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Data augmentation for spatial disease mapping
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Abstract. Data augmentation is a technique to increase the amount
of available data, improving the accuracy of machine learning models.
Previous studies have addressed this approach in spatial data where the
data is structured as points (coordinates) or surfaces. However, there are
cases where the data is aggregated into adjacent polygons (e.g. cities).
We introduce new methods to augment data from a single instance of
a map partitioned into polygon subareas. We focus on disease mapping
examples in which each polygon has a disease rate. Our methods do not
change the map spatial pattern, even though the underlying distribution
is unknown. Our proposal does not depend on the spatial configuration
of the map, the underlying distribution of the data or other prior infor-
mation.

Keywords: Cluster detection - Cluster stability - Disease cluster - Scan
statistics - Spatial statistics.
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1 Introduction

Many machine learning (ML) algorithms, mainly deep neural networks, rely on a
large amount of data to avoid bias and to prevent overfitting. In typical machine
learning applications, we split the dataset into training and testing samples to
evaluate the results without requiring any distributional assumptions about how
the data is generated. No need for synthetic datasets is involved in this train-test
evaluation that is made application-specific and completely data-driven. This
allows us to avoid overfitting and control for biased predictions.

Unfortunately, there are scenarios where data is scarce and other techniques
are needed to generate more observations synthetically. Data augmentation is a
largely adopted technique, especially for training neural networks with natural
images [2,5]. It artificially increases the training dataset by adding slighted ran-
domly distorted replicas of the training samples. There is an important trade-off
to consider. On the one hand, the random distortion must be small to avoid
destroying the intrinsic spatial correlation present in the training samples. On
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the other hand, it must be large to produce samples that are substantially dis-
tinct from the training examples. As a result, the machine learning model can
be trained more accurately with more observations and the testing data can
have enough observations to properly represent the data underlying distribu-
tion [3,4,7,8].

Differently from the typical ML dataset with several independent examples,
we are concerned with the data used for the spatial surveillance of disease inci-
dence. The spatial cluster detection [6] is an epidemiological and public health
task that aims at detecting geographically contiguous areas that are anomalous
with respect to certain reference framework, usually a generative probability dis-
tribution model [1]. However, from the data mining (DM) and machine learning
(ML) point of view, this is an unfortunate misnomer. What is called spatial clus-
ter detection is the detection of this spatial anomaly, this small region where the
risk is larger than in the rest of the map. Therefore, a more appropriate name
for this task should be spatial disease anomaly detection (SDAD).

SDAD is an unsupervised task where we have only a single instance of a
disease map with the population counts and the number of observed cases in each
area and our goal is to identify a hotspot subregion. However, the SDAD has
some peculiarities, one of them being connected with the spatial nature of the
dataset. Rather than many independent instances, as in the usual ML situation,
the data take the form of a single map divided into small areas with the counts
of disease cases in each of them, together with the underlying population sizes.
In the disease map case, there is no possibility of carrying out the usual cross-
validation based on training/test split of the disease map dataset. One may think
of saving cases for a testing step by deleting areas from the map or deleting some
cases from some areas. Both procedures would render either a highly biased
or distorted dataset. In the first one, an incomplete map is used to scan for
spatial anomalies in the complete map leading to inefficiency. In the second
one, high risk spatial anomalies are underestimated. Hence, no training/testing
split is undertaken, leading to overfitting and poor generalization capacity in the
learning process.

There is no repeated independent instantiating of this map to make up a
usual i.i.d random sample as in ML tasks. As the true cluster and the underlying
distribution are unknown, it is not trivial to generate other instances under the
same model to evaluate the different spatial cluster detection methods. In this
paper, we introduce model-free methods to generate several spatial maps from
the same data-generating process as the single observed partitioned map. We
propose two different methods, a spatial bootstrap and a rewiring method. We
demonstrate that these random maps maintain the same spatial pattern as the
observed data, not altering any unknown spatial signal the data may carry, such
as the eventual presence of a true spatial disease cluster. The differences are only
random disturbances not associated with any true underlying risk reflected in
the original data. This provides a large number of datasets that leads to better
generalization.
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2 Definitions and Problem Statement

Let a map M be partitioned into ¢ = 1,..., N areas. For each area i we have
the underlying population n; and the number of events y; (e.g. disease cases)
observed in a period of time. We assume that y; is defined by a probabilistic
distribution, such as y; ~ Poisson(6;n;) where 6; is the incidence rate.

Figure 1 illustrates how the dataset is structured. It shows the counties in
the Northeastern United States. For each county, we have the population at risk
and the number of events observed. In this example, the population corresponds
to the female population registered by the 1990 demographic census and the
number of cases was synthetically generated and randomly distributed between
the areas.

Our goal is to generate B perturbed versions of the map M where each area
follows the same underlying distribution of M.

#Countie  Population  Cases

1 67.742 12
2 41.690 6
3 20.236 2
4 2.675 0

Fig.1. Map with N small regions, each one with a certain number of events (e.g.
disease cases) and the associated risk population. The table shows an example of data
for the colored zones.

3 Sampling methods

We introduce two new methods to create new instances of a single disease map:
the Bootstrap Samples and the Rewiring. The main idea in both methods is to
create multiple rounds of cross-validation maps coming from the same statistical
population and with the same spatial pattern present in the original dataset, even
if we do not know the true probability distribution that generates the observed
data.

Bootstrap samples. Let Z;; = 1, if the j-th individual in area ¢ is an event,
such as a disease case, and Z;; = 0, otherwise. With a disease rate (per capita)
equal to 0, we have a binomial distribution for the number of cases:

(yiln;) = Z Z;; ~ Bin(n,, 8) ~ Poisson(n;0) .
i=1
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The Poisson approximation is valid when 6 is close to zero, which is usually the
case for typical diseases such as site-specific cancers. Independently for each j-th
individual in area ¢, generate the binary indicator W;; ~ Bernoulli(7) using a
spatially constant probability hyper-parameter m € (0,1). Then, conditionally
on n;, we have

(nfln;) = Z W;; ~ Bin(n;,m) and (y;|n;) = Z Wij * Z;; ~ Bin(n,, n6)
Jj=1 j=1

The collection {(n},y}),i = 1,...,N} is a randomly thinned version of the
original map with {(n;,v;),7 =1,..., N}. The map with this 7-thinned random
sample of cases and population is called a bootstrap sample (or map).

The important point is that, if there is any spatial cluster in the original data,
it is randomly reflected with the same spatial pattern in the bootstrapped map.
The differences are due to random fluctuations that are not associated with the
intrinsic disease rates 6;. They are randomly thinned versions of the original map.
Indeed, suppose that some areas have high-incidence disease rates producing a
map with spatially varying rates. Let y; ~ Bin(n;, ;) ~ Poisson(n;0;). As the
bootstrap probability 7 does not vary spatially, the observed map spatial pattern
is reflected on the bootstrap map: y; ~ Poisson(n} ;). Hence, the odds between
disease rates from any pair of areas remain the same as in the original map. For
example, while the odds between rates from areas ¢ and j is 6;/6; in the original
mabp, it is equal to (m6;)/(76;) in the new bootstrap samples. The spatial pattern
of the disease rates 0; is retained in the bootstrapped map, whatever this spatial
pattern is.

By randomly sampling W;; independently, we generate B bootstrap maps
with different disease and population counts out of our original data map. Each
bootstrap disease map in this stack of B maps retains the same spatial pattern
as the original map but differing in two respects. First, it has a smaller number
of cases and population. Each area has approximately a proportion 7 of the
original cases and population counts. Second, as the selection of retained cases
and population is random, the bootstrapped maps differ between them. In short,
this technique generates different maps from the real data but retaining the same
spatial pattern, so one can test the resilience of machine learning algorithms with
them.

Rewiring. Rewiring is a different way to generate pseudo maps that retains
the spatial pattern from the original map but provides enough diversity to allow
generalization capabilities for the algorithms. The population size is not altered,
only the number of cases of each area can change. In contrast with the bootstrap
approach, the total number of cases in the map, >, v;, is kept constant. The
only change is that some of the observed cases may be randomly assigned to
neighboring areas. The main idea is that each area may rewire a small proportion
of its cases to neighboring areas. As all areas are rewiring, the expected number
of cases in each area is kept approximately constant.

Let 7 € (0,1) be a hyper-parameter. Rather than the truly observed number
y; of cases in each area, we generate a random number y; = K; + R; by keeping
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approximately a proportion 7 of its original number y; (the K; count) plus
additional cases coming from the neighbors (the R; count). More specifically,
K; ~ Bin(y;, 7). The neighbors of area i receive the residual y; — K; cases. This
distribution is made according to a multinomial distribution, with the probability
of selecting a given neighboring area proportional to its population. To be precise,
let V;; be a binary indicator with V;; = 1 if areas ¢ and j share boundaries, and
Vij = 0 otherwise. We set V;; = 0. Then,

N
Uz
Rizg V. * Bin - K, = .
’ (y’ ]Zijm)

=1

As a consequence, the rewired expected disease rate in area i is given by
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where 6; is the average values of the 0;’s that are neighbors of area i and v is the
average number of spatial neighbors of a given area in the map. For example,
v = 5.6 for the USA continental counties.

Hence, the expected rewired rate in each area is the same as in the original
unknown mechanism that generates the observed data. As in the bootstrapped
maps, the rewired maps will retain approximately whatever spatial pattern is
present in the original map. This technique simulates scenarios where an incor-
rect assignment of cases to regions is possible, so one can test the resilience of
the algorithms under this circumstance.

4 Discussion

The choice of the 7 parameter is important in both, the Rewiring and Bootstrap
methods. With 7 equals to 1, we have no variation between the instances and
all generated instances will be exactly the same as the original data. On the
other hand, the smaller the value of 7, the greater the randomness added and,
therefore, more distant from the spatial pattern of the original data the perturbed
instances will be. Ideally, the value of 7 should be close to but not equals to 1.

Both Bootstrap Samples and Rewiring methods achieve the same goal: gen-
erating perturbed versions of a partitioned map maintaining the underlying dis-
tribution of the data. However, there are some particularities that should be
taken into account when choosing one of them. The choice depends on the task
and the sparsity of the data.
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The Rewiring method can occasionally assign some events to an area where
no event was observed in the original map. Therefore, if it is important to keep
these areas with no events, the Bootstrap Samples method should be the better
choice. However, if the data is sparse, with just a few events observed in most
areas, Rewiring could be preferable, since Bootstrap Samples can increase the
sparsity.

5 Conclusion

In this work we propose two new methods to augment spatial datasets: Bootstrap
Samples and Rewiring. To the best of our knowledge our methods are the first
ones that can generate many perturbed versions from a single map where the
data is aggregated by geographic sub-regions. Furthermore, they do not need
any prior information or assumption about the dataset. We demonstrated that
the generated perturbed data follow the same distribution of the original map
and preserve important characteristics, such as any hotspot that may be present
or correlation between adjacent areas. As future work, we suggest studies about
the impact on the choice of hyperparameter © and approaches to determine its
value deterministically.
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