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Abstract
The	metabolic	syndrome	is	a	cluster	of	conditions	that	increase	an	individual's	
risk	of	developing	diseases.	Being	physically	active	throughout	life	is	known	to	
reduce	 the	 prevalence	 and	 onset	 of	 some	 aspects	 of	 the	 metabolic	 syndrome.	
Furthermore,	 previous	 studies	 have	 demonstrated	 that	 an	 individual's	 gut	 mi-
crobiome	composition	has	a	large	influence	on	several	aspects	of	the	metabolic	
syndrome.	However,	the	mechanism(s)	by	which	physical	activity	may	improve	
metabolic	health	are	not	well	understood.	We	sought	to	determine	if	endurance	
exercise	is	sufficient	to	prevent	or	ameliorate	the	development	of	the	metabolic	
syndrome	and	 its	associated	diseases.	We	also	analyzed	 the	 impact	of	physical	
activity	under	metabolic	syndrome	progression	upon	the	gut	microbiome	compo-
sition.	Utilizing	whole-	body	low-	density	lipoprotein	receptor	(LDLR)	knockout	
mice	on	a	“Western	Diet,”	we	show	that	long-	term	exercise	acts	favorably	upon	
glucose	 tolerance,	 adiposity,	 and	 liver	 lipids.	 Exercise	 increased	 mitochondrial	
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1 	 | 	 INTRODUCTION

The	metabolic	syndrome,	including	its	sequelae	of	heart	
disease,	atherosclerosis,	insulin	resistance,	non-	alcoholic	
fatty	 liver	disease	(NAFLD),	and	others,	 is	a	burgeoning	
health	crisis	that	affects	an	estimated	one-	third	of	adults	
and	an	increasing	number	of	children	in	developed	coun-
tries	 (Cohen	 et	 al.,	 2011).	 Although	 combination	 and	
single	 drug	 therapies	 are	 under	 evaluation,	 no	 pharma-
cological	 treatment	 is	 approved	 to	 treat	 all,	 a	 majority,	
or	 even	 a	 few	 aspects	 of	 the	 metabolic	 syndrome	 (Rask	
Larsen	et	al.,	2018).	The	current	mainstay	therapy	to	com-
bat	the	metabolic	syndrome	is	via	lifestyle	modifications,	
primarily	through	diet	alterations	and	increased	physical	
activity,	in	an	attempt	to	lower	whole-	body	adiposity,	re-
duce	chronic	hyperglycemia,	prevent	blood	vessel	plaque	
formation,	 and	 dyslipidemia	 (Fiuza-	Luces	 et	 al.,	 2018).	
Clinical	 trials	 have	 demonstrated	 the	 ability	 of	 physical	
activity	to	reduce	hepatic	lipid	content	and	improve	insu-
lin	sensitivity	in	humans	(Winn	et	al.,	2018).	However,	not	
all	mechanism(s)	by	which	exercise	improves	whole-	body	
metabolism	especially	in	the	context	of	progressing	or	pre-
existing	metabolic	syndrome	are	known	(Balducci	et	al.,	
2015;	El-	Agroudy	et	al.,	2019;	Hallsworth	et	al.,	2011;	Pugh	
et	 al.,	 2013,	 2014).	 Hence,	 understanding	 the	 molecular	
mechanisms	underlying	 the	metabolic	syndrome	and	 its	
progression	 in	 the	 context	 of	 an	 exercise	 intervention	 is	
urgent	for	the	development	of	effective	therapies	and	re-
ducing	the	overall	burden	upon	societies,	health	care	sys-
tems,	families,	and	individuals.

Recently,	 a	 host's	 gut	 microbiome	 has	 received	 in-
creasing	attention	and	found	to	influence	several	aspects	
of	 the	 metabolic	 syndrome	 and	 its	 associated	 diseases	
(Chen	&	Devaraj,	2018;	Dabke	et	al.,	2019).	The	gut	micro-
biome	 is	also	beginning	 to	be	 studied	 following	exercise	
interventions	with	recent	 reports	 suggesting	an	 intimate	
link	 between	 the	 gut	 microbiome	 and	 the	 benefits	 of	
physical	activity	(Hawley,	2020;	Liu	et	al.,	2020;	Mach	&	
Fuster-	Botella,	2017;	Ortiz-	Alvarez	et	al.,	2020;	Scheiman	
et	al.,	2019).	Such	an	area	of	research	is	exciting	given	the	

potential	 impact	upon	public	and	 individual	health	 (Lai	
et	al.,	2018;	Pedersini	et	al.,	2020).	While	the	mechanisms	
under	 non-	disease	 or	 athletic	 conditions	 are	 currently	
being	elucidated,	what	has	received	little	research	atten-
tion	 is	 whether	 being	 physically	 active	 can	 preserve	 or	
promote	a	diverse	gut	microbiome	in	the	context	of	diet-	
induced	 metabolic	 syndrome	 and	 whether	 this	 impacts	
organismal	metabolic	health	(Allen	et	al.,	2018;	Carbajo-	
Pescador	 et	 al.,	 2019;	 Denou	 et	 al.,	 2016;	 Rettedal	 et	 al.,	
2020).

We	 sought	 to	 determine	 if	 endurance	 exercise	 is	
sufficient	 to	 prevent	 or	 ameliorate	 the	 development	 of	
the	 metabolic	 syndrome	 and	 its	 associated	 diseases.	
We	 also	 pursued	 the	 impact	 of	 physical	 activity	 under	
metabolic	 syndrome	 progression	 upon	 the	 gut	 micro-
biome.	To	 address	 our	 research	 question,	 we	 subjected	
whole-	body	 low-	density	 lipoprotein	 receptor	 knockout	
mice	 (LDLR−/−)	on	a	“Western	diet”	 (rich	 in	 saturated	
fat,	 cholesterol,	 and	 refined	 carbohydrates)	 to	 a	 volun-
tary	endurance	exercise	protocol.	We	hypothesized	that	
endurance	exercise	would	protect	mice	 from	 the	meta-
bolic	syndrome	and	would	modify	the	gut	microbiome.	
We	found	that	long-	term	exercise	training	preserved	car-
diometabolic	fitness	and	glucose	homeostasis	while	also	
reducing	adiposity	and	liver	lipid	accumulation.	Several	
gut	bacteria	(operational	taxonomic	units)	were	signifi-
cantly	 altered	 and	 strongly	 associated	 with	 markers	 of	
clinical	 importance.	 We	 conclude	 that	 exercise	 has	 an	
effect	upon	the	gut	microbiome	during	the	progression	
and	 onset	 of	 the	 metabolic	 syndrome	 and	 continue	 to	
affirm	 the	 positive	 effects	 of	 exercise	 upon	 organismal	
metabolic	health.

2 	 | 	 METHODS

2.1	 |	 Animal studies

All	 animal	 studies	 were	 conducted	 at	 the	 University	 of	
California,	 Los	 Angeles	 and	 were	 approved	 by	 the	 af-
filiated	 Institutional	 Animal	 Care	 and	 Use	 Committee	

T32T32HD007228.	FN	was	supported	
by	Norwegian	Research	Council	
240405/F20.	JML	was	supported	
by	NIH	T32	DK007789.	STH	was	
supported	by	NIH	DK117850.

abundance	in	skeletal	muscle	but	did	not	reduce	liver	fibrosis,	aortic	lesion	area,	
or	plasma	 lipids.	Lastly,	we	observed	several	changes	 in	gut	bacteria	and	 their	
novel	associations	with	metabolic	parameters	of	clinical	importance.	Altogether,	
our	results	 indicate	that	exercise	can	ameliorate	some	aspects	of	 the	metabolic	
syndrome	progression	and	alter	the	gut	microbiome	composition.

K E Y W O R D S

exercise,	LDLR,	metabolic	syndrome,	microbiome,	obesity
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(ARC-	2007-	051).	 All	 animal	 care,	 maintenance,	 surgery,	
and	 euthanasia	 were	 conducted	 in	 accordance	 with	
UCLA's	 Institutional	 Animal	 Care	 and	 Use	 Committee	
and	the	National	Institutes	of	Health.

Male,	 whole-	body	 low-	density	 lipoprotein	 receptor	
knockout	 mice	 (LDLR−/−)	 were	 obtained	 from	 Jackson	
Labs	(002207)	and	maintained	on	a	strict	12-	h	light–	dark	
cycle,	standard	vivarium	housing	temperatures	(18–	23℃),	
and	relative	humidity	(40%–	60%).	All	mice	were	on	an	ad	
libitum	water	and	normal	rodent	chow	diet	until	approx-
imately	4 months	of	age.	Animals	were	randomly	divided	
into	 two	 groups	 (SED  =  sedentary	 or	 no	 exercise	 and	
TRN = voluntary	exercise	training)	and	placed	on	an	ad	
libitum	water	and	“Western	Diet”	(%	by	weight:	33%	kcal	
fat,	 18%	 kcal	 protein,	 48%	 kcal	 carbohydrate,	 1%	 choles-
terol;	Research	Diets	D10042101)	 for	16 weeks	(N = 10/
group).	This	model	was	chosen	as	it	has	been	shown	that	
genetic	and	dietary	manipulations	are	effective	at	induc-
ing	NAFLD	in	the	mouse	(Oligschlaeger	&	Shiri-	Sverdlov,	
2020;	Wouters	et	al.,	2005,	2008)	and	the	development	of	
the	 metabolic	 syndrome	 (Grundy	 et	 al.,	 2004).	 Animals	
in	 TRN	 were	 given	 unlimited	 access	 to	 an	 in	 cage	 run-
ning	 wheel.	 Wheel	 revolutions	 were	 monitored	 using	
VitalView®	 Activity	 Software	 (Starr	 Life	 Sciences	 Corp).	
TRN	animals	were	singly	housed	for	the	duration	of	the	
experiment.	 SED	 animals	 were	 housed	 in	 original	 cages	
at	1–	4	per	cages.	Thirty	hours	prior	to	euthanasia,	in	cage	
running	wheels	were	locked.	All	animals	were	fasted	for	
6  h	 prior	 to	 euthanasia.	 Animals	 were	 sacrificed	 with	 a	
lethal	dose	of	isoflurane	followed	by	cervical	dislocation.	
Tissues	 (quadriceps,	gastrocnemius–	plantaris–	soleus,	 in-
guinal	 white	 adipose,	 gonadal	 white	 adipose,	 and	 liver)	
were	removed,	rinsed	in	0.9%	saline,	blotted	dry,	weighed,	
frozen	 in	 liquid	nitrogen,	and	stored	at	−80℃	until	use.	
Cecum,	samples	used	for	the	conduction	of	16S	analysis,	
was	not	rinsed	in	saline.	A	portion	from	the	large	lobe	of	
the	liver	and	aorta	was	fixed	for	histological	analysis	be-
fore	being	frozen	in	liquid	nitrogen.

2.2	 |	 Exercise capacity test

The	exercise	capacity	test	was	performed	as	described	pre-
viously	(Moore	et	al.,	2019).	Exercise	capacity	tests	were	
performed	prior	to	initiation	of	the	experiment	and	3 days	
prior	to	euthanasia.	Mice	were	removed	from	home	cages	
and	 randomly	 paired	 into	 clean	 cages	 without	 food	 ap-
proximately	3 h	prior	to	the	exercise	capacity	test.	Testing	
personnel	were	blinded	to	mouse	groups.	Mice	were	ac-
climated	to	the	running	treadmill	on	three	separate	occa-
sions	prior	to	performing	each	test.	Following	a	brief	warm	
up,	all	mice	completed	a	run	to	exhaustion	test	starting	at	
10 m/min	(fixed	5°	incline)	with	speed	increased	by	3 m/

min	every	3 min.	The	test	was	terminated	when	mice	were	
no	longer	able	to	perform	the	test	as	indicated	by	>10	con-
secutive	seconds	upon	the	resting	platform	despite	gentle	
encouragement	using	a	large	tongue	depressor.

2.3	 |	 Glucose and insulin tolerance tests

Glucose	 and	 insulin	 tolerance	 tests	 were	 performed	 at	
weeks	 14	 and	 15	 of	 the	 experimental	 protocol,	 respec-
tively.	 Animals	 were	 fasted	 overnight	 (approximately	
16 h)	prior	to	the	glucose	tolerance	test	and	8 h	prior	to	
the	insulin	tolerance	test.	A	shorter	fast	was	used	for	the	
insulin	 tolerance	 test	 to	 ensure	 mice	 did	 not	 reach	 life-	
threatening	hypoglycemia.	In	cage,	running	wheels	were	
locked	 the	 night	 before	 each	 test	 to	 avoid	 the	 effects	 of	
the	most	recent	exercise	bout	which	would	have	occurred	
~30 h	prior.	Tests	were	performed	as	described	previously	
(Ribas	et	al.,	2016).	For	the	glucose	tolerance	test,	an	intra-
peritoneal	dextrose	 (1 g/kg)	 injection	dissolved	 in	saline	
was	administered.	For	the	insulin	tolerance	test,	an	injec-
tion	of	intraperitoneal	insulin	(0.7 U/kg)	dissolved	in	sa-
line	was	administered.	Glucose	was	measured	from	whole	
blood	at	0,	15,	30,	45,	60,	90,	and	120 min	post-	injection.

2.4	 |	 Lesion area

Aortic	 lesions	 were	 determined	 as	 described	 previously	
(Bennett	et	al.,	2015).	Briefly,	excised	aortas	were	flushed	
with	 ice-	cold	 PBS,	 embedded	 in	 chilled	 OCT,	 frozen	 on	
dry	 ice,	and	stored	at	−80℃	until	use.	Embedded	aortas	
were	 sectioned	 into	 10  µm	 slices	 and	 stained	 with	 Oil	
Red	O.	Lesion	area	was	quantified	in	every	third	section	
throughout	the	aorta.

2.5	 |	 Plasma analysis

Whole	 blood	 obtained	 from	 retro-	orbital	 bleeding	 was	
placed	 into	 EDTA-	coated	 tubes	 and	 spun	 at	 3000	 G	 for	
5  min.	 The	 resulting	 plasma	 supernatant	 was	 collected,	
frozen	 in	 liquid	nitrogen,	and	stored	at	−80℃	until	use.	
Plasma	 triglycerides	 and	 glucose	 were	 measured	 as	 de-
scribed	previously	(Castellani	et	al.,	2008).

2.6	 |	 Liver histology

Livers	 sections	were	obtained,	embedded,	and	sectioned	
as	described	previously	(Hui	et	al.,	2018).	Briefly,	liver	tis-
sues	were	fixed	in	phosphate-	buffered	10%	formalin	and	
embedded	in	paraffin	wax.	Sections	were	cut	and	stained	
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with	hematoxylin	&	eosin	(H&E)	and	Masson's	trichrome.	
Histology	and	fibrosis	scores	were	applied	to	assess	the	se-
verity	of	liver	fibrosis	(score	0:	none;	1:	perisinusoidal	or	
periportal	 fibrosis;	 2:	 perisinusoidal	 and	 portal/peripor-
tal	fibrosis;	3:	bridging	fibrosis;	and	4:	cirrhosis)	(Kleiner	
et	 al.,	 2005).	 Scores	 were	 given	 based	 upon	 the	 staining	
of	the	whole	slides.	Scorers	were	blinded	to	mouse	group.

2.7	 |	 Tissue lipids

Lipids	were	isolated	and	analyzed	from	either	liver	or	go-
nadal	 white	 adipose	 tissue	 as	 described	 previously	 (Hui	
et	al.,	2015).	Briefly,	50–	100 mg	of	tissue	was	homogenized	
in	methanol	after	which	chloroform	was	added	making	a	
final	solution	of	2:1	methanol:chloroform.	Samples	were	ro-
tated	overnight	at	4℃	after	which	they	were	filtered	through	
sharkskin	filter	paper.	A	0.043%	magnesium	chloride	solu-
tion	was	added,	centrifuged	at	650×g,	and	 the	remaining	
solution	was	dried	using	nitrogen	gas.	A	solution	of	1.8%	
Triton	X-	100	dissolved	in	water	was	then	added	after	which	
the	following	lipids	were	measured:	triglyceride,	total	cho-
lesterol,	high-	density	lipoprotein	(HDL),	unesterified	cho-
lesterol,	cholesterol	ester,	and	phosphatidylcholine.

2.8	 |	 DNA and RNA analysis

DNA	or	RNA	was	isolated	from	frozen	tissue	using	the	re-
spective	DNA	or	RNA	isolation	kit	following	the	manufac-
turer's	instructions	(for	DNA:	DNeasy	Blood	&	Tissue	Kit	
(69504),	 for	RNA:	RNeasy	Kit	 (74104),	Qiagen).	 Isolated	
DNA	 or	 RNA	 was	 tested	 for	 concentration	 and	 purity	
using	 a	 NanoDrop	 Spectrophotometer.	 Mitochondrial	
DNA	 content	 was	 determined	 by	 the	 ratio	 of	 mtCO2	
(mitochondrial-	derived	 gene)	 to	 18S	 (nuclear	 DNA-	
derived	 gene).	 Isolated	 RNA	 was	 converted	 to	 cDNA	
(iScript	 Reverse	 Transcription	 Supermix	 for	 RT-	qPCR	
(1708840),	Bio-	Rad)	before	qPCR	was	performed	for	spe-
cific	genes	(Acc1,	Acox1,	Acta2,	Atg3,	Atg5,	Atgl,	Col1a1,	
Cyp8b1,	Fasn,	Hsl,	Il18,	Il1b,	Il6,	Insig2,	Lxra,	Map1lcb3,	
Mcp1,	mtCo1,	mtCo3,	mtNd4,	Park2,	Park7,	Pgc1a,	Pink1,	
Polrmt,	 Ppara,	 Qsox1,	 Scd1,	 Spstm1,	 Tnfa,	 or	 Ucp1).	 See	
Table	 S1	 for	 a	 list	 of	 the	 primers	 used	 and	 correspond-
ing	sequences.	All	genes	were	normalized	to	18S	or	Ppia	
where	indicated	and	expressed	relative	to	SED	(sedentary	
or	unexercised)	group	average.

2.9	 |	 Mitochondrial respiration

Mitochondrial	 respiration	 was	 measured	 in	 frozen	 bio-
logical	 samples	 as	 described	 previously	 (Acin-	Perez	

et	al.,	2020).	Frozen	 tissues	were	 thawed	on	 ice	and	ho-
mogenized	 in	 MAS	 (70  mM	 sucrose,	 220  mM	 manni-
tol,	5 mM	KH2PO4,	5 mM	MgCl2,	1 mM	EGTA,	2 mM	
HEPES,	pH	7.4).	The	samples	were	mechanically	homog-
enized	 for	 60  strokes	 in	 a	 Teflon-	glass	 dounce	 homog-
enizer.	 All	 homogenates	 were	 centrifuged	 at	 1000×g	 for	
10  min	 at	 4℃	 and	 then	 the	 supernatant	 was	 collected.	
Protein	concentration	was	determined	by	BCA	(Thermo	
Scientific).	 Homogenates	 were	 loaded	 into	 Seahorse	
XF96 microplate	in	20 μl	of	MAS	at	6 µg/well.	The	loaded	
plate	 was	 centrifuged	 at	 2400×g	 for	 10  min	 at	 4℃	 (no	
brake)	 and	 an	 additional	 130  μl	 of	 MAS	 supplemented	
with	 100  µg/ml	 cytochrome	 c	 was	 added	 to	 each	 well.	
Substrate	injection	was	as	follows:	Port	A:	NADH	(1 mM)	
or	 succinate  +  rotenone	 (5  mM  +  2  μM);	 Port	 B:	 rote-
none + antimycin	A	(2 μM + 2 μM);	Port	C:	N,N,N',N'-	
tetramethyl-	p-	phenylenediamine	 (TMPD)  +  ascorbic	
acid	(0.5 mM + 1 mM);	and	Port	D:	azide	(50 mM).	These	
conditions	 allow	 for	 the	 determination	 of	 the	 maximal	
respiratory	capacity	of	mitochondria	through	Complex	I,	
Complex	II,	and	Complex	IV.

2.10	 |	 Immunoblotting

Frozen	tissues	were	pulverized	at	the	temperature	of	liq-
uid	nitrogen	and	a	homogenous	portion	of	the	entire	tissue	
was	used	for	immunoblotting.	Proteins	were	normalized	
to	GAPDH	(glyceraldehyde	3-	phosphate	dehydrogenase)	
or	HSP90	(heat	shock	protein	90)	where	indicated	and	ex-
pressed	relative	to	SED	(sedentary	or	unexercised)	group	
average.

2.11	 |	 Microbiome analysis

Profiling	of	 the	microbiome	was	completed	as	described	
previously	 using	 mouse	 cecum	 (Org	 et	 al.,	 2015).	 DNA	
was	 isolated	 from	 approximately	 75  mg	 of	 cecum	 using	
the	DNeasy	PowerSoil	Kit	(Qiagen)	following	the	manu-
facturer's	 instructions.	 Isolated	 DNA	 was	 checked	 for	
concentration	 using	 a	 Nanodrop	 spectrophotometer.	
16S	 rRNA	 V4	 region	 primers	 were	 used	 during	 PCR	
amplification	 (Caporaso	 et	 al.,	 2012).	 The	 primer	 se-
quences	used	without	linker,	pad,	barcode,	or	adapter	are	
Forward:	 GTGCCAGCMGCCGCGGTAA	 and	 Reverse:	
GGACTACHVGGGTWTCTAAT.	 PCR	 products	 were	
verified,	 quantified,	 and	 pooled	 before	 a	 final	 clean	 up	
using	 UltraClean	 PCR	 Clean-	Up	 Kit	 before	 subsequent	
sequencing	on	an	Illumina	HiSeq	3000.	All	raw	fastq	files	
have	been	deposited	in	NCBI	SRA	under	PRJNA759241.

Fastq	 files	 were	 trimmed	 for	 primers	 and	 analyzed	
using	 the	 DADA2	 pipeline	 (Callahan	 et	 al.,	 2016).	
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Taxonomy	 was	 assigned	 using	 Silva	 v138	 (Quast	 et	 al.,	
2013).	 Raw	 ASV	 counts	 were	 analyzed	 for	 differential	
expression	 using	 the	 DESeq2	 (Version	 1.28.1)	 R	 pack-
age	(Love	et	al.,	2014).	ASVs	were	considered	significant	
when	FDR	(false	discovery	rate)	<0.1.	Alpha	diversity	was	
calculated	using	the	“estimate_richness”	function	within	
the	 phyloseq	 (Version	 1.32.0)	 R	 package	 (McMurdie	 &	
Holmes,	2013).

2.12	 |	 Statistics

Values	are	presented	as	means ± SEM	and	expressed	rela-
tive	to	SED	(sedentary	or	unexercised)	group	average	un-
less	otherwise	stated.	Correlations	were	computed	using	
the	 biweight	 midcorrelation	 (bicor)	 function	 within	 the	
weighted	 gene	 correlation	 network	 analysis	 (WGNCA)	
R	Package	 (Version	1.66)	 (Langfelder	&	Horvath,	2012).	
Statistical	significance	was	computed	via	a	two-	tailed	in-
dependent	 t-	test	and	established	a	priori	at	p < 0.05	un-
less	otherwise	stated.	Graphs	were	made	using	GraphPad	
Prism	8.4.2	(GraphPad	Software)	or	R/R	Studio	(Version	
4.0.0/	 Version	 1.3.959).	 *p  <  0.05,	 **p  <  0.01,	 and	
***p < 0.001.

3 	 | 	 RESULTS

3.1	 |	 Exercise training maintains 
exercise capacity and impedes progression 
of the metabolic syndrome

After	16 weeks,	exercise-	trained	mice	 (TRN)	displayed	
no	 significant	 difference	 in	 body	 weight	 compared	 to	
sedentary	 mice	 (SED,	 p  >  0.05,	 Figure	 1a,b).	 On	 aver-
age,	TRN	mice	ran	approximately	500 km	over	the	du-
ration	 of	 the	 experiment,	 or	 ~4.5  km/day	 (Figure	 1c).	
Prior	to	running	wheel	access	(week	0),	there	was	no	dif-
ference	 in	exercise	capacity	between	groups	 (p > 0.05,	
Figure	 1d).	 After	 the	 16-	week	 experimental	 protocol,	
exercise	capacity	was	significantly	higher	in	TRN	versus	
SED	 mice	 (p  <  0.001,	 Figure	 1d,e).	 Glucose	 and	 insu-
lin	 tolerance	 tests	 (GTT	and	ITT,	 respectively)	showed	
an	 increased	 ability	 of	 TRN	 mice	 to	 clear	 glucose	 and	
maintain	 euglycemia	 (p  <  0.05,	 Figure	 1f–	i).	 Aortic	
lesion	 area	 was	 not	 significantly	 different	 between	
groups	 (p  >  0.05,	 Figure	 1j).	 TRN	 mice	 showed	 lower	
inguinal	white	adipose	tissue	(iWAT)	and	gonadal	white	
adipose	 tissue	 (gWAT)	 masses	 (p  <  0.05,	 Figure	 1k).	
Additionally,	plasma	 levels	of	Fgf21	 (fibroblast	growth	
factor	 21),	 a	 recently	 identified	 myokine	 with	 implica-
tions	in	fatty	 liver	disease	(Tezze	et	al.,	2019),	were	el-
evated	 in	 TRN	 mice	 (p  <  0.05,	 Figure	 1l).	 There	 were	

no	 significant	 differences	 observed	 for	 plasma	 lipids	
(p > 0.05,	Figure	1m).

3.2	 |	 Exercise training reduces lipid 
levels within the liver during metabolic 
syndrome progression

No	 significant	 differences	 were	 observed	 in	 histology	
and	 fibrosis	 scores	 between	 SED	 and	 TRN	 mice	 after	
the	 experimental	 protocol	 (p  >  0.05,	 Figure	 2b,c).	
Nevertheless,	decreases	in	triglyceride	(TG),	total	cho-
lesterol	 (TC),	 unesterified	 cholesterol	 (UC),	 and	 cho-
lesterol	 ester	 (CE)	 in	 the	 liver	 were	 observed	 in	 TRN	
mice	(p < 0.05,	Figure	2d).	Glycogen	levels	were	simi-
lar	 between	 groups	 (p  >  0.05,	 Figure	 2e).	 The	 expres-
sion	 of	 genes	 related	 to	 fatty	 acids	 (Atgl,	 Hsl,	 Pparα,	
Acox1,	 Fasn,	 Scd1,	 Lxrα,	 Insig2,	 and	 Cyp8b1),	 inflam-
mation	(Mcp1,	Il1β,	and Il6,	Il18,	and	Tnfα),	and	fibro-
sis	 (Col1a1,	Acta2,	and	Qsox1)	revealed	an	increase	 in	
those	 related	 to	 fatty	 acid	 metabolism	 and	 a	 decrease	
in	 inflammatory	 genes	 between	 TRN	 and	 SED	 mice	
(p < 0.05,	Figure	2f).

3.3	 |	 Exercise training does not alter liver 
mitochondrial function during metabolic 
syndrome progression

We	next	sought	to	determine	the	impact	of	physical	activ-
ity	upon	mitochondrial	function	within	the	liver	under	the	
metabolic	syndrome	condition.	Mitochondrial	DNA	copy	
number,	 citrate	 synthase	 activity,	 and	 oxygen	 consump-
tion	were	not	significantly	different	between	groups	after	
16 weeks	of	voluntary	physical	activity	(p > 0.05,	Figure	
3a–	c).	 Furthermore,	 immunoblotting	 for	 mitochondrial	
proteins	revealed	no	difference	between	groups	(p > 0.05,	
Figure	3d,e).

3.4	 |	 Exercise training increases skeletal 
muscle mitochondrial abundance during 
metabolic syndrome progression

We	 further	 assessed	 mitochondrial	 function	 within	
skeletal	 muscle.	 Gene	 expression	 within	 the	 quadri-
ceps	 muscle	 revealed	 an	 increase	 in	 genes	 related	 to	
mitochondria	 (mtCo1)	 and	 mitochondrial	 biogenesis	
(Pgc1a)	between	TRN	and	SED	mice	(p < 0.05,	Figure	
4a).	 We	 also	 observed	 an	 increase	 in	 mitochondrial	
DNA	 copy	 number	 in	 the	 TRN	 versus	 SED	 groups	
(p < 0.05,	Figure	4b).	Nevertheless,	we	did	not	observe	
a	difference	in	oxygen	consumption	or	citrate	synthase	
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F I G U R E  1  (a)	Weekly	body	weight.	(b)	Change	in	body	weight	from	week	0	to	week	16.	(c)	Cumulative	running	distance	per	week	
in	km.	Red	dashed	line	represents	overall	cumulative	weekly	average.	(d)	Time	to	exhaustion	during	exercise	test.	(e)	Change	in	run	to	
exhaustion	expressed	as	a	percent	of	each	animal's	week	0	time.	(f)	Blood	glucose	levels	during	the	glucose	tolerance	test	at	week	14.	(g)	
Area	under	the	curve	from	glucose	tolerance	test.	(h)	Blood	glucose	levels	during	insulin	tolerance	test	at	week	15.	(i)	Area	under	the	curve	
during	the	insulin	tolerance	test	at	week	15.	(j)	Aorta	lesion	area.	(K)	Wet	weight	of	each	tissue	at	the	time	of	sacrifice.	(l)	Fgf21	levels	in	
plasma	at	the	time	of	sacrifice.	(m)	Plasma	metabolite	concentration	at	the	time	of	sacrifice.	Groups	represented	as	mean ± SEM.	N = 7–	10/
group.	*p < 0.05,	**p < 0.01,	and	***p < 0.001
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activity	 between	 groups	 (p  >  .05,	 Figure	 4c,d),	 a	 re-
sult	that	could	be	due	to	the	excess	intracellular	lipids	
feeding	 back	 to	 reduce	 mitochondrial	 ATP	 produc-
tion.	 A	 decrease	 in	 triglyceride	 levels	 within	 muscle	

was	also	observed	in	TRN	mice	(p < 0.05,	Figure	4e).	
Immunoblotting	 revealed	 an	 increase	 in	 mitochon-
drial	proteins	in	TRN	relative	to	SED	mice	(p < 0.05,	
Figure	4f,g).

F I G U R E  2  (a)	Liver	H&E	(left	two	columns)	and	Masson's	Trichrome	(right	two	columns)	images.	(b,	c)	Histology	and	fibrosis	score	
from	panel	A.	(d,	e)	Lipid	or	glycogen	concentrations	within	liver.	(f)	Gene	expression	within	liver	normalized	to	the	housekeeping	gene	18S	
and	expressed	relative	to	SED	avg.	Groups	represented	as	mean ± SEM.	N = 10/group.	*p < 0.05
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3.5	 |	 Exercise training induces Ucp1 
in white adipose tissue during metabolic 
syndrome progression

Lipid	species	concentrations	within	inguinal	white	adipose	
tissue	(iWAT)	were	unchanged	between	groups	(p > 0.05,	
Figure	5a).	TRN	mice	exhibited	a	non-	significant	increase	
in	mitochondrial	DNA	copy	number	(p = 0.06,	Figure	5b).	
TRN	 mice	 further	 displayed	 an	 increase	 in	 uncoupling	
protein	1	(Ucp1)	at	the	gene	and	protein	level	when	com-
pared	to	SED	mice	(p < 0.05,	Figure	5c–	e).

3.6	 |	 Exercise training impacts specific 
gut microbes during the progression of the 
metabolic syndrome

We	 next	 sought	 to	 determine	 whether	 physical	 activity	
has	 an	 effect	 upon	 the	 gut	 microbiome	 during	 the	 pro-
gression	of	the	metabolic	syndrome	by	examining	mouse	
cecum.	Eighteen	significantly	different	operational	 taxo-
nomic	units	 (OTUs)	were	 identified	between	 the	groups	

(FDR < 0.1,	Figure	6a).	These	OTUs	were	highlighted	by	
Bacteroidetes	 OTU	 264657,	 which	 increased	 nearly	 10-	
fold	(FDR = 1.09 × 10−18).	Although	there	were	changes	
in	individual	OTUs,	only	the	Actinobacteria	phylum	was	
significantly	affected	by	exercise	training	(p < 0.05,	Figure	
6b).	 Principal	 component	 analysis	 showed	 that	 the	 gut	
microbiota	composition	between	SED	and	TRN	mice	was	
not	 statistically	 different	 (p  >  0.05,	 Figure	 6c).	 Several	
common	 measures	 of	 alpha	 diversity	 revealed	 no	 differ-
ences	between	TRN	and	SED	mice	(p > 0.05,	Figure	6d).

3.7	 |	 Gut microbes are associated with 
exercise capacity

We	then	combined	groups	 (SED	&	TRN)	and	correlated	
all	traits	displaying	only	significant	correlations	via	a	heat-
map	(Figure	7)	to	uncover	novel	relationships.	A	signifi-
cance	threshold	of	p < 0.01	was	used	to	better	account	for	
the	large	number	of	correlations	performed.	We	observed	
several	expected	correlations	such	as	fat	mass	with	exer-
cise	performance.	We	also	observed	correlations	between	

F I G U R E  3  (a)	Mitochondrial	DNA	to	nuclear	DNA	ratio	within	liver	expressed	relative	to	SED	average.	(b)	Citrate	synthase	activity	
from	frozen	liver	expressed	as	nanomoles/minute/microgram	of	liver.	(c)	Oxygen	consumption	rate	from	frozen	liver	expressed	as	picomoles	
of	oxygen/minute/microgram	of	protein.	(d,	e)	Immunoblot	with	resulting	densitometry	within	liver	normalized	to	the	housekeeping	
protein	GAPDH	and	expressed	relative	to	SED	group	average.	Groups	represented	as	mean ± SEM.	N = 5–	10/group
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gut	microbes	and	exercise	capacity.	Furthermore,	we	ob-
served	 relationships	 between	 liver	 gene	 expression	 with	
gut	microbes.	Bacteroidetes	OTU	264657,	the	most	signifi-
cantly	changed	OTU	between	groups,	displayed	multiple	
significant	 correlations	 with	 fat	 mass,	 liver	 cholesterol,	
liver	 fatty	 acid	 and	 inflammation-	associated	 genes,	 and	
exercise	performance.

4 	 | 	 DISCUSSION

We	 sought	 to	 elucidate	 whether	 exercise	 is	 sufficient	 to	
prevent	or	ameliorate	the	progression	or	onset	of	the	met-
abolic	syndrome	and	NAFLD.	By	utilizing	a	severe	model	
of	 metabolic	 syndrome	 progression	 (genetic	 and	 dietary	

intervention),	we	found	that	endurance	exercise	was	able	
to	prevent	some	aspects	of	 the	metabolic	 syndrome	 that	
developed	 in	 sedentary	 mice	 over	 the	 16-	week	 period.	
Notably,	 exercise	 maintained	 exercise	 capacity	 and	 en-
hanced	glucose	 tolerance	while	reducing	adiposity,	 liver	
lipids,	and	glucose	level	during	insulin	tolerance	testing.	
Our	examination	of	the	gut	microbiome	also	revealed	sev-
eral	bacterial	species	to	be	significantly	impacted	with	ex-
ercise	training.

The	 metabolic	 syndrome	 is	 a	 cluster	 of	 conditions	
that	 include	 insulin	 resistance,	 obesity,	 atherosclerosis,	
and	NAFLD	(Kennedy	et	al.,	2010).	Our	main	goal	was	to	
determine	if	exercise	could	prevent	the	onset	of	the	met-
abolic	 syndrome.	 In	 alignment	 with	 previous	 research,	
we	 found	 that	 chronic	 physical	 activity	 could	 improve	

F I G U R E  4  (a)	Gene	expression	within	quadriceps	muscle	normalized	to	the	housekeeping	gene	18S	and	expressed	relative	to	SED	
average.	(b)	Mitochondrial	DNA	to	nuclear	DNA	ratio	within	quadriceps	muscle	expressed	relative	to	SED	average.	(c)	Oxygen	consumption	
rate	from	frozen	quadriceps	muscle	expressed	as	picomoles	of	oxygen/minute/microgram	of	protein.	(d)	Citrate	synthase	activity	from	
frozen	quadriceps	muscle	expressed	as	nanomoles/minute/microgram	of	muscle.	(e)	Lipid	concentrations	within	quadriceps	muscle.	(f,	g)	
Immunoblot	with	resulting	densitometry	within	quadriceps	muscle	normalized	to	the	housekeeping	protein	GAPDH	and	expressed	relative	
to	SED	group	average	(Showing	N = 2/group).	Groups	represented	as	mean ±SEM.	N = 5–	10/group.	*p < 0.05
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some	aspects	of	metabolic	health	even	under	the	context	
of	 a	 severe	 metabolic	 syndrome	 model	 associated	 with	
high	 adiposity	 and	 elevated	 circulating	 glucose	 levels	
(Joseph	 et	 al.,	 2019;	 Paley	 &	 Johnson,	 2018).	 However,	
sustained	 physical	 activity	 did	 not	 reduce	 aortic	 lesion	
area,	 a	 common	 precursor	 to	 an	 ischemic	 event.	 Large	
epidemiological	studies	have	shown	a	strong	connection	
between	 physical	 activity	 and	 coronary	 artery	 disease	
(Winzer	et	al.,	2018).	Despite	our	results,	studies	exam-
ining	physical	activity	under	the	context	of	prior	athero-
sclerosis	suggest	a	small	reduction	in	lesion	size,	though	
these	studies	are	typically	coupled	with	dietary	and	other	
life	style	components	(Ornish	et	al.,	1990;	Ramachandran	
et	 al.,	 2005).	 Furthermore,	 there	 is	 mounting	 evidence	
suggesting	 athletes	 (meaning	 those	 who	 participate	
in	 moderate	 to	 vigorous	 exercise	 for	 years	 or	 decades)	
have	a	higher	prevalence	of	coronary	artery	calcification	
(Aengevaeren	et	al.,	2020).	While	such	findings	are	con-
troversial,	 they	 could	 be	 applicable	 to	 our	 model	 given	
the	 chronic	 physical	 activity	 of	 mice	 (~4.5  km/day	 for	
16  weeks),	 a	 substantial	 period	 of	 the	 mouse	 life	 span,	

consequently	masking	any	changes	in	aortic	lesion	area	
that	we	observed.

Focusing	upon	NAFLD,	in	our	study,	exercise	exerted	
no	significant	effect	on	liver	fibrosis	as	assessed	by	histol-
ogy	and	pathology	score.	However,	a	significant	reduction	
in	lipid	levels	and	increases	in	lipid	metabolism	gene	ex-
pression	were	observed.	The	reduction	in	lipid	levels	sug-
gest	that	exercise	may	be	able	to	prevent	aspects	of	NAFLD	
and	 thus	partially	preserve	 liver	 function	during	disease	
progression.	Previous	research	in	humans	and	mice	have	
found	 similar	 results	 regarding	 liver	 lipids	 (Houghton	
et	al.,	2017;	van	der	Windt	et	al.,	2018).	Nevertheless,	the	
lack	 of	 liver	 collagen	 reduction	 suggests	 exercise	 is	 not	
able	to	prevent	the	onset	of	liver	fibrosis	and	that	diet	may	
have	a	larger	effect	on	NAFLD	than	exercise,	a	hypothesis	
supported	by	previous	research	(Kenneally	et	al.,	2017;	Ok	
et	al.,	2018;	Romero-	Gómez	et	al.,	2017).

We	also	pursued	the	impact	of	physical	activity	under	
metabolic	 syndrome	 progression	 upon	 the	 gut	 microbi-
ome.	Previous	research	has	shown	that	differences	in	gut	
microbiota	composition	due	to	diet	have	an	effect	on	lipid	

F I G U R E  5  (a)	Lipid	concentrations	within	iWAT.	(b)	Mitochondrial	DNA	to	nuclear	DNA	ratio	within	iWAT	expressed	relative	to	
SED	average.	(c)	Gene	expression	within	iWAT	normalized	to	the	housekeeping	gene	Ppia	and	expressed	relative	to	SED	average.	(d,	e)	
Immunoblot	with	resulting	densitometry	within	iWAT	normalized	to	the	housekeeping	protein	Hsp90	and	expressed	relative	to	SED	group	
average	(Showing	N = 2/group).	Groups	represented	as	mean ± SEM.	N = 5–	10/group.	*p < 0.05
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accumulation	and	onset	of	NAFLD	(Le	Roy	et	al.,	2013).	
In	 our	 study,	 exercise-	trained	 mice	 displayed	 changes	
within	 the	 microbiome.	 However,	 there	 were	 not	 signif-
icant	 community	 wide	 changes	 compared	 to	 sedentary	
mice.	 Additional	 research	 has	 shown	 minimal	 changes	
in	 the	 gut	 microbiome	 following	 exercise,	 although	 not	
under	 the	 context	 of	 severe	 metabolic	 syndrome	 (Kern	
et	 al.,	 2020;	 Taniguchi	 et	 al.,	 2018).	 The	 data	 presented	
herein	substantiate	the	notion	that	dietary	factors	such	as	
those	associated	with	a	“Western	diet”	have	a	significant	
impact	 on	 the	 gut	 microbiome	 (Cignarella	 et	 al.,	 2018;	
Quercia	et	al.,	2017).	Nevertheless,	given	that	animals	are	
consuming	identical	diets,	this	raises	the	possibility	that	a	
secreted	factor(s)	is	able	to	traverse	the	intestinal	barrier	

and	impact	specific	bacterial	species,	a	hypothesis	under	
current	 investigation	 (Barger	 et	 al.,	 2020;	 Dalton	 et	 al.,	
2019;	de	Sire	et	al.,	2018).

Our	 correlation	 analyses	 uncovered	 several	 known	
and	 novel	 associations.	 For	 example,	 we	 observed	
known	 negative	 associations	 between	 adiposity	 and	
exercise	 capacity	 parameters.	 We	 also	 observed	 novel	
significant	 relationships	 between	 exercise	 capacity	 pa-
rameters	 and	 liver	 phenotypes	 like	 Acta2	 gene	 expres-
sion,	 total	cholesterol,	Mcp1	gene	expression,	and	 fatty	
acid	 metabolism	 gene	 expression.	 These	 data	 suggest	
connections	between	the	liver	and	exercise	capacity	fur-
ther	 strengthening	 the	 concept	 that	 exercise	 promotes	
liver	 health.	 In	 addition,	 several	 bacterial	 OTUs	 were	

F I G U R E  6  (a)	Volcano	plot	of	OTUs	identified	within	the	cecum.	Significant	OTUs	are	colored	blue.	(b)	Phylum	level	summary	of	
OTUs.	(c)	Unbiased	principal	component	analysis.	(d)	Select	measures	of	alpha	diversity	relative	to	SED	group	average.	Groups	represented	
as	mean ± SEM.	N = 10/group.	*p < 0.05,	**p < 0.01
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strongly	associated	with	exercise	capacity	and	other	clin-
ical	parameters	strengthening	the	relationship	between	
physical	activity	and	the	gut	microbiome.	Additional	re-
search	should	focus	on	these	OTUs	and	how	they	impact	
organismal	physiology.

Although	our	results	indicate	that	exercise	is	an	effec-
tive	 therapeutic	 that	 mitigates	 the	 progression	 of	 some	
aspects	of	the	metabolic	dysfunction	associated	with	the	
consumption	of	a	Western	diet,	our	study	was	restricted	
to	 male	 mice,	 maintaining	 the	 possibility	 that	 the	 re-
sults	should	not	be	generalized	to	female	mice.	We	also	
cannot	 rule	 out	 the	 effect	 of	 chronic	 exercise	 training	

upon	 feeding	as	 it	has	been	shown	 that	wheel	 running	
tends	to	reduce	food	intake	(Cordeira	&	Monahan,	2019)	
or	 the	 single	 housing	 of	 exercising	 mice	 impacting	 our	
phenotypes	(Nagy	et	al.,	2002).	Lastly,	it	is	possible	that	
the	effects	of	exercise	are,	at	 least	 in	part,	 regulated	by	
LDLR.	 Thus,	 this	 genetic	 model	 could	 have	 a	 reduced	
exercise	 response.	 Despite	 these	 potential	 limitations,	
research	has	shown	that	men	are	at	a	higher	risk	to	de-
velop	NAFLD	compared	to	women	(Ballestri	et	al.,	2017),	
and	that	environmental	factors	and	lifestyle	habits	seem	
to	have	a	more	significant	impact	than	genetics	(Ahmed	
et	al.,	2019).

F I G U R E  7  Correlation	matrix.	Only	factors	with	one	or	more	significant	associations	are	shown	(p < 0.01).	Red = negative	association	
and	blue = positive	association
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Altogether,	our	results	suggest	 that	exercise	 is	an	ef-
fective	therapeutic	strategy	that	should	be	implemented	
to	 prevent	 and	 alleviate	 aspects	 of	 the	 metabolic	 syn-
drome.	 However,	 our	 results	 also	 support	 that	 exercise	
is	not	able	to	improve	or	prevent	the	onset	of	all	aspects	
of	 the	 metabolic	 syndrome	 and	 the	 development	 of	
NAFLD.	In	addition,	while	exercise	may	have	a	minimal	
effect	on	gut	microbiota	composition,	novel	associations	
between	bacterial	OTUs	and	metabolic	and	performance	
traits	 were	 observed.	 Further	 research	 should	 examine	
how	 the	 exercise-	trained	 gut	 microbiome	 may	 reduce	
the	 development	 of	 the	 metabolic	 syndrome	 and	 its	
complications.
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