
UCSF
UC San Francisco Previously Published Works

Title
Application of Machine Learning for Cytometry Data

Permalink
https://escholarship.org/uc/item/4gc0b2bp

Authors
Hu, Zicheng
Bhattacharya, Sanchita
Butte, Atul J

Publication Date
2022

DOI
10.3389/fimmu.2021.787574

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4gc0b2bp
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Frontiers in Immunology | www.frontiersin.

Edited by:
Juan J. Garcia-Vallejo,

Amsterdam University Medical Center,
Netherlands

Reviewed by:
Morten Brun,

University of Bergen, Norway

*Correspondence:
Zicheng Hu

zicheng.hu@ucsf.edu

Specialty section:
This article was submitted to

Systems Immunology,
a section of the journal

Frontiers in Immunology

Received: 30 September 2021
Accepted: 14 December 2022
Published: 03 January 2022

Citation:
Hu Z, Bhattacharya S and Butte AJ

(2022) Application of Machine
Learning for Cytometry Data.
Front. Immunol. 12:787574.

doi: 10.3389/fimmu.2021.787574

MINI REVIEW
published: 03 January 2022

doi: 10.3389/fimmu.2021.787574
Application of Machine Learning
for Cytometry Data
Zicheng Hu1,2*, Sanchita Bhattacharya1 and Atul J. Butte1

1 Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States,
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Modern cytometry technologies present opportunities to profile the immune system at a
single-cell resolution with more than 50 protein markers, and have been widely used in
both research and clinical settings. The number of publicly available cytometry datasets is
growing. However, the analysis of cytometry data remains a bottleneck due to its high
dimensionality, large cell numbers, and heterogeneity between datasets. Machine learning
techniques are well suited to analyze complex cytometry data and have been used in
multiple facets of cytometry data analysis, including dimensionality reduction, cell
population identification, and sample classification. Here, we review the existing
machine learning applications for analyzing cytometry data and highlight the importance
of publicly available cytometry data that enable researchers to develop and validate
machine learning methods.
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INTRODUCTION

Flow cytometry has been widely used in both research and clinical settings to characterize biological
samples at single-cell resolution with multiple protein markers. Researchers first label the cells with
fluorescent-tagged antibodies and use a flow cytometer to detect the fluorescent signals as the cells
rapidly flow past lasers. Since its first use in the 1960s (1, 2), the basic design of flow cytometry
remains largely unchanged. However, continuous improvements have been made to the flow
cytometers and fluorescent dyes, significantly increasing the speed at which cells are analyzed and
the number of protein markers that can be detected. Cytometry by time of flight (CyTOF, as known
as mass spectrometry) was invented in the 2000s (3, 4). Through the use of heavy metal isotope-
coupled antibodies, CyTOF can detect isotope peaks without significant spectrum overlap, thus
profiling more than 50 protein markers simultaneously.

While other advanced technologies, such as single-cell RNA-sequencing (scRNA-seq) and
Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CEIT-seq), offer to
characterize the cells with a much larger number of measurements, their use is limited by the
high cost and the relatively low number of cells that can be processed. Conversely, the low cost of the
cytometry experiment allows it to be used to characterize hundreds of samples, while most scRNA-
seq experiments are limited to less than 10 samples. The cytometry is also capable of profiling a large
number of cells (> 10^6) per sample, allowing researchers to identify rare cell populations that could
potentially be missed by scRNA-seq. Thus, modern cytometry remains to be one of the most
important tools for immunology research.
org January 2022 | Volume 12 | Article 7875741
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The analysis of cytometry data remains to be a challenge due
to its high dimensionality and the large number of cells. The
traditional manual gating uses a series of two-dimensional plots
to visualize the data and uses hierarchical gates to identify cell
populations. A key advantage of manual gating is that it allows
researchers to incorporate existing knowledge into the cytometry
data analysis, including the function of protein markers and the
developmental relationship of the cell populations. However, it
faces significant challenges when analyzing high-dimensional
cytometry data, as the two-dimensional plots often fail to show
the complex high-dimensional structure of the data. Moreover,
there is a possibility of human bias while analyzing data from
manual gating. In clinical settings, manual gating also suffers
from additional disadvantages such as the low processing speed
and the susceptibility to human errors.

To overcome the challenges faced by manual gating, many
computational tools have been developed to automate every step
of the cytometry data analysis, including quality control (5),
batch normalization (6, 7), data visualization (8–10), cell
population identification (11–16), and sample classification
(17–20). The tools utilize a wide range of computations
methods, ranging from rule-based algorithms to machine
learning models. Machine learning is a set of computational
and statistical methods that learn patterns from the data with
minimal input from humans. The machine learning methods can
be classified as supervised and unsupervised learning (21)
depending on if external labels, annotation or prior
information are available. In cytometry analysis, machine
learning models have been primarily used for dimensionality
reduction, cell population identification, and sample prediction
(11–20). In this review, we discuss different machine learning
approaches for analyzing flow cytometry data and the challenges
faced by these approaches. We also highlight the importance of
publicly available cytometry data that enabled researchers to
develop machine learning methods.
MACHINE LEARNING METHODS FOR
DIMENSIONALITY REDUCTION

Data visualization is often the first step in data analysis and can
have a profound influence on the subsequent interpretation of
high-dimensional cytometry data. By representing the high
dimensional data in two or three-dimensional graphs, it
enables researchers to explore the data and recognize patterns
that can be tested by later statistical analysis. In addition, data
visualization graphics are frequently displayed in publications to
convey biological insights (22, 23). Therefore, it is necessary to
ensure that the low dimensional visualization accurately
represents the information in the original data. The toolbox for
dimensionality reduction is expanding rapidly. Researchers now
have a wide variety of methods at their disposal for data
visualization, including Principle Component Analysis (PCA),
t-Distributed Stochastic Neighbor Embedding (tSNE), UMAP,
and many more (9, 24–26). Information loss is almost inevitable
when high-dimensional data is compressed into two or three
dimensions for visualization. Different dimensionality reduction
Frontiers in Immunology | www.frontiersin.org 2
methods are designed to preserve various aspects of information
in data. Methods such as PCA and Multidimensional scaling
(MDS) aim to best preserve the global structure in the data (27);
Embedding methods such as tSNE and UMAP aim to preserve
the local structure in the data (25, 28). tSNE and UMAP are
particularly suitable for visualizing cytometry data due to their
ability to separate major cell subsets when projecting the high
dimensional data into two-dimension. However, cautions need
to be taken when interpreting the specific aspect of the tSNE and
UMAP plots. The distances between the cells are often distorted
in tSNE and UMPA plots. Thus, the similarity between cells
should be assessed using distance measures based on the original
high-dimensional space. Cell clusters should also be identified
using the original data rather than the low-dimensional data
from tSNE and UMAP.
MACHINE LEARNING METHODS FOR
CELL POPULATION IDENTIFICATION

Researchers routinely use cytometry to profile the cell
populations in biological samples. Data from cytometry
experiments not only allows researchers to understand the
cellular composition of healthy tissues but also provides
valuable information about how different cell subsets change in
disease conditions (4, 29–31). Many machine-learning methods
have been developed to annotate established cell populations, as
well as to discover novel cell subsets from the high-dimensional
cytometry data (Table 1).

Unsupervised Machine Learning Methods
for Cell-Type Identification
Unsupervised machine learning methods identify groups of cells
that are similar to each other based on cytometry data itself
without external information (Figure 1A). Many generic un-
supervised methods can be applied directly to cytometry data,
including the popular clustering methods such as K-means
clustering and hierarchical clustering, the probability-based
methods such as gaussian mixture models, and density-based
methods such as HDBSCAN (32).

Researchers have also developed computational pipelines that
are optimized for cytometry data, including FLOCK, flowSOM,
flowMeans, flowMerge, SWIFT, PhenoGraph, and many other
methods (11–16, 33). These pipelines use a combination of
existing unsupervised machine learning methods and customized
algorithms to optimize the analysis workflow. For example,
flowSOM maps the cells to a self-organized map (SOM) and
performs consensus hierarchical clustering to identify the cell
populations (15). FLOCK first identify regions with high densities
of cells and later merges the adjacent high-density regions into cell
populations (16). Unlike many other unsupervised methods,
FLOCK does not require users to pre-define the number of cell
populations, although additional hyperparameters still need to be
tuned by the user to optimize the results. FlowMerge uses Gaussian
mixturemodels to identify cell subsets fromthecytometrydata (13).
To address the problem that themixturemodels often overestimate
the number of cell populations, flowMerge uses entropy-based
January 2022 | Volume 12 | Article 787574
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criteria to merge the closely related cell population. The
PhenoGraph first constructs a nearest neighbor graph of the
single cells based on their phenotypic similarity and then
partition the graph into clusters using an efficient community
detection algorithm (33, 34).

There are advantages of applying unsupervised methods to
enumerate cell populations in high-dimensional space in an
unbiased fashion, which is not possible using the manual gating
approaches. The methods also make it possible to automate the
identification of cell populations withminimal input fromhumans.
At the same time, the unsupervised methods face multiple
challenges. First, identified cell populations are computed without
any prior knowledge and are not directly interpretable. Researchers
often need to manually inspect the expression of different markers
to determine the cell population identity. Second, many
unsupervised methods tend to ignore rare cell populations. A
potential solution is to conduct multiple rounds of clustering to
identify small cell subsets within themajor cell populations. Finally,
most unsupervised methods can only be applied to data from a
single experiment. Cell populations identified from different
datasets are often not directly comparable with each other. If
possible, researchers should try to combine the datasets using
batch correction methods, such as cytoNorm (7), before applying
Frontiers in Immunology | www.frontiersin.org 3
the unsupervised machine-learning methods. Alternatively,
researchers could use adaptive methods, such as MetaCyto (11),
to identify the same set of cell populations from different datasets
while taking the batch effects from each dataset before merging
multiple datasets from different sources.
Supervised Machine Learning Methods for
Cell-Type Identification
A supervised machine learning method learns a classifier from
training datasets, which consists of cytometry data and the
manually annotated cell-type information. The learned
classifier can then be applied to annotate new cytometry
datasets (Figure 1B). One study uses a linear discriminant
analysis (LDA) classifier to annotate the cell types in CyTOF
data (35). Other studies used neural network models for cell
annotation, including DGCyTOF and DeepCyTOF. DGCyTOF
designed a customized neural network model to adjust between
new and unknown cell populations via a feedback loop, which
reduces the rate of error in the identification of cell types (36).
The DeepCyTOF includes a calibration step to adjust for batch
effects between datasets, allowing the trained model to be applied
to multiple datasets (37).
TABLE 1 | Selected machine learning methods for cytometry analysis.

Machine learning
type

Name Desciption

Dimentionality
reduction

PCA PCA projects the high-dimensional data into lower dimensions while preserving as much of the data's variation as possible.
MDS MDS projects the high-dimensional data into lower dimensions while preserving as much of the pairwise distances between the

cells. MDS and PCA are equivalent when the Euclidean distance is used.
tSNE t-SNE (t-distributed stochastic neighbor embedding) is a non-linear dimensionality reduction method. t-SNE transforms the

pairwise distances into probabilities based on t-distribution, thus emphasizing preserving the data's local structure.
UMAP UMAP (Uniform Manifold Approximation and Projection) is a method for dimension reduction using manifold learning techniques.

Similar to tSNE, UMAP emphasis preserving the local structure of the data.
Unsupervised
methods for cell
population
identification

FLOCK FLOCK identify cell populations using density-based clustering.
flowSOM FlowSOM maps cells to self-organizing maps and uses consensus hierarchical clustering to identify the cell populations.
flowMeans flowMeans uses K-means clustering a change point detection algorithm to identify cell populations.
flowMerge FlowMerge first uses Gaussian mixture models to identify cell subsets from the cytometry data and uses entropy-based criteria to

merge the closely related cell population.
MetaCyto MetaCyto uses a combination of hierarchical clustering and cell population labeling to identify shared cell populations across

studies.
SWIFT Swift uses a Gaussian mixture model-based clustering method to identify cell subsets, followed by splitting and merging steps to

adjust the number of clusters to identify rare subpopulations
PhenoGraph PhenoGraph first constructs a nearest neighbor graph of the single cells based on their phenotypic similarity and then partition the

graph into clusters using a community detection algorithm.
Supervised methods
for cell population
identification

LDA for
cytometry
data

The method train a linear discriminant analysis (LDA) classifier to identify cell populations

DGCyTOF DGCyTOF trains a deep learning model to identify cell populations. A feedback loop is included to adjust between new and
unknown cell populations.

DeepCyTOF DeepCyTOF trains a deep learning model to identify cell populations. DeepCyTOF includes a calibration step to adjust for batch
effects between datasets.

Sample classification
using cell subset
information

CITRUS CITRUS uses hierarchical clustering to identify a large number of small cell subsets from cytometry data and uses a LASSO model
to predict clinical outcomes.

FloReMi FloReMi is a pipeline for data preprocessing, cell subset identification, feature selection, and predictive modeling of cytometry
data. FloReMi uses a Random Forest model to predict clinical outcomes using cell subset information.

Sample classification
using single-cell data

CellCNN CellCNN adopted a convolutional neural network structure to predict clinical or biological outcomes directly using single-cell data
from cytometry experiments.

Deep CNN The Deep CNN model uses a convolutional neural network structure to predict clinical or biological outcomes directly using single-
cell data from cytometry experiments. The model includes a higher number of internal layers, allowing the model to better capture
the complex interactions between cell marks in the cytometry data.
January 2022 | Volume 12 | Article 787574
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While compared to unsupervised methods, the supervised
methods allow researchers to guide the cell type annotation by
providing training labels. In addition, it is possible to train the
supervised models using heterogeneous datasets, thus improving
the generalizability of the models. On the other hand, the quality
of the supervised models depends on the human-provided labels
and can potentially mirror the human bias. The supervised
models can only identify known cell types that have been
annotated by humans. Therefore, a combination of supervised
Frontiers in Immunology | www.frontiersin.org 4
and unsupervised methods should be used to identify known cell
populations, as well as to discover novel cell subsets.
MACHINE LEARNING METHODS
FOR SAMPLE CLASSIFICATION

Cytometry iswidely used to identify biomarkers that canbeused for
disease diagnosis or prognosis. Previous studies have reported the
A

B

C

D

FIGURE 1 | Schematic diagrams showing the machine learning approaches used to annotate cell population from cytometry data or classifying the cytometry samples.
January 2022 | Volume 12 | Article 787574
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use of cytometry in diagnosingmultiple types of diseases, including
leukemia, allergies, and infectious diseases (38–40). Cytometry can
also be used to predict other types of clinical outcomes, such as the
response to vaccination and to cancer immune-therapies (41, 42).
Multiplemachine learningmethods have been developed to predict
clinical or biological outcomes by classifying the cytometry sample
into groups (Table 1), such as health vs. disease, responders vs non-
responders, and more. Similar approaches can also be used to
predict continuous outcomes using regress models.

Sample Classification Using Cell
Subset Information
In most studies, biomarker discovery and predictive modeling are
downstream steps to the cell-type annotation step in the cytometry
data analysis pipeline. The summary statistics of the cell
populations, including their abundance and their median or
mean marker intensities, can be used as features to classify the
cytometry samples (Figure 1C). Many studies directly apply
machine learning models to the cell population information, such
as logistic regression, random forest, and gradient boosted trees
(43–46). Pipelines and applications have also been developed for
cytometry data. E.g., CITRUS applies an unsupervised hierarchical
clustering method to identify a large number of small cell subsets.
CITRUS then uses the Least Absolute Shrinkage and Selection
Operator (LASSO) model to predict outcomes of interest from the
cell subset information (17). The L1-regularization of the LASSO
model allows researchers to identify themost informativecell subset
information for prediction. FloReMi is a pipeline developed from
the FlowCAP IV challenge to predict the time until progression to
AIDS for HIV patients using cytometry data but could be easily
adapted for other prediction problems (18). The pipeline contains
multiple steps for predictive modeling using cytometry data,
including data preprocessing, cell subset identification, feature
selection, and predictive modeling.

Predictive modeling using cell subset information is highly
intuitive and interpretable. Researchers can easily identify the
most predictive cell types associated with the outcome of interest.
The approach is straightforward to implement. Generic machine
learning models can be directly applied to the cell subset
information. However, the approach faces several challenges.
First, the cell-subset identification step is disconnected from the
latter predictive modeling step. Therefore, the identified cell
subsets are often not optimized for identifying cell populations
that are most associated with the outcome of interest. For
example, the cell type identification process may miss rare cell
populations that are key to disease prognosis. Second, the
original cytometry data are reduced to summary statistics of
cell subsets, potentially leading to the loss of important
information such as the correlation between cell markers and
the distribution of marker expression within each cell subset.
Third, the approach requires all samples to be clustered in the
same way, making it sensitive to batch effects and the choice of
clustering methods. Finally, the approach may fail to detect
cellular changes that do not lead to distinct cell populations,
such as the continuous up-regulation of CTLA-4 in T cells in
response to varying degrees of stimulation.
Frontiers in Immunology | www.frontiersin.org 5
Predictive Modeling Using Single-Cell Data
Several studies have used a different approach for predictive
modeling. Instead of using cell subset information, machine
learning models can be directly applied to the single-cell level
cytometry data to predict outcomes (Figure 1D). The input of the
model is the proteinmarker profiles of randomly ordered cells from
a cytometry sample; the output of the model is the clinical or
biological outcome associated with the cytometry sample.

Most commonly used supervisedmodels require the input to be
a single vector offeatures, such as logistic regression, random forest,
and gradient boosted trees. Because cytometry data is a collection of
randomly ordered single-cell profiles, it is challenging to build
predictive models using these supervised learning methods.
Researchers thus turn to neural network models, which have been
proven to be highly flexible for handling a wide range of structured
and unstructured data as inputs.

CellCNN is the first neural network designed to predict
outcomes using single-cell level data (19). CellCNN adopted a
convolutional neural network structure and used a set offilters to
extract information from the single cells. The cell-level
information is summarized into sample-level information by
taking the mean or maximum across all cells. The sample level
information is then associated with outcomes using dense neural
network layers. Another study designed a similar convolutional
neural network model with a larger number of internal layers,
allowing the model to better capture the complex interactions
between cell marks in the cytometry data (20).

This approach directly uses the single-cell level cytometry data,
circumventing the cell-type identification step. Thus, the approach
avoids information loss in the cell gating step. The neural network
models can be directly applied to raw cytometry data and predict
outcomes in an end-to-end fashion, making it easy to optimize the
prediction pipeline globally. In addition, it is possible to train the
supervised models using heterogeneous datasets, thus improving
the generalizability of themodels. On the other hand, this approach
faces several challenges. First, the approach is computationally
expensive, as it uses single-cell level data and deep neural
networks. Second, the models are less intuitive and do not
directly allow researchers to identify cell types that are associated
with clinical outcomes. Flow-up analysis needs to be conducted to
interpret the model and identify cell subsets as biomarkers.
RESOURCES FOR DEVELOPING
MACHINE LEARNING MODELS

Publically available cytometry data are valuable resources for
developing, validating, and evaluating machine learning models
for cytometry data analysis. Most of the machine learning tools
mentioned above have either been developed using publicly
available datasets or applied to public datasets for validation and
evaluation. Researchers are able to improve the generalizability of
the methods by testing the machine learning models using
heterogenous cytometry datasets.

ImmPort is a data repository for sharing clinical and basic
research data from immunology-related studies (47). As of Sep
January 2022 | Volume 12 | Article 787574
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2021, 495 studies are shared on Immport. Among them, 185
studies contain flow cytometry data or CyTOF data. As one of
the oldest available immunological databases, ImmPort shares a
variety of data types, including clinical data, protocols,
sequencing data, cytokine profiles, antibody titers, and many
more, to thousands of researchers every year. These rich datasets
provide a valuable opportunity for researchers to develop and
test machine learning models that are capable of predicting
clinical or biological outcomes using cytometry data. In
addition, ImmPort shares the cell-gating results provided by
the authors of the datasets, allowing researchers to benchmark
the performance of cell-population identification methods by
comparing the results with manual-gating results.

FLowRepository is a database specifically designed for sharing
cytometry data (48). As of Sep 2021, FLowRepository contains
1375 cytometry datasets and their associated metadata.
FlowRepository evaluates the datasets based on the Minimum
Information about a Flow Cytometry Experiment (MIFlowCyt)
standard (49) and assigns a MIFlowCyt score for each dataset,
allowing researchers to select a cytometry dataset based on the
completeness of metadata. FlowRespository also hosts several
datasets used by the FlowCAP challenges, which were established
to compare the performance of computational methods on cell
population identification and sample classifications (50). As the
performance of many existing methods has been assessed using
the FlowCAP datasets, researchers can use the FlowCAP datasets
to benchmark the performance of new machine learning
methods against the existing methods.

While a large number of cytometry datasets are publicly
available, several challenges exist for researchers to apply
machine learning methods to these datasets. First, the
metadata of the datasets is not standardized, including the use
of non-standardized names for protein markers, sample types,
experimental conditions, and disease states. Data harmonization
and standardization efforts are needed to unify the metadata
across studies. Second, the cytometry data from different studies
are highly heterogeneous, with differences in antibody panels,
fluorophore combinations, cytometer instruments, and sample
processing protocols. Thus, novel machine learning techniques
are needed to make the models robust to these heterogeneities.
Finally, only a small percentage of cytometry datasets are shared
publicly. There are still only a few thousand cytometry datasets
being publicly available, a number that is much smaller than the
shared number of transcriptomics data (160010 transcriptomics
datasets are available on GEO as of Sep 12, 2021). This is partially
due to the fact that journals and funding agencies do not
mandate the sharing of cytometry data, and partially due to
the community’s lack of enthusiasm in repurposing the shared
Frontiers in Immunology | www.frontiersin.org 6
cytometry data. Thus, all shareholders, including researchers,
journals, funding agencies, and private companies, should work
together to promote the availability and utility of publicly
available cytometry data.

CONCLUDING REMARKS
AND FUTURE DIRECTIONS

Many machine learning-based methods have been developed for
analyzing cytometry data. The machine learning models have
been primarily used to annotate cell populations and to classify
the cytometry samples. Early studies have used relatively simple
machine learning models to automate specific steps in the
cytometry data analysis pipeline while several recent studies
have started to implement complex deep learning models to
perform predictive modeling in an end-to-end fashion. While
existing machine learning models allow researchers to analyze
cytometry data with greater accuracy and speed, many challenges
remain to be solved. First, most machine learning models were
designed to analyze data from a single study. More robust
machine learning models are needed to enable the analysis of
heterogeneous datasets. Second, the current machine learning
models fail to incorporate existing biological knowledge into the
cytometry analysis. Novel machine learning models, such as
transfer learning models, could potentially be used to improve
cytometry data analysis. Finally, the results from many machine
learning methods are difficult to interpret. New model
interpretation methods are needed to allow researchers to
understand the machine learning results and to extract
biological insights from the model. At the same time, the
whole community should work together to promote the
availability and standardization of publicly available cytometry
data, providing richer resources for developing new machine
learning models.
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