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ABSTRACT OF THE DISSERTATION 

 

Evaluation and Improvement of Hydrological Simulations and Forecasts in the Western U.S. 

 

 

by 

 

Lu Su 

Doctor of Philosophy in Geography 

University of California, Los Angeles, 2023 

Professor Dennis P. Lettenmaier, Chair 

 

Droughts and floods are among the most catastrophic yet least understood weather and 

climate threats. Accurate forecasting of droughts and floods is crucial due to their significant 

financial and human impacts. Concurrently, precise streamflow simulation is critical for effective 

water management and disaster prevention. The subseasonal drought forecast, vital for water 

management and disaster mitigation, has been under-studied due to a lack of appropriate 

meteorological forecast databases until recently. The NOAA's National Water Model (NWM), 

anchored by its hydrological core Noah Multi-parameterization (Noah-MP), needs a 

comprehensive comparison with SAC-SMA model-based River Forecast Center (RFC) forecasts 

to evaluate its flood forecasting efficiency in the Western United States.  Accurate daily streamflow 

predictions are crucial, and a comprehensive, calibrated Land Surface Model (LSM) parameter set 

is important for reliable streamflow predictions. 
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This dissertation explores evaluations and enhancements of hydrological simulations and  

forecasts in the Western U.S., with a focus on three key aspects: a) subseasonal forecast accuracy 

for drought onset and termination using NOAA’s Climate Testbed Subseasonal Experiment (SubX) 

reforecasts, b) the flood forecasting capabilities of the Noah-MP in comparison to current RFC 

forecasts, and c) the development of high-resolution calibrated parameters for two notable LSMs, 

the Variable Infiltration Capacity (VIC) model and Noah-MP. For the first aspect, I employ SubX 

to drive Noah-MP and produce drought forecasts of different severity and for lead weeks 1-4. I 

find significant drought termination and onset forecast skill within the initial two weeks and 

limited skill or no skill at week 4 regardless of drought severity. I find that skill is generally higher 

for drought termination than for onset for all drought events and that drought prediction skill 

generally decreases from north to south for all drought events. For the second aspect, I start with 

selection of appropriate physics options for Noah-MP and calibration of parameters in seven 

watersheds that form a transect along the U.S. Pacific Coast. I find promising flood prediction 

capacities of Noah-MP in northern basins but requires refinement for southern basins both in terms 

of bias and variability. For the third aspect, I develop calibrated and regionalized hydrologic 

parameters for VIC and Noah-MP at a precision of 1/16° latitude-longitude resolution across 4816 

HUC-10 basins in the Western U.S., aiming to enhance the accuracy of hydrological modeling and 

predictions. In summary, the dissertation provides important contributions to understanding and 

improving the hydrological simulation and forecast in the Western U.S. 
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Chapter 1 Introduction 

Droughts and floods stand as two of the most devastating and least comprehended weather 

and climate hazards (Pulwarty and Sivakumar, 2014). Between 1980 and 2020, the U.S. 

experienced 27 major drought events, leading to an estimated cumulative cost of $291 billion 

(inflation-adjusted to 2023 values), with an average cost of about $10.8 billion for each occurrence 

(NOAA 2020). Between 1984 and 2013, flood-related damages had an average economic impact 

of $10.25 billion annually (in 2023 inflation-adjusted terms) and led to an average of 85 fatalities 

per year (National Weather Service, 2014). The financial and human repercussions of these events 

highlight the critical importance of accurate drought and flood predictions. Apart from predicting 

these severe hydrological events, the role of streamflow simulation in hydrological modeling is 

paramount. Precise streamflow simulations are essential for guiding water resource strategies, 

shaping infrastructure development, hydroelectric power plants, preserving ecosystems, and 

mitigating disasters (Raff et al. 2013; Anghileri et al. 2016; Maidment 2017; Federal Institute of 

Hydrology 2020). 

As climate change amplifies the water cycle, floods and droughts are projected to become 

more frequent and/or severe in large parts of the world including North America especially with a 

projected 1.5°C global temperature increase (IPCC6 2023). Accurate predictions of these events, 

and relative streamflow predictions, are crucial for proactive disaster preparedness. 

Current drought forecasting techniques, such as the North American Multi-Model Ensemble 

(NMME) project (Kirtman et al. 2014), have their limitations—as is evident from their inability to 

forecast the end of the 2013-2016 California drought (Wanders et al. 2017). Yet, what is 

unpredictable at the seasonal time scale can become predictable at the subseasonal-to-seasonal 

(S2S) (two weeks to a month or two) (Wang et al. 2017). Despite its potential, the subseasonal 
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time scale—critical for proactive water management and disaster mitigation—has been under-

researched due to the unavailability of suitable meteorological forecast databases until very 

recently (Mariotti et al. 2018; Vitart and Robertson 2018; Vitart et al. 2017). NOAA’s Climate 

Testbed Subseasonal Experiment (SubX) (Pegion et al. 2019) project introduced a S2S database 

that includes both operational and research models, providing real-time data access. However, 

research on the hydrological implications of this dataset remains scarce. Exploring its potential 

can pave the way for improved drought management techniques. 

In the realm of flood forecasting, the National Water Model (NWM) introduced by NOAA in 

2016 (NOAA 2016) is a promising advance in hydrologic prediction capabilities. Its core, the Noah 

Multi-parameterization (Noah-MP) (Niu et al. 2011), has yet to be compared with the operational 

forecasts (e.g., those produced by the California Nevada River Forecast Center (CNRFC) and the 

Northwest River Forecast Center (NWRFC)) for the U.S. West Coast.  These forecasts are based 

on the SAC-SMA model (Burnash et al. 1973). A comparative analysis will help evaluate the 

NWM’s operational viability in flood forecasting. Previous research on Noah-MP's flood forecasts 

is sparse, with most studies focusing on isolated events. A holistic examination, accounting for 

multiple floods, parameterization variations, and the benefits of automatic calibration, is sorely 

needed. This would determine how Noah-MP measures up to existing SAC-based forecasts in the 

Western U.S. 

Beyond these extremes, daily streamflow forecasts remain foundational to our lives. Given 

gaps in observed streamflow observations (even over the relatively well-observed conterminous 

U.S.), Land Surface Models (LSMs) are indispensable for simulating runoff and streamflow. Their 

capabilities are paramount for adept water management and understanding climate trajectories. 

However, accurate modeling requires meticulous calibration—a computationally intense process. 
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Historically, research on hydrologic model calibration has been focused narrowly, as evidenced by 

studies like Mascaro et al (2023) and Gou et al (2020). A regionally comprehensive, calibrated 

LSM parameter set is imperative for reliable streamflow predictions. 

In light of the above background, my dissertation delves into three pivotal areas concerning 

the evaluation and enhancement of hydrological predictions and models in the Western U.S. 

Specifically: 

(1) I investigate, in Chapter 2, the subseasonal forecast accuracy for drought onset and 

termination using SubX reforecasts. 

(2) I assess, in Chapter 3, the flood forecasting capabilities of the Noah-MP and compare it 

with current RFC forecasts. 

(3) In chapter 4, I develop high-resolution calibrated parameters for two widely used LSMs: 

the Variable Infiltration Capacity (VIC) model and Noah-MP. 

I address these areas in the following three core chapters of this dissertation (Chapters 2-4).  

Chapter 2 focuses on the subseasonal forecast skill for drought onset and termination in the 

coastal Western U.S. at lead times of 1-4 weeks.  Initially, I enhance the spatial resolution of the 

SubX reforecasts from their native 1 degree to a finer 1/16 degree, aligning with the hydrological 

model's high spatial granularity. Using these downscaled and bias-corrected SubX reforecasts as 

forcings, I run the Noah-MP model over the coastal Western U.S.. Based on the model output soil 

moisture, I assess the proficiency of SubX-based drought forecasts, taking into account of 

geographical variations and lead times. 

Chapter 3 evaluates the performance of Noah-MP (NWM) for flood forecasting. I identify the 

most suitable physical parameterizations for the model and calibrate it across seven river basins 

spanning the coastal Western U.S. By juxtaposing the Noah-MP flood reforecasts with archived 
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operational forecasts from CNRFC and NWRFC, I provide a comprehensive evaluation of Noah-

MP's potential in enhancing forecast accuracy compared to existing NWS/RFC techniques. 

In Chapter 4, I develop and implement a method for calibrating the parameters of two widely 

used hydrological models (Noah-MP and VIC) across the Western U.S.. I provide a detailed 

account of the calibration method employed across 263 monitored basins in the Western U.S.. I 

further assess the models' efficacy in these basins, exploring factors that might affect simulation 

performance. Additionally, I extend the calibrated parameters to ungauged basins, examining the 

effectiveness of the donor-basin regionalization technique in this context. 

To summarize, this dissertation sheds light on the potential of subseasonal drought and flood 

forecast capabilities across the Western U.S., focusing mostly on the NWM. Furthermore, it offers 

calibrated parameter sets for two prominent hydrological models, promising advancements in 

hydrological forecasting and modeling endeavors. 

  



 

5 
 

References 

Anghileri, D., N. Voisin, A. Castelletti, F. Pianosi, B. Nijssen, and D.P. Lettenmaier. 2016: Value 

of Long-Term Streamflow Forecasts to Reservoir Operations for Water Supply in Snow-

Dominated River Catchments. Water Resources Research 52: 4209–25. 

Burnash, R., and R. Ferral, 1973: A Generalized Streamflow Simulation System. U.S. Department 

of Commerce, National Weather Service, and State of California. 

Cook, B. I.,  A. P. Williams, J. S. Mankin, R. Seager, J. E. Smerdon, and D. Singh, 2018: Revisiting 

the leading drivers of Pacific coastal drought variability in the contiguous United States. 

Journal of Climate, 31(1), 25-43. 

Federal Institute of Hydrology. 2020: “SOSRHINE.” 

http://sosrhine.euporias.eu/en/sosrhine_overview. 

Gou, J., C. Miao, Q. Duan,  Q. Tang, Z. Di, W. Liao, J. Wu, and R. Zhou, 2020: Sensitivity analysis‐

based automatic parameter calibration of the VIC model for streamflow simulations over 

China. Water Resources Research, 56(1), e2019WR025968. 

IPCC, 2023: Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on 

Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report 

of the Intergovernmental Panel on Climate Change. H. Lee and J. Romero (eds.) IPCC, 

Geneva, Switzerland, (in press) 

Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 

seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. 

Amer. Meteor. Soc., 95, 585–601, https://doi.org/10.1175/BAMS-D-12-00050.1. 

Maidment, D.R. 2017: Conceptual Framework for the National Flood Interoperability Experiment. 

Journal of the American Water Resources Association 53: 245–57. 

http://sosrhine.euporias.eu/en/sosrhine_overview


 

6 
 

Mariotti, A., P. M. Ruti, and M. Rixen, 2018: Progress in subseasonal to seasonal prediction 

through a joint weather and climate community effort. npj Climate Atmos. Sci., 1, 4, 

https://doi.org/10.1038/s41612-018-0014-z. 

Mascaro, G., A. Hussein, A. Dugger, and D. J. Gochis, 2023: Process‐based calibration of WRF‐

Hydro in a mountainous basin in southwestern US. JAWRA Journal of the American Water 

Resources Association, 59(1), 49-70. 

National Weather Service, 2014: United States Flood Loss Report - Water Year 2014. 

https://www.nws.noaa.gov/os/ water/Flood%20Loss%20Reports/WY14%20Flood%20Loss% 

20Summary.pdf. 

Niu, G. Y., Z. L. Yang, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, and M. Tewari, 2011: The 

community Noah land surface model with multiparameterization options (Noah MP): 1. 

Model description and evaluation with local scale measurements. Journal of Geophysical 

Research: Atmospheres, 116. 

NOAA. 2016: “National Water Model.” Improving NOAA's Water Prediction Service. 

https://water.noaa.gov/docum ents/wrn-national-water-model.pdf. 

NOAA, 2020: U.S. Billion-Dollar Weather and Climate Disasters. NOAA/NCEI, 

https://www.ncdc.noaa.gov/billions/. 

Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal 

prediction experiment. Bulletin of the American Meteorological Society, 100(10), pp.2043-

2060. 

Pulwarty, R.S. and M.V. Sivakumar, 2014: Information systems in a changing climate: Early 

warnings and drought risk management. Weather Clim. Extrem., High Level Meeting on 

National Drought Policy 3, 14–21. 

https://doi.org/10.1038/s41612-018-0014-z
https://www.ncdc.noaa.gov/billions/


 

7 
 

Raff, D., L. Brekke, K. Werner, A. Wood, and K. White. 2013: Short-Term Water Management 

Decisions: User Needs for Improved Climate, Weather, and Hydrologic Information. U.S. 

Bureau of Reclamation. https://www.usbr.gov/research/st/roadmaps/WaterSupply.pdf. 

Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and 

the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, 

https://doi.org/10.1038/s41612-018-0013-0. 

Vitart, F., and Coauthors, 2017: The subseasonal to seasonal (S2S) prediction project database. 

Bulletin of the American Meteorological Society, 98(1), 163-173. 

Wanders, N., and Coauthors, 2017: Forecasting the hydroclimatic signature of the 2015/16 El Niño 

event on the western United States. J. Hydrometeor., 18, 177–186, 

https://doi.org/10.1175/JHM-D-16-0230.1. 

Wang, S., A. Anichowski,  M. K. Tippett, and A. H. Sobel, 2017: Seasonal noise versus subseasonal 

signal: Forecasts of California precipitation during the unusual winters of 2015–2016 and 

2016–2017. Geophys. Res. Lett., 44, 9513–9520, https://doi.org/10.1002/2017GL075052. 

 

 

 

 

 

 

 

 

 

https://www.usbr.gov/research/st/roadmaps/WaterSupply.pdf
https://doi.org/10.1038/s41612-018-0013-0
https://doi.org/10.1175/JHM-D-16-0230.1
https://doi.org/10.1002/2017GL075052


 

8 
 

Chapter 2 Evaluation of Subseasonal Drought Forecast Skill over the Coastal Western U.S. 

This chapter has been published in its current form in the Journal of Hydrometeorology. 

© American Meteorological Society. Used with permission. The supplemental material for this 

chapter is provided in Appendix A. 

Su, L., Q. Cao, S. Shukla, M. Pan, and D. P. Lettenmaier, 2023: Evaluation of Subseasonal Drought 

Forecast Skill over the Coastal Western United States. Journal of Hydrometeorology, 24(4), 709-

726. https://doi.org/10.1175/JHM-D-22-0103.1 

Abstract 

Predictions of drought onset and termination at subseasonal (from two weeks to one month) 

lead times could provide a foundation for more effective and proactive drought management.  We 

used reforecasts archived in NOAA’s Subseasonal Experiment (SubX) to force the Noah Multi-

parameterization (Noah-MP), which produced forecasts of soil moisture from which we identified 

drought levels D0-D4. We evaluated forecast skill of major and more modest droughts, with leads 

from one to four weeks, and with particular attention to drought termination and onset. We find 

usable drought termination and onset forecast skill at leads one and two weeks for major D0-D2 

droughts; and limited skill at week three for major D0-D1 droughts, with essentially no skill at 

week four regardless of drought severity. Furthermore, for both major and more modest droughts, 

we find limited skill or no skill for D3-D4 droughts. We find that skill is generally higher for 

drought termination than for onset for all drought events. We also find that drought prediction skill 

generally decreases from north to south for all drought events. 

2.1 Introduction 

Drought is among the most damaging, and least understood, of all weather and climate 

hazards (Pulwarty and Sivakumar 2014). Droughts are usually incremental and can span from a 

https://doi.org/10.1175/JHM-D-22-0103.1
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few weeks to decades temporally and from a few hundred 𝑘𝑘𝑘𝑘2  to hundreds of thousands of   𝑘𝑘𝑘𝑘2 

spatially (Pendergrass et al. 2020). Droughts’ creeping development is often neglected in the early 

stages and the changes accumulate and trigger more severe direct or indirect impacts. Eventually, 

the unattended creeping development leads to urgent crises that are more costly to deal with 

(Glantz, 2004). The impacts can persist even after the drought itself ends. Therefore, drought is 

often a ‘hidden’ natural disaster and its risk is underestimated (UNDRR 2019; Pendergrass et al. 

2020). 

During the past decade, nearly all of the contiguous United States (CONUS) from Colorado 

to the Pacific coast has suffered from moderate to exceptional droughts (Cook et al. 2018). This 

includes the continuation of multiyear events (2009-2011 and 2013-2016) in California (Griffin 

and Anchukaitis 2014; Seager et al. 2015; Williams et al. 2015) and the U.S. Southwest (Delworth 

et al. 2015; Seager and Hoerling 2014), and the emergence of significant drought conditions across 

the Pacific Northwest (Oregon and Washington) in 2015 (Mote et al. 2016). Drought episodes were 

especially severe in the coastal Western U.S.  (including California, Oregon, and Washington). The 

prolonged severe droughts have stressed water resources management at the regional level (Mann 

and Gleick 2015; Engström et al 2020). 

As the climate warms, an argument has evolved as to whether drought duration and intensity 

are increasing (Christensen et al. 2007; Seneviratne et al. 2012; Pendergrass et al. 2020). If so, 

more foresighted responses that adopt proactive risk mitigation strategies may be necessary 

(Pulwarty and Verdin 2013; Wilhite et al. 2014). Drought forecast systems in this context would 

be especially useful (Arsenault et al. 2020; Carrão et al. 2018; Hao et al. 2018). Predictions of 

drought onset and termination (although evasive to date) in addition to other drought 

characteristics could provide a foundation for effective proactive drought management. 
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Seasonal climate forecast systems including the North American Multi-Model Ensemble 

(NMME) project (Kirtman et al. 2014; Wanders et al. 2017) consistently predicted a false wet 

2015/2016 winter and forecasted a false signal for California drought termination. In contrast, the 

forecasts and reforecasts from the ECMWF and NCEP CFSv2 models, at the subseasonal-to-

seasonal (S2S) (weeks to a month or two) time scale, were able to predict the correct sign of 

precipitation anomalies (Wang et al. 2017).  Wang et al. (2017) shows that what is unpredictable 

at the seasonal time scale can become predictable at the subseasonal time scale. Recently there has 

been surging interest in ‘flash droughts’, which are characterized by their sudden onset and rapid 

intensification and severe impacts (Otkin et al. 2018). While many drought prediction products are 

updated at monthly time scales, these predictions are of limited value for flash droughts which 

develop on shorter time scales (Pendergrass et al. 2020), nor are they useful in determining, for 

instance, whether individual storms (which can be forecast with potentially usable accuracy at lead 

times of one to several weeks) will terminate a drought. This further motivates the need for 

incorporation of S2S forecasts into drought monitoring and prediction systems. Our study aims to 

fill a gap in the literature on drought forecast skill to incorporate subseasonal forecasts. Like 

seasonal drought prediction systems, such as the NOAA Climate Prediction Center’s (CPC) 

seasonal drought outlook, subseasonal drought forecasts derive their skill from knowledge of 

weather/climate information and initial hydrologic conditions (IHCs) at the onset of the forecast 

period (Shukla et al. 2012). While subseasonal precipitation forecast skill is generally lower than 

the skill of forecasts for temperature for the same location and lead time (Monhart et al. 2018; 

Pegion et al. 2019; Cao et al. 2021), these studies show that there nonetheless is potentially usable 

precipitation forecast skill to leads of 2-3 weeks. Furthermore, Land Surface Models (LSMs) 

provide estimates of IHCs that are critical for drought forecasts, particularly when (as in the case 
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of agricultural drought) soil moisture is the metric used to identify droughts (Shukla and 

Lettenmaier 2011; Shukla et al. 2012).  In this respect, the work we report here extends this earlier 

work to utilize S2S forecasts which better exploit precipitation (and hence, soil moisture) forecast 

skill at lead times of one to several weeks. 

The subseasonal forecasting time scale (the terms subseasonal and Subseasonal-to-Seasonal 

(S2S) are used interchangeably here) is typically defined by lead times ranging from two weeks to 

one (or two) months. This is a critical lead time window for proactive disaster mitigation efforts 

such as water resource management for drought mitigation (Mariotti et al. 2018; Vitart and 

Robertson 2018). However, research on hydrological application of forecasts has not paid much 

attention to subseasonal lead times until very recently due to a lack of subseasonal meteorological 

forecast databases (Vitart et al. 2017). Multimodel ensemble approaches have proved to be a 

successful tool for improving forecast quality for weather and seasonal predictions (Krishnamurti 

et al. 1999; Krishnamurti et al. 2000). They have the advantage of exploiting complementary skill 

from different models and allow for better estimation of forecast uncertainty (Hao et al. 2018).  

Thanks to joint efforts between the weather and climate communities, several subseasonal 

forecast databases have been developed to bridge the weather-climate prediction gap in the S2S 

range (Mariotti et al. 2018; Merryfield et al. 2020). These include the World Weather Research 

Programme (WWRP)/World Climate Research Program (WCRP) S2S Prediction Project (Vitart 

et al. 2017) and the NOAA/Climate Testbed Subseasonal Experiment (SubX) project (Pegion et al. 

2019). Recent studies have found that the prediction skill for precipitation and the application to 

streamflow forecasts of the WWRP/WCRP S2S database varied among predictor combinations, 

catchments and dates of prediction; and the skill is frequently less than climatology beyond two 

weeks lead time (Lin et al. 2018; Pan et al. 2019; Schick et al. 2019).  
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NOAA’s SubX project is different from the WWRP/WCRP reforecasts by including both 

operational and research models. Furthermore, it is available in near real-time (Pegion et al. 2019). 

To our knowledge, little research has been done to evaluate the hydrological application of 

subseasonal forecasts based on the newly developed SubX dataset. A thorough investigation of the 

hydrological usefulness of subseasonal drought forecasts based on the SubX dataset could form 

the foundation of a proactive drought management system. 

SubX provides forecasts of climate variables like precipitation and temperature, but not all of 

them provide hydrologic variables like soil moisture and runoff.  However, hydrologic forecasts 

based on SubX can be produced by using the SubX precipitation (and other surface variables) 

forecasts to drive a land surface model (see e.g., Cao et al. 2021). Here, we drive hydrological 

forecasts from SubX with the Noah Multi-parameterization (Noah-MP, V4.0.1) (Niu et al. 2011). 

We adopted the WRF-HYDRO recommended physical options and details are in Appendix A Text 

S1. Noah-MP is a state-of-the-art LSM originally intended to be the land surface scheme in 

numerical weather prediction (NWP) models. It is currently used for physically based, spatially 

distributed hydrologic simulations within the construct of NOAA’s National Water Model (NWM). 

Noah-MP extends the capabilities of the Noah LSM (Chen et al. 1996; Chen and Dudhia 2001) 

and incorporates multiple options for key land-atmosphere interaction processes, such as surface 

water infiltration, runoff, groundwater transfer, and channel routing (Niu et al. 2007; Niu et al. 

2011). Noah-MP has been widely used for predicting seasonal climate, weather, droughts and 

floods within and beyond CONUS (Zheng et al. 2019).  

Given this background, our objectives here are to examine: 1) subseasonal forecast skill (at 

1–4-week lead times) of drought onset and termination driven by downscaled SubX reforecasts in 

the coastal Western U.S.; 2) how forecast skill for drought onset and termination vary 
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geographically and with lead times. To achieve these objectives, we first downscaled the SubX 

reforecasts to a finer spatial resolution (1/16 degree) from their coarse native resolution (1 degree), 

in consideration of the high spatial resolution of our hydrological model. We then implemented 

the Noah-MP hydrology model over the coastal Western US using downscaled and bias-corrected 

SubX reforecasts as forcings. Based on the model outputs, we evaluated the SubX-based drought 

forecasts skill (All of the ‘‘forecasts’’ in this paper technically are reforecasts). 

2.2 Study Domain and Dataset 

2.2.1 Study Domain 

Our study domain is the coastal Western U.S., consisting of all of California (CA), as well as 

coastal Oregon (OR) and Washington (WA) (Figure 2.1).  

 

Figure 2.1 Study domain: the coastal Western U.S. 

2.2.2 SubX Database 

We used six models from the SubX database with 30 ensemble members in total (Table 2.1) 

over the reforecast period Jan 1999-Dec 2016. The initialization interval of each model is at least 
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once a week and the lead time is at least 32 days. The temporal resolution of the SubX output is 

daily and the raw spatial resolution is 1°× 1°. We downscaled and bias corrected the SubX output 

to 1/16°× 1/16° as described in section 2.3.1. 

Table 2.1 List of SubX models used in the research. Community column indicates target users for each 

model (SEAS for seasonal prediction community and NWP for numerical weather prediction community). 

Model Members 
Initializatio

n Day 

Forecast 

Length 

(days) 

Community Reference(s) 

NCEP-CFSv2 4 W 45 SEAS Saha et al. (2014) 

GMAO-

GEOS_V2p1 
4 Varies 45 SEAS 

Koster et al. (2000), Molod 

et al. (2012), Reichle and 

Liu (2014), and Rienecker 

et al. (2008) 

RSMAS-

CCSM4 
3 Su 45 SEAS Infanti and Kirtman (2016) 

EMC-GEFS 11 W 35 NWP 
Zhou et al. (2016, 2017) and 

Zhu et al. (2018) 

ECCC-GEPS6 4 Th 32 NWP Lin et al. (2016) 

ESRL-FIMr1p1 4 W 32 NWP Sun et al. (2018a, b) 

 

2.3 Methods 

2.3.1 Downscaling and Bias Correction 

We downscaled the raw SubX output (forcings to Noah-MP) using a statistical downscaling 

method, bias correction and spatial downscaling (BCSD; Wood et al. 2004). We applied daily 

BCSD since it has been shown to be an effective approach for removing bias (e.g., Monhart et al. 

2018; Baker et al. 2019, Cao et al. 2021) in atmospheric model output. By using this method, we 

constrained the precipitation temporal variability (wet/dry days) to be the same as in the raw data, 

which we view as desirable (in contrast to methods like localized constructed analogs (LOCA; 
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Pierce et al. 2014) that attempt to reproduce realistic wet/dry sequences). We applied daily BCSD 

to precipitation, maximum daily temperature (Tmax), minimum daily temperature (Tmin), and 

wind speed following the steps in Cao et al (2021), which can be summarized as follows: (1) we 

applied spatial (bilinear) interpolation of the 1°× 1° daily SubX forecasts to 1/16°× 1/16°; (2) we 

bias corrected the outputs from step (1) by each grid point using the daily empirical quantile 

mapping (QM) method (Wood et al. 2002; Cao et al. 2021). The training dataset we used here is 

the gridded observation dataset of Livneh et al. (2013) (extended to 2018 as described in Su et al. 

2021). 

2.3.2 Evaluation of SubX Precipitation and Temperature 

We evaluated SubX forecast skill for precipitation and temperature at different lead times 

before and after bias correction with BCSD. The skill of forecasts at S2S time scales is typically 

evaluated in terms of anomalies or differences from the climatology.  Following Pegion et al. (2019) 

and Cao et al. (2021), we used the anomaly correlation coefficient (ACC; Wilks 2006). ACC 

provides information about how well the variability of the forecasted anomalies matches the 

observed variability.  It is calculated as the temporal correlation of anomalies at each grid cell 

(details of the ACC calculation procedures are as in Cao et al. 2021). To evaluate the performance 

of downscaling methods, we also compared the relative biases for both precipitation and 

temperature before and after the implementation of BCSD.  

2.3.3 Hydrological Model implementation 

We implemented Noah-MP over the coastal Western U.S., which consists of all of CA, as 

well as coastal OR and WA. Noah-MP requires meteorological forcings including specific 

humidity, surface pressure, downward solar and longwave radiation in addition to precipitation, 

wind speed, air temperature. We calculated the first four variables based on the Mountain 
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Microclimate Simulation Model (MTCLIM) algorithms (implemented as in Bohn et al. 2013; Cao 

et al. 2021; and Su et al. 2021) and disaggregated the daily output to 3-hourly (Liang et al. 1994; 

Bennett et al. 2020). 

The prediction skill of subseasonal hydrological forecasts depends on both the IHCs at the 

time of forecast and the accuracy of forecasts of hydrologic model forcings during the forecast 

period (Arnal et al. 2017; Li et al. 2009). Before we implemented Noah-MP using SubX forcings, 

we first ran the model using the Livneh et al. (2013) forcings for the period 1951-2016 and repeated 

twice. We cropped out the 1961-2016 period from the second repetition to serve as a baseline run 

and also to provide assumed perfect IHCs at forecast initiation time for forecasts made over the 

period 1999-2016. The initialization interval for most SubX models is seven days, but different 

models have different initiation days. We output baseline run model states for all the SubX 

initiation dates and these states served as the IHCs. For each SubX ensemble member and each 

identified initialization, we ran Noah-MP for 28 days (4-week forecast).  

To assess the hydrological model dependency and the effects of calibration, we also 

implemented Variable Infiltration Capacity (VIC) V4.1.2.d (Liang et al. 1994) before and after 

calibration (details in Appendix A Text S2).  Overall, those results show that, while there are some 

differences between models (Noah-MP and VIC) and VIC before and after calibration, our results 

are not strongly dependent on model and calibration.  This is consistent with Mo et al. (2012) who 

found that differences in soil moisture percentiles during drought periods are modest among 

different LSMs.  
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2.3.4 Assessment of Drought Forecast Skill  

2.3.4.1 Identification of Drought Events 

Soil moisture is an important drought indicator, especially for agricultural droughts. We 

archived the total column soil moisture and calculated the soil moisture percentile (relative to that 

grid cell’s and that week’s total column soil moisture history of all the ensembles of the model) to 

identify drought events equivalent to D0 to D4 droughts as used by the U.S. Drought Monitor 

(https://droughtmonitor.unl.edu/About/WhatistheUSDM.aspx) (see also Table 2.2) 

Table 2.2 Drought categories, descriptions and percentiles. 

Category D0 D1 D2 D3 D4 

Description Abnormally Dry 
Moderate 

Drought 

Severe 

Drought 

Extreme 

Drought 

Exceptional 

Drought 

Percentiles <30 <20 <10 <5 <3 

 

 2.3.4.2 Evaluation Skill 

We evaluated the probabilistic drought forecast skill of all six SubX models using 30 

ensemble members. The evaluation metrics we used include 1) debiased Brier skill score (Weigel 

et al. 2007); 2) Bias score (BS), Probability of detection (POD), False alarm ratio (FAR), Equitable 

threat score (ETS) and Heidke skill score (HSS). We discuss these skill measures and our 

applications briefly below. 

i. BSS 

The Brier Skill Score (Wilks, 2006) is widely used to measure the mean squared error of 

probability forecasts for binary events.  It is, however, sensitive to small ensemble sizes. To 

overcome this issue, we used the debiased Brier skill score (BSS) which incorporates a correction 

term in the denominator of the Brier Score (DeFlorio et al. 2019). BSS is calculated as follows: 

https://droughtmonitor.unl.edu/About/WhatistheUSDM.aspx
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𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟+𝐷𝐷

,                                                                       (1) 

𝐵𝐵𝐵𝐵 = 1
𝑁𝑁
∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 ,                                                                      (2) 

𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑁𝑁
∑ (𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 ,                                                             (3) 

𝐷𝐷 = 1
𝑀𝑀
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(1 − 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐),                                                                      (4) 

where 𝑃𝑃𝑖𝑖 is the forecast skill for drought onset/termination and is determined by the fraction of the 

ensemble members that predicted drought onset/termination for a single reforecast; 𝑂𝑂𝑖𝑖  shows 

whether the observed drought onset/termination occurs (1 if yes, 0 if no); N is the number of 

reforecast droughts for the grid cell/region (varies for each grid cell/region); M is the ensemble 

size (30 here); and Pclim is the probability of the reference climatology.  BSS ranges from negative 

infinity to one. Positive values indicate that the reforecast skill is higher than the climatological 

forecast skill. 

ii. Contingency Table 

We evaluated the forecast of drought onset/termination, where a dichotomous forecast 

indicates whether an event will happen or not. To verify this type of forecast we start with a 

contingency table that shows the frequency of "yes" and "no" forecasts and occurrences. The four 

combinations of forecasts (yes or no) and observations (yes or no), are: 

Table 2.3 Contingency Table 

 Observed 

Forecast Yes No Total 

Yes Hits False alarms Forecast Yes 

No Misses Correct Negatives Forecast No 

 Observed Yes Observed No  

 



 

19 
 

1. hit - event forecast to occur, and it did occur 

2. miss - event forecast not to occur, but did occur 

3. false alarm - event forecast to occur, but did not occur 

4. correct negative - event forecast not to occur, and did not occur 

We calculated a variety of categorical statistics from the elements in the contingency table to 

describe particular aspects of forecast performance. 

iii. Bias Score (BIAS) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

                                                      (5) 

Bias score indicates how the forecasted frequency of "yes" events compared to the observed 

frequency of "yes" events. It ranges from 0 to ∞ with 1 a perfect score. It indicates whether the 

forecast system tends to underforecast (BIAS < 1) or overforecast (BIAS > 1) events. It only 

measures relative frequencies and does not measure how well the forecast corresponds to the 

observations,  

iv. Probability of detection (POD, also known as hit rate)  

𝑃𝑃𝑃𝑃𝑃𝑃 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖
ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

                                                                 (6) 

Probability of detection tells us what fraction of the observed "yes" events were correctly 

forecasted. It ranges from 0 to 1 with 1 a perfect score. POD is sensitive to the climatological 

frequency of the event and is most informative for rare events.  

v. False alarm ratio (FAR) 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

                                                          (7) 

 FAR gives the fraction of predicted "yes" events that actually did not occur (i.e., were false 

alarms). It ranges from 0 to 1 with 0 a perfect score. FAR is sensitive to false alarms but ignores 

misses and should be used in conjunction with POD (above). 
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vi. Equitable threat score (ETS, also known as Gilbert skill score) 

                   𝐸𝐸𝐸𝐸𝐸𝐸 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖−ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

                                  (8) 

where              ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)(ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

                       (9) 

  ETS measures the fraction of observed events that were correctly predicted, adjusted for 

hits associated with random chance (for example, it is easier to correctly forecast precipitation 

occurrence in a wet climate than in a dry climate). It ranges from -1/3 to 1; 0 indicates no skill and 

1 is a perfect score. ETS is often used in the verification of precipitation in NWP models because 

its "equitability" allows scores to be compared more fairly across different regimes.  

vii. Heidke skill score (HSS, also known as Cohen's k) 

 𝐻𝐻𝐻𝐻𝐻𝐻 = (ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)−(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑁𝑁−(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

                      (10) 

where                             (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝑁𝑁

[𝐴𝐴 + 𝐵𝐵]                  

𝐴𝐴 = (ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)(ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)  

𝐵𝐵 = (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 

𝑁𝑁 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

HSS measures the fraction of correct forecasts after eliminating those forecasts which could 

be correct due purely to random chance. It ranges from -1 to 1; 0 indicates no skill and 1 is a perfect 

score. HSS is used in NOAA’s climate prediction center 

(https://www.cpc.ncep.noaa.gov/products/predictions/90day/skill_exp.html).  

https://www.cpc.ncep.noaa.gov/products/predictions/90day/skill_exp.html
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2.4 Results 

a. Evaluation of SubX reforecasts 

 1) Precipitation and temperature skill  

We examined the precipitation and temperature skill of the individual SubX models (raw data, 

1° resolution), as well as the multimodel ensemble mean (denoted as “Multimodel”), at lead times 

of 1-4 weeks averaged over the coastal Western U.S.  for each month during the Oct-Mar period 

separately (see Figure 2.2). We chose to focus our evaluation on the cool season months Oct-Mar 

as precipitation is generally much lower over most of our domain in the warm season.  Figure 2.2a 

shows that precipitation skill (as measured by ACC) drops rapidly by approximately 40% after 

week 1. Almost all models have positive ACC in all months; but by week 3, some models show 

almost zero ACC in certain months. Among individual models, NCEP-CFSv2 performs best in 

weeks 1-2, with skill similar to Multimodel. However, the model performance at longer lead times 

varies by months.  

Figure 2.2b shows the forecast skill for temperature (the pattern for Tmin is similar, so we 

only show Tmax here).  The temperature of SubX models individually as well as their multimodel 

mean shows statistically significant (different from zero) skill for all lead times in most conditions. 

Similar to precipitation, Tmax skill drops quickly after week 1. Tmax shows higher skill than 

precipitation for all leads and shows fewer negative ACC values in weeks 3–4. Overall, multimodel 

shows consistently statistically significant ACC across all lead times for both precipitation and 

temperature. The precipitation and temperature skill we found is consistent with previous studies 

of SubX (Cao et al. 2021; DeAngelis et al. 2020). 
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2) Performance of Daily BCSD 

The difference in precipitation and temperature skill (as measured by ACC) before and after 

applying daily BCSD is small. This meets our expectation since the QM is performed in a lead 

time-dependent manner. Figures 2.3-2.5 show the average relative bias ((model - 

observation)/observation %) for precipitation forecasts and bias (model - observation) for 

temperature forecasts before and after applying daily BCSD, averaged over October–March. 

Before applying daily BCSD, the absolute relative biases of precipitation were up to 80% across 

models and over weeks 1–4. They were reduced to below 6% after applying BCSD. The biases in 

temperature were also reduced from up to 3.5℃ to below 0.5℃ after applying BCSD (Figure 2.3). 

The bias maps before and after BCSD also show that the biases were essentially removed after 

applying BCSD (Figures. 2.4 and 2.5). 

b. Hydrologic model evaluation 

We examined model performance of the baseline run, forced by the Livneh et al. (2013) data 

with hourly disaggregation. We evaluated California drought area history for various drought 

levels (D0-D4 drought based on USDM) compared with the USDM. The drought area time series 

in baseline run and USDM are highly consistent with correlation coefficients ranging from about 

0.8 for D0 to 0.6 for D4 (Figure 2.6). We further compared the drought area time series for different 

drought levels in five subregions (coastal Washington, coastal Oregon, northern California, central 

California and southern California from north to south, see Figure 2.7). We found that drought 

duration becomes longer, and drought spatial coverage becomes larger from north to south. There 

are more small drought events in the north while the droughts in the south are more prolonged. 

It is important to note that our results are from the Noah-MP model with the Livneh forcing 

as the truth.  Use of observed soil moisture was not feasible because soil moisture observations are  
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Figure 2.2 Precipitation (a) and Tmax (b) prediction skill (as measured by the anomaly correlation 

coefficient (ACC)) of SubX models averaged over the coastal Western US for leads1-4 weeks without bias 

correction). 

 
Figure 2.3 Precipitation, Tmax and Tmin bias of SubX models averaged over representative basins and over 

October–March before and after bias correction. 
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Figure 2.4 Spatial distribution of precipitation bias of SubX models over October–March before (1) and 

after (2) bias correction. 
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Figure 2.5 Spatial distribution of TMAX bias of SubX models over October–March before and after bias 

correction. 
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sparsely distributed and in most cases are only available for a decade or so at most. We nonetheless 

argue that use of model output soil moisture is plausible based on our past work and work of others. 

For instance, Su et al. (2021) compared the Livneh et al. (2013) forced Noah-MP simulated soil 

moisture with observed soil moisture from USDA/NRCS SCAN (Soil Climate Analysis Network) 

across CONUS. Their results showed in general that the spatial patterns of abnormally low soil 

moisture in the Noah-MP model constructions are similar to those in the observations.  

Furthermore, as shown in Appendix A Text S2 and noted in section 3.3, our comparison here of 

Noah-MP soil moisture with VIC soil moisture yielded similar results.  We might, alternatively, 

have used soil from one of several coupled land-atmosphere reanalyses, e.g., ERA-5 (ECMWF, 

2017). ERA-5 soil moisture was found to have the highest skill among reanalysis products 

compared to in situ observations of soil moisture by Alessi et al. (2022) and Li et al. (2020).  

However, it was less accurate than soil moisture produced by the LSM-based North American 

Land Data Assimilation System (NLDAS), and in particular the Noah LSM (Xia et al., 2012; Alessi 

et al, 2022). We opted therefore not to use reanalysis soil moisture (e.g., ERA5) in consideration 

of the above studies, and also because of root-zone soil moisture discontinuities issues at the 

transition points of some of the ERA5 production streams (Hersbach et al. 2020). 
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Figure 2.6 California drought (D0-D4) area time series for different drought levels from (a) baseline (driven 

by Livneh et al. (2013) forcing) and (b) USDM. 
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Figure 2.7 Baseline drought area time series for different drought levels for five subregions (coastal 

Washington, coastal Oregon, northern California, central California and southern California from north to 

south). 
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c. Assessment of Drought Forecast Skill 

Figure 2.8 shows the SubX-based BSS values for major drought termination at leads week 1–

4. Here we define major droughts at the grid cell level as a) drought period > 50 days, and b) the 

drought event is separated by at least 30 days from any other drought. The drought termination 

and onset forecast is defined as a hit when the forecasted date and the observed date fall within a 

one week window. We found that drought termination skill is highest for D0 drought and lead week 

1. Here we show median results of the 30 ensembles. At lead week 1, we see widespread high skill 

(BSS score higher than 0.4~0.5) for droughts D0 - D2 (except for southern CA for D2, Figure 2.8). 

The skill drops to negative for D3 in large parts of southern and central CA and part of OR. The 

decreasing skill spreads further in CA and OR for D4. At lead week 2, the skills for D0-D2 are still 

relatively high (BSS score around 0.2~0.3 for most part, except for southern CA for D2). We see 

more widespread negative skill in D2-D4 compared with at week 1. At lead week 3, there is some 

limited skill for D0 -D2. At week 4, most of our study domain shows no skill for D0-D4 (except a 

small part of inland southern CA and WA). Overall, the skill decreases as the drought severity 

increases and also as the lead time increases. From a spatial perspective, skill decreases from north 

to south. Figure 2.9 shows the SubX-based BSS values for drought onset at lead week 1-4. We see 

usable onset skill in lead week 1 and 2 for droughts D0-D2 over most of WA, OR northern and 

central CA. Overall, onset skill is a little lower than termination skill. The onset skill also decreases 

with drought severity and lead time and decreases from north to south. To reduce noise spatially, 

we averaged the soil moisture for the subregions shown in Figure A5 and assessed the drought 

forecast skills at different subregions (see Appendix A Text S3 for details). The skills at the 

subregion level are generally consistent with what we found from grid cell-based skills. 
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Figure 2.8 SubX-based debiased Brier skill score (BSS) for lead weeks 1-4 for drought termination. The 

columns show results for drought levels D0-D4; the rows show leads from week1 to week4. Blank areas 

denote no drought at this level in this location. 
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Figure 2.9 SubX-based debiased Brier skill score (BSS) for lead weeks 1-4 for drought onset. Columns 

show drought levels D0-D4; rows show leads from week1 to week4. 
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The drought forecast skill is highly related to precipitation forecast skill. Li et al. (2021) found 

a similar degradation pattern of SubX precipitation forecast skill from north to south over the 

coastal Western U.S. for most of the models and at all lead times (weeks). This might explain the 

north to south decreasing drought forecast skill we found here.  Atmospheric rivers (AR) play a 

critical role as a common cause of the end of droughts on the West Coast (Dettinger et al. 2013). 

The high skill of drought termination at lead week 3-4 in southern CA and WA might be related to 

the high AR forecast skill in these regions. DeFlorio et al (2019) found isolated positive skill over 

these locations at weeks 3–4 lead for strong AR activities in some of the SubX models.  

Figure 2.10 shows forecast POD for major D1 drought continuance, termination and onset 

for the five subregions and for different models at 2-week lead time. We summarized the POD (hit 

rates) based on the percent detection at the grid cell level. A forecast of drought continuance is 

counted as hit when the drought remains through the predicted period. The forecast of continuance 

is evaluated relative to persistence, defined as drought conditions assumed to persist through the 

period (if there is no drought in the beginning, then it’s assumed no drought in the end; if there is 

drought in the beginning, then it’s assumed drought in the end). The figure shows that skill for 

forecasts of continuance is consistently high in all regions and across all models, Skill for forecasts 

of termination is higher in the north than in the south. Except for forecasts of termination in WA, 

which have skill comparable to persistence, all other regions’ onset and termination forecast skill 

are lower than persistence. We see very low forecast termination skill and very high continuance 

skill in southern CA. The reason might be that (a) the precipitation forecast skill in southern CA is 

comparatively lower (figure 2.4), which leads to lower soil hydrological forecast skill; and (b) 

drought events in southern CA are very prolonged and the drought event pool is small particularly 
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during the SubX time period. Fewer events give a false prediction more weight in the calculation 

of POD and this may reduce apparent drought termination skill. 

The previous analyses all examined major droughts. We also want to know if the patterns for 

major droughts are similar to those for more modest drought events. Thus we also examined all 

drought events without restrictions on drought length. We calculated the ETS, HSS, POD FAR and 

BIAS score for drought termination, at grid cell scale at 2-week lead time (Figure 2.11). Using all 

30 ensembles, we evaluated the best condition and the median condition among all ensemble 

members. For ETS, HSS and POD, positive values indicate skill.  ETS for drought termination is 

~0.3 in coastal WA and OR and southern and central CA in the best condition and ~0.2 in the 

median condition. HSS and POD are as high as high ~0.4 - ~0.6 in the above locations in the best 

condition and ~0.2 - ~0.3 in the median condition. These metrics all show the lowest skill in 

southern CA. FAR results show higher false alarms in the south (especially southern CA) and 

lower in the north. The bias score is almost 1 in most of our study area in the best condition, 

indicating almost no bias in this case. We see scattered high bias (overforecast, mostly in inland 

southern CA and inland WA) and low bias (underforecast, mostly in CA and OR) in the median 

condition. In summary, all the metrics show the same general trend as for major droughts:  higher 

skill in the north and lower in the south. We repeated the same procedure for drought onset (Figure 

12) and found similar patterns from north to south, however the overall forecast skill for onset is 

lower than for drought termination. 
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Figure 2.10 Drought persistence, continuance, termination and onset forecast skill for D1 drought at 2-week 

lead time by subregions and by SubX models. 
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Figure 2.11 ETS, HSS, POD, FAR and Bias Score for drought termination in (a) best condition, (b) median 

condition across all ensembles at 2-week lead time. 

 
Figure 2.12 ETS, HSS, POD, FAR and Bias Score for drought onset in (a) best condition, (b) median 

condition across all ensembles at 2-week lead time. 
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2.5 Conclusions 

We examined the performance of SubX-driven forecasts of droughts in the coastal Western 

U.S. with leads from 1 to 4 weeks. We first evaluated SubX reforecasts of precipitation and 

temperature. Our findings with respect to SubX precipitation and temperature skill are similar to 

previous studies (e.g., Cao et al. 2021). After statistical downscaling and bias correction of the 

forcings, we ran the Noah-MP LSM over the domain for the period 1999-2016. We then evaluated 

skill of SubX-based drought forecasts with a focus on drought termination and onset by using a 

variety of metrics. We evaluated both major droughts and more modest events.  

Based on our analysis, we found usable drought termination and onset forecast skill at week 

1 and 2 leads for major D0-D2 droughts; we found limited skill at week 3 for major D0-D1 

droughts and essentially no skill at week 4. Drought prediction skills generally decline with 

increasing drought severity. We found the skill is generally higher on termination than for onset 

for both major and all drought events. We also found drought prediction skill generally increases 

from south to north for both major and all drought events. 

S2S forecasting of meteorological and hydrologic variables is an active research topic that is 

attracting significant attention from both the research community (Vitart et al. 2017&2018; 

DeFlorio et al. 2019; Pan et al. 2019; Zhu et al. 2018) and the applications and stakeholders’ 

communities (including public health, agriculture, emergency management and response sectors, 

and water resource management, e.g., White et al. 2017&2022; Robertson et al. 2020). We 

acknowledge, however, that S2S forecasting is still a maturing area. The drought forecast skill (in 

onset and termination) that we find is highly dependent on precipitation forecast skill. Precipitation 

forecast products with finer resolution and higher skill likely will improve drought forecast skill. 

Future studies could extend our work to more extreme events like floods and explore the usefulness 
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of including higher resolution of forecast products. Exploiting of the large-scale climate drivers 

might also benefit by identifying additional sources of skill (e.g., El Niño–Southern Oscillation 

(ENSO), the Madden–Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)) (DeFlorio 

et al. 2019; White et al. 2022). Finally, employing artificial intelligence and machine learning 

techniques (e.g., Chapman et al. 2019; Bouaziz et al. 2021; Qian et al. 2021) may have the potential 

to improve S2S prediction skill. 
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Chapter 3 Improving National Water Model Flood Forecast Skills over Coastal Western 

U.S. River Basins 

This chapter will be submitted to the Journal of Hydrometeorology as 

Lu Su, Dennis P. Lettenmaier, Robert K. Hartman, Ming Pan, 2023: Improving Noah-MP Flood 

Forecast Skills over Coastal Western U.S. River Basins. Journal of Hydrometeorology, (in 

preparation). 

The supplemental material for this chapter is provided in Appendix B. 

Abstract 

Flooding is one of the deadliest and costliest of natural hazards. In 2016, NOAA launched the 

National Water Model (NWM), a comprehensive hydrological modelling system intended for use 

across the U.S.. Noah-MP is the hydrologic core of NWM and provides new technology for 

producing flood forecasts. However, there have been reports that Noah-MP-based flood forecasts 

are less accurate in the Western U.S. than are current methods and that additional effort needs to 

be devoted to selection of Noah-MP physics options and improving its calibration. Here, we 

identify the best Noah-MP physics options and calibrate the model’s parameters in seven 

watersheds that form a transect along the U.S. Pacific Coast. Our results show that when using the 

default free drainage option, the resulting (baseline) flood simulations achieved the best 

performance across the study basins. We then calibrated six parameters that control soil moisture, 

runoff and groundwater using the Dynamically Dimensioned Search (DDS) automatic calibration 

method. After calibration, simulation performance improved greatly. We then constructed 

reforecasts for the largest flood events of the past 7-20 years by running Noah-MP with the 

calibrated land surface parameters and Quantitative Precipitation Forecast (QPF) precipitation (the 

latter produced by the two coastal Western U.S. River Forecast Centers (RFCs). We compared 
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Noah-MP flood reforecasts with RFC archived forecasts and found that for both POT 3 floods and 

major floods, Noah-MP's forecasting performance was comparable with NWRFC in the three 

northern basins but was inferior to RFC in the four southern basins, especially in terms of timing 

and magnitude variability. While both models tended to underestimate flood peaks, Noah-MP's 

discrepancies increased more rapidly with longer lead times and typically predicted earlier peaks. 

Meanwhile, for the largest floods, Noah-MP and RFC forecasts were largely comparable in 

magnitude, but Noah-MP often predicted earlier peaks, with its performance varying event by 

event. This research highlights the potential of Noah-MP for flood forecasting, particularly in the 

northern basins, provided that suitable parameter selection and calibration are employed while 

improvements in the southern (relatively dry) river basins. 

3.1 Introduction 

Flooding is one of the deadliest and costliest natural hazards in the U.S., with an annual 

average cost of $10.25 billion (adjusted to 2023 inflation) and 85 fatalities per year on average 

between 1984 and 2013 (National Weather Service 2014). The flood cost in water year 2017 alone 

was 76 billion (adjusted to 2023 inflation, National Weather Service 2017), marking the greatest 

amount in the previous twenty years.  While the frequency of these events has remained steady 

over the last hundred years, their consequences have evolved owing to societal growth and swift 

societal transitions (Institute for Business & Home Safety 2001). This evolution can be observed 

in instances such as the increase in population residing in flood-prone peripheral areas (National 

Hydrologic Warning Council 2002). Effective flood forecasting is crucial to the country's ability 

to mitigate flood damages, reduce associated costs, and save lives (Rogers and Tsirkunov, 2011; 

National Hydrologic Warning Council 2002; Kundzewicz and Kaczmarek, 2000). Therefore, 
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improving flood forecasting is a priority for reducing these impacts and enhancing the resilience 

of potentially flood-affected communities across the country.  

The California Nevada River Forecast Center (CNRFC) and the Northwest River Forecast 

Center (NWRFC) have long been responsible for issuing flood forecasts within California and 

Nevada, and the Pacific Northwest regions of the U.S. Both entities are branches of the U.S. 

National Weather Service (NWS) which itself is a part of the National Oceanic and Atmospheric 

Administration (NOAA). The RFCs routinely generate Quantitative Precipitation Estimates (QPEs) 

in 6-hour increments. QPEs are calculated representations of the quantity of precipitation that has 

fallen over a defined time frame and geographical area. Additionally, the RFCs produce a 

Quantitative Precipitation Forecast (QPF) with a 6-hour time resolution, which projects the volume 

of precipitation expected to fall over a specific duration with a lead time of 6 hours to up to 10 

days. The CNRFC and NWRFC employ a mix of hydrologic models, QPF methods, and additional 

meteorological information to forecast forthcoming streamflow conditions at specific sites, known 

as forecast points, along water bodies (CNRFC, https://www.cnrfc.noaa.gov/qpf.php). 

The NWS primarily employs the Sacramento Soil Moisture Accounting (SAC-SMA) model, 

which originated in the 1960s and 1970s (Burnash et al. 1973). This spatially lumped model 

produces streamflow simulations based on specified antecedent soil moisture conditions. While 

the model has proven to be proficient in creating accurate forecasts (Franz et al. 2003), it doesn’t 

represent vegetation directly, nor does it have a basis for connecting the lower- and upper soil 

moisture zones and the processes that control exchanges within or between them on a physical 

basis. (Agnihotri et al. 2020; Burnash et al. 1973). Furthermore, neither its evapotranspiration nor 

its snow accumulation algorithms are physically based, thus it is challenged in capturing key 

hydrologic processes at the scale of individual catchments (e.g., Salas et al. 2018). Nevertheless, 
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the distributed model intercomparison project (DMIP) results showed that the SAC-SMA model 

generally was competitive with more modern distributed models (Reed et al. 2004). 

 Since its initiation in 2016, NOAA has actively supported development of the operational 

National Water Model (NWM), a comprehensive hydrological modelling system (NOAA 2016). 

WRF-Hydro, the Hydrological modelling framework built around the Weather Research and 

Forecasting Model (Gochis et al. 2020), forms the basis of the NWM. This extension merges the 

Noah Land Surface Model with multiple parameterization options (Noah-MP; Niu et al. 2011) 

which forms the hydrologic core of the NWM. One distinguishing attribute of Noah-MP is that it 

has multiple physics options for various hydrological processes including runoff generation. Noah-

MP has not previously been compared with RFC operational forecasts, which are based on SAC-

SMA. A comparison of Noah-MP and SAC-SMA for runoff simulation in the coastal Western 

U.S.  would be beneficial for evaluation of the ultimate potential of Noah-MP in operational flood 

forecast applications.  

The simulation performance of the NWM, with Noah-MP being the hydrologic core, has 

recently begun to be evaluated. Salas et al. (2018) studied three-month Noah-MP nowcasts and 

demonstrated the capacity to seamlessly predict reach scale streamflow at the continental scale. 

Their validation of the uncalibrated model using observed hourly streamflow at 5,701 U.S. 

Geological Survey (USGS) gages shows that about one-quarter demonstrate PBias ≤ |25%|, 11% 

demonstrate Nash-Sutcliffe Efficiency (NSE) ≥ 0.25; among which they found better performance 

in the Pacific Northwest, Rocky Mountains, Central U.S., and Eastern U.S., and weak performance 

in the arid Southwest and Northern Plains. Lahmers et al. (2021) found that the runoff simulation 

performance of Noah-MP for 56 catchments within the southwest CONUS was improved by 

adding channel infiltration and performing calibration. Lin et al. (2018) evaluated the Noah-MP 
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streamflow simulation skill at 271 USGS gauges over Texas. They found that daily streamflow 

was better predicted in wet regions with the highest NSE ~0.7 and was most poorly predicted in 

dry regions with a large positive bias. These studies generally evaluated simulations instead of 

forecasts and no comparisons with operational archived forecasts have been made.  

Little previous work has investigated Noah-MP flood forecasts, and the work that has been 

done has been limited to singular flood events in one basin. For example, Viterbo et al. (2020) 

investigate the utility of the Noah-MP configured in NWM to predict catastrophic flooding 

associated with an extreme rainfall event that occurred in Ellicott City, Maryland, on 27–28 May 

2018. Their results suggested potential forecast utility in using NWM to predict high impact, local 

scale flood events, while also underscoring the need to comprehensively evaluate model 

performance at local scales and for high-impact, rare events. 

Previous studies have emphasized the importance of calibration in conceptual models (e.g., 

Gupta et al. 2008 and references therein), and work by Duan et al. (2006) and Lahmers et al. (2021) 

(among others) has highlighted the positive impact of calibration on the performance of spatially 

distributed hydrological models as well. Mascaro et al. (2023) manually calibrated the parameter 

values of Noah-MP through a stepwise approach in Oak Creek Basin in central Arizona and found 

the flood simulation performance improved notably after streamflow calibration for years 2008–

2011.This work suggests the potential for enhancing Noah-MP performance through calibration, 

especially compared with Noah-MP applications using default parameter estimates.  

Notably absent from the literature is the exploration of multiple floods across a variety of 

watersheds, as well as an evaluation of physics parameterization options as we do here. In the same 

context, we perform a comprehensive analysis of the value of automatic calibration for Noah-MP 

-based flood forecasts. Our intention is to help refine the selection of physics options for Noah-
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MP-based flood forecasts and improve the calibration of Noah-MP parameters, especially in 

regions where the model's performance is currently suboptimal. We also explore whether Noah-

MP flood forecast performance can be competitive with the existing SAC-based forecasts utilized 

in the western U.S.   

Our evaluation of Noah-MP-based flood forecasts is performed across multiple river basins 

that form a transect along the coastal western U.S. We evaluate the skill of the model in a 

reforecasting framework, in comparison with archived flood reforecasts in the CNRFC and 

NWRFC domains. Our investigation delves into and elaborates on three primary stages required 

for the application of Noah-MP to flood forecasting: (i) the selection of physical parameterizations, 

(ii) the calibration of Noah-MP parameters, and (iii) the generation and evaluation of flood 

reforecasts in comparison with archived operational forecasts from CNRFC and NWRFC. Section 

2 introduces our study domains and methods. Section 3 explores the design of our experiments, 

followed by section 4 which assesses both flood reconstructions (simulations) and reforecasts. 

Section 5 discusses our findings and future pathways. Concluding remarks are presented in the 

final section, section 6. 

3.2 Study region and model overview 

3.2.1 Study region 

We focused on seven watersheds that form a transect along the U.S. Pacific Coast: the Green 

and the Upper Chehalis River basins in Washington State, the McKenzie River basin in Oregon, 

and the Smith River basin, the Van Duzen River basin, the Russian River basin, and the Carmel 

River basin, all in California (see Figure 3.1 and Table 3.1). The California rivers are all rain-

dominated basins; the Upper Chehalis, Green and Mckenzie Rivers have modest contributions of 

snowmelt to flood runoff. Our choice of these river basins was informed by the availability of 
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long-term sub-daily streamflow observations and the presence of forecast points at which the two 

RFCs (NWRFC and CNRFC) routinely issue flood forecasts. Table 3.1 gives the drainage areas, 

stream gauge identifiers, and RFC forecast point designators for the river basins we study. 

 

Figure 3.1 Map of study region including seven river basins:  the Green and Upper Chehalis Rivers in 

Washington State, the Mckenzie River in Oregon, and the Smith, Van Duzen, Russian, and Carmel Rivers 

in California. 

Table 3.1 Drainage area, observing sites and RFC sites for the study regions. 

River Drainage 

Area (𝒌𝒌𝒌𝒌𝟐𝟐) 

Site Name OBS Sites RFC sites 

 
 

States QPE/QPF period 

Green River 570 Howard Hanson 

Dam inflow 

HHDW1 

USACE 

HHDW1 WA Oct 2017-Jan 2023 

Upper 

Chehalis 

River 

2320 NR Grand Mound 12027500 CGMW1 WA Oct 2017-Jan 2023 

McKenzie 

River 

1528 NR Walterville 14163900 MCZO3 OR Oct 2017-Jan 2023 

Smith River 1590 NR Crescent City 11532500 CREC1 CA Jun 2003-Sep 2020 
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Van Duzen 

River 

928 NR Bridgeville 11478500 BRGC1 CA Jun 2003-Sep 2020 

Russian 

River 

3465 Hacienda Bridge NR 

Guerneville 

11467000 GUEC1 CA Jun 2003-Sep 2020 

Carmel River 696 A Robles Del Rio 11143200 RDRC1 CA Jun 2003-Sep 2020 

 

3.2.2 Hydrological model and forcings overview 

3.2.2.1 Hydrological model 

We employed Noah-MP in the WRF-Hydro framework (version 5.2.0) in an uncoupled mode 

that utilizes externally provided atmospheric forcings (essentially Noah-MP externally forced).  In 

our off-line implementation, Noah-MP represents water and energy fluxes vertically within 6-km 

grid cells including surface runoff, soil water storage and drainage, evapotranspiration, snow melt 

and accumulation, and aquifer recharge (Niu et al. 2011). Surface runoff and subsurface drainage 

are routed laterally through surface and subsurface runoff modules as represented by a 300-m 

terrain grid, which captures changes in elevation and their effects on gravitational redistribution at 

the surface and in the subsurface, which eventually are directed into the channel network (Gochis 

et al. 2020). In our Noah-MP implementation, we opted to utilize a comparatively coarse Noah-

MP grid and a finer routing grid. This approach balances the need to keep computational costs in 

check while still ensuring a sufficient level of detail in the stream network aspects of the simulation.   

The model’s land use data were aggregated from USGS 30-arc-s 24-land-use categories 

(USGS 2018), and the soil type similarly was aggregated from 30-arc-s hybrid State Soil 

Geographic Database (STATSGO) soil texture datasets (NCAR 2022). Noah-MP's initial land 

surface parameters, such as the vegetation conditions that control transpiration rates and soil 

properties that affect streamflow, were derived from these datasets using the WRF Preprocessing 

System (WPS) (WRF Preprocessing System Version 4.1: https://github.com/wrf-
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model/WPS/archive/v4.1.tar.gz, accessed July 31, 2022). The hydrologic routing input files were 

generated via the WRF-Hydro GIS pre-processing 

tools(https://ral.ucar.edu/projects/wrf_hydro/pre-processing-tools, accessed July 31, 2022). 

Detailed instructions on preparing the input files can be found in the guidelines (WRF-Hydro 

Development Team, 2020) 

Initially, we employed all options implemented in the NWM, including the Musk-Cunge-

reach channel routing method as detailed in Gochis et al. (2020). Given our focus on flood 

streamflow, we paid particular attention to the runoff option in Noah-MP, which will be elaborated 

on further in the subsequent section. 

3.2.2.2 Meteorological forcings 

Executing Noah-MP simulations requires spatially distributed meteorological forcings, 

including surface air temperature, specific humidity, surface pressure, wind speed, longwave and 

shortwave radiation, and precipitation. Notably, among these factors, precipitation is the most 

crucial in reforecasting flood flows. We used the same precipitation forcing as the RFCs so that 

we could better isolate the forecast skill of Noah-MP in comparison with RFC methods. Therefore, 

the precipitation we used for our baseline simulations, as well as our reforecasts, was QPE and 

QPF from CNRFC and NWRFC. The available time period for QPE and QPF is Jun 2003-Sep 

2020 for CNRFC; and Oct 2017-Jan 2023 for NWRFC. The available time periods for each river 

basin are shown in Table 3.1. The lead time for CNRFC QPF is 6-72 hours before Sep 2012 and 

144 hours thereafter. The initialization interval is once per day (12:00) before Oct 2010 for CNRFC 

and twice per day (12:00 and 18:00) after Oct 2010. For NWRFC, the lead time is 6-240 hours, 

and its initialization interval is once per day (12:00). Details are summarized in Table 3.2. 

https://ral.ucar.edu/projects/wrf_hydro/pre-processing-tools,
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We interpolated the 4-km and 6-hourly QPE/QPF into 6-km and 3-hourly to run Noah-MP. 

All the forcings other than precipitation came from Pan et al. (2023), which is 1-km, hourly near 

real time over the conterminous U.S. based on North American Land Data Assimilation System 

(NLDAS) (Xia et al. 2012) and rescaled by Parameter-Elevation Regressions on Independent 

Slopes Model (PRISM; Daly et al. 2008). Here, we aggregated the forcings to 6-km and 3-hourly 

to save computational time. Prior to performing the baseline simulations, we conducted a spin-up 

simulation of 3 years using the Pan et al. (2023) forcings (including their precipitation) to remove 

initialization effects (largely in soil moisture and SWE) to the greatest extent possible. 

Table 3.2 Lead time and initialization time of QPF from CNRFC and NWRFC 

CNRFC QPF NWRFC QPF 

Lead time 

Jun 2003-Sep 2012 6-72 hours Oct 2017-Jan 2023 6-240 hour 

Oct 2012-Sep 2020 6-144 hours   

Initialization time 

Jun 2003-Oct 2010  12:00 Oct 2017-Jan 2023 12:00 

Nov 2010 -Sep 2020 12:00&18:00   

 

3.3 Experimental design 

3.3.1 Noah-MP parameterization 

The first step in configuring Noah-MP is to choose a suitable set of LSM parameterizations. 

Because we are only interested in floods, our focus was largely on parameterizations that impact 

high flows, specifically runoff options. Noah-MP has four options for runoff parameterizations 

(rnf) (Table 3.3); we assessed their impact on high flows as a first step. For physical 

parameterization other than runoff, we selected the same parameterizations as in the NWM 

configuration of Noah-MP (see Gochis et al. 2020 for details) including the channel routing scheme. 
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We ran Noah-MP simulations with the four different runoff options using the default (NWM) land 

surface parameters and compared the Kling-Gupta efficiency (KGE) (Gupta et al. 2009) of flood 

events. KGE is a widely used performance measure because of its advantages in orthogonally 

considering bias, correlation and variability (Knoben et al. 2019). KGE = 1 indicates perfect 

agreement between simulations and observations; according to Knoben et al. (2019) KGE values 

greater than -0.41 indicate that the model improves upon the mean flow benchmark (i.e., 

forecasting the mean).  

Table 3.3 Noah-MP Runoff options selected for this study. The ID numbers refer to the values that can be 

specified in the model input namelist file. 

Runoff and groundwater 

options 

Descriptions 

rnf 1 TOPMODEL‐based runoff scheme with the simple groundwater 

(hereafter SIMGM) (Niu et al. 2007).  

rnf2 Simple TOPMODEL‐based runoff scheme with an equilibrium water 

table (Niu et al. 2005) (hereafter SIMTOP). 

rnf3 Infiltration‐excess‐based surface runoff scheme with gravitational free‐

drainage subsurface runoff scheme (Schaake et al. 1996) 

rnf4 BATS runoff scheme, which parameterized surface runoff as a 4th power 

function of the top 2 m soil wetness (degree of saturation) and subsurface 

runoff as gravitational free drainage (Yang and Dickinson 1996). 

 

We used the peaks-over-threshold (POT) method (e.g., Lang et al. 1999) to identify floods. 

We set thresholds at each stream gauge that resulted in three extreme events per year on average, 

which we denote as POT3. Our results (Figure 3.2) show that when using the default free drainage 

option (option 3), the baseline flood simulation achieved the best performance across the study 

basins (and in fact was substantially better than the other options). This runoff option is also used 

in NWM and Mascaro et al. (2021). 
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Figure 3.2 Boxplots of POT3 floods’ KGE of the seven study basins when using default soil and runoff 

parameters and different Noah-MP runoff options.  

3.3.2 Land surface parameter calibration 

3.3.2.1 Calibrated parameters 

  After selecting the best domain-wide parameterizations for runoff generation, we calibrated 

the spatially varying LSM parameters to further improve flood performance. Based on available 

computational resources and the findings from previous studies (Holtzman et al. 2020; Sun et al. 

2020; Sofokleous et al. 2022; Quenum et al. 2022; Mascaro et al. 2023; Lahmers et al. 2019& 

2021; Bass et al. 2023), we focused on five parameters. They are : saturated hydraulic conductivity 

(DKSAT), Saturated soil moisture (SMCMAX) (i.e. porosity), the pore-size distribution index 

(BEXP), the coefficient governing deep drainage (SLOPE) and surface runoff parameter REFKDT. 

Details of the processes controlled by these parameters and feasible ranges are given in Table 3.4. 

While the default values for DKSAT, SMCMAX, and BEXP in Noah-MP are based on STATSGO 

soil types, the values assigned to these parameters typically are highly uncertain. We considered a 
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range of physically realistic adjustments to each of the parameters (Table 3.4, column 5) based on 

values used in previous studies (Cai et al. 2014; Mendoza et al. 2015; Gochis et al. 2019; Hussein 

2020). 

We adjusted parameters values by scalar multipliers following the methods used by NCAR-

RAL to calibrate the NWM, as reported in Lahmers et al. (2019&2021). This ensured that the 

original model parameters are physically consistent with a priori catchment properties (e.g., Gupta 

et al. 2008, 2009). 

Table 3.4 Noah-MP land surface parameters selected for calibration. 

Parameter Description Unit Main control on 

hydrological 

response 

Range (source) 

Soil parameters 

DKSAT Saturated hydraulic 

conductivity 

m/s Infiltration 2 × 10−9𝑡𝑡𝑡𝑡 0.07(Cai et 

al. 2014) 

SMCMAX Saturated soil 

moisture 

𝑚𝑚3

𝑚𝑚3
 Infiltration and soil 

evaporation 

0.1 to 0.71 (Cai et al. 

2014) 

BEXP Pore-size distribution 

index 

unitless Infiltration 1.12 to 22 (Cai et al. 

2014; Gochis et al. 

2019) 

Runoff parameters 

SLOPE Linear scaling of 

“openness” of bottom 

drainage boundary 

unitless Aquifer recharge 0.1-1 (Lahmers et al. 

2021) 

REFKDT Parameter in surface 

runoff 

unitless Partitioning of total 

runoff into surface 

and subsurface runoff 

0.1-10 (Lahmers et al. 

2021) 
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3.3.2.2 Calibration method 

Consistent with the calibration approaches used for the NWM as reported by Feng et al. (2019) 

and Gochis et al. (2019), we used the Dynamically Dimensioned Search (DDS) algorithm (Tolson 

and Shoemaker, 2007). Unlike the widely adopted Shuffled Complex Evolution (SCE) function 

(Duan et al. 1992), which typically requires order 1,000 iterations to achieve an optimal solution, 

the DDS algorithm is more efficient, achieving near-optimal parameter sets within a significantly 

reduced range of about 100-500 iterations (see Lespinas et al. 2017). Our tests indicated that the 

DDS objective function (we used KGE of POT3) improved substantially between 50 and 200 DDS 

iterations, but with diminishing returns beyond 200. Therefore, we opted to use 250 iterations of 

DDS in all our calibrations. 

As indicated above, we used spin-up of three years, and used the Pan et al. (2023) forcings 

(including precipitation) prior to the earliest year of available QPE. The model's states (soil 

moisture and SWE) following this period served as the starting 'warm' state for calibration. We 

carried out calibrations for the Green, Upper Chehalis, and McKenzie Rivers for the period 

October 2017 to January 2023, and for the Russian, Smith, Van Duzen, and Carmel Rivers from 

October 2003 to September 2020. We tested a variety of alternative objective functions, including 

(a) KGE of 6-hour streamflow higher than 85 percentiles, (b) KGE of 6-hour streamflow higher 

than 90 percentiles, (c) KGE of 6-hour streamflow concentrated on a nine-day period for selected 

POT3 flood events (four days preceding the flood peak date, the day of the flood peak and four 

days following the flood peak date, 36 flow values for each flood event), (d) KGE of 6-hour 

streamflow concentrated on a five-day period for selected POT3 flood events (two days preceding 

the flood peak date, the day of the flood peak and two days following the flood peak date, 20 flow 

values for each flood event), (f) KGE of 6-hour streamflow concentrated on a three-day period for 
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selected POT3 flood events (one day preceding the flood peak date, the day of the flood peak and 

one day following the flood peak date, 12 flow values for each flood event). After comparison, we 

found KGE of 6-hour streamflow concentrated on a three-day period for POT3 flood events 

worked the best in capturing the floods (by comparing KGE and flood hydrographs). Thus, our 

objective function used in all calibrations is the KGE of 6-hour QPE-forced Noah-MP streamflow 

concentrated on a three-day period for POT3 flood events compared with the 6-hour observation. 

Our focus was solely on flood periods; hence we used all events in the POT3 data set for each river 

basin. Figure B1 gives the events used for calibration for each of the river basins.   

3.3.3 Noah-MP reforecasts  

After calibration, we ran Noah-MP with the calibrated land surface parameters and QPE 

forcings and archived the model states for each timestep for all the flood events. These states (soil 

moisture and SWE) served as the starting “warm” state. For each flood event, and for each 

available QPF that initiated from 6 to 120 hours before the observed flood peak time, we ran Noah-

MP starting from the “warm state” of the QPF initiating point and ran for a duration of the QPF 

lead time (72 hours to 240 hours depending on the basin and time period, refer to Table 3.2 for 

lead time details). In these runs, all the other forcings were the same as in the calibration runs, 

except that the QPE precipitation is replaced to QPF. We archived the flood forecasts from these 

runs and evaluated the skills in the following section. 

3.4 Results 

3.4.1 Calibration 

Scatterplots of POT3 flood events produced by calibrated Noah-MP simulations for all seven 

river basins are shown in Figure 3.3. After calibration, the KGE of POT3 flood streamflow 

increased from about 0.2~0.3 to about 0.7~0.9. The calibrated POT3 KGE values for the Green, 
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Chehalis, McKenzie, Smith, Van Duzen, Russian and Carmel Rivers are 0.85, 0.70, 0.76, 0.89, 

0.76, 0.85 and 0.78 respectively. The flood flow simulation skills are high compared with previous 

studies (Mascaro et al (2023) report an NSE of 0.59 for the Noah-MP simulated and observed 

streamflow time series for the period 2008 to 2011; Lin et al. (2018) evaluated the Noah-MP 

streamflow simulation skill against 271 USGS gauges over Texas and their highest NSE was ~0.7). 

 

Figure 3.3 Scatter plot of simulated flood streamflow and observed flood streamflow in seven river basins. 

3.4.2 Reforecasts 

We compared our flood simulation and reforecast results generated by Noah-MP with the 

archived forecasts provided by RFC for all seven river basins.  
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(a) POT3 flood events 

To get a better understanding of the overall performance of the Noah-MP reforecasts, we first 

summarized the skill for all the POT3 flood events within the study period for which there were 

both Noah-MP reforecasts and RFC forecasts. Figure B1 shows the 6-hour time series of these 

flood events in our study basins. The peak time and magnitude are also indicated in the figure. The 

floods we considered occurred between 2003 to 2020 and had daily peak magnitudes as small as 

~750 cfs (Carmel River, Feb 26, 2010, with return period of less than a year) and as large as 

~80,000 cfs (Smith River, Dec 28, 2008, with return period of ten years). Figure B2 shows the 

distribution (median and interquartiles) of the relative differences of floods peak streamflow in all 

the river basins. Here relative difference is defined as 

                        PeakDiffRela = (Peakforecast − PeakObs )/(PeakObs)     (11) 

Where PeakDiffRela  is relative flood streamflow difference, Peakforecast  is forecasted peak 

streamflow, PeakObs  is observed peak streamflow. We limited our performance evaluation to lead 

times of up to 120 hours, due to our primary interest in forecast skill for up to five days lead (for 

longer leads, skill arguably is dominated by QPF, rather than hydrologic prediction skill). 

Moreover, we have fewer available reforecast beyond 120 hours lead time.  

When we analyzed the performance of Noah-MP in comparison with RFC, it became evident 

that Noah-MP is roughly comparable to RFC in terms of forecast accuracy in the northern basins 

(Green, Chehalis, McKenzie), but falls short in the southern basins (see Figure B2). Consequently, 

we divided our domain into a northern region, which includes the Green, Chehalis, and McKenzie 

Rivers, and a southern region, which includes the Smith, Van Duzen, Russian, and Carmel Rivers.  

In a comparison of skills between the northern and southern basins, it's clear that Noah-MP 

exhibits a more competitive performance in the northern basins (as shown in Figure 3.4). Here, the 
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Noah-MP relative median peak differences are approximately within ±0.1 and the Inter-Quartile 

Range (IQR) are within the range of 0.15-0.45 for forecasts less than 60 hours prior to the observed 

peak. The skills of Noah-MP are comparative to NWRFC with 60 hours lead time where the 

NWRFC relative median peak differences are less than -0.15 (in absolute value) and the IQR are 

within 0.18 - 0.43. However, the effectiveness of both Noah-MP and NWRFC rapidly declines 

beyond this point, with the worst Noah-MP median skill reaching ~-0.3 at a lead time of 120 hours 

and the biggest IQR reaching 0.82 at lead time of 114 hours. For NWRFC, the worst median skill 

is -0.46 at lead time of 108 hours and the biggest IQR is 0.54 at lead time of 114 hours. Noah-MP's 

skill is similar to NWRFC for forecasts with lead less than 48 hours, and are more accurate for 

longer leads in terms of median relative peak difference. While the first quartile (Q1) for Noah-

MP and NWRFC are similar, the third quartile (Q3) is higher in Noah-MP than NWRFC, resulting 

in larger variability (greater IQR) in Noah-MP.   

Conversely, in the southern basins, Noah-MP's performance is distinctly inferior to that of the 

RFC forecasts. The Noah-MP median relative peak difference here typically ranges from -0.1 to -

0.23, with an IQR between 0.28 and 0.53 when the forecasted hours are less than 60 hours before 

the observed peak. This accuracy is consistently outperformed by CNRFC, which has a steadier 

median skill around ±0.1 and an IQR ranging from 0.18 to 0.38. For lead times longer than 60 

hours, a sharper decline in skills is observed for both Noah-MP and CNRFC. Yet, throughout these 

durations, Noah-MP's median skill remains lower than CNRFC's. Overall, while both models often 

underestimate flood peaks, Noah-MP does so more substantially, and this tendency to 

underestimate grows with increased lead time. 
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(a) Northern basins (Green, Chehalis, McKenzie) 

 

(b) Southern basins (Smith, Van Duzen, Russian, Carmel) 

 

Figure 3.4 Median and interquartile range of the relative differences of POT3 floods peak streamflow of 

Noah-MP reforecasts and RFC forecasts against as a function of forecasted hours in advance of the observed 

peak (or lead time) in (a) Northern basins (Green, Chehalis, McKenzie); (b) Southern basins (Smith, Van 

Duzen, Russian, Carmel). 
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We should note that the events at each lead time used in assessing the skill of Noah-MP and 

RFC may differ. This disparity arises because the available QPF utilized to generate Noah-MP 

reforecasts and the flood forecast issuance numbers accessed from RFC are not always equivalent. 

Furthermore, the issuance timings and frequencies of flood forecasts from the RFCs fluctuate 

across different flood events. The QPFs obtained from the RFCs also exhibit variable issuance 

timings and frequencies for some river basins, generally adhering to a fixed schedule of either 

12:00 or 18:00 daily. Given that flood peaks can occur at any time between 00:00 to 24:00, the 

floods analyzed for each lead time for both Noah-MP and RFC may vary. We present the number 

of floods used for skill calculations in Figure B4.  

In addition to flood peak magnitudes, we also examined the peak time forecast skill. Here 

time difference is defined as   

                                     TimeDiff = TimePeakforecast − TimePeakObs  (12) 

Where TimeDiff is the peak time difference in simulation and observation, TimePeakforecastis the 

forecasted peak time, TimeMaxObs is the observed peak time.  

Figure 3.5 indicates that Noah-MP performs competitively in predicting the flood peak time 

in the northern basins, maintaining a median peak time difference of approximately 0 to -6 hours 

and the IQR spans from 1 to 24 hours for most lead times. For NWRFC, the median difference in 

peak times varies between 6 to 12 hours, and the IQR lies between 12 to 36 hours. As the lead time 

extends, the variability of the peak time difference correspondingly increases for both Noah-MP 

and NWRFC. It is notable that while Noah-MP tends to forecast earlier peaks than observed, 

NWRFC generally predicts later.  In the southern basins, both Noah-MP and CNRFC display high 

competence with a median skill around 6 hours and an IQR ranging from 6 to 12 hours when the 

lead time is under 48 hours. However, Noah-MP's accuracy noticeably diminishes beyond this 
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point, trending toward a substantial early bias in the flood peak time at long leads, notably with a 

lower median skill and higher IQR (a median peak time difference of 57 hours and an IQR of 69  

(a) Northern basins (Green, Chehalis, McKenzie) 

 

(b) Southern basins (Smith, Van Duzen, Russian, Carmel) 

 

Figure 3.5 Boxplots of POT3 flood peak time differences for Noah-MP reforecasts and RFC forecasts vs 

the forecasted hours in advance of observed peak (or lead time) in (a) Northern basins (Green, Chehalis, 

McKenzie); (b) Southern basins (Smith, Van Duzen, Russian, Carmel). 

hours for a 120-hour lead time). In contrast, CNRFC maintains relatively low bias in peak times, 

albeit with a slight tendency towards forecasting an earlier peak when the lead time exceeds 66 
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hours and its IQR also increases (a median peak time difference of 34 hours and an IQR of 57 

hours for a 120-hour lead time). 

(b) Major floods 

Larger floods typically result in more significant damage and widespread consequences. 

Consequently, there is often heightened interest in understanding and forecasting the most severe 

flood events to reduce their impact. In line with this, we analyzed the peak intensity and timing, 

similar to our previous evaluations, but specifically for the top three flood incidents during our 

research span in each river basin. Upon assessing the forecasting skills for magnitudes, the results 

reflected the trends seen with POT3 floods. The forecasting capability of Noah-MP was 

competitive in the northern basins and fell short in the southern basins when compared with RFC 

concerning the median relative peak disparity (Figure 3.6). Additionally, the relative peak 

difference under Noah-MP exhibited greater variability (represented by IQR) in both northern and 

southern basins compared to RFC.  

Upon evaluating the peak timing prediction capability, it showed that Noah-MP lags behind 

RFC in both the northern and southern basins, in terms of both the median peak time discrepancy 

and IQR (as shown in Figure 3.7). Noah-MP tended to forecast earlier peak for both northern and 

southern basins, while NWRFC showed a slightly late bias and CNRFC showed an early bias. 

(c) Largest floods 

Our analysis further revolves around representative largest flood events in each of these 

basins, as depicted in Figure 3.8. For each river basin, we selected the largest flood event that 

occurred within the study period, and for which both RFC forecast and Noah-MP reforecast data 

were available. These flood events were identified based on their return periods, calculated using 



 

71 
 

the Generalized Extreme Value (GEV) distribution (Jenkinson 1955). The specific return period 

values have been annotated in the respective subtitles. 

(a) Northern basins (Green, Chehalis, McKenzie) 

 

(b) Southern basins (Smith, Van Duzen, Russian, Carmel) 

 

Figure 3.6 Median and interquartile range of the relative differences of largest three floods peak streamflow 

of Noah-MP reforecasts and RFC forecasts against as a function of forecasted hours in advance of the 

observed peak (or lead time) in (a) Northern basins (Green, Chehalis, McKenzie); (b) Southern basins 

(Smith, Van Duzen, Russian, Carmel). Please note that no Noah-MP forecasts are available for a 6-hour 

lead time.  
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(a) Northern basins (Green, Chehalis, McKenzie) 

 

(b) Southern basins (Smith, Van Duzen, Russian, Carmel)

 

Figure 3.7 Median and interquartile range of the peak time difference of largest three floods peak 

streamflow of Noah-MP reforecasts and RFC forecasts against as a function of forecasted hours in advance 

of the observed peak (or lead time) in (a) Northern basins (Green, Chehalis, McKenzie); (b) Southern basins 

(Smith, Van Duzen, Russian, Carmel). Please note that no Noah-MP forecasts are available for 6-hour lead 

time. 

A close examination of these comparisons revealed a few noteworthy patterns. For instance, 

Noah-MP was proficient in predicting both the magnitude and timing of the Feb 7, 2020 flood 
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(with a return period of 12 years) in the Green River, making it competitive with the NWRFC 

forecast. For the Jan 14, 2021 flood (with a return period of four years) in the Chehalis River, 

Noah-MP predicted a magnitude similar to observations but with an earlier peak, while NWRFC 

accurately predicted the timing of the peak, albeit with a slight underestimation of the flood's 

magnitude. In the flood that occurred on May 7, 2022, in the McKenzie River (with a return period 

of six years), Noah-MP forecasted the flood peak slightly earlier than observed, with a slight 

overestimation in flood magnitude. In contrast, NWRFC accurately predicted both the timing and 

magnitude of the flood. For the flood of Dec 18, 2008, in the Smith River (with a return period of 

ten years), both Noah-MP and CNRCF forecasts under-predicted the observed flood magnitude. 

Dual peaks were observed in this event, however, both Noah-MP and CNRCF only anticipated a 

single peak and their predicted peak time occurred between the two observed peaks. During the 

flood on Dec 28, 2005, in the Van Duzen River (with a return period of 12 years), Noah-MP 

predicted an earlier peak than observed, though the predicted magnitude was accurate. CNRFC, 

on the other hand, accurately predicted the timing, but the predicted magnitude was underestimated. 

In the flood event on Jan 1, 2006, in the Russian River (with a return period of 36 years), both 

Noah-MP and CNRFC accurately predicted the magnitude, but Noah-MP predicted an earlier peak 

than observed. For the flood on Jan 8, 2017, in the Carmel River (with a return period of 10 years), 

both Noah-MP and CNRFC predicted an earlier peak than observed. However, CNRFC accurately 

captured the magnitude of the flood, while Noah-MP underestimated it. To summarize, Noah-MP 

mostly produced comparable magnitudes with RFC forecasts for these largest floods, however had 

a tendency to predict earlier peaks than observed. The model's performance was comparable to 

RFC in certain events but fell short in others. 
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Figure 3.8 USGS observation, Noah-MP flood simulation and reforecasts and RFC archived forecasts for 

representative large floods in the study basins. The flood events and their return period are noted in the 

titles of each subplot. Observations are black, Noah-MP simulations are red, and the most recent available 

RFC forecast before the time of peak is purple; the Noah-MP reforecast initiated one-day before the peak 
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time are green. The initiation time of both RFC forecasts and Noah-MP reforecasts are indicated in the 

upper right corner of each subplot. The lead time steps of Noah-MP reforecasts are indicated with black 

dots and annotated with numbers beside. 

3.5 Discussion 

3.5.1 Model error 

In the previous section, we demonstrated how the selection of the Noah-MP runoff option and 

calibration substantially enhanced the KGE of POT3 flood simulations (from approximately 0.2 ~ 

0.3 to around 0.7 ~ 0.9) in the study basins. We found that the flood forecast skill of Noah-MP 

rivals that of RFC in northern basins, while it is inferior in southern basins. The northern basins 

typically receive most of their precipitation in the fall and winter, whereas the largest rainfall events 

in the southern basins tend to be in winter (see Figure B5). Among the southern basins, Noah-MP 

shows the best flood magnitude prediction skill in the Russian River basin, which has the largest 

drainage area of all of our study basins (refer to Figure B2 and Table 3.1). The Van Duzen (drainage 

area 928 𝑘𝑘𝑘𝑘2)  and Carmel (drainage area 696  𝑘𝑘𝑘𝑘2) Rivers are the smallest study basins, and 

also showed the lowest flood magnitude prediction skill. These findings align with previous studies, 

which indicated that the NWM performs suboptimally in drier and smaller basins. (Hansen et al. 

2019; Rojas et al. 2019; Lin et al. 2018).  

Predicting floods in semi-arid regions like the southwestern U.S. poses multiple challenges 

rather to coastal rivers in more humid regions, like our northern basins. This is partly due to the 

complexities in accurately determining antecedent soil moisture levels and the sometimes brief 

and variable nature of severe precipitation events (Lahmers et al. 2019). Moreover, the south tends 

to experience unusually large variations in annual precipitation and streamflow totals relative to 

the north. Such variations can be attributed mainly to the notably few rainy days per year that 

account for most of its annual precipitation (Dettinger et al. 2011). These factors cumulatively 



 

76 
 

compound the difficulty in making accurate predictions in the southwestern U.S.. Future research 

could enhance Noah-MP's initial conditions by exploiting additional information, such as the 

space-time (and depth) variability of soil moisture. 

In our current model configuration, the Noah-MP runoff parameterization scheme is 

infiltration‐excess‐based surface runoff scheme with a gravitational free‐drainage subsurface 

runoff scheme (Niu et al. 2011). In arid climates, infiltration excess is more prominent, especially 

where the most intense storms usually have higher precipitation rates; while in forested watersheds, 

saturation excess mostly dominated. We utilized a uniform model configuration where we assumed 

the same model physics for all basins, and our choice of best model physics was under that 

assumption. This may not have been optimal since the most effective configuration may differ 

between wet and dry basins. Future work could use different optimal configurations for different 

basins. Additionally, our main emphasis centered on calibrating the magnitude of flood peaks, 

without considering timing during the calibration phase. This method can be enhanced by 

including the timing of peak flows in the calibration objective function. Moreover, we can explore 

deeper into the runoff production process in the future. 

In some basins, like the Russian River, may have reservoir impacts. We tested a basic level 

pool reservoir method (Brunner and Ras 2008) for this basin, but it did not significantly improve 

either the forecast skill of flood peak or timing (results not shown here), so we opted not to 

incorporate reservoir adjustments in our study. Additionally, this study doesn't account for other 

human-induced influences, which could potentially result in our forecasts being less accurate than 

those from RFC. Future investigations could improve upon this by incorporating more pertinent 

data. 
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3.5.2 Precipitation forcing errors 

A plausible contributor to forecast errors could be inaccuracies in the predicted precipitation 

(i.e., QPF). To examine this, we calculated the relative difference between QPF (precipitation 

forecast) and QPE (gridded observations) over an aggregation time period, defined as:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃Tdiff = (𝑄𝑄𝑄𝑄𝑄𝑄𝑇𝑇 − QPE𝑇𝑇 )/(QPET)  (13) 

Here the time period T is the time over which the precipitation is aggregated (e.g., the number of 

hours in advance of the flood peak). We assessed T values up to 24 hours prior to a flood peak. In 

cases where the QPF was issued less than 24 hours before the flood peak, we only accounted for 

the hours available from the time the QPF was issued. If the QPF was issued more than 24 hours 

before the flood peak, we set T to 24 hours. This pattern is depicted in Figure 3.9(c). We identified 

general underestimation in the QPF, and this downward bias increased with longer lead times in 

both northern and southern basins. 

When comparing the QPF skills between the northern and southern basins, we noted that the 

skill in the southern region was inferior to that in the northern basins (quite likely associated at 

least in part with higher precipitation variability in the southern basins). This pattern generally 

mirrored the performance of the Noah-MP flood predictions in these respective basins. This may 

potentially account for the bias observed in the Noah-MP flood reforecasts illustrated in Figure 

3.4. It's also worth mentioning that the difference in precipitation timing can be greater at a 6-hour 

lead time and lower at 12- and 18-hour lead times, as shown in Figure 3.9(a). This is due to the 6-

hour lead time only incorporating precipitation accumulated over a 6-hour period. The forecasted 

precipitation might be missed at the 6-hour lead time but is caught at the 12-hour or longer lead   
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(a) Northern basins 

 

 (b) Southern basins 

 

(c) Hours of precipitation accumulated 

 

Figure 3.9 Relative difference of the aggregated precipitation reforecasts against the forecasted hours in 

advance of peak (or lead time)  in (a) Northern basins (Green, Chehalis, McKenzie); (b) Southern basins 

(Smith, Van Duzen, Russian, Carmel). (c) The bottom subplot schematically shows the hours of 

precipitation aggregated when the forecasted hours in advance of peak differ. 
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times. However, this variability in QPF skills cannot account for why the CNRFC's performance 

(for southern basins) is not inferior to the NWRFC's (for northern ones). While we do not currently 

understand how RFCs handle QPF bias, there is potential for enhancing Noah-MP performance if 

we adopt similar strategies in the future. 

3.6 Conclusion 

The major contributions of this study are:  a) we improved Noah-MP’s flood simulation skill 

in coastal western U.S. river basins through the appropriate choice of model physics of free 

drainage and the implementation of a global optimal calibration approach. This process improved 

flood simulation skills from a range of KGE 0.2 ~ 0.3 to roughly 0.7 ~ 0.9 in the targeted basins; 

b) with the aid of calibrated parameters and QPF forcings, we assembled Noah-MP flood 

reforecasts and compared their forecast skills with those of RFC archived forecasts for a transect 

of seven river basins along the coastal Western U.S.  

Our reforecast/forecast evaluation showed that:  

1) For POT 3 flood magnitude forecasts, both Noah-MP and RFC show high skill within a 

60-hour lead time, but their accuracies rapidly decline thereafter. In northern basins, 

Noah-MP exhibits comparative performance to NWRFC considering both bias and 

variability, for periods up to 60 hours before the observed peak. Conversely, in the 

southern basins, Noah-MP underperforms compared to RFC. While both models often 

underestimate flood peaks, Noah-MP does so more substantially, and this tendency to 

underestimate grows with increased lead time. 

2) For POT3 floods peak time forecast in the northern basins, Noah-MP shows competitive 

predictions regarding both bias and variability. As lead time grows, the variability in 

peak timing predictions also increase for both Noah-MP and NWRFC, with Noah-MP 
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typically predicting earlier peaks and NWRFC later ones than observed. In the southern 

basins, while both Noah-MP and CNRFC perform well within a 48-hour lead time, 

Noah-MP's accuracy noticeably diminishes beyond that, showing a pronounced early 

bias with more variability than NWRFC. 

3) For major floods (top three floods in each basin) magnitude forecast, Noah-MP is 

competitive with RFC in the northern basins but falls short in the southern ones. Across 

all basins, Noah-MP displayed higher variability than RFCs.  

4) For major floods peak time forecast, Noah-MP consistently underperformed compared 

to RFCs across all study basins, both in timing accuracy and variability. Specifically, 

Noah-MP typically predicted earlier peaks, while NWRFC had a minor early bias and 

CNRFC leaned towards a later bias. 

5) For the largest floods, Noah-MP mostly produces comparable magnitudes with RFC 

forecasts, however has a tendency to predict earlier peaks than observed. Noah-MP's 

performance is comparable to RFC in certain events but falls short in others. 

In our study, we noted that Noah-MP tends to underperform in drier basins, which aligns with 

prior research findings. This underperformance is particularly evident in the southern region, 

where there are notable fluctuations in annual precipitation and streamflow compared to the 

northern areas. These significant variations in the south compound the challenges of making 

predictions. Additionally, we observed that forecast errors could be attributed to inaccuracies in 

the predicted precipitation (QPF). QPF predictions are less precise in the southern region than in 

the north, which mirrors the trends we noted with Noah-MP. Currently, the model operates on a 

uniform configuration, assuming consistent model physics for all basins. The chosen physics might 

not be ideal since the most effective setup could vary between wet and dry basins. Future studies 
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might benefit from employing basin-specific configurations and enhancing calibration by factoring 

in both peak flow timings and magnitudes. 

Overall, our research highlights the potential of Noah-MP for flood forecasting, particularly 

in the northern basins, provided that suitable parameter selection and calibration are employed 

while more improvements should be done in southern drier basins.  This could make a significant 

contribution to flood forecasting in the U.S., considering Noah-MP forms the hydrological core of 

the NWM. 

 

 

Acknowledgements 

We would like to thank Peter Fickenscher at NOAA for his sharing of the CNRFC flood 

forecasts. We thank Stephen King at NOAA for his sharing of the NWRFC flood forecasts. This 

work used the COMET supercomputer at UCSD. 

  



 

82 
 

References 

Agnihotri, J. and P. Coulibaly, 2020: Evaluation of Snowmelt Estimation Techniques for Enhanced 

Spring Peak Flow Prediction. Water, 12(5), p.1290. 

Bass, B., S. Rahimi, N. Goldenson, A. Hall, J. Norris, and Z.J. Lebow, 2023: Achieving Realistic 

Runoff in the Western United States with a Land Surface Model Forced by Dynamically 

Downscaled Meteorology. Journal of Hydrometeorology 24: 269-283. 

Brunner, G. and H. RAS, 2008: River analysis system hydraulic reference manual. Do Defense, 

Davis. 

Burnash, R., and R. Ferral, 1973: A Generalized Streamflow Simulation System. U.S. Department 

of Commerce, National Weather Service, and State of California. 

Cai, X., Z.-L. Yang, C. H. David, G.-Y. Niu, and M. Rodell, 2014: Hydrological evaluation of the 

Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res. Atmos., 119, 

23–38, https://doi.org/10.1002/2013JD020792. 

Dettinger, M.D., F.M. Ralph, T. Das, P.J. Neiman, and D.R. Cayan, 2011: Atmospheric rivers, 

floods and the water resources of California. Water, 3(2), 445-478. 

Dickinson, R. E., A. Henderson-Sellers, & P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer 

Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. 

Note TN383+STR, NCAR. 

Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. 

Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and 

precipitation across the conterminous United States. Int. J. Climatol., 28, 2031–2064, 

https://doi.org/10.1002/joc.1688 

https://doi.org/10.1002/2013JD020792


 

83 
 

Duan, Q., and Coauthors, 2006: Model parameter estimation experiment (MOPEX): An overview 

of science strategy and major results from the second and third workshops. J. Hydrol., 320, 

3–17, https://doi.org/10.1016/j.jhydrol.2005. 07.031. 

Duan, Q., S. Sorooshian, and V. Gupta, 1992: Effective and efficient global optimization for 

conceptual rainfall-runoff models. Water Resour. Res., 28, 1015–1031, https://doi.org/ 

10.1029/91WR02985. 

Franz, K. J., H. C. Hartmann, S. Sorooshian, and R. Bales, 2003: Verification of National Weather 

Service Ensemble Streamflow Predictions for Water Supply Forecasting in the Colorado 

River Basin. J. Hydrol., 4(6):1105-18, https://doi.org/10.1175/1525-

7541(2003)004<1105:VONWSE>2.0.CO;2 

Feng, X., A. Rafieeinasab, L. Karsten, W. Wu, D. Kitzmiller, Y. Liu, B. Cosgrove, L. Read,  A. L. 

Dugger, Y. Zhang  and K. FitzGerald, 2019: December. Calibrating the National Water Model 

V2. 1 over the Contiguous United States. In AGU Fall Meeting Abstracts (Vol. 2019, H43I-

2134). 

Jenkinson, A. F., 1955: The frequency distribution of the annual maximum (or minimum) of 

meteorological elements. Quart. J. Roy. Meteor. Soc., 81, 158–171, 

doi:10.1002/qj.49708134804. 

Gochis, D., and Coauthors, 2019: Overview of National Water Model Calibration: General strategy 

and optimization. National Center for Atmospheric Research, accessed 1 January 2023, 30 

pp.,https://ral.ucar.edu/sites/default/files/public/9_RafieeiNasab_CalibOverview_CUAHSI_

Fall019_0.pdf 

Gochis, D.J., M. Barlage, R. Cabell, M. Casali, A. Dugger, K. FitzGerald, M. McAllister, J. 

McCreight, A. RafieeiNasab, L. Read, K. Sampson, D. Yates, Y. Zhang, 2020: The WRF-

https://doi.org/10.1016/j.jhydrol.2005.%2007.031
https://doi.org/10.1175/1525-7541(2003)004%3C1105:VONWSE%3E2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004%3C1105:VONWSE%3E2.0.CO;2


 

84 
 

Hydro® modeling system technical description, (Version 5.2.0).  NCAR Technical Note. 108 

pages. Available online at: https://ral.ucar.edu/sites/default/files/public/projects/wrf-

hydro/technical-description-user-guide/wrf-hydrov5.2technicaldescription.pdf 

Gupta, H. V., T. Wagener, and Y. Liu, 2008: Reconciling theory with observations: Elements of a 

diagnostic approach to model evaluation. Hydrol. Processes, 22, 3802–3813, https:// 

doi.org/10.1002/hyp.6989. 

Gupta, H. V. et al.,2009: Decomposition of the mean squared error and NSE performance criteria: 

Implications for improving hydrological modelling. Journal of Hydrology, 377, 80-91. 

Holtzman, N.M., T. M. Pavelsky, J. S. Cohen, M. L. Wrzesien and J. D. Herman, 2020: Tailoring 

WRF and Noah‐MP to improve process representation of Sierra Nevada runoff: Diagnostic 

evaluation and applications. Journal of Advances in Modeling Earth Systems, 12(3), 

p.e2019MS001832. 

Institute for Business & Home Safety, 2001: Subcommittee on Natural Disaster Reduction. 

Lessons from Living with Earth’s Extremes. Washington, D.C. 

Knoben, W.J., J. E. Freer and R. A. Woods, 2019: Inherent benchmark or not? Comparing Nash–

Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 

4323-4331. 

Kundzewicz, Z.W. and Z. Kaczmarek, 2000: Coping with hydrological extremes. Water 

International, 25(1), 66-75. 

Lang, M., T. Ouarda, and B. Bobee, 1999: Towards operational guidelines for over-threshold 

modeling. J. Hydrol., 225, 103117, https://doi.org/10.1016/S0022-1694(99)00167-5. 

https://doi.org/10.1016/S0022-1694(99)00167-5


 

85 
 

Lahmers, T. M., H. Gupta, C. L. Castro, D. J. Gochis, D. Yates, A. Dugger, D. Goodrich and P. 

Hazenberg,  2019: Enhancing the structure of the WRF-hydro hydrologic model for semiarid 

environments. Journal of Hydrometeorology, 20(4):691-714. 

Lahmers, T.M., et al., 2021: Evaluation of NOAA national water model parameter calibration in 

semiarid environments prone to channel infiltration. Journal of Hydrometeorology, 22(11), 

2939-2969. 

Lespinas, F., A. Dastoor, and V. Fortin, 2017: Performance of the dynamically dimensioned search 

algorithm: influence of parameter initialization strategy when calibrating a physically based 

hydrological model. Hydrol. Res., 49 (4), 971–988. 

Lin, P., M. A. Rajib, Z.-L. Yang, M. Somos-Valenzuela, V. Merwade, D. R. Maidment, Y. Wang, 

and L. Chen, 2018: Spatiotemporal Evaluation of Simulated Evapotranspiration and 

Streamflow over Texas Using the WRF-Hydro-RAPID Modeling Framework. J. Amer. Water 

Resour. Assoc., 54, 40–54. 

Mascaro, G., A. Hussein, A. Dugger, and D. J. Gochis, 2023: Process‐based calibration of WRF‐

Hydro in a mountainous basin in southwestern US. JAWRA Journal of the American Water 

Resources Association, 59(1), 49-70. 

NCAR, 2022: Noah-Multiparameterization Land Surface Model (Noah-MP LSM). Accessed 1 

July, 2022, https://ral.ucar.edu/solutions/products/noah-multiparameterization-landsurface-

model-noah-mp-lsm. 

National Weather Service, 2014: United States Flood Loss Report - Water Year 2014. 

https://www.nws.noaa.gov/os/ water/Flood%20Loss%20Reports/WY14%20Flood%20Loss% 

20Summary.pdf. 

https://ral.ucar/


 

86 
 

National Weather Service, 2017: United States Flood Loss Report - Water Year 2017. 

https://www.weather.gov/media/water/WY17%20Flood%20Deaths%20and%20Direct%20

Damagesv2.pdf 

National Hydrologic Warning Council, 2002: Use and Benefits of the National Weather Service 

River and Flood Forecasts. https://www.weather.gov/media/water/AHPS_Benefits.pdf 

Niu, G. Y., Z. L. Yang, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, A. Kumar, et al., 2011: The 

Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 1. 

Model Description and Evaluation with Local-Scale Measurements. J. Geophys. Res. Atmos., 

116, 1–19. 

Niu, G. Y., Z. L. Yang, R. E. Dickinson, & L. E. Gulden, 2005: A simple TOPMODEL‐based runoff 

parameterization (SIMTOP) for use in global climate models. Journal of Geophysical 

Research: Atmospheres, 110(D21). 

Niu, G.-Y., Z.L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple 

groundwater model for use in climate models and evaluation with Gravity Recovery and 

Climate  Experiment data. Journal of Geophysical Research, 112, D07103, 

https://doi.org/10.1029/2006JD007522. 

NOAA. 2016: “National Water Model.” Improving NOAA's Water Prediction Service. 

https://water.noaa.gov/docum ents/wrn-national-water-model.pdf. 

NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and 

Climate Disasters (2023). https://www.ncei.noaa.gov/access/billions/, DOI: 10.25921/stkw-

7w73 

https://www.weather.gov/media/water/WY17%20Flood%20Deaths%20and%20Direct%20Damagesv2.pdf
https://www.weather.gov/media/water/WY17%20Flood%20Deaths%20and%20Direct%20Damagesv2.pdf


 

87 
 

Quenum, G.M.L.D., J. Arnault, N.A.B. Klutse, Z. Zhang, H. Kunstmann, and P.G. Oguntunde,  

2022: Potential of the coupled WRF/WRF-hydro modeling system for flood forecasting in 

the Ouémé River (West Africa). Water, 14(8):1192. 

Reed, S., V. Koren, M. Smith, Z. Zhang, F. Moreda, D.J. Seo, and D.M.I.P. Participants, 2004: 

Overall distributed model intercomparison project results. Journal of Hydrology, 298(1-4), 

27-60. 

Rogers, D. and V. Tsirkunov, 2011: Costs and benefits of early warning systems. Global 

assessment rep. 

Rojas, M., F. Quintero, and W. F. Krajewski, 2019: Performance of the National Water Model in 

Iowa Using Independent Observations. J. Amer. Water Resour. Assoc., 56, 568–585. 

Salas, F. R., M. A. Somos-Valenzuela, A. Dugger, D. R. Maidment, D. J. Gochis, C. H. David, W. 

Yu, D. Ding, E. P. Clark, and N. Noman, 2018: Towards Real-Time Continental Scale 

Streamflow Simulation in Continuous and Discrete Space. J. Amer. Water Resour. Assoc., 54, 

7–27. 

Schaake, J. C., V. I. Koren, Q.-Y. Duan, K. Mitchell, & F. Chen, 1996: Simple water balance model 

for estimating runoff at different spatial and temporal scales. Journal of Geophysical Research, 

101(D3), 7461–7475. https://doi.org/10.1029/95JD02892 

Sofokleous, I., A. Bruggeman, C. Camera, and M. Eliades, 2023: Grid-based calibration of the 

WRF-Hydro with Noah-MP model with improved groundwater and transpiration process 

equations. Journal of Hydrology, 617:128991. 

Sun, M., Z. Li, C. Yao, Z. Liu, J. Wang, A. Hou, K. Zhang, W. Huo, and M. Liu, 2020: Evaluation 

of flood prediction capability of the WRF-hydro model based on multiple forcing scenarios. 

Water, 12(3):874. 

https://doi.org/10.1029/95JD02892


 

88 
 

Tolson, B. A. and C. A. Shoemaker, 2007: Dynamically dimensioned search algorithm for 

computationally efficient watershed model calibration. Water Resour. Res., 43, W01413, 

https://doi.org/10.1029/2005WR004723. 

USGS, 2018: USGS EROS archive - Land Cover Products – Global Land Cover Characterization 

(GLCC). Accessed 1 July 2022, https://doi.org/10.5066/F7GB230D. 

Viterbo, F., K. Mahoney, L. Read, F. Salas, B. Bates, J. Elliott, B. Cosgrove, A. Dugger, D. Gochis, 

and R. Cifelli, 2020: A multiscale, hydrometeorological forecast evaluation of national water 

model forecasts of the May 2018 Ellicott City, Maryland, Flood. Journal of 

Hydrometeorology, 21(3), 475-499. 

WRF-Hydro Development Team, 2020: How to Build & Run WRF-Hydro V5.1.1 in Standalone 

Mode. 

https://ral.ucar.edu/sites/default/files/docs/water/howtobuildrunwrfhydrov511instandalonem

ode.pdf, accessed July 31,2022 

Xia Y., and coauthors, 2012: Continental‐scale water and energy flux analysis and validation for 

the North American Land Data Assimilation System project phase 2 (NLDAS‐2): 1. 

Intercomparison and application of model products. Journal of Geophysical Research: 

Atmospheres, 117(D3).  

https://doi.org/10.5066/F7GB230D
https://ral.ucar.edu/sites/default/files/docs/water/howtobuildrunwrfhydrov511instandalonemode.pdf,%20accessed
https://ral.ucar.edu/sites/default/files/docs/water/howtobuildrunwrfhydrov511instandalonemode.pdf,%20accessed


 

89 
 

Chapter 4 Improving Runoff Simulation in the Western United States with Noah-MP and 

VIC 

This chapter is submitted to Hydrology and Earth System Sciences as 

Lu Su, Dennis P. Lettenmaier, Ming Pan, Benjamin Bass, 2023: Improving Runoff Simulation in 

the Western United States with Noah-MP and VIC., Hydrology and Earth System Sciences (under 

review). 

The supplemental material for this chapter is provided in Appendix C. 

Abstract 

Streamflow forecasts are critical for water and environmental management, especially in the 

water-short Western U.S.. Land Surface Models (LSMs), such as the Variable Infiltration Capacity 

(VIC) model and the Noah-Multiparameterization (Noah-MP) play an essential role in providing 

comprehensive runoff forecasts across the region. Virtually all LSMs require parameter estimation 

to optimize their predictive capabilities. We describe a systematic calibration of parameters for 

VIC and Noah-MP over 263 river basins in the Western U.S., and distribution of the calibrated 

parameters over the entire region. Post-calibration results showed a notable improvement in model 

accuracy in the calibration basins: the median daily streamflow Kling-Gupta Efficiency (KGE) for 

VIC rose from 0.37 to 0.70, and for Noah-MP, from 0.22 to 0.54. Employing the donor-basin 

regionalization method, we developed transfer relationships to hydrologically similar basins and 

extended the calibrated parameters to ungauged basins and the entire region. We assessed factors 

that influence calibration efficiency and model performance using regional parameter estimates. 

We evaluated high and low flow simulation capabilities of the two models and observed marked 

improvements after calibration and regionalization. We also generated gridded parameter sets for 
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both models across all 4816 HUC-10 basins in the Western U.S., a data set that is intended to 

support regional hydrologic studies and hydrologic climate change assessments. 

4.1 Introduction 

Streamflow forecasts play a key role in various aspects of water and environmental 

management, especially in the Western U.S. (WUS). In the short term, these forecasts provide 

early warnings for impending flood events, thereby enabling timely preparation and response to 

mitigate immediate flood risk and damages (Maidment, 2017). They also serve as crucial input for 

managing reservoirs effectively for water supply (Raff et al., 2013), hydroelectric power 

generation (Boucher & Ramos, 2018), and river navigation (by providing a basis for predicting 

water levels) (Federal Institute of Hydrology, 2020).  In the longer term, streamflow forecasts 

enable water utilities and agencies to plan water distribution within and across multiple uses—

urban, agricultural, and industrial—which is especially vital during drought conditions when 

efficient water use becomes a necessity (Anghileri et al., 2016). Streamflow forecasts also aid in 

understanding and predicting the impacts of climate change on water systems, thereby informing 

adaptive strategies for water resource management. Thus, in both short and longer-term contexts, 

streamflow forecasts are an important tool for promoting sustainable water practices and resilience 

to water-related challenges. 

Streamflow forecasts are derived via a synthesis of hydrometeorological data, statistical 

methodologies, and computational modeling. Direct measurement of runoff is an important 

element of streamflow forecasts, however it is only possible in river basins with well-developed 

observational infrastructure (Sharma and Machiwal, 2021). This limitation leaves vast areas, often 

critical to water resource management and climatology, without direct runoff observations on 

which to base streamflow forecasts. As an alternative, Land Surface Models (LSMs) can be used 
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to simulate streamflow. LSMs typically are forced with air temperature, precipitation and other 

meteorological forcings. By integrating climatic, topographic, and land-use information, they can 

fill streamflow observation gaps and provide comprehensive, spatially distributed runoff forecasts 

(Fisher and Koven, 2020). The capabilities of LSMs equip us with the necessary tools to produce 

streamflow forecasts that can be used to prepare for severe weather conditions, form the basis for 

water resource management, and inform water management associated with our evolving climate. 

These benefits hold true irrespective of the limitations associated with direct streamflow 

observations. Through off-line simulations and reconstructions, LSMs enable us to gain insights 

into land surface hydrology at various scales - regional, continental, and global. 

The parameterization of the underlying hydrological processes varies across different LSMs, 

but virtually all models require some level of parameter estimation based on historical observed 

streamflow data at forecast point, to ensure trustworthy predictions throughout the region (Beven, 

1989; Troy et al., 2008; Gong et al., 2015). In cases where observations don’t exist, parameters 

can be transferred from river basins where they do (Arsenault and Brissette, 2014).  In cases where 

observations do exist but aren’t current, we can use a shorter span of historical streamflow data for 

model calibration and subsequently produce streamflow forecasts using meteorological forcings 

when observed streamflow data aren’t available.  

The process of calibration can be computationally demanding, and prior research typically 

has focused on obtaining parameters appropriate to facilitating model simulations that match 

observations as closely as possible at the observation point (Duan et al., 1992; Tolson and 

Shoemaker, 2007). Most previous studies have concentrated on a limited number of basins and a 

single model (e.g. Mascaro et al., 2023; Sofokleous et al., 2023; and Gou et al., 2020). Here, we 

aim to establish parameterizations for two LSMs -- the Variable Infiltration Capacity (VIC) model 
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and the Noah-Multiparameterization (Noah-MP) LSM across the WUS.  Both models have found 

extensive application both within the U.S. and internationally (Mendoza et al., 2015; 

Tangdamrongsub, 2023).  The approach we use involves the application of globally optimized 

calibration methods and regionalization, with the objective of facilitating these models to provide 

reliable runoff simulations. 

In particular, we explore and elucidate (i) the choice of physical parameterizations and 

calibration of land surface parameters, (ii) extension of these calibrated parameters to areas without 

gauges, and (iii) factors that influence calibration efficiency and LSM performance using regional 

parameter estimates. In the case of Noah-MP, which offers multiple runoff generation (physics) 

options, our initial step involves choosing the most effective runoff parameterization option. 

Following this, we perform the calibration of land surface parameters. In the case of the VIC model, 

the runoff parameterization scheme is predetermined, so we commence immediately with 

calibration. We implemented calibration in 263 basins across the WUS where streamflow 

observations were available (see section 4.2.1 for details) and compared simulated and observed 

streamflow as the model predictions were affected by soil and other land surface properties. Our 

second step extended the initial calibrated land surface parameters to ungauged basins. We then 

explored the variables that most impact the calibration proficiency of Noah-MP and VIC across 

the WUS.  In section 4.4, we employ a regionalization technique known as the donor basin method, 

as implemented by Bass et al. (2023). Finally, we evaluate both flood and low flow simulation 

skills for the baseline, and after calibration and regionalization.  
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4.2 Study basins, land surface models and forcing dataset overview 

4.2.1 Study Basins 

We selected 263 river basins distributed across the WUS. Most of the basins were from USGS 

Gages II reference basins (Falcone, 2011) which have minimum upstream anthropogenic effects 

such as dams and diversions.  Among these basins, our selection criteria included having at least 

20 years of record, and a minimum drainage area of 144 square kilometers, which is the size of 

four model grid cells. In addition to 250 Gages II reference stations, we included 13 basins located 

in California's Sierra Nevada for which natural flows are available from the California Department 

of Water Resources (2021). The geographical distribution of the 263 basins is shown in Figure 4.1. 

We focused on the hydrological models’ calibration to full natural flow (the same as observed 

streamflow for GAGES II stations; estimated by DWR for the 13 Sierra Nevada sites), which 

indicates water flow conditions devoid of human interventions like reservoirs or diversions. Each 

basin was calibrated using the most recent 20-year period when the observation is available.  

 

Figure 4.1 263 river basins for which calibration was performed. The Gages II reference basins are 

delineated with red boundaries and the CA Sierra Nevade basins with green boundaries. 
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4.2.2 Land Surface Models 

We included two widely used hydrological models, VIC (Liang et al., 1994) and Noah-MP 

(Niu et al., 2011). This decision was informed by the varying levels of complexity these two 

models offer in conceptualizing the effects of vegetation, soil, and seasonal snowpack on the land 

surface energy and water balances (refer to Table 4.1 for more details).  The two models also use 

different parameterizations for certain hydrological processes, including unique model equations 

for canopy water storage, base flow, and other processes. Both of these hydrological model 

structures have found extensive application both within the U.S. and internationally, as indicated 

by Mendoza et al. (2015) and Tangdamrongsub (2023).  

To generate streamflow, the gridded runoff from Noah-MP and VIC was accumulated over 

each watershed. We didn't implement routing since its impact on daily streamflow simulations was 

small given the relatively small size of most of the basins.  This aligns with earlier research (e.g., 

Li et al., 2019). However, in both the case of VIC and Noah-MP, the output of our simulations 

(runoff) could be used as input to routing models, such as those that are options in the 

implementation of both models. 

4.2.2.1 VIC 

VIC is a macroscale, semi-distributed hydrologic model (described in detail by Liang et al 

1994) that determines land surface moisture and energy states and fluxes by solving the surface 

water and energy balances. VIC is a research model and in its various forms it has been employed 

to study many major river basins worldwide (e.g. Adam et al., 2003 & 2006; Livneh et al., 2013; 

Schaperow et al., 2021). This model enjoys a broad user community — as per the citation index 

Web of Science, the initial VIC paper has been referenced more than 2600 times, with contributing 

authors spanning at least 56 different countries (Schaperow et al., 2021). We obtained initial VIC 
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model parameters from Livneh et al., 2013, who validated model discharges over major CONUS 

river basins. The origins of the soil and land cover data are outlined in Table 4.1. The version of 

the VIC model implemented here is 4.1.2, and it operates in energy balance mode.  

Table 4.1 Overview of hydrologic model components and parameter data sources. 

Model Snow 
accumulatio
n and melt 

Moisture in the soil 
and column/surface 

runoff 

Base flow  
Canopy 
storage 

Vegetation 
data 

Soil data 

VIC 
(V4.1.2) 

Two-layer 
energy–mass 

balance 
model 

Infiltration capacity 
function. Vertical 

movement of moisture 
through soil follows 

1D Richards equation. 

A function of the 
soil moisture in 
the third layer. 
Linear below a 
soil moisture 
threshold and 

becomes nonlinear 
above that 

threshold. (Liang 
et al., 1994) 

Mosaic 
representati

on of 
different 

vegetation 
coverages 

at each cell. 

University 
of 

Maryland 
1-km 

Global 
Land Cover 
Classificati
on (Hansen 
et al., 2000) 

1-km 
STATSGO 
database 

(Miller and 
White, 
1998) 

NOAH-
MP 

(WRF-
HYDR
O 5.2.0) 

Three-layer 
energy–mass 

balance 
model that 
represents 

percolation, 
retention, 

and 
refreezing of 

meltwater 
within the 
snowpack. 

1. TOPMODEL‐
based runoff 

scheme 

Simple 
groundwater 

(hereafter 
SIMGM) (Niu et 

al., 2007) 

Semi-tile 
approach 

for 
computing 
longwave, 
latent heat, 

sensible 
heat and 

ground heat 
fluxes 

MODIS 30-
second 

Modified 
IGBP 20-
category 

land cover 
product 

 

1-km 
STATSGO 
database 

(Miller and 
White, 
1998) 2. Simple 

TOPMODEL‐
based runoff 

scheme with an 
equilibrium water 

table (hereafter 
SIMTOP) 

Similar to 
SIMGM, but with 
a sealed bottom of 

the soil column 
(Niu et al., 2005) 

3. Infiltration‐excess‐
based surface 
runoff scheme 

Gravitational free‐
drainage 

subsurface runoff 
scheme (Schaake 

et al., 1996) 
4. BATS runoff 

scheme, which 
parameterized 

surface runoff as a 

Gravitational free 
drainage 

(Dickinson et al., 
1993) 
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4th power function 
of the top 2 m soil 
wetness (degree of 

saturation) 

4.2.2.2 Noah-MP 

Noah-MP is a state-of-the-art LSM originally designed as the land surface scheme for 

numerical weather prediction (NWP) models like the Weather Research and Forecasting (WRF) 

regional atmospheric model. Currently, it's being utilized for physically based, spatially-distributed 

hydrological simulations as a component of the National Water Model (NWM) (NOAA, 2016). It 

enhances the functionalities of the Noah LSM (as per Chen et al., 1996 and Chen and Dudhia, 

2001) previously used in NOAA’s suite of numerical weather prediction models by offering 

multiple options for key processes that control land-atmosphere transfers of moisture and energy. 

These include surface water infiltration, runoff, evapotranspiration, groundwater movement, and 

channel routing (see Niu et al., 2007; 2011). The model has been widely used for forecasting 

seasonal climate, weather, droughts, and floods not only across the continental United States 

(CONUS) but also globally (Zheng et al., 2019). 

4.2.3 Forcing Dataset 

We ran both models at a 3-hour time step and at 1/16∘ latitude–longitude spatial resolution. 

The forcings were the gridded observation dataset developed by Livneh et al. (2013) and extended 

to 2018 by Su et al. (2021) (hereafter referred to as L13). This data set spans the period from 1915 

to 2018. For the VIC model, the L13 dataset provided daily values of precipitation, maximum and 

minimum temperatures, and wind speed (additional variables used by VIC including downward 

solar and longwave radiation, and specific humidity, are computed internally using MTCLIM 

algorithms as described by Bohn et al., 2013). The Noah-MP model, on the other hand, necessitated 

additional meteorological data such as specific humidity, surface pressure, and downward solar 
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and longwave radiation, in addition to precipitation, wind speed, and air temperature. We used the 

MTCLIM algorithms, as detailed by Bohn et al. (2013), to calculate specific humidity and 

downward solar radiation. We employed the Prata (1996) algorithm to compute the downward 

longwave radiation. Additionally, we deduced surface air pressure by considering the grid cell 

elevation in conjunction with standard global pressure lapse rates. Following this, we transitioned 

the daily data to hourly metrics using a cubic spline to interpolate between Tmax and Tmin, and 

derived other variables using the methods explained by Bohn et al. (2013). Lastly, we distributed 

the daily precipitation evenly across three hourly intervals. 

4.3 Model calibration 

4.3.1 Calibration methods 

The initial step in our calibration effort was to optimize the land surface parameters of the 

two models for the 263 WUS basins. These parameters, primarily soil properties which can exhibit 

a substantial degree of uncertainty, were iteratively updated via hundreds of simulations to 

accurately reflect streamflow conditions in each basin.  We calibrated six parameters for VIC and 

five for Noah-MP. This selection was guided by past research and the computational resources we 

had at our disposal (Mendoza et al., 2015; Hussein, 2020; Shi et al., 2008; Holtzman et al., 2020; 

Bass et al., 2023; Schaperow et al., 2023). Each parameter underwent consideration across a 

physically viable range (refer to Table 4.2), drawing from values utilized in prior studies (Cai et 

al., 2014; Mendoza et al., 2015; Hussein, 2020; Shi et al., 2008; Gochis et al., 2019; Holtzman et 

al., 2020; Lahmers et al., 2021; Bass et al., 2023; Schaperow et al., 2023). Through our iterative 

calibration method, each subsequent simulation learns from the previous ones using algorithms 

designed to reduce the discrepancy between the simulated and observed streamflow. 
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For VIC parameter estimation, we employed the Shuffled Complex Evolution algorithm 

developed at the University of Arizona (SCE-UA, Duan et al., 1992). This method is a global 

optimization method widely used in hydrology and environmental modeling, owing to its 

robustness and efficiency when addressing complex, non-linear, and multi-modal objective 

functions (Naeini et al., 2015). 

For the Noah-MP model, which requires more computational core-hours per simulation, we 

used the Dynamically Dimensioned Search (DDS) algorithm of Tolson and Shoemaker (2007). 

This algorithm, specifically crafted for high-dimensional and computationally intensive problems, 

offers generally greater efficiency than SCE-UA. NOAA employs the DDS algorithm for their 

CONUS implementation of NWM, which is grounded in Noah-MP (Gochis et al., 2019). We 

evaluated both calibration methods (DDS and SCE-UA) for VIC for 20 randomly chosen basins 

and obtained similar results. For VIC, we chose SCE-UA due to its inherent compatibility with the 

model and because the additional computation (relative to DDS) was less important given that the 

inherent computation required for VIC is considerably less than for Noah-MP.  

In our application of SCE-UA, we performed a maximum of 3000 iterations for each basin, 

while the DDS method employed 250 iterations for each basin for Noah-MP. Each basin was 

calibrated using the most recent 20 years of streamflow data. For both models, our objective 

function was the Kling-Gupta Efficiency (KGE, Gupta et al., 2009) metric for daily streamflow. 

KGE is a widely used performance measure because of its advantages in orthogonally considering 

bias, correlation and variability (Knoben et al., 2019). KGE = 1 indicates perfect agreement 

between simulations and observations; KGE values greater than -0.41 indicate that a model 

improves upon the mean flow benchmark (Konben et al., 2019).  
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Table 4.2 Calibration methods, parameters and modifications to their initial default values evaluated in the 

calibration. 

Model VIC Noah-MP 
Calibration 

Method SCE-UA DDS 

Iterations 3000 250 

Calibrated 
Parameter 

Variable Infiltration 
Curve Parameter 

(INFILT) 

0.001 – 0.4 
(Shi et al., 

2008) 

Saturated 
Hydraulic Conductivity 

(Ksat) 
 

2 ×
10−9𝑡𝑡𝑡𝑡 0.07(Cai 

et al., 2014) 
 

Baseflow parameter 
(Ds) 

0.001 – 1.0 
(Shi et al., 

2008) 

Saturation soil 
moisture content 

(MAXSMC) 
 

0.1 to 0.71 
(Cai et al., 2014) 

Thickness of Soil in 
Layer 1 (Depth_1) 

0.01 – 0.2 
(Shi et al., 

2008) 

Pore size 
distribution index 

(Bexp) 
 

1.12 to 22 (Cai et 
al., 2014; Gochis 

et al., 2019) 

Total thickness of soil 
column (Depth_total) 

0.6 – 3.5 (Shi 
et al.,2008) 

 

Linear scaling of 
“openness” of bottom 

drainage boundary 
(Slope) 

0.1-1 (Lahmers et 
al., 2021) 

Max velocity 
parameter of baseflow 

(Dsmax) 
 

0.001 – 30 
(Schaperow 
et al., 2023) 

Parameter in surface 
runoff (REFKDT) 

0.1-10 (Lahmers 
et al., 2021) 

Fraction of max 
soil moisture where 
nonlinear baseflow 

occurs (Ws) 
 

0.001 – 1 
(Shi et al., 

2008) 
  

 

4.3.2 Noah-MP parameterization 

As specified in Table 4.1, Noah-MP has four runoff and groundwater physics options (rnf). 

Initially, we adopted the options that are incorporated in the NWM, as elaborated in Gochis et al. 

(2020). Before we could proceed with calibrating Noah-MP for all the WUS basins, it was 

necessary to determine suitable rnfs. To streamline computational time, we initially selected 50 

basins randomly from the total of 263 from which we created four experimental groups. Each 

group employed a different  rnf option.  We applied the DDS method to these groups and compared 
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the cumulative distribution functions (CDF) of their baseline and calibrated KGEs (Figure 4.2). 

From this figure, it's apparent that the KGE improved post-calibration for all four rnfs. Notably, 

rnf3, also known as free drainage, exhibited the most substantial performance enhancement after 

calibration. As a result, we chose to continue using this option which is incorporatead in the NWM. 

Nonetheless, it's worth noting that the use of different options for different basins—a feature 

currently not utilized in Noah-MP or WRF-Hydro—could potentially result in improved overall 

model performance.  

 

Figure 4.2 Streamflow performance (KGE of daily streamflow simulations) of different Noah-MP runoff 

parameterizations across 50 (of 263) randomly selected basins. The performances are shown for both 

baseline and calibrated simulations. 

 



 

101 
 

4.3.3 Calibration of gauged basins 

Following the selection of the most effective set of runoff generation options across the 

domain, we estimated model parameters for all 263 basins. The comparative performance of the 

models, before and after calibration, is shown in Figure 4.3. It's apparent from the figure that both 

Noah-MP and VIC have significantly enhanced their daily streamflow simulation skills post-

calibration. After calibration, the median KGE of Noah-MP improved from 0.22 to 0.54, and the 

VIC's median KGE increased from 0.37 to 0.70. When contrasting the two models, we observed 

that VIC outperformed Noah-MP both pre- and post-calibration. One possible explanation could 

be that the baseline VIC parameters were taken from Livneh et al. (2013), and these parameters 

had already been validated and adjusted for major U.S. basins (although not for our 263 basins 

specifically), while the Noah-MP parameters are default values from NWM. Another possibility is 

inherent differences in the physics of streamflow simulation between the two models (VIC 

primarily generates runoff via the saturation excess mechanism), although that isn’t the main focus 

of our research. 

Following the calibration with data from the past 20 years, we performed a test where we 

calibrated the streamflow using the first 10 years of data and validated with the subsequent 10 

years of data. This test revealed that the KGE distribution from the 10-year calibration is similar 

to that from the 20-year data. The median KGE values for Noah-MP and VIC after calibration with 

10 years of observations were 0.52 and 0.69, respectively. Correspondingly, the median KGEs 

during the validation period were 0.50 and 0.68, respectively, which are only slightly lower. These 

comparisons demonstrate general consistency over time in the performance of the calibrated 

parameters. 
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Figure 4.3 Cumulative Distribution Function (CDF) plot of the daily streamflow KGE for (a) VIC and (b) 

Noah-MP, comparing baseline and calibrated runs across all 263 basins. 

We examined the spatial variability of daily streamflow KGE for Noah-MP and VIC, both 

before and after the calibration (see Figure 4.4). The highest baseline KGEs are along the Pacific 

Coast, in central to northern CA for both models. VIC's baseline KGE generally is high in the 

Pacific Northwest. Post-calibration improvements occurred for both models in most areas, 

especially in regions where the baseline KGE was low, such as southern CA and the southeastern 

part of the study region. Median improvements after calibration were 0.27 for Noah-MP and 0.30 

for VIC. 

We observed that basins displaying higher KGE values typically were more humid than those 

with lower KGE. To further delve into the relationship between KGE and basin characteristics, we 

explored correlations between KGE and 21 different characteristics, including drainage area, 

elevation, seasonal/annual average temperature and precipitation, annual maximum precipitation, 

and seasonal/annual runoff ratio. Of these, 12 characteristics were statistically significantly 

correlated with the VIC KGE, including four seasonal and annual runoff ratios; mean precipitation 
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in winter, spring, and fall; annual maximum precipitation; and minimum elevation. Figure 4.5 

shows scatterplots of eight representative characteristics. Apart from minimum elevation and mean 

summer temperature, all other characteristics were positively correlated with KGE. Typically, 

spring runoff ratio, annual runoff ratio, mean annual max precipitation, and mean winter 

precipitation exhibited the highest correlations with KGE. This implies that basins with higher 

runoff ratios (particularly in spring), higher precipitation (especially maximum precipitation), 

lower summer temperature, and lower elevation are more likely to exhibit strong VIC performance. 

The same applies to Noah-MP, as indicated in Figure 4.6, although Noah-MP showed relatively 

weaker correlations. Correlations between mean summer temperature and mean fall precipitation 

and Noah-MP KGE weren’t statistically significant. 

The spatial distribution of the eight characteristics is qualitatively similar with the KGE 

spatial distribution, as shown in Figure 4.7. Generally, basins with higher KGE have higher 

characteristic values when the correlation is positive, and lower characteristic values when the 

correlation is negative. 
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Figure 4.4 Spatial distribution of basins’ daily streamflow KGE for Noah-MP baseline (1); calibrated Noah-

MP (2); difference between calibrated and baseline Noah-MP; VIC baseline (4); calibrated VIC (5); 

difference between calibrated and baseline VIC. 
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Figure 4.5 Scatterplots of VIC KGE in relation to significantly correlated characteristics. Each subplot 

indicates the corresponding Pearson correlation coefficients and the P-value. 
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Figure 4.6 Scatterplot of Noah-MP KGE in relation to significantly correlated characteristics. Each subplot 

indicates the corresponding Pearson correlation coefficients and the P-value. 
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Figure 4.7 Spatial distribution of characteristics that are statistically significantly correlated with KGE. 

Note that all characteristics are significantly correlated with VIC KGE whereas only (1)-(6) are significantly 

correlated with Noah-MP KGE. 
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4.4 Regionalization 

Following the calibration process, we regionalized the parameters from gauged to ungauged 

basins based on a mathematical assessment of the spatial and physical proximity between the 

gauged and ungauged basins, following previous studies by Arsenault and Brissette (2014), and 

Razavi and Coulibaly (2017). We opted for this method over an alternate approach that first 

regionalizes the streamflow attributes (such as runoff depth, high flow indicators) and then 

standardizes the model throughout (as proposed by Castiglioni et al., 2010; Oubeidillah et al., 2014; 

and Yang et al., 2017). The reason for our choice is our interest in actual streamflow time series 

rather than metrics. We carried out the regionalization after calibrating to specific streamflow 

gauges, ensuring high precision for these gauged basins and facilitating high-quality 

regionalization in ungauged basins. Specifically, we employed a donor-basin approach where an 

ungauged basin adopts calibrated parameters from its most similar gauged basin(s). This method 

has been applied in many studies including Arsenault and Brissette (2014); Poissant et al. (2017); 

Razavi and Coulibaly (2017); Gochis et al. (2019); Qi et al. (2021) and Bass et al. (2023). 

In the donor-basin method, an ungauged basin inherits its land surface parameters from the 

most similar gauged basin(s) (or the top 'x' most similar gauged basins). Here, we evaluated the 

similarity or proximity between gauged and ungauged basins based on the similarity index SI as 

defined and used by Burn and Boorman (1993) and Poissant et al. (2017): 

𝑆𝑆𝑆𝑆 = ∑ |𝑋𝑋𝑖𝑖
𝐺𝐺−𝑋𝑋𝑖𝑖

𝑈𝑈|
𝛥𝛥𝑋𝑋𝑖𝑖

𝑘𝑘
𝑖𝑖=1                                   (13) 

In this formula, k stands for the total number of features considered, 𝑋𝑋𝑖𝑖𝐺𝐺 represents the ith feature 

of the gauged basin G, 𝑋𝑋𝑖𝑖𝑈𝑈 is the ith feature of a specific ungauged basin, and 𝛥𝛥𝑋𝑋𝑖𝑖 is the range of 

potential values for the ith feature, grounded in the data from the gauged basins. This yields a 

unique value of SI for each gauged basin, contingent on the specific ungauged basin it is compared 



 

109 
 

with. Typically, gauged basins that exhibit greater resemblance to the ungauged basin will have a 

smaller SI. 

We assessed the donor-basin method's efficacy using a cross-validation approach, where each 

gauged basin was treated as ungauged one at a time. The pseudo-ungauged basin inherits its 

hydrological parameters from its three most similar gauged basins, determined by SI. The 

parameters inherited are a weighted average from the three donor basins. After testing one to five 

donor basins, we found that using three donors yielded the best results. Thus, every basin inherits 

parameters from the three most similar gauged basins in each simulation, offering a concise 

evaluation of the donor-basin method's regionalization performance.  

We used 18 basin-specific features in the donor basin method, detailed in Table C1, calculated 

based on the forcings and parameters used in the study. For feature selection in the donor-basin 

method, we adopted an iterative approach. Each iteration added a single feature to the index, with 

the most beneficial feature (based on median KGE improvement) retained. This process was 

repeated until the median KGE no longer improved. Only basins with a KGE exceeding 0.3 were 

considered, following previous studies suggesting that inclusion of poorly performing basins can 

lower regionalization performance. We found that a KGE threshold of 0.3 resulted in a median 

performance improvement of 0.08 larger than did a KGE threshold of 0, hence it was chosen. After 

screening, 223 basins were utilized in VIC regionalization and 194 in Noah-MP regionalization. 

We found five features generated the best regionalization performance for VIC (longitude 

centroid, latitude centroid, maximum elevation, fall mean precipitation, and fall mean temperature) 

and three features were best for Noah-MP (latitude centroid, longitude centroid, and drainage area) 

(see Figure 4.8). Among them, latitude and longitude are the common features that contribute the 

most to regionalization when using the similarity index method. This suggests that geographical 
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similarities are the most important factor in parameter information transfer from gauged to 

ungauged basins.  

Upon evaluating the performance of baseline, calibrated, and regionalized simulations, the 

respective median daily KGEs for the VIC model were found to be 0.41, 0.71, and 0.49. For the 

Noah-MP, these values were 0.38, 0.60, and 0.49 (refer to Figures 4.8 & 4.9). These metrics are 

for basins that have a calibrated KGE greater than 0.3 only, resulting in higher median KGEs than 

for all 263 basins (See Figure 4.3). The KGE distribution also improved overall. It's noteworthy 

that the regionalization improvement relative to baseline is higher for Noah-MP than for VIC. 

While VIC's baseline and calibrated KGE skill distribution outperforms Noah-MP's, the 

regionalized skills of Noah-MP and VIC are quite comparable. This observation might be 

attributable to the constraints of the regionalization setup and could warrant future investigation. 

After optimizing the features and specific design of the donor-basin method, parameters were 

regionalized to 4816 ungauged USGS Hydrologic Unit Code (HUC) 10 basins across the WUS. 

HUCs are delineated and quality controlled by USGS using high-resolution DEMs. The final 

hydrologic parameters for both VIC and Noah-MP for all WUS HUC-10 basins are shown in 

Figures C1&2.  The baseline HUC-10 parameters are shown in Figures C3&4. 

  



 

111 
 

 

Figure 4.8 Best regionalization features for (a) VIC and (b) Noah-MP. The final regionalization to ungauged 

basins of the WUS incorporated all features up to the point marked by the red line since the addition of 

further features doesn't improve KGE. 
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Figure 4.9 CDF of daily KGE for (a) VIC and (b) Noah-MP, comparing baseline and calibrated runs across 

selected basins within the WUS. 

4.5 Evaluation of high and low flow simulation skills 

To understand the capabilities of the two models in reconstructing high and low streamflow, 

we assessed their performance across baseline, calibrated, and regionalized settings.  

(a) Evaluation of high flow performance 

We used the peaks-over-threshold (POT) method (Lang et al., 1999) to identify extreme 

streamflow events as in Su et al. (2023) and Cao et al. (2019, 2020). We first applied the event 

independence criteria from USWRC (1982) to daily streamflow data to identify independent 

events. We set thresholds at each basin that resulted in 3 extreme events per year on average. After 

selecting the flood events over the study period based on the observation, we sorted the floods 

based on the return period and then calculated the KGE of baseline, calibrated and regionalized 

floods. Figure 4.10 displays the associated CDF plots. The median KGE for baseline floods in 

Noah-MP was 0.14, which rose to 0.37 post-calibration, and receded to 0.22 after regionalization. 

For VIC, the flood KGE started at 0.11, increased to 0.41 after calibration, and declined to 0.20 

post-regionalization. As anticipated, these numbers are lower than (all) daily streamflow skill due 
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to our calibration target being daily streamflow. Still, flood competencies experienced considerable 

enhancement, surpassing the Noah-MP KGE benchmark of -0.41 found by Knoben et al. (2019). 

(b) Evaluation of low flow performance 

To assess low flow performance, we utilized the 7q10 metric. This hydrological statistic, 

commonly adopted in water resources management and environmental engineering, is the lowest 

7-day average flow that occurs (on average) once every 10 years (EPA, 2018). Scatterplots of 7q10 

(Figure 4.11) showed high correlation between our model's simulated low flows and the observed 

data. Post-calibration, this alignment intensified. The VIC model tended to underestimate the low 

flows. After calibration, the median bias improved from -23.6% to -9.9%, and with regionalization, 

it was -11.7%. In contrast, Noah-MP began with an 11.20% overestimation in the baseline, 

improved to 0.61% post-calibration, and was -9.5% after regionalization. The outcomes underline 

the proficiency of both models for low flow prediction, exhibiting enhanced competencies post-

calibration and commendable performance after regionalization. 

 

Figure 4.10  CDF of high flow KGE for (a) VIC and (b) Noah-MP, comparing baseline and calibrated runs 

across selected basins within the WUS. 
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Figure 4.11 Scatterplot of 7q10 low flows (the lowest 7-day average flow that occurs (on average) once 

every 10 years) for the baseline and calibrated and regionalized runs for (a) VIC model and (b) Noah-MP. 

The correlation coefficients, P-values and percentage bias are denoted in the upper section of the figures. 

The x axis is observed low flow and the y axis is simulated low flow. 

4.6 Summary 

Our objective was to produce parameter sets for VIC and Noah-MP over WUS that could be 

used in regional studies, and would result in better model performance than default or other “off 

the shelf” parameters. We identified preferred runoff generation options for Noah-MP (physics 

options are fixed in VIC) using a subset of our WUS basins (50 in total) for which we evaluated 

all four Noah-MP runoff generation options. Once we identified the optimal runoff generation 

options for Noah-MP, we identified (calibrated) parameters for both Noah-MP and VIC for each 

of our 263 basins across WUS using the most recently available 20-years of streamflow 

observations. Following calibration, the Noah-MP median KGE increased from 0.22 to 0.54, while 

the median VIC KGE rose from 0.37 to 0.70. VIC KGEs were higher than Noah-MP’s both before 

and after calibration across the 263 basins, possibly because the initial VIC parameters had the 
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benefit of some previous calibration, albeit for much larger river basins across WUS (in the case 

of post-calibration KGE, it’s unclear whether and how they might have been affected by the choice 

of initial parameters). Other possible cause of the differences could be inherent differences in 

streamflow simulation physics between the two models. We also conducted a test using the initial 

10 years of data for calibration and the following 10 years for validation, and found results that 

were consistent with those we obtained using the entire 20 years for calibration. 

Upon the selection of suitable parameterizations for Noah-MP and calibration of gauged 

basins for both VIC and Noah-MP, we extended the use of the calibrated parameters to ungauged 

basins across the WUS for both models. This extension was achieved through the donor-basin 

regionalization method, which allows ungauged basins to inherit parameters from gauged basins 

with similar hydroclimatic properties. We discovered that using a weighted combination of three 

similar basins yielded better regionalization results (in terms of KGE) compared to using the single 

most similar donor basin, as determined by a similarity index. Following regionalization, the 

median KGE for VIC rose from 0.41 to 0.49, and for Noah-MP it increased from 0.38 to 0.49 over 

the selected basins. Interestingly, even though the pre-regionalization KGE for VIC was 

considerably higher than for Noah-MP, the post-regionalization values for the two models were 

nearly identical.  Stated otherwise, the regionalization enhancement was considerably greater for 

Noah-MP than for VIC. We further evaluated high and low flow simulation skills and found the 

skill significantly improved after calibration for both VIC and Noah-MP and improvements 

remained after regionalization. Following calibration and regionalization, we developed gridded 

parameter sets for both models at 1/16° latitude-longitude resolution for all 4816 HUC-10 basins 

across the WUS. These parameter sets should be useful for regional hydrologic and river 

hydrodynamic modeling studies over all or parts of the WUS domain. Improving the accuracy of 
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the models’ predictions should have benefits for water management across the region, and more 

and more generally for understanding the potential impacts of climate change across the region. 

Moreover, the methods and procedures we utilized are not restricted to our current research domain; 

they could be transferred readily to other geographic regions.  In effect, our research contributes 

to both local and global efforts to understand and manage our critical hydrological systems better, 

demonstrating its broader relevance and utility. 
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Chapter 5 Conclusion 

This dissertation has aimed to provide a better understanding of the potential of subseasonal 

drought and National Water Model-based flood forecasting capabilities. Furthermore, it produced 

calibrated parameter sets for two widely used hydrological models across Western U.S., which 

should facilitate advances in regional hydrological modeling and prediction endeavors. In Chapter 

1, I posed three objectives that guided my research: 

(1) Investigate subseasonal forecast accuracy for drought onset and termination using SubX 

reforecasts. 

(2) Assess the flood forecasting capabilities of the National Water Model (Noah-MP) and 

compare it with current NWS River Forecast Center forecasts. 

(3) Develop high-resolution calibrated parameters across the Western U.S. for two widely 

used LSMs: the Variable Infiltration Capacity (VIC) model and Noah-MP. 

To address these questions, I conducted experiments using the Noah-MP and VIC 

hydrological models over the western U.S. and analyzed drought and floods forecast skill as well 

as streamflow simulation performance across the Western U.S..  

In chapter 2, I examined the performance of SubX-driven forecasts of droughts in the coastal 

Western U.S. with leads from 1 to 4 weeks. I began by assessing SubX reforecasts for precipitation 

and temperature in the cool season months October–March as precipitation is generally much 

lower over most of our domain in the warm season. My results indicated high accuracy for 

precipitation forecasts in the initial week, which decreased rapidly in subsequent weeks with little 

usable forecast skill by weeks 3 and 4. Temperature forecast accuracy, however, while declining 

with lead, remained high with an anomaly correlation coefficient of about 0.4 even at weeks 3 and 

4 for most forecast models. When evaluating multi-model ensemble averages, both precipitation 
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and temperature demonstrated skill were enhanced relative to individual models. These 

observations align with previous research, e.g., Cao et al. (2021). 

After applying statistical downscaling (disaggregating from one-degree to 1/16th-degree 

resolution) and bias correction of the forcings, I ran the Noah-MP LSM over the coastal Western 

U.S. for the period 1999–2016. I then assessed the skill of SubX-based drought forecasts with a 

focus on drought termination and onset using multiple metrics. My evaluation covered both major 

droughts and more modest drought events. From my analysis, the first two weeks showed notable 

forecast capabilities for major D0-D2 droughts; however, by the third week, only D0-D1 droughts 

had some discernible skill, and by the fourth week, the predictability was nearly non-existent. As 

the severity of droughts increased, the forecast accuracy decreased. I found the skill was 

consistently higher for drought termination compared to onset across all drought magnitudes. 

Additionally, there was a geographical trend: moving from the southern to the northern part of the 

domain, the drought forecast accuracy improved for all event categories. This was possibly due to 

a similar improving pattern of SubX precipitation forecast skill from south to north over the coastal 

western U.S. for most of the models and at all lead times. 

In Chapter 3, I explored Noah-MP flood simulation skill for coastal western U.S. river basins 

by selecting optimal model parameterizations and employing a global calibration approach. This 

elevated the flood simulation skill metric (Kling-Gupta Efficiency or KGE) from approximately 

0.2-0.3 to 0.7-0.9. Using calibrated parameters and NWS Quantitative Precipitation Forecast (QPF) 

model forcings, I compared retrospective Noah-MP flood forecast skill with that of archived 

forecasts produced by the two Pacific Coast RFCs (Pacific Northwest and California Nevada). 

Both Noah-MP and RFC showed decreasing ability to forecast flood peak magnitudes with 

increased lead time, probably reflecting trends in precipitation forecast accuracy. Noah-MP 
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exhibits a more competitive performance in the northern basins with relative peak differences 

within approximately +/- 0.1 when the forecast lead is less than 66 hours prior to the peak, which 

is comparable to RFC skills. Conversely, in the southern basins, Noah-MP's performance is inferior 

with relative peak differences typically between -0.1 and -0.25 with leads less than 60 hours before 

the peak, which is consistently below that of CNRFC skills typically in the +/- 0.1 range. Alongside 

the magnitude of the flood peak, we also examined the peak time forecast skill. Noah-MP 

demonstrated high accuracy in predicting flood peak timings in the northern region, with most 

errors restricted to within about a 6-hour window. However, its skill diminishes in the southern 

basins for lead times longer than 48 hours. This decline in accuracy in the southern basins might 

be linked to insufficient data on initial hydrologic conditions (soil moisture) in these drier basins. 

Furthermore, the free drainage runoff generation physics used in this research may not be best 

suited for all basins. In essence, this chapter suggests that Noah-MP could produce usable flood 

forecasts, especially for northern basins, given the right parameter and calibration choices. 

However, there is no indication that Noah-MP forecasts are inherently superior to those currently 

produced by NWS. Furthermore, enhancements would be necessary for the southern (drier) basins. 

In chapter 4, I produced high-resolution calibrated parameters for the VIC and Noah-MP 

models over the Western U.S.. The general process I followed included multiple stages, 

specifically identification of model parameters to be calibrated, the calibration (optimization) 

process itself, and the extension to ungauged basins. By calibrating a selected subset of basins with 

varied Noah-MP runoff parameterizations, I determined the best model physics selections. 

Subsequently, I produced calibrated parameters for both Noah-MP and VIC LSMs using 

autocalibration methods. Post-calibration data showed substantial improvements resulting from 

calibration: the median KGE across the 263 basins increased from 0.22 to 0.54 for Noah-MP, and 
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from 0.37 to 0.70 for VIC. Notably, VIC outperformed Noah-MP, which could be attributed to its 

initial parameters being previously adjusted for major U.S. basins (although not for the specific 

calibration basins). In contrast, Noah-MP utilized default initial parameters. Differences in the 

calibration techniques and intrinsic streamflow generation physics could also play a role in post-

calibration model performance, a topic I intend to delve into in future research.  

Following calibration, I extended the calibrated parameters to ungauged basins across the 

western U.S. for both models using the donor-basin regionalization method (Poissant et al., 2017; 

Gochis et al., 2019), which allows ungauged basins to inherit parameters from gauged basins with 

similar hydroclimatic properties. Following regionalization, the median KGE for VIC rose from 

0.41 to 0.49, and for Noah-MP it increased from 0.38 to 0.49 (these numbers are for the selected 

basins with KGE higher than 0.3 for both models). Intriguingly, Noah-MP's enhancement was 

more pronounced than VIC’s, prompting questions about possible regionalization nuances — this 

is a topic I plan to investigate further in future studies. 

After calibration and regionalization, I was able to develop hydrologic parameters for the 

models at a high precision 1/16° latitude-longitude resolution in every HUC10 basin across the 

western United States. These optimized parameters should enhance the accuracy of hydrological 

model application, aiding in accurate water resource predictions and flood risk assessments. While 

my work was focused on the Western U.S., the methods I employed are applicable globally, 

signifying their widespread value in understanding and managing hydrological systems. 

  This dissertation presents what I believe are important findings and improvements in 

drought and flood forecasting as well as streamflow simulation. I examined the proficiency of 

subseasonal drought forecasting, revealing credible skill within the initial two weeks. I found a 

pronounced accuracy in the northern regions compared to the south and a more discernible skill in 
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predicting drought termination than its onset. I assessed the potential of Noah-MP flood forecast 

skill and found it comparable to RFC in northern Pacific Coast basins while inferior in southern 

ones. I showed that Noah-MP has the potential to produce flood forecasts with accuracy 

comparable to current NWS methods for northern flood predictions, whereas refinements are 

necessary for its southern applications. I also developed calibrated hydrologic parameters for VIC 

and Noah-MP at a high precision 1/16° latitude-longitude resolution across the western U.S.. These 

optimized parameters improve hydrological modeling, paving the way for more precise predictions 

related to water resources and flood risks. 

Moving forward, my objectives include: 

(1) Delving into the disparities in Noah-MP flood forecast efficiencies between the northern 

and southern basins and striving to enhance its southern performance. 

(2) Customizing runoff parameterizations in flood reforecasts tailored to the unique 

characteristics of individual basins. 

(3) Investigating and refining the regionalization techniques employed for Noah-MP and VIC 

in streamflow predictions. 
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Appendix A 

Introduction 

This document includes the description of the Noah-MP options used in this study. It also 

includes the evaluation of the hydrological model dependance and calibration effects. In addition, 

we show an alternate of the evaluation of drought forecast skill at subregion scale. 

Text S1. Noah-MP options used in this study 

We adopted the WRF-HYDRO recommended physical options as in 

https://ral.ucar.edu/sites/default/files/public/Noah-

MPOptionsIndicatorsofusagewithWRFHydroNWM.pdf 

We list the details of our options below. 

DYNAMIC_VEG_OPTION(options for dynamic vegetation) 

4 -> off (use table LAI; use maximum vegetation fraction) 

CANOPY_STOMATAL_RESISTANCE_OPTION (options for canopy stomatal resistance) 

1 -> Ball-Berry 

BTR_OPTION(options for soil moisture factor for stomatal resistance) 

1 -> Noah (soil moisture) 

RUNOFF_OPTION (options for runoff and groundwater) 

3 -> original surface and subsurface runoff (free drainage) 

SURFACE_DRAG_OPTION (options for surface layer drag coeff (CH & CM) 

1 -> M-O 

SUPERCOOLED_WATER_OPTION (options for supercooled liquid water (or ice fraction)) 

1 -> no iteration (Niu and Yang, 2006 JHM) 

FROZEN_SOIL_OPTION (options for frozen soil permeability) 

1 -> linear effects, more permeable (Niu and Yang, 2006, JHM) 

RADIATIVE_TRANSFER_OPTION (options for radiation transfer) 

3 -> two-stream applied to vegetated fraction (gap=1-FVEG) 

https://ral.ucar.edu/sites/default/files/public/Noah-MPOptionsIndicatorsofusagewithWRFHydroNWM.pdf
https://ral.ucar.edu/sites/default/files/public/Noah-MPOptionsIndicatorsofusagewithWRFHydroNWM.pdf
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SNOW_ALBEDO_OPTION(options for ground snow surface albedo) 

1 -> BATS 

PCP_PARTITION_OPTION (options for partitioning precipitation into rainfall & snowfall) 

1 -> Jordan (1991) 

TBOT_OPTION(options for lower boundary condition of soil temperature) 

2 -> TBOT at ZBOT (8m) read from a file (original Noah) 

TEMP_TIME_SCHEME_OPTION(options for snow/soil temperature time scheme (only layer 1) ) 

1 -> semi-implicit; flux top boundary condition 

SURFACE_RESISTANCE_OPTION (options for surface resistent to vaporization/sublimation) 

1 -> Sakaguchi and Zeng, 2009 

GLACIER_OPTION(options for glacier treatment) 

1 -> include phase change of ice 

Text S2 Hydrological model dependance and calibration effects evaluation 

To evaluate the model dependency of our study, we ran Variable Infiltration Capacity (VIC) 

V4.1.2.d (Liang et al., 1994) with the Livneh et al (2013) forcings (using the same parameters as 

in Livneh et al (2013)) over the baseline period 1961-2016 with the same spin up period used in 

our Noah-MP experiments.  

To address the calibration effects on drought forecast skill, we included calibrated VIC in 

comparison with uncalibrated VIC over CA. We don’t have a calibrated version of Noah-MP 

results for now (this is a topic of future work). In all the simulations that we show below (VIC 

calibrated and uncalibrated and Noah-MP) we performed a long spin-up (1951-2016 twice before 

initiating the 1961-2016 analysis period) as in the runs reported for Noah-MP in the main text.  

We took the calibrated VIC parameters from (currently unpublished) ongoing work. We 

applied the Shuffled Complex Evolution (SCE-UA) calibration method (Duan et al, 1994) for ~100 

basins across CA which resulted in median daily KGE improvement from 0.48 to 0.75. After that, 
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we applied the donor-basin method to regionalize the calibrated parameters to all of CA (Arsenault 

and Brissette, 2014; Yang et al. 2018; Qi et al. 2021).  

We identified historical droughts and compared the dry area over CA for Noah-MP, 

uncalibrated VIC and calibrated VIC baseline experiments (Figure A1). This figure shows that the 

dry area from Noah-MP, uncalibrated VIC and calibrated VIC all have similar patterns.  

To further evaluate the relationship of droughts constructed from different hydrological 

models, we calculated the Spearman correlation coefficients and Nash–Sutcliffe model efficiency 

coefficients (NSE) between baseline drought area (1961-2016) based on Noah-MP and VIC 

(uncalibrated) (Figure A2). We see high correlations (>0.8) in all regions (OR, WA and CA). The 

NSE can be as high as 0-6-0.8 for D1 and it decreases as the drought severity increases but still is 

higher than 0.4. 

To further evaluate the effects of calibration, we compared the correlation and NSE between 

Noah-MP, uncalibrated VIC [denoted as VIC in the figure] and calibrated VIC [denoted as 

calibVIC in the figure] dry areas and the USDM dry area in CA in Figure A3. The results show (a) 

uncalibrated VIC and calibrated VIC show very high correlation and NSE; (b) Noah-MP and VIC 

(we only show Noah-MP with calibrated VIC for easy reading) show high correlation and NSE; 

(c) Noah-MP has higher correlation and NSE with USDM than VIC does; (d) Calibrated VIC 

shows higher metrics with USDM than uncalibrated VIC but the improvement is limited.  

To further evaluate the drought forecast dependency on hydrological model and calibration, 

we compared the drought onset forecast skill when using Noah-MP and VIC based on the EMC-

GEFS model (11 SubX ensemble members). The computation procedure is expensive and time 

consuming, so here we limited ourselves to just the EMC-GEFS (which has the largest number of 

ensemble members among all six SubX models). The results show that Noah-MP and VIC 
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generated comparable drought onset skills for different drought levels at lead week1 (Figure A4). 

We repeated the procedure for calibrated VIC which showed no improvement in performance due 

to calibration. This is predictable since we calculate drought characteristics based on soil moisture 

percentiles, which reduced the effect of calibration. This is supported by Shi et al (2008) who found 

that the reduction in seasonal streamflow forecast error that is achieved by bias correction alone is 

nearly as great as that resulting from hydrologic model calibration. They concluded that calibration 

didn’t make much difference to seasonal hydrologic forecast skill – the skill basically is inherent 

in the forcings to the model, and not the model construct (or parameters) itself.   

Overall, we conclude that, while there are some differences between models and before and 

after calibration, our results are not strongly dependent on the specific model and calibration. 

Text S3. Drought forecast skill evaluation at subregion scale.  

To reduce noise spatially, we tried an alternative to the method described in section 4.3 to 

assess the drought forecast skill for different subregions. We first averaged the soil moisture by 

subregion to produce a single forecast at each subregion, then constructed droughts at the 

subregion level and evaluated the BSS prediction skills (Figure A5). (We chose BSS rather than 

POD here because the correction term in the BSS calculation considers the effects of small sample 

sizes). We found positive skill in most cases (except for some cases in drought termination in 

southern CA and drought onset in central and southern CA). Drought onset shows relatively lower 

skill than drought termination.  

We found generally decreasing forecast skill as the lead time increases, consistent with similar 

behavior in precipitation (and temperature) prediction skill. There are a few exceptions, for 

example, D3 has higher drought termination skill at lead week 3 than the other lead weeks. When 

averaged spatially, the forecast skill is not necessarily higher for less severe droughts than more 
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severe ones in certain regions. For example, D3 shows higher drought termination skill than D0, 

D1 and D2 in WA at lead weeks 1, 2 and 3. This might be caused by the different level of noise 

cancellation after spatial averaging. Despite of these exceptions, the subregion BSS values are 

generally consistent with what we found in grid cell based BSS (Figures 2.8, 2.9). 

 

Figure A1 California dry area of Noah-MP, uncalibrated VIC and calibrated VIC. 
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(a) 

 

(b) 

 

Figure A2 Spearman correlation coefficient (a) and NSE (b) between drought area (1961-2016) from Noah-

MP and VIC for OR, WA and CA.  
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(a) 

 

(b) 

 

Figure A3 Spearman correlation coefficient and NSE between drought area (1961-2016) from USDM, 

Noah-MP and VIC for CA. 
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Figure A4 EMC-GEFS based debiased Brier skill score (BSS) for lead weeks 1-4 for drought onset at lead 

week 1 based on Noah-MP and VIC. 
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(a) Drought termination 

 

(b) Drought onset 

 

Figure A5 SubX-based debiased Brier skill score (BSS) for lead weeks 1-4 for (a) drought termination, (b) 

drought onset by drought levels and by subregions. 
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Appendix B 

 

Figure B1 Time series of floods events that analyzed in the study basins. Please note that the time axis is 

not uniformly distributed. We only show the eight days of each flood event – four days preceding the flood 

peak time and four days following the flood peak time. The time resolution is 6-hour. The flood peak 

streamflow and peak date are annotated in the figure. 
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Figure B2 Median and interquartile range of the relative differences of floods peak streamflow of Noah-

MP reforecasts and RFC forecasts against lead hours in (1) Green, (2) Chehalis, (3) McKenzie, (4) Smith, 

(5) Van Duzen, (6) Russian, (7) Carmel rivers. 
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Figure B3 Median and interquartile range of the difference of floods peak time of Noah-MP reforecasts and 

RFC forecasts against lead hours in (1) Green, (2) Chehalis, (3) McKenzie, (4) Smith, (5) Van Duzen, (6) 

Russian, (7) Carmel rivers. 
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Figure B4 Boxplots of relative differences of floods peak streamflow of Noah-MP reforecasts and RFC 

forecasts against lead hours in Smith River basin. The numbers in the box that start with # indicate the 

number of events summarized in the box. Since the QPF forcing we have mostly initiated at 12:00 or 

sometimes also at 18:00 while the flood peak time can be anytime between 00:00-24:00, the numbers of 

flood events calculated at different lead time can vary for Noah-MP reforecasts. The RFC forecasts 

initialization interval changed for different basins and for different time periods, so the numbers of flood 

events calculated at different lead times also vary for RFC forecasts. The numbers near the outliers indicate 

he peak value (in cfs) of the flood that corresponds to the outliers. The blue color is for the Noah-MP and 

the orange color is for the RFC. 
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Figure B5 Mean monthly total precipitation (mm) (averaged over the study period) in the seven study basins. 
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Appendix C 

Table C1 Features considered for regionalization of calibrated parameters to ungauged basins in VIC and 

Noah-MP models. 

Features in order of rank for VIC Features in order of rank for Noah-MP 

Longitude Centroid Latitude Centroid 

Latitude Centroid Longitude Centroid 

Max Elevation Area 

Precipitation Fall Mean KGE stops increasing for below features 

Temperature Fall Mean Temperature Summer Mean 

KGE stops increasing for below features Min Elevation 

Mean Elevation Precipitation Annual Mean 

Min Elevation Precipitation Fall Mean 

Temperature Summer Mean Perimeter 

Precipitation Spring Mean Temperature Spring Mean 

Precipitation Winter Mean Max Elevation 

Precipitation Summer Mean Precipitation Winter Mean 

Precipitation Annual Mean Temperature Winter Mean 

Mean Annual Max 1-D Precipitation Temperature Annual Mean 

Temperature Winter Mean Precipitation Spring Mean 

Temperature Spring Mean Precipitation Summer Mean 

Temperature Annual Mean Mean Elevation 

Perimeter Temperature Fall Mean 

Area Mean Annual Max 1-D Precipitation 
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Figure C1  Regionalized VIC Land surface parameters over WUS. 
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Figure C2 Regionalized Noah-MP Land surface parameters over WUS. 
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Figure C3 Baseline VIC Land surface parameters over WUS. 
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Figure C4 Baseline Noah-MP Land surface parameters over WUS. 
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