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Abstract

Background: Prosthetic rehabilitation decisions depend on estimating a patient’s mobility 

potential. However, no validated prediction models of mobility outcomes exist for people with 

lower-limb amputation (LLA).

Objectives: To develop and test predictions for self-reported mobility after LLA, using the 

Prosthetic Limb Users Survey of Mobility (PLUS-M).

Study Design: This is a retrospective cohort analysis.

Methods: Eight hundred thirty-one patient records (1,860 PLUS-M observations) were used 

to develop and test a neighbors-based prediction model, using previous patient data to predict 
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the 6-month PLUS-M T-score trajectory for a new patient (based on matching characteristics). 

The prediction model was developed in a training data set (n = 552 patients) and tested in an 

out-of-sample data set of 279 patients with later visit dates. Prediction performance was assessed 

using bias, coverage, and precision. Prediction calibration was also assessed.

Results: The average prediction bias for the model was 0.01 SDs, average coverage was 0.498 

(ideal proportion within the 50% prediction interval = 0.5), and prediction interval was 8.4 

PLUS-M T-score points (40% improvement over population-level estimates). Predictions were 

well calibrated, with the median predicted scores falling within the standard error of the median of 

observed scores, across all deciles of the data.

Conclusions: This neighbors-based prediction approach allows for accurate estimates of PLUS­

M T-score trajectories for people with LLA.

Keywords

prognosis; amputation; rehabilitation; data science; neighbors-based prediction; patient reported 
outcome measures

Background

People living with lower-limb amputation (LLA) are highly diverse, proving rehabilitation 

to be complex.1 Age, amputation level, comorbidities, etiology of amputation, and mobility 

all influence a patient’s mobility with a prosthesis.2 Therefore, determining functional 

prognosis is difficult, often leaving patients under-informed about their recovery.3–6 

Conventional prosthetic rehabilitation decisions are driven by clinical experience and 

expertise, contributing to variability and subjectivity in care.1,3,5,6 Variability in care 

contributes to inefficient healthcare utilization and can limit a patient’s ability to maximize 

functional potential.1 A method for estimating functional prognosis while incorporating 

patient-specific characteristics is needed to optimize prosthetic rehabilitation.1

There are currently no accepted methods for predicting an individual patient’s future 

mobility after LLA.1 Moreover, previous predictions have estimated outcomes at a single 

time point, such as 1 year after amputation, rather than the trajectory of functional 

mobility change over time.7–11 Particularly during the initial months after the provision 

of a prosthesis, patient mobility is intended to improve,12 warranting medical necessity 

for the prosthesis. Understanding the estimated trajectory of functional mobility change 

may support prosthesis justification, long-term care planning, and informing realistic 

expectations of both patients and providers throughout the course of recovery. Neighbors­

based predictions, where historical data are used to construct the prognosis for a new patient, 

have been promoted as a method for creating realistic prognostic estimates while leveraging 

clinical data.13,14 Neighbors-based predictions offer the potential to understand how a 

patient’s current mobility status, based on specific characteristics, may inform projections of 

their future mobility trajectory.

The Prosthetic Limb Users Survey of Mobility (PLUS-M) is a patient-reported measure of 

mobility that is easy to administer in routine practice, thus offering a feasible means of 

tracking and predicting a patient’s perceived mobility.15,16 The purpose of this study was 
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to develop and test a neighbors-based prediction approach for mobility recovery after LLA 

using the PLUS-M T-scores. PLUS-M T-scores are a standardized score with a mean of 50 

and a SD of 10 established in a sample of 1,091 people with LLA, where a higher T-score of 

60 would indicate higher function than 84% of people who the test was developed in.17 We 

hypothesized that neighbors-based predictions of PLUS-M T-score would perform well, with 

small bias (small average distance on a z-scale between a patient’s predicted and observed 

scores), accurate coverage (close to 50% of realized PLUS-M observations falling within 

the 50% prediction interval), and improved precision (average width of the 50% prediction 

interval) compared with population-level prognostic estimates. We further hypothesized that 

predictions would be well calibrated when tested in both the training data set (within-sample 

testing) and the test data set (out-of-sample testing).

Methods

Data source

This was a retrospective cohort analysis from a data set of clinic records provided by a 

private prosthetics practice, Hanger Clinics, with 341 clinic locations across the continental 

United States. Records included patients with LLA (distal to hip disarticulation) who were 

seen for a new or replacement prosthesis between April 2016 and March 2018. Only records 

containing PLUS-M scores were extracted. Records were excluded if they did not contain 2 

or more time points of the PLUS-M primary outcome measure or if they were missing any 

required covariates (eg, age) (Figure 1). Records were de-identified and exported to Excel 

(Microsoft, Redmond, WA). Study procedures were approved by the Colorado Institutional 

Review Board.

Prosthetic limb users survey of mobility

The PLUS-M 12-item short form is a self-reported survey of patient-reported difficulty in 

performing tasks that require lower-limb use,15 demonstrating construct validity, test–retest 

reliability [intraclass correlation coefficient (ICC) = 0.96], and low measurement error 

[standard error of measurement (SEM) = 1.93 T-score points with the 12-item paper short 

form].15,16 Patients completed the 12-item short-form PLUS-M with T-scores15 calculated 

(1) at baseline, (2) at a clinic visit (ranging from 2 weeks to 6 months after baseline 

administration), and (3) approximately 6 months after baseline.16 Baseline was defined as 

the time the first PLUS-M was administered, either at the initial evaluation (for patients 

currently using a prosthesis) or the first appointment after receiving their first prosthesis. 

Resulting PLUS-M T-scores were routinely discussed with patients.

Patient matching characteristics

All variables available in the provided data set were evaluated for potential matching 

characteristics in neighbors-based predictions. Variables were included based on their 

association with function after LLA and included age,2 sex,18 adjusted body mass index 

(either patient-reported or clinical evaluation),19 amputation level,2 amputation laterality,20 

time since amputation,21 etiology of amputation,2,18 functional comorbidity index,2,18 

employment status,22 Prosthesis Evaluation Questionnaire well-being subsection,23 and 

PLUS-M T-scores.2,18 The functional comorbidity index is a sum of 18 self-reported 
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comorbid conditions with a score of 0–18,24 whereas the Prosthesis Evaluation 

Questionnaire—Well-Being subsection is a 2-item survey of patient satisfaction and quality 

of life, with scores ranging from 0 to 10 for each question.23,25 Both measures have 

demonstrated validity and have been used in populations with LLA.23,24,26,27 Amputation 

levels were categorized as follows: (1) distal to the hip but at or proximal to the knee 

(ie, transfemoral and knee disarticulation), (2) distal to the knee but at or proximal to the 

ankle (ie, transtibial and ankle disarticulation), and (3) distal to the ankle (ie, partial foot). 

Cases with bilateral amputations were categorized as bilateral, and in the 19 cases with 

asymmetrical amputation levels, the most proximal amputation level was used as the level of 

amputation. Time since amputation was the date of the first amputation. Age and sex were 

self-reported.

Statistical analyses

Neighbors-based predictions were constructed using historical data; a new patient was 

matched to historical patients based on select matching characteristics (ie age, sex, 

amputation level, and baseline PLUS-M T-score), using an adaptation of predictive mean 

matching. Realized PLUS-M T-scores from these historical matches were then used 

to construct the new patient prognosis. The steps for neighbors-based prediction are 

summarized in Box 1.

Selection of matches by predictive mean matching—Because the data sets 

contained PLUS-M measurements at irregular time intervals, a PLUS-M T-score at 90 

days after baseline PLUS-M was estimated for each patient using linear mixed-effects 

models through the brokenstick package (R statistical computing).28,29 The 90-day T-score 

was selected due to the common time frame for clinical follow-up and due to the higher 

density of PLUS-M observations. The 90-day estimate was then used as the distal anchor 

for selecting matches by predictive mean matching. Briefly, a brokenstick model was fit 

to patients in the training data set with 3 knots in the time variable (k = 0, 45, and 

90).28,30 Patients in the training data set were then matched according to a predicted 90-day 

PLUS-M T-score by building a linear model with matching characteristics as predictors 

and the 90-day PLUS-M estimate as the outcome. Variable selection was determined by 

Akaike information criterion (stepAIC function, R statistical computing).31 Other variables 

are known to contribute to functional performance after LLA2; therefore, it is possible 

that some variables (eg, etiology and comorbidities) demonstrate collinearity with PLUS-M 

T-scores. However, only variables that demonstrated a significant relationship with the 

90-day PLUS-M T-score were selected as matching characteristics.

Flexible modeling of observed data—For each patient in the training data set, the 

observed PLUS-M T-scores from the patient’s matches (m) were used to fit a Generalized 

Additive Model for Location, Scale, and Shape (GAMLSS).32,33 The GAMLSS approach 

was chosen for its flexibility in modeling the median (location), variance (scale), skewness, 

and kurtosis (shape) of PLUS-M T-scores as a smooth function of time (i.e., time since 

baseline).34 A cubic spline smoother with 3 degrees of freedom for the location parameter 

and 1 degree of freedom for the scale and shape parameters was used.
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Model tuning through within-sample testing—The performance of prediction 

methodology was adjudicated based on 3 metrics: bias, coverage, and precision. Bias was 

operationalized as the average difference (on a z-scale) between patients’ predicted PLUS-M 

T-scores and the observed PLUS-M T-scores in the first 6 months after patients’ baseline 

PLUS-M (ideal bias = 0 SDs). Bias may be interpreted similar to effect size (i.e., Cohen’s 

d, which is also reported in units of SD). Commonly reported benchmarks for effect size d 
are as follows: 0.2 = small, 0.5 = medium, and 0.8 = large.35 Coverage was calculated as 

the proportion of observations within the 50% prediction interval (ideal coverage = 50%). 

Because the width of the prediction interval is allowed to vary with time (i.e., days after 

evaluation) and may also be asymmetrical about the point estimate (e.g., the prediction 

interval might be +4.4 points to −4 points), precision was evaluated as the average width 

(in PLUS-M T-score points) of the 50% prediction interval (narrower is better). Using these 

metrics, the optimal number of matches (m) was examined: (1) GAMLSS models were fit 

to the matches’ observed data for each patient in the training data set, with the number of 

matches ranging from 10 to 552 (i.e., the total number of available patients in the training 

data set); (2) at each increment (ie, 10 matches; 11, 12, …; 552 matches), the average 

bias, coverage, and precision of the predictions were calculated; and (3) the optimal number 

of matches was determined by the solution that minimized bias while retaining accurate 

coverage along with improved precision over population-level estimates.

Internal and external validation—To examine predictions’ validity, predicted versus 

observed PLUS-M T-scores were compared using calibration plots. For both the training and 

test data sets, the predicted PLUS-M T-scores were binned by deciles. The median and the 

standard error (95% confidence interval) of the observed data in each decile were calculated.

Results

The entire data set was separated (cut point January 2018) to form a within-sample training 

and new sample test set of records. In the training data set, data from 552 patients with 1274 

PLUS-M observations were analyzed, and 279 patients (586 observations) were used in the 

test data set (Table 1). Time since amputation was positively skewed and thus collapsed into 

the following categories: (1) <1 year, (2) 1–5 years, and (3) >5 years since amputation to 

reduce the impact of skewness.

Selection of matches and model tuning

Predictive mean matching—Age (β = −0.07; P = .02), sex (reference = female; male: 

β = 1.84, P = .002), amputation level (reference = below knee; above knee: β = −1.48; P = 

.023, partial foot: β = 5.53, P = .040), time since amputation (reference = <1 year; >1 year 

and <5 years: β = −2.43; P = .006, >5 years: β = −0.34, P = .70), and baseline PLUS-M 

T-score (β = 0.51; P < .001) demonstrated statistically significant relationships with the 

90-day PLUS-M scores. Therefore, these variables were selected as matching characteristics 

for use in subsequent neighbors-based predictions (Table 2). The baseline PLUS-M T-score 

carried the most weight in identifying matches.
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Model tuning—The optimal number of matches was m = 45 based on the best 

performance in average bias (0.01 SDs) and coverage (the proportion of realized 

observations within the 50% prediction interval: 0.498). In addition, the average width of the 

50% prediction interval with m = 45 matches was 8.4 points. For reference, with m = 552 

matches (i.e., the full training data set), the average precision was 14.0 points. Therefore, 

the neighbors-based prediction with m = 45 matches resulted in a 40% improvement in 

precision of prognosis relative to estimates that reflect the whole population.

Calibration by within-sample and out-of-sample testing—Once the number of 

matches was determined (m = 45), within-sample (training data set) and out-of-sample (test 

data set) calibrations were examined. This process mimicked how development and testing 

would work in practice with prospective analysis. The median predicted PLUS-M T-score 

for each decile fell within the standard error of the median of observed scores, indicating 

accurate calibration (Figure 2).

Discussion

In this study, we developed and tested neighbors-based predictions for patient self-reported 

mobility after LLA. Using predictive mean matching for the 90-day PLUS-M T-score, 

baseline PLUS-M T-score, age, sex, amputation level, and time since amputation were 

identified as matching characteristics for an index patient. The observed data from these 

matches (ie, neighbors) were then used to generate an estimated trajectory of PLUS-M 

T-score recovery for the index patient. This same approach could be deployed clinically to 

estimate the mobility course for new patients, using existing patient records and outcomes 

within individual prosthetics practices. The neighbors-based approach offers an opportunity 

to support clinical practice by informing patient expectations and monitoring progress in 

prosthetic care.

To construct the neigbors-based predictions, we determined the optimal number of matches 

to be m = 45 by within-sample testing. Predictions with m = 45 matches for both 

the within-sample and out-of-sample calibrations resulted in small bias (0.01 SDs, on 

average), accurate coverage (49.8% of realized observations falling within the 50% 

prediction interval), and a 40% improvement in precision over population-level models. 

The clinical relevance of these findings is a topic worthy of future research. Ideally, to 

be useful in practice, predictions would be more accurate than the prognostic estimates of 

experienced prosthetists. This could be tested experiementally in future work. However, it 

is notable that differences in individual-level predictions were readily apparent (Figure 3), 

indicating that the precision was sufficient to distinguish prognostic trajectories between 

patients. For example, the 50% prediction interval for a 40-year-old man with transtibial 

amputation notably differs from the 50% prediction interval for a 70-year-old woman with 

transfemoral amputation (Figure 3). Thus, there is potential for neighbors-based predictions 

to differentially influence care planning and assist with monitoring treatment response.

The coverage of neighbors-based predictions suggests that prognostic uncertainty was 

accurately modeled. In other words, the range of potential outcomes for an individual 

patient’s self-reported mobility was accurately displayed, and patient progress over time 
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might be accurately benchmarked against the prediction. For example, if a patient’s PLUS­

M score at 3 months is observed to fall below what was predicted, the magnitude of 

the deviation could be accurately quantified. However, interpreting individual predictions 

remains challenging when considering goals intended for maximizing a new patient’s 

functional potential. Functional outcomes for people with LLA are historically poor; 

therefore, interpretation should be regarded in light of the data used. Predictions are 

generated from existing outcomes for people with LLA rather than from function of able­

bodied individuals, which would be the optimal reference for functional goal setting.

Although the PLUS-M demonstrates convergent construct validity with performance-based 

measures,15 self-reported measures are prone to reporter bias and are suggested to measure 

different constructs of physical function.36 Predicting self-reported mobility introduces a 

method for estimating a patient’s perception of how mobility limitations may influence 

their perceived performance in activities. Overall, this study represents an important step 

in reporting a neighbors-based prediction model’s performance in terms of coverage, 

for patients with LLA, and has the potential to be implemented using other clinically 

meaningful measures, such as performance-based measures.

The predictions were well calibrated in both the training and test data sets. In the training 

data set, the predictions performed accurately in all deciles of the observed data. More 

importantly, the predictions also performed well in the test data set. Observed medians 

fell within the predicted medians for all deciles, and accurracy would be expected to 

improve in future, increased population size sampling. This is notable because predictions 

were generated from a heterogeneous data set, including multiple clinic locations and care 

processes. Current clinical prediction tools (eg, the Amputee Mobility Predictor) either 

have not been evaluated for prediction accuracy or have only been assessed for predictive 

ability at a single time point (eg, 1 year).1,7–11,37 For example, existing logistic and linear 

regression models predict a single outcome (eg, Medicare Functional Classification Level 

[K-level]) at a single time point, such as 12 months after amputation.8–11 This study 

improves on existing work by developing a successful externally validated prediction model 

using longitudinal data, with the potential to predict a new patient’s perceived mobility at 

any given time point over the first 6 months after providing a new or replacement prosthesis.

Most prosthetists report difficulty in predicting patient outcomes and managing patient 

expectations for functional mobility with a prosthesis, in part associated with difficulty 

in interpreting how various factors influence a patient’s future function.3,4 Given that 

challenge, neighbors-based predictions create a tool for clinicians to focus conversations 

around goals of care and to inform expectations for future self-reported mobility, specific 

to the individual. Furthermore, accurate predictions of mobility over time offer potential to 

support and improve prosthetist’s experience-based estimates.

Several features of the prediction methodology may have contributed to the observed results. 

First, the estimates were based on actual clinical observations, potentially contributing to 

more realistic estimates of mobility over time than could be achieved with parametric 

modeling approaches. Second, the neighbors-based approach builds a new prediction model 

for each patient based on the observed data of similar previous patients matched through 
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select characteristics.38,39 This may promote external validity of the predictions because any 

new patient is likely to have a few good matches available in the source data, even if the 

samples from which patients are drawn are substantially different in the aggregate. Finally, 

the matches were selected based on the relation of characteristics to the 90-day PLUS-M T­

score, thus allowing for the matching characteristics to be weighted according to the strength 

of their relationship to the PLUS-M outcome. Given the heterogeneity of patients with 

LLA, the neighbors-based approach is conceptually appealing to patients and clinicians; 

basing an index patient’s prediction on realized data from previous similar patients matched 

through select characteristics is intuitive and can align with information patients desire to 

support decisions. For example, a 70-year-old patient with a new transtibial amputation 

may conceptually relate to a prediction created from existing patients of a similar 

age and amputation level, rather than interpreting population-level outcomes including 

younger individuals with transfemoral amputations. The neighbors-based approach offers 

an opportunity to use clinically collected data to establish realistic recovery expectations, aid 

in functional goal setting, and inform real-time clinical decisions.

Clinical implications

This neighbor-based approach shows the potential to use existing clinical measures of self­

reported mobility to predict a new patient’s future estimated mobility, potentially enhancing 

objectivity around care planning and decisions. Our approach incrementally improves on 

existing prediction methods by estimating a personalized trajectory of PLUS-M T-scores 

over 6 months, allowing for interpretation of self-reported mobility at any given time point 

over the first 6 months after providing a new or replacement prosthesis. Such predictions 

can inform expectations of future mobility for patients and healthcare providers alike, with 

potential to support communication around care decisions and goal setting.6 The approach 

demonstrates a key foundational step for research in estimating the trajectory of functional 

mobility after LLA and shows potential for providing high-quality information sourced from 

clinical data to support estimating outcomes and making clinical decisions, in an area that is 

currently under-informed by evidence.1

Limitations

To the best of our knowledge, this neighbors-based prediction approach is the first attempt 

to estimate the trajectory of PLUS-M T-scores after amputation. Therefore, there are no 

alternative approaches against which our results can be compared. Representation of some 

patient subgroups (e.g., partial foot amputation level, bilateral amputation, certain etiologies, 

and people early after amputation) was limited in the data set, and people with LLA who 

did not receive prosthetic care were underrepresented in the data. Predictions may therefore 

underestimate the possibility of extremely poor outcomes, and future work is needed to 

expand predictions in these subgroups. In addition, predictions were generated from an 

existing retrospective clinical data set using data from a subgroup known for generally poor 

outcomes. For example, walking activity is lower in people with LLA when compared with 

the average population without LLA, and overall strength, balance, and walking velocity are 

reduced after LLA.40–42 Future research using prospective data collection and a comparison 

of patients with LLA to people without limb loss is warranted, which would improve 
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predictions and allow for recovery monitoring and care planning according to optimal 

average population outcomes.

Although using time since amputation as a categorized matching characteristic would 

presumably distinguish people with and without experience using a prosthesis, the prediction 

model may not be ideal for people who are starting their first proshesis several years 

after their amputation. In addition, each PLUS-M T-score was evaluated as an independent 

observation, which could affect the generalizability of the predictions to other data sets. For 

example, the frequency and timing of PLUS-M data collection can be biased because of 

clinical practice patterns (such as appointment frequency, timing of administering the PLUS­

M over the course of treatment, or within an appointment). To improve clinical application, 

future research would benefit from comparing the prediction model with predictions based 

on clinical experience, and prospective testing of the prediction model with new patients.

Finally, the prediction model was limited to the PLUS-M measure of self-reported mobility; 

future research would benefit from incorporating additional clinical measures (such as 

performance-based testing) into the prediction model.

Conclusion

Our findings demonstrate the ability to use a neighbors-based prediction approach to predict 

physical mobility after LLA using a patient’s baseline self-reported physical mobility 

(PLUS-M T-score), age, sex, amputation level, and time since amputation. The predictions 

performed well when estimating observed PLUS-M T-scores at any point in time during 

the first 6 months after evaluation for a new or replacement prosthesis. The approach could 

inform goals and expectations of patients and healthcare providers for self-reported mobility 

prognosis at the individual level after LLA.

Acknowledgments

The authors wish to thank Gabrielle Brodehl, CPO, Ahmahn Peeples, CPO/L, ACSM CPT-EIM, and Mallory 
Lemons, CPO, for their contributions to this work.

References

1. Balk EM, Gazula A, Markozannes G, et al.Lower Limb Prostheses: Measurement Instruments, 
Comparison of Component Effects by Subgroups, and Long-Term Outcomes. Rockville, MD: 
Agency for Healthcare Research and Quality (US); 2018.

2. Kahle JT, Highsmith MJ, Schaepper H, et al.Predicting walking ability following lower limb 
amputation: an updated systematic literature review. Technol Innovat. 2016;18:125–137.

3. Borrenpohl D, Kaluf B, Major MJ. Survey of US practitioners on the validity of the medicare 
functional classification level system and utility of clinical outcome measures for aiding K-level 
assignment. Arch Phys Med Rehabil. 2016;97:1053–1063. [PubMed: 27016261] 

4. Sansam K, O’Connor RJ, Neumann V, et al.Clinicians’ perspectives on decision making in lower 
limb amputee rehabilitation. J Rehabil Med. 2014;46:447–453. [PubMed: 24590358] 

5. Murray CD. “Don’t you talk to your prosthetist?” Communicational problems in the prescription of 
artificial limbs. Disabil Rehabil. 2013;35: 513–521. [PubMed: 22897605] 

6. Ostler C, Ellis-Hill C, Donovan-Hall M. Expectations of rehabilitation following lower limb 
amputation: a qualitative study. Disabil Rehabil. 2014;36:1169–1175. [PubMed: 24024542] 

Anderson et al. Page 9

Prosthet Orthot Int. Author manuscript; available in PMC 2021 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Sansam K, O’Connor RJ, Neumann V, et al.Can simple clinical tests predict walking ability after 
prosthetic rehabilitation?J Rehabil Med. 2012;44: 968–974. [PubMed: 23037865] 

8. Dillon MP, Major MJ, Kaluf B, et al.Predict the medicare functional classification level (K­
level) using the amputee mobility predictor in people with unilateral transfemoral and transtibial 
amputation: a pilot study. Prosthet Orthot Int. 2018;42:191–197. [PubMed: 28534664] 

9. Spaan MH, Vrieling AH, van de Berg P, et al.Predicting mobility outcome in lower limb 
amputees with motor ability tests used in early rehabilitation. Prosthet Orthot Int. 2017;41:171–177. 
[PubMed: 27770064] 

10. Wurdeman SR, Stevens PM, Campbell JH. Mobility Analysis of AmpuTees (MAAT 4): 
Classification tree analysis for probability of lower limb prosthesis user functional potential. 
Disabil Rehabil Assist Technol. 2010;15: 211–218.

11. Czerniecki JM, Turner AP, Williams RM, et al.The development and validation of the 
AMPREDICT model for predicting mobility outcome after dysvascular lower extremity 
amputation. J Vasc Surg. 2017;65: 162–171.e163. [PubMed: 27751738] 

12. Christiansen CL, Fields T, Lev G, et al.Functional outcomes after the prosthetic training phase of 
rehabilitation after dysvascular lower extremity amputation. PM R. 2015;7:1118–1126. [PubMed: 
25978948] 

13. van Buuren SCurve matching: a data-driven technique to improve individual prediction of 
childhood growth. Ann Nutr Metab. 2014;65: 227–233. [PubMed: 25413662] 

14. Kittelson AJ, Hoogeboom TJ, Schenkman M, et al.Person-centered care and physical therapy: a 
“People-Like-Me” approach. Phys Ther. 2020;100: 99–106. [PubMed: 31608928] 

15. Hafner BJ, Gaunaurd IA, Morgan SJ, et al.Construct validity of the prosthetic limb users survey of 
mobility (PLUS-M) in adults with lower limb amputation. Arch Phys Med Rehabil. 2017;98:277–
285. [PubMed: 27590443] 

16. Hafner BJ, Morgan SJ, Askew RL, et al.Psychometric evaluation of self-report outcome measures 
for prosthetic applications. J Rehabil Res Dev. 2016;53:797–812. [PubMed: 28273329] 

17. Prosthetic Limb Users Survey of Mobility (PLUS-M™) Version 1.2 Short Forms Users Guide. 
Available at: http://www.plus-m.org (2018, accessed 2 April 2019).

18. Wong CK, Chihuri ST, Santo EG, et al.Relevance of medical comorbidities for functional mobility 
in people with limb loss: retrospective explanatory models for a clinical walking measure and a 
patient-reported functional outcome. Physiotherapy. 2020;107:133–141. [PubMed: 32026813] 

19. Tzamaloukas AH, Patron A, Malhotra D. Body mass index in amputees. JPEN J Parenter Enteral 
Nutr. 1994;18:355–358. [PubMed: 7933444] 

20. De Asha AR, Buckley JG. The effects of laterality on obstacle crossing performance in unilateral 
trans-tibial amputees. Clin Biomech. 2015;30: 343–346.

21. Mundell BF, Kremers HM, Visscher S, et al.Predictors of receiving a prosthesis for adults 
with above-knee amputations in a well-defined population. PM R2016;8:730–737. [PubMed: 
26690021] 

22. Schaffalitzky E, Gallagher P, MacLachlan M, et al.Developing consensus on important factors 
associated with lower limb prosthetic prescription and use. Disabil Rehabil. 2012;34:2085–2094. 
[PubMed: 22494367] 

23. Legro MW, Reiber GD, Smith DG, et al.Prosthesis evaluation questionnaire for persons with 
lower limb amputations: assessing prosthesis-related quality of life. Arch Phys Med Rehabil. 
1998;79:931–938. [PubMed: 9710165] 

24. Groll DL, To T, Bombardier C, et al.The development of a comorbidity index with physical 
function as the outcome. J Clin Epidemiol. 2005;58: 595–602. [PubMed: 15878473] 

25. Franchignoni F, Giordano A, Ferriero G, et al.Measuring mobility in people with lower limb 
amputation: Rasch analysis of the mobility section of the prosthesis evaluation questionnaire. J 
Rehabil Med. 2007;39: 138–144. [PubMed: 17351696] 

26. de Laat FA, Dijkstra PU, Rommers GM, et al.Prevalence of comorbidity and its association 
with demographic and clinical characteristics in persons wearing a prosthesis after a lower-limb 
amputation. J Rehabil Med. 2018; 50:629–635. [PubMed: 29882579] 

Anderson et al. Page 10

Prosthet Orthot Int. Author manuscript; available in PMC 2021 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.plus-m.org


27. Wurdeman SR, Stevens PM, Campbell JH. Mobility Analysis of AmpuTees (MAAT I): quality 
of life and satisfaction are strongly related to mobility for patients with a lower limb prosthesis. 
Prosthet Orthot Int. 2018;42: 498–503. [PubMed: 28990467] 

28. van Buuren SFlexible Imputation of Missing Data. 2nd ed.Boca Raton, FL: Chapman & Hall/CRC 
Press; 2018.

29. Anderson C, Hafen R, Sofrygin O, et al.Comparing predictive abilities of longitudinal child growth 
models. Stat Med. 2019;38:3555–3570. [PubMed: 30094965] 

30. De Kroon ML, Renders CM, Van Wouwe JP, et al.The Terneuzen birth cohort: BMI changes 
between 2 and 6 years correlate strongest with adult overweight. PLoS One. 2010;5:e9155. 
[PubMed: 20161800] 

31. Zhang ZVariable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4:136. 
[PubMed: 27162786] 

32. Stasinopoulos M, Rigby B. Generalized additive Models for Location Scale and Shape (GAMLSS) 
in R. J Stat Soft. 2007;23(7):1–46.

33. Stasinopoulos M, Rigby B. Generalized additive models for location scale and shape (GAMLSS) 
in R. J Stat Software. 2007;23:1–46.

34. Rigby RA, Stasinopoulos DM. Automatic smoothing parameter selection in GAMLSS with an 
application to centile estimation. Stat Methods Med Res. 2014;23:318–332. [PubMed: 23376962] 

35. Cohen JStatistical Power Analysis for the Behavioral Sciences. 2nd ed.Hillsdale, NJ: L. Erlbaum 
Associates; 1988, p.xxi:567.

36. Denehy L, Nordon-Craft A, Edbrooke L, et al.Outcome measures report different aspects of patient 
function three months following critical care. Intensive Care Med. 2014;40:1862–1869. [PubMed: 
25319384] 

37. Gailey RS, Roach KE, Applegate EB, et al.The amputee mobility predictor: an instrument to 
assess determinants of the lower-limb amputee’s ability to ambulate. Arch Phys Med Rehabil. 
2002;83:613–627. [PubMed: 11994800] 

38. Brabec B, Meister R. A nearest-neighbor model for regional avalanche forecasting. Ann Glaciol. 
2001;32:130–134.

39. Kindzerske MD, Ni DH. Composite nearest neighbor nonparametric regression to improve traffic 
prediction. Transport Res Rec. 2007;1993: 30–35.

40. Bussmann JB, Grootscholten EA, Stam HJ. Daily physical activity and heart rate response in 
people with a unilateral transtibial amputation for vascular disease. Arch Phys Med Rehabil. 
2004;85:240–244. [PubMed: 14966708] 

41. Bussmann JB, Schrauwen HJ, Stam HJ. Daily physical activity and heart rate response in people 
with a unilateral traumatic transtibial amputation. Arch Phys Med Rehabil. 2008;89:430–434. 
[PubMed: 18295619] 

42. van Velzen JM, van Bennekom CA, Polomski W, et al.Physical capacity and walking ability 
after lower limb amputation: a systematic review. Clin Rehabil. 2006;20:999–1016. [PubMed: 
17065543] 

Anderson et al. Page 11

Prosthet Orthot Int. Author manuscript; available in PMC 2021 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 1.

Summary of the steps for generating a neighbors-based prediction by 
predictive mean matching

1. Develop a historical databank of relevant patient characteristics and 

systematically collected outcomes data (PLUS-M scores) for hundreds of 

patients.

2. Identify matches between historic patients and a new patient by predictive 

mean matching:

a. Build a linear model to predict outcomes at a relevant postoperative 

time point.

Estimated 90‐day PLUS‐M score = β0 + β1 baseline PLUS‐M score + β2 age
+ β3 sex + β4 level of amputation + β5 time since amputation

b. For a new patient, obtain a predicted value through the linear model.

c. Identify the m = 45 historical cases with similar predicted values. 

These are the matches for the new patient.

3. Use the actual observed recovery data from these matches to build a prognosis 

for the new patient, using the GAMLSS package (R statistical computing).
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Figure 1. 
Flowchart of inclusion/exclusion criteria
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Figure 2. 
Calibration plots for neighbors-based predictions in (A) training and (B) test data sets. 

Training and test data sets were divided into deciles according to the predicted PLUS-M 

T-scores. For each decile, the median observed PLUS-M T-score is plotted against the 

prediction median. Error bars indicate the standard error of the median. PLUS-M, Prosthetic 

Limb Users Survey of Mobility
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Figure 3. 
The 50% prediction interval for the population-level estimate (A) is wider than the 50% 

prediction interval for the neighbors-based predictions; (B) a 40-year-old man, with below­

knee amputation, 6 months after amputation, with a baseline PLUS-M T-score of 50 points; 

and (C) a 70-year-old woman, with above-knee amputation, 2 years after amputation, with a 

baseline PLUS-M T-score of 20 points. PLUS-M, Prosthetic Limb Users Survey of Mobility
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