mapped near the study area. The masses are generally lenticular in cross section, and
several are elongated in plan view (LBNL and Parsons, 2000). The thickness of

colluvium/landslide material varies from 5 to 40 ft deep.

3.1.2.1.3. Geological Structures
3.1.2.1.3.1. San Andreas Fault

The San Andreas Fault system of coastal California is one of the best-known
transform fault systems in the world. It is part of the boundary between the Pacific and
North America plates. The right-lateral strike slip fault has accommodated over 330 km
of displacement since Neogene. In the San Francisco Bay Area, especially in the East Bay,
the San Andreas Fault splays into many subparallel fault zones. Those fault zones
includes the active Hayward-Rogers Creek-Maacama (commonly referred to as the
Hayward Fault), Calaveras-Sunol, Concord-Green Valley, and Greenville fault zones
(Graymer et al., 2002). They are characterized by northwesterly-trending faults (N30—
40W). The San Andreas Fault system runs approximately 15-20 miles west of LBNL.
The study area is primarily influenced by the Hayward Fault, which consists of a set of
northwest-striking, right-lateral strike-slip faults. The study area is situated in a

seismically active area of California, with a known history of earthquake events such as
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the 1906 and 1989 events along the San Andreas Fault, and the 1868 along the Hayward
Fault (Figure 3-6).

FAULTS AND PLATE MOTIONS IN
THE SAN FRANCISCO BAY REGION
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Figure 3-6. Faults and plate motions in the San Francisco Bay Region (USGS). Yellow
lines show the location of two major earthquakes.

3.1.2.1.3.2. The Hayward Fault

The Hayward fault system, which runs northward and parallel to the San Andreas
Fault system, initiated about 12 million years ago. The East Bay Hills, including where
Berkeley is now, are actively rising at present, squeezed upward between two major faults,
the Hayward Fault and the Calaveras Fault. The Hayward Fault is one of the main
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branches of the San Andreas Fault system sharing the same relative motion, i.e., a
right-lateral strike slip movement. It trends N30W and runs from an area southeast of
San Jose to San Pablo Bay. The fault is around 100 km long, parts of which are either
locked or creeping. The Hayward Fault crosses the eastern border of the UC Berkeley
campus, which is creeping at a rate of about 5 mm/year (Simpson, 2000), crossing the
football stadium, as shown in Figure 3-7 and Figure 3-8. Most subtle geomorphic
expression in the LBNL has been removed by new development, erosion, and landslide.
However, in the region, some clear geomorphic expression still remains, such as a linear
northwest-trending zone of geomorphic features, subtle stream offset, and beheaded
channels, as shown in the LIDAR image (Figure 3-8). The last major earthquake on the
Hayward fault occurred in 1868, with an estimated magnitude of 7.0. The Hayward Fault
is a prime candidate for a magnitude 7 earthquake within the next 30 years (USGS, 2008).

Figure 3-7. Displacement of the U.C. Berkeley Memorial Stadium wall as a result of the
movement of the Hayward Fault
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Figure 3-8. Top: LIDAR image (top) from USGS showing the trace of the Hayward
Fault crossing the Memorial Stadium and displaced streams. Source:
http://pubs.usgs.gov/fs/2008/3019/fs2008-3019.pdf.

Bottom: a topographic map illustrating the Hayward Fault. Source:
http://seismo.berkeley.edu/hayward/uch_fault.htmi

3.1.2.1.3.3. Uplift of the Berkeley Hills

During late Miocene (c.a. 12 Ma), uplift of the Berkeley hills started with the
initiation of the Hayward Fault as a result of the transition to transform-margin setting.
The uplift has also changed the sedimentation patterns in the East Bay, specifically
changing the deposition in the area from marine to non-marine sediments.

Paleogeographic reconstruction of the East Bay suggests changes in sedimentation
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pattern during the deposition of the Orinda and San Pablo groups. The eruption of the
Grizzly Peak volcanics constitutes the first tangible evidence of fracturing along the
Hayward Fault (Graham et al., 1984). Deformation and uplift west of the Hayward Fault
spread eastward activating the Moraga fault thrust.

3.1.2.1.3.4. Wildcat Fault—Previous Studies

The Wildcat fault is a secondary splay fault associated with the Hayward fault. It
cuts late Cenozoic strata, striking subparallel to the Hayward Fault. The fault runs about
one and one-half kilometers east of the Hayward Fault, and it has been identified as part
of the San Andreas Fault system (LBNL and Parsons, 2000). The Wildcat Fault passes
along the eastern margin of LBNL and runs from Oakland to Richmond. Regionally, the
fault is difficult to map throughout its length and appears to be discontinuous, although it
clearly truncates and offsets strata at many locations. At regional scale, the fault shows
right-lateral strike-slip movement (Curtis, 1989), and local reverse movement has also
been observed and described (Jones and Curtis, 1991). The history of the Wildcat fault at

regional scale is summarized below:

e The Wildcat fault has been shown on geologic maps since the early 1900’s. It
was originally mapped by Lawson and Palache (1900).

e Untermann (1935) named the Wildcat fault as a long break in the Berkeley Hills.
Its disturbance can be one-fourth of a mile (400 m) wide in some places.
According to Untermann, the Wildcat fault is described as having a
northwest-southeast trend generally dipping to SW. On his map, north of
Strawberry Canyon, the fault follows the contact between cherts to the east and a
series of sediments and volcanics to the west as part of the Orinda Formation.
The saddles indicating the location of the fault near LBNL are the Little Grizzly
Peak in the north and Sugar Loaf (named after Untermann, 1935) along the Fire
Trail to the south. Shear zones, gouge, and slickensides in cherts are reported
along road cuts north of Signal Hill and below Sugar Loaf, near Claremont
Canyon. On the south side of Claremont Canyon, an outcrop of chert with
bedding (N46W/82SW) shows horizontal striations. The disturbance zone varies
from approximately 300 ft (90 m) to the west and a gouge zone of 18 inches
(46cm) to 8 ft (2.4m) wide to the east. Sandstone of Sobrante (Lower Miocene)
or of Cretaceous has been described south of Strawberry Canyon. The presence
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of older and higher beds to the west would also suggest elevation of the west
side. North of Strawberry Creek up to Little Grizzly Peak, Untermann reported
the contact of the Wildcat fault as between the Claremont chert in the east and
the sediments (conglomerate, sandstone, and shales of reddish brown and
greenish color) of the Orinda Formation. Untermann also describes several
locations where he observed striation in cherts (varying from vertical to
horizontal) as well the presence of a secondary fault along Strawberry Canyon.
Further north, Untermann describe a horizontal displacement of 1320feet
(402m) that was measured in the lava along the Wildcat Canyon, south of
Cerrito creek. The fault follows the Wildcat canyon merging with the Hayward
fault somewhere south of San Pablo bay. To the south the fault was mapped in
the Claremont tunnel within the cherts and in the San Pablo tunnel as a contact
between Orinda and Claremont. The fault plane was reported dipping steeply to
the southwest.

e A major fault zone of about 30 ft (9 m) was partially exposed during the
construction of the Broadway Tunnel in Oakland (Page, 1950). The fault cuts
through the Claremont formation. The strata were highly fractured, locally
contorted and cut by many irregular dikes (Page, 1950).

e The Wildcat fault is parallel to the Hayward fault and, according to Bishop
(1973), eventually joins the Hayward Fault in the north near the San Pablo. Fault
creep has been used as an indicator of fault creep along the north end of the fault.
The evidence consists of a slight curb offset, pavement cracks, a deflected
stream, and a break-in-slope. According to Bishop (personal communication in
HLA, 1980), there are no known creep features along the Wildcat fault south of
the El Cerrito—Richmond line.

Several geotechnical reports have been compiled since the middle 1970s to
evaluate the geologic conditions of LBNL. The reports focus on potential geological
hazards such as earthquake and landslides for construction of roads and buildings. In
these geotechnical reports, the Wildcat fault has been assessed for its activity; however,
no evidence of Holocene (last 11,000 years) deposit displacement in the area has been
found. The study of the Wildcat fault in the LBNL is summarized below:

e Field notes by Korbay (1975), discussed in Gilpin (1994), documents a fault
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exposure in bedrock bench cut east of Building 84. The fault trend is N15W and
dip 7ONE.

Korbay and Lewis, in HLA (1980), evaluated the Wildcat fault and cross faults
north of the LBNL property line and Building 74. In Trench A, located in the
north of LBNL property, the fault is described as consisting of several thin
shears separating the green-red highly mottled clay of the Orinda sediments
from sandstone of either the Sobrante or Claremont unit. It is described as two
and one-half inches wide, with fine vertical striations on a plane striking
N6W/vertical. Trench B normal to the cross fault was located SW of Building 74.
After trenching up to 13 ft (4m), they did not encounter the bedrock but rather a
dark gray to black silty clay, as well as light-colored volcanic on the bottom of
the trench. The investigators did not found any conclusive evidence of the cross
fault in the trench.

According to Curtis (1989), the Moraga Formation has been displaced
approximately 6 km northwest, from a position adjacent to the volcanic center at
Round Top along the Wildcat Fault.

Jones and Curtis (1991) interpret the Wildcat Fault as a thrust fault associated
with a fold and thrust belt attributed to left-stepping on the Calaveras-Hayward
fault system.

Gilpin (1994) conducted a review of previous geotechnical investigations of the
Wildcat fault and provided an independent assessment of whether the fault is
active. Galpin argued that ductile deformation observed in the Orinda at the
Hazardous Waste Handling Facility excavation is part of the landslide, but the
review by Korbey disagree that the vertical fault observed during HLA trench is
result of landslide.

Jordan (1997) observed that the Wildcat fault was exposed by the excavation of
Building 84. The fault separates the sandstone of the Miocene San Pablo Group
from chert and shales of the Miocene Claremont Formation. The fault gouge is
approximately 14 cm to 1.5 m. According to Jordan (personal communication), a
very thin (<1 cm) dark vitreous material was observed in the fault near Building
74.

Jones (personal communication) in LBNL and Parsons (2000) stated that the
SanPablo Group exposed adjacent to the fault at LBNL may have been displaced
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from similar San Pablo Group rock, on the opposite side of the Wildcat Fault
system that lies near Lake Chabot, 14 km to the south.

Graymer (2000) in the regional geologic map of the East Bay, includes several
traces of a fault cutting through the LBNL property. To the north, the fault traces
merged near Grizzly Peak, while to the south, the faults are cut and displaced by
two EW-oriented faults. According to Graymer (personal communication 2009),
the main trace of the Wildcat fault is considered to the one in contact between
the Claremont Formation in the east and the Orinda Formation in the west. The
fault eventually merges with the Hayward Fault south of LBNL, near Oakland.

In 2008, William Lettis and Associates (WLA) logged three trenches, T1, T2 and
T3, about 2 meters south of the parking lot of Building 74. The trenches
intersected the previously mapped locations of the Wildcat fault. In these
trenches, cherts of the Claremont Formation were exposed in the eastern part
and siltstone and sandstones of San Pablo Group were exposed in the west. The
dip of bedded chert varies from E to W, possibly due to a downslope creep
process. Relict folding, S-type and chevron type, is described as affecting the
bed dip. The Wildcat Fault was mapped in trenches T2 and T3, and it is
described as a contact between the weathered chert and sandstone with silt and
clay, grayish green to dark-reddish brown, described as belonging to the San
Pablo Group. In T2, the fault strikes NSOE/20E. The fault zone contains mottled
clay that supports the chert-rich matrix (WLA, 2008). The same fault is observed
in T3. The fault strikes N17 to N40 and dips 40-42E and is about a meter wide.

Previous studies (i.e., HLA, 1974, 1980; WLA, 2008) indicated that the fault is
not active because there is no evidence of fault movement in the sediments
deposited in the past 11,000 years. The site is not located within the California
Special Earthquake Fault Studies Zone (formerly referred to as the
Alquist-Priolo Special Studies Zone) by the California Division of Mines and
Geology (1992) in Kleinfelder (2001).

Graymer (personal communication, 2009) argued that it is possible that the
Wildcat Fault could have previously been a trace of the Hayward Fault and
could possibly be one of the branches of a flower structure of the existing trace
of the Hawyard Fault.

Subsurface Consultants (1999) drilled numerous geotechnical drillholes near
Bldg. 84 before it was constructed. Most of the drillholes were shallow and
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encountered only San Pablo or Claremont formation with the exception of G-13.
In G-13 drillhole (Figure 3-9), it appears that the formation below Claremont is
encountered, which is described as gray silty clay stone (Figure 3-10). One
possibility is that G-13 had drilled through the Wildcat Fault and the formation
encountered below the Claremont is the Wildcat Fault itself and/or San Pablo.
Another possibility is that the formation is the Sobrante formation, which is
conformant to the Claremont. Only deep drilling on the both side of the Wildcat
Fault would clarify this ambiguity.

3.1.2.1.3.5. Cross Fault

Cross faults were originally mapped by Lawson and Palache (1900), Untermann
(1935), and mentioned in Dames and Moore (1962). Untermann (1935) describes the
presence of a secondary fault along Strawberry Canyon, striking N65W and steeply
dipping to the NE, suggesting the possibility that the Wildcat Fault had been displaced by

a cross-fault.

HLA (1974) reports a cross fault cutting through Building 74, although it was not
observed either in borings or caissons, or exposed on the surface. It is based on relative
exposure of the Orinda to Claremont shale on the cut slope. Then, in 1980, HLA trenched
across the cross fault near Building 74. The thick colluvium deposit did not expose the
fault. Jordan (2008, personal communication) mapped a fault behind Building 84 that
merged with the Wildcat fault instead of cutting through it (see map by LBNL and
Parsons, 2000). Therefore, owing to a lack of conclusive evidence showing that the cross

fault displaces the Wildcat Fault, no further attempt was made to describe this fault.

3.1.2.1.3.6. Folding and Thrusting

Major Neogene and younger compression are recorded in the geology of the East
Bay. It includes several east-verging fold and thrust belts, such as the Moraga Fault
(Aydin, 1982). In the study area, cherts of the Claremont Formation are strongly folded,
generally overturned to the east, and are probably repeated several times by faulting and

folding (Jones and Curtis, 1991). The age of thrusting in the Berkeley Hills is now well
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constrained, with evidence of the Moraga Fault displacing rock as old as 8.4 Ma (Jones
and Curtis, 1991).
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LBNL OBHIPNIZ ATl E W ERER A DM T DAL= B BUFAFAE T S, LBNL B oD AT
@ East Canyon Tl LARTA & fF7E T 4L CuV 7= East Canyon Wi (Figure 3-16 &/R) %
iR d D 4 AR (Magnetometer Survey)$ K OVRITEEE. iV C b L o FHREINTTH
T\ % (GeoResources, 1994) , Figure 3-11 [ZJB T A ORIKR, Figure 3-12 (2R
BEOFERETTH, WITNLRERIIAHE CTH o7, B E L TH WMDY O 0 H3
BMET, RIS PHR R T N OB e2 T Bbih b, £ D% 2008 412 William
Lettice Associates (LAREIEX WLA)2MT 7= K L > T34 T East Canyon i@l 3fERd ST
AN

Z DOz, LBNL @ Old Town Huli T Figure 3-15 |2k 0045 I T3~ AT C ks i O BUHE
HiFEPRA & VSP(Vertical Seismic Profiling) 7317441 CV % (Daley et al, 1996; Daley, 2000) .
ZOMEITEIHOAMEE R ETHRFEZ RS 2O RERE 2 Y =7 MICHT
LHMTITON, LOLRRs, ZhAbLOFEGHIEY | MEHERY. KD LR 0%
HOBHERME DR, ) A X% AT AIIEF ICREETE S L9 R REFH R TUHRn,

AK7wP=r o Wildcat Wrjg OFIA IR S BEEMEN W & B D D23, Keinfelder
(20012 L B2 ETEE - T-HE TH D, Z OFFAIL Calvin Road % JLIZHEMiI4+ 5 THDOF
i DABEIA L L TiThoduT=, Figure 3-13 IZHkDOFR CHEITEEE DR 2R3, 2 b O
AL Wildcat Wifg DI L% 4 0 m~ 6 0 mPEHI THIEIZIZIFFEATIZATHOLTW 5, Figure
3-14 ITJEHTEDINTHE R 2~ T, AU L AUE, Linel, Line2 & & iZHIER )5 Im~12m @
WEE\CHRAEA N FET D 52 b5, £7- Line 1 O F O RAMA I Line 2 (2l LT
DPPIEETH Y Line 1D T & Line 2D T TIFIHARA OFEFAN /e > TW D ATREMED B 5,
IO DEBRITREEORT A—RBHIRFOBERSEICR D L Bbh b,
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Figure 3-11 Seismic refraction lines conducted in the East Canyon. (Geo/Resource, 1994)
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Figure 3-14. Seismic refraction profile form Line 1 (top) and Line 2 (bottom).
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3.1.2.3. Hydrologic information
3.1.2.3.1. Boreholes

LBNL OH 4 MREREIE T 7Y =7 M X o THRHI SR 7 A — Vi3 &E L k015
Juikin 2892 B CThH 5 %, RENLRAELS (~156m) | HEBKRATHRNEZ X
515 Wildcat Brfg O BRI IE 1 A S S 40TV 720, Figure 3-16 (2 LBNL O H#UE X]IZ
RV ONLE, HEE SN DHWIE O R L— 2 B I OEKER 2 BERA Y= X% <3, Figure
3-17 IZIFARF(2009) D % 7= /K A J1 = X L& 7=~$, Figure 3-18 |2 Wildcat 6t /& o Pa | >
W (2T W BEAFE OB DAL E & 7~k 3, Figure 3-18 (3 Figure 3-15 (27753 LBNL ¥ ~ O
R OBEPEIAES D OEFE T ENTZES OIRKTH S, £7-, Table 3-2 [2Zh b
DIFFDFETLERT,

Figure 3-15 (Z LBNL ® 4t 0> L IZ774£ 9 % Space Science Laboratory O 2 Mg 0 st ik
CHEAI S 4v7z SSL-1, SSL-2 D& 2 7=, SSL-1 (336 &% 110m, SSL-2 |3 200m DR
(ZHRHI S 4L, SSL-11ZiE, BkAR vy 73R E SN TR Y . HFKER —EU EOR S22 5
LR T OERFNHBINCA D PKT D LD ICRE SN TN D, SSL-2 [FBHED & Z A
SIHLTUVVRLY,

HARTIX N O OHFICEHHEEE IR E STV W, Wildcat g O KBRT 2 k24T
IR Z NG EZHM FAKEOBHHE LTHES ZENAETH S,

3.1.2.3.2. Hydrologic information

LBNL(2000)(Z X 4uiX, Wildcat ¥7 /& D P12 13 Table 3-2 1278 §~ K 5 12“ 2 74F % ~C San Pablo
JEBNFAET D L& 2 5N TW5, Figure 3-19 13 Figure 3-18 ICit#i ST b =% ) 7
FoBll SN TR O ayZ—~y T ard, TROLOE=X ) IIHTr—v T
NERE S, FUEESICAZ U—2 &R TH Y, AL M San Pablo EICH & /Sy ¥ 7 L
ThHrEND . SanPablo BOKEEAZR L TWNWDH EEZHILH, XNHH G M7 X 9 12 Wildcat
Wi O FEI O M N KX ZIE IR I EATICH I M- TIRF L TWD, LA LR S,
Wildcat Wi/ OFMNZIEIAR—Y 7 HRFEEL RN &b, MFORVER TR END
Wildcat Wr /g o> SRl D i /K D 3 A I LA Th 5,

K J51(2009) 1% LBNL O & IRICHFET 28— U > 7 FLCEIH & 7= KA % Kriging L.
A=V 70O % Kriging L7 R~ v 7 L ik L7 (Figure 3-20, Figure 3-21) i
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B KL EREESNE CHEAZRL TWAZ EEREHmL TS

Figure 3-22 33 X OY Figure 3-23 X MW74-94-8 & MW74-95-6 O Z 3L it 2% 14 4ERIZIE D
Bef s & i RN OT —Z D7 vy hThDH, MWT4-95-6 L JEIDOHFIXRZ H < 84 Hif
DR O L B 5 I F/RKAL D EHER A% 97 42726 2006 4% TH LD, F7-, 2006
EADBEREN DR oTc L MO D T ARMOERTRRD N D, LLREE,
MW?74-94- 7 (not shown) & MW74-94-8 |$il 25 14 4Ffil, —E T, ZOMOHFF 4 30cm 206
60cm D FENEIEE) L 72 FHEHIH 2 b DD, 1ZE—EDKME RS> TV 5D,

Table 3-2 DFHF D H B, MW34-95-6 Z RN~ 5 KD FHF TR T VBB L O — KR
B (MW74-92-13) % 7= K BRERBR 21T o 7255 R 2 R C Table 3-2 |23, 245 OfE R
1% San Pablo J& D& AKIEEIE 3% 108 mis 705 8X10°%mis THhHHEE R LTS,

Wildcat Wrfg D urfs TAHR 7 A —/L Z4EHI 34X, Claremont, San Pablo, Moraga, & 52
Orinda D4 JEIZ Y 7= 5 AlREMEA & D, LBNL(2000)IZ L % Claremont J& % R\ /=458 D% /K
%% % Figure 3-24 12773, 2 S B 572372 X 9 I LBNL TH 5415 HifE 0% KR %Kk 1% 4 X 107
mis 75 3X10mls £ TD 8 A — X —IZIEDH 553 M d 5, kIl D Moraga J& 13 478 10°
m/s ISEWEWVIEKREEZ TR L TWAHR, & LTRREIZEIDIZBEKRETHDL EEZ LD,
Orinda BIIFH HIXHOENKEL | BEMTOEHERIKFT D EE2BND,

LBNL HHROFHIIZ B3 % Botanical Garden (Figure 3-15 é*}ﬁlﬁ)’ﬂif}i@ﬁ*i%ﬁ@ 2. 3
T CEICR O TEFEOFBE KRN ON D, T s OEFTIIAER Wildcat g 21k - Tk
N CBEE LB &k EE X B D, 2T Wildcat W& 232 & K550 5 J7 i1 Tk i
PR, BRSO E WD OHL T KPR TETWD LG 5 2 L NATRETH
Do

Figure 3-27 (2 Widlcat Wrl& o &2 D v & K OJERF & Harding and Lawson Associates
(1976) |2 X DVEEKOMEZ T, K HH BRI 51T, BE KOIEYR)S Wildcat #r)E o
L= RIIRIEPATICHRE L (Qo) DAERR EICIA TS, ZiLH DR East Canyon
WD b L —2%2EKT LW FMbH D, HDVIE, FFE O FIZHL TV 5 Wildcat WifE
MOIEEHTWKDEREEZEZDELARETH D,

3.1.2.4. Geochemical Information

Table 3-2 2V A FENDHE=F U 7 HIZEBWTHULFEK D DN N ITHOI TV D
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(LBNL, 2000), Figure 3-25\2 =7 (4 7 XA T 77 L&Y, MWT4-92-13 FLUSMT T
L L7z R LT D, TREEDE S, San Pablo J& O KMo R & R I E S L7 /k
MEEBNPD TR TED LD IZHEROENRKAKEDOH FAMEK TH 2 EHERI SN D, RO
& 91z Wildcat i@ O FANZ BV TUX AR T IR — AV DFAE L7 b7 — 2 3 2
Wr g o [ C D HAL PRy D HEE T H R e Wy | A% BMNZHREI T 5 R T AR — A0 6 o4
VTN EHERT D EEBRE, 2D O T IIH T RN OFHINS N A THAEX 3 » Hlz—
EOEIGTH T ROV TV 7R3 fTonTRBY, K7y =/ hOR—RATA T —H
L LTHRIHATRETH %,

ART7H1(2009)1F 4 A — U > ZFLIZ IS8T B Hi K DK E 53 At e & MU O BENE, Wik & o
BE#E M 2 5= Orinda Formation @ 5 23 = BYRf7 A A > &N K Z <, Na-HCO R D KE 1 £ <,
Great Valley Group TIZFEEVEFA A &PV, CaHCO:BIDKENR LW EEZT-, K
J7(2009)1Z L AuiX, Great Valley Group TIEds/KFREN K E <, HTFAKFEDS RV 9DIZ,
ZHIE EKEDOHEANEATE ST, RBESDOEME > TRENEHRINTEY,
Orinda Formation |33 KFREL DS /IS & <, WRENME DM T2 8D, 18174 A4 83 Great Valley Group
IZHARTRE L, REBEIY OVER%IZ Ca & Na DA A 283 Fg 49 % 7=, Na-HCO;3
2725 TS B0 EHERIL TWD,

F 72 K J71(2009) 1% LBNL D/KE T — 4 & FV T ER Ay /04T % i L TV % (Figure 3-26),
FZ IR, KEOBIIIAT 4 75 AT 77 LR, EEBRGA L BEGA 4
Z#i (Ca—HCO;3; —Na—HCO; ) OZALNKERITH 5 & Fsamft i T 5,
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Table 3-2. Well information near the Wildcat Fault

(Modified from LBNL, 2000)

Well ID ucC G_rid uc G_rid Total depth| Top of_casing _ Casing _ (_Zompletion Permeability Geologic units exposed to
Northing | Easting (f) elevation (ft) | Diameter (in) | interval (ft) (m/s) sandpack
74-92-13| -355.80 | 5301.10 48.2 834.90 2 38.2-48.2 8x10® San Pablo (?)
83-92-14 | -354.70 | 5254.65 59.0 830.09 2 48-58 2.7x10° San Pablo (?)
74-94-7 | -508.66 | 5233.24 44.2 819.82 2 33.5-435 4.6x10° San Pablo (?)
74-94-8 | -594.5 | 5343.25 304 815.74 2 20-30 6.3x10’ Colluvium/San Pablo (?)
74-95-6 | -354.67 | 5334.83 49.5 838.16 4 35-50 - San Pablo (?)
83-95-7 | -285.14 | 5246.70 47.0 840.75 4 36-46 1.7x10° San Pablo (?)
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Figure 3-15. LBNL site map with topography and the Widcat Fault trace.
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Figure 3-16 LBNL geologic map superimposed with suspected fault traces, borehole locations and spring locations (LBNL 2008)
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Figure 3-20 Krieged contour map of water levels in boreholes. (Kiho et al., 2009)
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Figure 3-21 Krieged contour map of borehole elevations. (Kiho et al., 2009)
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Figure 3-24. Permeability of various geologic units measured by pump tests and slug tests at LBNL (LBNL, 2000).
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3.2. Surface Investigation Plan

AIECIE Wildcat B8 & %1512 L TIT» - iR, ERE, KO Ly TR0 T
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HAUE, TR, EHR BB IR D WERE OALE 2 R E L, WERAE ORI
SNTRELWHIR A 21T 9 #iH 2 80E L, HIEREEOEREZ K LT b F 2 iEl
DT R E CEIUTEAN Th 5, RIFEICE N TE, 26 3.1.1 TR 7z 42 5 B
BEDOFER D LBNL OBHLOFEHEL & AL CTHE O MR 2N 872 2 "Rt & 5 2 & A3
LizZ&mb, A< &b LBNL O & AL 2 @i CEiRE L N Lo FlEE1T 9
R 2N T, — RIS ELRE CHIB OB B R ELCIEIRZHEE T 5 2 E A FHETH
B0, TEWIUE TRV IR Y tEHFED BWITE D N L — 2% B TWDIGANE L, WifE &1
W FEM ST b L FOEMRNEZRET DRI & (T 1< v, HEREEICE LT
AT, WiE O & 2 B S IKIE L TR W IR Y | ISR > O T 0 I ffe 7R 2 T
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3.2.1. Geophysical Investigation Plan
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. BREE 2 BN D AEENE BART O&EJ O 60HZ OFEEHIEWATH 5,
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e, ALEMOM G TYBEEZITY & & L, ERROKMR L O, EERA 2261 2
7= L7z Figure 3-33~Figure 3-35 (27”9 3 DO Z AT, ORI 2 1X Graymer
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ZOFHE, A S Claremont JE & San Pablo BBz onsHigo a4 7 k
PRSI DTH D, SARBOHBIID X5 EXDa 27 FBAPRFICZRS &9 7%
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3.2.2. Geological Investigation Plan
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BB LIOWELZEERE L., FiEz2itiR, GPSICL W FDOfEAFekT 52 &
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3.2.3. Trench Investigation Plan
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TAmAR D Calvin Rd. A iRk 2 BRICARNE O8] 0 B THFEOFEIC Jordan (2008)ic & - Tk
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3.2.4. Geochemical Investigation Plan
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Figure 3-29 Contour map around the LBNL property and the Fire Trail.
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3.3. Surface Investigations
3.3.1. Geophysical surveys
3.3.1.1. Introduction

PIBRPRA ITHIR D O FOVEIRZ R D BN 2 FIETH D, MEFIEICIB WV TIE, @H
A DORD AT v 7L LT Thid, MERREOERIZIE SO CTHIEONLE 2 H#EE L,
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IR G EERKICHEREAE L HEFEO &5 LI TR MTIRMKE TH 5, AlElo
Wildcat /@ DO FHA I3 T, W8 OALE 233 T2 E DT B 27 0 DR CREA
Thol-F, WIHEE L HERED AV a—/LO#AICL Y, WHIEE L b Lo FHE
TIZEFATL Tz, EBE, WEREOBMFAENK T Lo M L FHEDHK T
b,

WEREIZ TR TIER L, 2 TYEREZAT O DNIHEGRE O T — Z BELD, G
TAAE R IR IZ D72 > T 3 WIt, & BT 4 T OWIRIEE 21T 2 UTEAN TH 5
R AARBEL b Al T b —2RHAT 2 2 LIFEREEHELY, —RIZIT
FRIE ST TR O AL ORI ECHBREA1T O 2 L1272 5, T OHAITFERIOH
KBV RPEIR, SEIOYFRE HATS > THIR Z A L7z L CHIBRO ST 2 0E L
lo K7 v a rCITERRA & RTEMEREIRE DR RIZ OV TE LD, EROFHHA
% Norcal Geophysics £t (Black, 2009) 2 X » CTirbii=,

3.3.1.2. Survey Lines

ATETC BB Wi 255 & LRI EA T 2 51 CrIBEZRBR » —E# I
FEW AR D ONREE LV, Lol E4I2 L THIFOMEY 72 E ORI R 5, K7
Y=z Mo TIEZR <, Wildcat BrE237E %5 LBNL fHx o #E IR U < BRI 2 #54#
LIZH@ DT 7% ARG NN OGT 2 RET L2 EER T 7 7 4 — Lo,
Figure 3-33, Figure 3-34Figure 3-35 (25 LUWAIBROLE A9, RIS R X 5 ISRl 1
i% Field Station for Behavioral Research (FSBR) & 73415 UC Berkeley o #F4tfiiqx
PO PE 7> B AL RIS AE 2 PRV B O PRI R - TR & 330m TIRIFEMUTE - 72, HlfR 2
&3 MR T L9, LBNL OfD N~ L—REEOHER L&, O ALRICED
Panoramic Rd. £7-1% Ridge Rd. & PRI 5 ik FRrO B2 BB S HER A HH L
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T Graymer (2000)iz &% Wildcat g3 fiifm s 725 L 9 ZiE L, HI#R 3 13RS

250m THEFESA CTHER S 7= Claremont J& & w45 (San Pablo jE?) o= 7 K& h
s e LTEHRELE,

3.3.1.3. Electrical Resistivity Survey

B HHESTIL dipole-dipole array Zffuv . MR 1 & 2 1% 6m B X ITEF T 56 1%

M 42 % 336mIT > TR L7z, MIHk 3 T1E 252m » & X1 4.5m X 12 56 B

ZELE Lz, 7 — % OB Advanced Geosciences 110> SuperSting R1 & FEIZHL 5 HEdK
PUNELLE & Swift & FFXN 2 B EEEREMm S 27 A& flA s THM L,

Figure 3-30. Supersting and Swift data acquisition system by AGI.

Supersting (ZHAT 1~900mA ORI THIISFRETFTRETH b . EIERE T2 /T ok
KPR T HHEREN H 5, Swift 135K 10m [HkE T 1 RizHox 14 o EMZ S 72072
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AfEL 70D, B A OBMOMRELE XD Z LI L o> THIEREZ 2L TE DHE13H 5,
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DOHUE T L TWD, ZHITAKR 103 O FI2dh 55 & L& - EEO AR TH D
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T5 2 ENHRD, B 1R 3 T MELS IR RT3 AR HE e ) © T 23 77
159 % & b 5 @ & KIS IR T LTz,

3.3.1.4. Seismic Reflection Survey

B GHE MR O FHAIZ X Geometrics £Ed Geode & FEIZILD 96 F % > RV DEHE Y
AT L L 96 HED[EA RTINS 40Hz @ Mark Products 324K (Geophone) Z{ii i L 7=
(Figure 3-31), #I#g 1 & 2 TiX geophone DA% 3m & L. 3mX(96-1) T4 285m DAL
FlE Ui, HI#E 31X 72 D geophone ZfEH L. &K 213m Th-o72, WTHNORPF S T
HEN TV Wildeat B b L— 2 & fifiA & UTRER Lz, BRIZZNAZHOHBRO
I DZAREED 1.5m AMUlZHBIAA L, 3m I S ITFIR L7, KER, HIBR 113 96 HS THEER,
JUFRE 2 1% 97 HiR, JIFR 31X 73 RDFEA L o7z, FAE OHIRIZI W TEIRIZ ATV(AI
Terrain Vehicle, £ 7 REHL)IZ#4H, L 7= accelerated weight drop & FE(EH 2 B2 L
Tco ATV TH T 7 EARETH STl 1 ORI TIINy~—& 7 b— M L7z,
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Figure 3-31. Geode seismic system (left, yellow) and 40Hz geophone by Mark Products
(right, orange) (Norcal Geophysics, 2009)

Figure 3-32. Accelerated weight drop system mounted on an ATV (Black, 2009).
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B fiENTIEa: & LT Advanced Geosciences #: Mark Olson (2 X %, fi##ricix
Gedco #1:® Vista 8.0 2D/3D & MEEiL 5 Y 7 b &M Uiz, & BEARE A5 E T
D HARBY 7 AT FINECRRFHESI LA MO N A ORAE DORIET — ¥ OfHT Fik & [k CTH
5o LATRNT FIEZ 553 5,

1.

10.

11.

12.

13.

14.

15.

Trace editing

Geometry definition

2D crooked line common-midpoint (CMP) binning

Trace muting of first arrivals

FK (time-space frequency) filtering to attenuate ground roll
Bandpass filtering 50/60 - 180/200 Hertz

Automatic gain control (AGC) using 80 ms windows
Static shift to horizontal datum elevations

Trial velocity analyses using semblance and common-offset stacks
Trial CMP (Common Mid Point) stacks

Final velocity analysis

Final CMP stack

Trace mixing using weighted average 01 three traces
Bandpass filtering 40/50 - 150/180 Hertz

AGC using 60 to 80 ms windows for final display

Figure 3-37Figure 3-38, Figure 3-39 (ZE 4L 24Vl 1, 2, BELU3 OFFHIEZJE L
EAGKHEXEZ TR, v 7 L—3a T RFr—RNAL T—ZOMEDIEHLDENRK
&< CMP 74— v RO MDA o D %, ERBEORH~A 7 L—3 3 3T
S TWeW, IR I OO il B 22 A i AT LE VAR 1 248 ) 430m, AR 2 & 3 4% 390m % Ik
el LTEMEEZIT> T 5, CMP X 15m i@ TodH v, Figure 3-35 (2@ AES
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MLEETH D, — I PEHEIIAR T A — /L2 H LRI 223, BIRER TIET — 203
FAELR, 204, IRPURITAE R LA L C P IR ZHEE Lz, BRRICIZ iR
PR — IR DTRIE Ll bRV P O 2 R —RE & L TERAEDE (Figure
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HEESND, ZHUTHEEAERIC L T400msec & 720 | P TIX 1280m/s L7225, 2D
BT HIRPIRE OBIFEEE TH 5 50m=75m ORETEIRY THH B LND, 177
U K WREDPIRS 2D ICHON THEN L 2D EF 2 B DO T 75m LLRO S 1% X
WORTIREL Y, IRWNRETHD AREMR S L B X b D,

Figure 3-37Figure 3-38Figure 3-39 35 L O* Figure 3-40, Figure 3-41 |2 S5 & HegRBt o
AT OHESND AT AV A, B, CEZhThfkt, Hh, HFROMK TR
T TNHDOBITHERNG bHEE SN EZNENRR > - HBHEOKHE TH 5 LFH
2D, RT7A Y AN E RS T 5 %12 Figure 3-40 & O* Figure 3-41 Tl
REOBTET, IR 1 OREWEX O Figure 3-37 (2 CMP73 HiS OB FOK T A V'
A OLETHMOBEERFT 7y MZEDEEZLND T —FROBHRZ — 0 T T
T, EHIZ, A LVIRWREDOKKNATZ A B, ChipBEFMICA 7y LT
LEZOLND, ZNHDOF Ty FOMEZRE L THBT 5 & RO T BiE 137
ET 5 EMNTE D, ZOBBITHRANSEY B0, FEIZEAECTERAL WD EEbh

%o ZHUE HLA (1980)23 7o 7= b L > F A OFfE CTHER S U7z Wildcat g & % 2 b b
Wrlg &R —F LT\, IR 2, 3BT, Figure 3-38Figure 3-39 IZR. 515
LR RT AV v ARV B DIFERHEE TE 5, I HIZHIE 3 TiX Figure 3-39 1235
FECRT X OICHRE 1 TRONTEKHART A Y A OREGMIC L DEHT 2 — 2 A3k

RTED, LLns, J# 1 TRONTZRHES T AV AR 2, 3 TITRH HFEN
Hk7zv, EFHmOA78y MIRARE 1 CRAONIZFERE <2V, fllff 1 TR
7o LRk, RIAED B> THRY, WM LTV D, HIFR 2 TR S 2 e 3R
FAENARE 1 X3 LHERL TR KN, Zhbzika L, MESNLMEZ Figure
3-38Figure 3-39 IZBWERCTRT, T DA MR ITIMTFT 5 & HIRIEA TR Szt
JE DOALE & FIE—BT D,

85



3.3.1.5. Alternative Analysis

Figure 3-42. Figure 3-43, & U* Figure 3-44 |Z Rufus Catchings (2009)1Z & % iRk B 2R
9, BB 5 A7 X 912 Figure 3-37Figure 3-38Figure 3-39 ORI & 172 0 B7p > T
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PRV LD A ARZ L HE 2R 2 W ERRETH D,

3.3.1.6. Summary

LB RA~T ER R UR A e O E R R E ORI R Z LT ICE LD 5,

1.

PIZERL L, IO HE 23 0 EAS > 72 Wildeat Wil & HEE S 415 Wilg 3o
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HIHR 1 RO 3 TR bW B ITEL L CRRMER TH 528, IR 2 OWE I3
BIAE,

Wildcat I¥r)e | L7555 C Hayward Wi 2 &9m L TV 5 ATREMED & 5,
BRI UIER B 5 IR R R EEA D B O B O IRHT TIERHEFENEN LA

W& Z GO TREMICHIRT 2 Z LITk D 2R Eh O FiEOR R OEHEME
L. Wildeat Brg OPERICE U TRIERMEZ RS 3 2 LN ATREIC R o T2,

YRR OWRFR OB IZEEAED Wildcat Wi OFHRICESWTIRE LIZ7=H, ]
NHLWEZY > TWb LB 2 N5, BEFEOERNENGAIIWE Z2 .0z
TR A2 B D ENREECTH 5 aREME N D D,
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Figure 3-34. Enlarged view of Figure 3-33. Geophysica
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Figure 3-35. Further enlarged view of the survey lines 1, 2 and 3 for electrical resistivity and seismic reflection profiles.
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Figure 3-38. Interpreted seismic reflection profile from Line 2.
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Figure 3-39. Interpreted seismic reflection profile from Line 3.
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Figure 3-42. Alternative interpretation for Line 1 by Catchings (2009).
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Figure 3-43. Alternative interpretation for Line 2 by Catchings (2009).
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Figure 3-44. Alternative interpretation for Line 3 by Catchings (2009).
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3.3.2. Surface geologic survey
3.3.2.1. Aerial Photography

Black and white vertical stereographic aerial photographs from the U.S. Geological Survey
library—dating back to 1939—were analyzed for identification of fault-related topographic
features. Unfortunately, there are no typical topographic features, such as sagponds, linear
depressions or offset drainage, within the LBNL property. This may result from the fact that the
fault is inactive, and surficial deposits have covered most of the area. The analysis of the aerial
photographs of a larger scale that includes the Hayward Fault and Wildcat Fault in the northern
Bay Area is summarized in Chapter 3.1.1.

3.3.2.2. Field Observation

Field work near LBNL was conducted to understand the local geology and to find evidence
of the Wildcat Fault trace. As previously described, the geologic and geomorphologic features of
the Wildcat Fault are not evident in the LBNL property. Outcrops especially of the Claremont
Formation are exposed along the eastern end of the LBNL property, the Fire Trail and Panoramic
Way. Outcrop data were recorded on a GPS Garmin device and latter plot on Google Earth and
topographic maps. Although the western side of the trace of the Wildcat Fault is covered by thick
colluvial soil, the geologic map is intended to show the bedrock based on exposure and past

borehole data. Therefore, no landslide and colluvial soils are shown in the geologic map.
3.3.2.2.1. LBNL Property

Bedrock exposure at LNBL is very limited. The only bedrock exposed near the study area is
the Claremont chert and siltstone, which crops out in the eastern-end hills near the property line.
Preston Jordan, LBNL geologist, explained that most of the geology of the LNBL site came from
road cuts, trenches, and boring from geotechnical studies and borehole data from site restoration.
During some of the geotechnical investigation, Jordan visited and mapped the Wildcat Fault,
particularly the fault exposure during site evaluation of Building 84, near the parking lot
construction west of Building 74, and along a road cut at Calvin Road. This information is plotted

in the geologic map (see Appendix 1).
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3.3.2.2.2. Fire Trail

Several outcrops of volcanics of Moraga, cherts and siltstone of Claremont, and sandstone
and siltstone of the Orinda Formation are exposed along the Fire Trail. Near the north entrance of
Grizzly Peak Road, several blocks of weathered volcanic basalts and volcanoclastics were
observed on the ground and exposed at road cut. The exposure near the road cut are highly
weathered and fractured near the trace of the Wildcat Fault. It is less weathered farther east along
the Fire Trail (see map for details of the outcrop location). Figure 3-45 shows an example of the

weathered and fractured volcanic rock near Grizzly Peak.

T s k -~ AN 'Y ¢
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Figure 3-45. Weathered and fractured volcanics of the Moraga Formation

The outcrops of the Claremont cherts and siltstone are well exposed along the Fire Trail. The
bedding varies from subhorizontal to steep dip to the south. Locally, the beds are overturned and
tightly folded (Figure 3-46) in the shape of a wave. The cherts are moderately weathered, usually
pale yellow with fractures visible normal to the bedding. The average fracture space is 10 cm. Each
bed contains millmetric intercalations of a thin (~ 5 mm wide) layer of gray siltstone. Black cherts
are also commonly interbedded with light-colored chert. The average thickness of the chert varies
from 2 to 10 cm. Occasionally, thick (up to 50 cm), weathered tuffeceous siltistone, oxidized to an

orange color, is found intercalated with bedded cherts.
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Figure 3-46. Overturned beds of cherts and siltstone of the Claremont Fm, Fire Trail, Berkeley

The Claremont formation is also well exposed along the Sugar Loaf ridge, where a couple of
low-angle normal faults have cut and displaced the beds (Figure 3-47). In another outcrop, several
horizontal slickensides were observed in planes oblique to the bedding, showing right-lateral
strike-slip movement. In addition, several blocks of chert with slickensides were found on the

ground near the trace of the Wildcat Fault at Sugar Loaf Saddle.
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Figure 3-47. Outcrop of bedded Claremont chert and siltstone along the Fire Trail, Berkeley

Outcrops of the Orinda Formation are rare along the Fire Trail. One of the main and typical
exposures is near a creek that connects Grizzly Peak and Panoramic Way. There, mottled reddish
mudstone, with scaly cleavages and greenish, unconsolidated, and friable fine-grain sandstone to
siltstone are exposed at the sidewalk and along the creek (Figure 3-48). According to HLA (1985),
several boring tests have been conducted near Bldg 74. The weak consolidated siltstone of the

Orinda Formation is found below 45 ft of colluvial soil.
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Figure 3-48. Outcrop of typical mottled weathered reddish and greenish siltstone of Orinda
formation in the Fire Trail, Berkeley

3.3.2.2.3. Panoramic Way

Along Panoramic Way, which follows a ridge south of LBNL property, cherts of Claremont
formation are the bedrock that makes the Sugar Loaf ridge. Several blocks of weathered cherts
with slickensides were found near the saddle, suggesting the presence of a fault. About 20 m to the
west of the saddle, an outcrop of bedded chert with slickenside indicates right-lateral strike-slip
fault movement (Figure 3-49). The fault plane is oriented 37 degrees to the northwest dipping 78
degrees to the northwest, and it shows slickenside with rake of 20°. Near the fault, cherts are
fractured in small blocks ranging from 1-2 cm fracture spacing. The bed strikes 27 degrees to the

northwest and dips 32 degrees to northeast.
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Figure 3-49. Sub-horizontal slickensides in Cleramont chert

About 200 m toward the west, down the hill, there is an exposure of weathered chert that
soon changes to coherent white well sorted fine sandstone. They are exposed at the road cut. This
soon changes to a highly fractured and weathered light-grey silicious siltstone that easily crumbles.
The average fracture spacing is <0.5 cm. The bedding is somewhat shadowy.. It is oriented 47 to

the northwest and dips 48 degrees northeast.

Walking down the hill, along the slope and on the ground, a zone of transition is observed
between fine, massive, light-brown sandstone to a gray to brown silt sandstone. They are cut by
fine black seams of about 1 mm wide, striking N32-59E and dipping 40-52 degrees to southeast.
This appears to be a zone of disturbance; however, no plane was identified. This zone, when
projected to the Fire Trail, it’s not observed in the road cut or on the ground, although cherts are
observed a few meters west of the Fire Trail. It is possible that a fault splay may be responsible for
mixing cherts and sediments from the Orinda Formation in this region.
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3.3.3. Trench studies

To improve our confidence in the location of the trace of the Wildcat Fault—its geometry,
deformation, and changes in fault properties along the fault length—trenching locations were
chosen after a detailed surface geological survey. The criteria used in selecting trench locations
were based on (a) proximity of the previously described or observed fault location; (b) the ability
to dig at least three trenches, as requested by the Central Research Institute of Electric Power
Industry (CRIEPI) to examine changes in fault properties, and (c) digging deep enough to
characterize the bedrock (lithologic variation and distribution of deformation across the fault). The
location of two trenches, NUMO TR1 and TR2, were near Trenches T1 and T2 of WLA (2008)
and Trench A of HLA (1980), respectively. Trench NUMOTRS3 was located near Calvin Road.

On December 9, 2008, an excavator started trenching NUMO TRO near Building 74, about
10 m to the south and parallel to Trench T1 of WLA, 2008. The plan was to have a step trench.
Excavation started by opening an area of about 5 m wide into the hill (Figure 3-50). During
excavation, a clear contact between the cherts in the east and medium-to-coarse-grained sandstone
in the west was observed on the north wall, but before notes and samples could be taken, the site
was buried because of safety issues. The lithological contact aligned with the orientation of the

trace of the Wildcat Fault from previous work (Figure 3-51).

Soon after Trench NUMO TRO was closed, trench NUMO TR1 was excavated about 10 m
further to the south. Two subsequent trenches were excavated in the north. Trench NUMO TR2
was excavated north of the LBNL property line, right next to the access gate to the Fire Trail. A
shallow trench, NUMO TR3, was excavated near Calvin Road and in between NUMO TR1 and
NUMO TR2. Figure 3-52 illustrates the location of the three trenches (photo taken from the Fire
Trail). The hills in the eastern part of Building 74 correspond to the Claremont formation. Most of
the topography in the western side of Building 74 is composed of thick landslide and colluvium

deposits.
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Figure 3-50. Proposed location of Trench TRO. On the north wall, the contact between cherts in the
E and sandstone in the W follows the approximate location of the red dotted line.

Figure 3-51. Trench TRO after filled, and location of trench TR1
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Figure 3-52. View from the Fire Trail of three open NUMO trenches. The lengths of NUMOTRO1
and TRO2 are approximate. Centennial Road and Building 74 are used as point of reference.

Over about five working days, a team of five geologists, including four from CRIEPI, logged
the trenches. Trench TR1 and TR2 were the longest (max. 20 m long) and deepest (over 4 m deep)
trenches, while Trench TR3 was the shallowest, less then 1.5 m deep and about 10 m long. Only

the walls facing north were logged.

A detailed description of the trenches has been conducted by the CRIEPI team, including
comprehensive logging and sampling(see Kiho et al, 2009 for details). In this section, only the
main structures will be described and compared with observation of faulting described in previous
geotechnical reports.
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3.3.3.1. Chronology of Trench Excavation
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3.3.3.2. Faults observed in the trenches:

NUMO TRI1:
Lat: 37°52'31.99"N and 37°52'31.42"N Long: 122°14'15.13"W and 122°14'15.62"W

Trench NUMO TR1 is oriented N15E. It is about 20 m long and 1 meter wide, with depth
varying from 2 to 4 m (Figure 3-53).

Figure 3-53. View to the east of trench NUMO TR1 before hydraulic shoring was placed.

This trench is located about 20 m south of trench T1 of WLA (2008). Bedrock was exposed

only in the last eight meters towards to the east. Only the wall facing north was logged. The rest of
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the trench was composed of colluvium/landslide material and therefore not included in the trench
log (Figure 3-54). According to the description by Kiho et al (2009), a fault trending N64W and
dipping 40E was observed near the middle of the trench. The fault is defined as a thin layer of
gouge between highly fractured and weathered cherts in the east and a zone of mixed layers of thin
sandstone and siltstone in the west. See Kiho et al’s report (2009) for a more detailed trench

description.

The fault orientation and projected location matches with the Wildcat fault described in
Trenches T2 and T3 of WLA (2008). This relatively low dip fault (about 40 degrees to the east) has
been interpreted as part of flower structure by WLA (2008).
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Figure 3-54. Trench log of NUMO TR1 by Kiho et al (2009)
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NUMO TR2:
Lat: 37°52'46.94"N and 37°52'47.07"N Long: 122°1425.70"W and 122°14'25.19"W

Trench NUMO TR2 is oriented N79E. It is about 14 m long, 1 m wide and 4 m deep (Figure
3-55).

Figure 3-55. View to the east of trench NUMO TR2 near the north gate to the Fire trail.

Two main faults were observed during trench logging. A major contact fault was mapped
between light-brown-medium to fine-grain, moderately consolidated sandstone, possibly of the
Sobrante or Claremont Formation, and a mixture of dark-red mudstone and grey-to-light-green
fine siltstone of the Orinda Formation. The fault is located in the eastern end of the trench. The
photo below (Figure 3-56) taken on the wall facing east illustrates the deformation observed
mostly in the lower siltstone to mudstone of the Orinda Formation. The deformation is

concentrated in the plastic dark-red mudstone. The kinematic indicator includes shear bands (R
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and P), S-C fabric, and asymmetric features in the gray siltstone. All these indicate a right-lateral

sense of shear. A sample from the contact was taken by Kiho et al (2009).

Figure 3-56. Main fault in NUMOTR2 showing main deformation concentrated in the Orinda Fm.

In more detail, thin seams of clay gouge (about 1 cm thick) separate portions of the deformed
Orinda Formation (Figure 3-57). In the massive sandstone (Figure 3-58), the deformation is
concentrated in several vertical to subvertical sets of dark seams less than 0.5 cm wide in average.

They are cut by fractures apparently filled with calcium carbonate.
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Figure 3-58. Several subvertical and subparallel dark seams observed in the sandstone

The sandstone described in NUMO TR2 is similar to that described as a fault contact in
Trench A of HLA (1980). HLA also observed black-coated fractures, possible the black seams
described in the sandstones of NUMO TR2. In addition, red and green clay gouge and a zone of
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highly sheared rock occur between the sandstone of Sobrante or Claremont formations and the
siltstone of the Orinda formation (HLA, 1980).

The second major fault was observed in the middle of the trench. The fault orientation is
northwest with low angle dipping to the northeast (Figure 3-59). The fault contacts the mottled
dark red mudstone, bleached to oxidized siltstone and medium-grained green to gray sandstone of
the Orinda formation with dark mudstone with scaly cleavage. In the scaly cleavage, fine

slickensides are observed on the cleavage plane (Figure 3-60).

poorly sorted green to
gray medium grained
sandstone

.
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Figure 3-59. Mosaic of fault observed in the middle of NUMO TR2
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Figure 3-60. Scaly cleavage observed in dark-red mudstone, showing fine slickenside on cleavage
plane

Figure 3-61 illustrates the overall distribution of geologic features in NUMO TR2. The
sketch put together by CRIEPI has been described in detail by Kiho et al (2009).
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Figure 3-61. Sketch of Trench NUMO TR2. The main fault was observed in the west end of the trench. The fault is the contact between
the sandstone of the Sobrante/Claremont Formation and the siltstone and mudstone of the Orinda Formation.
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NUMO TR3

Trench NUMO TR3 was excavated parallel to a ditch a few meters above the hill from
Calvin Road (see Figure 3-52). It is oriented N67E and is about 10 m long, 1 m wide, and 1.3 m
deep (Figure 3-62). During the visit by NUMO and CRIEPI personnel in September 2008, Preston
Jordan led a field trip to the location where NUMO TR3 was trenched. On the ground, several
blocks of cherts with slickensides were found. According to Jordan, the fault was observed during
the construction of Calvin Road, back in 2001, although it was not recorded in the geotechnical
reports. In the geologic map by WLA (2008), the area of NUMO TR3 is covered by a Quaternary
landslide. Our field reconnaissance survey and trench work indicated that the area was mostly
bedrock.

In this trench, a fault contact was observed at Lat: 37°52'43.14"N and Long: 122°14'22.65"W.

W AR

Figure 3-62. View to the east of the trench NUMOTR3
The fault zone is a sharp contact between light-green siltstone of the Orinda Formation in the

west, and cherts of the Cleramont Formation in the east. In the fault contact, a 2-3 cm up to 25 cm

thick zone of gouge was observed. In the gouge, angular fragments of siltstone and cherts were
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aligned parallel to the fault plane. The fault orientation is N25W and dip subvertically to the SW.
The cherts near the fault were highly fractured (Figure 3-63).

Figure 3-63. West view to NUMO TR3. Note the sharp fault contact between the Orinda and
Claremont Formations

Approximately four meters east of the fault plane, dikes of weathered, well-sorted,
fine-grain sandstone were observed occupying a concordant position with respect to chert bedding.
Two sandstone dikes 10-15 cm wide were observed, containing no visible planar structures. The
surrounding cherts are moderately fractured (Figure 3-64). The sandstone dikes have been
described by Untermann (1935), Graham et al. (1984) and Page (1950) and are common features in
the Claremont Formation. Untermann described the presence of sandstone dikes near the zone of
disturbance associated with the Wildcat Fault and observed the west side of the fault. Those
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sandstone dikes assume all positions from horizontal to vertical, generally discordant to chert
bedding (Untermann, 1935). Page (1950) described sandstone dikes during the Broadway tunnel
construction, noting that in the tunnel, the dikes commonly crosscut surrounding strata, but in
some instances they were sill-like, nearly parallel to beds of cherts and shales. Their size and shape
were variable, ranging from an inch (2.5cm) to at least 82 ft (25m) in thickness, some exceeding
200 ft (60 m) in length. The shape varies from tabular to bizarre forms. In the Broadway Tunnel,
sandstone dikes were not observed at the contact between Claremont and Orinda Formations,
suggesting that the dikes were formed prior to the deposition of Orinda sediments because no

clastic dikes were found in the latter (Page, 1950).

Figure 3-64. Example of intrusive sandstone dike observed in cherts of the Claremont Formation

Figure 3-65 illustrates the overall trench logging of NUMO TR3, showing the main geologic
features. The cherts were moderately to strongly weathered and highly fractured. The bedding was
obscured by intense fracturing and sandstone dikes. See Kiho et al (2009) for more detail.
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Figure 3-65. Sketch of Trench NUMO TR3, showing the main fault contact between siltstone in the west and the cherts in the east.
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3.3.3.3. Summary

We summarize the findings from the surface geologic survey and the trench studies

of the Wildcat Fault its surrounding geology discussed in the previous sections.

Fault Trace —The trace of the Wildcat fault between Grizzly Peak in the
northwest and Panoramic Way and the Fire Trail in the southeast is unclear in
aero-photography, owing to a lack of geomorphologic evidence. In addition, the
area is highly developed, has poor rock exposure, and a complex stratigraphy
including a thick sequence of landslide and colluvium. The geologic map
compiled in this report is based on data from previous studies (Untermann,
1935; HLA, 1980; Kleinfelder, 2001; Gilpin, 1994; Graymer, 2000; LBNL and
Parsons, 2000; WLA, 2008), and data from field and NUMO trenches. Along
Panoramic Way, the fault trace is clear near the Sugar Loaf saddle, and an
interesting mixing of Orinda and Claremont rock are observed to the southwest,
suggesting that the fault is not composed of one single plane but rather of
several shear planes.

Fault Type—HLA (1980) found vertical slickensides in Trench A, while
horizontal slickensides were reported by Untermann (1935) and observed along
Panoramic Way (this report). Jones and Curtis (1991 degrees) suggested a
thrusting movement along the western side of the Wildcat Fault and Curtis
reported lateral movement of about 9 km, based on displacement of volcanic
rock. These evidences indicate that the fault has (1) a complex history of fault
reactivation along pre-existing faults and/or splays; (2) a reverse component in
addition to the strike-slip, which is common in strike-slip systems; and (3) a
varying character along its length due to the heterogeneous crust.

Fault Dip—Previous study of the Wildcat fault outside the LBNL property find
faults striking northwest and dipping step to southwest (Untermann, 1935;
Graham et al., 1984) to vertical (HLA, 1980, Trench A). However, the fault
reported within the LBNL property (LBNL and Parson, 2000, WLA, 2008; and
NUMO trenches) has a shallower dip (20-40°) and are coincidently all dipping to
the northeast. The change not only in the dip angle but dip direction may be
related to gravitational forces, since landslides are common features near the
location where the faults were observed. This process could be responsible for
changing the dip of the fault as a result of a drag fault. One other explanation for
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the lower dip could be low-angle fault reactivation, possibly related to the fact
that the Berkeley Hills have been uplifting due to a change to transpressional
regime since 3.6 Ma (Atwater, 1989; Sloan and Karachewski, 2006). WLA
(2008) suggests the flower structure as a possible explanation for the low dip of
the fault.

Fault Contact—Faults were mapped in all NUMO trenches. In TR1, the fault is
a contact between cherts of the Claremont and siltstones of the Orinda
formations. In TR2, the main fault is observed as a contact between the fine
sandstone, possibly of Claremont or Sobrante formations and intercalation of
siltstone and dark-red mudstone of the Orinda Formation. In TR3, a clear fault
contact is observed between cherts from the Claremont Formation and
siltstone/mudstone of the Orinda Formation. Gouge zones were observed in all
faults.

Fault Internal Structure—The range of deformation observed from trench
studies clearly shows ductile deformation concentrated in siltstone and mudstone
of the Orinda Formation showing shear bands, R and P Riedel shear, S-C
structure in TR2, gouge in TR1, TR2, and TR3, and fault breccia in TRL1.
Conversely, the deformation observed in the sandstone is focused in vertical
black seams and in highly fractured cherts and siliceous siltstone, with a wide
range of fracture spacing resulting from brittle deformation. Therefore, the
contrast in material physical and mechanical properties is distinct between the
two main formations.

Geologic Map—A geologic map was compiled based on previous work from
geotechnical and geological data, field observations, and trenching. At the scale
of the map, the Wildcat Fault is shown as a singular trace in the LNBL property.
However, it is known that small faults occur laterally within a short distance, as
splay faults. In the south, along the Fire Trail and Panoramic Way, topographic
and field evidence (such as slickensides, fracturing, and lithological contacts)
indicate that the fault splays in several branches. Based on the location of the
fault exposure and additional fault location from previous work (LBNL and
Parsons, 2000; HLA, 1980; WLA, 2008), faults and geologic contact were
traced as shown in the geologic map (Figure 3-79).

Conceptual Model—The conceptual model for the Wildcat Fault was built by
analyzing the geometry of faults observed in trenches and by evaluating fault
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descriptions from previous work. As illustrated by Graymer (2000), the Wildcat
Fault is one branch in the flower structure of the Hayward Fault system. At the
scale of field and trench studies, several small branches of the flower structure
might be present. Two illustrations demonstrate the conceptual model for the
Wildcat Fault—one in the south along the ridge by Panoramic Way, and the
other representing the trench locations on LBNL property. The model along
Panoramic Way suggests several fault splays apart couple of meters to hundreds
of meters (from field observation and topographic features). Faulting features
included (a) saddle at the Sugar Loaf ridge, (b) shear planes with slickensides in
chert, and (c) highly fractured chert in contact with mixing material. The LBNL
model captures trenches NUMO TR1, TR2, and TR3. The colluvium/landsllide
deposit might be responsible for producing a low angle dip (i.e., drag fold),
observed in trenches TR1 and TR2 and in trenches T2 and T3 of WLA (2008),
while trench TR3 might represent a deeper portion of the fault not affected by
gravitational sliding/creeping process.

3.3.3.4. Discussions and Lessons Learned

1. Geological investigation and trenching studies provide hands-on and direct
assessment of the complexity of a fault.

2. In this exercise, a known strike-slip fault cutting through sedimentary rock was
chosen. Although there have been a number of geotechnical investigations conducted in
the study area from surface and subsurface surveys, dating back to the 1970s, the
geology of the region is still not well understood. The stratigraphy is disrupted by the
initiation of the strike-slip fault and uplift of the region. Posterior landslide and
colluvium material has changed the topography and geomorphology. Site
characterization in Japan would face similar challenges, because Japan is tectonically
active, and past fault activity had modified the landscape.

3. Choosing the locations for trenching were time consuming. Knowing the local
geology is crucial for projecting any structure, especially faults, to the surface. In the
case of no surface exposure, previous work in the area and additional field survey are
required to identify such features. Trench locations were chosen depending on terrain
condition.
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4. In this study we were able to find a fault plane in all three trenches. At the scale of
geologic map they were linked; however, lithologic variations occur along the locations
where the fault was observed. The fault is a complex structure when looked at a trench
scale. One example of how fault material varies within a short distance is shown in
trenches NUMO TR2 and TR3. Those trenches are only about 130 m apart, but within
that distance the fault’s character changes dramatically. Not only does the fault contact
change, but also the dip of the fault. It is possible that lithological variations might be
responsible for changing fault geometry. This is an especially complex issue when
dealing with sedimentary rock such as in the Berkeley Hills, where lateral lithological
variation is large.

5. At the scale of this study, the trace of the Wildcat Fault is not linear; fault splays are
expected to occur and to merge with the main trace. The faults cuts through sandstone
and siltstone; cherts and siltstone; and chert and chert. Although many geologic maps
only show the main fault trace, fault splays are also important in identifying and better
understanding the entire fault system—and improving the conceptual model.

6. This study shows that fault dip and dip direction can change due to gravitational
forces associated with landslides, tectonic uplift, and fault reactivation. These would be
important aspects to take into consideration during site assessment.

7. The conceptual model illustrates the presence of a flower structure in the study area.
Fault splays are likely to occur at any scale, and their distribution on planes and cross
sections are likely to be complex. Bedrock of the Orinda Formation would be imprinted
by a ductile deformation, while folded cherts of the Claremont Formation by a fracture
network. This distinct mechanical property would directly impact the hydrologic
properties of the rock.

8. As mentioned in the report “Development of Hydrologic Characterization Technology
of Fault Zones,” faults cutting sedimentary rock would produce deformation bands, clay
smear, and gouges. Those are considered sealing features. Gouges and dark seams were
clearly observed within fault zones in trenches NUMO TR2 and TR3, suggesting that
the Wildcat Fault would be a barrier to the flow, based on surface geology only.
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3.3.4. Structural analysis of faults
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Figure 3-66. Sketch of the north face of NUMO-TR1
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Figure 3-67. Picture of the exposed fault in NUMO-TRL. The solid line is the boundary
between the bedrock and the alluvium and the broken lines show estimated boundary of
the fault rock.
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3.3.4.2. NUMO-TR2
3.3.4.2.1. Fault Fracture Zone and Surrounding Deformation Structure
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3.3.4.2.2. Predicted Hydrologic Properties
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3.3.4.3. NUMO-TR3

3.3.4.3.1. Fault Fracture Zone and Surrounding Deformation Structure
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3.3.4.3.2. Predicted Hydrologic Properties

AT7H(2009)(C L AviE, TR-3 CTHEIZL S 7= Wildcat BrE o LWikE (Fc Brkg) 13, fAEERET
DREHALEZfE D oo, BMENRFELLS, W T Y P bERMEicZ LI &b, TR2 O
Fa, Fb W@ I U@ KT E W & Z 2 bivd, EWE O ERNZ 53 204 (San Pablo
J&) ITEEEAREL T 1y ZEAET L TR Y, SAMETERE L O L HEE SRS,
FWIE D NS TT 5 F v+ — M@ (Claremont J&) 1%, Jo3k, WEREATHLH, WE
IEECITENENREZE LA LHEE TH L Z 0D, BAETENLOLHEESRD.

129



N79E
—_— EAT —
MEH Y MR LC VL) L . 9
KB A (AREC YKL =
| BEEKAZIL—HA GRS - B8 Orinda B (HE#HiH)))

B, Rt | |
BE, e E Orindaf§ (EBchi)
BhE (San Pablo FEEE (i~ fich#itt)) &

=]

: / r}\\\\

5
S s

»f Fa-2 NIOW/39N( ™9 18 :5mm)
S Fa-l N2OWBTN( H7 S5 :5mm)

/ g -3 NASWASN( 5 4 1mm)

NI9W/AON( #7 SHE :2mm) ERLAY 115

“8‘%\481\1

[Fa 58 N20W/37N|

-2 NIW/52N( 9 D :1mm)
Fb-1 NI9W/25N( A9 18 :imm, AR L YR E 10em)

d |FE) BB N19W/25N -~

Figure 3-68. Sketch of the north wall of NUMO-TR2. (Kiho et al, 2009)
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Figure 3-69. East and bottom wall of NUMO-TR2. Yellow box shows the location Block
Sample E was taken. (Kiho et al, 2009)
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Figure 3-70. Block Sample E showing the details of Fa-1. (Kiho et al, 2009)

131



ANCE A Wb nsow

faFi80W 90

MRS
H (mpEs)
& TIEE

-y kb

R, )
BEER)

Figure 3-71. Cross sectional views of Block Sample E by CT scanner. (Kiho et al, 2009)
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3.4. Analysis and evaluation of results
3.4.1. Conceptual Model
3.4.1.1. Conceptual model by Kiho et al.(2009)
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b. Southern Section

ARTFL(2009)i% TR1 TITHMOWrEMIE LR 5 Z LI1TTE Z2hr> 72755, Baldwin and
Givler (2008) #HRH#LIZ, Wildcat 7 % 55 (2 B Claremont J& (F v — hEK) , FEANC
San Pablo JE#¥ (FbEEK) 23040 L, W& OSSR ORAZEOWENFET D& L
TW5, Claremont J&N (5 — b E=MR) (CIXPEMER O &4 BT AN L, Wil 3 T
BB TINAT D EB 2T, 2D OBEOBKMEICE L CiE, TR3 OBIZEMEREE 551

134



Wrig Ao o Rn R RN EFRIL, BAKMEIZEWERTE L TS, E-WEIITEIC
BT 5 Claremont J& (F+— FFE(K) , San Pablo @it (WAEK) 122V TlX, TR3 OF]
FLERING  BAMERE L, A A=Y — B RN D & E % T,

AH7fh(2009)1% LBNL Bkt DRI ALEIX LRI D~ 3 21T Y 5 ATREVE D b B &
LTWo, sRtED Y 2 7128\ T, IEWTE RN & 49 2 A W O Rl Az,
Wil @ Ny & A9 DR A EEWTE A3 ik 5 Z L M b TR Y, TR2,TR3 DOFRAR
IS ALK M OBERBEE T /L, ZIUSEESAT 2 AEEERH S L LTnD, KHi
(2009)i% Z @ X 5 72 Wildcat Wi 5% ORI LS 23, San Pablo EREHEFERFIC G A L T
L L72E, RERETMIENEY 9 7§50 Pull-apart basin ICHERE L7272, REZRSF 2R L
TS LHEETE D& Lz, & 5IT San Pablo JEREDRYE S WTEEENC L v, REHRE 2 KEE
“C Claremont Ji & 82 L, WifgZNiis O MRS & BB L F v — MNaIZHEA L TRA X A
I B SI, Fx— MNE bR S TR b 2¥F T b, o b2, 3 THADLR
WA 7 POEARLT Y hT =20k, V7Y — X VIROEINA b, WA HE
P g ZETAL DY 7 v a VZEE L, AEYEORETT & hydroulic implosion Breccia DJEAL
WFEZ R L TVD EHEEL TWD, ZOMIRMED 3 ZEITXBIEOKBAFEIC K & 208 %
HZTWa et L T\ b,

135



Hayward g  Wildcat K&

Ba
W (San Pablo fE8 W@ (FLF-3)
- (P~ M ) /

B (bLF-2)
{EEK

200 m ?

FM"P{I&))

mIEp

B
t @
(i~ ~ )

Figure 3-73. Conceptual model of the Wildcat Fault structure by Kiho et al(2009)
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3.4.1.2. Conceptual Model by LBNL

Strike-slip fault systems can result in complex fault geometries in plane view. They
include a variety of shear fractures, folds, and normal and thrust faults that are associated
with strike-slip faults. Bends and stepovers in the principal displacement zones (PDZ) of
a strike-slip fault system generally produce either zones of extension (pull-apart basins) at
releasing bends or stepovers (Figure 3-74a), or regions of compression, uplift, or pop-up
structures (positive flower structure) at restraining bends or restraining stopovers (Figure
3-74b) (McClay and Bonara, 2001).

a. Strike-Slip Bend Geometries

Releasing double bend

— ubsidence
- \*
-

Restraining double bend
Uipiitt —
-
.
—

b. Strike-Slip Stepover Geometries

Releasing stepover

——
— Pull-Apart Basin

.
—
Restraining stepover
-
—_—
— Pop-Up
e —

Figure 3-74. General characteristics of strike-slip fault systems in plan view: (a) Bends in
the fault surface produce localized zones of extension and subsidence, whereas
restraining bends produce localized zones of contraction and uplift; (b) Stepovers
between two offset fault systems produce either pull-apart basins for releasing stepovers
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or pop-ups and uplifts for restraining stepovers.
In plane view, a strike-slip fault system has typically a lozenge-to-rhomboidal
shape (McClay and Bonara, 2001). As shown in Figure 3-75 geologic and structural
complexity increases with deformation due to block rotation, shearing, uplift, and

faulting.

c ~{ Dip and strike of bedding

[ Younger strata
=

=
=
8 Older strata

10 cm

Figure 3-75. Analog model showing the complex structure generated during strike-slip
faulting

In cross section, strike-slip faults frequently splay upward into outwardly branching
segments that exhibit “flower” (or “palm-tree” or “horse-tail”) configurations (Hatcher,
Jr., 1974). It is well known that the Hayward Fault displays a positive flower structure as
presented in the geologic map of Graymer (2000) (Figure 3-76). In Graymer’s
interpretation, the Wildcat Fault is a splay of the flower structure in the Cross Section
A-A’, lying between the Hayward and Moraga faults. The Moraga Fault is a high-angle

reverse thrust fault with several hundred meters of slip (Graham et al., 1984).
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Figure 3-76. Geologic cross section of the East Bay showing the flower structure of the
Hayward fault and the relationship with the Wildcat and Moraga faults (Graymer, 2000)

In the study area, two block diagrams illustrate the conceptual model based on data
from field and trench studies. Figure 3-77 illustrates the fault interpretation based on fault
distribution observed south of the study area at Panoramic Way. Faulted material was
observed on samples by the saddle where the main fault plane lies (Untermann, 1935,
Graymer, 2000). Fault splays with slickensides in cherts were found in outcrops east and
west of the saddle. Narrow shear zones mixing sediments of Orinda and cherts of

Claremont formation was exposed on the ground further west, suggesting several fault
splays as described in section 3.3.2.2.
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Figure 3-77. Cartoon illustrating fault geometry at depth at Panoramic Way

Trenches within LNBL are located at lower elevations compared to Grizzly Peak or
Fire Trail. Because LBNL is surrounded by hills, it is common to have a thick deposit of
colluvium/landslide accumulated over the years, described by previous work. Thick
colluvium was also confirmed in trench NUMO TR1. The conceptual model for the fault
geometry at depth within LBNL property is illustrated in Figure 3-78. It shows the main
trace of the Wildcat Fault as the contact between Claremont and Orinda formations.
Secondary branches cutting through the Orinda Formation were also observed in NUMO
TR2 and described by Jordan (unpublished data) on splay fault near Building 74.

One peculiar fact is that fault dips observed in trenches NUMO TR1, TR2, as well
as faults described in Trenches T2 and T3 of WLA (2008) consistently dip at low angles
to the northeast. The low dip to the northeast was interpreted by WLA to be part of the
flower structure. To the east of the Wildcat Fault, WLA (2008) observed normal faults in
cherts and described in trench T1 (WLA, 2008). The evidence of low-dipping faults and
normal faults suggest that the fault and fault splays have been rotating, forming drag folds

as a result of gravitational sliding/creep. It seems that NUMO TR1 and TR2, along with
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WLA trenches T1, T2, and T3, represent the upper part of a fault that has been affected by

surficial processes, as illustrated in Figure 3-78.

As the fault is projected along its length to the northwest towards trench NUMO
TR3, the colluvium deposit is almost absent, exposing the bedrock at shallow depth as
described in Section 3.3.4.3 NUMO—TR3. The fault is also a clear contact between
Orinda and Claremont formations. The fault has a step dip to the southwest, and its
orientation suggests that the mapped fault has not been affected by gravitational
sliding/creeping. Therefore, as illustrated in Figure 3-78, trench TR3 is interpreted as

located relatively deeper than trenches TR1 and TR2.

SW NE

N e
/ﬂCe@mﬂ E—_y/

/*// -
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WLATI, T2,T3

-~
s

Figure 3-78. Illustration of the conceptual model of faults within LBNL property. The box
in red represents trench locations.
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3.4.2. Geologic Map

A geologic map was compiled using data from previous studies, field and trench
surveys (Figure 3-79). The location of the bedrock is based on rock exposure, trench
descriptions, and borehole data. Although some of geotechnical reports state the
presence of San Pablo Group near Building 74, the rock description are similar to those
from Orinda Formation, therefore, no distinction were made between the two of them
and only the Orinda Formation is refer in the geologic map. See Appendix 1 for a larger
insert of the map. Note that the scale is in feet. This is due the fact that topographic
maps in the USA do not use International System (SI).
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Figure 3-79. Geologic map of the Wildcat Fault, Berkeley California
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3.4.3. 3D Model of the Site
3.4.3.1. Introduction

Geological maps created by geologists are usually two dimensional in a plan view.
This is particularly true when surface mapping and trenching are the only tools available
for geologists to compile a geological map. Surface mapping and trenching only yield
information regarding the surface geology. When information from boreholes is available,
a cross sectional map or fence diagram are often drawn. However, geology is three
dimensional. When faults rupture, they cut through depositional planes and displace them.
It is very difficult to understand the relationship between geologic formations with only a
two-dimensional map, in particular in the vertical dimension. A digital three dimensional
geologic model would be very useful to visualize geologic sequences offset by faulting.
When the hydrologic properties of geologic formations become available, a 3D geologic
model can serve as the basis to construct a hydrogeologic model for groundwater flow

and transport simulations.

3.4.3.2. 3D Model of LBNL Site

Figure 3-80 shows the basic 3D GIS model, in which an aerial photo is draped over
the 10m grid DEM (digital elevation map) of the LBNL site and its vicinity. As can be
guess from the figure, the terrain of the Berkeley Hills is very steep. The water table near
the ground surface is strongly affected by the terrain as was discussed in Section 3.1.2.3.2.
Based on the analysis of available geologic information discussed in Section 3.4.1, a
crude three dimensional conceptual model of the site geologic structure has been created.
Figure 3-81 shows the geologic structure of the model looking to the east cut by the
Wildcat Fault. Figure 3-82 shows the cross-sectional view looking to the north of the
model cut by a plane perpendicular to the Wildcat Fault. At this point, we have very little
information at depth. The thickness of each formation is unknown. When information
from planned boreholes becomes available, we will be able to verify/adjust the geologic

structure of the model.
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3.4.3.3. Future Plans

We plan to incorporate additional pieces of information into the model as they
become available and adjust the model accordingly. Expected additional data include
those from planned trench studies on Panoramic Way and from the extension of the
trench TR-2. Furthermore, we plan to drill multiple boreholes on both sides of the
Wildcat Fault (see Section 3.5). Drill logs and core data should become available in the
latter half of FY2009. The dip direction of the Wildcat Fault and its splays are still
uncertain at depth. Abutting relationship of the geologic units on both sides of the fault at
depth is unclear. We envisage using the 3D model to conduct ‘what-if* scenarios to
examine different hypotheses with regard to the fault movement and the resulting
structure. Although we do not expect solve all the questions, we may be able to narrow

the range of possible scenarios.
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Figure 3-80. A 3D GIS model of the LBNL area with vertical exaggeration.
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Figure 3-82 A view to the north of the cross-section perpendicular to the Wildcat Fault.
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3.5. Planning of Borehole Investigations
3.5.1. Introduction
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3.5.2. Borehole Drilling Plan
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3.5.2.1. Borehole Depth and Numbers

FEESOMEFHA TIXIES 1000m )6 1500m DIEE DR T R —/L 2 3ARYIT 5 & PR Sh
AN ARKT Yy FTIE 1000mE O R T R — L EHREIT A DOIXTEOHIED S I FIF AR ARE
b, o T, VIFIDKEXEX, Rul—A N TOEIELEZETH L EE 100m )55

148
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3.5.2.2. Borehole Locations
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3.5.2.3. Distance from Fault
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A= a OB THEBEZEL IR THS—LZHET20NRNEHEEZ 5,
3.5.2.4. Water Levels
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3.5.2.5. Candidate Drilling Locations
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3.5.3. Borehole Drilling
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3.5.4. Borehole Logging
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3.6. Hydraulic Testing Plan
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Figure 3-84. Hayward Fault (red) and Wildcat Fault (white). Symbols show where a fault is
encountered along the Wildcat Fault Green squares show potential drilling locations outside
LBNL property.
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4. Summary and Conclusions, Lessons Learned

4.1. Summary and Conclusions

Here we briefly summarize the findings and conclusions from the studies conducted in
FY2008. These studies include: literature survey on fault zone hydrology, analysis and
compilation of existing information of the Wildcat Fault, aerial photo analysis, geophysical,

surface geologic and trench investigations of the Wildcat Fault and the surrounding geology.

e Based on a comprehensive literature survey on the relationship between hydrologic
and geologic properties of faults, it was concluded that faults can be classified into
eight different types based on various geometric and geological attributes. These
types may be used to indirectly infer the hydrologic properties of faults.

e An investigation flow diagram specifically designed for fault zone characterization
was developed.

e Based on the analysis of aerial photographs of the Wildcat Fault it is postulated that
the fault may have different properties in the north and in the south of LBNL.

e Combined analysis of electrical resistivity surveys and seismic reflection surveys
conducted on the Panoramic Way on the south and at Field Station for Behavioral
Research on the north yielded the images of the Wildcat Fault: one steeply dipping
to the west and another shallowly dipping to the west. However, multiple
interpretations are possible.

e Three trenches were excavated, in all of which at least one fault was encountered.
Detailed mapping and structural analysis were conducted in these trenches.

e Based on a structural analysis of the faults observed in the trenches, it is suggested
that the low angle faults may be low permeability and the high angle fault may
exhibit relatively high permeability.

e A geologic map was compiled based on previous work from geotechnical and
geological data, field observations, and trenching. Although the Wildcat Fault is
shown as a singular trace in the LNBL property. The fault may splay in several
branches.

e A conceptual model of the Wildcat Fault have been developed, which assumes that
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some faults may be a part of the flower structure or splays of the Wildcat Fault.

e The question of whether the portion of the Wildcat Fault in LBNL property is part
of an extensional jog structure or transpressinal structure is unanswered. Further
analysis in the coming years should shed more light on the question.

e Borehole drilling plan and hydrologic testing strategy were developed. Hydrologic
properties of the Wildcat Fault will be investigated through borehole drillings in the
coming years.

4.2. Lessons Learned
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8. Alternative Plans
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9. Time Lapse Geophysical Survey
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Appendix 2

NUMO LBNL Collaborative Project
Kick-off meeting agenda

September 12, 2008
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Development of Hydrologic Characterization Technology of Fault
Zones

— Kickoff Meeting and Site Tour—
A NUMO-LBNL Collaborative Project
September 12, 2008

Friday, September 12,
20

9AM-2:00PM

Rm-1099, LBNL

9:00 am: | Welcome and the status of Yucca Mountain Project
Jens Birkholzer, Head, Nuclear Waste Dept., LBNL

9:15 am: | Status of NUMO activities and perspective of the
ProjectdJunichi Goto, Science and Technology Dept., NUMO

9:30 am: | Project Overview
Kenzi Karasaki, LBNL

9:45 am: | LBNL Workplan
Kenzi Karasaki

10:00am | LBNL site geology overview
Preston Jordan

10:25am | EM and Resistivity survey
Erika Gasperikova,

10:50am | Geological survey and Trenching
Tiemi Onishi

11:30 am | CRIEPI Workplan
Kenzo Kiho and others, CRIEPI

1:00 pm: | Open Discussion
All

1:30 pm: | Wrap up and plan for next meeting
Kenzi Karasaki

2:00pm: | Site tour
Wild Cat Fault, Hayward Fault

6:00pm: | Dinner at TBD location

Attendees:

NUMUO: | Hiroyuki Tsuchi, Junichi Goto, Satoru Suzuki

crigpr | Kenzo Kiho, Kimio Miyakawa, Keiichi Ueta, Takuma
Hasegawa

LBNL: | Jens Birkholtzer, Mark Conrad, Erika Gasperikova. Ramsey
Haught, Preston Jordan, Kenzi Karasaki, Tiemi Onishi, Rohit
Salve.
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Appendix 3

Mission Fault at Ohlone College

—A Potential Alternative/Additional Site—
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Introduction

The Mission Fault is located between Hayward and Calaveras Fault. It is part of a
contractional stepover between these two faults. The Hayward and Calaveras faults are the
major component of the San Andreas Fault system in the San Francisco bay area (Fig.
A3-1). The Mission Hills are the result of this contractional stepover which is
accommodated by folding and reverse faulting (Jones et al., 1994; Graymer et al, 1994).
Uplift of the Mission Hills was coeval with the regional uplift of the California Coast
Ranges and is estimated to have commenced ~3.5 Ma (Harbert and Cox, 1989 in Manaker,
et al, 2005). The minimum vertical displacement on the Mission Fault is 520 m based on
late Miocene to early Pliocene rocks. This uplift has been linked to several landslides that
have occurred in the area. The trace of the Mission Fault was inferred by Hall (1958) as
parallel to a fault line scarp at the base of the west side of the Mission Peak. Two concealed
branches of the Mission Fault were recognized in the vicinity of the present Ohlone
College campus property. According to Manaker et al, 2005, geological and seismological
evidences suggested that the Mission Fault may not be the source of seismicity in the
region and it’s not playing a major role in slip transfer between the Calaveras and Hayward

faults.
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Figure A3-1- Schematic geology of the San Francisco Bay Region, California (after
Manaker et al, 2005)

Oholone College

Oholone College is a community college located in Fremont, CA. It is situated

approximately 64 kilometers from Lawrence-Berkeley National Laboratory (Fig. 2).
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Figure A3-2 — Map showing the location of the Ohlone College relative to LBNL

The Mission Fault cuts the college property in northwest-southeast direction. The
college had issues with water infiltration in the campus buildings. To solve this problem,
Weiss Associates was engaged in developing a solution for groundwater intrusion at
Ohlone College Campus (Fig. A3-3). Their investigation consisted of (a) establishing
monitoring wells to determine the current ground water levels; (b) seismic surveys to
determine the underlying geological structure and to tie it to the hydrology; (c) gathering
data from borehole geophysical logs on underlying geological structure; and (d) examining
core samples to provide visual samples of the hydrogeological features. This information
was used to formulate a concept of the hydrogeological features of the campus.
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Figure A3-3 — Google map image of the Oholone College campus in Fremont, CA

Geology

The Ohlone College campus is located near to a coalescing landslide complex. The
campus is underlain by channel fill and alluvial soils. The bedrock comprises the Tertiary
San Pablo Group (Fig. A3-4) (Weiss Associates, 2009). The main lithologies are:

Briones Formation (Thbr)

The Briones formation is the lower part of the San Pablo Group. It consists of a massive
fine to medium grained yellow to brown sandstone. The sandstone mapped as composing
the hillslope immediately east of the Ohlone College campus and beneath the western campus.

Briones sandstone are extensively fractured due faulting.

Neroy Formation and/or Cierbo sandstones (Tn)

The Cierbo Sandstone (Tc) is a sandstone and interbedded siltstone containing some

pebbles or large cobbles (Hall, 1958), which ranges from gray or gray-brown finer-grained
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beds to blue or blue-mottled coarser-grained beds. The overlying Neroly sandstone is
primarily a friable gray to bluish-purple coarse-grained sandstone (Hall, 1958). Although
these bedrock units have not been mapped in surface exposures in the Ohlone College
campus area, they are stratigraphically above the Briones Formation and below the Orinda
Formation in nearby areas (Hall, 1958; Graymer et al., 1996, Plate 4; and Rogers and

Drumm)

Orinda Formation (To)

The Orinda formation is composed by sediments deposited in fresh water such as
conglomerate, sandstone, claystone, limestone, tuff and shale (Hall, 1958). This unit was

mapped as overlain the Briones formation southeast of the Ohlone College campus.

Irvington Gravels (QTi)

The Irvington gravels corresponds a Pleistocene deposit and the uppermost lithofacies of
the Santa Clara Formation. It is composed by poorly consolidated to semi-consolidated
cross-bedded massive sandstone interbedded with some clay and large quantity of gravels.

It can exceed 500 ft in thickness.

Quaternary deposits (Qu)

Thin layers of alluvium occur in the vicinity of the Ohlone College campus. Fill material

are observed throughout the campus.
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Figure A3-4 — Geologic map of Ohlone College and vicinity by Graymer et al, 1995

Structures

Hall, 1958 was the first to recognize the Mission Fault, a prominent boundary
between the Briones sandstone exposed on Mission Peak and Mission Ridge, and the
younger Pliocene-age non marine sedimentary rocks tightly folded in the overturned
Tularcitos Syncline intermittently exposed beneath the more gently inclined slope. The
Orinda beds are younger and less competent non marine sedimentary units, occupying a
tightly folded prism extending southeasterly, from Mission San Jose. Because the Mission
Fault is part of the stepover between the Hayward and Calaveras faults, the main feature
are dominated by active thrust faults. The compression underling the Mission Fault is
responsible for the uplift of Mission Hills at rate of 3 mm/year with an estimate 1000 feet

of separation between the Briones and Orinda formation based on topography and
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stratigraphy relationships (Rogers and Drumm). Microseismicity data studies by Ellswoth
et al (1982) suggest that focal mechanism solutions for the Mission Fault indicated
right-lateral slip on the seismically-defined fault plane, with one quake registering
considerable thrust component.

Two fault branches were mapped in the campus. The westerly and less sinuous trace
(also referred as the Warm Spring Fault) was interpreted as nearly vertical or steeply
dipping to the northeast, while the more sinuous easterly trace was interpreted as a

low-angle or reverse thrust fault.

Hydrogeolgy

The Ohlone College is part of the sub basin of the Niles Cones Ground Water Basin,
located in the eastern side of the Hayward Fault in a zone called “above the
fault”(Fig.A3-5). This zone is not in communication with aquifers in the west. The

alluvium fan overlies the Santa Clara formation (Weiss Associates, 2009).

BELOW THE FAULT “ABOVE THE FAULT"
SALINITY AVIFER CERONATION T A ELL FELD ARSAS
BARRIER RECLAMATION NG
S R ﬁvu‘:anu_ﬁﬁu WELLS 157 g ‘;. :
e 3 iy 4N ;

Figure A3-5 — Schematic Diagram of the Niles Cone Ground Water Basin, Southern San

Francisco Bay Area, California
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Potentiometric maps of historic ground water indicate that the groundwater in the vicinity of
the campus flowed approximately north-northeast to west southwest. The presence of springs
also suggests that the fault may be the local ground water barrier. During six months, \Weiss
Associates, 2009 monitored the water level on a week day basis; however an existing
extraction well (170 feet) was in place to dewater a construction site. A total of nineteen
borings (P series) were drilled at the site which six of them were test extraction wells
located in the North, East and West of the campus. The test wells were installed to gather
information on subsurface geology and hydrogeology. The depth of the boring varies
between 30-70 feet below ground surface. Seasonal variation on groundwater level was

observed with higher levels during rainy season.

A second set of boreholes, six W series, were drilled to collected core samples from
depth between 90 and 100 feet (W -1 and W-2) and of 100- 238 feet (W3 through W-6)
below sea level. Those cores were logged for lithological description, fracture analysis,
core recovery information, and rock quality designation (RQD). Three of the cores (W-3,
W-5 and W-6) were logged for geophysical data such as natural gamma-induction,
electrical resistivity and acoustic televiewer logs. Fluid temperature and conductivity logs
were performed in W-3 to identify potential permeable zones (Weiss Associates, 2009).

Groundwater elevations contours maps (for details see Weiss Associates, 2009) also
showed fluctuations on groundwater levels during spring and summer, suggesting seasonal
variations. The groundwater flow is generally directed to west or west-southwest from
eleveation 470ft to 410ft (Weiss Associates, 2009).

Analyses of drill core by Weiss Associates, 2009 shows highly fractured zones at depth.
Fracturing was characterized in the Briones sandstone by borehole televiewer and core
logging. Major fracture zones were located about 125 ft and 150 ft and between 205 ft and
213 ft below the ground surface (Weiss Associates, 2009).
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Figure A3- 6 - Piezometer and Test Well Locations, Ohlone College, Fremont, California (Weiss Associates, 2009)
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Figure A3-7 — Map showing location of historically wet areas subject to reservoir seepage,

Ohlone College, Fremont, California (Weiss Associates, 2009)

Geophysics
Seismic Lines

The subsurface hydrogeology structure was imaged by four geophysical lines, including
reflection and refraction surveys. Data were acquired using a shoot-through acquisition
technique and sources generated by the Betsy Seisgun and hammer. Seismic images
included models of P-wave velocities, S-wave velocities, Vp/Vs ratios and Poisson’ ratio

The fault trace was previously correlated with geomorphic features such as location of

springs and alignment of trees (Weiss Associates, 2009).
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The seismic lines were aligned that Line 1, 3 and 4 are parallel to subparallel to each
other and oriented approximately N-S. Line 2 is normal and crosses Line 1 and 3
(Fig.A3-8).

EXPLANATION
gl == Seismic Line N N |
X Well, proposed, Weiss
© Well, proposed USGS
Soil/surface wet area
‘\; ® @ Fault, projected, Graymer
® o Fault, Seismic crew

Figure A3-8 — The interpretation from the seismic lines suggests at least two surface
fault expressions that trend across the western part of the Campus (Weiss Associates,
2009).

Fault zones are either expressed as low-velocity zones due to the damaged rock within
fault zones or as an abrupt change in velocities across the fault zone (Aki and Lee, 1976;
Mooney and Luetgert, 1982; Catchings et al., 2000 in Weiss Associates, 2009). On the
Ohlone College Campus velocity images, a prominent northeasterly dipping low-velocity
zone is observed along Profile 1 between meters 100 and 200 (distance) (Figure A3-9). At
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shallower depths on Profiles 2 and 3, the fault offsets relatively low-velocity rocks to the
southwest from higher velocity rocks to the northeast. On seismic reflection images, faults are
typically expressed by horizontal reflectors that are vertically offset across the fault zone.
Along profile 1, the Ohlone College reflection image shows a prominent northeasterly dipping
fault that corresponds to the low velocity zone seen in the velocity image. Similar offsets are
seen along Profiles 2 and 3 along the northwestward extension of the fault. A similar, but less
prominent fault is interpreted southwest of the fault described above. The USGS interprets
these surface fault expressions (blue lines) to be the principal strands of the Mission Fault,
which was mapped by Graymer et al., 2000 southeast of the Ohlone College Campus and
projected to trend northwestward (red line) beneath the landslide deposits. Because of high
noise levels, the velocity images generally show information in the upper 50-m depth range,
and due to high dips in the underlying bedrock, the reflection data only provide clear images in
low-angle unconsolidated sediments, which generally are less than about 40 m thick (\Weiss
Associates, 2009).

Borehole Geophysics

A second geophysical measurement came from borehole logging up to 200 feet depth in
to the Briones sandstone. It suggested that fracture network in the Briones sandstone at
depth was found to have a major influence on the hydrogeology in the campus. Major
geophysical measurement included acoustical televiewer, electric conductivity logs,
neutron and gamma-ray (Weiss Associates, 2009).
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Figure A3-9 - 3-D view of P-wave velocity models along lines 1-4, Ohlone College, Fremont, California (Weiss Associates, 2009)
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Field Trip to Ohlone College on December 21, 2008

On Saturday, December 21", Dr. Tom Fogwell from Weiss Associates led a field trip
to Oholone College. Participants included researchers from CRIEPI (Ueta, Hamada,
Kanazawa, and Tanaka), NUMO (Goto), LBNL (Karasaki) and consulting (Onishi).

During this field trip, Dr. Fogwell explained the site geology, showed the location of
surface springs and ponds, and the location of piezometers throughout the campus. Dr.
Fogwell explained that the campus is located on the top of a shallow aquifer; and the main
purpose of the present project was to develop a basic understanding of the hydrologic
controls that determine the flow of groundwater on the campus. The fault does not have a
surface expression but the presence of springs and water infiltration in the basement of
buildings was causing structural damage. The topography clearly shows the hills on the
eastern side of the campus and the groundwater flowing to the west. After examining the
geological, hydrogeological and geophysical characteristics, Weiss Associates proposed
having three extraction wells in the western edge of the campus. The water from these
wells would be piped through a system of pipes using the effects of syphoning to assist
the flow of the water. These pipes would route the extracted water around campus
structures by using portions of an existing 36 inch diameter storm drainage system along
the northern edge of the campus as a corridor for threading the pipes from the upper
(eastern) part of the campus to the lower (western) part of the campus. It then would be
connected at the lower part of the campus to a subsurface injection system consisting of
non-perforated installed at approximately 30 feet below grade, and connecting to an
infiltration gallery which will allow the water the re-enter the groundwater system.

Details of can be found in Weiss Associates, 2009.

Possible collaboration between LBNL and Weiss

According to Dr. Fogwell, Weiss Associates is open for future collaboration on the
Ohlone College project. The NUMO-LBNL project could take advantage of having a site
where a well known fault exits and hydrogeological characterization is under way. The

springs and ponds suggest that the fault is acting as barrier to the flow across it and the
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main flow pathway, according to Weiss Associates, 2009, is from the network fracture in
the Briones sandstone. Further investigation on fault characteristics and hydrological

monitoring would increase our knowledge on fault hydrology.

Summary
- Subsurface geology and hydrogeology of the site is quite complex due stepover between

the Hayward and Calaveras Faults.
- Itis a region of active faults (strike-slip and thrust) with micro-seismicity
- The area has active landslides due uplifting

- The water infiltration problem was solved by dewatering system in the east side of the

campus.

- The combination of water level measurement and core samples showed a consistent

pattern of fracturing at depth

- Seismic imaging suggests at least two surface expressions of the fault, crossing the

western part of the campus.

- Fracture network in the Briones Formations at depth seems to be the main path of

subsurface flow in the Ohlone College campus.
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Background and objectives:

As outlined in the Project Plan, starting from FY2007 for duration of five
years, this project seeks to establish effective and efficient investigation and
characterization technologies for estimation of hydrologic properties of fault
zones at the preliminary characterization stage followed by field tests to
validate their effectiveness. In particular, the methodology development will
focus on the use of hydrologic investigation and characterization technologies
that incorporate the relationship between geologic and hydrologic
characteristics of fault zones.

In FY2007, literature survey was conducted from various countries in the
world including Japan in an effort to develop classification of faults based on
geologic and hydrologic properties. Literature survey was conducted on
published investigation and characterization technologies as well. Based on
the results of the survey, a flow of investigation and characterization steps as
well as the plans for filed validation program were developed. The literature
survey on the fault zone classification revealed that there is no clear and
direct relationship between the sense of displacement (normal, reverse and
side-slip) and the hydrologic properties. However, it was concluded that it
may be still possible to indirectly estimate the hydrologic properties of faults
from geologic characteristics based on a classification by other geologic
attributes. As for the literature search on investigation and characterization
technologies, a comprehensive summary of geological, geophysical,
hydrological and geochemical techniques that have been used at
investigation sites in various countries was presented. A tentative and
generic flow chart for site investigation steps was compiled. Information from
three field sites in the United States was collected and investigated as
potential sites for field validation exercise. A site with known faults within
LBNL property was selected as an investigation site and an outline field
investigation plan was drawn. Scientists with expertise in structural geology
and hydrology evaluated these results and concluded that further efforts
should be expended to develop fault-type classification from different
viewpoints. And that there is very few field examples of hydrologic
characterization of fault zones and that it is important to validate and
establish characterization technologies by conducting investigation at a field
site.

In FY2008, based on the 5-year project plan and on the results of the FY2007
effort, additional literature survey will be conducted to establish the
procedure for investigation and characterization of fault zone hydrology with
a consideration for potential relationship between geologic and hydrologic
characteristics. In addition, as a part of the site investigation and validation
project at the LBNL site, surface-based investigations will be conducted to
understand the geologic characteristics and to construct drilling plan at the
site.
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Activities:

The work activities planned for FY2008 is outlined below. A detailed plan for
each investigation activity will be developed separately.

1. Literature survey

1.1 Investigation of the relationship between geologic and hydrologic
characteristics (Domestic outsourcing)

Building on the FY2007 results, the relationship between geologic and
hydrologic characteristics will be investigated based on different attributes
from the previous year while using more detailed information from Japan
and from literature that does not discuss hydrologic information and
attempts will be made to classify fault zone hydrology.

1.2 Procedure development for investigation and characterization (Domestic
outsourcing)

Based on the results of 1.1 and the Improvement and Systematization Project,
the procedure that was developed in the previous year will be modified to
match the style of Japanese investigation and characterization, and compile
information to ultimately develop the methodology for investigation and
characterization of hydrologic properties of fault zones.

2 Field investigation
2.1 Evaluation of existing information
2.1.1 Aerial photo analysis (Domestic outsourcing)

Using Japan’s unique analysis techniques of aerial photometry, the faults at
the LBNL site will be analyzed to define them in relation to the regional
faulting system, the relationship to the nearby active fault, and their
geometric features to provide information for building a model to be used to
design borehole drilling and testing.

2.1.2 Analysis of site information

Available relevant information and data regarding the site geology, structure,
hydrology and geochemistry at the LBNL site will be streamlined and
analyzed and the most up-to-date conceptual model of the site geology,
hydrology and geochemistry will be constructed. At the same time the
location and the properties of faults will be estimated and incorporated in the
model.

2.2 Surface-based investigation plan

Using available data and information and the results of the analysis of 2.1,
designs for geophysics, surface-geological survey, trenching and analysis of
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groundwater will be developed and a detailed plan will be developed for each
investigation activity.

2.3 Surface-based investigation
2.3.1 Geophysical survey

Taking into account the rock types and the real estate of the LBNL site, as
many as three lines of electromagnetic survey (CSEM) and an electrical
survey (resistivity, SP) will be conducted to estimate the geometry and the
properties of the fault. If the resources and schedule allow, reflection seismic
surveys will be conducted using an appropriate source.

2.3.2 Surface geologic survey

Geological mapping will be conducted centered around the location of the
fault based on the available information and the results of the geophysical
surveys. The surface petrology, deposits, and the distribution of factures and
the location of the fault will be analyzed. If the fault is exposed, a detailed
sketch will be made and notes will be taken. If appropriate, thin sections of
rock samples will be made and microscopic, chemical and dating analyses
will be conducted to understand the properties of the fault and the protolith.

2.3.2 Trench studies

Up to three trenches will be excavated at locations guided by the geophysical
and geological surveys with a maximum length of 30m and a width of 2.5m.
The walls of the trenches will be mapped and detailed field notes will be
taken including the strike, dip, the sense and the amount of displacement,
deformation structure, protolith rock types, stratigraphy,
metamorphism(secondary minerals and veins). If appropriate, thin sections
of rock samples will be made and microscopic, chemical and dating analyses
will be conducted to understand the properties of the fault and the protolith.

2.3.3  Structural analysis of faults (Domestic outsourcing)

Rock samples of the fault obtained from the surface survey and trenching will
be analyzed using the CT and polished surface analysis techniques developed
uniquely in Japan to understand detailed geologic properties such as the
structure and deformation history of the fault.

2.3.4 Groundwater geochemical analysis

If deemed necessary based on the analysis of existing data and the surface
geological survey described above, analyses of groundwater from the wells
and streams in and near the site will be conducted to understand the
chemistry, isotopes, and groundwater ages.

2.4 Analysis and evaluation of results
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2.4.1 Hydrologic and geochemical analysis (Domestic outsourcing)

Using the methodology developed by NUMO under the Improvement Project,
the pre-existing information as well as the data from the surface
investigation of the hydrologic and geochemical properties of the
groundwater at the LBNL site will be analyzed and evaluated to streamline
the information for model development and analysis for the planning of the
drilling and testing program.

2.4.2 Analysis and evaluation of literature and surface investigation
results

All the information from the literature survey and surface investigation will
be integrated and the location and the properties of the fault will be
reevaluated. The conceptual model will be wupdated accordingly. The
feasibility of going forward with the plan to conduct borehole based
investigation at the LBNL site will be evaluated. If deemed appropriate, the
geologic, hydrologic and geochemical conceptual model will be updated and a
three dimensional hydro-geologic model will be constructed and groundwater
flow analysis will be conducted. If deemed the site is unfeasible, the work
plan will be reevaluated and an alternative site will be considered.

2.5 Planning of borehole-based investigation

If the fault at the LBNL site is deemed appropriate for validation of the fault
zone investigation and characterization technology, a comprehensive plan for
drilling and testing will be formulated that will span for additional three
years starting from FY2009 with multiple boreholes to be drilled.

3 Discussion of results and reporting

The results of the project will be discussed involving experts of hydrology and
faults from domestic universities and research institutes for more technical
and objective evaluation. A report will be prepared that summarizes the
results of the discussion as well as the results from the FY2008 activity.

Division of work and implementation structure

NUMO and LBNL will collaborate in planning all parts of the work and
evaluation of the results. Literature survey and site investigation activity
will be split between NUMO and LBNL as shown in Table 1. Some portion of
NUMO work that cannot be conducted directly by NUMO will be outsourced
either to a domestic institution or to LBNL (Figure 1).
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Table 1: Work responsibility schedule for FY2008

NUMO LBNL
FY2008 Work Item Activity Objective - LBNL Domestic i
Direct Direct
contract | contractor
Literature survey
Fault type Collect and analyze | Improve investigation and o
classification literature info characterization flow
Characterization flow Improve and Develop methodology o
systematize flow
Site Investigation
Analysis of existing | Analyze aerial photo |Estimate fault properties in o
info relation to the active fault
Collect & analyze site | Estimate geol., hydrol.,
info geochem properties
(literature, analysis; | Location, property of fault O O
construct geo, hydro, |Plan surface invest, drilling
geochem model plan
Plan surface Design and plan work Conduct surface
investigation activity investigation and @) O
characterization
Surface investigation Geophysics Location and properties of o o
fault
Surface geology Site geology
Location and properties of
fault O O
Hydrologic properties of
fault
Trenching Location and properties of
fault
Hydrologic properties of © O
fault
Fault structural analysis| Detailed geologic o
properties of fault
Geochemical analysis | Hydrol. and geochemical O O
properties of site and fault
Analysis and Analyze hydrologic and| Evaluate hydro., geochem
evaluation geochemical data characterization using o
results from Sophistication
Project
Analysis and evaluation Site geol.,
of literature and surface hydrol.,geochem.
investigation (geol., Properties
hydrol., geochem. | Location and properties of @) O O
model development, fault
groundwater flow  [Develop drilling and testing
analysis plan
Develop drilling and | Design and develop Conduct and evaluate O o
testing plan work plan borehole based tests
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Collaborative work under NUMO —

DOE bilateral agreement

NUMO — R

WFO contract
Out source

Domestic Contractor

LBNL

Figure 1. Execution and contract structure

Schedule and Deliverables

The duration of the collaborative work for FY2008 will be from the date
contract will have signed until March 31st, 2009. Table 2 shows the work
schedule, Table 3 lists the deliverables. The due date of the deliverables is

March 16th, 2009.

Table 2: Project schedule for FY2008 activities

10

11

12

2009/1 2 3

1. Literature survey

Fault type classification (DO)

Examine investigation& char.
Flow (DO)

2. Field investigation

Aerial photo analysis (DO)

Collect site info & analysis

Develop surface investigation

plan

Geophysics

Surface geologic survey

Trenching

Sophisticated fault structural
analysis

Groundwater chemistry

analysis

Hyrol., geochem. data analysis

(Do)

Analysis of Literature and
surface investigation

Develop borehole-based
investigation program

3. Deliverables

Write Reports

Meetings (A : LBNL, A :JPN)
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Table 3: List of deliverables

Deliverable Due Date Send to: No. of Copies Notes
. th Science and
FY2008 final report (March 16~ 2009 Technology Dept. 1 Hard copy
- . PDF and Microsoft
Electronic file of the March 16" 2009 Science and 1 Word format on

final report

Technology Dept.

CD(s) or DVD(s)
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