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ABSTRACT OF THE DISSERTATION 

 
Cell States Explain Calcium Signaling Heterogeneity in MCF10a Cells in Response to ATP 

Stimulation 

 
by 
 

Robert Kevin Foreman 

Doctor of Philosophy in Bioinformatics and Systems Biology 

University of California San Diego, 2019 

Professor Scott Rifkin, Chair 

Professor Roy Wollman, Co-Chair 

 
 

Regulated differences between cells fundamentally endows multicellular organisms with 

the huge diversity of complex functions and behaviors we observe in nature. Recent advances 

in single-cell technology such as droplet-based RNA-Seq are revealing at an unprecedented 

rate different cellular states and their dynamics. However, not all differences at the gene 

expression level are necessarily related to cell states. Differences between cells can arise from 

noisy effects such as transcriptional bursting. Similarly, not all phenotypic variability necessarily 

arises from systematic differences in gene expression. For example, variability can be explained 



 x 

by post transcriptional regulation and/or intrinsic fluctuations in components of the calcium 

signaling network. In order to clarify the sources of variability in calcium signaling, we sought to 

use in situ sequential hybridization smFISH in order to obtain highly accurate single-cell 

expression counts paired to measurement of a complex phenotype, calcium signaling dynamics, 

which is an emergent property of gene expression plus post-transcriptional regulation. In this 

work, we identify an upper bound for how much gene expression variability could arise from 

allele specific transcriptional bursting, and then investigate how much of calcium signaling 

variability is explained by gene expression differences related to different cell states. 
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INTRODUCTION - Variability in Gene Expression and Calcium 

Signaling Response 

Abstract 

 Cell states are regulated differences between individual cells and occur on many 

different scales. At one extreme there are cell types such as muscle cells vs neuronal cells with 

cell state differences so significant they manifest morphologically. At the other end of the 

spectrum there are immune cells that can appear quite similar, but may differ in their expression 

of a small number of genes affecting the cells behavior. It is currently unclear what the lower 

limit to the resolution of cellular identity is, are cells stratified up to this limit, and whether 

mammalian systems tend to distribute as clusters or continuum in expression space. These 

studies will address how intrinsic noise acts as a resolution limit to cell states, and show how 

much of calcium signaling heterogeneity is actually explained by systematic gene expression 

differences between cells. 

Introduction 

 Despite significant research seeking to understand the genotype to phenotype 

relationship. It is still an open question how much of the variability in certain complex 

phenotypes, such as cellular signaling, is explained by systematic differences in gene 

expression between cells. Some previous studies found that non genetic differences explain a 

significant proportion of phenotypic variability(Cheong et al., 2011; Spencer et al., 2009). While 

other studies indicated that cellular heterogeneity seemed to originate in long-time scale 

extrinsic cell-to-cell differences(Selimkhanov et al., 2014; Toettcher et al., 2013; Yao et al., 

2016). If cells are fundamentally very noisy, and signaling is corrupted by this noise then cells 

must be structured to function through robust low entropy self-organized processes. On the 
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other hand, if cells are actually very accurate at responding to complex environmental cues then 

multicellular organisms could be functioning in a fundamentally different manner. To bridge this 

knowledge gap, we sought to measure both the complex emergent phenotype of signaling 

dynamics in response to ligand stimulation, and the gene expression state of a large number of 

single-cells. 

 In order to address subtle differences in cell state we needed to use a highly sensitive 

and accurate gene expression measurement. While there has been an explosion in scRNA-Seq 

technology over the last 5 years with the introduction of fluidic capture methods such as C1 

Fluidigm and droplet based approaches(Gong et al., 2018; Macosko et al., 2015; Xin et al., 

2016; Zilionis et al., 2017), these techniques can be limited in three key ways: low RNA 

sensitivity, low cell capture efficiency, and loss of spatial information about cells(Zhang et al., 

2019). Low capture efficiency and RNA sensitivity affect the ability to detect rare cell populations 

and cell states maintained by subtle gene expression differences(Andrews and Hemberg, 

2018). We want to preserve spatial information about cells in order to map the gene expression 

state of a cell to its corresponding calcium signaling phenotype. Furthermore, cellular state 

could be maintained by local environments that would be perturbed by tissue dissociation 

required for droplet based scRNA-Seq(Haque et al., 2017). Fortunately, over the last 5 years 

spatial transcriptomics methods have also developed very rapidly. These sequential 

hybridization techniques are very sensitive and the in situ nature of the technique allows the 

alignment of cells between live-cell calcium dynamical measurement and the single-cell gene 

expression measurement(Foreman and Wollman, n.d.). 

 While there are subtle differences in the implementation of spatial transcriptomics every 

method relies on performing a series of sequential hybridization, imaging, and quenching. Some 

methods simply used standard single-gene per hybridization/color, and the multiplexing scaled 

linearly in the number of dye colors times the number of hybridizations performed(Codeluppi et 

al., 2018). Others used spectral barcoding(Cai, 2013), simple combinatorial barcoding(Lubeck 
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and Cai, 2012), and recently groups have established error robust barcoding methods which 

scale to 100s or 1000s of genes(Eng et al., 2019; Moffitt et al., 2016). Error robust barcoding 

allows for very sensitive, 99% true positive, and specific, 0.1% false positive rate, quantification 

of transcripts per cell(Moffitt et al., 2016). These sequential hybridization smFISH techniques 

are mature and have been used in cell culture and tissues of many different kinds. This era of 

spatial transcriptomics is in the early stages, and there are exciting applications in a variety of 

different areas from mapping cell states in whole tissues to understanding heterogeneity and 

spatial structure in tissues and cancers. 

 Beyond the in situ benefit of preserving spatial information of cells and spatial 

distribution of RNA within cells, one can also use the spatial information to map data from any 

image based assay onto the gene expression state of the cell. In this work we leverage this 

ability to make joint measurement of a live cell phenotype measured by a genetically encoded 

biosensor of cytoplasmic calcium with the gene expression measurement of many genes from 

the calcium signaling network. Thereby we are able to address questions related to the genetic 

basis of heterogeneity in calcium signaling. 

The calcium signaling pathway is known to exhibit a range of qualitatively diverse 

dynamical patterns including: single peak(Yao et al., 2016), oscillations(Smedler and Uhlén, 

2014), excitable pulses(Zhang et al., 2015), and various combinations(Giorgi et al., 2018; Taylor 

and Francis, 2014). These different response types were shown to lead to differential outcomes 

for cells that responded one way or another. For example, in endothelial cells responding to 

VEGF, cells that oscillate tend to proliferate while cells with a high intensity single peak tend to 

migrate(Noren et al., 2016). Single-cells could therefore be encoding a stratified set of 

responses to the same environmental cues, and effectively utilizing cell state differences to 

achieve a broader repertoire of response than would be possible if all cells responded 

identically. This thesis seeks to elucidate how much of the variability in signaling is due to cell 
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state differences, and to evaluate how much cell state maintenance is limited by transcriptional 

bursting. 

 Chapter 1 seeks to identify a minimal unit of cell state. This limit is effectively set by the 

scale of intrinsic noise, allele specific transcriptional bursting, that induces short timescale 

variability in the gene expression state of a cell. Therefore, gene expression differences that are 

smaller than this intrinsic noise limit could not be effectively maintained over time. We find that 

in contrast to previous reports that intrinsic noise is a super-Poissonian limiting factor(Dar et al., 

2015; Hansen et al., 2018a), after controlling for extrinsic differences between individual cells, 

gene expression is actually distributed near Poisson. This means that in terms of gene 

expression variability transcriptional bursting in an allele-specific manner is playing a smaller 

role than extrinsic variability from systematic differences between individual cells. 

 Chapter 2 leverages that there is a correlation between the gene expression state of the 

cell, and the differences observed in calcium signaling response to ATP. We use the variational 

autoencoders(Doersch, 2016) to learn the information capacity of calcium response encodings, 

and how much of the encoding differences between cells is explained by gene expression. We 

also identify cell states related to differences in calcium signaling dynamics, and validate that 

the cell states are meaningful by relating to the emergent phenotype. 
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CHAPTER 1 - Transcriptional Bursting does not Limit Cellular 

State Resolution 

Abstract 

Gene expression variability in mammalian systems plays an important role in 

physiological and pathophysiological conditions. This variability can come from differential 

regulation related to cell state (extrinsic) and allele-specific transcriptional bursting (intrinsic). 

Yet, the relative contribution of these two distinct sources is unknown. Here we exploit the 

qualitative difference in the patterns of covariance between these two sources to quantify their 

relative contributions to expression variance in mammalian cells. Using multiplexed error robust 

RNA fluorescent in situ hybridization (MERFISH) we measured the multivariate gene expression 

distribution of 150 genes related to Ca2+ signaling coupled with the dynamic Ca2+ response of live 

cells to ATP.  We show that after controlling for cellular phenotypic states such as size, cell 

cycle stage, and Ca2+ response to ATP, the remaining variability is effectively at the Poisson limit 

for most genes. These findings demonstrate that the majority of expression variability results 

from cell state differences and that the contribution of transcriptional bursting is relatively 

minimal.  

Introduction 

Gene expression variability is ubiquitous in all biological systems. In multicellular 

organisms heterogeneity between different cell types and states confers specialized function 

giving rise to complexity in whole-system behavior(Eldar and Elowitz, 2010; Raj and van 

Oudenaarden, 2008; Suo et al., 2018; Symmons and Raj, 2016; Tabula Muris Consortium et al., 

2018). Similarly, single-cell organisms and viruses were shown to utilize heterogeneity at the 

population level to create diverse phenotypes, such as bet-hedging strategies in changing 

environments(Rouzine et al., 2015; Veening et al., 2008; Vega and Gore, 2014). While 
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variability can provide useful functional heterogeneity in a multicellular organism or cell 

population, it is not necessarily always beneficial(Raj and van Oudenaarden, 2008; Symmons 

and Raj, 2016). Unregulated stochastic events, i.e. noise, can limit cells ability to respond 

accurately to changing environments and can introduce phenotypic variability that can have a 

negative contribution to overall fitness. Indeed, many biological mechanisms including 

buffering(Stoeger et al., 2016) and feedback loops(Jangi and Sharp, 2014; Schmiedel et al., 

2015) have been suggested to limit the detrimental effect of gene expression variability. 

Quantification of the different contributions of mechanisms that cause gene expression 

variability is an important step toward determining to what degree the variability represents 

uncontrolled “noise” or cellular stratification and function.   

Two key contributors of gene expression variability are allele specific sources and global 

factors related to underlying cell state. Analysis of expression covariance between genes is a 

powerful approach to decompose gene expression variability into these two classes. Landmark 

works used this approach to investigate expression variability in bacterial cells, which laid a 

foundation for decomposing variability into allele-specific (intrinsic) sources and variability that 

originate from sources that affect multiple alleles and relate to the underlying cell state 

(extrinsic)(Elowitz, 2002; Paulsson, 2005). This work was later extended to yeast(Raser and 

O’Shea, 2004) and mammalian systems(Raj et al., 2006; Sigal et al., 2006; Singh et al., 2012). 

The decomposition into allele-specific and cell state components is not always simple. Allele-

specific noise in an upstream component can propagate into downstream genes(Sigal et al., 

2006) whereas temporal fluctuations in the shared components can have nontrivial 

consequences on expression distributions(Paulsson, 2004; Pedraza and van Oudenaarden, 

2005; Shahrezaei et al., 2008). Finally, use of the terms “intrinsic” and “extrinsic” is sometimes 

ill-defined and some models include a “coupled intrinsic” mode as well which is a form of shared 

variability and hence “extrinsic”(Rodriguez et al., 2019). Despite the sometimes confusing 
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nomenclature, the use of expression covariance to distinguish between allele-specific and 

shared factors is a powerful decomposition approach. 

 
In addition to covariance based approaches, the relationship between gene expression 

distribution variance and mean provides a useful quantitative framework to gain insights into 

sources of expression variability(Munsky et al., 2012). The comparison of expression variability 

between genes is not straightforward as expression variance scales with its mean. Three 

statistical tools are commonly used to describe mean normalized variance: the coefficient of 

variation (CV), coefficient of variation squared (CV2), and Fano factor. CV and CV2 are both 

unitless measures where the CV is defined as the standard deviation divided by the mean and 

the CV2 is simply the CV squared, or the variance divided by the mean squared. The CV and 

CV2 are useful to compare the scale of variance between different genes because of their 

unitless nature. The third measure, the Fano factor, is the variance divided by the mean and 

therefore not unitless, but it has a special property of being equal to one in the case of a 

Poisson process. Many biological processes have a variance to mean ratio that is at least 

Poisson so the Fano factor can define a ‘standard dispersion’, as a result, distributions with 

Fano factor smaller/bigger than one are considered under/over-dispersed, respectively. 

Therefore a simple quantification of the distribution variance scaled by its mean can provide key 

insights into the underlying mechanism generating the observed distribution(Choubey et al., 

2015; Hansen et al., 2018a). 

 
Multiple studies across bacteria, yeast, and mammalian cells measured over-dispersed 

gene expression distributions. This observation can have two main interpretations. One 

interpretation is that the observed over-dispersion is simply a result of the superposition of an 

allele-specific Poisson variability and cell state variability(Battich et al., 2015). The other 

interpretation is that the allele-specific variability itself is not a simple Poisson process(Corrigan 
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et al., 2016; Dar et al., 2015; Suter et al., 2011; Tantale et al., 2016). The latter interpretation 

was popularized by the introduction of a simple phenomenological model named the two-state 

or random telegraph model that represented genes as existing in either “on” or “off” 

states(Friedman et al., 2006; Fukaya et al., 2016; Kaern et al., 2005; Kepler and Elston, 2001; 

Lenstra et al., 2016; Molina et al., 2013; Paulsson, 2004; Peccoud and Ycart, 1995; Raj et al., 

2006; Sanchez and Golding, 2013; Shahrezaei and Swain, 2008; Suter et al., 2011; Thattai and 

van Oudenaarden, 2004). More complex models with multiple states were also 

considered,(Corrigan et al., 2016; Nicolas et al., 2018; Suter et al., 2011; Tantale et al., 2016; 

Zoller et al., 2015) but the addition of multiple states does not change the model in a qualitative 

way. These models suggest that transcription should occur in distinct bursts with multiple 

transcripts generated when the gene is “on”. These two-state models can be described by two 

overall key parameters: the burst size and frequency that control the resulting gene expression 

distributions with lower burst frequency and larger burst size contributing to the overdispersion 

of the underlying distribution. Overall both interpretations, bursting and cell state, can explain 

the observed over-dispersion and it is currently unclear which one is correct. 

 
 The relative scales and sources of variability are very important to understand in the 

modern world of single-cell highly multiplexed measurements. These new technologies are 

revealing the complex structure of ‘cell space’ with cells occupying a large array of types(Han et 

al., 2018; Rosenberg et al., 2018; Tabula Muris Consortium et al., 2018), states(Cheng et al., 

2019; Trapnell, 2015), and fronts(Shoval et al., 2012) that reflect functional stratification. Despite 

our knowledge that cell types and states manifest as gene expression heterogeneity, sometimes 

total gene expression variability is interpreted as arising from two-state transcriptional bursting 

alone(Larsson et al., 2019). The gap in our understanding of the relative contribution of cell 

state and allele-specific factors is hindering progress in assigning functional roles to observed 

variability(Dueck et al., 2016). 
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To address this knowledge gap, we utilized the two key properties of expression 

variability: covariance and dispersion. We measured gene covariance and dispersion using joint 

measurements of individual cells; where for each cell multiple cell state features were measured 

as well as a highly multiplexed measurement of gene expression. We used sequential 

hybridization smFISH (MERFISH implementation)(Moffitt et al., 2016) that allowed us to 

accurately measure the expression of 150 genes in ~5000 single-cells. Since expression 

covariance between genes from the same pathway is higher compared to genes that have 

distinct functions(Sigal et al., 2006; Stewart-Ornstein et al., 2012), we focused on a single 

signaling network and biological function, Ca2+ response to ATP in epithelial cells, a biological 

response important to wound healing(Funaki et al., 2011; Handly et al., 2015; Handly and 

Wollman, 2017).The key advantage of Ca2+ response is that the overall signaling response can 

be measured in less than fifteen minutes, a fast timescale that precludes any ATP induced 

changes in transcription. Using the combined dataset we were able to separate the correlated 

and uncorrelated components using a simple multiple linear regression model guided by the 

changes in the covariance matrix. We found that after removing all shared components, the 

remaining allele-specific variability shows very little over-dispersion for most genes measured. 

Overall these results indicate that transcriptional bursting is only a minor contributor to the 

overall observed expression variability. 

Results 

 To assess the relative contribution of the overall expression variability that stems from 

allele-specific sources versus underlying cell state variability, we took advantage of the fact that 

these two sources have different expression covariance signatures. Figure 1.1 shows simulated 

data to illustrate how covariance signatures can be utilized to decompose sources of variability. 

By definition, allele-specific variability is uncorrelated to any other gene whereas variability that 
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is due to heterogeneity in the underlying cell state will likely be shared between genes with 

similar function (Figure 1.1A). When transcriptional bursting dominates (Figure 1.1B top) the 

shared regulatory factors will have a small contribution, there will be little correlation between 

genes and the expression variance will remain largely unchanged after conditioning expression 

level on any cell state factors (Figure 1.1B top right). The residual intrinsic variance will have a 

Fano factor greater than one. On the other hand, when cell state variability dominates (Figure 

1.1B bottom), expression between genes will be highly correlated and conditioning the 

expression on cell state factors will reduce both the variance and correlation between genes. At 

the limit, when all shared factors are accounted for, the correlation between genes will approach 

zero and the Fano factor of the residuals will approach one, the Poisson limit (Figure 1.1B 

bottom right). When the contribution of bursting and cell state is comparable (Figure 1.1B 

middle) conditioning on cell state factors will have some effect but the final Fano factor will be 

higher than one even when the correlation is zero (Figure 1.1B middle right). Conditioning on 

cell state factors has a dual effect on correlation and Fano factor and therefore it is possible to 

assess whether the conditioning removed all the obvious extrinsic variability. When all the 

extrinsic variability is conditioned out, one can confidently interpret whether the residual intrinsic 

variability is under or overdispersed. 
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To distinguish between the possible situations described above requires accurate highly 

multiplexed single-cell measurements of gene expression and a sufficient number of cellular 

features that correlate with the underlying cell state factors controlling gene expression. To 

achieve this we developed an experimental protocol that combines MERFISH, multiplexed and 

error robust protocol of counting RNA transcripts using fluorescent in situ hybridization,(Chen et 

al., 2015; Moffitt et al., 2016) with rich profiling of the underlying cell state (Figure 1.2). We used 

the MCF10A mammary epithelial cell line, which is often used in studies of cellular variability 

due to their non-transformed nature and their accessibility to imaging(Qu et al., 2015; 

Selimkhanov et al., 2014). We focused on genes that share biological function: involvement in 

the Ca2+ signaling network, a key pathway important to the cellular response to tissue 

wounding(Justet et al., 2019; Minns and Trinkaus-Randall, 2016). The two advantages of Ca2+ 
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signaling are that 1. we expect that genes that share a function will show a high degree of 

correlation in their expression levels(Stewart-Ornstein et al., 2012). 2. Ca2+ signaling is fast and 

we can measure the overall emergent phenotype of the network in less than 15 minutes (Figure 

1.2A). In our protocol cells were rapidly fixed after live cell imaging (10-15 min from ATP 

stimulation to fixation) and therefore the gene expression measured in the same cell is unlikely 

to have changed as a result of the agonist. 

 
MERFISH is a multiplexing scheme of smFISH where transcript identity is barcode-

based, and the barcodes are imaged over several rounds of hybridization. During each 

hybridization round, dye-labeled oligos are hybridized to a subset of RNA species being 

measured, the sample is imaged and RNA appear as diffraction limited spots, then the dye 

molecules are quenched, and the process is repeated until all barcode ‘bits’ are imaged. By 

linking diffraction limited spots across imaging rounds, we can decode the RNA barcodes by 

identifying the subset of images where a bright diffraction limited spot appears at the same XYZ 

coordinate (Figure 1.2B). The use of combinatorial labeling allows exponential scaling of the 

number of genes images with the number of imaging rounds. The scaling is mostly limited by 

the built-in error correction(Chen et al., 2015). In this experiment, we used 24 imaging rounds (8 

hybs x 3 colors) where each RNA molecule was labeled in 4 imaging rounds. An example of the 

MERFISH data is shown in Figure 1.2B. Overall we measured the expression of 150 genes 

including 131 genes annotated as involved in Ca2+ signaling network(Bandara et al., 2013; 

Kanehisa et al., 2019; Kanehisa and Goto, 2000), 17 genes to mark stages of the cell 

cycle(Whitfield et al., 2002), and two genes that correlate with the sub-differentiated state of 

MCF10A cells(Qu et al., 2015). 
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Our decomposition into allele-specific and cell state components is based on 

conditioning on multiple cell state factors. While, it would be ideal to directly measure the 

regulatory factors that causatively control gene expression variability, more accessible 

measurements, e.g. cell size or cell cycle stage, that are correlated with these causative 

regulatory factors are sufficient for the conditioning process. Given that the genes we probe are 
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related to Ca2+ signaling we first extracted key features from time-series of cytoplasmic  Ca2+ 

response measured with a calibrated GCaMP5 biosensor (S1.2 A). The live cell imaging of 

cytoplasmic Ca2+ levels (Figure 1.2C) showed a highly heterogeneous response, qualitatively 

and quantitatively similar to previous work on Ca2+ signaling in MCF10A cells where we 

observed a mixed population response with a wide range of response phenotypes(Handly and 

Wollman, 2017; Yao et al., 2016). We used a feature-based representation of Ca2+ response to 

represent cellular factors that we anticipate correlate with underlying cell state (Figure 1.2G and 

S1.2).  In addition to Ca2+ features that are specific to Ca2+ signaling, we also measured a few 

global features of the cell that are likely to be correlated with expression changes of most 

genes. Specifically, we measured cell volume, cell cycle stage, and two markers of MCF10A 

differentiation status (Figure 1.2 DEF). As was shown in the past, cell volume strongly 

correlated with the total number of transcripts per cell (Figure 1.2D) indicating that at least for 

some genes cell state factors must be important contributors to their expression 

variability(Hansen et al., 2018a; Padovan-Merhar et al., 2015). However, not all genes show the 

same strength correlation with volume, and some cell cycle genes are more complexly related 

to volume (S1.4). Similarly, the cell cycle stage and MCF10A differentiation status were 

correlated with specific genes (Figure 1.2EF). Overall we measured 13 different cellular features 

that will be used to decompose variance in all 131 Ca2+ related genes we measured. By focusing 

on a smaller number of specific features that relate to the Ca2+ response augmented by 

established global cell state features like cell size and cell cycle state we expected to be able to 

capture most of the expression variability that comes from underlying cell state heterogeneity.   

 
To decompose the observed expression into multiple components we used standard 

multiple linear regression (MLR)(Battich et al., 2015; Hansen et al., 2018a). Figure 1.3A shows 

the scatter plots of expression of two representative genes  (ATP2A2 and RRM1) plotted 

against cell volume, cell cycle, differentiation markers, and Ca2+ feature. The scatter plots show 
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that 1. there is indeed a correlation between expression and some of these cell state 

features  2. The amount of variance that is explained by each cell state feature can change 

between genes. Overall the simple MLR model with 13 independent measurements was able to 

explain between ~15-85% of the observed variance with a median of 0.62 (Figure 1.3B). To 

assess the relative contribution of each cell state feature we looked into the relative fraction of 

explanatory power for each feature category (Figure 1.3C). Overall, cell volume has the most 

explanatory power, but for some genes, cell cycle and Ca2+ features contribute meaningfully to 

the explained variance. While some of the features had a small effect in terms of the overall 

variance explained by the feature, in most cases, the effects were very unlikely to be a result of 

pure random sampling, permutation-based statistical testing showed that most genes measured 

here are statistically correlated with at least one calcium feature (Figure 1.3D). 

 
A key uniqueness of our approach is that gene expression is measured in a multiplexed 

fashion allowing the estimation of the correlation between genes. Figure 1.4A shows the 

correlation matrix of the raw counts, and the counts conditioned on cell state features. As 

expected, as we increase the number of cell state features included in the MLR, the overall 

gene to gene correlation goes down. Interestingly, the full MLR model, that only includes 13 

identical terms for all genes is able to reduce the overall correlation between gene significantly. 

To quantify the bulk correlation we measured the amount of variance that is explained by the 

first two components of a Principal Component Analysis (PCA) (Figure 1.4B). Without 

conditioning on any cellular feature, the first two components explain >40% of the variance. This 

is reduced substantially to <10% of the overall variance, in the full MLR. The substantial 

reduction in the gene to gene correlation demonstrates that we were able to condition away 

most of the shared components. Still, the remaining correlation was not completely removed 

and therefore we added another term to the model that is based on the first two principal 

components of a PCA analysis after taking all other features into account. These two 



 16 

components most likely represent some cell state features that were not sufficiently captured by 

our 13 cellular features. With the addition of the last “hidden” feature, the overall variance that is 

shared is very close to values from shuffled data. Overall the analysis of expression covariance 

demonstrates that our simple MLR sufficiently captures most of the information related to cell 

state that is required for conditioning expression distribution. 

 

Finally, we wanted to determine the overall dispersion remaining in the allele-specific 

gene expression distribution. The allele-specific variability is estimated as the residual variability 

in the raw gene expression counts after conditioning on cell state factors. As we increase the 

number of cell state features we conditioned on, we saw a substantial reduction in the 

distributions of Fano factor magnitudes (Figure 1.4C). When all 13 cell state features and the 

two hidden features estimated based on PCA are included, the Fano factor is very close to one 
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for most of the genes. Note that we do not perform any correction for technical noise so the limit 

of one is only theoretical. Similarly, analysis of the coefficient of variation square (CV2) vs the 

expression means on a log-log plot shows that all genes are very close to the Poisson limit 

(Figure 1.4D). The proximity to the Poisson limit is similar across all expression levels. 

Therefore, these data indicate that super-Poissonian transcriptional bursting plays a very minor 

role in allele-specific variability. It is unclear if the few genes that do show over-dispersion 

whether they have significant levels of transcriptional bursting or whether our conditioning 

procedure failed to sufficiently remove cell state effect. 

 

Discussion 

Here we analyzed the relative contribution of gene specific variability that arises from 

transcriptional bursting, i.e. episodic synthesis of multiple transcripts from a gene, and variability 

that is shared among multiple genes. Our approach is enabled by very rich single cell 

measurement that include live cell Ca2+ response to ATP, global cell state factors such as size 

and cell cycle stage, and the expression level of 150 genes all in the same single cells. Using 

this data, we were able to  decompose gene expression variability into gene-specific and cell 

state components. We show that after removing covariability from gene expression distributions, 

the remaining variability follows a simple Poisson model. The residual allele specific variability is 

not over-dispersed and therefore not consistent with models of transcriptional bursting where a 

gene is actively transcribed only during a small fraction of time. 
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The popularity of the transcriptional bursting model is evident by the large number of 

papers that fit the entire RNA and protein distributions to the two state model without 

considering other sources of variability(Dey et al., 2015; Molina et al., 2013; Skupsky et al., 

2010; Suter et al., 2011). In other cases, cell state was considered using dual reporters(Sigal et 

al., 2006; Strebinger et al., 2018), assuming timescale separation(Dar et al., 2012), or 

conditioning on forward scatter(Sherman et al., 2015). However, without multiplexed expression 

measurements it is difficult to determine whether conditioning on cell state was done to 

completion. The high goodness of fit of the two-state model to uncorrected or partially corrected 

distributions that shows substantial bursting could simply be a case of over interpretation of 

model fit. RNA binding systems, such as MS2, allow direct live-cell observation of transcription 

bursting, and many groups have observed burst-like punctuated transcription(Corrigan et al., 

2016; Ferguson and Larson, 2013; Fritzsch et al., 2018; Muramoto et al., 2010). While direct 
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visualization is compelling, it is unclear if punctuated transcriptional events are due to stochastic 

transition of promoter state, as suggested by two state model, or due to stochasticity in the 

activity of an upstream regulatory element. Furthermore, difficulty in quantifying the number of 

mRNAs synthesized in each such event make it difficult to distinguish between a two-state 

model and a one state model with a low rate of transcription that will generate a Poisson 

distribution. In fact, our results are consistent with recent measurements that showed that TTF1 

mRNA is generated in “bursts” of 1-2 mRNA(Rodriguez et al., 2019). Furthermore, the two 

alleles of TTF1 showed coordination between these bursts suggesting that the observed 

transcriptional events are coupled through trans-regulatory factors. Finally, temporal changes in 

global rates of transcriptions(Shah et al., 2018; Skinner et al., 2016) can also make the 

interpretation of a single allele temporal reporter challenging. It is important to note that our work 

focuses on genes that encode for calcium signaling activity and might not represent all genes, 

such as reporters controlled by viral promoters(Dar et al., 2012; Singh et al., 2010) and genes 

that are key to cellular differentiation(Hansen and van Oudenaarden, 2013; Ochiai et al., 2014). 

Overall it is advisable to use more caution when interpreting gene expression variability as 

evidence of transcriptional bursting.      

 
Our measurements are based on cytoplasmic RNA and it is possible that mechanisms 

related to RNA processing reduce the dispersion of RNA distribution in the cytoplasm after it 

was generated in an over-dispersed manner through bursting(Battich et al., 2015). Cells include 

a large number of RNA binding proteins many with unknown function and it is possible that 

some function as part of post-transcriptional noise reduction mechanisms(Hansen et al., 2018b). 

However, some of the proposed mechanisms such as nuclear export of RNA were shown to act 

as amplifiers of observed dispersion(Hansen et al., 2018a). Therefore the degree by which post-

transcriptional mechanism can be used to reduced expression noise is an important open 

question. Until additional data will help clarify the ubiquity of such mechanisms, the most 



 20 

parsimonious interpretation is simply that RNA synthesis does not happen in large allele-specific 

bursts. 

 
Recent technological advances in the ability to measure single cell gene expression with 

scRNAseq and sequential smFISH approaches are providing an unparalleled view into the 

underlying “cell state space”. The distribution of cells in “cell state space” and the definition of 

cell types and states within this space are key open research areas that will likely to further grow 

in importance with further improvements in single cell measurement technologies(Eng et al., 

2019; Wagner et al., 2016). Our work has two important implications on our understanding of 

this “cell state space”, at least with regards to the heterogeneity of a single cell type: 1. All the 

shared variability was reduced using only a simple representation of cell state as 13 linear 

coefficients. Furthermore, most of these 13 features had only a very small contribution to the 

overall explanatory power suggesting that cell state distribution can be represented by few 

latent dimensions. An observation that emboldens efforts to learn the cell state manifold(Moon 

et al., 2018). 2. Expression noise, i.e. unregulated variability in gene expression that is a result 

of stochastic biochemical interactions in effect defines a “resolution limit” of the cell state space. 

Our results indicate that the highly heterogeneous distribution of cells within cell state space is 

likely not due to the inability of cells to control their expression levels rather our work indicates 

functional stratification of cells within this space. Collectively these contributions pave the way to 

a more rigorous definition of cell state that is based on concepts of signal to noise where the 

signal is represented by regulated differences between cells and noise is due to unregulated 

stochastic events. Such definitions will help identify the functional role of cellular heterogeneity.   
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not an author, but constructed the GCaMP5 MCF10A cell line for a previous work. 

Materials and Methods 

Cell Culture 

MCF10a cells were grown in complete media (above) and passaged at 70-90% 

confluency. Cells were seeded onto coated 40mm #1.5 coverslips (Bioptech) and grown to 

confluence in 5mm diameter PDMS wells before changing media to complete media without 

EGF and 1% horse serum, instead of normal 5%, 6-8 hours before imaging. Coating solution 

consists of sterile filtered 10ug/mL fibronectin, 10ug/mL bovine serum albumin, and 30ug/mL 

type I collagen in DMEM. 

 
mCherry GCamp5 Fusion Construct Creation 

For pPB - mCherry vector construction a PCR product encoding GCaMP5 

sensor incorporating the CaMP3 mutation T302L R303P D380Y and no stop 

codon (Addgene plasmid #31788) was directionally ligated into 

pENTR/D-TOPO vector (Invitrogen K243520) resulting in pEntry_ 

 
GCaMP5G construct. 

(For:caccATGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGAC, REV: 

TTACTTCGCTGTCATCATTTGTACAAACTCTTCGTAG) 

pEntry_GCaMP5G was linearized with PCR reaction using standard Phusion® 

Hot Start Flex 2X Master Mix (NEB Cat# M0536L) protocol ( FOR: 

cgcgccgacccag , REV: ctcgagggatccggatcctcccttcgctgtcatcatttgtacaaac). PCR 

product was then subjected to DpnI digestion (NEB cat# R0176S) and gel 

purification with Zymoclean Gel DNA Recovery Kit (ZYMO cat#D4001). A 

sequence encoding mCherry and a5' linker was PCR amplified (FOR : 
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gaggatccggatccctcgagAccatggtgagcaagggc REV :aagaaagctgggtcggcgcgcttgtacagctcgtccatg). 

mCherry2-C1 was a gift from Michael Davidson (Addgene plasmid # 54563). 

GeneArt Seamless Cloning and Assembly Enzyme Mix (Invitrogen cat# A14606) was used to 

assemble a construct encoding for GCaMP5 sensor fused with a short linker to mCherry called 

pENTRY-GCaMP5fusedmCherry. LR recombination between this entry clone and a custom 

gateway PiggyBack transposon vector with 1 μl LR Clonase II enzyme (Invitrogen: cat 

#11791020) resulted in the final construct of pPB_CAG_GCaMP5fusedmCherry_blast. 

mCherry GCamp5 Fusion MCF10A Cell Line Creation 

To generate stable cell lines constitutively expressing cGamp5fusion-mcherry, 

MCF10A cells grown in the standard conditions and co-transfected using Neon 

transfection system (Invitrogen cat#MPK1025) and transposase expression vector 

pCMV-hyPBase (Sanger institute) in the 4:1 ratio with 0.625 ug of transposase and 2ug of 

transposon plasmid per well in 6 well dish. Electroporation parameters: 

Pulse voltage (v) 1,100 2003 

Pulse width (ms) 20 

Pulse number 2 

Cell density (cells/ml) 2 x 10^5 

Transfection efficiency 45% 

Viability 65% 

Tip type 10 μ 

Stable, polyclonal cell populations were established after blasticidin selection (10 

μg/mL). 

 
Coverslip Modification 
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40mm coverslips (Bioptech) were allyl-silane functionalized according to (Moffitt et al., 

2016) which briefly consists of washing coverslips in 50% methanol and 50% 12M HCl, and 

then incubating at room temperature in 0.1% (vol/vol) triethylamine (Millipore), 0.2% (vol/vol) 

allyltrichlorosilane (Sigma) in chloroform for 30 minutes. Washing with chloroform then 100% 

ethanol and air drying with nitrogen gas. These were stored in a desiccator for less than a 

month until use. 

 
Calcium Imaging 

Cells were stained with 0.1 ug/mL Hoescht for 20 minutes then rinsed with imaging 

media. Each well was imaged and stimulated consecutively as follows: image 3 minutes of 

Gcamp before stimulating with 6uM ATP in imaging media then imaged for another 13 minutes. 

Gcamp was imaged every 2-3 seconds and Hoechst was imaged every 4 minutes for 

segmentation. Immediately following imaging of a well, that well was fixed with 4% formaldhyde 

in PBS. The next well was imaged, and then the previously imaged/fixed well was washed 3X 

with PBS. 

Sequential FISH Staining 

PDMS wells were removed and cells were briefly fixed for 2 minutes, washed 3X with 

PBS, and then permeabilized with 0.5% Triton X-100 in PBS for 15 minutes. Coverslips were 

washed 3X with 50mM Tris and 300mM NaCl (TBS), and then immersed in 30% formamide in 

TBS (MW) for 5 minutes to equilibrate, all the liquid was aspirated from the petri dishes, and 

30uL of 75uM encoding probes and 1uM locked poly-T oligos were added on top of the 

coverslip and a piece of parafilm was place on top of the coverslip to evenly spread the small 

volume over the surface and prevent evaporation. The entire petridish was also sealed with 

parafilm and incubated at 37C for 36-48 hours. The parafilm was removed and the coverslip 

was washed 2X with MW buffer with 30 minute incubation at 47C for both washes. A 4% 

polyacrylamide hydrogel was then cast to embed the cells before clearing with 2% SDS, 0.5% 
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Triton X-100, and 8U/mL proteinase k (NEB P8107S), according to previously published 

methods. Coverslips were incubated in clearing buffer for 24 hours then washed 3X in TBS for 

15 minutes each at room temperature. (Moffitt et al., 2016) 

 
Sequential FISH Imaging 

smFISH staining was imaged on a custom modified Zeiss Axiobserver Z1 body with 

Andor Zyla 4.2 sCMOS camera and 1.4NA 63 Plan-Apo oil immersion objective. Illumination 

light was provided by luxeon rebel LEDs (Deep Red, Lime, Blue, and Royal Blue) to excite Cy5, 

Atto565, Alexa 488, Hoechst, and 200nm Deep Blue fiducial markers. The microscope was 

controlled by micro-manager (Ausubel et al., 2001) and custom MATLAB software. Automated 

washing during sequential rounds of hybridization was accomplished by using a previous 

published setup (Moffitt et al., 2016; Moffitt and Zhuang, 2016). Briefly, FC2 bioptech flow 

chambers were attached to a gilson minipuls peristaltic pump pulling liquid from reservoirs 

attached to hamilton MVP valves. The pump and valves were controlled with arduino, and serial 

commands with Python https://github.com/ZhuangLab/storm-

control/tree/master/storm_control/fluidics. This setup was used to automatically wash cells with 

TBS, then 2mL of TCEP (Sigma) in TBS incubated for 15 minutes, then rinse with TBS, then 

flow in 2mL of wash buffer (10% ethylene carbonate in TBS with 2mM Vanadyl Ribonucleoside 

Complex (NEB)), followed by 3mL 3nM readout probes in wash buffer incubated for 15 minutes, 

then rinsed with 2mL wash buffer, then 1mL of TBS, and finally 3mL of imaging buffer. Imaging 

buffer is 0.15U/mL rPCO (OYCO), 2mM PCA (Sigma), 2mM Trolox (Sigma), 50mM pH 8.0 Tris-

HCl, 300mM NaCl, and 40U/mL murine rnase inhibitor (NEB). 

 
FISH Oligo Pool Design Amplification 

Oligopools were ordered from CustomArray. The oligos were designed using previously 

published software (Moffitt and Zhuang, 2016). Briefly, design involves selecting 30bp regions 
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with 40-60% GC for each target gene that maximizes specificity of the oligo by finding shared 

15-mer substrings against all other transcripts in the human genome. These regions are 

concatenated with sequences for 3 readout probe binding sequences and flanking 20bp 

Primers. Probes were amplified according to the another previously published work (Wang et 

al., 2018). Briefly, limited cycle qPCR with a T7 promoter on the reverse primer. The PCR was 

terminated 1 cycle after saturation during the extension phase. PCR product was column 

purified, then in vitro transcription further amplified the oligos (NEB Quick High Yield Kit), t7 

reactions were purified with desalting columns, and converted to ssDNA with Maxima RT H- 

(Thermo). 

 
Gcamp Image Processing 

Cell nuclei were segmented using custom Python 3.6 scripts. Cell nuclei were 

segmented using the Hoechts staining. Nuclear images were low pass filters with gaussian of 

sigma 5 pixels. Then regional maxima were found with corner_peaks from scikit-image these 

peaks were used as seeds in a watershed of the negative intensity of the images, and 

thresholded with otsu of the smoothed nuclear images. This was repeated for each time point 

and the centroid of each nuclear mask was tracked across time using linear assignment. 

Segmented nuclei were used as masks to calculate the mean intensity within each cell mask in 

the Gcamp channel and also the channel for mCherry-fusion expression marker for Gcamp. 

Finally Gcamp values were divided by the mCherry values to give expression normalized 

calcium trajectories. 

 
Calcium Trajectory Feature Extraction 

Calcium trajectories were processed with wavelets to find lowpass, smoothed, and highpass 

trajectories by thresholding coefficients of different scale wavelets. Peaks were detected in the 

lowpass and highpass with scipy’s find_peaks and prominence thresholds of 0.1 and 0.15 
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respectively. Decay time of the first major peak after ATP stim was calculated, FWHM of the first 

peak after ATP was calculated, the AUC of highpass and lowpass was calculated with numpy’s 

trapz, the maximum of each calcium was calculated, and the time of maximum was also 

calculated from smooth trajectories. 

 
Alignment to Live Cell Images 

EM microgrids (G400F1-Cu EMS) were glued (23005 biotium) to 40mm Bioptech 

coverslips. These grids were imaged in brightfield to determine the stage coordinate of fiduciary 

marks on the microgrids. A rotation and translation transformation was fitted between the live 

cell and smFISH coordinates of microgrid fiduciary marks. This ensured that we imaged the 

same FOVs, but additional alignment was performed after imaging. smFISH images were 

downscaled until they had a pixel size matching the live cell imaging (63x vs 10x with same 

Andor Zyla Camera so 6.3X downscaling). Cross-correlation template matching with live cell 

templates and smFISH candidate images was performed iteratively with range of rotational 

angles (-5 to +5 degrees) in order a second set of ‘image’ translations and rotations that 

maximize the cross correlation scores. A threshold was then applied and downsampled images 

were stitched together and overlaid to confirm successful alignment. 

 
smFISH Image Alignment 

All rounds of hybridization contained 200nm blue beads (F8805 ThermoFisher) that were 

imaged in addition to smFISH oligos. First the coordinates of putative beads were determined 

with subpixel accuracy by upsampling images by a factor of 5 (~20.5 nm pixel size) and finding 

peak coordinates of normalized cross-correlation between a gaussian ‘bead template’ and bead 

images in 3D. Next a translational transformation was estimated from these putative beads with 

a custom algorithm designed to be robust to false detection of beads. Briefly, neighborhoods of 

beads with a radius of maximum shift (100 pixels), were found and the differences each of these 
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pairs was calculated. Next, the bead coordinate differences were density clustered and bead 

pairs from the largest cluster were used in a least square error optimization of translation vector 

that minimizes residual of all bead pairs after translation. This fit was performed in 3D and any 

FOVs with a residual >0.5 pixels XY or 1.2um (3 frames) in Z were discarded. 

 
Chromatic Aberration Correction 

Tetraspeck (4-color) 100nm beads were imaged in all channels used for smFISH 

imaging. The subpixel centers of these beads were found as described above, and the 

misalignment of channels was calculated as a function of the XY image coordinate. Images 

were then interpolated in 2D to correct for systematic differences between channels. (Mostly 

only necessary at the edges of the images due to large camera sensor size). 

Gene Calling 

Spots were called with a reimplemented algorithm deeply inspired by (Moffitt et al., 

2016), and the code is available at https://github.com/wollmanlab/PySpots. Images were taken 

every 0.4um in Z, but groups of 3 images 1 above and below the current Z slice being 

processed were maximum projected to form a pseudo Z slice to be further processed. Then two 

Z slice were skipped before form another pseudo Z slice. This local max projections help gene 

calling perhaps do to making the imaging more robust to misaligned images, or uncorrected 

planarity issues in the objective. Second, fiduciary 200nm beads were used to fit XYZ 

translation transformations described in the image alignment section, and all psuedo Z slices 

were warped to correct for chromatic aberration and translations from stage reproducibility error. 

Registered and chromatic aberration fixed images were then high pass filtered by subtracting a 

gaussian convolution with sigma 2.2 pixels from the original images. These high pass filtered 

images were then deconvolved for 20 iterations of lucy richardson deconvolution using the 

flowdec package.(Czech et al., 2018) Finally after deconvolution the images were blurred by 

gaussian convolution with a sigma of 0.9 pixels. The output at this step for each site imaged is a 
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matrix of (2048, 2048, 24, #Z) elements. Where 2048 is the image width and height, 24 is the 

number of codebits used to encode gene identity (3 colors X 8 rounds sequential hybridization) 

and #Z is the number of pseudo Z slices. Next, each Z slice was processed separately on a per 

pixel basis to assign each pixel as its gene identity or as background. This process was done by 

dividing each of the 24 images by the 95th percentile of that image to make the intensities for 

different codebits more similar, and L-2 normalizing each pixel. Then for each pixel the 

Euclidean distance to L-2 normalized codebit vectors was calculated, and if that distance was 

less than the volume of a nonoverlapping hypersphere for all codewords (0.5176) then the pixel 

was classified as that closest codeword. This approach is essentially testing whether the 

intensities from all 24 codebits point in the direction of a particular codeword in 24-dimensional 

space. Finally, these classified images (2048, 2048, #Z) were segmented to collect groups of 

connected components with that same gene label. Finally genes calls were thresholded on the 

number of pixels for each group of connected components, and the average intensity of the set 

of connected components. 

 
Calculation of Cell Volume 

A 3-D histogram of gene calls for each cell was calculated and smoothed with a 

gaussian filter of 10 pixels. The number of voxels (1um, 1um, 1um) with at least 0.5 RNA was 

calculated and used as the volume for each cell. 

 
Simulation of Gene Variance Decomposition 

For each of the three combinations of cell state and allele-specific noise simulations 

there were three transcription factors and two genes simulated. Transcription factors were 

poisson distributed, and genes were simulated as gamma distributions with shapes dependent 

on additive combinations of transcriptions 1, 2, and 3. The scale of the gamma distributions 

were varied to control the amount of ‘allele specific variability’, and the amount of gene 
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correlation was controlled by the fraction of shape shared between genes. For each of the 3 

combinations of different noises there were 4 linear models fitted using python statsmodels ols 

package. For each gene a model was fitted for gene ~ tf1 and gene ~ tf1+tf2. Then the residuals 

from the fit were adjusted by adding back the mean of expression for that gene, and these mean 

adjusted residuals are the distribution of the gene conditioned on tf1 or (tf1, tf2). 

 
Cell Cycle Features 

Cell cycle features were calculated using the scanpy package (Wolf et al., 2018). 

Gene Variance Decomposition 

The same method (linear model residuals) as in the simulation was used to decompose 

variance for gene expression. In order to investigate residual correlations between genes with 

different sets of conditioning variables, the decomposition was repeated from different 

combinations of feature combinations. The first stage involved only gene ~ volume, and then 

gene ~ volume + s_phase + g2m_phase...finally for the inferred features we used PCA 

components #1 and #2 as features: gene ~ pca_comp1 + pca_comp2. 

 
Statistical Test of Calcium Feature Significance 

Volume adjusted gene expression counts were fitted with a linear model based on 

calcium features. For every gene separate and every calcium feature separately a shuffled 

linear model was also calculated. That is, for each calcium feature and gene many bootstrap 

models were estimated where a single calcium feature was shuffled and the model was fitted. 

The slopes of these fitted models on shuffled data formed a null distribution, and then the p-

value of the feature for that gene was considered (100-Qtile(unshuffled slope in shuffled 

bootstraps)) where 0 is 1/#Bootstraps. 
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CHAPTER 2 - Relating Gene Expression Variability to 

Differences in Calcium Signaling Responses 

Abstract 

 Signaling networks allow cells to respond to changes in their environment, both internally 

and externally. Despite the importance of accurate signaling, individual cells transducing signals 

often exhibit a large amount of cell-to-cell variability, and it is currently unclear how much of this 

heterogeneity is simply noise or actually related to phenotype functionality. In this work, use 

measurements of live-cell calcium signaling response to ATP stimulation in MCF10a 

mammalian epithelial cells, and also measure 336 gene expression levels using smFISH in the 

same cells as the calcium measurement. We find that 55% of the heterogeneity in the calcium 

signaling phenotypes is explained by systematic variation in the underlying gene expression 

state of cells. This finding suggests that cells could have high fidelity to respond to their 

environment, and do so in a stratified manner that is related to cellular state. 

Introduction 

Modern single-cell expression techniques such as scRNA-Seq and sequential 

hybridization smFISH are uncovering gene expression variability among populations of 

cells(Dixit et al., 2016; Wang et al., 2018). The new level of throughput of these techniques 

enables discovering and characterizing cell types/states at an unprecedented rate(Han et al., 

2018; Suo et al., 2018; Tabula Muris Consortium et al., 2018). However, from simple gene 

expression studies alone it can be unclear whether every bit of gene expression variability is 

actually a manifestation of cell populations being stratified into functionally/phenotypically 

relevant states(Andrews and Hemberg, 2018; Nguyen et al., 2018; Shoval et al., 2012). Gene 

networks have been shown to exhibit a large degree of robustness, and redundancy in their 

function(Blanchini and Franco, 2011). Differences in gene expression between cells could still 
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have the same phenotypic mapping due to robustness and redundancy(Tanaka et al., 2015; 

Whitacre, 2012). 

In this work, we propose a new approach for identifying cell states, and simultaneously 

mapping the relationship between gene expression and emergent complex phenotypic 

behaviors such as signaling dynamics. We use live-cell calcium biosensor GCaMP5(Akerboom 

et al., 2012) to measure cytoplasmic free calcium in MCF10a breast epithelial cells in response 

to ATP stimulation. ATP is a wound associated ligand and induces heterogeneous calcium 

signaling responses in single-cell. The live cell calcium measurement is paired to fixed single-

cell gene expression measurement of 336 genes using sequential hybridization smFISH 

(MERFISH)(Moffitt et al., 2016) by aligning cells from both rounds of imaging using fiduciary 

grids. The paired measurement leverages the power of joint measurements of gene expression 

state and an emergent complex phenotype to allow validation of putative cellular states. 

Simultaneously through the measurement of a large number of cells the covariance between 

gene expression and different dynamical features of calcium signaling can be naturally 

observed without perturbation. 

It is not obvious that heterogeneity observed in calcium signaling signaling would be 

correlated with differences in gene expression. In many examples of signaling responses to 

ligand treatment, the heterogeneity in response is dominated by differences in the ligand’s 

receptor expression between different cells(Cheong et al., 2011). The variability in receptor 

expression can often be explained by intrinsic post-transcriptional noise in expression(Hansen 

et al., 2018a) rather than cell state regulated differences between cells(Spencer et al., 2009). It 

is also very possible that signaling variability between cells can be explained by non-noisy 

systematic differences between cell states(Yao et al., 2016). In the ERK signaling pathway, 

multiple groups have observed that cell-to-cell variability is dominated by systematic differences 

between cells(Selimkhanov et al., 2014; Toettcher et al., 2013). However, in these ERK 
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examples it is unclear whether the systematic differences result from post-transcriptional 

regulation of the signaling networks, or longer time gene expression based cellular states. 

In this work, we find that in MCF10a cells the variability in cytoplasmic calcium signaling 

response to ATP is partially explained by cell state differences in gene expression. These cell 

states are correlated with differences in cell cycle and an orthogonal effect of MCF10a sub 

differentiation. 

Results 

 Four overlapping questions will be addressed: 1. What gene expression states exist? 2. 

Do expression states correlate with calcium ATP response? 3. How much of the calcium 

heterogeneity is explained by gene expression? 4. How do different genes affect calcium 

signaling dynamics? We we will describe how we measure the calcium response, then how we 

make the gene expression measurements, and then we will address the four questions above. 

 MCF10a mammalian breast epithelial cells respond heterogeneously to stimulation with 

ATP, a ligand that is passively released from wounded cells(Handly and Wollman, 2017). 

Previous studies used modeling to suggest that the variability between cells has an extrinsic 

variation component rather than simple intrinsic noise in the signaling network itself(Yao et al., 

2016). We sought to resolve how much of the heterogeneity results from cell state differences 

by simultaneously measuring single-cell response to ATP and the gene expression state of the 

calcium signaling network in the same cells. If the calcium response variability arises from post-

transcriptional effects such as intrinsic fluctuations of calcium network components then we 

expected calcium response type will not be correlated with gene expression. Conversely if gene 

expression clusters explain the variability then cell state regulated differences manifest as 

differences in calcium signaling network that propagate to qualitatively different response 

dynamics to ATP stimulation. 
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This work measures calcium signaling with GCaMP5 and fluorescent live cell 

imaging(Akerboom et al., 2012). The result is a 1001 dimensional response across time for 

each single-cell, but due to the curse of dimensionality simple comparison of cell-to-cell 

similarity using euclidean distance fails. We embedded cells in a space where euclidean 

distance is a better measure of cell-to-cell similarity using a variational autoencoder. VAEs are 

generative models that compress a high dimensional signal or image into a lower dimensional 

‘latent vector’ by optimizing a convolutional neural network that can successfully reconstruct the 

original high dimensional signal or image from the embedded ‘latent vector’. This reconstruction 

optimization ensures that information is not lost in the embedding process. The 12 dimensional 

representation of calcium can further be reduced by techniques such as UMAP or tSNE in order 

to visualize cells in the new space, but all analysis except for during plotting was performed with 

the 12 dimension VAE representation of calcium response in cells (Figure 2.1CDEF). 
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 Gene expression is measured using MERFISH(Moffitt et al., 2016); a technique that 

uses multiple rounds of hybridization and a barcoding strategy to measure 100s of genes’ 

expression levels in situ. MERFISH works by encoding gene identities as a specific sequence of 

bright and dark spots at the same pixel coordinates across multiple rounds of hybridization, 

imaging, and quenching (Figure 2.1B). These combinatorial codes could scale to 10,000s 

genes, but are typically limited to 100s due to error-correcting codes and necessity of sparse 
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spots in images(Wang et al., 2018). We measured 336 genes 300+ genes annotated as 

involved in calcium signaling, 16 genes related to cell cycle, and 2 genes associated with sub 

differentiation in MCF10a cells(Bandara et al., 2013; Kanehisa and Goto, 2000; Whitfield et al., 

2002). 

 Genes were filtered by their expression level to remove any genes that were expressed 

at less than 2.65 transcripts/cell in the 95th percentile of cells. The counts of transcripts per cell 

were then normalized to cellular volume, measured through imaging, and log transformed with a 

pseudocount of one. These normalized gene counts were used to cluster cells based on their 

gene expression without knowledge of the calcium response using phenograph clustering based 

on Louvain modularity with k=13(DiGiuseppe et al., 2018). We observed that, despite being 

identified independently, the clusters in gene expression space demonstrated a distinct 

patterning when overlayed in the embedded calcium space (Figure 2.2A). Furthermore, when 

plotting the calcium trajectories grouped by cluster there are striking differences in the 

qualitative dynamics of the calcium response (Figure 2.2B). Additionally the dot plot of gene 

expression in the different clusters shows that there are significant differences across groups of 

genes. Together these data indicate that cell state maintained by gene expression programs are 

correlated with the qualitatively different patterns of calcium signaling dynamics in response to 

ATP. 
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 Figure 2.3A shows expression of marker genes for cell cycle and 2.3B shows the 

expression of a sub differentiation marker, CD44. Differences in these two cell state 

components explain the two major axes of differences in gene expression. Interestingly, the two 

cell state terms are orthogonal. Further, specific calcium pumps measured vary independently 

with either cell cycle, or the sub differentiation state of the cells(Figure 2.3C). 
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 Next we sought to determine if differences in pump expression were consistent with 

predictions of their effect on calcium response. Clusters 3, 4, and 0 (Figure 2.2) have lower 

calcium maximum response and smaller full width at half max, FWHM. If differences in calcium 
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pump expression are causally explaining these differences then we expect the expression of 

pumps to be the highest in cells with smaller CaMax and smaller FWHM. Figure 2.4A shows 

that on a per cluster basis there is a trend between cytoplasmic Ca+2 exporters and the calcium 

dynamical features. This indicates that differences in calcium responses likely arise from 

calcium signaling network differences correlated with cellular states, such as cell cycle and sub 

differentiation, rather than simple fluctuations in the ATP ligand 

receptor.

 

 Interestingly, cluster 6 has high expression of cytoplasmic exporters, but the calcium 

max response and FWHM are more consistent with lower pump expression. We therefore 
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examined the differences in pump expression per cluster for each pump separately (Figure 

2.5A). Previous figures aggregate the pump expression across all exporters, but not all pumps 

necessarily have equal contribution to calcium export. Cluster 6 can be explained if ATP2A2 

and ATP2A3 have a smaller effect size than ATP2C1 and ATP2B1 because cluster 6 has 

significant contribution of it’s ‘pump score’ attributed to ATP2A3. 

 

 We are able to identify clusters in gene expression which correlate with heterogeneity 

observed in cellular signaling, and differences in calcium pump expression are consistent with 

predictions about how calcium dynamics should be different. Yet we sought to further describe 

how much of the variance in calcium signaling is actually explained by gene expression. In order 

to do this we built two different predictive models, one is very a very simple k-nearest neighbor 

regression prediction of calcium signaling response from gene expression, and the second is a 



 44 

convolutional neural network that predicts calcium signaling from gene expression. We 

rationalize that the simple model may sacrifice some performance in order to reduce model 

complexity, and the full neural network model allows us a glimpse of an upper bound on the 

variance explained given our data. 

 In the KNN regression model, we predict the latent space of calcium VAE encoding from 

the full gene expression vector. The output of this model is decoded by the previously trained 

VAE to output a full length predicted calcium trajectory. We repeat this procedure for ~1000 

cells in a withheld test set, and then assess the explained variance. We measure explained 

variance by calculating the MSE, mean squared error, of the predicted trajectory with the 

measured trajectory for each of the ~1000 samples. The mean of all MSEs is normalized by the 

average MSE of all ~1000 samples and the average calcium trajectory of all ~1000 cells. This is 

the proportion of total variance not explained by the prediction and the explained variance is one 

minus this proportion. {actualy data from KNN model} 

We also fitted a heteroencoder convolutional neural network to predict calcium 

trajectories from gene expression data (Figure 2.6A). This model demonstrates that gene 

expression predicts the intensity and dynamics of the first peak after ATP stimulation well, but 

not the high frequency pulses some cells exhibit (Figure 2.6BC). Using the same normalized 

MSE method to calculate explained variance, the heteroencoder explains 55% of the variability 

in calcium signaling response to ATP in MCF10A cells. We conclude that most of the variability 

in signaling in our MCF10a model is explained by gene expression and underlying correlated 

cellular states of cell cycle and MCF10a sub differentiation state. 
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Discussion 

 While there is clearly a relationship between gene expression and calcium signaling 

heterogeneity, we were only able to explain roughly half of the overall signaling heterogeneity. 

There are two particular aspects of the trajectory that were not predicted well by gene 

expression: 1. Pulses in calcium and 2. Prestimulation basal calcium levels in some cells. It is 

not immediately clear whether the failure to explain these features is due to insufficient data, or 

their variability is rooted in post transcriptional regulation/noise. 

 We measured 150 expressed calcium related genes, but this is by no means an 

exhaustive measurement of all elements of the calcium signaling network. We could not 

sufficiently target some calcium related genes because the transcript length was either too 

short, too homologous to off-target genes, or the expression level was too high. Therefore it is 

reasonable that more comprehensive assays of the gene expression state could reveal that 

even more of the cellular heterogeneity is explained by gene expression. At the same time, it 

would be surprising if all of the variability was explained by gene expression. We know that 

fluctuations in receptor concentrations can have large impacts on signaling response, and that 

many of these fluctuations come from protein expression noise rather than variance in the 

number of transcripts(Brock and Jovin, 2001; Cheong et al., 2011). 

 The failure to capture pulses could be a limitation of the models explored. In our model, 

if we cannot predict the timing of pulses with high accuracy then the MSE score is severely 

affected by an out of phase pulse prediction. Therefore, if gene expression is predictive of the 

propensity of cells to pulse at different frequencies, but the timing is somewhat stochastic then 

our model will generally favor not predicting any pulses. A future direction could be predicting a 

feature based representation of the pulses, or reconsideration of an error function that is more 

robust to stochastic timed pulses. 
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 This work can be also be extended by recent advances in genome manipulation using 

CRISPRi and CRISPRa(Dixit et al., 2016) in order to more comprehensively investigate both 

how much of the variability is related to gene expression, and how different genes specifically 

impact calcium signaling. Spatial transcriptomics combined with these pooled genome 

manipulation techniques allows investigation of the genotype to phenotype mapping in signaling 

pathways on an entirely new scale, and it will be very interesting to see how their future use 

develops. 
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Methods 

Cell Culture and Experiments 

Experiments were performed as described in Chapter 1 methods. 

 
Gene Expression Analysis 

Raw transcript counts were volume normalized as described in Chapter 1. Genes were 

filtered to exclude any genes that were expressed at less than 2.65 transcripts/cell in the 95th 

percentile of cells. This gene expression matrix was log1p transformed and used for clustering 

and embedding. Clusters were generated using the Phenograph package(DiGiuseppe et al., 

2018) with k=13 and with z-scaled gene expression counts. Gene embeddings were performed 

with the SCANPY package by creating a diffusion map from the neighborhood graph of cells 

(default parameters), and lower dimensional viewings were generated using force atlas 

projection. 
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Variational Autoencoder Calcium Embedding 

The purpose of the variational autoencoder is to generate accurate reconstructions of 

calcium signaling, measure the available information content, and produce a continuous, 

minimal encoding. Autoencoders are generally structured as a reciprocal pair of networks: the 

encoder and the decoder. These networks cooperate to learn minimal representations (i.e. 

latent vectors) of each example in the dataset during the training phase. Training is performed 

by showing the encoder an example from the training set, which it attempts to encode in a 

significantly reduced space, then the decoder is given the encoding and attempts to reconstruct 

the original example. To optimize learning, the raw signaling data was preprocessed by 

normalizing each cell by its GCaMP abundance, then scaling all values between 0 and 1 while 

preserving each point’s relative value. To prevent and measure overfitting, 10% of the total 

dataset was withheld from training and used only to evaluate model performance. Additionally, 

10% of the weights in the network are randomly removed during each training iteration to further 

decrease overfitting. Architectures were trained and evaluated based on the sum of squared 

errors and KL divergence between the latent vectors and normal distributions. The inverse sum 

of the terms of the objective function defines the evidence lower bound (ELBO), or the marginal 

likelihood of the data, which is maximized during training to approximate the reconstruction 

distribution. Training was performed using stochastic gradient descent with a learning rate 

schedule based on step decay to gradually refine parameters during training. KL annealing, the 

process of slowly increasing the weight of the KL divergence, was also tested but did not 

significantly improve end results. Because the mean KL divergence of each latent vector is 

used, varying the number of latent vectors did not affect learning so long as there were at least 

the minimal number of informative vectors. During each round of training, a small amount of 

normally distributed noise is added to each example with mean 0 and standard deviation of 

0.002 to act as a high pass filter for technical noise. 
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Using this objective function, several architectures were tested and evaluated by qualitatively 

comparing reconstructions and quantitatively plotting the error. The networks tested ranged 

from a simple feed-forward network with minimal units to fully connected convolutional models 

with adversarial networks. The chosen model is depicted in Figure 2.1D, representing the 

simplest model tested that was able to accurately reconstruct the signals and produce minimal 

error.  

 
Variational Heteroencoder (Gene to Calcium Model) 

Like the variational autoencoder, the variational heteroencoder was designed to 

accurately reproduce calcium signaling patterns using a continuous encoding; however, the 

input data is derived from gene expression. Thus, the goal of the heteroencoder is to map gene 

expression to signaling using the same learning method as described above (e.g. learning rate 

schedule, etc.). The decoder used here has the same architecture as the autoencoder above, 

though using a different encoder. The encoder was copied from another variational autoencoder 

trained explicitly on single-cell gene expression data. Preprocessing included taking the log 

pseudocount, then scaling each gene across all cells to between 0 and 1. Several architectures 

were tested for this autoencoder, the encoder network architecture from the best model was 

used as the encoder network for the heteroencoder shown in Figure 2.7A. The gene encoder 

and signaling decoder ensemble was the only architecture tested. Again, KL annealing was 

tested and did not improve visual reconstruction accuracy or produce a higher ELBO. Three 

variations were tested, learning new weights end to end, using pre-trained weights for the 

encoder, and pre-trained decoder. Pre-training failed to improve accuracy, so the final model 

used was the end to end trained model. 

 
Explained Variance of Calcium Prediction 
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Calcium trajectories were predicted using a convolutional neural network described 

above. We used mean squared error as a goodness of fit metric to determine how much of the 

variance in calcium trajectories was unexplained by gene expression. This value was 

normalized by the MSE of all trajectories with the population average trajectory to yield a 

proportion of variance unexplained by the prediction model. Explained variance was then 

considered 1-UnexplainedVariance. 
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