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Abstract

ESCAPE: Energy Scavenging Collar for Animal Physiology and Ecology

by

Maxwell Lichtenstein

Animal tracking tags are a useful tool in the study of wild animals and ecolog-

ical systems, but the process of tagging an animal is costly and often traumatic

for the animal. For many types of tags, the lifetime of the tag is determined

by battery life. The Energy Scavenging Collar for Animal Physiology and Ecol-

ogy (ESCAPE) project investigates several methods for reducing overall power

consumption in wildlife tracking tags. This work develops and tests several algo-

rithms for reducing GPS uptime in these tags, using Extended Kalman Filters to

guide uncertainty-suppression GPS scheduling. These algorithms use less costly

sensors such as accelerometers, magnetometers, and gyrometers to augment GPS

in estimating locations during tracking. We implement and test these algorithms

in tests on human subjects. This work also includes analysis of several proposed

techniques for scavenging energy in the field, such as harvesting excess kinetic

and thermal energy from the animal. Our analyses provide upper bounds on

expected power returns from these strategies, providing useful metrics for deter-

mining whether such strategies are viable regions of the tag design space. The

findings of the ESCAPE project contribute to future tag research and develop-

ment by highlighting strategies with potential for improving tag lifetimes, and

discouraging other strategies.
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Chapter 1

Introduction

1.1 Problem Statement

Animal tracking tags are a useful tool in the study of wild animals and ecolog-

ical systems, but the process of tagging an animal is costly and often traumatic

for the animal. For many types of tags, the lifetime of the tag is determined by

battery life. Modern tags carry a suite of electronics to monitor sensors, record re-

sults, and communicate wirelessly with ground stations. These activities, though

highly useful, consume energy and eventually deplete the tag’s batteries. This

either ends the experiment, or necessitates a costly re-tagging process.

In general, higher-quality data requires more energy. Sensors such as Global

Positioning System receivers (GPS) and accelerometry draw more power as their

sample rates increase. Furthermore, the data they acquire must be stored or

transmitted to a base station, which also draws power. This produces a tradeoff

for the designer of an ecological experiment: The lifetime of the project can be

increased by sacrificing quality, or vice-versa. But, if techniques can be found

which decrease the power consumption of the tag without sacrifice to the quality

of the final data, the tradeoff would be eased and the utility of tracking tags would
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be increased.

A variety of methods have been proposed or explored for improving tag life-

times. Battery life can be enhanced by supplementing the battery with energy

scavenged from the environment or the animal itself. Some of the scavenging

methods that have been proposed or explored are solar power, kinetic energy

from the animal’s motion, and thermal energy from the animal’s body heat. On

the other side of the energy budget, battery life can be improved by reducing the

power spent by the collar. This can be accomplished in hardware by leveraging

low-power electronic technology, or in software by improving the power policy of

the tag to conduct its tasks more efficiently.

This work, the Energy Scavenging Collar for Animal Physiology and Ecology

(ESCAPE) is an NSF-funded project that investigates these methods to reduce

the overall power usage of wildlife tracking tags. In this work, we design and

test a tag that synthesizes these technologies to provide insight into how they can

be used, and lay groundwork to improve the state-of-the-art in tag design. This

project is a successor project to the ANIMA project, another NSF-funded project

with similar goals (Dunne 2014).

The ESCAPE project explores two general methods for improving tag design:

Energy scavenging and sensor scheduling algorithms.

1.1.1 Background

Wildlife Tags

Systematically tracking the motion of wild animals is at least as old as 1710,

when unnamed naturalists attached a metal ring to a heron, determining that it

migrated from Turkey to Germany (Lincoln 1921). The technique of attaching

physical "tags" to animals is a relatively low-cost system for monitoring wildlife
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movement, and has been a standard approach ever since.

Modern tags can carry electronics. As R.E Kenward recounts, the development

of the transistor spurred development of small radio-wave transmission devices in

the early 1960s(Kenward 2001) . Early experiments with the technology included

a 1959 attempt to implant heart-rate sensors in chipmunks, and a 1960 test of a

heart- and wing-beat sensor mounted on mallards. These experiments involved

encoding sensor results as frequency-modulated signals, which researchers listened

to using a radio receiver. These early forays into radio-transmission technology

were used to observe the physiology of captive animals, but limited battery life

prohibited monitoring animals traveling in the wild.

During the 1960s, several researchers innovated the use of pulsed radio signals

(Cochran and Lord 1963), which extended the lifetime of the transmitter, and

allowed human ears to detect faint signals. The combination of longer lifetimes

and longer detection ranges enabled the tracking of animals over longer periods

of time, and over wider distances. Localization could now be performed using

directional antennas and triangulation, and sensor readings could be transmitted

along with the tracking signal ((Kenward 2001), (Schmutz and White 1990).

In 1980s, the US Air Force made its Global Positioning System available for

public use. This triggered the development of a wave of new animal tracking

devices which could perform localization with greater accuracy and automation

(Rodgers 2001), though at cost and with a new set of design considerations. In

general, GPS systems require more power than pulsed radio transmissions, and

occupy a greater volume than a radio transmitter, limiting the use of GPS tech-

nology in smaller animals.

A tag designer must consider how to deliver data from the tag to the researcher.

One option is to record data on the tag, using an SD card or chip memory, but
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this “store-on-board” method only postpones the transfer. A radio transmitter

may transmit bursts of data at specified intervals. It might also be paired with

a receiver, and transmit a payload in response to a command signal. A second

option is a drop-off tag, which does not transmit logged data at all, but instead

transmits enough information to allow a researcher to retrieve the tag once battery

reserves fall below some threshold. A tag may automatically fall off the animal,

or remain on the animal to allow re-capture. Either strategy requires some sort

of transmission capability.

These techniques are all useful, but each new feature consumes more energy,

forcing ecologists to make strategic tradeoffs between the lifetime of a study and

the depth of data it can collect. New technologies that save energy can mitigate

these tradeoffs, and energy scavenging technologies carry the tantalizing possiblity

of removing the tradeoff altogether.

Energy Scavenging

Early spacecraft research forms the origin of much of the analysis and many

of the technical principles that inform the design of hermetic, energy-scavenging

devices in other fields. C.M. MacKenzie, in an early example, lays out the basic

techniques for modeling and budgeting power use on a solar-powered orbital satel-

lite (Mac Kenzie 1967) . The intensity of solar radiation near the earth is quite

high, so solar power is a widespread scavenging technique. For many spacecraft,

this source is sufficiently powerful and consistent to enable energy neutrality. On

the surface of the earth, however, this resource is only available during the day,

and during suitable weather.

For systems that are mounted on a living animal, the animal itself is a potential

source of free energy. Animals, by their nature, collect chemical energy in the form
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of food and convert it to various other forms, including kinetic energy for motion

and thermal energy to maintain physiological functions. Animals generally use

energy with imperfect efficiency. They exert more force than they require to

move. Their internal physiological processes produce excess heat, which must be

radiated out into their cooler environment. This energy is lost to the animal, but

some of it could theoretically be captured to do useful work.

When designing scavengers, it is essential to also consider the impact of the

scavenger on the animal’s daily life. An animal would experience a kinetic scav-

enger as though it were actively resisting or modifying its movement, and would

likely hear some audible feedback. Solar panels are reflective, which can produce

visual alerts to predators or prey (Marks and Marks 1987), (Burger Jr et al. 1991).

Any type of scavenging device would add weight to the final design, which could

tax the animal’s strength and endurance.

Thus, in deciding whether to add new scavenging technology to a collar design,

we must have a reasonable model of the tradeoffs that technology introduces.

While each of these technologies has been studied in other domains, less research

considers the applicability of these techniques to animal tracking, and we have

yet to find a source that provides explicit descriptions of the capabilities and

limitations of this technology in a form that is readily accessible to ecologists.

Adaptive Sampling

Scavenged energy is one of two components in the net power consumption of

a hermetic device. Another promising avenue for extending the battery life of a

hermetic device is to reduce power consumption. Since GPS measurements are

far more expensive than accelerometry measurements (Dunne 2014), our strate-

gies aim to reduce GPS measurement frequency by leveraging information from

5



accelerometry.

One simple strategy is a mode-based sampling policy, similar to the one de-

ployed in A. M. Wilson’s cheetah collars(Wilson et al. 2013). In this strategy, the

target animal’s behavior is classified into distinct modes, which can be identified

using accelerometry in real-time. Y. Wang provides an algorithm for classifying

mountain lion behavior into three categories of ground movement, which could be

utilized to enact this strategy(Wang et al. 2015).

In this work, we explore several uncertainty-suppression strategies. In these

strategies, sensor data is used to maintain some estimate of the tag’s position, and

also some measure of the uncertainty in that estimate. The uncertainty grows in

the time between successful GPS measurements, but crucially, the rate of uncer-

tainty growth is dependent on accelerometry data. Once this uncertainty reaches

some threshold, a GPS measurement is triggered, and the uncertainty is reduced.

We explore several uncertainty suppression algorithms with varying complexity

and sensor sets, as described in Section 4, as well as our prior work(Lichtenstein

and Elkaim 2019),(Lichtenstein and Elkaim 2020).

1.1.2 Related Work

Modern wildlife tags can be considered as nodes in a wireless sensor network

(”WSNs"). This is a broad class of devices, including applications in military

technology, agriculture, geology, oceanography, smart homes, and personal com-

munication. Research on WSNs has been active since at least the early 2000s,

and is continuously spurred by new advances in battery technology and wireless

transmission ((Tan, Wilson, and Lowe 2008), (Wan, Tan, and Yuen 2011)).

These devices are widely varied, with diverse demands on size, reliability, com-

munication bandwidth, connectivity, and longevity, but all face the same core chal-
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lenge of balancing functionality and longevity across the fulcrum of their energy

supply. We draw heavily from the literature on WSNs, particularly in the areas

of energy scavenging, size minimization, and adaptive transmission and sampling.

Another related field is wearable technology. "Wearables" are a class of device

meant to measure or interact with the human to which the device is attached.

These are increasingly common as medical sensors (Romero, Warrington, and

Neuman 2009), and also as consumer electronics. Wearable technology faces al-

most the same set of design constraints as wildlife tagging: They must be small,

lightweight, and generally record similar types of information such as accelerom-

etery and location. The most pertinent difference is that wearables benefit from

the cooperation of their animal, who can recharge depleted batteries, protect

fragile electronics, and replace malfunctioning equipment. Nonetheless, Wearable

research provides useful insight into the design of animal-mounted sensors, and

experiments in this domain are easier to conduct.

Research into software design in Personal Communication Services (”PCS")

devices is also relevant to the adaptive sampling portion of this work. These

devices, which include mobile phones, are similarly tasked with balancing high-

power location tracking against battery life. This field is especially rich in research

into adaptive sampling and transmission. The ubiquity of PCS devices gives PCS

research a vast amount of data, and allows experimentation with a wide variety

of novel techniques.

Finally, our work is guided by other research in ultra-low-power animal tag-

ging technology. Understandably, most ecologists are not preoccupied with the

technical details of tag design, so detailed work on novel power design in wildlife

tags is sparse, but where it exists it is immensely valuable. A few tag design

projects stand out with promising results in low-power electronics, energy scav-
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enging, and adaptive power policy: ZebraNet (Juang et al. 2002), (Zhang et al.

2004), wildCENSE (Jain et al. 2008), AMBLoRa (Antoine-Santoni et al. 2018),

Wilson’s cheetah tracking collar (Wilson et al. 2013), CARNIVORE (Rutishauser

et al. 2011), Shafer’s avian-mounted kinetic harvester (Shafer 2013), Camazotz

(Jurdak et al. 2013a), (Sommer et al. 2016), and ESCAPE’s predecessor project,

ANIMA (Dunne 2014).
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Chapter 2

Tag Design

2.1 The State of the Art in Tag Design

Before examining potential improvements to the state of the art in tag design,

we must first examine the current state of the art. In particular, we are interested

in the power budgets of current tags, and in commonalities and distinctions in

their designs.

The space of tag designs is large, reflecting the variety in research goals and

animal physiology. To narrow the scope of our investigation, we focus on designs

with well-documented power budgets that utilize GPS, accelerometry, and long-

term data storage, and that are built for larger terrestrial animals.

The CARNIVORE tag (Rutishauser et al. 2011) is particularly useful because

it documents the collar used to gather the 36M dataset in (Wang et al. 2015),

which informs our scavenging and adaptive sampling designs. The ANIMA tag

(Dunne 2014) contains a very thorough comparison of component choices for ac-

celerometers, magnetometers, and GPS, tested in an outdoor wooded environ-

ment. (Jurdak et al. 2010) and the Camazotz system in presented in (Jurdak

et al. 2013a) additionally provide detailed power budgets, and the latter includes
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a solar scavenger.

A few more designs did not present detailed power budgets, but do provide

detailed information about various technical design elements. The ZebraNet sys-

tem (Juang et al. 2002, Zhang et al. 2004) explores a variety of low-level power

topologies for synthesizing solar scavenged energy with high-current GPS sensors.

(Wilson et al. 2013) also provides a detailed account of their design choices for

their cheetah tracking collars.

2.1.1 Power Consumption

We begin our exploration of existing tag designs with an examination of their

power budgets.

Figure 2.1 compares power budgets from these projects. We observe some

commonalities in each design. First, the GPS system dominates nearly every

budget, even in projects that strongly duty-cycle their GPS modules. Radio mod-

ules and data logging also consume large shares of power budgets, with some

trade-off between them. Microcontrollers are generally moderate in their power

use, as long as low-power models are selected, and their low-energy modes utilized.

Accelerometry and other on-board sensing systems merely sip at batteries.

By far, the most efficient design is Camazotz, from (Jurdak et al. 2013b).

This design achieves its low power budget primarily with a very aggressive power

policy, using a wide range of low-power sensors to carefully ration expensive mea-

surements. We discuss these strategies thoroughly in Section 4

2.1.2 Electronic Design

Though early tags used different topologies, nearly all modern tags use a stan-

dard embedded controller design as their top-level structure. In this topology, a
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Figure 2.1: Comparison of energy budgets for several published tags. CARNI-
VORE’s duty-cycled GPS power was recorded at a 20 minute period. In this
figure, the value was extrapolated to match the 5 minute period used in (Wang
et al. 2015). Note that AMBLoRa and and Jurdak 2010 do not use data storage.
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Tag Processor GPS IMU battery

AMBLORA Microchip
PIC24FJ128GA310

Origin GPS
ORG1208

Analog Devices Inc
ADXL345
(Accel only)

unspecified

CARNIVORE
Texas Instruments
MSP430

Lassen iQ MMA7260Q (Accel
only)

2 Li AA-cell

Camazotz
Texas Instruments
MSP430 (as part of
Texas Instruments
CC430F5137)

u-blox MAX-6 STMicroelectronics
LSM303 3 (Accel
and Mag)

Li-Ion

Jurdak 2010
Atmel-1281 MCU u-blox MAX-6 not included unspecified

Table 2.1: Hardware design overview of selected tags.

central processing unit is responsible for controlling the other components of the

collar, and for moving data between them. This design is ubiquitous because it

simplifies the design process, and because it provides the designer flexibility after

the hardware is constructed by reprogramming the controller.

We begin by considering the basic electronic design of several peer tags. Table

XXX compares the processor, GPS unit, IMU sensors, and battery type for several

tags.

Several of these tags carried additional peripherals. Camazotz also carried a

microphone and a pressure sensor. The Camazotz tag carried a radio transmitter

with an integrated microcontroller, and Jurdak 2010 and AMBLORA carried

peripheral radio transmitters as well.

One notable commonality is that each of these tags utilize a microcontroller

that is marketed as a low-power device. This partially explains the low contri-

bution of the CPU to the various power budgets described in Figure 2.1, and

further suggests that there are little additional gains to be made by optimizing

CPU choice further.
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Chapter 3

Energy Scavenging in Animal

Tags

A wide variety of sources of useable energy are available in the environments

that animals navigate. T. Starner suggests that human wearables could harness

body heat, air flow from exhalation, force from chest expansion and pulsing blood

pressure, inertial motion from arms and fingers, and striking motion from footfalls

(Starner 1996). Various other blue-sky surveys add ambient light, ambient radio

emissions, and acoustic vibration to the mix (Romero, Warrington, and Neuman

2009; Sravanthi Chalasani and Conrad 2008).

We first discuss some of the less common proposals.

Radio frequency (RF) scavenging has the advantage of being simple to im-

plement, requiring only an antenna and a rectifier, which is well-suited to the

geometry of a collar. (Lu et al. 2015) provides an exhaustive overview of tech-

niques. However, typical results for ambient RF harvesting, using portably-sized

antennas, in urban environments, produce power in the microwatt range (Piñuela,

Mitcheson, and Lucyszyn 2013). Wildlife environments are generally more distant

from RF transmitters, and so would almost certainly produce less power.
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(Shafer et al. 2015) proposes a system to capture energy from changes in

ambient pressure. This could be suitable for deep-diving marine animals, but not

for terrestrial animals.

It is also possible to scavenge muscle motion by directly using muscle force to

deform a flexible transducer. For example, (Starner 1996) shows that piezoelectric

ribbons can be used to gather energy from the stretching and relaxing of an elastic

band, and (Churchill et al. 2003) bonds a piezoelectric strip to a flexing beam to

power a transmitter. Such a strip could easily be fitted into the band of a collar

to capture any deformations that occur. However, near the 1 Hz frequency that

characterizes puma motion, these deformations are unlikely to yield significant

power.

(MacVittie et al. 2013) and (Halámková et al. 2012) use implantable biofuel

cells to harvest energy directly from glucose in the bloodstream of snails and

lobsters. While this technology presents some interesting avenues for research, we

find it inappropriate for the ESCAPE project for a variety of reasons.

After considering the above, we found three categories of harvester to merit

further analysis and experimentation: Solar scavenging, thermal scavenging, and

inertial scavenging.

3.1 Scavenging Power Electronics

In evaluating the utility of a harvester, a designer should not neglect consid-

ering the circuitry that captures the power. Most research tests harvesters inde-

pendently of a power load (such as electronic sensors or battery charging stages),

but this can lead to signficiant overestimation of a harvester’s power generating

ability for reasons discussed below.

Integrating a scavenger in a circuit is non-trivial. One problem is that each
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scavenger produces an output voltage that is considerably less than the voltage

required to charge a lithium-based battery or power the onboard electronics of a

tracking tag. One option is a power conditioning circuit, such as a DC-DC step-up

converter ("boost converter") or a charge pump. These systems trade current for

voltage, at the cost of less than 100% efficiency. Another option is to connect

several scavengers in series, so each contributes to an overall supply voltage that

could be sufficent to drive the electronics payload. These two methods can be

deployed in tandem, as (Carreon-Bautista et al. 2014) shows in a design that

reconfigured the circuit topology of the scavengers during operation for optimized

efficiency.

A further difficulty in the domain of animal-mounted scavenging is the in-

consistency of each scavenger’s output. TEGs produce more energy at night,

solar panels produce a trickle of energy during the day with spikes as the animal

ventures into the sun, and kinetic scavengers produce bursts when the animal is

mobile. No single source can be used to directly power the tag, so some system is

required to store the extra energy each scavenger produces.

The design is further complicated if we wish to optimize the power output of

each device. Each harvester type has a characteristic I-V curve, describing the

current that the harvester will output if the voltage across its terminals is held

constant. For a TEG under a given temperature differential, this curve is linear.

For solar cells under constant illumination, this curve is a steady plateau with

a relatively sharp drop-off (often modeled as an exponential curve, as in Sera,

Teodorescu, and Rodriguez 2007). The I-V curves of thermopiles and rectified

kinetic generators are often modeled as straight lines with negative slopes, cor-

responding to a constant voltage source and a constant resistance in series. In

the context of a harvesting circuit with power conditioning, this curve should be
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multiplied by the efficiency of the conditioning circuit. Assuming the power con-

ditioning circuit consists of an ideal boost converter charging a battery, the I(v)

curve should be multiplied by a factor of v/Vbattery.

The power scavenged by any device is, at most, the product IV , which means

that there is a particular point on the IV curve at which maxmimum power

is produced, which can be identified numerically from a measured IV curve, or

analytically given a mathematical model of the curve. This is the "maximum

power point," or MPPT. An ideal power harvesting circuit should constrain the

generator to the vicinity of that point, either by controlling the current drawn

from the device, or by controlling the voltage of the load. This is called ”load-

matching."

If an energy harvester operates under consistent conditions, such as photo-

voltaics on a spacecraft, load-matching can be designed in the hardware. Oth-

erwise, the MPPT changes with illumination, ambient temperature, or frame ac-

celeration, and some sort of feedback-control scheme is required to "track" the

maximum power point.

3.2 Evaluating Scavenging Devices

The size and weight of tags are generally bounded by the physiology of the

animal and the ethical obligations of researchers. Therefore, any harvester hard-

ware takes some resource that could be expended on extra batteries. In order to

be worth its weight and volume, an energy scavenging device must generate more

energy than it displaces. More formally,

Pscavenger · Texpected > mscavenger · eprimary
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Pscavenger · Texpected > vscavenger · uprimary

where P is the time-averaged power that the scavenger generates, T is the

lifetime of the tag, m is the mass of the scavenger, e is the specific energy of the

primary battery (energy per unit mass), v is the volume of the scavenger, and u

us the energy density of the primary battery (energy per unit volume). 1

3.3 Kinetic Scavenging

Kinetic energy scavengers work by harvesting some of the energy that the

animal expends to move its body. As the animal moves, it exerts a force on

the frame (or "stator") of the device, thereby adding energy to it. The kinetic

generator then captures some of this energy. It is necessary that the generator

contain a proof mass that can move relative to the stator, but which is coupled to

the frame with some sort of electro-mechanical transducer. This coupling allows

the stator to do negative mechanical work on the proof mass and capture some of

that work in the form of electrical energy.

Kinetic power is not necessarily useful in all domains, however. As the laws of

mechanics dictate, the power that can be harvested from external motion varies

strongly with the speed, frequency, angle, and length of the motion. Human wrists

move frequently, often in long strokes, often rotating over a wide angle. As we

and others show, this is a desirable set of conditions for the designer of a kinetic

scavenger. Many other devices must scavenge from slight, regular motion. These

devices require a different design approach and have a lower ceiling on the amount
1An observer might note that these equations imply that an energy-positive scavenger has

greater energy density and specific energy than the primary battery, so the scavenger should
be scaled up and the primary battery removed entirely. This is unfeasible for most scavenging
designs, though, whose forms are generally constrained by the principles of their operation.
Solar panels, for example, should occupy only the outer surface of the tag. The lone exceptions
are inertial harvesters, which we discuss in greater detail below.
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of power that even an ideal design can produce. This is a particularly difficult

barrier for collars mounted on the necks of terrestrial quadrupeds, which move far

less than their extremities.

Most research into animal-mounted kinetic energy scavenging has been di-

rected at humans. The advent of personal timepieces prompted the development

of self-winding watches (Watkins 2013), and the medical utility of pacemakers and

long-term physiological sensors for humans have driven the research in this arena

(Romero, Warrington, and Neuman 2009).

The first credibly recorded self-winding watch was constructed in 1776 or 1777,

using a sliding weight with a ratchet to wind a spring. Even this early prototype

could gather a day’s worth of power in the course of 15 minutes in the pocket of

a human walking at an ordinary pace, demonstrating the potential of this type of

energy scavenging. Most scavenging watches do not convert kinetic energy into

electricity, but rather store the energy mechanically in a mainspring. There are

a few exceptions, such as the Sieko Kinetic, the Sieko AGS, and the ETA SA

(Romero, Warrington, and Neuman 2009).

Currently, a new wave of devices use motion to power various other types

of devices in various locations on or in the human body. Consumer electronics

attached to clothing ("wearables") are becoming increasingly commonplace, as

are devices embedded in objects such as tennis rackets and skis. Novel research

is exploring devices that can be embedded in the human body to provide health

monitoring and pacemaking. Still other research is exploring devices that can

be attached to vehicles and industrial machines, with the hope of making fully

wireless and self-sustaining sensors that can be attached wherever they are needed

A few researchers have attempted kinetic scavengers for wildlife tagging. (Mac-

Curdy et al. 2008) proposes a piezoelectric scavenger to mount on hawkmoths and
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barnswallows. (Aktakka, Kim, and Najafi 2011) constructed a spiral-beam piezo-

electric generator, meant for mounting on the back of a Green June Beetle. The

device was tested on a vibrating stage mimicking the beetle’s flight, where it pro-

duced 45 uW. (Snowdon et al. 2018) tested a piezoelectric cantilever on a falcon in

flight, generating a maximum of approximately 3uW. (Shafer 2013) gives a very

thorough account of an experiment to harvest energy from rock pigeons during

flight, yielding 0.1-0.3 mW. As far as we know, no kinetic scavenger has been

mounted on a terrestrial non-human animal, though (Wu et al. 2014) proposes

a design which is targeted at large terrestrial animals, and (Wijesundara et al.

2016) prototyped a design for elephants. Wu’s design takes the unusual approach

of dangling a pendulum below the collar, and using mechanical rectification rather

than electrical rectification to produce a direct current.

3.3.1 Categorizing Kinetic Harvesters

Kinetic harvesters can be categorized in many ways 2. We focus on three main

categories: We first consider the mechanism by which kinetic energy is transduced

into electrical energy. Three practical methods for this are electromagnetic induc-

tion, electrostatic damping, and piezoelectric damping. A second categorization

distinguishes between scavenger geometries. Scavengers are typically either linear,

rotational, or a hybrid obtained by mounting linear mechanisms on rotating plat-

forms. Finally, we consider whether the scavenger is resonant or non-resonant.

Resonant scavengers are optimized to harvest energy from motion with a spe-

cific, predictable frequency, whereas non-resonant scavengers are built to capture

energy from less-predictable motion.

In the analyses below, we always assume that the motion of the stator is unaf-
2See (Cepnik, Lausecker, and Wallrabe 2013) for a thorough categorization analysis
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fected by the activity of the harvester. In other words, we assume the mechanical

impedance of the force driving the stator is effectively zero. In the domain of

animal tags, this assumption should be valid, since tags are designed to be unob-

trusive to the animal. Relaxing this assumption would not only complicate the

analysis, but also violate an ESCAPE design constraint.

Also note that the phrase ”kinetic scavenger" is a bit broader than the types

of scavenger discussed here, including force- and impact-based scavengers. This

chapter is focused on the subcategory of kinetic scavengers which rely on moving

a proof mass, commonly called "inertial" scavengers.

Harvester geometry

Both rotational and linear accelerations in the stator can conceivably be har-

vested. In practice, mechanical design considerations generally force harvesters to

select one or the other, and additionally to select an orientation for the harvester.

In a linear harvester, the motion of the proof mass is constrained to a line,

or else has a very small range of motion which is approximately linear. This is

generally accomplished with a hollow tube (Halim and Park 2014) or a cantilever.

The primary advantage of the linear harvester is design simplicity, allowing a

generator with few moving parts. Simple cantilevers can be incorporated in MEMS

designs, as in (Kulah and Najafi 2004) or (Mitcheson et al. 2007).

In a rotational harvester, the proof mass rotates on an axis, scavenging rota-

tional stator motion. In this case, inertial scavenging is proportional not the to

the proof mass’s total mass, but rather its moment-of-inertia. If the proof mass

is shaped as a pendulum (usually a half-disk), the rotational harvester gains two

advantages. Firstly, it can harvest some linear motion, as long as the linear mo-

tion has a component that is perpendicular to the pendulum’s axis and current
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angle. And secondly, if the axis is not vertical, then gravity acts on the pendulum

as well.

In addition, there are various mechanisms for achieving hybrid geometries.

Hybrid geometries may be useful if the desired geometry of the coupling mecha-

nism does not match the type of motion. For example, (Pillatsch, Yeatman, and

Holmes 2012), rolls a large iron cylinder over a series of piezoelectric cantilevers,

plucking each one in turn, converting the oscillating tilt of the roller’s track into

approximately linear vibrations on the cantilevers. Hybrid geometries are also

useful when the absolute orientation of the harvester is variable, while rotational

oscillations about that orientation are regular. This is often the case in animals,

which move with a regular stride, but often are moving on an incline. One ap-

proach here is to mount linear oscillators on a rotational stage, as in (Pillatsch,

Yeatman, and Holmes 2014). Another is to mount magnets in meshes which act

as 3-dimensional springs, several of which are reported in (Cepnik, Lausecker, and

Wallrabe 2013)

More exotic geometries attempt to scavenge from motion along or about mul-

tiple axes. The literature includes spherical generators (Bowers and Arnold 2008),

planar generators (Yang, Wang, and Zhang 2011), (Li et al. 2013), and fluid-based

generators (Choi et al. 2011), to name a few. While these geometries may be use-

ful, we find that they suffer from at least one of the following drawbacks: a low

power density, high fabrication difficulty, or a large minimum volume.

Resonant vs Non-resonant Harvesters

In many domains, the ambient vibrations have a regular spectrum that is

known beforehand. In this case, a kinetic scavenger could be deployed that is

constructed and tuned to resonate at the peak frequency of the ambient vibra-
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tions. This is a resonant harvester. Resonant harvesters are generally modeled as

damped simple harmonic oscillators, where the damping force is a combination

of mechanical friction and the coupling to the harvesting circuit. The dynamics

of the simple harmonic oscillator are well understood, allowing relatively simple

analytic estimates of key properties of this generator.

However, in other domains, the ambient vibrations may not be particularly

regular. The ambient vibrations may be consistently periodic, but the frequency

of the motion is variable, such as the engine of a car. In this case, the resonant

frequency of the harvester can be tuned to match the motion. This can be done

electrically by modifying the electrical load on the capture circuit (Roundy and

Zhang 2005).

In some domains, regular oscillations are present, but at a low frequency. This

is the case with stride motions for humans and pumas, whose stride frequencies are

typically in the neighborhood of 1 Hz. These motions can be captured by resonant

harvesters using mechanical frequency up-conversion, where a large, low-frequency

proof mass strikes or plucks a smaller, high-frequency proof mass. The resulting

”ringing" vibrations can the be harvested, usually at a higher efficiency. Some

examples are (Pillatsch, Yeatman, and Holmes 2012), (Pillatsch, Yeatman, and

Holmes 2014), (Sari, Balkan, and Külah 2010), and (Halim and Park 2014).

Coupling Mechanisms

One coupling method is electromagnetic induction. In this method, the proof

mass carries a magnet, or is mechanically linked to a magnet. The stator carries an

inductor that is near or along the magnet’s path of motion, so that the magnet’s

motion produces a changing magnetic field through the inductor. By Faraday’s

law, a changing magnetic field through an inductor produces an electromagnetic
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force across the wire of the inductor, which can be captured. Electromagnetic

induction has several advantages, but perhaps the most pertinent is that the

strength of modern magnets allow electromagnetic harvesters to achieve a high

specific power, with relatively high output voltages.

A second method is piezoelectric activation. Piezoelectricity is a property of

some crystalline materials that causes a voltage difference across the material

when mechanical stress is applied. Piezoelectric crystals can form strike plates,

harvesting energy from direct impacts. A more common form factor is the can-

tilever, where the voltage produced is approximately proportional to the bend of

the beam. Piezoelectric harvesters have the advantage of mechanical simplicity.

The only moving part in most piezoelectic designs is the cantilever, to which the

proof mass is directly attached. The cantilever is very nearly a linear system,

and can be tuned relatively easily, making these a common choice for resonant

harvesters at higher frequencies.

The final coupling mechanism is electrostatic coupling. In this method, two

conductors are placed near each other to produce a variable capacitor. A bias

voltage is established across this capacitor. One or both conductors are allowed

to move, and as the distance between the two changes, so too does the capacitance

between them. This produces a change in the voltage across the plates, which can

be harvested. This is essentially the same setup that microphone diaphragm uses.

Electrostatic coupling’s specific power is limited by the base capacitance of the

harvester, which is in turn limited by the dielectric constant of free space and

the area of the conductors. For this reason, electrostatic harvesters generally

have a much lower specific power than the other coupling mechanisms. However,

electrostatic couplers are also mechanically very simple, and can be implemented

using integrated-circuit MEMS designs, as in (Basset et al. 2009).
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3.3.2 Modeling Kinetic Scavenging

We now discuss the general problem of selecting an inertial scavenging design

for animal motion, given accelerometery data over multiple days of animal motion.

Some research, such as (Aktakka, Kim, and Najafi 2011) or (Shafer 2013), focus on

short intervals of consistent animal behavior, during which the animal’s motion

is particularly energetic. The consistency of behavior simplifies the design and

analysis, and these devices result in high scavenging energy yields, but are not

indicative of the viability of scavenging in long-term projects which include much

longer periods of resting or light action.

The design space of inertial harvesters is large and many-dimensional. We can

narrow this design space by first estimating the power that different approaches

could gather. This requires modeling the harvesting system.

Throughout this section, we describe the position of the stator relative to the

fixed earth frame as y(t), and the position of the proof mass relative to the stator

as z(t). Except where noted, we focus on 1-D linear motion. Also note that we

employ two distinct meanings of the word "linear." We refer to harvesters with

linear dynamics, which are harvesters whose dynamics follow linear equations of

motion (in other words, damped harmonic oscillators). We also refer to harvesters

with linear motion, in which the proof mass slides on a linear joint 3, as opposed

to rotating about an axis. A harvester can be linear in either, neither, or both

senses.

Modeling harvesting dynamics

We begin with a general model of a 1-D linear harvester. In this model, as

with all models discussed in this work, we assume that the motion of the stator is
3this also applies to cantilevers and pendulums, provided that the motions are small
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unaffected by the presence of the harvesting mechanism, or in other words, that the

stator has a mechanical output impedance of zero. We label the coordinate of the

stator relative to the world as y(t), and the coordinate of the proof mass relative

to the stator as z(t). The stator exerts a force on the proof mass consisting of two

parts. FL represents a mechanical force whose work cannot be directly captured,

arising from gravity, friction, or the casing of the harvester. FC is the an electrical

damping force, whose work can be directly captured. We assume that FL and

FC both depend on z and ż, though not necessarily in a linear way, and that FC

depends on the state of the harvesting circuit, which we model as a single variable,

v(t), representing the voltage on a storage capacitor.

The general equation of motion, then, satisfies the equation:

z̈(t) =

(
FL(z, ż) + FC(z, ż, v)

)
Mproof

− ÿ(t)

The power available for scavenging is the mechanical work per unit time done

by FC on the proof mass, or

Ph(t) = −FC · (ẏ + ż)

Not that Ph(t) need not be positive. Conceivably, a harvester could expend

energy to accelerate the proof mass when (ẏ+ ż is small, reaping greater benefits

later when (ẏ + ż) has grown. This would represent a dramatic increase in the

complexity of this problem, as well as in the electrical coupling circuit, and we

know of no research that attempts this. In practice, the electrical circuit always

rectifies the coupling’s output, so FC always opposes (ẏ + ż) and thus Ph(t) is

always positive.

In the animal-mounted domain, y(t) is often quite complex, even during ap-
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parently repetitive activities like walking or running. In addition, FC and FL are

generally nonlinear with respect to z, ż, and v. Even very simple harvesting de-

signs can exhibit chaotic behavior, as in (Spreemann et al. 2006). These functions

can also be discontinuous, such as when z approaches the edge of its range of

motion, when v is very low, or (in designs with sliding joints) when ż is near the

boundary between static and Culomb frictions.

As a result, the problem of modeling harvester dynamics from first principles

is intractable for all but the most well-behaved harvesters. We now discuss some

common simplifications, and experiment-based alternatives to dynamics modeling.

Resonant models

If we assume that the ambient motion is periodic, the analysis becomes much

simpler. We can now establish an upper bound on the power that can be harvested

from the motion. As (Yeatman 2008) shows, if the proof mass’s range of motion

is unconstrained, the maximum power is limited by:

Pmax,res = Mproof · ω3Y 2
0 (3.1)

Or, in the case that the amplitude of ẏ is larger than the proof mass’s range

of motion, the smaller value

Pmax,res = Mproof · ω3Y0Zl (3.2)

holds instead. Here, ω is the frequency of motion in radians per second, Y0 is

the amplitude of the vibrations in meters, and Zl is the range of the proof mass’s

motion. This theoretical maximum is achieved when the proof mass transits across

the full range of its motion at the moment of peak stator acceleration.

For rotational motion, the analogous equation is
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Figure 3.1: A kinetic scavenger as a simple harmonic oscillator

Pmax,res = Iproof · ω3Ω2
0 (3.3)

where Iproof is the proof mass’s moment of inertia about its axis, and Ω is the

amplitude of oscillation in radians.

Equations 3.1 - 3.3 assume a motion in which the proof mass makes a full

transit at the moment of peak FL, and then absorbs all of its kinetic energy in a

negligible distance at the end of its transit. This motion is not physically realistic,

although a hollow-tube design such as (Halim and Park 2014) or (Wijesundara

et al. 2016) might approach this sort of motion under some circumstances. In

order to achieve this generally, the scavenger would need to be able to exert some

control on the proof mass, perhaps by holding the mass in place with a latch or

magnet before releasing it at the optimal moment.

A more common design attaches the proof mass to a spring or cantilever. This

creates a damped harmonic oscillator. The damping force is typically modeled

as the sum of a mechanical damping force arising from friction, and an electrical

damping force from the coupling mechanism.

As (Roundy, Wright, and Rabaey 2003) demonstrates, the maximum average

power that such a harvester can gather from sinusoidal motion is

27



|P | = mζe
4(ζe + ζm)2ω

3Y0
2 = mζe

4(ζe + ζm)2
A2

ω

This result occurs when the natural frequency of oscillator matches the ambient

periodic motion (that is, when ωambient = k/Mproof . Note that at this frequency,

the amplitude of the proof mass’s motion is larger than the amplitude of the

ambient motion. Also note that the assumption of linear dynamics requires that

the proof mass can move over the full range of this motion.

This result suggests a general design procedure for designing a resonant har-

vester: First, choose a mechanical design that minimizes ζm, and then construct a

circuit to make ζe = ζm. In practice, ζm depends on load conditions, so this step

can be achieved as part of maximum power-point tracking circuitry, as we discuss

later.

Another design parameter to consider is the quality factor, Q = 1/(ζe+ζm). If

the peak frequency of the ambient vibrations is known, this should be set as high

as possible. However, if the peak frequency is likely to vary within a range, Q

could be intentionally decreased. This would decrease the harvester’s efficiency at

its resonant frequency, but increase its efficiency at nearby frequencies, increasing

the "bandwidth" of the harvester.

Pendulum Models

Equation 3.3 assumes that all proof mass torques come from the stator’s rota-

tion in the world frame. It does not describe the influence of gravity, or of linear

stator motion, both of which can create torques in the proof mass. For this rea-

son, rotational scavengers often use half-disk proof masses, which maintain high

proof moment-of-inertia while also allowing large torques from gravity and lin-

ear motion, as long as those accelerations are perpendicular to the proof masses
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position.

(Yeatman 2008) provides newtonian analysis of half-disk pendulums under

linear-dynamics damping, which appears to be a reasonable model for a Sieko

Kinetic wristwatch 4. Yeatman’s analysis finds that, in non-resonant operation,

an ideal half-disk generator can scavenge approximately

Plinear−to−rotational = 1
2Mproofω

3Y0Z1R

from linear motion, where R is the radius if the proof disk. In non-resonant

operation, an ideal half-disk generator is approximately as effective as a linear

generator for harvesting linear motion, under the condition that the amplitude of

the motion is small compared to the radius of the proof disk, so the oscillations of

the proof disk are small. This implies that a rotational scavenger could, in prin-

ciple, effectively scavenge energy from both rotational and linear motion, though

not necessarily at the same time.

(Pillatsch, Yeatman, and Holmes 2014) and (Xue et al. 2014) experimentally

test the resulting equations of motion using up-converting harvesters. However,

as Xue and Pillastch both find only hundreds of microwatts of power in wrist-

mounted generators, since the moment of inertia of these proof masses is small,

and the oscillation amplitude is limited on human wrists.

Non-resonant models

One common approach to modeling non-resonant models is to simply ignore

the non-linear behavior, and assume that the harvester’s response to a broader

spectrum can be calculated using the sum of its responses at lower frequencies.

The harvester is subjected to sinusoidal motion at a range of frequencies, and
4See the experimental results in this section for a discussion of observed behavior that may

defy this model
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its response is recorded, resulting in a specific power vs frequency curve. This

approach is identical to the approach used for linear harvesters, albeit with more

dubious applicability to wide-spectrum motion, or even narrow-spectrum motion

at different amplitudes.

An alternate approach avoids detailed modeling and instead measures the gen-

erator’s response to a benchmark: Attach the harvester to a human at one of

several locations, typically wrist, waist, and ankle. The human, often the first

author, will run at various speeds. As a standard, this method has flaws, since

the results depend in part on the runner’s body and physique. On the other hand,

this test is relatively easy to perform, and does capture a complex, organic motion

that humans are likely to engage in. The use of the word "model" may seem like a

poor fit for these phenomenological measurements, but they do implicitly assume

that the test subjects are reasonable proxies for general human behavior, even if

the precise physics of the test subjects are mostly hidden.

A few examples of harvester tested with the treadmill benchmark are (Bowers

and Arnold 2008), (Mitcheson et al. 2008), (Ylli et al. 2015), (Donelan et al. 2008),

and (Granstrom et al. 2007). (Wahbah et al. 2014) uses a similar approach for

a wrist-mounted cantilever, measuring power generation over the course of daily

activities.

A more replicable approach, advocated by (Gorlatova et al. 2014), is to record

characteristics of the runner, and then reproduce that motion in a controlled

stage. (Xue and Jin 2010) has recorded a large dataset of running humans, which

Gorlatova uses in testing their own kinetic harvester. (Yun et al. 2011) uses this

approach as well, and (Choi et al. 2011) uses a similar strategy, but reduces human

motion to a few frequency components, presumably to simplify replication.

The "human on treadmill" benchmark may be useful in designing for pumas,
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as well, since the walking spectrum of pumas is comparable to that of humans.

3.3.3 Kinetic Scavenging in Pumas

Our first step in determining the design of a puma-mounted kinetic scavenger

is to assess the possible energy that can be captured in a puma, and identify

components of the puma’s motion that are most valuable for harvesting. To

do this, we analyzed a 24-hour window of accelerometery data from (Wang et

al. 2015). The data was broken into 4-second windows, and each window was

decomposed into its spectral components using a discrete Fourier transform. This

allowed us to assemble a 2-D histogram representing the average rate at which the

puma exhibited each frequency and magnitude. Each frequency-magnitude pair in

this histogram can generate a power-per-mass proportional to y2
0ω

3, which we call

the "raw" specific power of that region of frequency-vs-amplitude space. Then, the

average specific power available at each region of frequency-vs-amplitude space is

the element-wise product of the normalized histogram and the raw energy map.

The results of this analysis are given below for the X-axis, which was found to

have the highest overall specific power of the three axes.

This analysis shows a specific power on the order of 2 watts/kg for some

components of motion. The collar described in in (Rutishauser et al. 2011) weighed

about 450 g. If the mass were totally dedicated to proof mass, an ideal 1-D

resonant linear-motion harvester could scavenge a maximum usable power on the

order of watts.

However, these components have an oscillation amplitude on the order of me-

ters, requiring a stator far longer than a mountain lion can be expected to tolerate.

In this case, we instead should use equation 3.1. We assume a proof mass range

of 1 cm in Figure 3.3, as this is on the order of the length of a tag’s housing.
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Figure 3.2: A per-component analysis of the maximum specific power available to
harvest in motion along the X-axis from a puma in (Wang et al. 2015). a) The
specific power available at each amplitude and frequency, as described by equation
3.1. b) The density of components in puma motion over a 24-hour period. Data is
given as a fraction of overall time, so the sum of the bins in each column is 100%.
c) The specific power available to harvest at each frequency and amplitude. This
plot is the element-wise product of the two upper plots.
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In this case, the constraint lowers the maximum harvestable power by a factor of

about 20.
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Figure 3.3: A per-component analysis of the maximum specific power available if
the motion of the proof mass is constrained, as described by 3.2. a) shows the raw
specific power available in linear motion when the proof mass is constrained to
1cm. b) shows the power per component available in linear puma motion, given
these constraints. c) shows the specific power available by frequency. It is the
total of each column in graph b.

We also consider harvesting from rotational motion. Our dataset did not

include gyrometery, so we do not have a direct measurement of the rotational

motion a mountain lion tag undergoes. However, we can use an indirect measure

to infer the angle of inclination of the tag using gravity, which accelerometers do
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capture. The general procedure is described in (Mizell 2003).

This measure is at best only useful as a rough estimate, since signals due

gravity cannot be generally distinguished from signals due to acceleration in the

world frame, but can still provide a rough guide for designing a kinetic harvester.

The results of this analysis are illustrated in Figure 3.4.
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Figure 3.4: A per-component analysis of the power available for scavenging in
rotational motion, as described by 3.2. a) shows the raw specific power available
in linear motion when the proof mass is constrained to 1cm. b) shows the power
per component available in linear puma motion, given these constraints. c) shows
the specific power available by frequency. It is the total of each column in graph
b.

The moment of inertia of a half-disk is 1/2MR2, which we estimate to be about
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10−6kgm2 for the Seiko Kinetic’s proof mass, so an unmodified collar-mounted

Seiko Kinetic could perhaps harvest on the order of microwatts.

This analysis suggests that there is very little ambient energy available in

the motions of a mountain lion’s neck. If accurate, this is perhaps unsurprising.

Mountain lion physiology produces mostly low-frequency motion, optimizing en-

ergy conservation. This is in contrast to vibrations of automobiles and HVAC

systems, whose designs are more typically aimed at manufacturing convenience

and effectiveness, tending to waste more energy.

3.3.4 ESCAPE Kinetic Scavenging Designs

We tested three designs for kinetic scavengers.

Our first design was a simple piezoelectric cantilever, using an off-the-shelf

cantilever from SparkFun electronics. This design was attractive because of its

apparent simplicity and low cost. To tune the natural frequency of the piezo-

electric, a fine piece of spring steel was added along the cantilever, similar to the

design in (Shafer and Morgan 2014). The proof mass was a magnet, allowing easy

adjustment by adding washers. In theory, this resulted in an adjustable linear

scavenger. In practice, the natural frequency was very hard to tune, and even

when tuned, the proof mass’s oscillations were only resonant under very small

motion components. We also attempted a frequency up-converter using a mag-

netic plucking arrangement similar to (Pillatsch, Yeatman, and Holmes 2014), but

were unable to produce up-conversion reliably.

Our second design used the mechanism (called a ”movement") of a Sieko Ki-

netic wristwatch, following (Goto, Sugiura, and Kazui 1998). The Seiko Kinetic

was chosen because it is built to capture human motion, which is reasonably simi-

lar to puma motion in spectral decomposition. The movement was carefully disas-
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sembled, and all timekeeping components were removed. The harvesting inductor

was then re-soldered to a pair of fine wires which were fed through a convenient

hole in the casing. We also constructed a cage that allowed attaching additional

weights to the Seiko Kinetic’s pendulum to increase its moment-of-inertia.

A third design was a faraday-coupled generator built using a brushless-DC

motor, on the assumption that an efficient electricity-to-torque transducer would

also allow efficient torque-to-electricity transduction. A half-disk pendulum was

attached to the shaft, and an adjustable spring was attached to the stator. By

adjusting the compression of the spring, its effective spring constant could be

altered, allowing tuning of the oscillator’s natural frequency.

We also constructed two types of rectifier to convert the AC output to DC.

The first was a typical 4-diode bridge using low-drop GaAs diodes. The second

was an active rectifier following (Sun et al. 2011), constructed using the ultra-low

current Texas Instruments TL331 comparator and low-drop MOSFETs.

Laboratory Testing

To explore and refine our kinetic scavenger elements, we first constructed a

pair of test gantries to simulate the motion of a mountain lion’s tracking collar.

Both gantries control a stage with 1 degree of freedom. The stage of one gantry

moves linearly, while the other rotates about an axis. Encoders provide feedback,

and a simple control loop controls the stage.

We tested each of three types of scavengers on each stage, using a sample

of accelerometry data from puma treadmill experiments in (Bryce 2017) as the

control signal. Each output was observed in open-wire condition, and was also

used to charge a capacitor whose voltage was recorded over time.

On the linear stage, no harvester produced significant output. The output of
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Figure 3.5: Linear and rotary test stages.

the piezoelectric harvester and the BLDC harvester was below 1mV. This is not

unexpected, since the motion of both harvesters matched the dominant frequency

of the mountain lion’s walking, at about 1.5 hZ. The Seiko Kinetic harvester’s

pendulum was constrained by static friction, and rarely moved with respect to the

stator. When it moved, it produced bursts as high as 1.2 v, but only occasionally,

so the rate of charge was not significant.

On the rotary stage, the piezoelectric and brushless-DC generators again pro-

duced negligable output. However, the Sieko Kinetic moved more freely, and pro-

duced a measureable output. The results of the capacitor-charging experiment

are shown below using a passive and an active rectifier:

We also examined the result of altering the Seiko Kinetic’s proof mass. The

proof moment-of-inertia was approximately doubled by adding weights to the cage.

Note that both of these records were taken from logs in which the storage

capacitor’s size may have been recorded incorrectly. The capacitor may have

been a 10uF capacitor, in which case these results should be divided by 10.
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3.3.5 Discussion of kinetic scavenging in mountain lions

While theoretical analysis does suggest a significant specific power in the linear

motion of a mountain lion’s collar, this power can only be obtained by utilizing a

large portion of the collar’s hardware. This is infeasible for the electronics payload,

or at least the portion containing the accelerometry unit and heat scavenger. The

battery pack, however, could be effectively leveraged as a proof mass. Even so,

this presents significant hardware challenges. It is not clear what kind of coupling

mechanism could effectively couple a proof mass at that scale.

The results from the rotational tests present an interesting puzzle. The Seiko

produced a maximum of about 10 uW. This is actually about one to two orders of

magnitude larger than the theoretical maximum predicted by equation 3.3. One

possibility is an error in the recording setup. Since other errors have been found,

this is plausible.

A second possiblity is that the assumptions used to derive 3.3 do not apply

to the Seiko Kinetic. In particular, we noticed that the Seiko pendulum is very

sensitive to static friction, which appears to be a benefit in some situations and a

detraction in others. Under slow, large oscillations, the static friction allows the

pendulum to rise to a nearly horizontal angle before dropping. Under this regime,

the motion of the stage is doing work against gravity to store potential energy,

which is captured as kinetic energy later. This is an entirely different paradigm

of energy capture than the inertial scavenging discussed so far. This phenomenon

merits further investigation.

Increasing the proof mass apparently reduced the power produced by the Sieko

Kinetic harvester. Again, this contradicts 3.3. One explaination is that the added

proof mass increased the mechanical friction of the proof mass, decreasing conver-

sion efficiency. Another explanation is that the proof mass prevented static friction
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from producing significant potential energy, again meriting further investigation.

While the Sieko Kinetic’s physical behavior is interesting, it seems unlikely

that a rotary scavenger is likely to significantly offset the tag’s power consumption.

The combination of small oscillation amplitudes and small proof mass dimensions

reduce the efficacy of a rotational harvester.

In principle, these results could be improved by increasing the moment of

inertia of the proof mass. One proposed design, shown in (Wu et al. 2014),

proposes using a large external pendulum as a proof mass. By breaking the

bounds of the tag enclosure, this increases the moment of inertia by several orders

of magnitude, and increases the linear range of the proof mass as well. However,

it does so by dramatically altering the form factor of the collar in a way that

severely impacts its robustness and would surely be distracting for the animal.

Another approach could use the batteries (which often comprise a majority of the

mass of the tag) as the proof mass. However, as the proof mass increases, the

reactive force from the proof mass will start to move the collar, and would impact

accelerometry readings. Also, experience with designing these harvesters suggests

that this force would be distracting for a tagged animal.

In considering the efficacy of a scavenging device, we must also compare its

utility to its opportunity cost. One reasonable point of comparison is the specific

energy of a primary battery, which could take the scavenger’s place in a tag. In the

case of the puma, we found a maximum specific power of about 0.08 watt/kg. If we

assume a tag lifetime of about 2 months, this yields about 120 watt-hours/kg. A

lithium-thionyl chloride battery has a specific energy of about 500 watt-hours/kg,

and even a generic alkaline battery carries about 80-180 watt-hours/kg.

In summary, it seems unlikely that even an unrealistically efficient kinetic

harvester could produce more energy over the lifetime of a tag than could be added
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to the collar by removing the kinetic harvester and using the extra mass to increase

the size of the battery. It is possible that a kinetic scavenger could be useful on a

more energetic animal, or on a tagging mission with a long intended lifespan, but

even then this approach presents significant hardware design challenges.

.

3.4 Other Types of Energy Scavenging

3.4.1 Solar Scavenging

Solar panels are devices which convert energy in the form of light into electrical

currents. The key technology is the photovoltaic cell, which uses a thin film of

one metal plated over a substrate of a second metal. If the metal of the thin

film has a different free electron density than the substrate, then a depletion

zone forms between them, forming a barrier to electron flow. Photons absorbed

near the depletion zone scatter electrons, some of which cross the barrier. Since

there are more free electrons on one side of the barrier than the other, the net

effect is a current flow across the barrier, which can be directed through a circuit

elsewhere. This phenomenon was first observed in 1839, but early solar cells were

highly inefficient, producing miniscule currents in direct sunlight. Useful solar

cells required the innovation of doped semiconductors, as pioneered by Bell Labs

in the 1950s.

The production of solar cells was motivated by the desire to build spacecraft.

The first such device was Vanguard I in 1959, which used six tiny solar cells

to augment its small non-rechargeable battery. Vanguard I transmitted signals

for six years after its launch, far outlasting its non-scavenging predecessors and

demonstrating the feasibility of solar scavenging in space.
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We consider the application of this technology to another hermetic embedded

system: wildlife tags. Spacecraft have the luxury of a predictable and mostly

unobstructed line-of-sight to the sun. On the surface of the earth, systems must

contend with weather, dirt, the atmosphere, landscapes, and nighttime. Also, wild

animals cannot be expected to maintain the cleanliness and optimal positioning

of their collars. In spite of all these challenges, the intensity of solar radiation that

reaches the surface of the earth is still quite high, and so remains an attractive

option.

Prior Art

(Patton, Beaty, and Smith 1973) first tested a solar panel on a single wild

turkey. In this experiment, the panel was used as a replacement for a battery

in a radio transmitter, although the authors suggest that a solar panel could

be used to recharge a battery as well. (Church 1980) applies this technique to

gray partridges, noting significant gains in longevity. (Andersen 1994) provides

detailed longevity statistics in a study of red-tailed hawks, using solar panels and

nickel-cadmium batteries. These tags showed clear and dramatic improvements

in longevity, and one tag remained operational for seven years. Solar panels are

now mainstream in avian tracking (MacCurdy et al. 2008), (Wu et al. 2014).

Though solar panels are fairly common for avian trackers, there has been

comparatively less investigation and deployment of solar-scavenging collars for

wild terrestrial or marine animals. (Zhang et al. 2004) designed a generic solar

collar for the ZebraNet system. Their solar array produced about 0.4 watts/100g

in full sun, though they do not report the on the efficacy of this approach in the

field. (Adoram-Kershner et al. 2017) used a laboratory prototype to examine the

feasibility of solar tags on elephant seals, and concluded such an approach could
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be viable.

(Wilson et al. 2013) designed a solar-scavenging collars for wild cheetahs. This

paper used an array of solar cells, reporting a current production that ranged from

35 mA in direct sun, 10 mA in dappled shade, and near zero otherwise, averaging

about 2mA over time. The authors note that the cheetahs apparently spend very

little time in the sun, even during winter. These same collars were deployed on

African wild dogs in (Hubel et al. 2016), though detailed power data was not

reported.

Perhaps most notably, (Jurdak et al. 2013b) and (Sommer et al. 2016) utilize

solar cells in their Camazotz tags for wild flying foxes. They report that these

tags, used in combination with aggressive energy conservation techniques, are

approximately energy-neutral. Early trials in (Jurdak et al. 2013b) suggest as

much as 5.7 mW average power can be produced by a a pair of approximately 1 in2

panels. (Sommer et al. 2016) deployed these tags for long term trials, harvesting

an average of 1.137 mA over a day, presumably measured over a 3.6v circuit for

an average power generation of 4 mW. Since their tags drew 1.3 mA on average,

this fell slightly short of true energy neutrality, although nearly half of days did

achieve energy neutrality. In this case, increasing the ratio of rechargable battery

mass to non-rechargable battery mass would have been advantageous.

Applicability to Puma tags

We begin by estimating an extremely optimistic upper bound on solar scaveng-

ing. The intensity of solar radiation at the surface of the earth is approximately

1120 W/m2 at the sun’s zenith, including indirect rays from the atmosphere.

Sunlight is only available during about half of each day, during clear weather.

Consumer solar cells have typically about 25% conversion efficiency, under ideal
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conditions. On one test collar, the top side of the tag enclosure was about 2x3

inches. A highly efficient solar cell, mounted on this enclosure, could produce no

more than 500 mW averaged over a day, well over the power consumption of most

tags.

Of course, such a result is highly implausible, since weather and puma behavior

will both prevent ideal conditions. At present, we cannot find any sort of research

that might allow an estimate of a puma’s daily light exposure, although perhaps

the behavior of cheetahs in (Wilson et al. 2013) is suitable. Adding a solar cell

to the ESCAPE tags would present an opportunity to evaluate this, since solar

panels also double as light sensors.

Implementing Solar Panels

Solar panels should probably be attached to the top face of a collar, where

sunlight is most likely to be incident. Solar cells are thin and fragile, but may be

enclosed in glass, plastic, or epoxy casings, at the cost of efficiency. This would

be feasible for mounting on top of an enclosure. Possibly, the band of the collar

presents an opportunity for more surface area, and thus more power, although

mounting a cell in a collar band without detracting from its stability presents a

challenge.

3.4.2 Thermal Scavenging

Another form of energy scavenging is thermal scavenging. Any temperature

difference across the surface of an object can be used to capture useful energy,

at least in principle. In the nineteenth century, this facet of thermodynamics

was the motivating principle behind mechanical heat engines such as the Stirling

engine and Carnot engine. Today, the heat scavenging mechanism of choice is a
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compact and inexpensive solid-state device called the Peltier Electric Generator,

or PEG. The PEG leverages a thermodynamic phenomenon called the Peltier-

Seebeck effect, in which the junction between two different metals exhibits a small,

temperature-dependent voltage. If a circuit crosses different types of metal, and

one junction is at a higher temperature than another, the result is a slight voltage

difference between the junctions which creates a slight current in the circuit. The

PEG sandwiches many such junctions between two thin ceramic plates, wired

together in series so that the slight voltage difference is multiplied into a larger

voltage and current. This increases the power a PEG can generate, but also

increases the rate at which heat energy dissipates from the hot side (Kiely et al.

1991).

Two parameters are particularly important in assessing the viability of a Peltier

TEG in a thermal harvesting system. The most important is the ”figure-of-merit",

commonly denoted Z, and defined as

Z = (αp − αn)2σ

k

where αp and αn are Seebeck coefficients of the p- and n-type semiconductors,

σ is the electrical resistivity of the semiconductors, and k is the thermal conduc-

tance of the semiconductors. Z is a property of the semiconductor choice, and is

particularly crucial because the power generated by a TEG is approximately pro-

portional to Z, and because this parameter is a factor in electrical load-matching

during harvesting (Bhandari and Rowe 1995). A common material for TEG con-

struction is bismuth-telluride, with a room-temperature Z of about 0.0066K−1.

A second crucial parameter is the ”empty" thermal resistivity, often denoted

Rempty. This is defined as Rempty = ∆TTEG/WTEG,empty in (Leonov 2011), where

WTEG,empty is the heat flow that would cross the wafer at a given temperature,
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if the semiconductors were removed. It is determined by the material properties

of the wafer, and by its geometry. This parameter is important because it guides

design choices in the geometery of the TEG system, as discussed in the section

on TEG optimization.

TEGs can be mounted in a variety of ways. The wafer can be sandwiched

between heat sinks to change the effective shape of the generator, so forms like

buttons (Hoang et al. 2009) and coins (Stark 2006) are possible. (Settaluri, Lo,

and Ram 2012) creates a large u-shaped brace that wraps around a human arm.

(Leonov 2013) fashion several designs, including antannae and crowns. Semicon-

ductor junctions can also be woven into fabric (Kim et al. 2014) to create flexible

TEGs, though this performs below the efficiency of a rigid ceramic wafer.

3.4.3 TEG modeling and optimization

TEG efficiency is usually modeled using a ”thermal circuit" analysis. Leonov

outlines this procedure in (Bonfiglio and Rossi 2011), and this technique is applied

to practical thermal harvesting systems in, for example, (Hoang et al. 2009), (Kim

et al. 2014), and (Leonov 2013).

Thermal circuit models are analogous to electrical circuit models, substituting

electrical current with thermal energy current, and voltage with temperature. The

TEG capture system is the load resistor, RTEG, and the difference in temperature

across it is proportional to VTEG in the real electric circuit. The air and the body

core are taken as fixed sources and sinks, Tair and Tbody, and the thermal transfer

coefficients of the heat sinks and skin are constant resistances, RTEG and Rskin.

More detailed models would include resistors representing parasitic heat loss, and

might handle dynamic effects with capacitors. For most purposes, though, a

three-resistor model is sufficient.
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Figure 3.8: Three-resistor thermal model of a collar-mounted TEG. The diagram
represents a sagittal cross-section of a puma wearing a collar and tag.

Under this model, we can see that performance is improved by minimizing

resistors Rskin and Rair. Both Rskin and Rair are functions of the heat-sink geom-

etry. Large surface areas reduce thermal resistance, as do protuberances which

promote convection. Rskin varies between different locations on the body, reflect-

ing differences in bloodflow, fat, and hair. Rair is reduced in the presence of

convection currents.

Once Rskin and Rair are minimized and modelled, an optimal TEG can be

chosen. Assuming the electrical harvesting circuit is optimally load-matched, the

power that a thermopile can generate is given by (Freunek et al. 2009) as

Pmax = ∆T 2

4 · Z
√
ZT0 + 1

(Rskin +Rair) · (1 + ZT0 +
√
ZT0 + 1) · (1 +

√
ZT0 + 1)

(3.4)

where WTEG and ∆TTEG are the heat flow and temperature difference across

the thermopile. This is analogous to the electric-circuit P = IV , which implies

that optimal TEG design requires thermal load-matching as well as electrical load

matching. RTEG,th changes by as much as a factor of two (Leonov and Fiorini 2007)

with generated electric current, so these matching problems are not independent.
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The analysis becomes quite complicated, and different authors have come to

different conclusions as a result of different assumptions and simplifications. For

example, (Freunek et al. 2009) finds that optimal electrical load-matching requires

Rload = RTEG,el, and optimal thermal load-matching occurs when the height-to-

cross-sectional-area ratio, l/mA, of the TEG semiconductors is S2 · (Rskin+Rair) ·
√
ZT0 + 1. (Leonov 2011) suggests this ratio should always be as high as possible

when optimizing for power-per-volume or power-per-weight. However, in practice,

designs are often guided by spatial constraints. In our analysis below, we assume

we will use a single wafer, which simplifies the analysis considerably.

Applicability to Pumas

Here again, the particular domain of animal-mounted devices places severe

limits on the utility of energy scavenging devices. The laws of thermodynamics

state that the maximum usable energy that a thermoelectric harvesting device

can produce depends on the temperature difference between the hot and cold

side of the device. Furthermore, animals’ skins generally insulate their internal,

temperature-regulated bodies from the outside world, further limiting the efficacy

of such devices.

One interesting advantage to using this technique on puma collars is that a

collar’s form factor is already an excellent heat sink geometry. The interior of the

collar is a large surface area, and the electronics enclosure protrudes into the air.

Rair would be minimized by using a metal enclosure, though in practice we would

leave a plastic section to allow GPS antennas a free view of the sky. Rskin could

conceivably be reduced further with metal combs that burrow into fur.

To estimate the potential of TEG harvesting in this application, we first must

model Rskin and Rair for a puma. These parameters are notoriously hard to model
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in humans, with the former varying widely with position on the human body and

the latter varying widely with the geometry of the TEG and the body (Leonov and

Fiorini 2007). However, we can obtain a very rough estimate of this parameter

by simply dividing the time-averaged core-to-air temperature differential by the

average energy generation rate of the puma, implicitly assuming a spherical puma

with uniform skin and fur.

(Laundré 2005) estimates the energy generation rate at around 2500 kcal/day,

or about 120 watts. (McNab 2000) measures the internal temperature of several

pumas, and reports a typical 38 deg C. The 36M data from (Wang et al. 2015)

records a typical average external temperature of about 25 deg C. Thus, a rough

estimate of Rskin+Rair for a puma is about R = ∆T/W = (38−25)K/120watt =

0.1K/watt for its entire skin. If our spherical puma has a radius of half a meter,

then its surface area is about 10m2, so the approximate thermal-resistance-per-

area is about .01K/wattm2. We assume we are using a typical bismuth-telluride

peltier module, with a Z of about 0.0066 K−1 at room temperature.

Then, according to the optimum power formula in equation 3.4, we have a

roughly estimated power-per-area output of about 3 W/m2. A TEG mounted in

the bottom of a 2x3 inch tag enclosure could conceivably draw about 10 mW. This

estimate is not necessarily an upper bound: Effective heat sink design could prob-

ably lower (Rskin +Rair), which would raise the power generation rate. However,

we would be unlikely to achieve the optimal harvesting geometry, and boost con-

version requirements would prevent us from achieving ideal TEG load-matching.

In any case, this amount is on the order of energy scavenged from other types of

devices, and so is worth exploring.
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Chapter 4

Adaptive GPS Sampling

The ability to perform location tracking is a core motivation behind wildlife

tagging technology. Tracking yields information about migration, foraging habits,

physiology, and social behavior, an provides useful guidance for conservation ef-

forts (Wilmers et al. 2015), (Mech and Barber 2002). This capability was previ-

ously achieved using the radio transmitters on board the collar. Ground stations

and researchers could measure the signal’s direction and estimate its distance.

From this information, the transmitter’s latitude and longitude can be calculated.

This method works, but ground stations and researchers are expensive, often im-

precise, and generally limited in the territory they can cover.

A GPS-equipped collar, however, can measure its own latitude, longitude, and

(provided it can read the signals of four or more satellites), height above sea

level. Depending on satellite visiblity and power use, a GPS receiver can localize

with a precision of ± 5m ((D’Eon and Delparte 2005),(Bauer 2013),(Moriarty

and Epps 2015)). GPS is a powerful tool for tracking, but it comes at a price:

measurements are highly energy intensive. Various designs devote 31%, 32-79%,

39%, 45%, and 80% of their energy budget to GPS receivers((Jurdak et al. 2010),

(Jurdak et al. 2013a),(Jurdak et al. 2013b), (Dunne 2014), and (Rutishauser et al.
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2011) respectively). When (Wilson et al. 2013) reduced the GPS sample rate on

some collars from 30s to 300s, the result was a 30% overall power reduction.

As with any sensor, there is a trade-off between GPS measurement frequency

and the information gained from the sensor. A measurement is a purchase, ex-

changing energy for information (Bhattacharya and Das 2002; Brown et al. 2012).

Removing measurements from the schedule will save some joules, but cost some

information.

However, not all measurements are created equal: The costs and benefits of

measurements can vary, so a careful strategy can avoid the most costly mea-

surements, or ration energy for the most information-rich measurements. In this

section, we explore the state of the art of these adaptive sampling strategies, and

present and test our own strategy.

It is important to note that any adaptive sampling strategy requires some

sort of predictive model. We can view an adaptive sensing strategy as a lossy

compressor, and the loss rate and compression ratio of lossy compression depend

on the predictive capabilities of a model.

Our search for models that shape a sampling strategy borrows heavily from

the literature on Personal Communication Service (PCS) devices, a family that

includes mobile phones and wearables. This field faces similar design goals and

constraints, aiming to perform tracking of a moving animal while conserving bat-

tery life.

We categorize adaptive GPS localization strategies into four types: Mode-

based strategies note that animal’s behavior often falls into one of a handful of

modes, such as resting, traveling, and hunting, each requiring different levels of

measurement frequency. Context-based strategies estimate the likely cost and

quality of a measurement to favor cheaper or more precise measurements. Place-
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to-place models observe that animals often prefer certain places, and focuses mea-

surements on transitions between these places. Finally, uncertainty suppression

strategies model location as a probability density function, and schedules mea-

surements to keep the spread of this density above a threshold.

As (Brown et al. 2012) points out, there is a core challenge facing any animal

tracking project that uses mobility predictions. The mobility model must be

built using existing data, but often what ecologists hope to observe is changes in

animal behavior, or unusual behaviors. After all, if a model can perfectly predict

an animal’s behavior, then no collar is necessary. Any tracking project that wishes

to use adaptive power consumption carries a risk that the model will miss crucial

behaviors that defy the model. Therefore, sampling policy should be constructed

in a conservative way, erring on the side of too many measurements.

4.1 Review of strategies for adaptive sampling

We broadly categorize existing adaptive sampling strategies for animal track-

ing into three broad categories: Mode-based strategies classify animal behavior

into one of several discrete modes, where each mode has a different power policy.

Context-sensitive GPS sampling uses other available information about the tag’s

environment or state to guide its sampling schedule. And finally, uncertainty sup-

pression attempts to estimate the tag’s location, and triggers GPS measurements

when the uncertainty about the tag’s location exceeds some threshold.

4.1.1 Mode-based strategies

When animal movement is observed over long periods of time, their motion

seems to cluster into a set of behavioral states. For example, (Morales et al. 2004)
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classifies elk movements into ”encamped" and ”exploratory" states, (Martiskainen

et al. 2009) sorts cow behavior into eight behaviors including ”ruminating" and

”lame walking". (Wang et al. 2015) categorizes wild pumas as ”feeding", ”groom-

ing", ”resting", ”high-acceleration", and ”low-acceleration". The modes are not

limited to activity: (Janis, Clark, and Johnson 1999) finds captive pumas en-

gage in ”lying",”walking", ”standing", and ”sitting", and a negligible amount of

”running".

Since animals change their states infrequently, knowledge of an animal’s state

allows prediction of the animal’s future movements. A sleeping animal is unlikely

to move soon, so a GPS measurement can be deferred. (Jurdak et al. 2013a) uses

this strategy to manage GPS measurements in a tag for flying foxes. These tags use

inertial measurements, solar sensors, audio signals, and air pressure to characterize

the animal’s state. GPS measurements are frequent while the animal is flying, less-

frequent while resting, and event-triggered by certain actions. Similar strategies

are emploted in (Wilson et al. 2013) and (Brown et al. 2012).

4.1.2 Context-sensitive GPS Sampling

GPS measurements do not have uniform costs. Two factors in particular affect

the energy cost (and, sometimes, the resulting accuracy) of a GPS measurement.

First, GPS receivers must maintain information about the trajectories of GPS

satellites. Coarse ”almanac" data is valid for several weeks, while the fine-tuning

”ephemeris" data is valid for 1-4 hours (Moriarty and Epps 2015). Fix success

rate and fix time both degrade as the ephemeris data becomes obsolete. Thus,

GPS power costs do not decrease linearly with duty cycle.

Second, the fixing process requires view of three or more satellites. While

GPS signals can pass through tree canopies and reflect off of large objects, this
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interference can increase the operation time required for the receiver to obtain the

necessary information, which costs energy (Moriarty and Epps 2015). If a receiver

attempts to make a fix when three or fewer satellites are in view, the attempt will

fail, but energy is still expended on decoding the received signal. Furthermore,

more satellites provide a more accurate fix, so sampling in open areas is more

desirable than sampling in closed or forested areas.

These factors motivate context-sensitive sampling strategies. One approach is

to record information about GPS visibility in different locations, and opportunis-

tically sample in open areas. For example, (Lin et al. 2010) maintains a grid map

that describes the energy costs and precision results from various locations, and

triggers a measurement using whichever sensor that is likely to be the cheapest.

GPS visibility can also be inferred from proxy measures such as the amount of

sunlight (during the day) and the presence of WiFi signals, which suggest nearby

buildings, as in (Paek, Kim, and Govindan 2010).

4.1.3 Uncertainty Supression

Another way to schedule measurements is to model some measure of "uncer-

tainty," and its evolution in time. As the system proceeds, the amount of uncer-

tainty grows. When a GPS measurement is performed, the uncertainty shrinks.

Between GPS measurements, low-cost accelerometry measurements can slow the

growth of uncertainty in certain ways.

(Jurdak et al. 2010) and (Kjaergaard et al. 2011) employ a simple model,

estimating an upper bound on velocity and triggering a measurement when that

bound exceeds a threshold. More commonly, uncertainty is taken as the width

of a probability distribution. This is a natural measure for Kalman-filter models,

such as those used in (Jain and Chang 2004).
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4.2 ESCAPE Uncertainty supression strategies

In (Lichtenstein and Elkaim 2019) and (Lichtenstein and Elkaim 2020), we

present several strategies for reducing the number of GPS measurements required,

while posing a minimized risk of failing to capture unexpected animal behavior.

Each strategy is formulated on a different stochastic model of the animal’s motion.

Each model is then used to build a filter which estimates the animal’s position in

some way, along with a measure of the uncertainty of that estimate.

The filters can be run in real-time, allowing the tag’s on-board controller to

trigger GPS measurements only when the uncertainty grows beyond a threshold.

In this way, we can throttle costly GPS measurements, while still ensuring that

we can record the animal’s position with a particular resolution.

The models we present are of varying complexity. Complex models are harder

to implement, but may improve GPS sampling efficiency. Also, complex models

are at a greater risk of overfitting, so deploying a complex model in the field may

produce too many or too few GPS samples. Our goal is to provide a view of

the landscape of model complexity, allowing the informed selection of a suitable

strategy.

Each of these models utilize a Kalman filter (or can be cast in the form of a

Kalman filter), so we give a brief overview of Kalman filters before discussing the

models in detail.

4.2.1 The Extended Kalman Filter

A common tool for combining the results of multiple sensors to estimate the

state of a system is the Kalman filter. Originally proposed in (Kalman 1960), the

Kalman filter is now a foundational approach in modern estimation (Gelb 1974).

In the following, we use the notation of (Stengel 2012).

56



Note that we ignore several elements of more general Kalman filters for sim-

plicity, including only the components that we use in the algorithms we designed.

In particular, we ignore any control components (except in rare and ethically dubi-

ous cases (Clark 2013), animal control is a rare feature in tags). Also, most of our

models have nonlinear dynamics, so we describe general version of the Kalman

Filter that is generalized to operate on nonlinear systems, called the Extended

Kalman Filter (EKF).

The Kalman filter is an iterative algorithm that takes input from sensors at

each step. It maintains an estimate of the system’s state in a vector usually

denoted as x̄, along with a covariance matrix, P, that estimates uncertainty in x̄.

With each new measurement, it iterates, updating x̄ and P. In our application,

x̄ usually contains the latitude and longitude displacement of the tag, along with

other variables like velocity and heading angle.

To illustrate the evolution of the filter, a section from one test run is shown in

Figure 4.1.

This approach is advantageous for tracking for two main reasons. First, a

Kalman filter provides a mechanism for combining information from various types

of sensors. Secondly, the Kalman filter’s covariance matrix is a natural way of

measuring uncertainty, which can serve as an input to the GPS uncertainty sup-

pression policy.

EKF Design

To construct an EKF, a dynamics model of the underlying system is required.

These take the general form

d

dt
x = f(x) + w
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Figure 4.1: The 2-D Kalman filter uses magnetometry information to follow
changes in direction. The dotted circles approximately indicate the region within
1-sigma of the estimated location, as measured by the diagonal elements of the
covariance matrix.
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where x is the state of the system (distinct from its estimate, x̄), and w is a

Gaussian noise vector with covariance matrix Q. f() is a multi-valued function

that outputs a vector with the same size as x. f() can be thought of as representing

the predictable component of the dynamics, while w represents the unpredictable

component. The filter designer chooses f() by modeling the physical properties of

the system and examining data from previous systems. By defining f(), w, and

Q, the designer defines the dynamics model of the filter.

The filter also requires a measurement model. This predicts the value z that

a given sensor s would yield if it measured a system in state x These take the

general form

zs = hs(x) + n

,

where n is a Gaussian noise vector with covariance R. hs() outputs a vector

with the same size as zs and represents the component of the measured value that

can be predicted from x, while n represents measurement noise. The designer of

the filter chooses hs(),n, and Q for each sensor on the device by modeling the sen-

sors, using a combination of datasheet specifications and calibration information.

There are a few other choices left to the EKF designer. Initial values for the

parameters x̄ and P must be determined, and a method of integrating between

measurements must be chosen.

Kalman Filter Update Algorithm

Once online, the EKF updates each time a new measurement arrives from each

sensor. For the below, we use the notation ·(−) to indicate the value of a variable

prior to the update, and ·(+) to indicate the value after the update.
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The steps to update after receiving a measurement from sensor s are as follows:

First, several Jacobian matrixes are calculated. The Kalman Filter uses linear

algebra techniques to perform its error-minimization, so this produces linear local

approximations for the non-linear functions f() and hs().

F = ∂f()
∂x

∣∣∣∣∣
x̄(t)

L = ∂f()
∂w

∣∣∣∣∣
x̄(t)

H = ∂hs()
∂x

∣∣∣∣∣
x̄(t)

Next, the values of x̄ and P are integrated over the time interval since the last

update, so they reflect the filter’s best estimate of the system’s state at the time

of measurement according to equation 4.2.1. Since our system receives multiple

measurements at a rate of 16 Hz, we opt for a simple linear extrapolation:

x(−) = (tk − tk−1) · F(tk−1)x̄(tk−1)

P(−) = (tk − tk−1) · [F(tk−1)P(tk−1) + P(tk−1)F(tk−1) + L(tk−1)QL(tk−1)]

Next, the optimal filter gain, K, is calculated. K can be thought of as a

weighting factor for the measurement, determining how much the measurement

should affect each element of x̄.

K = P(−)HT
[
HP(−)HT + R

]−1

Next, the state vector estimate x̄ is updated to reflect the measurement:

x̄(+) = x̄ + K
[
zs(t)− h(x̄(−))

]
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Next, the covariance estimate is updated. Here, I represents the identity

matrix of the same dimension as z.

P(+) = [I −KH] P(−)

In the case of the algorithms that use unit quaternions, the four components

of x̄ that describe the quaternion are normalized. At this point, x̄(−) and P(−)

are discarded, and the algorithm is ready for the next update.

4.2.2 ESCAPE Adaptive Sampling Algorithms

The algorithms here all follow a similar uncertainty suppression strategy. In

each, an EKF is constructed such that two elements of x are the latitude and

longitude of the tag’s GPS sensor, or else, the displacement of the tag from the

last GPS fix. Then, the corresponding diagonal elements of P added in quadrature

serve as a measure of uncertainty in the tag’s position.

The algorithm runs the EKF while the GPS is disabled, receiving updates from

the IMU. When uncertainty exceeds a threshold, the GPS unit is enabled until a

fix is obtained. At that time, x̄ and P are reset and the GPS is disabled again.

The only difference between the algorithms is the Kalman filter at the heart of

the algorithm.

Note that at the time of each fix, the Kalman x, y estimate and the ground

truth (as revealed by the new fix) have significantly diverged, as can be seen in

Figure 4.1. Upon receiving a valid GPS fix, the entire dead reckoning trajectory

can be recalculated afterwards to match the new end point, either in real time or

during later analysis. This could be accomplished by scaling and rotating the x, y

history, as we do in Section 4.3, or by applying a backward-smoothing version of

the Kalman filter.

61



We examined four EKF-based uncertainty suppression algorithms. The “distance-

bound” algorithm is the simplest, using the absolute distance from the last GPS

measurement as its single state-space parameter, and uses only input from the

accelerometer. The “2D” algorithm has a four-dimensional state space, including

latitude and longitude, velocity, and heading angle, and incorporating measure-

ments from the accelerometer and gyroscope. The “3D-AM” and “3D-AMG”

algorithms have a 14-dimensional state space, including triples for position, linear

velocity, and linear acceleration, as well as a quaternion and a triple to record the

orientation of the tag and its angular momentum. The former uses the accelerom-

eter and magnetometer, while the latter also uses the gyroscope.

Velocity-bounding model

One very simple model treats the tag as a time-varying random-walk process

across the surface of the earth. Several analyses of animal energetics have shown

that a quantity called the overall body dynamic acceleration (OBDA) is well

correlated with an animal’s land velocity ((Qasem et al. 2012), (Williams et al.

2017), (Bryce 2017)). ODBA is obtained using an accelerometer mounted on

the trunk of an an animal. As the accelerometer runs, a running sum or similar

smoothing filter is applied to each axis, estimating a “static” acceleration vector.

Then, this is subtracted from each channel, yielding the dynamic body acceleration

(DBA). This vector quantity is then summed to provide a scalar:

ODBA(t) =
∑

i=x,y,z
|Ai(t)− Ai(t)|

where (·) represents the static acceleration. Following (Williams et al. 2017)

and (Bryce 2017),we model the ODBA-velocity relationship as linear polynomial:
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v(ODBA) = α(ODBA) + β + n

where n is some error, which we treat as Gaussian noise. α and β will be

different for each type of animal and mounting arrangement (collar, harness, glue,

etc), though are reasonably consistent within species ((Williams et al. 2014)).

To deploy an ODBA-based scheduling algorithm in the field, the ODBA-

velocity relationship must be established beforehand. One approach is to perform

treadmill experiments, as in (Qasem et al. 2012) or (Bryce, Wilmers, and Williams

2017), in which a captive animal is mounted with a tag and trained to run on a

treadmill. An alternate approach, which we use here, is to take the results of

previous tracking data to establish an approximate model. See Section 4.2.3 for

more detail about this procedure.

Our velocity-bounding model keeps a single state: An estimate of the upper

bound of the tag’s distance from its last GPS measurement. This is the sole com-

ponent of x. We call this x. Then, we model x’s rate of change as an approximate

upper bound on velocity, or vlim:

dx(t)/dt = vlim(ODBA(t))

Then x serves as the measurement of uncertainty which triggers GPS fixes. 1

This model has two main advantages: First, it is very simple. Second, it can be

implemented with only a 3-axis accelerometer, without requiring a magnetometer

or gyrometer. This reduces the power cost of the collar, and the footprint of
1This model can be represented by a Kalman Filter by treating x as a one-dimensional

vector which represents the displacement of the tag along some arbitrary axis. Because the
ODBA does not provide any information about the direction of the change in x, we set f(x) = 0
and haccel = 0, and instead incorporate ODBA in the noise model, w(t) = vlim(ODBA(t)).
Then, the lone element of P is equivalent to x. This mathematically equivalent casting does not
match the description of the model in the code used in (Lichtenstein and Elkaim 2019), but is
described here for consistency.
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the required electronics. It could also be implemented on existing accelerometry

collars without altering the hardware.

2D model

The velocity-bounding model assumes all of the estimated velocity of the tag

is in a straight line from the last GPS measurement. This is not necessarily the

case. One might imagine a puma pacing back and forth, with a significant absolute

speed but an average velocity near zero. Such behavior could trigger many GPS

measurements, yielding little or no new information.

This is the worst-case power-reduction scenario, but it is probably the best that

can be done with only an accelerometer (see (Mizell 2003)). However, by including

a magnetometer, a gyrometer, or both, we can gain some knowledge of the tag’s

orientation, in addition to the animal’s land speed. In the duration between GPS

measurements, a tag can integrate its accelerometer values to estimate its latitude

and longitude.

Given the presence of a magnetometer or gyros, it becomes possible to include

estimates of the tag’s orientation (attitude or pose), as well as horizontal position.

This allows a dead-reckoning estimation between GPS measurements. Our sec-

ond scheme uses an extended Kalman filter to maintain an estimate of the tag’s

position and orientation. In this case, the diagonal elements of the Kalman filter’s

covariance matrix serve as measures of uncertainty.

The 2D EKF uses magnetometry to integrate ODBA measurements with pose

estimation. We do not leverage gyroscope measurements, as gyroscopes require

significantly more power than magnetometers. The 2-D filter uses a state vector

X = [x, y, v, θ], where x and y are coordinates in a local “flat earth” plane. The

origin of this “East-North” frame is re-centered upon each GPS fix so that the
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most recent fix is at x = 0, y = 0, with the x axis pointing due east at the origin,

and the y axis pointing due north at the origin. θ is the heading angle of the

tag, or the angle between the x axis and due east as measured in the tag’s frame.

It updates upon receiving accelerometer and magnetometer measurements. This

gives the dynamics equation

˙

x

y

v

θ


=



v cos θ + wh

v sin θ + wh

wv

wθ


where v(t) is the ODBA-estimated velocity as described Section 4.2.2. wh de-

scribes process noise, interpreted as the motion of the animal that is not predicted

by our v(ODBA) model as discussed in Section 4.2.3. Similarly, wv and wθ are

determined by the maximum horizontal linear and angular acceleration observed

during the calibration period.

The accelerometer model is as follows:

haccel = ODBA = v − β
α

+ nODBA

where nODBA is measurement noise, determined during model calibration as

described in Section 4.2.3.

The magnetometry model follows two assumptions: First, they assume that

the tag’s orientation relative to the animal’s body is approximately stable, in the

sense that the forward-facing axis of the tag continues to point in the general

direction of the animal’s trajectory. This assumption may be violated if the tag

becomes detached or dislodged. Secondly, our magnetometry model assumes that

the horizontal component of the Earth’s magnetic field, Bearth, is approximately
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constant over the range covered between GPS fixes. This allows the identification

of the horizontal component of the earth’s magnetic field, allowing an estimate of

heading angle using trigonometry.

hmag = arctan(Bx/By) = θ + nθ

The “uncertainty” measure in this algorithm is the sum in quadrature of the

first two diagonal elements of the covariance matrix, or
√

P2
x,x + P2

y,y.

This model retains much of the simplicity of the first model, but it still relies

on a correlational ODBA/velocity relationship. It also relies on the assumption

that the tag’s z-axis remains more or less vertical during periods of high mobility,

as the angle between the magnetic field and gravity is essential for measuring θ.

3D models

The 3D filters attempt to estimate the full position and orientation of the

tag in three-dimensional space. The AM model uses only the accelerometer and

magnetometer, while the AMG model uses the gyroscope as well.

In the description of the EKF below, we employ two coordinate frames for

the tag’s body and the frame of the earth. Roughly following the notation of

Kim and Golnaraghi 2004, we name our frames “body” and “ground”, or b and

g respectively. The body frame is the frame of the tag, in which we assume the

IMU is fixed. The ground frame is static between GPS fixes, but is re-assigned

upon each new fix. It is an “east-north-up” frame, that is, a euclidean frame

whose origin is the point at which the most recent GPS fix was acquired. At the

origin, xg points due east, yg points north, and zg points up. We wish to estimate

the location and attitude of the tag in the ground frame using measurements

performed in the body frame.

66



The rotation between these two frames can be encoded using a unit quaternion.

This quaternion is denoted q = [q0, q1, q2, q3]T . A rotation matrix, Rg
b(q), can be

obtained from this quaternion that allows vectors in the body frame to be rotated

into the ground frame (see, for example, Zipfel 2007).

Rb
g(q) =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3



The 3D-AMG filter has the 16-dimensional state space

x = [xg,vg, ag,q,ωg]T

where xg, vg, ag, and ωg are the 3-dimensional vectors in the ground frame

describing the position, velocity, acceleration, and rotational velocity of the tag,

respectively. q is the unit quaternion vector described above. The AM filter uses

the same state space, but without ωg, since this set of parameters is only useful

only for incorporating gyroscope measurements.2

The evolution of this quaternion under ωg is the product of a matrix Ω, which

describes the angular momentum, and the quaternion:

q̇ = 1
2Ωq = 1/2



0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0


q

2More formally, the rows of K that correspond to ωg are zero for the accelerometer and
magnetometer update steps.
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This gives a dynamics equation

˙

xg

vg

ag

q

ωg


=



vg

ag − vg · α

0
1
2 ·Ω · q

0


+



wx

wv

wa

wq

ww


Here, wx, wv, wa, and wω are 3 × 1 vectors that describe process noise for the

corresponding state vector elements. For simplicity, we use an isotropic model, so

each of these is simply one scalar value repeated. The values of these parameters

were obtained by inspecting ground truth data from trial runs. wq are the process

noises for the state space parameters. α is a damping factor on v. Since no sensor

(besides the occasional GPS) observes velocity, this factor is necessary to prevent

the estimated values in x from drifting while the tag is stationary. These values

were obtained through trial and error on simulations using trial run data.

For the AM filter, the last row of the dynamics equation vector is removed.

In the 3D filters, acceleration measurements are modeled as

zaccel =


ab,x

ab,y

ab,z

 = R(qbg) ·

ag +


0

0

g



+ naccel

where ab,i represent calibrated accelerometry measurements by the IMU on the i

axis in the body frame, and g is acceleration due to gravity.
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Magnetometry measurements are modeled as

zmag =


Bb,x

Bb,y

Bb,z

 = R(qbg) ·Bg + nmag

where Bg is the magnetic field of the earth near the location of the collar.

Gyroscope measurements are modeled as

zgyro =


ωb,x

ωb,y

ωb,z

 = R(qbg) · ωg

The gyroscope was assumed to have negligible drift over the course of the exper-

imental run, but in future long-term versions this measurement should contain a

term to correct for drift.

The measurement noises for each of the 9 axes in the IMU sensor are assumed

to be uncorrelated.

The 3D approaches are significantly more complicated, presenting various im-

plementation and debugging challenges. The advantage to such an approach is

that it allows all IMU sensors to be fused into a state estimate in a consistent

way. Additionally, if successful, the 3D model reconstructs the route of the tag

with a high degree of detail.

4.2.3 Experiment Design

The algorithms were tested by attaching a device to a human using a chest

harness and performing several runs. During each run, a second device ran a

GPS unit continuously to establish ground truth. An initial run was performed
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to provide data to establish model parameters for process noise.

The device used to run the algorithm was an LG G3 VS985 mobile phone. This

chosen because it contained the sensor hardware with which an animal tag might

be equipped, along with a convenient toolchain. The device has been rooted, al-

lowing the GPS module to be fully power-cycled, and allowing any A-GPS features

to be disabled. The algorithms are run using an Android service, which also con-

tinuously records a variety of data including the measurements of all sensors, the

state vectors and covariences of each algorithm, and the cumulative GPS uptime.

Sensors in the VS985 were calibrated using an hour of data from the device in

static positions in several different orientations. This data was used to establish

bias and scaling for each sensor.

These runs comprised of a fixed sequence of jogging, walking, sprinting, and

sitting along a predetermined route. The periods of activity were alternated at

fixed landmarks, and the route included a variety of terrains and curvatures.

After each run, an estimated route was reconstructed by dividing the record

of x̂g into intervals between GPS fixes. Each interval was then translated and

rotated so that its start- and end-points aligned with the measured GPS fixes.

Establishing model constant parameters

An initial run was performed to provide data to establish model parameters.

The ODBA-velocity relationship used in the distance-bound model and the

2D model was established by dividing the run into intervals between GPS mea-

surements. In each interval, an average ODBA was calculated, and paired with

the GPS-velocity of that interval (that is, the absolute horizontal distance be-

tween GPS the two measurements divided by the duration of the interval). These

ODBA-vs-velocity pairs were then binned by average ODBA. For each bin, the
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Figure 4.2: ODBA vs GPS veloicty. This diagram is taken from an analysis of
data used in (Wang et al. 2015)

5% of pairs with the largest GPS velocity were added to the set of worst-case

pairs.3 A linear regression was employed for this worst-case set to determine the

α and β parameters for our v(ODBA) model. The residual standard error of this

regression becomes nODBA. This procedure is illustrated in 4.2.

4.3 Results

We compared the results of test runs using the distance-bound, 2D, 3D-AM,

and 3D-AMG algorithms, along with the results from a fixed-period schedule. The

reconstructed routes for each algorithm can be seen in 4.3

The GPS uptime of each algorithm is shown in Fig. 4.4. Both the AM and

AMG algorithms produced higher cumulative uptime, but these uptimes were

concentrated in particular areas.
3We chose to use the most extreme intervals in order to produce a conservative model.
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Each run was evaluated for accuracy by a time-averaged error. For each second,

the distance between the reconstructed-route estimate for x and the ground truth

was computed. Fig. 4.5 shows the distribution of these errors. While the AM and

AMG filters produce extreme errors, these are more concentrated at small error

regions.
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Figure 4.5: Violin plots for route error distribution across GPS scheduling algo-
rithms. Horizontal ticks represent the median of each distribution.

By inspection, the reconstructed routes generally seem to follow the ground

truth routes. However, in some segments, the filter demonstrates extreme behavior

and diverges strongly from the route.
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4.4 Discussion

The algorithms in this paper were built on the principle of a general dynamics

model that assumed as little as possible about the orientation of the tag or the

behavior of the animal. This seems to have a severe impact on the ability of the

Kalman filter to perform tracking. A more specific dynamics model may be able

to recover the ability to accurately estimate routes.

It is possible that these principles would preserve fidelity in the case of a tag

that has been moved or dislodged by animal activity. However, our experimental

test did not account for this possibility. Future work should test this approach in

situations where the orientation of the IMU is altered during a run.

While no individual route exhibited both high tracking fidelity and conserva-

tive GPS uptime performance across the entire route, most sections of the route

were efficiently tracked by at least one algorithm. Also, the AM and AMG filters

each exhibited periods of high power consumption. A multi-modal filter might be

able to detect if a particular filter is failing, and switch instead to a power policy

guided by a more appropriate filter.

We also should note several respects in which these tests may not predict

in-field performance. A chest-mounted device on a human may exhibit some

structure that a tag mounted on an animal’s collar or shell would not. For example,

collars can rotate about the neck of the subject animal, and each animal has

different patterns of motion which may effect the evolution of these algorithms.

Ultimately, testing on an animal subject is required for a full evaluation of the

efficacy of this approach.

Additionally, our tests do not reflect a natural distribution of animal activity.

Sleeping and walking are usually more common than running, but these behaviors

are undersampled by our testing procedure. A more exact test would capture at
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least a full day of behavior, thus allowing each behavior to influence the algorithm

according to its share of overall behavior.
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Chapter 5

Conclusion

5.1 Conclusion

We have explored several routes for expanding the life of animal tags. In some

cases, these findings illuminate potential for viable power-reduction strategies in

real-world tagging applications, and in other cases suggest some strategies are

likely to be unfeasible. We now review these findings.

Scavenging solar power seems unambiguously promising. Results reported

by (Wilson et al. 2013), (Jurdak et al. 2013a) demonstrate in real-world field

deployents that the energy these tags scavenge is signficant. Though its yields

are intermittent, unpredictable, and potentially short-lived, the density of solar

radiation makes it plausible that the limited conditions of solar scavenging might

make up for the weight and volume costs.

We also performed a theoretical examination of the upper limits of thermal

energy scavenging. Our analysis suggests that thermal energy scavenging could

be a signficant and useful source of energy for a tag on some animals, but it is

not clear if real-world thermal scavenging designs could deliver anywhere near the

theoretical upper bound estimate that we find. More research is needed, and this
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line of development is probably best advanced in human wearable technology for

the time being.

For kinetic scavenging, we conduct a novel analysis of oscillating kinetic har-

vesters, supplemented with experimental tests on a commonly proposed kinetic

harvester. Both lines of evidence point to the same conclusion: Kinetic harvesters

are incapable of offsetting their own weight in batteries given present tag tech-

nology. If the energy consumption of tag payloads were to drop several orders of

magnitude, kinetic harvesters could become viable, but until such time, they are

best replaced by batteries.

We examined in depth an adaptive GPS scheduling technique, developing

and testing four versions of an EKF-based uncertainty suppression algorithm.

These algorithms are presented as alternatives to other adaptive sampling tech-

niques whose models are less explicit and whose assumptions are more arbitrary.

These algorithms succeed in showing that this approach can mediate between

over-measuring, which costs energy, and under-measuring, which costs accuracy.

The simpler algorithms, the 2D and distance-bound algorithm, reduced GPS up-

time when compared with the commonly deployed fixed sampling interval, but

the reconstructed route after the test deviated more from ground truth. The 3D-

AMG model improved accuracy in some measure 1, but increased uptime. And

the 3D-AM model underperformed a fixed interval strategy in every respect.

When computational and implementation costs of these algorithms are con-

sidered, it is unclear if any of the algorithms developed in this work are a clear

victory for the EKF-based uncertainty suppression approach. This may reflect a

fundamental challenge in modeling a living animal with an EKF. The EKF, re-

quires some measure of predictability in its underlying system, and animals are by

nature somewhat unpredictable. It is possible that the 2D algorithm performed
1specifically, the mean route error over time
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the best because it represents the best model that can be made of a land animal

with the measurement energy available. It is also possible that a 3D estimator is

possible, but yet to be created. As discussed in Section 4.4, techniques such as

the unscented Kalman Filter or a particle filter approach may be able to avoid

some of the pitfalls our 3D models encountered.

While this work reveals few promising pathways for advancement that were

not clear prior to its undertaking, the work does provide useful evidence against

the potential in some approaches.
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