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Data Descriptor: An open resource
for transdiagnostic research in
pediatric mental health and
learning disorders
Lindsay M. Alexander1, Jasmine Escalera1, Lei Ai1, Charissa Andreotti1, Karina Febre1, Alexander Mangone1,
Natan Vega-Potler1, Nicolas Langer1,2, Alexis Alexander1, Meagan Kovacs1, Shannon Litke1, Bridget O'Hagan1,
Jennifer Andersen1, Batya Bronstein1, Anastasia Bui1, Marijayne Bushey1, Henry Butler1, Victoria Castagna1,
Nicolas Camacho1, Elisha Chan1, Danielle Citera1, Jon Clucas1, Samantha Cohen3, Sarah Dufek4, Megan Eaves1,
Brian Fradera1, Judith Gardner5, Natalie Grant-Villegas1, Gabriella Green1, Camille Gregory1, Emily Hart1,
Shana Harris1, Megan Horton6, Danielle Kahn1, Katherine Kabotyanski1, Bernard Karmel5, Simon P. Kelly7,
Kayla Kleinman1, Bonhwang Koo1, Eliza Kramer1, Elizabeth Lennon5, Catherine Lord4, Ginny Mantello8,
Amy Margolis9, Kathleen R. Merikangas10, Judith Milham11, Giuseppe Minniti1, Rebecca Neuhaus1,
Alexandra Levine1, Yael Osman1, Lucas C. Parra3, Ken R. Pugh12, Amy Racanello1, Anita Restrepo1, Tian Saltzman1,
Batya Septimus1, Russell Tobe1,13, Rachel Waltz1, Anna Williams1, Anna Yeo1, Francisco X. Castellanos14,15,
Arno Klein1, Tomas Paus1,16,17, Bennett L. Leventhal1,18, R. Cameron Craddock1,13, Harold S. Koplewicz1 &
Michael P. Milham1,13

Technological and methodological innovations are equipping researchers with unprecedented capabilities for detecting and characterizing

pathologic processes in the developing human brain. As a result, ambitions to achieve clinically useful tools to assist in the diagnosis and

management of mental health and learning disorders are gaining momentum. To this end, it is critical to accrue large-scale multimodal

datasets that capture a broad range of commonly encountered clinical psychopathology. The Child Mind Institute has launched the

Healthy Brain Network (HBN), an ongoing initiative focused on creating and sharing a biobank of data from 10,000 New York area

participants (ages 5–21). The HBN Biobank houses data about psychiatric, behavioral, cognitive, and lifestyle phenotypes, as well as

multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion MRI, morphometric MRI), electroencephalography, eye-

tracking, voice and video recordings, genetics and actigraphy. Here, we present the rationale, design and implementation of HBN

protocols. We describe the first data release (n= 664) and the potential of the biobank to advance related areas (e.g., biophysical

modeling, voice analysis).

Design Type(s) data integration objective • clinical history design

Measurement Type(s) phenotype • brain activity measurement • nuclear magnetic resonance assay

Technology Type(s) performing a clinical assessment • electroencephalography • MRI Scanner

Factor Type(s) life cycle stage • biological sex • Laterality

Sample Characteristic(s) Homo sapiens • brain
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Background & Summary
Psychiatric and learning disorders are among the most common and debilitating illnesses across the
lifespan. Epidemiologic studies indicate that 75% of all diagnosable psychiatric disorders begin prior to
age 24 (ref. 1). This underscores the need for increased focus on studies of the developing brain2. Beyond
improving our understanding of the pathophysiology that underlies the emergence of psychiatric illness
throughout development, such research has the potential to identify clinically useful markers of illness
that can improve the early detection of pathology and guide interventions. Although the use of
neuroimaging, neuropsychology, neurophysiology and genetics has made significant strides in revealing
biological correlates for a broad array of illnesses, findings have been lacking in specificity3. Consequently,
progress in finding clinically useful brain-based biomarkers has been disappointing4,5.

Given the slow pace in biomarker identification, investigators have been prompted to rethink research
paradigms and practices. Most notably, the emphasis on mapping diagnostic labels from a clinically
defined nosology (e.g., the Diagnostic and Statistical Manual of Mental Disorders (DSM) or the
International Classification of Diseases) to varying biological indices has proven to be problematic, as it
assumes consistent biological relationships with broad constellations of signs and symptoms6,7.
Epidemiologists, psychopathologists, geneticists and neuroscientists are reconsidering the relevance of
diagnostic boundaries due to the lack of specificity in related findings. Two psychiatric research
approaches have emerged. First is the adoption of transdiagnostic models organized around behavioral
and neurobiological dimensions that transcend existing diagnostic boundaries3. Second is the use of
diagnostic subtyping to explain variation within diagnostic categories through the detection of
behaviorally or biologically homogeneous subgroups8–10. These two strategies of parsing psychiatric
illness are not mutually exclusive, and can inform each other.

Transdiagnostic and subtyping strategies call for changing the designs of future studies away
from those typically applied to clinical neuroscience research4. First, we must move away from
studying disorders in isolation from one another and from relying on ‘extreme comparisons’ in which
clinical samples are compared to healthy controls (often ‘super healthy’ controls), rather than offering
comparisons with individuals experiencing other clinical conditions—which is relatively common in
more targeted or even enriched designs. Unless this happens, the clinical relevance of published findings
will remain limited, because they will provide little insight into real-world challenges of differentiating
forms of psychopathology (i.e., a psychiatrist can easily differentiate an individual with schizophrenia
from a healthy control but may find it much more challenging to determine whether psychosis or a mood
disorder is the primary problem). Second, our science has been hindered by its reliance on small sample
sizes that are vastly underpowered given the high dimensionality and usual small effect sizes of biological
phenomena. This lesson is increasingly being incorporated in genetics, but it still applies to imaging or
physiologically-based measures. Third, sample ascertainment can no longer be dependent on clinics, as
the resulting samples bring with them a wide-range of multifaceted biases, including but not limited to
symptom severity, sex distribution and problems related to access to care. As a result, there is a pressing
need for community-based and epidemiologic samples11. Clearly, the time has come for changes in
methods at all levels of psychiatric science.

In response to these challenges, and the scarcity of transdiagnostic datasets available for neuroscientific
studies in children and adolescents, the Child Mind Institute has launched the Healthy Brain Network
(HBN) initiative. As part of this initiative, the HBN is creating a Biobank from a community sample of
10,000 children and adolescents (ages 5–21) residing in the New York City area. The HBN Biobank
includes behavioral and cognitive phenotyping, as well as multimodal brain imaging, electroencephalo-
graphy (EEG), eye tracking, genetics, digital voice and video samples, and actigraphy (Data Citation 1).
The HBN Biobank has an extensive phenotyping protocol that includes comprehensive psychiatric and
learning assessments, as well as instruments probing a range of familial, environmental and lifestyle
variables (e.g., physical activity, nutrition). Consistent with the model established by the NKI-Rockland
Sample12, all data obtained are being shared on a pre-publication basis throughout the six-year course of
the data acquisition phases for the project. Taken together, access to such a range of data will ensure that
the HBN Biobank will allow for scholars to address rich and clinically relevant questions.

What follows is an overview of the project plan and protocol details for the HBN Biobank; we also
describe strategies and tests developed as part of the process of ensuring that the HBN initiative can be
scaled up to meet its high throughput goals. Finally, we provide descriptions and quality assurance
characteristics for the initial major data release (n= 664).

Methods
Recruitment strategy
A primary goal for the HBN is to generate a dataset that captures the broad range of heterogeneity and
impairment that exists in developmental psychopathology. Accordingly, we adopted a community-
referred recruitment model. We use advertisements to encourage participation of families who have
concerns about psychiatric symptoms in their child. The ‘announcements’ are distributed to community
members, educators and local care providers, as well as directly to parents via email lists and events. The
advertisements highlight the potential value of participation for children who may require school-based
accommodations. In particular, the comprehensive diagnostic evaluation reports provided by HBN
include clinical impressions and actionable treatment recommendations; when appropriate, the reports
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can be used to acquire an Individualized Education Program (IEP)—a prerequisite for obtaining school
accommodations, services, and specialized classroom placements. Upon completion of the study, we offer
participants referral information and up to three in-person feedback sessions. Modest monetary
compensation for their time and expenses incurred are also provided.

It is important to note that our recruitment strategy was developed to achieve the major goals of the
HBN after considering the alternative of a fully representative epidemiologic design. The primary HBN
goal is to generate a large-scale, transdiagnostic sample for biomarker discovery and for investigations of
the neural substrates associated with commonly occurring illness phenotypes. While HBN ascertainment
is not clinic-based, per se, the strategy of recruiting on the basis of perceived clinical concern dictates that
the HBN sample will include a high proportion of individuals affected by psychiatric illness. Despite the
lack of rigorous epidemiologic ascertainment, the intended scale of data collection and the inclusion of
inherently diverse communities across NYC may approximate representativeness for the sample. The
scale of the sample should also allow investigators to study selected sub-cohorts of interest for targeted
study (e.g., comparing individuals with ADHD residing in Midtown Manhattan versus those residing in
Staten Island). Finally, depending on the ability to secure sufficient financial support, the fourth phase of
HBN will switch strategies to make the final 1,500 participants a representative epidemiologic cohort.

Participant procedures
Screening. To determine eligibility and ensure safety, potential participants or their legal guardians (if
they are under age 18) complete a prescreening phone interview with an intake coordinator. This
screening interview obtains information regarding a potential participant’s psychiatric and medical
history. With few exceptions, the presence of psychiatric, medical, or neurological illness does not exclude
participation. Primary causes for exclusion center on the presence of acute safety concerns (e.g., danger to
self or others), cognitive or behavioral impairments that could interfere with participation (e.g., being
nonverbal, IQ less than 66) or medical concerns that are expected to confound brain-related findings (see
Table 1). All individuals meeting inclusion criteria, without any reasons for exclusion, are invited to
participate in the study.

Medication. Participants taking stimulant medication are asked to discontinue their medication during
the days of participation, as stimulants are known to have an effect on cognitive and behavioral testing, as
well as functional brain mapping. Participants who choose not to discontinue medication, or whose
physicians require that medication not be interrupted, are still enrolled. Medication taken on the day of
participation is recorded.

IRB approval. The study was approved by the Chesapeake Institutional Review Board (https://www.
chesapeakeirb.com/). Prior to conducting the research, written informed consent is obtained from
participants ages 18 or older. For participants younger than 18, written consent is obtained from their
legal guardians and written assent obtained from the participant.

Inclusion Criteria

1. Male or female ages 5–21 years.

2. Adults must have capacity to understand the study and provide informed consent.
a. Children ages 5–17 must have the capacity to provide assent (must speak in simple, but full (3+ word) sentences at the Kindergarten level) and parent/
guardian must have the capacity to sign informed consent.

3. Participants must be fluent in English. Children who are fluent in English but have parents who speak Spanish can be enrolled upon availability of Spanish-
speaking personnel.

Exclusion Criteria

1. Serious neurological (specific or focal) disorders preventing full participation in the protocol. Some children with moderate to severe impairment in cognitive
(i.e., IQ below 66) and/or general function will be eligible for a short, research-based protocol. Parents will be informed that this battery will not allow for a full,
comprehensive feedback report. A feedback session and abbreviated report will be provided.
a. Examples include: non-verbal and/or low functioning autism, placement in classroom environment lower than 12:1:1, chronic epilepsy.

2. Acute encephalopathy (brain dysfunction) caused by an injury to the brain or disease.

3. Known neurodegenerative disorder (e.g., Huntington’s Disease, ALS, MS, Cerebral Palsy).

4. Hearing or visual impairment that prevents participation in study-related tasks.
a. Child can participate if vision or hearing is corrected with devices.

5. Recent diagnosis (within the past 6 months) of Schizophrenia, Schizoaffective Disorder, or Bipolar Disorder.
a. The absence of a formal diagnosis confers eligibility.

6. Manic or psychotic episode within the past 6 months without current, ongoing treatment.

7. New onset (within the last 3 months) of suicidality or homicidality for which there is no current, ongoing treatment.
a. This can be ideation or a plan. It must be believable, recurrent, and bona fide.

8. History of lifetime substance dependence requiring chemical replacement therapy.

9. Acute intoxication at time of any study visit.

Table 1. Participant inclusion and exclusion criteria.
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Project plan
The HBN has a four-phase project plan (see Table 2). The goals for each of the phases are as follows:

Phase I: Implementation and testing (Participants 1–500; completed). The overarching goal of the
initial phase was to establish a prototype HBN Diagnostic Research Center, located in Staten Island, New
York (one of the five boroughs of New York City). Prototype development was intended to establish all
project workflows and strategies/procedures for recruitment, diagnostic evaluations, phenotypic
assessments, and a referral network (i.e., health care providers to whom participants can be referred if
clinical significant concerns are detected). The initial protocol included diagnostic evaluations,
phenotypic assessments, EEG and magnetic resonance imaging (MRI). During the initial phase, we
also evaluated the feasibility and benefits of using a mobile MRI scanner, as well as a mobile Diagnostic
Research Center.

Phase II: Revision and hardening (Participants 501–1000; completed). A key challenge for almost
any large-scale study is balancing the desire to maintain stable protocols and assessments across the entirety
of a sample with the desire to integrate new measures and make changes based on learning
from experiences and scientific advances along the way. Phase II of the Healthy Brain Network had
two primary goals: 1) the addition and/or deletion of protocols established during Phase I, based on lessons
learned and new developments; and, 2) hardening the revised protocols to ensure that they are as optimal
and robust as possible, while also reflecting the current state of the art in science and practice.

Phase III: Scale-up (Participants 1001–8500; in process). Building on the experience and lessons
learned from Phases I and II of the project, the Healthy Brain Network has started Phase III, with the goal
of enrolling 7,500 participants in our established protocol. This goal necessitates increased capacity for
both recruitment and enrollment. As such, Phase III includes additional Diagnostic Research Centers and
MRI scan sites in the New York City region; sites are being chosen to increase the diversity of populations
that can be reached.

Phase IV: Targeted recruitment (Participants 8501–10000). The final phase of the Healthy Brain
Network will incorporate epidemiologic sampling to recruit an additional targeted representative sample
of 1,500 participants.

Experimental design
The HBN protocol spans four sessions, each approximately three hours in duration (see Table 3). A list of
all measures collected during the four-session evaluation can be found in Table 4. The assessment
includes:

Clinician-administered assessments. The clinical staff consists of a combination of psychologists and
social workers, with psychopharmacological consultation support provided by psychiatrists. All the tests
in this section are administered by, or directly under the supervision of, licensed clinicians. Participant
responses are first scored by the administering clinician. To enhance validity, the entire set of responses is

Project Plan Goals

Phase I: Implementation and Testing (N= 500)

● Establish project workflows
● Mental health diagnostic evaluation
● Phenotypic assessment
● EEG
● MRI scanning

● Establish prototypes for Diagnostic Research Center (HBN-Staten
Island)

● Test utility of mobile Diagnostic Research Center
● Test utility of mobile MRI platform
● Establish recruitment sources and community partners

Phase II: Revision and Hardening (N= 500)

● Augment learning and language evaluation protocols
● Increase breadth of phenotyping and overlap with other initiatives

● Family history
● Impairment
● Prenatal assessment
● Parental distress
● Sleep
● Stress/trauma
● Substance use

● Identify and troubleshoot data quality issues

● Introduce voice assessment protocols
● Introduce saliva collection for genetics
● Introduce natural viewing fMRI
● Introduce home-based longitudinal follow-up (HBN Quarterly Mental Health

Report)
● Optimize staffing models and workflow efficiencies
● Test and harden KSADS-COMP
● Test and harden E-SWAN
● Test reproducibility of prototype Diagnostic Research Center (HBN-Manhattan)

Phase III: Scale-up (N= 7,500)

● Increase to three full-scale Diagnostic Research Centers
● Transition to multi-site stationary MRI scanner model

● Implement infrastructure for epidemiologic sampling
● Introduce home-based phlebotomy collection model
● Introduce actigraphy

Phase IV: Targeted Recruitment (N= 1,500)

● Epidemiologic sampling

Table 2. Healthy brain network project plan.
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again scored by a trained research assistant. Finally, all test scores from clinical interviews are double-
entered into the database by two (different) trained research assistants.

Semi-Structured Diagnostic Interview. All participants are administered a computerized web-based
version of the Schedule for Affective Disorders and Schizophrenia—Children’s version (KSADS)13. The
KSADS-COMP is a semi-structured DSM-5-based psychiatric interview used to derive clinical diagnoses;
administration in the HBN is performed by a licensed clinician. The KSADS-COMP includes a clinician-
conducted parent interview and child interview, which result in automated diagnoses. Following
completion of the interviews and review of all materials collected during study participation, clinically
synthesized diagnoses (i.e., consensus DSM-5 diagnoses) are generated by the clinical team. The HBN
data include the KSADS-COMP interview data along with the algorithm-generated diagnoses, as well as
consensus clinical diagnoses, for each participant.

Additional Diagnostic Assessments. For a subset of psychiatric disorders, specific follow-up assessments
are completed, as indicated for additional clinical characterization beyond the KSADS (e.g., Autism
Diagnostic Observation Schedule [ADOS]14 for suspected autism, Clinical Evaluation of Language
Fundamentals [CELF]15 for suspected language disorder) (See Table 5). These targeted supplemental
diagnostic assessments are not administered to individuals without a suspicion of the presence of
clinically significant illness in the corresponding domain.

Intelligence and Learning. Participants ages 6–17 complete the Wechsler Intelligence Scale for Children
(WISC-V)16. Participants age 5, and those believed to have an IQ below 70, complete the Kaufman Brief
Intelligence Test (KBIT)17. Participants ages 18 and older complete the Wechsler Adult Intelligence Scale
(WAIS-IV)18. All participants ages 6 and older complete the Wechsler Individual Achievement Test
(WIAT III)19.

Language. Trained research assistants and clinicians administer language screening tests as indicated,
including the Clinical Evaluation of Language Fundamentals (CELF-5) Screener, the Goldman Fristoe
Test of Articulation (GFTA) ‘Sounds and Words’ subtest20, the Comprehensive Test of Phonological
Processing, Second Edition (CTOPP-2)21, and the Test of Word Reading Efficiency, Second Edition
(TOWRE-2)22. In addition, participants who fail the CELF-5 Screener and/or perform poorly on GFTA
subtests are offered additional language evaluations performed by a licensed speech and language
pathologist. This assessment includes the full CELF-5 assessment23, Expressive Vocabulary Test (EVT)24,
the Peabody Picture Vocabulary Test (PPVT)25, the CELF-5 Metalinguistics23, and additional subtests of
the GFTA.

Self-administered assessments. Participant report and parent measures are acquired via the online
patient portal of the NextGen electronic medical record system. Direct electronic entry of responses by
participants minimizes the burden on research staff and removes the potential for errors that arise when
questionnaires are administered using pen and paper, and then manually entered into a database.

Healthy Brain Network Visit Schedule

Time (min) Child Activity Parent Activity

Visit One

30 Introduction, consent

15 Assent Enrollment, MRI screening

75 WISC/WASI/KBIT Pre-Interview I (clinical portion)

30 Child questionnaires

15 Mock scanner

Visit Two

105 MRI scan

Visit Three

45–69 WIAT Pre-Interview II: RA portion

20–30 CELF-5 and TOWRE Parent questionnaires

30 NIH Toolbox

60 Child questionnaires

30 Fitness/vitals

Visit Four

75–90 EEG KSADS

40–45 KSADS

30 Quotient

30 CTOPP and GFTA

Table 3. HBN visit schedule, manhattan and staten island offices.
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Structured questionnaires assess behavior, family structure, stress and trauma, as well as substance use
and addiction (see Table 4). Each participant completes a set of questionnaires specific for his/her age and
according to the protocol version at time of participation. See Fig. 1 for a timeline of changes to the HBN
assessment protocol over the first two years of the project.

In the case of teacher reports, paper forms are used to collect data (e.g., Teacher Report Forms26) due
to varying levels of receptiveness for electronic forms. All data collected on paper are double-entered by
trained research assistants.

Computerized testing. Given the emphasis on clinically and educationally relevant assessments,
limited time was available for additional computerized testing. To facilitate overlaps with cognitive
phenotyping in other efforts, a subset of the NIH Toolbox has been included, consisting of: Flanker Task
(Executive Function/Inhibitory Control and Attention), Card Sort (Executive Function/Dimensional
Change), and Pattern Comparison (Processing Speed)27. In June 2017, an additional 1-minute task
measuring temporal discounting was added to the HBN protocol28.

Fitness testing. Basic physical measurements (e.g., height, weight, and waist circumference) and
cardiovascular measures (e.g., blood pressure and heart rate) are collected by trained research assistants.
Cardiovascular fitness is assessed using a modified version of the FitnessGram test battery. FitnessGram29

General Information Behavioral Measures

Demographics
CMI Symptom Checker
Edinburgh Handedness Inventory
Intake Interview
Physical Activity Questionnaire for Older Children (PAQ-C) (8–14)
Physical Activity Questionnaire for Adolescents (PAQ-A) (14–19)
Barratt Simplified Measure of Social Status
Financial Support Questionnaire
Medical History Questionnaire—Family
Pregnancy and Birth Questionnaire

Child Behavior Checklist (CBCL) (5–17)
Youth Self Report (YSR) (11–18)
Adult Self Report (ASR) (18+)
Screen for Child Anxiety Related Disorders (SCARED)—Parent Report & Self
Report (8–18)
State Trait Anxiety Inventory (STAI) (18+)—Self Report
Mood & Feelings Questionnaire (MFQ)—Parent Report & Self Report (8+)
Affective Reactivity Index—(ARI-S) Self Report
Columbia Suicide Severity Rating Scale (C-SSRS)—Self Report (7+)
Extended Strengths and Weaknesses Assessment of Normal Behavior
(E-SWAN) (5–17)
Strengths and Weaknesses of ADHD Symptoms and Normal Behavior Scale
(SWAN) (6+)
Conners ADHD Rating Scales Self Report Short Form (Conners) (8+)
Repetitive Behavior Scale (RBS) (5–21)
Autism Spectrum Screening Questionnaire (ASSQ) (5+)
Social Communication Questionnaire (SCQ) (5+)
Social Responsiveness Scale-2 (SRS-2) (5+)
Strengths and Difficulties Questionnaire (5+)
The Columbia Impairment Scale (CIS) Parent ad self report (5+)
Social Aptitudes Scale (SAS) (5+)
WHO Disability Assessment Schedule (WHODAS) Parent and Self-Report (5+)
Food Frequency Questionnaire (FFQ) (5–17)
Inventory of Callous-Unemotional Traits—Parent Report (5+)

Physical Measures Family Structure, Stress and Trauma

FITNESSGRAM (Pushups, Curl-ups, Trunk-Lift, Sit and Reach, Grip Strength)
Cardiovascular Fitness Test
Vitals (Heart Rate, Blood pressure)
Measurements (Height/weight, Waist circumference, Bio-impedance)
Blood Draw (Endocrine, Immunologic, and Metabolic profiling; Genetics)
Buccal Swabs (Genetics)
Urine Sample (Toxicology screen, Pregnancy test: 11+)
Ishihara Color Vision Test
Electroencephalography (EEG)/Eye Tracking
Magnetic Resonance Imaging (MRI)
Peterson Puberty Scale (6–17)
Sleep Disturbance Scale for Children (SDSC) (6–15)

Family History-Research Diagnostic Criteria (FH-RDC)
Parental Stress Index IV (PSI-IV)
Alabama Parenting Questionnaire—Self Report (APQ) (6–18)
Alabama Parenting Questionnaire—Parent Report (APQ) (6–18)
Children’s Perception of Interparental Conflict (CPIC) (8–18)
Distress Tolerance Index—Parental Self Report
Children’s Coping Strategies Checklist—Revised (CCSC) (8–18)
UCLA Trauma Reactivity Sale for DSM-V (UCLA) (5–18)
Negative Life Events Scale (NLES)—Self Report (8–18)
Negative Life Events Scale Parent Report (8–18)
Adverse Childhood Experiences Scale (ACES) (18+)

Cognition and Language Tasks Substance Use and Addiction Measures

NIH Toolbox Tasks: Flanker, Card Sort and Processing Speed
Temporal Discounting Task
Quotient ADHD System
Rapid Automatic Naming & Rapid Alternating Stimulus Test (RAN/RAS) (5)
Wechsler Intelligence Scale for Children-V (WISC-V) (6–17)
Wechsler Adult Intelligence Scale-IV (WAIS-IV): (17+)
Wechsler Abbreviated Scale of Intelligence-II (WASI): (17+)
Wechsler Individual Achievement Test—III (WIAT)
Differential Ability Scales—II (DAS) (5 or IQ below 70)
Clinical Evaluation of Language Fundamentals—5th Edition (CELF-5)
Goldman Fristoe Test of Articulation—II (GFTA)
Comprehensive Test of Phonological Processing—II (CTOPP)
Test of Word Reading Efficiency (TOWRE) (6+)
Expressive Vocabulary Test (EVT) (when indicated)
Peabody Picture Vocabulary Test (PPVT) (when indicated)

Fagerstrom Test for Nicotine Dependence (FTND) (18+)
Alcohol Use Disorders Identification Test (AUDIT) (11+)
Modified Fagerstrom Tolerance Questionnaire- Adolescents (FTQA) (13–17)
European School Survey Project on Alcohol & Other Drugs (ESPAD) (10+)
Internet Addiction Test (IAT)
Parent-Child Internet Addiction Test (PCIAT)
Yale Food Addiction Scale (YFAS) and YFAS-Child

Diagnostic Assessments Longitudinal Follow Up Measures

Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS)
Child and Adolescent Psychiatric Assessment Schedule (Cha-PAS) (when
indicated)
Vineland Adaptive Behavior Scale—Parent/Caregiver Rating Form (when
indicated)
Yale Global Tic Severity Scale (YGTSS) (when indicated, 6+)
Yale-Brown Obsessive Compulsive Scale (Y-BOCS) (when indicated, 18+)
Children’s Yale-Brown Obsessive Compulsive Scale (when indicated, 6–18)

Youth Services Survey (YSS) & Services Assessment for Children and
Adolescents (SACA)
Follow Up: CBCL
Follow Up: Columbia Impairment Scale Parent snd Self Report Follow Up:
WHODAS Parent and Self Report

Table 4. Complete HBN protocol.
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is a widely used health-related physical fitness assessment that measures five different parameters,
including aerobic capacity, muscular strength, muscular endurance, flexibility, and body composition.
A treadmill test is used to measure maximal oxygen consumption for the purposes of estimating
VO2max. Bioelectric impedance measures, used for the calculation of various indices of body
composition (e.g., body mass index,percent body fat, percent water weight), are taken using the RJL
Systems Quantum III BIA system.

Electroencephalography (EEG) and eye tracking. For each participant, EEG and eye-tracking data
are obtained during a battery that was previously assembled to examine attention, perception, inhibitory
control, and decision-making30. See Table 6 for the specific paradigms and brief descriptions of each.

High Density EEG. High-density EEG data are recorded in a sound-shielded room at a sampling rate of
500 Hz with a bandpass of 0.1 to 100 Hz, using a 128-channel EEG geodesic hydrocel system by Electrical
Geodesics Inc. (EGI). The recording reference is at Cz (vertex of the head). For each participant, head
circumference is measured and an appropriately sized EEG net is selected. The impedance of each
electrode is checked prior to recording to ensure good contact, and is kept below 40 kOhm. Time to
prepare the EEG net is no more than 30 min. Impedance is tested every 30 min of recording and saline
added if needed.

Eye tracking. During EEG recordings, eye position and pupil dilation are also recorded with an infrared
video-based eye tracker (iView-X Red-m, SensoMotoric Instruments [SMI] GmbH) at a sampling rate of
120 Hz. This system has a spatial resolution of 0.1° and a gaze position accuracy of 0.5°. The eye tracker is
calibrated with a 5-point grid before each paradigm. Specifically, participants are asked to direct their
gaze in turn to a dot presented at each of 5 locations (center and four corners of the display) in a random
order. In a validation step, the calibration is repeated until the error between two measurements at any
point is less than 2°, or the average error for all points is less than 1°.

Magnetic resonance imaging (MRI). Test Phase (mobile 1.5 T Siemens Avanto; n= 343). Imaging data
were collected using a 1.5 T Siemens Avanto system equipped with 45 mT/m gradients in a mobile trailer
(Medical Coaches, Oneonta, NY). The scanner was selected to pilot the feasibility of using a mobile MRI

Diagnosis Assessment Description

Autism Spectrum
Disorder

Autism Diagnostic Interview—Revised (ADI-R) A reliable and valid standardized diagnostic interview developed to aid practitioners
in gathering a complete developmental history and current functioning level for an
individual being evaluated for ASD. Administered to participants with a referral for
autism-specific evaluation.

Autism Diagnostic Observation Schedule, 2nd
edition (ADOS-2)

A standardized, semi-structured play-based assessment in which tasks are presented
in a standardized manner to elicit and/or highlight the presence or absence of
specific behaviors relevant to making an ASD diagnosis. Administered to
participants with a referral for autism-specific evaluation.

Intellectual Disability Vineland Adaptive Behavior Scale—Parent/
Caregiver Rating Form

A measure of adaptive behavior from birth to adulthood; forms an aid in
diagnosing and classifying intellectual and developmental disabilities. Administered
to parents of participants with developmental or intellectual disorders.

Child and Adolescent Psychiatric Assessment
Schedule (ChA-PAS)

A semi-structured clinical interview linked to a clinical glossary that guides the
ratings. The ChA-PAS has, however, been extended to include ADHD and
Behavioral Disorders, as well as axis I psychiatric disorders. It also includes a screen
for autistic spectrum disorders. Administered to parents of participants with
developmental or intellectual disorders.

Speech/Language
Disorder

Clinical Evaluation of Language
Fundamentals—Fifth Edition (CELF-5)

An individually administered assessment tool made up of 18 subtests organized into
four levels of testing that address language content, structure, and use.
Administered to children with a referral for an extended language evaluation.

Test of Language Competence—Expanded
Edition (TLC-E) Level 1

An individually administered, norm-referenced oral language measure which
evaluates for delays in the emergence of linguistic competence and in the use of
semantic, syntactic, and pragmatic-strategies. An emphasis is placed on assessing
within the contextual and situational demands of conversation in addition to basic
semantic and syntactic abilities. Administered to children with a referral for an
extended language evaluation.

Expressive Vocabulary Test, Second Edition
(EVT-2)

An individually administered, norm-referenced instrument that assesses expressive
vocabulary and word retrieval for children and adults. Administered to children
with a referral for an extended language evaluation.

Peabody Picture Vocabulary Test, Fourth
Edition (PPVT-4)

A norm-referenced, wide-range instrument for measuring the receptive (hearing)
vocabulary of children and adults. For each item, the examiner says a word, and the
examinee responds by selecting the picture that best illustrates that word’s meaning.
Administered to children with a referral for an extended language evaluation.

Goldman-Fristoe Test of Articulation—III
(GFTA-3)

Provides information about a child’s articulation ability by sampling both
spontaneous and imitative sound production. Use this test to measure articulation
of consonant sounds, determine types of misarticulation, and compare individual
performance to national, gender-differentiated norms. Administered to children
with a referral for an extended language evaluation.

Obsessive Compulsive
Disorder (OCD)

Yale-Brown Obsessive Compulsive Scale (Y-
BOCS)

A semi-structured clinician-rated instrument that assesses the severity of OCD
symptoms. Administered as part of KSADS interview, if indicated.

Tic Disorder Yale Global Tic Severity Scale (Y-GTSS) A semi-structured clinician-rated instrument that assesses the nature of motor and
phonic tics. Administered as part of KSADS interview, if indicated.

Table 5. HBN diagnostic specific assessments.
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Figure 1. HBN Protocol Timeline. Here we depict the month in which each assessment was added (and in

some cases removed). Dark gray boxes indicate inclusion of the assessment in the protocol for a given month,

while white boxes indicate the measure was not included.
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platform to achieve a single scanner solution for the challenges of scanning at geographically distinct
locations in the NY area. To maximize long term stability, the trailer was parked on 10-inch thick
concrete pads. The system was upgraded with 32 RF receive channels, the Siemens 32-channel head coil,
and the University of Minnesota Center for Magnetic Resonance Research (CMRR) simultaneous multi-
slice echo planar imaging sequence31. Scanning included resting state fMRI, diffusion kurtosis imaging
(DKI) structural MRI (T1, T2-space), magnetization transfer imaging, quantitative T1 and T2 mapping
(DESPOT T1/T232) and imaging of visceral fat (T1W). See Table 7 for the full scan protocol and Table 8
for parameters.

Deployment Phase I (3.0 T Siemens Tim Trio; ongoing). Imaging data are collected using a Siemens 3 T
Tim Trio MRI scanner located at the Rutgers University Brain Imaging Center (RUBIC). The scanner
was selected based on physical proximity to the HBN Diagnostic Research Center in Staten Island, New
York (12.7 miles; average ride duration: 24 min). The system is equipped with a Siemens 32-channel head
coil and the CMRR simultaneous multi-slice echo planar imaging sequence. When possible, the structural
and functional MRI scan parameters were selected to facilitate harmonization with the recently launched
NIH ABCD Study (this was not possible for the diffusion imaging due to limitations of the Trio
platform). See Table 7 for scan protocol layout and Table 8 for parameters. Of note, two naturalistic
viewing fMRI scans obtained during movie watching were added to the protocol (‘Despicable Me’
[10 min clip, DVD version exact times 1:02:09–1:12:09, spanning from the bedtime scene to the rocket
deployment scene; added October 28, 2016], ‘The Present’ [ ~ 3.47 min; added November 23, 2016]).

Deployment Phase II (3 T Siemens Prisma; pending). In late 2017, Phase II scanning will begin using
Prisma scanners located at the CitiGroup Cornell Brain Imaging Center and the CUNY Advanced
Science Research Center. The imaging sequence protocols will be harmonized to the NIH ABCD Study.

Note: To facilitate assessments of scanner-related variation, a ‘human phantom’ dataset will be
generated and openly shared. Specifically, in 2018, 20 individuals will be scanned two times at each of the
three scanner sites.

Task Degree of
stimulation

Description Duration Reference*

Active (task-dependent paradigms)

Sequence Learning
Paradigm

Moderate Participants are asked to observe and memorize a sequence of either five
or ten stimuli, depending on age. The sequence is repeated across five
trials.
The purpose of the paradigm is to track the progress of gradual memory
formation. EEG and/or ERP signatures of basic stimulus processing and
memory encoding can be examined with respect to behavioral indices of
learning performance on a block-by-block or trial-by-trial basis.

5 min Steinemann, N. A., Moisello, C., Ghilardi, M. F., & Kelly, S. P. (2016).
Tracking neural correlates of successful learning over repeated sequence
observations. NeuroImage, 137,152–164.

Visual Perception/
Decision-making
Paradigm

Moderate Participants continuously monitor two overlaid, flickering grating patterns
on a screen, indicating with a button press when they detect a contrast
difference between the two.
This task furnishes behavioral metrics (reaction time, accuracy) for simple
decisions and electrophyiological signatures of evidence encoding,
accumulation, and motor preparation.

9 min (3 runs
of 3 min each)

O'Connell, R. G., Dockree, P. M. & Kelly, S. P. A supramodal
accumulation-to-bound signal that determines perceptual decisions in
humans. Nature neuroscience 15,1729–1735 (2012).

WISC-IV Symbol
Search Paradigm

Complex For each trial in the symbol search paradigm, participants are shown rows
of two target symbols and five symbols, and asked to indicate whether or
not one of the target symbols appears in one of the five subsequent
symbols.
The paradigm is a computerized version of a clinical pediatric assessment
intended to measure processing speed capacity. Eye tracking is used to
gather information about how long participants look at each symbol and
their strategy for completing the task.

2 min Wechsler, D. The Wechsler intelligence scale for children. 4th edn
(Pearson, 2004).

Passive (task-independent paradigms)

Resting-State None Participants view a fixation cross on the center of the computer screen.
Throughout the paradigm, participants are instructed to open or close
their eyes at various points.
The paradigm is intended to measure endogenous brain activity during
rest.

5 min Fox, M. D. & Greicius, M. Clinical applications of resting state functional
connectivity. Frontiers in systems neuroscience 4,19 (2010).

Inhibition/Excitation
Paradigm

Minimal The stimulus used for this paradigm consists of four small flickering discs
embedded in a static grating background. The discs generate strong
steady-state responses that vary with contrast of the flickering stimuli.
The paradigm is intended to measure excitatory (SSVEP) and inhibitory
(surround suppression) neurophysiological activity.

3.5 min Vanegas, M. I., Blangero, A., & Kelly, S. P. (2015). Electrophysiological
indices of surround suppression in humans. Journal of neurophysiology, 113
(4), 1100–1109.

Naturalistic Stimuli
Paradigm

Complex Participants view a montage of short video clips taken from age-
appropriate, mainstream television and movies.
Stimuli include the following:

Despicable Me (Clip from feature-length film; 2.83 min)
Diary of a Wimpy Kid (Trailer for feature-length film; 1.95 min)
‘Fun with Fractals’ (Educational video clip; 2.72 min)
The Present (Short film; 3.47 min)

The purpose of this paradigm is to measure neurophysiological activity
during higher-level audio-visual stimulation.

11 min Hasson, U., et al. Intersubject synchronization of cortical activity during
natural vision. Science 303,1634–1640 (2004).; Hasson, U., et al. Reliability
of cortical activity during natural stimulation. Trends in cognitive sciences
14,40–48 (2010).; Bartels, A. & Zeki, S. Functional brain mapping during
free viewing of natural scenes. Human brain mapping 21,75–85 (2004).

Table 6. Description of EEG Paradigms. Adapted from: Langer N et al.30 *The listed references suggest further reading regarding research
questions that can be asked using each paradigm, which is not necessarily used in the cited studies. See Langer et al.30 for the precise details of
all paradigms run as part of this initiative.
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Monitoring eye gaze direction during naturalistic viewing. A key question that may arise in the analysis
of naturalistic fMRI scans (or even resting state scans), is where an individual is looking during each
repetition in the time series. To address this question, the HBN has included calibration scans that can be
used to extract information about eye gaze direction using predictive eye estimation regression
(PEER)—a method that uses multivariate regression on calibration data to learn classifiers for decoding
eye gaze location from separately acquired fMRI data33–35. Calibration data involves short fMRI tasks
during which the participant is asked to fixate on a white dot that moves through 27 unique positions on
the screen. The dot dwells at each location for 4 s before moving to a different location and the positions
are iterated through twice per calibration run. Two calibration runs are collected during each session,
interdigitated with other functional scans, to improve the quality of eye tracking. Once motion corrected,
classifiers can be learned from the calibration scans using the voxels in and around the eyes as features
and either the x or y coordinate of the dot position as labels. Once learned, the classifiers can be applied to
fMRI data to determine where the participant’s eyes were focused during each repetition.

Scan Type Time (minutes)

Staten Island

Abdomen localizer 0.52

T2Flair 2.73

Breathhold 0.18

Brain localizer 0.43

Motion training 1.58

Field map 1.08

Resting state 10.3

T1W 6.53

DWI B= 0 PA-AX 0.27

DKI 64 Directions AP 9.98

DWI B= 0 PA-AX 0.27

DWI B= 0 AP-AX 0.27

Despot 1 5

IR SPRG 0.88

Despot 2 5

MT Off 6.68

MT On 6.68

58.4

Rutgers

Localizer 0.2

T2Flair 2.4

fMRI Distortion map 0.1

fMRI Distortion map 0.1

Rest 5.1

Peer 1 1.9

Rest 5.1

Peer 2 1.9

Movie: Despicable Me 10

T1W 7

T2Space 7

Peer 3 1.9

Movie: The Present 4

MT On 4

MT Off 4

DKI 10

64.7

Table 7. MRI protocol layout.
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Voice and video recording and actigraphy data collection. Behavior monitoring technologies have
the potential to help infer internal states of participants during assessments36. Voice analysis stands out as
particularly promising, given its increasing application in psychiatry (e.g., to assess mood and anxiety37),
in neurology (e.g., to assess motor function in populations such as those affected by Parkinson’s disease38)
and in developmental studies (e.g., to assess pubertal stage39). The ease with which one can record audio
samples in a controlled setting is particularly appealing. Among sensor-based wearable devices,
accelerometer-based actigraphy is a promising means of monitoring behavior related to movement and
sleep40. For participants in Phase III, the collection of audio and video recordings have begun and
actigraphy data collection will be implemented in July 2017.

Voice recording. During the administration of all assessments and interviews, starting with subject 746,
audio recordings are being collected using a portable Sony ICD-UX 533 digital voice recorder. Additional
voice recordings are collected following the MRI Scans. While in the MRI scanner, participants view an
animated emotionally evocative four-minute film, titled ‘The Present’. Immediately after coming out of
the scanner, participants are prompted to narrate the story in their own words and answer a series of
perspective-taking questions that are related to the film content. During this narration and question
answering session, high-fidelity audio recordings are collected with a Røde NT1 cardioid condenser
microphone. Additionally, high-definition video of their face and upper body is collected simultaneously
with a Canon XC15 digital camcorder. The audio recordings enable voice and speech analysis and the
video recordings are envisioned to be useful for facial expression analyses.

Actigraphy. Plans are underway to provide each participant with a wrist-worn ActiGraph wGT3X-BT
to monitor movement throughout the day and night. Participants will be requested to wear the device
every day for one month; a wear-time monitor included in the device will allow us to assess compliance.
The device will be recharged and its data downloaded during each visit.

Genetics. Since December 2016, all participants are asked to provide a saliva sample for genetics using
the Oragene Discover (OGR-500) DNA collection kit. This collection strategy was put in place as an
alternative to blood collection, which was initially to be carried out in the diagnostic research center, was
discontinued due to the logistical challenges it created in the office. Starting in July 2017, saliva samples
will be complemented by blood collected in the participant’s home by a local phlebotomy service that the
HBN has contracted. Resulting materials will be donated to the NIMH Genetics Repository for sharing.

Deciduous ‘Baby’ teeth collection. Beginning in August 2017, all age appropriate participants will be
asked to provide 1–2 deciduous ‘baby’ teeth. Shed teeth are collected into provided plastic tubes, labeled,
and stored at room temperature until analysis. Teeth will be used to assess environmental exposures
throughout the prenatal and early childhood developmental windows. Between 6–13 years of age,
children naturally shed 20 deciduous teeth. These teeth begin developing prenatally ~14–16 weeks after
fertilization and mineralization follows a regular incremental layer-by-layer pattern corresponding to the

Slices % FOV
phase

Resolution(mm) TR (ms) TE (ms) TI (ms) Flip
Angle (°)

Multi Band
Accel

Phase Partial
Fourier

Notes

Staten Island

T1 MPRAGE 176 100% 1.0 × 1.0 × 1.0 2730 1.64 1000 7 N/A Off

T2 FLAIR 24 87.50% 0.9 × 0.9 × 5.0 9000 89.00 2500 150 N/A Off

Diffusion 72 100% 2.0 × 2.0 × 2.0 3110 76.20 N/A 90 3 6/8 64 directions,
b= 0,1000,2000

fMRI 54 100% 2.5 × 2.5 × 2.5 1450 40.00 N/A 55 3 Off

MTI 176 100% 1.0 × 1.0 × 1.0 30 11.00 N/A 15 N/A 6/8 Acquired with and
without MT

Rutgers University

T1 MPRAGE 224 100% 0.8 × 0.8 × 0.8 2500 3.15 1060 8 N/A Off

T2 FLAIR 22 87.50% 0.9 × 0.9 × 5.0 9000 90.00 2500 150 N/A Off

T2 SPACE 224 100.00% 0.8 × 0.8 × 0.8 3200 565.00 N/A varies N/A Off

Diffusion 72 100% 1.8 × 1.8 × 1.8 3320 100.20 N/A 90 3 Off 64 directions,
b= 0,1000,2000

fMRI 60 100% 2.4 × 2.4 × 2.4 800 30.00 N/A 31 6 Off

MTI 176 100% 1.0 × 1.0 × 1.0 30 11.00 N/A 15 N/A 6/8 Acquired with and
without MT

Table 8. MRI protocol parameters. Note: T2-Space sequence parameters updated in November, 2017 due
to suboptimal bandwidth parameter setting that adversely affected the TE and resulted in substantially reduced
T2 contrast (T2-Space images collected prior to this date not appropriate for myelin mapping; see Updates and
Fixes section of the HBN Scientific Data Portal for more details).
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circadian growth rhythm41. During development, these layers act as a repository where many chemicals
accumulate and offer the opportunity to elicit temporal exposure information. Using bio-imaging along
with laser ablation-inductively coupled plasma-mass spectroscopy, researchers leverage the physiology of
deciduous teeth to study the intensity and dose of chemical exposure uptake during the pre- and
postnatal periods of development42. Methods to quantify toxicant and nutrient metal exposures including
lead and manganese have been extensively validated43,44 and methods are currently under development
for a suite of chemical contaminants including additional metals, organic compounds (i.e., phthalates),
pesticides, and markers of second hand tobacco smoke and licit/illicit drugs45. Additionally, biological
markers are being developed for indicators of stress46, fetal inflammation, and neurodevelopmental
plasticity.

Lessons learned. Over the course of the development and the implementation of Phases I and II, we
have overcome challenges and learned a variety of lessons. Some of the key challenges and solutions that
may benefit others are highlighted below:

Incentivizing Participation. Recruitment is a key challenge for large-scale data generation initiatives,
especially when data capture is not simply an add-on to ongoing activities (e.g., addition of a blood
sample in clinics or a questionnaire in schools). While scientists commonly justify the funding of research
based on potential long-term scientific benefits, the general public tends to evaluate the utility of research
participation based on more immediate needs—particularly when participation demands a substantial
amount of time and energy. Early in the development of HBN, these competing agendas were repeatedly
highlighted by potential community partners. As a result, the HBN has attempted to maximize the quality
and breadth of feedback and recommendations that are provided to families and caregivers; the
information provided is derived from clinically relevant data obtained over the course of participation
(e.g., feedback report and sessions provided by licensed clinicians, generation of a referral grid for the
NYC area). From this project’s inception, there has been an emphasis on the distinction between the data
obtained purely for research purposes (e.g., EEG, MRI) and the data that may directly benefit
participants. This distinction has helped to manage expectations and answer participants’ and family
members’ questions about the scope and utility of the project.

Balancing Experimental Needs and Participant Burden. Drawing from prior experiences with the NKI-
Rockland Sample initiative, the HBN was initially designed to be completed in two 6-hour days. Over the
course of Phase I, we learned that many participants and their families preferred an alternative schedule
that is better aligned with school and work schedules. As a result, the HBN adopted the current schedule
of four 3- to 3.5-hour sessions. Despite initial concerns that this would lead to an increased incomplete
participation rate, the current schedule has facilitated participation and the dropout rate has remained
low at around 6%.

Broadening the Scope of Phenotyping for the Study of Mental Health. There is a need to consider
broader domains of impairment known to be highly associated with psychiatric illness. We received
feedback specifically about the desirability of measuring intelligence, learning, language, speech and
lifestyle variables (e.g., fitness, eating behaviors, nutrition); in response, we replaced the abbreviated
batteries commonly used for intelligence and achievement testing in research studies (e.g., WASI47,
limited portions of the WIAT) with more comprehensive evaluations (i.e., WISC16, full WIAT48), which
require an additional 90–120 min per assessment. In addition to the scientific benefits of expanding the
granularity of our evaluations, these evaluations have sometimes been useful for obtaining individualized
educational plans (IEPs) for students in the NYC area. Similarly, the addition of screening evaluations for
speech and language (followed by more comprehensive evaluations when indicated) resulted in the
identification of possible speech or language impairments in 30.6% of the children seen to date.

Logistical Challenges Related to Mobile Data Acquisition. In part, Phase I was designed to assess the
added value of mobile assessment vehicles for data acquisition. In particular, we tested the utility of an
MRI scanner housed in a trailer that could be moved periodically (e.g., monthly), as well as a converted
mobile recreational vehicle (RV) that was equipped to carry out all non-MRI portions of the assessment.
Despite the initial substantial appeal of using these vehicles, logistical issues turned out to be too great.
For the mobile MRI scanner, the cost of moving the vehicle more than once a month turned out to be
substantial. Even more difficult was finding times to accommodate all eligible participants in the fixed
available assessment blocks when the scanner was on-site. Potential data loss when patients were required
to wait for the scanner to arrive was also a concern. It is worth noting that it was the multiple logistical
concerns related to our study design that dampened enthusiasm about the mobile MRI platform, not scan
quality or capabilities, which appeared to benefit from the introduction of a 32-channel head-coil and
multiband imaging. As such, we would not discourage consideration of the mobile platform for future
study designs in which it may be more practical. With regard to the mobile RV for non-MRI assessments,
the vehicle worked satisfactorily for staff and participants; however, its throughput was substantially less
than what could be obtained in a fixed office space, where multiple participants can be seen
simultaneously. Despite the limitations of using the mobile RV for conducting complete evaluations, the
vehicle has been a highly effective recruitment tool. Specifically, at community health fairs and events, the
vehicle has been used to increase awareness of the project, and to provide short mental health screenings.

Expanding Landscape for Biomarker Identification. As biomedical and mobile technologies and analysis
methods continue to advance, the potential grows for tailored, precise, and accurate digital phenotyping
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and biomarker identification. Ancillary data consisting of speech samples (audio recordings) and remote
movement (actigraphy) have been recently added to the HBN assessment protocol. We are evaluating
other wearable devices with sensors that track physiological state, such as electrodermal activity to
monitor stress and photoplethysmography to monitor heart rate. Collection of hair samples (for
determination of current metal levels) and of baby teeth (for determining fetal exposure to various
metals49) are being added to the protocol. Microbiomics is a potentially valuable avenue of exploration
that is gaining increased attention, but fecal and other microbiome data collection are being deferred until
the practical considerations that such data collection entail can be worked out.

Balancing Efficiency, Innovation and Tolerability of MRI Scan Protocols. Maximizing tolerability of the
scanner environment and minimizing head motion are two inherent challenges for MRI studies,
particularly those focusing on developing and clinical populations. Consistent with its predecessor
initiative, the NKI-Rockland Sample12, the HBN initially included a 10-minute resting state scan.
However, head motion was found to be problematic, particularly in the second half of the scan. To
address this concern, the resting state scan was eventually broken into two 5-minute scans at the Rutgers
data collection site, and removed altogether for 5 year olds, where data quality concerns were most
notable. Additionally, for the deployment phase, experimental structural images (e.g., quantitative T1/T2
mapping) were removed in favor of increasing functional MRI scan time. Rather than adding more
resting state fMRI scans, we opted to add naturalistic viewing (i.e., movie watching) fMRI sessions to
reduce motion and to permit a broader range of analyses50,51.

Inclusion of Consent for Commercial Use. The research community increasingly aims to generate data
and methods that will form the foundation of clinically useful tools. As the field attempts to market and
distribute innovations, there will be a growing need for the involvement of commercial entities. In
preparation for this next phase, we followed NIH recommendations and integrated a consent document
for commercial use into the informed consent (starting with participant #701). The receipt of such
permission is essential to avoid any ethical or legal concerns that may arise from the commercial use of
data for participants who did not provide explicit permission.

Extension of Questionnaire Age Ranges. Initially, for each questionnaire, determination of whether to
administer it to all participants or to a select age group was based on ages indicated by publisher websites,
or from validation studies (e.g., ages 8–18 for the SCARED52). While this is generally sensible for self-
report versions of questionnaires, particularly when reading level is an issue, we have called into question
the value of the decision for questionnaires completed by parents. Although some parent-report
questionnaires have in the past been used only for ages 8 and up, or up to age 17, this does not mean they
cannot be informative for the purposes of the HBN and lack of previously established norms (e.g.,
t-scores) may be overcome given the magnitude of the data (e.g., the SCARED). Thus, we have reviewed
each questionnaire carefully and expanded the age ranges so that parent-report questionnaires are now
collected for participants of all ages (5–21) except where developmentally inappropriate (e.g., substance
use questionnaires, puberty questionnaires), or where age-specific versions of the same form exist (e.g.,
ASEBA forms26). Increasing the age range for questionnaire administration minimizes data loss in the
sample, particularly in the youngest and oldest participants. Additionally, collecting data from broader
age ranges may help support extension of normative ranges.

Data Records
Data privacy
During the consent process, all participants provide informed consent for their data to be shared via IRB-
approved protocols. Data sharing occurs through the 1,000 Functional Connectomes Project and its
International Neuroimaging Data-sharing Initiative (FCP/INDI)53. Prior to entry of data into the HBN
Biobank, all personal identifiers specified by the Health Insurance Portability and Accountability Act
(HIPAA) are removed, with the exception of zip code (which is only shared upon request following
completion of the HBN Data Usage Agreement described below in section 3.2.1).

Given the sensitive nature of the information provided during HBN participation, a Certificate of
Confidentiality was obtained from the Department of Health and Human Services (HHS). The certificate
helps to protect the privacy of human subjects by allowing the research team to refuse to disclose names
or other identifying characteristics of study participants in response to legal demands (https://
humansubjects.nih.gov/coc/index).

Distribution for use
Phenotypic data. Phenotypic data may be accessed through the COllaborative Informatics and
Neuroimaging Suite (COINS) Data Exchange (http://coins.mrn.org/dx) or an HBN-dedicated instance of
the Longitudinal Online Research and Imaging System (LORIS) located at http://data.healthybrainnet-
work.org/ (Data Citation 1).
With the exception of age, sex and handedness, which are publicly available with the imaging, EEG and eye-

tracking datasets, the HBN phenotypic data are protected by a Data Usage Agreement (DUA). Investigators
must complete and have approved by an authorized institutional official before receiving access (the DUA can
be found at:http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/sharing.html). Modeled after
the practices of the NKI-Rockland Sample, the intent of the HBN DUA is to ensure that data users agree to
protect participant confidentiality when handling the high dimensional HBN phenotypic data (which includes
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single item responses), and that they will agree to take the necessary measures to prevent breaches of privacy.
With the exception of zip code (which is only available upon request), no protected health identifiers are
present in data distributed through the DUA, as a means of ensuring minimal risk of privacy breach. The DUA
does not place any constraints on the range of analyses that can be carried out using the shared data, nor does it
include requirements for co-authorship by the originators of the HBN Biobank.

EEG, eye-tracking, and imaging data. All EEG, eye tracking and imaging data can be accessed
through the 1,000 Functional Connectomes Project and its International Neuroimaging Data-sharing
Initiative (FCP/INDI) based at http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network
(Data Citation 1). This website provides an easy-to-use interface with point-and-click download of
HBN datasets that have been previously compressed; the site also provides directions for those users who
are interested in direct download of the data from an Amazon Simple Storage Service (S3) bucket.
Imaging data is stored in the Brain Imaging Data Structure (BIDS) format, which is an increasingly
popular approach to describing MRI data in a standard format54.
All data are labeled with the participant’s unique identifier. EEG data are available openly, along with basic

phenotypic data (age, sex, handedness, completion status of EEG paradigms) and performance measures for the
EEG paradigms. These data are located in a comma-separated (.csv) file accessible via the HBN website.

Partial and missing data
Some participants may not be able to successfully complete all components of the HBN protocol due to a
variety of factors (e.g., participants experiencing claustrophobia may not be able to stay in the scanner for
the full session; participants with sensory issues may have a more limited ability to participate in the EEG
protocol). To prevent data loss when possible, we include exposure procedures such as a mock MRI
scanner experience during visit 1, and repeat exposures to an EEG cap prior to session 4. Overall, we
attempt to collect as much of the data as possible within the allotted data collection intervals and log data
losses when they occur.

Data license
HBN imaging, EEG and eye-tracking datasets for the first 701 participants enrolled are currently
distributed under the Creative Commons, Attribution Non-Commercial Share Alike 4.0 International
Public License (https://creativecommons.org/licenses/by-nc-sa/4.0/), as they were collected prior to the
addition of consent for commercial use to the informed consent (specific participant IDs are specified on

Figure 2. Distribution of IQ measures and CBCL Scores. Participant IQ was measured using the WISC, with

the exception of: (1) early participants for whom the more abbreviated WASI was administered, (2) individuals

with limited verbal skills and/or known IQ less than 70, or (3) children under age 6. For these latter two cases,

the KBIT was administered. These figures include overall performance IQ, verbal IQ, and full-scale IQ

measures from all three tests.
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the HBN data-sharing website). From December 6, 2016 forward, HBN datasets are being distributed
using the Creative Commons Attribution 4.0 International Public License (https://creativecommons.org/
licenses/by/4.0/), which does allow for commercial use of datasets. For the high-dimensional phenotypic
data, all terms specified by the DUA must be complied with.

Technical Validation
Quality assessment
Consistent with policies established through our prior data generation and sharing initiatives (i.e., FCP/
INDI53; NKI-Rockland Sample12), all imaging datasets collected through the HBN are being made
available to users, regardless of data quality. This decision is justified by a lack of consensus in the
imaging community on what constitutes ‘good’ or ‘poor’ quality data. Also, ‘lower quality’ datasets can
facilitate the development of artifact correction techniques and of evaluating the impact of such real-
world confounds on reliability and reproducibility. Given the range of clinical presentations in the HBN,
the inclusion of datasets of varying quality creates a unique opportunity to test for associations with
participant-related variables of interest beyond age and hyperactivity (e.g., anxiety, autistic traits).

Phenotypic data. Beyond checking data for outliers, a key question for the evaluation of phenotypic
data is whether or not the observed distributions and inter-relationships are sensible. Figure 2 depicts the
distribution of sample variables of interest related to mental health and learning. As can be seen, the data
obtained for variables known to have a normal distribution (e.g., IQ) exhibited a normal distribution in
the HBN dataset. Of note, the total score from the Child Behavior Checklist, a measure that typically only
has meaningful variation among symptomatic individuals (resulting in a truncated distribution), was
found to have a broad distribution in the HBN that was close to normal; this represents the wide variation
in symptom severity across the range of phenotypic measures which is inherent to the HBN recruitment
strategy.
To further facilitate the evaluation of phenotypic data, we plotted correlations between a broad sampling of

measures included in the HBN (see Fig. 3). Statistical relationships observed after false discovery rate-based

Sex
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CBCL Total

CBCL Int

CBCL Ext

SDQ Total

SDQ Int

SDQ Ext
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SDQ Prosocial

MFQ(P)

MFQ(SR)
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SCARED(SR)

ARI(P)

ARI(SR)

SWAN Total

SWAN Inatt

SWAN Hyper

ICU(P)
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SCQ

SRS

FSIQ

PIQ

VIQ

CELF

BMI

Figure 3. Correlation Matrix of HBN Phenotypic Measures. Heatmap depicts significant correlations

between a broad sampling of HBN behavioral, cognitive, and physical measures after multiple comparisons

correction (false discovery rate; qo0.05). The associations revealed are in general alignment with the broader

psychiatric literature.
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correction for multiple comparisons revealed a wealth of associations that are in general alignment with the
broader psychiatric literature. For example: 1) at the most basic level, socioeconomic status (Barratt Simplified
Measure of Social Status55) was positively associated with indices of intelligence (Full scale IQ [FSIQ],
Performance IQ [PIQ], Verbal IQ [VIQ]) and language performance (i.e., CELF screener), and negatively
associated with multiple indices of mental illness, 2) general measures of internalizing and externalizing
symptoms exhibited high correlations with one another, 3) autistic and ADHD traits were each negatively
associated with performance on intelligence tests, 4) prosocial tendencies were higher in those with lower levels
of symptoms related to ADHD traits, autistic traits and affective reactivity, 5) higher body mass index was
associated with internalizing symptoms and increased peer problems. Of note, parent report for anxiety
appeared to reveal more robust relations with other measures (e.g., autistic traits) than did child self-report,
consistent with expected rater-bias effects.

Imaging data. Consistent with recent major FCP/INDI data releases (i.e., the Consortium for
Reliability and Reproducibility [CoRR]56, Autism Brain Imaging Data Exchange 2 [ABIDE 2]57), we
made use of the Preprocessed Connectome Project Quality Assurance Protocol (QAP)58 to assess data
quality for core MRI data modalities (i.e., functional MRI, morphometry MRI and diffusion MRI). The
QAP includes a broad range of quantitative measures that have been proposed for assessing image data
quality (see Table 9 for list of measures and their definitions, adapted from57).
Given commonly cited concerns about head motion during MRI scans, particularly during resting state fMRI

scans, we examined age-related differences in motion. We quantified head motion using frame-wise
displacement (FD), which is calculated using root mean square deviation59. Mean FD is commonly used to
evaluate the impact of movement on a dataset60,61, but it cannot distinguish between occasional large
movements and frequent smaller movements, the effects of the former being likely easier to fix using motion
scrubbing or volume censoring methods60. Consistent with this concern, Fig. 4 panel A demonstrates a
nonlinear relationship between mean FD and median FD, with the latter providing a better indication of the
amount of the data that can be retained after movement correction (e.g., volume censoring).
Consistent with prior work62, both sites (the 1.5 Tesla mobile scanner in Staten Island and the 3.0 Tesla fixed

scanner at Rutgers University) exhibited negative associations between age and head motion for all functional

Spatial Metrics Description

Contrast-to-noise ratio (CNR)85 (sMRI
only)

MGM intensity—MWM intensity/SDair intensity. Larger values reflect a better WM GM distinction.

Signal-to-noise ratio (SNR)85 MGM intensity/SDair intensity. Larger values reflect less noise

Artifactual voxel detection (Qi1)86 (sMRI
only)

* voxels with intensity corrupted by artifacts/ *voxels in the background. Larger values reflect more artifacts which likley
due to motion or image instability.

Entropy Focus Criteria (EFC)87,† Shannon’s entropy of each voxel's intensity used to measure ghosting and blurring due to head motion. Larger values
reflect more blurring likley to motion or techincal differences.

Smoothness of Voxels (FWHM)88,† Full-width half maximum of the spatial distribution of the image intensity values. Larger values reflect more spatial
smoothing maybe due to motion or technical differences.

Foreground to Background Energy Ratio
(FBER)†

M energy of image intensity (i.e., mean of squares) within the head relative to that of outside the head. Larger values
reflect higher signal in relation to noise.

Ghost to Signal Ratio (GSR)89,† M signal in the ‘ghost’ image divided by the M signal within the brain. Larger values reflect more ghosting likley due to
physiological noise, motion, or technical issues.

Temporal Metrics (fMRI* and DTI
only)

Description

Mean framewise displacement-
Jenkinson (mFD)59,‡

Sum absolute displacement changes in the x, y and z directions and rotational changes around them. Rotational changes
are given distance values based on changes across the surface of a 50 mm radius sphere. Larger values reflect more
movement.

% and * volumes with FD>0.2 mm‡ % and *volume to volume motion >0.2 mm FD. Larger values reflect more movement.

Standardized DVARS90,‡ Spatial SD of the data temporal derivative normalized by the temporal SD and autocorrelation. Larger values reflect
larger frame-to-frame differences in signal intensity due to head motion or scanner instability.

Outlier Detection91,† M fraction of outliers in each volume per 3dToutcount AFNI command. Higher values reflect more outlying voxels,
which may be due to scanner instability or RF artifacts.

Global Correlation (GCORR)‡ M correlation of all combinations of voxels in a time series. Illustrates differences between data due to motion/
physiological noise. Larger values reflect a greater degree of spatial correlation between slices, which may be due to head
motion or ‘signal leakage’ in simultaneous multi-slice acquisitions.

Median Distance Index91,‡ M distance (1—spearman’s rho) between each time-point's volume and the median volume using AFNI’s 3dTqual
command. Higher values reflect greater differences between subsequent frames, which may be due to head motion or
technical issues.

Table 9. Description of the Preprocessed Connectome Project (PCP) Quality Assurance Protocol
(QAP) measures. Adopted from: Di Martino A, et al.57 *For all R-fMRI data temporal metrics have been
computed after discarding the first 5 time points of the time series which were field map corrected if field maps
were provided (only in the SDSU_1 data collection). Computation of all spatial metricss excluded absolute zero
background values. †For R-fMRI data these metrics are computed on mean functional data. ‡For R-fMRI these
metrics are computed on time series data. M, Mean; GM, Gray Matter; WM, White Matter; s.d., Standard
Deviation.
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scan types, with children between ages 5 and 8 exhibiting the greatest levels of movement. Median FD tended to
be higher during the second half (5 min) of the resting state scan than during the first half; this observation
resulted in our decision to split the scan into two 5-minute scans starting with participant 538 in February
2017. As predicted by recent work highlighting the advantages of naturalistic viewing to minimize head motion,
we found that head motion was significantly reduced during each of the movie-watching scan sessions
(‘Despicable Me’ [n= 307], ‘The Present’ [n= 251]) relative to rest.
Beyond the examination of temporal characteristics of the HBN data, we also applied the structural measures

included in the PCP QA to each of the core data types (functional, diffusion, morphometry). See Fig. 5 for a
subset of these measures; the full set of measures are included on the HBN website in a comma-separated
tabular format for download.

Associations between imaging QA and clinical variables. With the range of clinical presentations
and ages present in the HBN, there is a unique opportunity to test for associations between phenotypes
and dimensions of data quality. Figure 6 depicts significant relationships detected between phenotypic
variables and QAP parameters for the different scans, using Pearson correlation (only significant
relationships, surviving false discovery rate correction for multiple comparisons, are depicted). Not
surprisingly, for fMRI, age was negatively associated with nearly all motion indices, regardless of scan
type. Interestingly, while motion parameters were correlated with an ADHD measure of hyperactivity
during the rest condition, they did not correlate significantly during the movie conditions; these findings
are in accord with the suggestions of prior work examining the impact of movies on head motion63. The
quality assurance associations with behavioral variables of interest highlighted here are not intended to be
dissuasive, but rather to emphasize the importance of considering and accounting for the potential
contributions of data quality to higher order analyses.

Figure 4. Median Framewise Displacement Measures. The upper left panel plots Median Framewise

Displacement (Median FD) versus.

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170181 | DOI: 10.1038/sdata.2017.181 17



Morphometry

fMRI

5

10

15

20

SI
RU

CNR

0.5

0.6

SI
RU

EFC

0

1000

2000

3000

SI
RU

FBER

3.0

3.5

4.0

4.5

5.0

SI
RU

FWHM

0.2

0.4

0.6

SI
RU

QI1

10

20

30

40

SI
RU

SNR

0.4

0.5

0.6

0.7

SI R
es

t

RU R
es

t

RU D
M

RU TP

Entropy Focus Criterion

0.03

0.06

0.09

0.12

SI R
es

t

RU R
es

t

RU D
M

RU TP

Ghost to Signal Ratio

0.8

1.0

1.2

1.4

1.6

SI R
es

t

RU R
es

t

RU D
M

RU TP

Standardized DVARS

20

40

60

SI R
es

t

RU R
es

t

RU D
M

RU TP

FBER

0.0

0.5

1.0

1.5

SI R
es

t

RU R
es

t

RU D
M

RU TP

Mean FD

0.0

0.1

0.2

0.3

0.4

SI R
es

t

RU R
es

t

RU D
M

RU TP

Global Correlation

0.05

0.10

0.15

SI R
es

t

RU R
es

t

RU D
M

RU TP

Quality

0.00

0.02

0.04

0.06

SI R
es

t

RU R
es

t

RU D
M

RU TP

Outliers Detection

2.5

3.0

3.5

4.0

SI R
es

t

RU R
es

t

RU D
M

RU TP

FWHM

Figure 5. Preprocessed Connectome Project Quality Assurance Measures for functional and

morphometric MRI. Shown here are PCP QA results for morphometry (upper panel) and functional (lower

panel) MRI data quality for each data acquisition phase—Staten Island (SI; 1.5 Tesla Siemens Avanto) and

Rutgers (RU; 3.0 T Siemens Tim Trio).
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EEG data. For each of the EEG acquisitions, Fig. 7 depicts the number of channels rejected based on
the data distribution and variance of channels (threshold:>3 standard deviations), as implemented in
EEGLAB's pop_rejchan.m function64.

Sampling biases and representativeness. Although relatively early in recruitment, there is sufficient
data to obtain insights into potential biases arising in the HBN sample, as well as its representativeness of
the general population. One of the most notable biases is the over-representation of males relative to
females in the first release (3:2) (Fig. 8). A few factors may account for this. First is the prevalence of
ADHD in the sample, a disorder that is commonly estimated to have a 3:1 male:female ratio in children
(Fig. 9). The prominence of ADHD in the sample is not surprising as it is among the most prevalent
childhood disorders, and given that it is an externalizing disorder, it is much less likely to go unnoticed
than internalizing disorders (e.g., current estimates suggest that as many as 80% of individuals with
anxiety disorders go undiagnosed and untreated)65. Another factor contributing to prominence of ADHD
may be the current age distribution; median age in the initial release is 10.7 years old, with an
interquartile range of 7.8–13.3 (Fig. 8). Heavier weighting towards childhood and early adolescence may
explain lower rates of internalizing relative to externalizing disorders. Future recruitment will include
targeted efforts to increase the representation of internalizing disorders and older adolescents
(particularly those who are college-aged); in doing so, we expect that the proportion of females in the
sample to increase. Similarly, as sample size continues to grow and the additional diagnostic research
center intended for Harlem is added, we will monitor community variables (e.g., household income,

Figure 6. Correlation Between Phenotypic Measures and QAP measures. Here we depict significant Pearson

correlations (after false discovery rate correction for multiple comparisons) between phenotypic measures and

key QA indices for morphometry MRI (left panel), as well as each of the functional MRI scan types (resting

state fMRI, naturalistic viewing fMRI: ‘Despicable Me’, naturalistic viewing fMRI: ‘The Present’) (right panel).

To facilitate visualization, significance values are depicted as −log10(p).
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parental education, parental marital status, and race/ethnicity) and make adjustments to our recruitment
efforts accordingly.

Usage Notes
Prior to Using HBN Data
We encourage all users to check the Updates and Fixes section of the HBN Scientific Data Portal (http://
fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/updates.html) prior to usage of the data.
This site will post the most up to date information regarding changes in HBN protocols or procedures, as
well as any fixes that arise for data that has been shared.

Handling head motion in MRI data
Head motion presents an unavoidable challenge for developmental and clinical imaging, regardless of
MRI modality (fMRI, dMRI, sMRI). Arguably, the most basic strategy for handling motion, short of
applying an uncomfortable motion-restricting apparatus, is limiting analyses to high-quality data. The
Brain Genomic Superstruct data release is an excellent example of the utility of large-scale datasets in
supporting such a strategy, as 1,570 datasets were selected for analyses from a pool of 3,000 individuals
following rigorous quality control66. A limitation of this strategy for psychiatric data is that many
phenotypes of interest are inherently more prone to head motion (e.g., children under 9, those with
ADHD), especially those with higher symptoms levels. Compounding the downsides of discarding data
are the increased costs associated with the recruitment and phenotyping of clinical populations.

For functional MRI, an alternative strategy is to statistically correct the data for movement-induced
intensity fluctuations, or remove offending time frames altogether60. This can be accomplished by a number
of means, ranging from regressing a model of movement from the data (e.g., spike regression67), removing the
contributions of motion-related spatial patterns from the data (AROMA68), attenuating motion spikes using a
squashing function, removing offending frames, zeroing out offending frames, or deleting offending frames
followed by interpolation. More generalized correction approaches, such as global signal regression and forms

Figure 7. EEG quality assessment. Shown here are the number of rejected EEG channels for each of the

paradigms.
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of white matter and cerebrospinal fluid regression (e.g., tCompCor, aCompCor69,70) can also help to account
for motion artifacts. While there is no consensus approach to date, there is a growing literature focused on
providing benchmark evaluations of these approaches, as well as their relative merits and weaknesses (e.g.,
see refs 61,71), that can be used to help select among these corrections.

More broadly, group-level statistical corrections can be used to account for the contributions of
motion-related artifacts to associations revealed through data analysis67. In the case of functional MRI,
this can be accomplished by including motion parameters as a statistical covariate at the group level.
Given the trait nature of head motion56, some have advocated for using fMRI-derived motion parameters
in structural analysis as well. Alternatively, accounting for full-brain differences in measures of interest at
the group-level has been shown to be a potentially valuable approach to minimizing the deleterious
effects of motion, particularly for fMRI71.

It is our hope that the breadth of the Healthy Brain Network dataset will provide a practical
perspective on the challenges of motion for various domains of illness and help to stimulate continued
development and testing of novel correction strategies.

Special opportunities
The HBN Biobank is intended to be a resource for accelerating the pace of scientific advancement for
neurodevelopmental and learning disorders, and accomplishing this goal will require the combined
expertise of a wide range of disciplines. From high-performance computing strategies for addressing the
scale of the data, to new analytical strategies for performing regressions on graphs, and better instruments
for assessing dimensions of cognitive development, there are a variety of ways researchers can use these
data. Below are a few research questions that we believe will be particularly suitable for these data.

Advancing biophysical modeling (EEG, fMRI, dMRI). Mathematical models are an increasingly
popular tool for establishing links between brain function and structure. Although still early in their
development, recent applications have demonstrated the ability of biophysical models to make predictions
about patterns of brain function assessed using fMRI and EEG, as well as behavior72,73. The inclusion of
fMRI, EEG and diffusion imaging in the HBN will help investigators to build bridges between these three

Figure 8. Age and Sex Distribution of HBN Participants.
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modalities, as well as the underlying morphology, for which increasingly sophisticated characterizations are
being afforded by automated pipelines, such as MindBoggle74. Such models can also be useful for developing
and testing hypotheses about possible mechanisms underlying variations in behavior, as well as the
occurrence of disease states. Additionally, researchers will be able to test the ability to compare the result of
EEG-based functional connectivity analyses carried out in source space (i.e., anatomical space following
source localization) with those obtained using functional MRI; such comparisons are important for those
interested in the development of clinical tools, as EEG is easier to administer and has lower costs.

Naturalistic viewing EEG and fMRI. A growing literature over the past decade supports naturalistic
viewing EEG and functional MRI75–77. Akin to the arguments for resting state fMRI methods nearly a
decade ago, advocates highlight findings of reliability for various phenomena observed with naturalistic
viewing, as well as the potential to assess inter-individual differences78. Recent works have suggested that
naturalistic viewing may yield equivalent or even superior levels of reliability for the assessment of
functional connectivity relative to rest79,80, with the potential to yield novel functional connectivity
measures (e.g., inter-subject functional connectivity)50 (Note: The Healthy Brain Network Serial Scanning
Initiative is an openly available resource carried out in preparation for the HBN, which was inspired in
part by the MyConnectome Project [http://myconnectome.org/wp/81] and can be used to carry out
comparisons of the reliability and comparability of differing scan states [e.g., rest, naturalistic viewing,
task fMRI]). Finally, the naturalistic viewing experimental paradigm can be used for the study of temporal
dynamics in the brain50. To facilitate the translation of findings between EEG and fMRI, the animated
film titled ‘The Present’, directed by Jacob Frey, is now included in both the HBN EEG and fMRI
protocols. To date, 248 participants have watched ‘The Present’ during EEG, 251 participants have
watched during fMRI, and 129 participants have watched during both EEG and fMRI.

Questionnaire refinement and applications of item response theory. A key reality for biologically
focused studies is that the potential for discovery is limited by the quality and breadth of phenotyping.
The breadth of questionnaires and measures in the HBN provides opportunities for deriving optimal
measure sets that minimize the number of items required to characterize an individual while maximizing

Figure 9. Diagnostic Breakdown of HBN Participants. This figure shows the frequency of diagnoses given to

HBN participants. Data for this figure comes from the final consensus diagnosis given by the lead clinician at

the end of participation. Diagnoses are grouped by category.
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their predictive value. Beyond traditional factor analyses, item response theory82–84 is promising to
accelerate the process of finding those questions or measures that are most essential for characterizing
differences between individuals.

Voice analysis for biomarker identification. Extraction and analysis of high-dimensional feature sets
to characterize vocal production, speech patterns, and speech content is a promising direction for
biomarker identification. Features characterizing vocal production are independent of speech content
itself, and can provide objective measures of motor difficulties as well as independent means of assessing
psychiatrically relevant states, such as mood and anxiety. Features related to patterns and content of
speech provide additional opportunities to characterize more complex emotional and cognitive states, as
well as issues related to processing information and expressing thoughts. Coupled with other behavioral
assessments in the HBN protocols, voice and speech data will encourage users of the HBN data to
consider richer and more nuanced approaches to analyzing phenotypic data.
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