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COBRA improves the completeness and 
contiguity of viral genomes assembled  
from metagenomes

LinXing Chen    1,2   & Jillian F. Banfield    1,2,3,4,5 

Viruses are often studied using metagenome-assembled sequences, but 
genome incompleteness hampers comprehensive and accurate analyses. 
Contig Overlap Based Re-Assembly (COBRA) resolves assembly breakpoints 
based on the de Bruijn graph and joins contigs. Here we benchmarked 
COBRA using ocean and soil viral datasets. COBRA accurately joined the 
assembled sequences and achieved notably higher genome accuracy than 
binning tools. From 231 published freshwater metagenomes, we obtained 
7,334 bacteriophage clusters, ~83% of which represent new phage species. 
Notably, ~70% of these were circular, compared with 34% before COBRA 
analyses. We expanded sampling of huge phages (≥200 kbp), the largest of 
which was curated to completion (717 kbp). Improved phage genomes from 
Rotsee Lake provided context for metatranscriptomic data and indicated 
the in situ activity of huge phages, whiB-encoding phages and cysC- and 
cysH-encoding phages. COBRA improves viral genome assembly contiguity 
and completeness, thus the accuracy and reliability of analyses of gene 
content, diversity and evolution.

Viruses infect and kill their hosts, alter host metabolisms via auxiliary 
metabolic genes (AMGs) and mediate horizontal gene transfer1–4. In 
the past decade, numerous efforts have made the study of viruses 
more practical, including but not limited to tools for virus identifica-
tion5–7, viral binning8–10, taxonomic classification11–13, automating AMG  
identification7 and viral genome completeness estimation14.

Many viral studies rely on metagenome-assembled sequences4, 
most of which are partial14. The diversity of viruses is extremely high4, 
yet a relatively small fraction is represented by complete genomes15–17, 
and only a small subset of these are huge phage genomes (≥200 kbp, or 
jumbo phages)18–24. The lack of complete genomes often precludes the 
classification of extrachromosomal elements and confounds diversity 
analyses15. When complete genomes are available, it is possible to 
evaluate phage species richness, AMG contents20, genome structure25 
and genome sizes19.

A subset of de novo assembled metagenomic contigs can be joined 
via end overlaps26. This is because the assemblers based on the de Bruijn 
graph generally break at positions with multiple paths. The fragments 
from a single population can sometimes be joined, potentially to obtain 
genomes that can be further curated to completion18–20,26. Manual cura-
tion is used to extend contig ends before joining26, evaluate the validity 
of joins and eliminate chimeric joins introduced during assembly. 
However, manual curation is labour intensive and thus rarely included 
in metagenomic analysis pipelines. Nonetheless, some tools have been 
developed to improve the quality of viral and bacterial genomes, includ-
ing ContigExtender27, Phables28 and Jorg29. Binning is another strategy 
to better sample viral genomes from metagenomes30,31, with available 
tools including vRhyme10, CoCoNet8 and PHAMB9. However, binning 
algorithms are approximate and they do not improve the contiguity of 
individual sequences. Accordingly, we developed Contig Overlap Based 
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MEGAHIT assembly, or maxK-1 for IDBA_UD assembly) that could be 
used to suggest contig joins. We acknowledge that these initially identi-
fied potential joins may not be legitimate, but subsequent steps that 
make use of additional information (see below) identify and remove 
inaccurate joins. These findings informed the development of COBRA. 
We suggest using the contigs not scaffolds for COBRA analyses if assem-
bled using IDBA_UD, to avoid any errors that may be introduced during 
scaffolding26,33.

COBRA joins metagenome-assembled sequences. COBRA made 
joins that the assembler chose not to make so long as there is sufficient 
support. Ideally, the assembler will not make a join that is non-unique, 
but some non-unique options could arise owing to a single read (for 
example, because of sequencing error), or a few reads (for example, 
from a strain variant) that do not represent a unique part of the genome 
(that is, the coverage is much lower). Thus, the first criterion that 
COBRA uses to evaluate potential joins is coverage. COBRA detects 
contigs with shared end overlaps of the expected length (maxK for 
metaSPAdes and MEGAHIT, maxK-1 for IDBA_UD, same below), and 
checks whether the contigs have similar sequencing coverage and are 
spanned by paired reads (Fig. 1 and Extended Data Fig. 1). These joins 
are considered legitimate and the contigs are joined.

In the first step, COBRA processes all contigs from a given assembly 
and retrieves the end sequences (maxK or maxK-1) for each contig. 
COBRA first identifies all contig end pairs with the same end sequences, 
considering both the end sequence and its reverse complement (rc). 
These identified pairs are then filtered to retain only those that could 
potentially be joined (Fig. 1). The filtered pairs are then examined to 

Re-Assembly (COBRA) to detect, analyse and join contigs from a single 
metagenomic assembly. COBRA evaluates coverage and paired read 
linkages before joining contigs, following manual curation methods.

We tested the ability of COBRA by analysing an ocean virome data-
set32 and a soil viral dataset. COBRA accurately joins contigs assembled 
from short Illumina reads alone, to generate large genome fragments 
and sometimes circular genomes. Compared with the performance 
of the evaluated binning tools, almost all of the COBRA genomes were 
accurate and not confounded by the contamination introduced by 
binning. We subsequently used COBRA to recover high-quality phage 
genomes from 231 freshwater metagenomes, expanding the genomic 
diversity of huge phages, whiB-encoding actinophages and cysC- and 
cysH-encoding phages. Thus, we show that COBRA can improve and 
accelerate viral research.

Results
Simulations show the basis for joining contigs. We used simulations to 
investigate why and how fragmentation occurs when short paired-end 
reads are assembled by metaSPAdes, IDBA_UD and MEGAHIT (Supple-
mentary Table 1). The simulations included (1) repeats within a genome 
(Supplementary Figs. 1 and 2), (2) regions shared by different genomes 
(Supplementary Fig. 3) and (3) within-population sequence variation 
(Supplementary Figs. 4 and 5), taking into account a range of relative 
abundances for cases in (2) and (3). The simulated datasets were de novo 
assembled individually (Supplementary Information). In the vast major-
ity of cases in which fragmentation occurred because of repeats, the 
assemblers introduced end sequences (maxK for metaSPAdes and 

Contig end sequences 
(maxK or maxK-1 in length):

The assembler used (metaSPAdes,
IDBA_UD or MEGAHIT)

Query contigs 
(*.fasta format)

All contigs
(*.fasta format)

Coverage
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Reads mapping
(*.sam and*.bam)

For example, 
viral contigs
of interest

Left end Right end

All path pairs:

A...TCGGCCTACGT...CCATGCGAC...T

The minK and maxK used in assembly

Valid path pairs:

Two-column file:

+

If two contigs are spanned by paired reads with allowed
mismatches, save them as pairs in a list:

(i) self_circular 

(ii-a) extended_circular 

(ii-b) extended_partial 

1. L/R, 2. Lrc/Rrc, 
3. R/L, 4. Rrc/Lrc,
5. R/Rrc, 6. Rrc/R, 
7. L/Lrc, 8. Lrc/L

contig_1_L : [contig_2_R, contig_3_Lrc]
contig_1_R : [...], contig_1_Lrc : [...], 
contig_1_Rrc : [...], contig_2_L : [...] ...

Linkage = [[contig_1, contig_2], [contig_1, contig_3], [contig_2, contig_4], ...]

1

2 3 4

(ii-c) extended_failed 

1 2 3 4
Key factors considered in COBRA joining path search

(iii) orphan_end 

Number of mismatches determined
if two contigs were spanned by paired reads

One or two ends in ‘Valid path pairs’ but rejected by COBRA rules.

L RQuery: contig_1 (c1)
c2 c3

c4

c5

c9

- The query could join with at least one other contig

L RQuery: contig_1 (c1)
c2 c3

c4
c5

c6

c7
c8

If coverage of c3 > c4:
- circular genome of the dominant subpopulation: c1 + c2 + c3 + c5 + c6 + c8

or
L RQuery: contig_1 (c1)

     Neither end in ‘All path pairs’, 
and the contig has minK ≤ end_overlap < maxK(-1).

Neither end in ‘All path pairs’, and the contig has no end overlap ≥ mink.

L RQuery: contig_1 (c1)

c1_L = c1_R

contig_1   10.521
contig_2   12.772
...

Input files and parameters Files and processing examples Extension categories Output fasta files

Filter for those pairs:

- two_paths_end:
{contig_3_L : [contig_5_R, contig_6_Lrc], 
...}
(contig_5_R and contig_6_Lrc must be
in one_join_end)

- one_path_end:
{contig_2_L : [contig_4_R], ...}

Fig. 1 | The input files and parameters, processing steps and output files of 
COBRA. COBRA requires four input files: a fasta file containing all contigs from 
the assembly, another fasta file containing the query contigs, a two-column 
file with the sequencing coverage of each contig and a read mapping file of all 
contigs. The parameters ‘assembler’ and ‘maxK’ determine the length of contig 

end sequences, and ‘minK’ evaluates the end overlap sequence length of a given 
query to determine if it is a ‘self_circular’ contig. See Extended Data Fig. 1 for 
more detailed information. The different extension categories are in grey boxes, 
indicating their corresponding output categories (i, ii or iii) and associated files. 
COBRA generates five fasta files for each analysis, accompanied by summary files.
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identify valid path pairs. COBRA labels an end for which there is only 
one possible join as ‘one_path_end’ (Extended Data Fig. 1a) and labels 
an end A as ‘two_paths_end’ if it shares its sequence with two other ends 
(ends B and C), and ends B and C share the sequence exclusively with 
end A (Extended Data Fig. 1b). Our analysis reveals that in a single assem-
bly, the ends in categories ‘one_path_end’ and ‘two_paths_end’ usually 
account for over 99% of all ends sharing sequences with other ends.

In the second step, COBRA considers each of the provided queries 
and extends each end sequentially. COBRA first identifies ‘self_circular’ 
(category i) contigs with two possible cases, (1) the two ends of a given 
contig is a valid path pair or (2) neither end of a given contig has an end 
pair, but has a shorter end overlap length that is ≥minK. Next, COBRA 
searches for potential joining paths for each end based on valid path 
pairs. It considers the sequencing coverage ratio between the query 
contig and a given candidate contig to be included in the joining path 
(Extended Data Fig. 1c), and requires that the joins are spanned by 
paired reads. The path search stops when (1) the end does not share 
its sequence with any other end, (2) the end has three or more paths 
and (3) the end is ‘one_path_end’ or ‘two_paths_end’, but the coverage 
ratio requirement is not met and/or there is no read pair spanning the 
join. When a query contig is extended from one end and loops back to 
the other end, it is classified as ‘extended_circular’ (category ii-a). For 
other queries that are extended but do not result in circularization, 
their status is designated as ‘extended_partial’ (category ii-b). If at 
least one end of a query contig matches other ends but the join is not 
considered valid owing to the coverage ratio and/or lack of spanning 
paired reads, the query is labelled as ‘extended_failed’ (category ii-c). 
In cases in which a query contig does not share any end sequence with 
others, it is assigned as ‘orphan_end’ (category iii).

In the third step, COBRA assesses all potential joining paths iden-
tified in the second step and ensures that the paths are unique before 
finalizing joins. An important, but rare, case involves a query that can be 
extended along two (or more) seemingly unique paths (Extended Data 
Fig. 2a). In such cases, all queries will be assigned as ‘extended_failed’. In 
addition, COBRA searches for cases in which both ends of a query contig 
extend into sequences that are closely related to each other, and assign 
the query to ‘extended_failed’ once confirmed (Extended Data Fig. 2b).

In the last step, the classifications of the query contigs are com-
piled. Sequences in the ‘self_circular’ category are saved, and those in 
the ‘extended_circular’ and ‘extended_partial’ categories are joined 
and saved.

COBRA accurately joins sequences from benchmarking datasets. 
For benchmarking, we reanalysed an ocean virome sequenced with 
both Illumina and Nanopore and for which complete Nanopore-based 
genomes were obtained32. The short Illumina reads of the ocean virome 
250 m sample32 were assembled using metaSPAdes, IDBA_UD and  
MEGAHIT. For each assembly, we recovered 2,377, 2,304 and 2,321 con-
tigs, respectively (Extended Data Fig. 3 and Supplementary Table 2).  
These were used as the queries for the following COBRA analyses.

COBRA categorized as circular (that is, ‘self_circular’) or extended 
42–56% of the queries, and 7–14% and 30–50% of the remaining queries 
were ‘extended_failed’ and ‘orphan_end’ (Supplementary Table 2). In 
all but one case, the queries in the ‘orphan_end’ category had signifi-
cantly lower sequencing coverage than the queries of other categories 
(unpaired t-test; Fig. 2a), probably suggesting that these contigs broke 
during assembly owing to insufficient reads for further extension.

We evaluated the accuracy of COBRA sequences in categories i, 
ii-a and ii-b by alignment fraction (AF) analyses (Fig. 2b and Methods). 
Generally, the higher the AF_COBRA value is, the more accurate the 
COBRA join is considered to be. The higher the AF_polished value is, 
the more complete the COBRA sequence is. AF_COBRA values averaged 
97.0–98.4% (Supplementary Fig. 6), indicating that COBRA accurately 
joined the Illumina-based contigs. Lower AF_COBRA values gener-
ally occurred because (1) COBRA selected and joined strain variant 
contigs that represented higher-abundance subpopulations, yet the 

corresponding polished genome represented lower-abundance sub-
populations (Supplementary Fig. 7) or (2) COBRA sequences were very 
similar, but not identical, to the corresponding polished genomes (Sup-
plementary Fig. 8). In addition, two MEGAHIT COBRA ‘extended_partial’ 
sequences had high AF_polished (98.6% and 99.3%, respectively) but 
relatively low AF_COBRA (72.8% and 76.9%, respectively), as the original 
queries were longer than the corresponding polished genomes (Fig. 2b).

We assessed the length and quality of the queries and their COBRA 
sequences in the ‘extended_circular’ and ‘extended_partial’ catego-
ries. The average length increased from 18.5–20.0 kb to 31.0–32.5 kb  
(Fig. 2c), and the total number of complete and circular, and 
high-quality, genomes rose from 28–46 (3–4%) to 215–241 (23–28%) 
(Fig. 2d). Notably, this was achieved by joining up to 38 contigs into 
a single sequence (Fig. 2e,f), and 36–45 of the putative complete 
genomes generated by COBRA were not reported in the original study.

The Nanopore-based analyses obtained more nominally com-
plete genomes (1,864)32 than COBRA did (100–166), yet COBRA has 
several advantages. First, it is more cost-effective owing to the lack of 
requirement for both long and short reads (essential for validation and 
error correction; for example, ref. 34). It is applicable on samples with 
insufficient quantities of high-quality DNA for long-read sequencing.  
COBRA can be applied to the enormous number of samples that  
have already been sequenced with only short paired-end reads.

COBRA outperforms prevalent binning tools. We compared  
the performance of COBRA to that of the binning tool of MetaBAT 2 
(ref. 35), vRhyme10 and CoCoNet8. We filtered the IDBA_UD assembly of 
the 250 m sample32 (see above) and obtained 2,632 contigs (Methods)  
for binning by MetaBAT 2, vRhyme, CoCoNet and contig extension  
via COBRA (Fig. 3a).

We compared the bins and the COBRA sequences to the published 
polished complete genomes to evaluate the accuracy of all approaches. 
We defined ‘good bin’ and ‘good join’, ‘problematic bin’ and ‘problem-
atic join’, and ‘contaminated bin’ and ‘contaminated join’ for binning 
tools and COBRA, respectively (Fig. 3a and Methods). COBRA far out-
performed all binning tools in its ability to recover high-quality viral 
genomes (Fig. 3b,c). COBRA made 386 ‘good joins’, which are 1.7–5.8 
times more than the contig assignments to ‘good bins’ (66–233; Fig. 3e).  
The cumulative length of accurate viral sequences generated via  
‘good joins’ is 9.13 Mb, with an average length of 23.6 kb. The cumula-
tive length of ‘good bins’ is 1.08–4.32 Mb, with an average length of 
16.4–19.8 kb per bin (Fig. 3d,e).

We investigated the problematic and contaminated bins or  
joins. Notably, only 1 out of 400 COBRA sequences was contami-
nated, while the binning tools generated 111–261 contaminated bins  
(40–80% of all bins; Fig. 3f). In total, 13 COBRA joins and 5–47 bins  
were problematic (Fig. 3f), and they were all involved closely related 
virus genomes with high average nucleotide identity (ANI; 85–92%;  
Fig. 3g). Compared with binning tools, COBRA had the best metrics,  
including precision (0.98 versus 0.06–0.47), recall (0.83 versus  
0.61–0.71), F1 score (0.90 versus 0.11–0.56), specificity (0.98 versus 
0.07–0.61) and accuracy (0.91 versus 0.12–0.64; Supplementary Table 3).  
COBRA achieved similar performance in joining viral sequences from 
a soil metagenomic dataset (Extended Data Figs. 4–6).

Application of COBRA to freshwater metagenomes
Freshwater ecosystems contain phages that infect functionally impor-
tant populations16,20,36, yet their diversity is poorly understood. Here we 
assembled 231 published freshwater metagenomes (Supplementary 
Table 4) and used COBRA to generate high-quality phage genomes 
from assembled contigs ≥10 kb (122,107 in total; Extended Data  
Fig. 7). We filtered the COBRA output for essentially complete 
genomes as assessed by CheckV14 and obtained 8,527 circular and 
3,591 high-quality genomes (Fig. 4a). COBRA substantially improved 
the quality of the sequences (Fig. 4b), and the product genomes were, 
on average, 30 kb and 25 kb longer than the query contigs (Fig. 4c).

http://www.nature.com/naturemicrobiology
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The 12,118 genomes were clustered into 7,432 species-level 
genomes (95% sequence similarity; Methods and Fig. 4d). Of these, 
69 were virophages that replicate along with giant viruses and  
coinfect eukaryotic cells37 and 29 were eukaryote viruses or undeter-
mined, which were excluded from further analyses. The remaining  
7,334 phage species genomes included 5,169 circular and 2,165 high- 
quality genomes, with most having a genome size of <50 kb (Sup-
plementary Table 5). Around 70% and 17% of the phage species were 
represented by only one and two genomes, respectively. More than 
99% of the phage species were detected at only one sampling site. 

Taxonomic analysis indicated that the phage species were mostly 
members of class Caudoviricetes, including hundreds that infect  
Actinobacteria (Supplementary Figs. 9 and 10). Co-analyses of the  
7,334 species genomes with the previously published genomes showed 
that 82% of them (6,047) were novel at the species level (Fig. 4e).

Diversity expansion and RNA expression of huge phages
Another motivation for developing COBRA was to obtain genomes of 
huge phages (≥200 kb in length)19,38–40. Of the phage species genomes, 
167 were classified as huge phages (Fig. 4d) and their genomes 
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underwent manual curation. In addition, 100 low- or medium-quality 
huge-phage genomes (coverage ≥20×) were also chosen for manual 
curation. From the total of 267 huge-phage species genomes, 81 were 
completed (error-free, gap-free, circular genomes). The largest was 
initially 712 kb and reached 717 kb after curation to completion. To our 

knowledge, this is the second-largest complete phage genome (the big-
gest is 735 kb)19. Two phage genomes >800 kb in length were reported 
recently41, but they are largely bacterial (Supplementary Fig. 11).

The average genome size of the 267 huge phages generated 
was 285 kb (Fig. 5a). In comparison, the original query contigs 

Good bin or join
Problematic bin or join
Contaminated bin or join

400 391 361 333

100

75

50

25

0

G
oo

d,
 p

ro
bl

em
at

ic
 o

r c
on

ta
m

in
at

ed
bi

ns
 o

r j
oi

ns
 (%

)

COBRA

metaB
AT2

vR
hym

e

CoCoNet

a

b d

1,864 polished 
virus genomes

Contigs
(length ≥ 2.5 kb)

BLASTn Filter

Similarity ≥ 99%,
AF ≥ 80% 

2,632 hit contigs
(3-sample 

read mapping)

COBRA
metaBAT2
vRhyme
CoCoNet

Comparison

Accuracy

Correctly binned or joined length

Contaminations

To
ta

l l
en

gt
h 

of
 c

on
tig

s 
of

go
od

 b
in

s 
or

 jo
in

s 
(M

b)

10

5

0

COBRA

metaB
AT2

vR
hym

e

CoCoNet

Short reads
of 250 m
for test

A study32  used
Illumina short 
reads and Nanopore
long sequences from 3 
samples to obtain 
polished genomes

Best matched 
to the same 
polished 
viral genome

Best matched to
related polished 
viral genomes 
(ANI > 70%)

Best matched 
to unrelated 
polished viral 
genomes

Good bin or join Problematic bin or join Contaminated bin or join

c

e

Le
ng

th
 o

f g
oo

d 
bi

ns
 o

r j
oi

ns
 (k

b)

60

40

20

0

COBRA

metaB
AT2

vR
hym

e

CoCoNet

COBRA

metaB
AT2

vR
hym

e

CoCoNet

100

75

50

25

0

C
on

tig
s 

in
 g

oo
d,

 p
ro

bl
em

at
ic

 o
r

co
nt

am
in

at
ed

 b
in

s 
or

 jo
in

s 
(%

)

1,051 1,126 1,459 2,303

IDBA_UD
de novo
assembly

f

Im
pu

rit
y 

(%
)

100

75

50

25

0

COBRA

metaB
AT2

vR
hym

e

CoCoNet

Contaminated bin or join
g

Pa
ire

d 
AN

I (
%

)
100

90

80

70

COBRA

metaB
AT2

vR
hym

e

CoCoNet

ANI of the corresponding polished 
genomes of problematic bin or join

Problematic bin or join

Good bin or join
Problematic bin or join
Contaminated bin or join

386 233 145 66 14 158 216 267 13 72 7 11

Fig. 3 | Performance comparison of COBRA and widely used binning tools. 
a, The flowchart shows the comparison pipelines. The definitions of ‘good’, 
‘problematic’ and ‘contaminated’ bin or join are provided in the accompanying 
box. Note that only one mapping file is needed for COBRA as input, whereas the 
coverage profiles were obtained from all three mapping files for the binning 
tools. b, The percentage of ‘good’, ‘problematic’ and ‘contaminated’ bins or joins. 
c, The percentage of contigs in ‘good’, ‘problematic’ and ‘contaminated’ bins or 
joins. In b and c, the total absolute numbers are shown at the top. For bins and 
joins, only those with at least two contigs binned or joined were considered and 

compared. d, The total length of good bins and good joins. e, The individual 
lengths of good bins and good joins; their total lengths are shown at the top. 
f, The impurity rates of ‘problematic’ and ‘contaminated’ bins and joins. g, 
The paired ANI of genomes that the contigs of ‘problematic’ bins or joins were 
matched to. For box plots in e, f and g, centre lines, upper and lower bounds, and 
upper and lower whiskers show median values, 25th and 75th quantiles, and the 
largest and smallest non-outlier values, respectively. In panels e–g, the numbers 
under the boxes indicate the number of bins or joins evaluated.

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 9 | March 2024 | 737–750 742

Article https://doi.org/10.1038/s41564-023-01598-2

Extended_circular

0

2

4

6

8

10

12

N
um

be
r o

f g
en

om
es

 (×
 10

3 )

a

Self_circular

High
quality

b

Not 
extended

Extended
0 20 40 60 80 100

Query contigs (%)

Low quality Medium quality

High quality Not determined

4,792

3,735

560

3,031

2,628

d

0

2

4

6

8

N
um

be
r o

f c
lu

st
er

s 
(×

 10
3 )

Others: 29
Virophage: 69

Phage: 
7,334

Genomes in 
each cluster

Detected sites
of each cluster

Taxonomy
of clusters

1 (5,162)

2 (1,224)

3 (405)
4 (252)
≥5 (291)

1 (7,277)

2 (55)
3 (2)

Viral category
based on host

Quality of
clusters

Circular
(5,168)

High quality
(2,166)

Length of
clusters (kb)

0–50 (5,061)

50–100 (1,676)

100–200 (430)
≥200 (167)

c

1,575 462 41

3,080 1,789 694 32

200 400 600 8000

Length (kb)

Query contig = 29.5

Extended high quality = 59.9 

Extended_circular = 55.8 

Query contig = 30.7 

e
7,334 species

genomes 
(this study)

IMG/VR v3

Ref. 26

Ref. 65

Ref. 16

Ref. 19

Pu
bl

is
he

d

BLASTn
Minimum identity: 90%
Minimum alignment: 10 kb

Refs and hits
Clustering

Species genomes
(95% ANI)

This study

Number of species genomes (× 103)
02468

7,334

3,236

1,390

3

1

0

1314494755

In
te

rs
ec

tio
n 

si
ze

 (×
 10

3 )

0

1

2

3

4

5

6

7 6,047

(1) (2) (3) (4) (5) (6)

Caudo; unknown

Caudo; Casjensviridae
Caudo; Kyanoviridae
Caudo; Autographiviridae
Caudo; Mesyanzhinovviridae
Caudo; Orlajensenviridae
Caudo; Others
Unclassified

n = 4,686

n = 3,023 

n = 5,591

n = 3,729

Fig. 4 | Overview of circular and high-quality phage genomes from freshwater 
ecosystems. a, The number of high-quality, ‘self_circular’ and ‘extended_circular’ 
genomes. b, The quality of query contigs that COBRA used to generate the 
extended high-quality and circular genomes. The quality of the genomes was 
evaluated by CheckV. c, The length of COBRA sequences and corresponding 
query contigs of ‘extended_partial’ high-quality genomes and ‘extended_circular’ 
genomes. In the box plot, the centre lines, upper and lower bounds, and upper 
and lower whiskers show median values, 25th and 75th quantiles, and the largest 
and smallest non-outlier values, respectively. Outliers are defined as having 
a value >1.5 × IQR away from the upper or lower bounds. d, The clustering of 
viral genomes. Bar plots show (1) the number of clusters identified as phages, 
virophages, eukaryotic viruses and undetermined (‘others’). The plots also show 

details for the 7,334 phage clusters, including (2) the number of circular and high-
quality representative genomes, (3) their length distribution, (4) the number of 
genomes in each cluster, (5) the number of sites detected with each cluster and 
(6) the taxonomic assignment of each cluster. Caudo, Caudoviricetes. ‘Caudo; 
others’ means the other families excluding the listed ones. ‘Caudo; unknown’ 
means all those could be assigned only at the level of Caudoviricetes. e, The 
novelty of phage species genomes identified in this study via comparison with 
published genomes. Of the 6,046 newly reported phage species genomes, 4,109 
are circular and 1,937 are high quality. Please note that, before clustering, the 
genomes from published databases were prefiltered to retain only those with a 
minimum alignment length of 10,000 bp (minimum sequence similarity of 90%) 
with phage genomes obtained in this study.

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 9 | March 2024 | 737–750 743

Article https://doi.org/10.1038/s41564-023-01598-2

Tree scale: 1

Source
Habitat

Bootstraps ≥ 70

Genome sources

This study

Published

Habitat types

Freshwater

Groundwater

Human andanimal

Others

Circular (136)

High (68)

Medium (63)

Genome size (kb)
0 400 600 800

a b

Contigs (694)

200

307 kbp

275 kbp

247 kbp

88 kbp

285 kbp

Taxonomy

(1
) 2

36
,11

4
(2

) 3
41

,4
98

(3
) 2

03
,0

94
(4

) 3
59

,6
85

(5
) 3

61
,8

58
(6

) 3
46

,2
80

(7
) 2

50
,16

6
(8

) 3
48

,8
70

(9
) 2

42
,0

40
(1

0)
 2

16
,2

77
(11

) 3
40

,9
96

(1
2)

 2
03

,0
94

(1
3)

 2
09

,3
50

(1
4)

 2
32

,8
49

(1
5)

 2
28

,6
95

(1
6)

 2
12

,2
24

(1
7)

 3
14

,9
34

(1
8)

 2
02

,0
25

c

Aerobic

Anaerobic
4 m (23 November 2017)

4 m (7 December 2017)

13.5 m (7 December 2017)

4 m (9 January 2018)

RPKM
60

50

40

30

20

10

0

Genome id
and length
(bp)

13 m (23 November 2017)

15 m (9 January 2018)

DNA

RNA

d

Varying similarity

Identity

No identity

Variant examples:
In-gene indel

Highly variable

Gene +/–

w

h
g

Structural proteins:
1, Terminase large subunit
2, Major capsid
3, Head completion protein
4, Tail tube protein
5, Tail sheath protein
6, Neck protein
7, Tail completion protein
8, Prohead core protein protease
9, Portal protein
10, Baseplate hub assembly protein
11, Baseplate wedge protein

(1) SRR6754100_NODE_27 (Rimov, Czech Republic, Europe) versus (2) ERR2814752_NODE_86 (Soyang, South Korea, Asia)

(3) SRR8894380_k141_5499707 (Fuxian, China, Asia) versus (4) ERR2814753_NODE_4 (Soyang, South Korea, Asia)

(5) ERR3687829_contig-140_2 (Lake Rotsee, Switzerland, Europe) versus (6) SRR9214415_k141_794410 (Jiřická pond, Czech Republic, Europe) 

1 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 121,319

1 43 5 6 7

g w g
(1)

(2)

(3)

(4)

1 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 101,444

4 5 6 2 8 9 1
g

g g w

1 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000 130,000 140,000

h
(5)

(6)
1 3 4 5 6 7 2 8 9 10 11

g g

h

DNA metabolism-
related genes

h h

Phages ≥ 700
kbp in length  

Predicted taxonomy

Caudoviricetes; Kyanoviridae

Caudoviricetes; Herelleviridae

Caudoviricetes; Others

Caudoviricetes; Unknown

Unassigned

Fig. 5 | Genomes from freshwater ecosystems expand huge-phage diversity. 
a, The number and length of huge phages newly reported in this study from 
freshwater metagenomes and the corresponding query contigs (≥10 kb in length) 
joined by COBRA. In the box plot, the centre lines, upper and lower bounds, and 
upper and lower whiskers show median values, 25th and 75th quantiles, and the 
largest and smallest non-outlier values, respectively. Outliers are defined as 
having a value >1.5 × IQR away from the upper or lower bound. b, The phylogeny 
of huge phages based on the concatenated sequences of core structural proteins. 
The coloured stripes in the inner ring indicate the source of genomes (published 
or in this study). The coloured stripes in the middle ring indicate the habitats 
where the phage genomes were reconstructed. The coloured stripes in the 
outside ring indicate the predicted taxonomy of the genomes. The subclades 

with the majority (>80%) of their genomes reconstructed in this study are 
highlighted in red. The two phages with genome size >700 kb (one published, 
one from this study) are indicated by red stars. c, The detection and transcription 
profiles of the Rotsee Lake huge phages in the six samples with combined DNA 
and RNA analyses. The RPKM was calculated for each huge phage in each sample. 
A black dot indicates that the RNA RPKM is larger than the DNA RPKM of the huge 
phage in the corresponding sample. d, Genomic comparison of similar huge 
phages from distant collecting sites. Three pairs are shown as examples (see 
Extended Data Fig. 9 for Mauve alignment). Structural protein genes are shown 
in purple, their corresponding annotations are included and DNA metabolism-
related genes are shown in pink.

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 9 | March 2024 | 737–750 744

Article https://doi.org/10.1038/s41564-023-01598-2

had an average size of 88 kb, and only 102 were ≥200 kb. Thus, 
COBRA is highly effective in generating undersampled huge-phage 
genomes19,24.

Phylogenetic analyses based on concatenated sequences  
(Methods) revealed that the majority of the newly reconstructed  
huge phages are typically most similar to those identified from 
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freshwater or groundwater (Fig. 5b). Overall, our analyses broadened 
the known diversity of huge phages.

Genomic and transcriptomic data from three time points from  
Rotsee Lake showed the persistence and activity of huge phages,  
primarily in the aerobic water layers (Fig. 5c). Genes for structural 
proteins were highly transcribed (Extended Data Fig. 8). Thus, huge 
phages actively shape microbial community structure and thus bio-
geochemical cycles within the aerobic parts of the lake.

A comparison of huge-phage genomes from different countries 
revealed that genes for structural proteins and DNA metabolism  
retain high nucleotide similarity, and that loss or gain of other genes is 
primarily driving their divergence (Fig. 5d and Extended Data Fig. 9).

Detection of AMGs in phage genomes
We explored the inventory of AMGs in the 7,334 high-quality genomes. 
The majority of AMGs are involved in the metabolism of carbohydrates, 
amino acids, glycans, and cofactors and vitamins (Fig. 6a), and some 
with photosynthesis42 and methane oxidation20. We identified 62 
cysC and 167 cysH genes implicated in assimilatory sulfate reduction  
(Fig. 6b and Supplementary Fig. 12). These genes were generally 
detected in circular genomes and are from phages from multiple taxa 
(Fig. 6c). Three circular genomes each contained two cysH genes (see 
Fig. 6d for an example). Notably, phages encoding cysC genes exhibited 
significantly larger genome sizes (Fig. 6e). Of the 231 freshwater sam-
ples, 157 contained at least one phage with cysC and/or cysH, although 
the majority were present at only one sampling time point (Supple-
mentary Tables 6 and 7).

Using Rotsee Lake metatranscriptomic data, we show that under 
both aerobic and anaerobic conditions, the transcriptional activity  
of non-phage-encoded cysH genes generally exceeded that of phage- 
encoded cysH. However, phage-encoded cysC genes exhibited a greater 
level of transcriptional activity than their non-phage counterparts 
under certain aerobic conditions (Fig. 6f,g). These findings show that 
phages present in freshwater ecosystems can impact sulfur cycling via 
the assimilatory sulfate reduction process. The infinity sign indicates 
that there is no detected activity for the phage-encoded cysH gene.

Discussion
Metagenomics is an important approach for studying viruses. However, 
fragmented genomes hinder the understanding of their diversity and 
ecological significance14. COBRA seeks to complete or nearly com-
plete viral genomes using methods analogous to those used in manual 
genome curation26. COBRA can extend contigs of any length, unlike 
binning tools that typically require contigs of a length that is sufficient 
to establish reliable sequence features like tetranucleotide frequency. 
COBRA can generate single contigs (sometimes, circular genomes; 
Figs. 1 and 2), whereas binning tools usually obtain MAGs with two or 
more contigs (Fig. 3). Thus, the resulting COBRA sequences are more 
readily evaluated for their quality using tools like CheckV14, which does 
not work on bins with multiple sequences. MetaBAT 2, vRhyme and 
CoCoNet need multiple related samples for coverage profile calcula-
tion, and PHAMB needs paired metagenome and metavirome data-
sets for better performance. By contrast, COBRA works efficiently 
on a single metagenome sample (Fig. 3). Most importantly, COBRA is 
much more accurate than the evaluated binning tools (Fig. 3). When 
compared against other genome improvement tools, COBRA is much 
faster than ContigExtender (Supplementary Table 8)27 and does not 
require assembly graphs (for example, Phables28) or resource-intensive 
reassemblies (for example, Jorg29). Thus, COBRA will serve as a powerful 
tool in viromics research.

In showing the utility of COBRA, we added >6,000 new phage 
species genomes (Fig. 5) from freshwater ecosystems15,36. There is 
minimal overlap between the viral genomes reconstructed in this 
study and published viral datasets. As our study included only 231 
freshwater metagenomes, it is likely that viruses in the freshwater 

ecosystems remain underexplored. The reconstruction of huge-phage 
genomes from distinct sampling sites allowed us to directly compare 
their genomes and revealed the importance of gene gain and loss in 
their evolution (Fig. 5). The expanded diversity of whiB-encoding 
actinophages suggested that the acquisition of multiple whiB genes  
is probably a persistent feature of several unrelated subclades  
(Supplementary Fig. 9).

The cysC and cysH genes are typically responsible for the assimi-
lation of inorganic sulfate into organic compounds (for example,  
cysteine). Several cysC- and cysH-encoding viruses have been 
reported43–45, yet their overall diversity and activity have yet to be 
fully understood. Here we expand evidence for virus-driven sulfur 
cycling43,46,47 by showing a wide distribution of phages encoding cysC 
and cysH (Supplementary Table 7). These genes may play a role in bacte-
rial sulfur metabolism during phage replication. Importantly, we show 
higher transcription of phage-encoded cysC and cysH compared with 
bacterial cysC and cysH genes in some samples (Fig. 6).

We note three limitations of the current version of COBRA. First, 
COBRA generally could not extend query contigs with very low sequenc-
ing coverage (Fig. 2a). A tool that automatically extends contigs using 
sequences from multiple related samples26 might be developed to 
overcome this limitation. Second, COBRA runs relatively slowly if the 
corresponding community is complicated (indicated by ‘total sharing 
ends’; Supplementary Table 9), for example, soil and underground 
water; all but one of our tested processings were finished within half 
an hour to 4 h. Third, unlike ContigExtender27, COBRA directly uses 
the contigs generated by assemblers; thus, it cannot fix (or detect) 
chimeras that are introduced during assembly.

Methods
Simulated genomes for evaluation of contig breaking rules in 
de novo assembly
To evaluate how the assemblers of IDBA_UD, metaSPAdes and MEGAHIT 
will fragment the contigs during assembly in dealing with intra-genome 
repeats, inter-genome shared region and within-population variation 
(that is, local variation), we simulated the artificial genomes using 
Geneious Prime48 for different cases that are described in detail in 
Supplementary Information. In each case, the artificial genomes were 
simulated for Illumina paired-end reads using InSilicoSeq with the 
‘HiSeq’ error model, which generated paired-end reads in the length 
of 126 bp. The simulated reads were then assembled using IDBA_UD49 
(‘mink = 20, maxk = 100, -step = 20, -pre_correction’), metaSPAdes ver-
sion 3.15.149 (‘-k 21,33,55,77,99’) and MEGAHIT version 1.2.950 (‘-k-list 
21,29,39,59,79,99’). The obtained contigs from each assembly of each 
case were manually checked for breaking points and the possibilities 
of joining via their end sequences with a determined length (that is, 
99 bp), which are shown in detail in Supplementary Information.

Evaluation of contig breaking rules in de novo assembly using 
simulated genomes
To assess how IDBA_UD, metaSPAdes and MEGAHIT fragment con-
tigs during assembly when confronted with intra-genome repeats, 
inter-genome shared regions and within-population variation (local 
variation), we generated artificial genomes using Geneious Prime48. 
Detailed descriptions of each case can be found in the Supplementary 
Information. For each case, artificial genomes were simulated for  
Illumina paired-end reads of 126 bp in length using InSilicoSeq50 with 
the ‘HiSeq’ error model. Subsequently, the simulated reads were assem-
bled using the following parameters: IDBA_UD49: ‘mink = 20, maxk = 
100, -step = 20, -pre_correction’, metaSPAdes51 version 3.15.1 18: ‘-k 
21,33,55,77,99’ and MEGAHIT52 version 1.2.9 19: ‘-k-list 21,29,39,59,79,99’. 
The resulting contigs from each assembly in each case were manually 
inspected for breaking points and the potential for joining via their 
end sequences, with a specified length of 99 bp. Further details can 
be found in Supplementary Information.
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Benchmark COBRA using a previously published ocean virome 
dataset
Three virome datasets with samples collected from different depths 
(that is, 25 m, 117 m and 250 m) were reported previously. The authors 
sequenced the extracted DNA using both Illumina paired-end reads 
(150 bp in length) and also Nanopore single-molecule reads32. With 
these reads, the authors detected and polished complete viral genomes, 
mostly from the sample collected at 250 m. This dataset was used to 
benchmark the performance of COBRA. To evaluate the performance of 
COBRA, the raw reads of the 250 m sample were downloaded from NCBI 
and trimmed using https://github.com/najoshi/sickle using default 
parameters to remove low-quality bases. The adaptor sequence and 
other contaminants were detected and excluded using bbmap (https://
sourceforge.net/projects/bbmap/). The trimmed reads were assembled 
using IDBA_UD49 (‘mink = 20, maxk = 140, -step = 20, -pre_correction’), 
metaSPAdes version 3.15.149 (‘-k 21,33,55,77,99, 127’) and MEGAHIT ver-
sion 1.2.9 (ref. 52) (‘-k-list 21,29,39,59,79,99,119,141’). For each assembly, 
the contigs with a minimum length of 10 kb were compared against the 
polished viral genomes reported in a previous study32 using BLASTn; the 
hits with a minimum nucleotide similarity of 97% and minimum align-
ment length of 10 kb were retained as queries for COBRA analyses. The 
quality reads of each sample were respectively mapped to all the contigs 
of the corresponding sample using Bowtie2 version 2.3.5.1 with default 
parameters53. The sequencing coverage of the contigs was determined 
using the ‘jgi_summarize_bam_contig_depths’ function from MetaBAT 
version 2.12.135 and transferred to a two-column file using in-house Perl 
script. COBRA analyses were performed for BLASTn hits contigs from 
each assembler, with a mismatch of 2 for linkage of contigs spanned 
by paired-end reads; the maxK and assembler were flagged according 
to that used in assembly. The ANI analyses between COBRA sequences 
and polished genomes were performed by fastANI version 1.3 (ref. 54), 
and the alignment fraction was calculated accordingly. The quality of 
viral genomes was evaluated by CheckV14.

Comparison of the performance of COBRA and binning tools
We compared the quality of sequences joined by COBRA to bins gener-
ated by various binning tools, namely MetaBAT 2 (ref. 35), vRhyme10 
and CoCoNet8. Using the IDBA_UD-assembled contigs (≥2,500 bp) 
from the 250 m ocean virome sample, we searched for contigs that 
exhibited ≥99% nucleotide similarity and ≥80% alignment coverage 
with polished genomes, resulting in a set of 2,632 contigs termed ‘query 
contigs’. These query contigs were extended using COBRA and also 
binned using the aforementioned binning tools. For coverage calcula-
tion, the quality reads from the virome samples (25 m, 117 m and 250 m) 
were mapped to the query contigs individually using Bowtie2 version 
2.3.5.1 with default parameters53. The coverage profiles derived from 
all three mapping files were used as input for the three binning tools. 
However, COBRA used only the mapping file and coverage profile of 
the 250 m sample. Each bin contained a minimum of two contigs, and 
if a bin contained only one contig, it was assigned as ‘unbinned’.

To evaluate the accuracy of COBRA joins and sequences repre-
sented by bins, we matched the joined contigs and bins back to the pol-
ished genomes. For the binning tools, if all the contigs from a given bin 
were best matched to the same polished genome, the bin was termed a 
‘good bin’. For COBRA, if all the contigs joined into a COBRA sequence 
were best matched to the same polished genome, the join was termed 
a ‘good join’. If some of the contigs matched to one polished genome 
(genome a), and some others best matched to another one (genome 
b), when genome a and genome b shared ≥70% ANI (determined  
by fastANI version 1.3 (ref. 54)), the bin was termed ‘problematic  
bin’ (for those from binning tools), and the join as ‘problematic 
join’ (for those from COBRA). To determine the extent to which the  
‘problematic bin’ or ‘problematic join’ was affected by contigs from 
related (sub)populations, we also compared the ANI of the correspond-
ing matched polished genomes.

For a given bin or join, if some contigs matched to one polished 
genome (genome a), and some others best matched to another one 
(genome b), when genome a and genome b shared <70% ANI (deter-
mined by fastANI version 1.3 (ref. 54)), it was termed ‘contaminated bin’ 
or ‘contaminated join’, respectively. To determine the contamination 
rate of the ‘contaminated bin’ or ‘contaminated join’, we calculate the 
total length of the bin or join (Total_len), and also the total length of 
contigs best matched to each of the polished genomes, then picked 
up the polished genome match with the maximum total length of 
contigs (that is, Max_len). We calculated the contamination rate of  
the contaminated bin or join as below, in which ‘Num_polished’ is the 
total number of matched polished genomes. By doing so, the theo-
retical maximum contamination rate of a contaminated bin or join  
is normalized (that is, 100%).

((Total_len −Max_len)/Total_len)/((Num_polished − 1)/Num_polished)

For example, where the total length of the bin or join is 100 kb and 
the contigs are matched to two polished genomes, with one polished 
genome best matching contigs with a total length of 60 kb and the 
other polished genome matching contigs having a total length of 40 kb, 
Total_len = 100 kb, Max_len = 60 kb and Num_polished = 2; thus, the 
contamination rate = 80%.

Benchmark COBRA using a composite soil metagenome 
dataset
To test whether COBRA could work on metagenomic datasets with 
higher complexity, we extracted soil viral genomes ≥10,000 bp in 
length and without any ‘N’ from IMG/VR v3 (ref. 55). These genomes 
(53,381 in total) were clustered with ≥95% similarity, resulting in a total 
of 34,303 clusters, each of which was represented by a representative 
genome. We randomly picked (1) 500 representative genomes and 
added a direct terminal repeat (100–200 bp) to each of them (category 
‘with_DTRs’), (2) 500 representative genomes and randomly mutated 
1% bases of each genome (category ‘two_subpopulations_1p’), (3) 500 
representative genomes and randomly mutated 3% bases of each 
genome (category ‘two_subpopulations_3p’), (4) 500 representative 
genomes and randomly mutated 5% bases of each genome (category 
‘two_subpopulations_5p’) and (5) 300 representative genomes, each 
genome was mutated with 3% bases, and also each genome mutated 
with 5% bases (category ‘three_subpopulation’). For (2)–(5), the initial 
representative genome will be kept; thus, we have a total of 500 + 500 × 
2 × 3 + 300 × 3 = 4,400 simulated genomes. Note that each representa-
tive genome was used only once.

The 4,400 genomes were in silico sequenced using paired-end 
(126 bp in length) Illumina HiSeq using InSilicoSeq50, with a random 
sequencing coverage of 10–100 for each genome, which generated  
~20 Gb reads. To raise the complexity, the simulated reads were  
combined with ~12 Gb paired-end reads from a natural soil sample 
from California, USA56. This composite dataset was assembled using 
metaSPAdes with the kmer set of ‘21,33,55,77,99’ with 48 threads.

The scaffolds ≥2,500 bp were searched against the 4,400 simu-
lated genomes using BLASTn, and those hits with ≥99% similarity and 
≥97% alignment length were retained as queries for subsequent COBRA 
analyses. To evaluate the performance of binning tools (MetaBAT 2, 
vRhyme and CoCoNet) on the same set of query scaffolds, we in silico 
sequenced another two sets of paired-end reads from the 4,400 simu-
lated genomes, so the binning tools could have a coverage profile from 
at least three samples for better performance. The mapping of reads to 
all assembled contigs and the calculation of coverage were performed 
as described above. The ‘extended_circular’ and ‘extended_partial’ 
COBRA sequences, and the bins (with at least two scaffolds), were com-
pared against their corresponding simulated genomes for accuracy 
evaluation. A given COBRA sequence or bin was assigned as ‘a good 
join or bin’ if all the scaffolds were from a single simulated genome, 
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as ‘a problematic join or bin’ if some scaffolds were from a simulated 
genome while some others were from the mutated genome, and as ‘a 
contaminated join or bin’ otherwise.

Comparison of COBRA and ContigExtender
ContigExtender is a tool to improve the viral sequences assembled 
from metagenomic datasets using the reads. It uses a novel recursive 
extending strategy that explores multiple extending paths to extend 
the contigs. ContigExtender analysis was performed on the same 
contig set as used in Comparison of the Performance of COBRA and 
Binning Tools (2,632 in total); however, given the long processing time 
(~8 days to extend 29 contigs using 16 threads), we included only the 
results of the first 29 contigs in our comparison against COBRA. We 
summarized the extending results of the corresponding contigs by 
COBRA, and compared the performance of both tools, including the 
extended length and also the extending accuracy (Supplementary 
Table 4). The extended sequences from COBRA and ContigExtender 
were aligned against the corresponding polished complete genomes 
in Geneious48 and also compared using BLASTn, and manually checked 
for extension accuracy.

Collection and analyses of published freshwater metagenomic 
datasets
The freshwater metagenomic datasets from two previously published 
studies16,57 were used. The raw paired reads were downloaded from NCBI 
using sratoolkit.2.11.1 (https://hpc.nih.gov/apps/sratoolkit.html) and 
filtered to remove any low-quality reads and bases, adaptors and other 
contaminants as described above. The de novo metagenomic assembly 
was first performed using the quality reads by IDBA_UD52 (‘mink = 20, 
maxk = 140, -step = 20, -pre_correction’) or metaSPAdes version 3.15.149 
(‘-k 21,33,55,77,99,127’). If the RAM of our computing server was not 
sufficient to assemble the reads of a given sample, it was assembled 
using MEGAHIT version 1.2.9 (ref. 52) (‘-k-list 21,29,39,59,79,99,119,141’). 
If a given sample could not be assembled using any of the three assem-
blers, it was excluded from the analyses. The assembler details for each 
dataset are shown in Supplementary Table 5.

The generated contigs with a minimum length of 10 kb from each 
assembly were predicted for viral sequences using VIBRANT7 using 
default parameters. The identified lysogenic and lytic virus contigs by 
VIBRANT were used as queries for COBRA analyses. A max mismatch 
of 2 in each read was set to identify the linkage of contigs spanned by 
paired-end reads, and the minK, maxK and assembler were flagged 
according to what was used in assembly (Supplementary Table 5).

Filtering of COBRA sequences and evaluation of assembly 
gaps
The COBRA sequences from all 231 freshwater metagenomic data-
sets were evaluated by CheckV (version 0.7.0)14. The ‘self_circular’ 
and ‘extended_circular’ COBRA genomes and those identified as 
‘high-quality’ by CheckV were retained for further analyses. To evalu-
ate and fix the assembly gaps, we checked the genomes by parsing 
the reads mapped to them (with Bowtie2 as described above) using a 
custom script named ‘gap.check.py’ (available at https://github.com/
linxingchen/cobra). The script filtered the mapped reads to allow two 
mismatches for each read; for a region in a given genome sequence 
without any base mapped, the region was replaced by 10x Ns. The 
resulting sequences were used for further analyses.

Genome completeness evaluation of the query contigs
To determine the extent to which COBRA raised the quality of the  
viral genomes, we evaluated the original query contigs that were 
joined into ‘extended_partial’ or ‘extended_circular’ genomes, using 
CheckV (version 0.7.0)14. The percentages of original contigs assigned 
by CheckV to ‘Low-quality’, ‘Medium-quality’, ‘High-quality’ and 
‘Not-determined’ were profiled and shown in Fig. 5b.

Clustering of quality viral sequences
The quality viral sequences were clustered at the species level using the 
rapid genome clustering approach provided by CheckV14 (available at 
https://bitbucket.org/berkeleylab/checkv/src/master/). The cluster-
ing parameters were set as follows: -perc_identity = 90 (for BLASTn), 
-min_ani = 95, -min_qcov = 10 and –min_tcov = 80 (for aniclust.py). 
The quality viral sequences were clustered into species-level clusters. 
Among these representative sequences, 6,430 had no assembly gaps, 
815 had one gap, 195 had two gaps and 71 had three or more gaps. It 
is worth mentioning that any identified gaps were filled with 10x Ns 
during the clustering process.

Identification of eukaryote viruses, virophages and phages
The protein-coding genes were predicted using Prodigal (-p meta)58. 
The eukaryote viruses were identified by searching the core struc-
tural protein sequences via BLASTp against the RefSeq database59. 
The virophage sequences were identified by searching their major 
capsid proteins (MCPs) against the virophage-specific HMM data-
bases reported previously37 using hmmsearch60 version HMMER 3.3 
(−E = 1 × 10−6). Those sequences with virophage-specific MCP hits were 
confirmed by building a tree with the MCPs from reference virophage 
sequences published previously37,61.

Taxonomy assignment of phages
To taxonomically assign the phages with genomes reconstructed in 
this study using the standardized ICTV taxonomy updated recently62, 
we used PhaGCN213 (minimum score, 0.5) and geNomad63. The results 
from these two tools were considered; for a given genome, (1) it was 
assigned as ‘unclassified’ if both tools failed to assign it, or it was 
assigned to different taxa, and (2) it was assigned to the taxonomic 
level determined by one of the tools if the other failed to assign.

Identification of new species phage genomes obtained in this 
study
The viral genomes from several published datasets were included for 
comparison, including the IMG/VR64, the huge phages across ecosys-
tems19, the complete viral genomes from freshwater metagenomes16, 
the pmoC phages20 and the bS21 phages65; these genomes were termed 
‘viral_refs’. The ‘viral_refs’ genomes were first searched against our 
cluster representative genomes using BLASTn with a minimum e-value 
of 1 × 10−50 and a minimum similarity of 90%. The BLASTn results were 
parsed to retain those with at least one hit with a minimum alignment 
length of 10,000 bp, and the corresponding genomes were extracted 
for genome clustering. If a given phage genome from the clusters could 
cluster with any of the ‘viral_refs’, it was labelled as ‘reported’ and as 
‘new species genome’ otherwise.

Huge-phage analyses
The subset of representative phage genomes with a minimum length 
of 200 kb were classified as huge phages. To include more huge-phage 
genomes from the freshwater datasets, we checked the low-quality and  
medium-quality genomes for huge phages and manually curated  
some of them. Protein-coding genes were predicted from them using 
Prodigal version 2.6.3 (-m -p meta)58. The predicted proteins were 
searched using BLASTp (e-value threshold = 1 × 10−5) against the  
proteins of large terminase subunit (TerL), MCP, portal protein and  
prohead protein from the huge phages reported previously19,23. The 
BLASTp hits were confirmed using the online HMM search66. The  
confirmed proteins were individually aligned using MUSCLE  
(version 5.1.linux64)67 and filtered to remove the columns account-
ing for >90% gaps using Trimal68. The filtered sequences for each 
genome were concatenated, and the phylogenetic tree was built using  
IQ-TREE version 1.6.12 (-bb = 1000, -m = LG + G4)69.

To evaluate the abundance of each huge phage in each of the 
samples from Lake Rotsee (Fig. 6c), reads per kilobase per million 
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reads mapped (RPKM) were calculated as follows: RPKM = Nphage/
(Lphage/1,000)/(Nsample/1,000,000), where Nphage is the number  
of reads to the phage genome, Lphage is the length of the phage 
genome (bp) and Nsample is the number of reads mapped to the 
whole metagenome-assembled contig set. The DNA read mapping to 
genomes or contigs was performed by Bowtie2 (version 2.3.5.1)53 with  
default parameters excepting −X = 2,000, and filtered using the pysam 
Python module70 to allow 0 or 1 mismatch for each mapped read. RPKM 
calculation of RNA reads to phage genomes was performed in the 
same way.

Analyses of actinophages
We searched the phages infecting Actinobacteria (that is, actin-
ophages), which are abundant in freshwater ecosystems, by searching 
for the whiB gene71 via BLASTp search against NCBI RefSeq whiB protein 
sequences and by manual validation using the online HMM search tool 
(www.ebi.ac.uk/Tools/hmmer/search/). We determined the subset 
of the recovered genomes encoding whiB that have been reported 
previously16. A total of 4,288 (519 high-quality species genomes) from 
IMG/VR and 158 (79 species genomes) from ref. 16 were included in our 
analyses, along with 4,070 actinophage genomes (1,116 encode whiB) 
from ‘The Actinobacteriophage Database’ (https://phagesdb.org/). 
The entire set were clustered to identify distinct species genomes as 
described above (Clustering of quality viral sequences). The genes 
encoding TerL, MCP, portal protein and prohead protein were identi-
fied from each of the genomes. The sequences were individually aligned 
using MUSCLE67 and filtered to remove the columns with >90% gaps 
using Trimal68. The concatenated sequences were used to reconstruct 
a phylogenetic tree to show the expansion of the whiB-encoding actin-
ophage dataset via this study. The tree was built using IQ-TREE version 
1.6.1269 with 1,000 bootstraps and the ‘LG + G4’ model.

Transcriptional activity analyses
For the analysis of viral metabolic gene expression in situ, RNA reads 
obtained from Rotsee Lake samples were used. Metagenome-assembled 
contigs with a minimum length of 5 kb were examined using CheckV14 
and VIBRANT7 to identify non-phage- and phage-encoded cysC and 
cysH genes. Only contigs with consistent predictions (either non-phage 
or phage) from both CheckV and VIBRANT were retained. The RNA 
reads from each sample were mapped to the corresponding contigs 
harbouring cysC and/or cysH genes. Subsequently, the transcriptional 
activity of each gene was normalized and summed separately for those 
encoded by non-phages and phages. The ratio of total transcriptional 
activity between non-phage and phage was calculated individually for 
cysC and cysH in each sample.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The high-quality and complete genomes obtained from the 231 fresh-
water metagenomes are available at figshare via https://figshare.com/
articles/dataset/viral_genomes_fasta/23282789. The Actinobacterio-
phage database used in this study is available at https://phagesdb.org/. 
Source data are provided with this paper.

Code availability
COBRA is available as an open-source Python program on GitHub 
(https://github.com/linxingchen/cobra), which could be installed via 
both PyPI and Conda.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Detailed working principles of COBRA. (a) and (b) 
illustrate the valid joins considered by COBRA during the joining path search 
for each query contig, specifically in the scenarios of "one_path_end" and 
"two_paths_end" respectively. COBRA first identifies all contig end pairs with 
the same end sequences, considering both the end sequence and its reverse 
complement (rc). For example, the left end of contig 1 is referred to as contig_1_L, 
and the reverse complement as contig_1_Lrc. These identified pairs are then 
filtered to retain only those that could potentially be joined. For instance, joining 
the left end of one contig with the right end of another is possible if contig_1_L 
equals contig_2_R. In this case, the right end of contig 2 can be connected with 
the left end of contig 1, resulting in the combined contig 2 + contig 1. Joining the 
left end of one contig with the left end of another (for example, when contig_1_L 
equals contig_2_L) is not possible. However, if contig_1_L equals contig_2_Lrc, 
the contigs can be joined, resulting in the combination of rc(contig 2) + contig 
1. In the diagrams, each gray bar represents a contig (for example, c1 = contig_1), 
with its right sequence end labeled as "c1_R". The term "rc" denotes reverse 
complementary, and the arrow represents the contig end sequence, which 

is of length maxK or maxK-1. In each case, the name of the subject end under 
extension is in red, while all valid joins (direction sensitive) are displayed below 
the corresponding diagram. The filtered pairs are then examined to identify 
valid path pairs. COBRA labels an end for which there is only one possible join as 
"one_path_end". For example, end A of contig 1 shares a sequence with only one 
other contig end, that is, end B of contig 2 (subfigure (a), case 1). End B might 
share its sequence with just one other end, that is, end A. Alternatively, end B 
could share its sequence with two or more ends including end A (subfigure (a), 
cases 2–4). This could indicate that the region of end B occurs multiple times in 
the genome or is present in two or more different genomes. COBRA labels an end 
as "two_paths_end" if end B shares its sequence with two other ends (end A and 
end C), and ends A and C share the sequence exclusively with end B (subfigure 
(b)). Although this is equivalent to the reverse path for case 2 of ‘one_path_end’, 
it is considered separately because the end under consideration for extension is 
different. (c) A comprehensive overview of COBRA′s working principles at each 
stage. In the case of "two_paths_end", the path with a closer coverage match to 
that of the "query contig" will be selected.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-023-01598-2

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | The identification of non-unique joining paths. (a) 
An important, but rare, case involves a query that can be extended along two 
(or more) seemingly unique paths. Both contig a and d are queries, however, 
different joining paths will be generated for them. The sequencing coverage 
of the contigs are shown in the brackets. (b)Screening of contigs joined from 
closely related genomes using BLASTn comparison. To prevent the joining of 

fragmented contigs from closely related (sub)populations, a BLASTn comparison 
is conducted between the first half and second half of each joined COBRA 
sequence. If the two parts share a region with a minimum length of 1000 bp and 
a minimum nucleotide similarity of 70%, all the query contigs involved in the join 
are labeled as "extended_failed" to indicate the failed extension.
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Extended Data Fig. 3 | The pipeline to evaluate the performance of COBRA 
using a published virome sample. The dataset was previously published by 
Beaulaurier et al. (2019). The raw Illumina reads were downloaded from NCBI, 
and quality control was conducted (see Methods in the main text). The quality 
paired-end reads were respectively assembled using metaSPAdes, IDBA_UD, 
and MEGAHIT. The assembled contigs with a minimum length of 10 kbp were 
extracted for viral prediction (with VIBRANT) and searched against the polished 

viral genomes (see Beaulaurier et al. 2019 for details) for viral contigs (with 
BLASTn, nucleotide similarity ≥ 97%, aligned fraction ≥ 10 kbp). The obtained 
viral contigs were combined as queries for COBRA analyses. The ‘extended_
circular’ or ‘extended_partial’ COBRA sequences were compared with the 
corresponding polished genomes (determined by the abovementioned BLASTn 
search) to evaluate the performance of COBRA (see results in Fig. 2 of the main 
text).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Evaluation of COBRA with a composite soil 
metagenome dataset. (a) The pipelines to obtain the soil viral simulated 
genomes from IMG/VR v3 for benchmarking. (b) The length distribution of the 
7,532 query scaffolds for COBRA analyses. (c) The coverage distribution of the 
7,532 query scaffolds for COBRA analyses. (d) The number of query scaffolds 
matching each category of the simulated genomes. (e) Bar plots showing the 

percentage of COBRA sequences for the query scaffolds matched each category 
of the simulated genomes. In the box plots, the centre lines, upper and lower 
bounds, and upper and lower whiskers show median values, 25th and 75th 
quantiles, and the largest and smallest non-outlier values, respectively. Outliers 
are defined as having a value >1.5 × interquartile range (IQR) away from the upper 
or lower bounds.
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Extended Data Fig. 5 | The performance of COBRA on a composite soil 
metagenome dataset. (a) The sequencing coverage of query scaffolds in 
each COBRA output category. The average coverage between the ‘orphan_end’ 
category and others was compared using two-sided unpaired t-test (* p < 0.05, 
*** p < 0.001). (b) The profiles of the alignment fraction of COBRA sequences 
and the corresponding reference genomes. The definition and calculation of 
AF_reference and AF_COBRA are shown. (c) The ANI distribution of COBRA 
sequences and the corresponding reference genomes. (d) The number of 
scaffolds joined by COBRA to obtain ‘extended_partial’ (left) and ‘extended_

circular’ (right) sequences. (e) The length of the query scaffolds and the COBRA 
sequences of ‘extended_partial’ and ‘extended_circular’. The average length of 
raw contigs and COBRA sequences are shown and compared using two-sided 
unpaired t-test (*** p < 0.001). In the box plots, the centre lines, upper and lower 
bounds, and upper and lower whiskers show median values, 25th and 75th 
quantiles, and the largest and smallest non-outlier values, respectively. Outliers 
are defined as having a value >1.5 × interquartile range (IQR) away from the upper 
or lower bounds.
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Extended Data Fig. 6 | Performance comparison of COBRA and widely used 
binning tools on a composite soil metagenomic dataset. (a) The flowchart 
shows the definitions of ‘good’, ‘problematic’, and ‘contaminated’ bin or join. 
(b) The percentage of ‘good’, ‘problematic’, and ‘contaminated’ bins or joins. (c) 
The percentage of scaffolds in ‘good’, ‘problematic’, and ‘contaminated’ bins or 
joins. In (b) and (c), the total absolute numbers are shown at the top. For bins and 

joins, only those with at least two scaffolds binned or joined were considered 
and compared. (d) The individual length of good bins and good joins, and their 
total length is shown at the top. In the box plots, the centre lines, upper and 
lower bounds, and upper and lower whiskers show median values, 25th and 75th 
quantiles, and the largest and smallest non-outlier values, respectively.
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Extended Data Fig. 7 | COBRA analyses of 231 freshwater metagenomes. (a) 
The percentage of queries in each COBRA category. In the box plots, the centre 
lines, upper and lower bounds, and upper and lower whiskers show median 
values, 25th and 75th quantiles, and the largest and smallest non-outlier values, 

respectively. (b) The comparison of the number of ‘self_circular’ and unique 
‘extended_circular’ genomes from freshwater metagenomes. Interestingly, the 
number of ‘self_circular’ genomes is highly related to that of unique ‘extended_
circular’ genomes.
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Extended Data Fig. 8 | Examples of the in situ gene expression of huge phages 
with genomes reconstructed from Lake Rotsee. The reads from different 
metatranscriptomic samples were mapped to each of the three genomes using 
Bowtie2 with default parameters. Then the bam files were imported to Geneious 

and remapped allowing no mismatch for each read. The huge phage genome 
names, sampling depths, and sampling time points are shown. The most highly 
transcribed ones are highlighted with their annotations.
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Extended Data Fig. 9 | Mauve alignment of similar huge phage genomes from distant sampling sites. The alignments of huge phage genomes were reconstructed 
from freshwater lakes of different countries. The tRNAs in the first pair, that is, genome (1) and (2) were highlighted with dashed circles.
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