
UCSF
UC San Francisco Previously Published Works

Title
Characterization of the Contradictory Chromatin Signatures at the 3′ Exons of Zinc Finger 
Genes

Permalink
https://escholarship.org/uc/item/4g42f23b

Journal
PLOS ONE, 6(2)

ISSN
1932-6203

Authors
Blahnik, Kimberly R
Dou, Lei
Echipare, Lorigail
et al.

Publication Date
2011

DOI
10.1371/journal.pone.0017121

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4g42f23b
https://escholarship.org/uc/item/4g42f23b#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Characterization of the Contradictory Chromatin
Signatures at the 39 Exons of Zinc Finger Genes
Kimberly R. Blahnik1¤, Lei Dou2,3, Lorigail Echipare2, Sushma Iyengar1, Henriette O’Geen2, Erica

Sanchez2, Yongjun Zhao4, Marco A. Marra4, Martin Hirst4, Joseph F. Costello5, Ian Korf2,6, Peggy J.

Farnham7*

1 Genetics Graduate Group, University of California Davis, Davis, California, United States of America, 2 Genome Center, University of California Davis, Davis, California,

United States of America, 3 Department of Computer Science, University of California Davis, Davis, California, United States of America, 4 Genome Sciences Centre, BC

Cancer Agency, Vancouver, Canada, 5 Department of Neurosurgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of

California San Francisco, San Francisco, California, United States of America, 6 Department of Molecular and Cellular Biology, University of California Davis, Davis, California,

United States of America, 7 Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles,

California, United States of America

Abstract

The H3K9me3 histone modification is often found at promoter regions, where it functions to repress transcription. However,
we have previously shown that 39 exons of zinc finger genes (ZNFs) are marked by high levels of H3K9me3. We have now
further investigated this unusual location for H3K9me3 in ZNF genes. Neither bioinformatic nor experimental approaches
support the hypothesis that the 39 exons of ZNFs are promoters. We further characterized the histone modifications at the
39 ZNF exons and found that these regions also contain H3K36me3, a mark of transcriptional elongation. A genome-wide
analysis of ChIP-seq data revealed that ZNFs constitute the majority of genes that have high levels of both H3K9me3 and
H3K36me3. These results suggested the possibility that the ZNF genes may be imprinted, with one allele transcribed and
one allele repressed. To test the hypothesis that the contradictory modifications are due to imprinting, we used a SNP
analysis of RNA-seq data to demonstrate that both alleles of certain ZNF genes having H3K9me3 and H3K36me3 are
transcribed. We next analyzed isolated ZNF 39 exons using stably integrated episomes. We found that although the
H3K36me3 mark was lost when the 39 ZNF exon was removed from its natural genomic location, the isolated ZNF 39 exons
retained the H3K9me3 mark. Thus, the H3K9me3 mark at ZNF 39 exons does not impede transcription and it is regulated
independently of the H3K36me3 mark. Finally, we demonstrate a strong relationship between the number of tandemly
repeated domains in the 39 exons and the H3K9me3 mark. We suggest that the H3K9me3 at ZNF 39 exons may function to
protect the genome from inappropriate recombination rather than to regulate transcription.
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Introduction

It is becoming increasingly clear that understanding human

health and disease requires a detailed knowledge of both the

genetic and epigenetic variations in the human population.

Epigenomes are characterized by methylated DNA and certain

modified histones. The patterns of methylated DNA and modified

histones can vary greatly from cell type to cell type and large

changes within a cell type have also been observed when

comparing normal to diseased tissue [1,2,3,4,5,6,7,8]. Ongoing

research is currently investigating how epigenomes differ from

individual to individual when comparing the same cell type

collected from many different people (http://www.roadmapepi

genomics.org/). Six different modified histones have been chosen

as the focus of a large amount of research due to their association

with specific gene structures. For example, H3K9Ac, H3K4me3,

H3K27me3, and H3K9me3 are histone modifications that can be

found at promoter regions, whereas other modified histones are

associated with enhancer regions (e.g H3K4me1) or with

transcribed units (e.g. H3K36me3).

As indicated above, H3K27me3 and H3K9me3 are often found

at promoter regions. In fact, initial studies of H3K27me3 and

H3K9me3 using ChIP-chip and promoter arrays identified large

sets of promoters that were distinguished by these two marks, often

in a cell type-specific pattern [9,10,11,12]. However, when studies

were expanded to ChIP-chip using genomic tiling arrays and then

to genome-wide ChIP-seq, it became clear that H3K27me3 and

H3K9me3 were not only found at promoter regions but that these

marks could also spread over larger genomic regions. For

H3K27me3, the spreading patterns are generally found over

HOX gene clusters [9]. Analysis of the H3K9me3 mark is more

complicated. H3K9me3 has been found to cover various repetitive
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regions, such as centromeres, transposons, and tandem repeats

[13,14,15]. In addition, we have previously shown that the 39

exons of many zinc finger genes (ZNFs) are covered by H3K9me3

[10]. The purpose of this current study is to further investigate the

set of ZNF 39 exons that are highly enriched for the H3K9me3

mark.

Results

The 39 ends of ZNF genes do not have characteristics of

promoter regions. As indicated above, H3K9me3 is often

associated with promoter regions but our previous studies showed

that it specifically covers the 39 exons of many ZNF genes. Because

H3K9me3 is not generally associated with the 39 ends of genes, we

reasoned that it was possible that the 39 ends of the ZNF genes

may harbor previously unidentified promoters. To investigate this

hypothesis, we first performed a bioinformatic analysis. Others

[16] have previously identified a set of motifs that are highly

enriched in human promoters. If the 39 ends of the ZNF genes are

previously unidentified promoters, then we would expect the

known promoter motifs to be enriched in these regions. We

extracted the target region for each ZNF 39 end on chr19 that was

identified using ChIP-seq of hES cells as being enriched for

H3K9me3 (121 genes). As a positive control set for human

promoters, we selected +/- 500 bp from the center of the

transcription start site of each ZNF target gene and as a negative

control set we selected ‘‘enhancer regions’’, which we define as

1000 nt regions located from 210,000 to 211,000 nt upstream of

the promoter of each ZNF gene bound by H3K9me3 at its 39 end

(note that if these enhancer regions overlapped any known

promoter regions, they were excluded from analysis). Each of the 3

sets of sequences (upstream negative controls, ZNF promoters, and

ZNF 39 ends) from the 121 ZNF genes were analyzed for the

occurrence of the position weight matrix (as defined in [16]) for the

promoter-enriched motifs CAAT, CREB, NRF2, GC, Inr, NRF1,

Sp1, and YY1 using the program MAST. Motifs with an E-value

below 10 were used for evaluation and each region was searched

for the motif in the forward and reverse orientation. Then, the

number of motifs per 1kb region was determined for each category

(upstream negative controls, ZNF promoters, and ZNF 39 ends) to

normalize the analysis (Figure 1A). As expected, most of the

promoter motifs are found in the ZNF promoters and some motifs

are found in the enhancer regions. However, the 39 ends of the

ZNF genes do not contain the known promoter motifs.

Of course, it is possible that promoters embedded in ZNF 39

exons might be regulated by a different set of transcription factors

and thus would not show enrichment of the common promoter

motifs. Therefore, we next investigated whether we could associate

the H3K9me3 binding sites with 59 ends of transcripts. For these

analyses, we obtained all CAGE tags available from the Riken

CAGE database (http://gerg01.gsc.riken.jp/cage/download/

hg17prmtr/chromosomes/). The number of CAGE tags were

counted for each region (upstream negative controls, ZNF

promoters, and ZNF 39 ends) and normalized for region size. As

shown in Figure 1B, the set of ZNF promoters could be associated

with the CAGE tags but very few CAGE tags could be found that

corresponded to the upstream enhancer regions or to the

H3K9me3 sites at the ZNF 39 ends. Thus, bioinformatic analyses

do not provide strong support for the hypothesis that ZNF 39

exons are promoter regions.

As a third approach to test the hypothesis that the 39 exons of

ZNF genes are promoters, we cloned a set of the 39 exons into a

luciferase reporter vector (Figure 2A). As positive controls for these

assays, we used the DHFR promoter (a well-studied housekeeping

promoter that is active in all cell types) and the promoter regions of

the ZNF554 and ZNF440 genes. Eight ZNF 39 ends were analyzed

for promoter activity. It was possible that the ZNF 39 ends could

be promoters oriented such that they produced antisense

transcripts relative to that same ZNF gene or they could be

alternative upstream promoters of a downstream gene. Therefore,

we cloned 5 of the ZNF 39 ends in both orientations upstream of

the luciferase cDNA so that we could analyze transcriptional

activity in both directions. To begin, HepG2 and DAOY cells

were transfected with the various reporter constructs and luciferase

activity was determined. As expected, the DHFR, ZNF554, and

ZNF440 promoters were active in both cell types. However, none

of the ZNF 39 ends showed any promoter activity in either

orientation (Figure 2B). We have shown previously that the ZNF

39 ends bound by H3me3K9 are also bound by KAP1 (also called

TRIM28) [10]. KAP1 is a corepressor that recruits the histone

methyltransferase SETDB1, resulting in trimethylation of histone

H3 on lysine 9 [10,17]. It is postulated that when KAP1 is located

at promoter regions, it can function to repress transcription by

recruiting a histone methyltransferase and other repressive

proteins such as HP1 family members [18]. Thus, it was possible

that potential promoter activity from the ZNF 39 exons was

suppressed due to KAP1-mediated repression. Therefore, we also

transfected the various promoter-luciferase constructs into both

U2OS cells and HEK293 cells that were stably expressing shRNAs

against KAP1 [18,19]. However, even under conditions of KAP1

knockdown, none of the tested 39 ends of the ZNF genes

functioned as a promoter in the luciferase reporter assays

(Figure 2C, 2D). Therefore, neither bioinformatics analyses nor

a functional assay provides support for the hypothesis that the 39

exons of the ZNF genes are cryptic promoters, even though they

are bound by a mark (H3K9me3) often found at promoter regions.

The 39 exons of ZNF genes have histone modifications

characteristic of both silenced and active regions. As indicated

above, H3K9me3 is generally considered to be a mark of

repression due to its colocalization with the KAP1 corepressor

and the HP1 family of silencing proteins. However, the unusual

location of the H3K9me3 marks at the 39 exons of ZNF genes may

suggest that this mark is functioning in a different manner for this

set of genes. To investigate whether the ZNF genes that are bound

by H3K9me3 are active or repressed, we analyzed the ZNF genes

for additional histone modifications, including ChIP-seq data for

H3K4me3, H3K4me1, H3AcK9, H3K27me3, and H3K36me3.

The only other mark that was found at the ZNF 39 ends was

H3K36me3, a mark of transcriptional elongation. As shown in

Figure 3, the ZNF 39 ends that have H3K9me3 also have high

levels of the H3K36me3 mark. Although the binding patterns of

H3K9me3 and H3K36me3 are similar over many ZNF genes,

there are clearly many regions identified by H3K9me3 but not by

H3K36me3 (e.g. 59680000 and 60060000 which includes a cluster

of killer cell and leukocyte immunoglobulin-like receptors). As

expected, there are also many regions identified by H3K36me3

and RNA-seq (e.g. the RPS9 gene at ,5940000) but not by

H3K9me3. To examine the relationship between H3K9me3 and

H3K36me3 on a genome-wide scale, we analyzed hES cell ChIP-

seq data obtained using the H3K9me3 and H3K36me3

antibodies. To do so, we first needed to modify Sole-search, our

ChIP-seq peak-calling program [20]. This program was originally

developed to analyze the binding patterns of site-specific DNA

binding proteins, which produce very narrow peaks in ChIP-seq

analyses. The binding patterns of modified histones, in particular

H3K9me3 and H3K36me3, are not narrow but instead can

spread over large regions and exhibit very jagged enrichment

profiles. Therefore, we modified the program such that it allows

Contradictory Chromatin Signatures on ZNF 39 Exons
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Figure 1. ZNF 39 ends are not enriched for promoter motifs or CAGE tags. (A) The 39 ends of the ZNFs bound by H3K9me3, as well as a 1kb region
centered on the start site (promoter) and a 1 kb region located 10 kb upstream (enhancer) of the same genes were searched in forward and reverse
orientations for the sequence of nine motifs previously found to be enriched in promoter regions [16]. Since the sizes of the H3K9me3 regions varied from
site to site, the data was normalized such that the motif counts are reported as the number of motifs found per 1000 base pairs. (B) The number of CAGE
tags corresponding to the regions of the 39 ends of the ZNFs bound by H3K9me3, as well as a 1 kb region centered on the start site (promoter) and a 1 kb
region located 10 kb upstream (enhancer) of the same genes was determined; the data was normalized as described in Figure 1A.
doi:10.1371/journal.pone.0017121.g001

Contradictory Chromatin Signatures on ZNF 39 Exons
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‘‘binding regions’’ rather than narrow peaks to be identified; see

Supplementary Information S1 and Figure S1 for more details

about Sole-searchv2. A comparison of the number of called peaks

and genomic coverage using the standard versus the histone

parameters is shown in Table 1; the most important difference is

that a larger region of the genome is identified as being covered by

histone marks using the modified program. Using the histone-

specific program parameters, we identified 20,744 H3K9me3

regions and 32,685 H3K36me3 regions. However, only 2,813

regions are covered by both types of modified histones (Figure 4A).

We further characterized the 2,813 regions marked by both

H3K9me3 and H3K36me3. First we determined how many

RNA-seq tags mapped to the H3K36-specific regions, the

H3K9me3-specific regions, and the regions covered by both

marks. As expected, the regions covered only by H3K36me3 were

transcribed and the regions covered only by H3K9me3 were not

transcribed (Figure 4B). Interestingly, the dual bound regions

display modest transcription levels, suggesting that the presence of

a H3K9me3 mark is not incompatible with transcription. Then,

we mapped the dual covered regions to the nearest gene and used

the DAVID gene ontology program [21] to identify specific

functional classes of genes showing these dual patterns. Strikingly,

the main gene category identified was Krueppel-associated C2H2

zinc finger genes (243 genes), with a minor category of cadherins

(25 genes) (Figure 4C). The cadherins are all clustered on

chromosome 5 and consist of a tandem array of alternatively

used 59 exons and common 39 exons. Unlike the 39 exon-specific

marking of the ZNFs by H3K9me3 and H3K36me3, it is the

promoter regions and alternatively used 59 exons of the cadherin

genes that are dually bound by the two histone marks.

The H3K9me3 mark is not repressive when located at ZNF 39

ends. Our ChIP-seq results suggested the possibility that the ZNF

genes may be imprinted, with one allele transcribed (and covered by

H3K36me3) and one allele repressed (and covered by H3K9me3).

To test the hypothesis that the contradictory modifications are due

to imprinting, we examined levels of RNA corresponding to the

ZNF genes in hES cells, using RNA-seq data [22]. We found that

the ZNF exons that show enrichment for H3K9me3 are transcribed

in hES cells (Figure 5A). To further investigate the role of

H3K9me3, we identified the top 716 H3K9me3 sites and separated

them based on whether they were located in a promoter region (183

sites) or within a gene (433 sites). As shown in Figure 5B, promoter

regions bound by H3K9me3 are associated with a very low number

of RNA-seq tags in hES cells whereas regions within genes that are

Figure 2. The 39 ends of ZNF genes do not display promoter
activity. A) ChIP-seq signal tracks from Ntera2 cells are shown for the
ZNF440 gene. H3K4me3 binding is observed at the promoter (top
panel), while H3K9me3 localizes to the 39 end of the ZNF440 gene
(bottom panel). The number of sequenced tags is plotted on the y-axis.
Shown below the ZNF440 gene schematic are representative constructs
for the experiments shown in panels B–D. Promoter regions (from
,500 bp upstream to ,100 bp downstream of TSS) and 39 regions
bound by H3K9me3 in vivo were cloned in front of the luciferase cDNA;
the 39 regions were cloned in either the sense (s) or antisense (as)
direction (see Table S2 for coordinates of the genomic fragments used
for promoter analyses). B–D) Luciferase assays were performed to test
for promoter activity at 39 ends of ZNF genes. The DHFR, ZNF440 and
ZNF554 promoters were used as positive controls and an empty vector
(EV) was used as a background control. Promoter activity was tested in
Ntera2 and DAOY cells B), in U2OS cells (C) and in HEK293 cells (D). In
addition, the U2OS and HEK23 cells were also stably transfected with a
KAP1 shRNA construct (indicated as KAP1 KD). Fold luciferase was
determined based on the empty vector control and is plotted on the y-
axis.
doi:10.1371/journal.pone.0017121.g002

Contradictory Chromatin Signatures on ZNF 39 Exons
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bound by H3K9me3 are associated with a larger number of RNA-

seq tags. Thus, both RNA analyses and chromatin modification

analyses suggest that ZNF genes having H3K9me3 on their 39 exons

are transcribed from at least one allele.

If only one allele of the ZNF genes is transcribed, one might

expect that the H3K9me3 and H3K36me3 peak heights at the

dually covered regions would be approximately half the peak

heights of the marks at the singly covered sites (because only one

allele would contribute to each signal in the dually covered sites

whereas both alleles would contribute to the signal in the singly

covered sites). However, the average height of the H3K9me3

peaks at 39 ZNF exons that had both marks was higher than the

average height of the H3K9me3 peaks at 39 ZNF exons that had

only H3K9me3. Similarly, the average height of the H3K36me3

peaks at 39 ZNF exons that had both marks was higher than the

average height of the H3K36me3 peaks at 39 ZNF exons that had

only H3K36me3 (data not shown). Although not conclusive, these

results suggested that the H3K9me3 and H3K36me3 marks on the

dually bound ZNF 39 exons may not be limited to only one allele.

We next used the program ssahaSNP to identify single nucleotide

polymorphisms (SNPs), as compared to the reference genome

sequence, that were located within genes targeted by both

H3K9me3 and H3K36me3 on chromosome 19. We then

searched for these SNPs within the RNA-seq dataset. Out of 72

SNPs that were identified, 40 SNPs and 3 wt nts were fixed in the

RNA sequence data (the SNP or wt nt composed .90% of all

nucleotides sequenced for this position). This could suggest either

that the ZNFs containing these SNPs were expressed in an allele-

specific manner or that the SNP was fixed in the ES cell genome.

However, we did identify 29 cases where both wt and SNP alleles

are present in the RNA-seq tags approximately equally (Table 2

and Table S3). Since both alleles are transcribed, the hypothesis

that transcription is allele-specific is not supported for these ZNF

genes bound by both H3K9me3 and H3K36me3.

Figure 3. ZNF39 ends are marked by H3K36me3. Shown for a region of chromosome 19 (hg18 coordinates) are the RNAseq, H3K36me3, and
H3K9me3 patterns for hES cells. Also shown is a track that indicates the position of the ZNF genes within that region. The hES RNAseq and ChIP-seq
experiments were performed as part of the NIH Roadmap Epigenome Mapping Consortium (http://www.roadmapepigenomics.org/). The RNAseq
data and the H3K4me3 and H3K9me3 modifications of a small set of loci have been previously analyzed as part of a previous publication [22].
doi:10.1371/journal.pone.0017121.g003

Table 1. Analysis of ChIP-seq data.

Original Sole-Search Modified Version

Peaks Total coverage (bp) Peaks Total coverage (bp) Fold difference

H3K4me3 9,868 3,416,942 10,165 14,139,035 4.1

H3K36me3 27,811 9,672,419 32,685 65,057,655 6.7

H3K9me3 26,728 9,212,672 20,744 35,215,276 3.8

Shown are the number of peaks called and the total number of bp covered by each peak set for H3K4me3, H3K36me3, and H3K9me3 using the original Sole-search
program or the program which has been modified to identify broad regions covered by modified histones. Also shown in the increase in genome coverage (fold
difference) that results when using the modified peak calling program. Both the original and the modified program can be accessed at http://chipseq.genomecenter.
ucdavis.edu/cgi-bin/chipseq.cgi.
doi:10.1371/journal.pone.0017121.t001

Contradictory Chromatin Signatures on ZNF 39 Exons
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H3K9me3 and H3K36me3 are not co-regulated. The studies

presented above suggest that the H3K9me3 and H3K36me3

marks on the dually bound ZNF39 exons are not mutually

exclusive. We next wished to investigate whether the dual

H3K9me3 and H3K36me3 marks are co-regulated. To investigate

this hypothesis, we used a method that we have previously

developed called eChIP, which allows the in vivo study of a

chromosomal region removed from its normal chromosomal

Figure 4. ZNFs are the largest category of genes that have both H3K9me3 and H3K36me3 marks. (A) Shown is a Venn diagram
indicating the number of regions bound by H3K9me3, H3K36me3, and both marks, as determined by analysis of hES cell ChIP-seq data using Sole-
searchv2. (B) The number of RNA-seq tags corresponding to regions identified as bound by H3K9me3 alone, H3K36me3 alone, and by both H3K9me3
and H3K36me3 is plotted. (C) The regions bound by both H3K36me3 and H3K9me3 were analyzed using the DAVID gene ontology program [21]. The
gene nearest to each binding site was chosen for analysis; shown are the enriched terms and P-value of enrichments.
doi:10.1371/journal.pone.0017121.g004

Contradictory Chromatin Signatures on ZNF 39 Exons
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location [23]. We cloned the 39 ends of ZNF555, ZNF556, and

ZNF77 into the episomal vector, introduced this vector into

HEK293 cells that express EBNA1 (required for the maintenance

of the episome), and then performed a ChIP analysis using

H3K9me3 and H3K36me3 antibodies. As a control, we first

demonstrated that in HEK293 cells the 39 ends of the endogenous

ZNF555, ZNF77, ZNF333, and ZNF426 genes are bound by both

H3K9me3 and H3K36me3 and that, as predicted from the hES

ChIP-seq results, the 39end of ZNF556 is bound only by

H3K9me3 and not by H3K36me3 (Figure 6A). We also showed

that the GAPDH gene is bound only by H3K36me3 and not by

H3K9me3, as expected for a highly transcribed gene and that the

GMNN promoter is not bound by either mark. We next analyzed

the episomal constructs. We observed high levels of H3K9me3 on

Figure 5. ZNF 39 exons are transcribed. (A) Shown for a region of chromosome 19 is the ChIP-seq pattern for H3K9me3 and the RNA pattern
obtained using RNAseq, both from hES cells. (B) Shown on the Y axis are the number of RNA-seq tags from hES cells corresponding to H3K9me3
bound regions that are classified as promoters (183 sites) or intragenic (433 sites).
doi:10.1371/journal.pone.0017121.g005

Contradictory Chromatin Signatures on ZNF 39 Exons
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the episomal ZNF 39 ends, but not on the GMNN promoter, an

episomal vector that does not contain an insert, or the hygromycin

cDNA region (Figure 6B). In contrast, analysis of the episomal

ZNF 39 ends showed that they are not marked by H3K36me3. As

a control to demonstrate that the H3K36me3 antibody could

detect the H3K36me3 mark on an episome, we analyzed the

hygromycin cDNA that is located on the same episomal vector as

the GMNN promoter and cloned downstream of a eukaryotic

promoter. Expression of hygromycin is used to select the stable

episomes and thus this cDNA is transcribed and we could detect

H3K36me3 in this region of the episome. These results

demonstrate that although both H3K9me3 and H3K36me3

marks show very high enrichment at the 39 ends of ZNFs, these

two marks are not co-regulated. H3K36me3 is produced by

SETD2 [24] and is thought to be recruited to the transcriptional

elongation complex via interaction with Ser 2-phosphorylated

RNA Polymerase II (reviewed in [25]); the levels of Ser 2-

phosphorylated RNA polymerase II, and thus also the levels of

H3K36me3, increase from the 59 to 39 direction throughout the

transcription unit. Our results show that the H3K9me3 deposition

is not dependent on the same mechanism as H3K36me3

deposition since the episomes have the H3K9me3 but not the

H3K36me3 mark. In fact, the high H3K9me3 mark on the

episomal ZNF 39 exons indicates that the cis elements required for

the mark are all present on the episomes. We have recently shown

that the KAP1/SETDB1 histone methylation complex colocalizes

with H3K9me3 [26]. Thus, the episomes must contain the cis

elements that can recruit the KAP1/SETDB1 complex.

H3K9me3 at ZNF 39 exons corresponds with the number of

tandemly repeated finger domains. ZNF genes contain multiple,

highly conserved finger domains in their 39 exons. In essence,

these finger domains create highly repetitive genomic regions.

H3K9me3 has been shown to bind to other repetitive elements,

such as transposons and centromeric repeats [13,14,15]. If the

H3K9me3 was binding to the ZFN 39 ends simply as a

consequence of the repetitive nature of these genomic regions,

then we would expect the likelihood of H3K9me3 to be bound to a

ZNF gene to increase as the number of finger domains increases.

To test this possibility, we classified the ZNF genes into sets

depending on how many tandomly repeated finger domains were

present in the gene and then plotted the percentage of each set

that is covered by H3K9me3 (Figure 7). We note that ZNFs that

have very few finger domains are rarely covered by H3K9me3,

whereas ZNFs having greater than 15 domains are almost always

covered by H3K9me3. Clearly, there is a strong relationship

between the number of tandemly repeated finger domains and the

likelihood of being covered by H3K9me3. In contrast, there is no

relationship between the number of repeated finger domains and

the likelihood of being covered by H3K36me3. As a further

analysis of the repetitive nature of H3K9me3 vs. H3K36me3

peaks, we examined 20,744 H3K9me3 peaks and 20,744

H3K36me3 peaks and searched for tandem repeats using the

program XSTREAM, identifying sequences that are 50bp or

larger, repeated at least 5 times in the human genome, and having

at least 60% conservation between repeat elements. We then

calculated the percentage of each peak that was a repetitive

element. We found that more of the H3K9me3 peaks consisted of

a high percentage of repetitive regions. For example, there are

,17 times more H3K9me3 peaks that consist of 91-100%

repetitive elements (see Figure S2).

Discussion

The focus of this study was to characterize the contradictory

chromatin marks found at the 39 ends of hundreds of ZNF genes in

the human genome. Because H3K9me3 has been shown to be

promoter-localized [9,27,28], we first investigated the possibility

Table 2. Analysis of RNA-seq SNPs.

Count

WT fixed 3

SNP fixed 40

Heterogeneous 29

Total 72

The program ssahaSNP was used to identify single nucleotide polymorphisms
(SNPs), as compared to the reference genome sequence, that were located
within genes targeted by both H3K9me3 and H3K36me3 on chromosome 19.
Out of 72 SNPs that were identified, 40 SNPs and 3 wt nts were fixed in the RNA
sequence data (the SNP or wt nt composed .90% of all nucleotides sequenced
for this position) but there were 29 cases where both wt and SNP alleles are
present in the RNA-seq tags approximately equally.
doi:10.1371/journal.pone.0017121.t002

Figure 6. H3K9me3 and H3K36me3 are not co-regulated at ZNF
39 ends. (A) ChIP experiments were performed in HEK293 cells using
antibodies specific for H3me3K9 and H3me3K36; IgG was used as a
negative control. Using primers specific for the endogenous chromo-
somal regions, the 39 exons of 4 ZNFs shown by ChIP-seq of hES cells to
be bound by both H3K36me3 and K3K9me3 (ZNF555, ZNF77, ZNF333,
and ZNF426) were show to be bound by both marks in the HEK293 cells.
In contrast, ZNF556, which bound only by H3K9me3 (as was predicted
from the ChIP-seq binding patterns from hES cells. The GAPDH gene
was used as a positive control for H3K36me3 and a negative control for
H3K9me3 and the GMNN promoter served as a negative control for
both marks. (B) eChIP experiments were performed (using primers
specific for the regions cloned into the episomal vectors) in HEK293
cells harboring episomal constructs containing the indicated regions.
Antibodies specific for H3me3K9 and H3me3K36 were used and IgG
was used as a negative control. Episomal constructs harboring the 39
ends of ZNF555, ZNF556, and ZNF77 were analyzed; an empty episomal
vector and an episomal vector harboring the GMNN promoter were
used as negative controls. The hygromycin cDNA (located on the
opposite side of the episome from the cloning site) was used as a
positive control for H3K36me3.
doi:10.1371/journal.pone.0017121.g006
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that the 39 ends of ZNF genes harbor cryptic or previously

uncharacterized promoters. However, neither bioinformatic nor

experimental approaches support the hypothesis that the 39 exons

of ZNFs are promoter regions. We next analyzed genome-wide

ChIP-seq data for H3K9me3 and H3K36me3 and found that

although there are ,18,000 H3K9me3 and ,30,000 H3K36me3

regions in human ES cells, these two modified histones are found

together at very few genomic locations. The reason for the low

overlap is that H3K36me3 is a mark of transcriptional elongation

(and thus covers intragenic regions downstream of promoters)

whereas H3K9me3 is mainly found at promoter regions or in large

transcriptionally inactive domains. In fact, ZNF 39 exons

constitute the vast majority of the overlapping H3K9me3 and

H3K36me3 sites in the human genome. Although the patterns of

H3K9me3 and H3K36me3 are very similar on ZNF genes, we

have used episomal ChIP assays to show that the marks are not co-

regulated.

It is thought that the H3K9me3 histone modification serves as a

transcriptionally repressive mark. However, others have shown

that H3K9me3 can be found to co-localize with RNAPII or

H3K9Ac on promoters [9,27] and is also present on some

transcribed regions [28,29]. Therefore, simply identifying a region

as being marked by H3K9me3 does not provide information as to

whether the gene is transcribed. There are other examples of

contradictory marks being located on certain genes. For example,

imprinted genes have both H3K9me3 and H3K4me3 marks, with

the repressive H3K9me3 being located on one parental allele and

the active H3K4me3 mark being enriched on the other parental

allele [30]. For these cases, the contradictory marks are located at

the promoter regions and only one allele is transcribed. Another

set of contradictory chromatin marks includes the bivalent

promoters that have both H3K4me3 and H3K27me3 [31]. In

this case, the repressive H3K27me3 mark is dominant and the

genes are not transcribed. Our analyses show that the ZNF genes

that have both H3K9me3 and H3K36me3 are transcribed (unlike

the bivalent marks) and, for at least some ZNFs, the transcripts are

not allele-specific (unlike the imprinted genes). We also note that

the nucleosomes at the 39 ends of the ZNF genes that have the

H3K9me3 and H3K36me3 marks do not have either H3K4me3

or H3K27me3 (Figure 2 and data not shown). Another distinction

between the dual H3K9me3 and H3K36me3 marks found on

ZNF genes and the bivalent H3K4me3 and H3K27me3 marks

found on HOX genes is that the H3K4me3 and H3K27me3

bivalent marks are found only on chromatin from embryonic cells

whereas the dual H3K9me3 and H3K36me3 marks at 39 ZNF

exons are found in every cell type that we have examined,

including both embryonic and adult cells as well as normal and

cancer cells (Figure 8).

Because the ZNF genes covered by H3K9me3 at their 39 exons

are transcribed, we suggest that H3K9me3 may not be involved in

repressing transcription of these genes. Rather, H3K9me3 may

serve to create a more condensed chromatin structure that can

inhibit inappropriate homologous recombination between differ-

ent highly related ZNF genes. We have shown that there is a

strong relationship between the number of tandemly repeated

finger domains and the likelihood of being covered by H3K9me3

(but not by H3K36me3, which correlates with the transcript level

and not the number of fingers in a particular ZNF gene). Also, we

have found that when ZNF genes are introduced into cultured

human cells, they very often become truncated at their 39 ends

(Iyengar and Farnham, unpublished data). It is possible that the

‘‘unprotected’’ plasmid DNA corresponding to the ZNF 39 exons

Figure 7. H3K9me3 enrichment at ZNF 39 ends correlates with the number of finger domains. Shown is the percentage of ZNF genes
having the specified numbers of zinc fingers that are targeted by H3K9me3 or H3K36me3 (ZNF genes having from 1 to 25 zinc fingers were used for
this analysis).
doi:10.1371/journal.pone.0017121.g007
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serves as a recombination template, resulting in recombination

and mutation of the introduced gene. Future studies are required

to address the possible role of H3K9me3 (and the enzyme

complexes that mediate this histone modification) in suppression of

homologous recombination amongst the hundreds of ZNF genes.

Finally, we note that to accurately compare genomic regions

enriched for spreading histone modifications such as H3K9me3

and H3K36me3, we developed a modified peak calling program

that takes into account duplicated regions of the genome, biases in

sequencing of certain regions, and the jagged profile of regions

enriched for histone modifications. This program, Sole-searchv2,

is publicly available at http://chipseq.genomecenter.ucdavis.edu/

cgi-bin/chipseq.cgi.

Methods

Luciferase assays: Luciferase assay constructs were created by

ligating PCR products into pGL4-11 (Promega) upstream of the

luciferase gene. The pGL4-11b-DHFR control plasmid was

provided by SwitchGear Genomics. Plasmids containing ZNF440

or ZNF544 gene promoters and 39 regions of ZNF genes were

cloned using XhoI/HindIII restriction sites. All other ZNF

constructs were created by blunt cloning into SmaI restriction

site. For luciferase assays, HepG2 (ATCC #HB-8065), DAOY

(ATCC #HTB-186), U2OS(ATCC #HTB-96), and HEK293

(ATCC #CRL-1573) cells were grown in DMEM supplemented

with 10%FBS, 2 mM L-Glutamine, 100 U/mL Penicillin/Strep-

tomycin. Stable KAP1 knockdown cell lines K928-cI10 (HEK293)

and U2OS-K4 (U2OS) were kindly provided by David Schultz

[18,19]. K928-cl10 cells were grown as above with the addition of

10 mg/ml puromycin, U2OS-K4 cells were grown in the presence

of 200 mg/ml zeocin. Cells were plated in 24 well dishes at a

density of 30,000 cells per well. The following day, cells were co-

transfected with 100 ng luciferase plasmid and 5 ng Renilla

reporter plasmid phRL-SV40 (Promega) using Effectene (QIA-

GEN) according to the manufacturer’s instructions. Cells were

lysed 48 hours post transfection and luciferase activity was

determined using the Dual-Luciferase Reporter Assay System

(Promega) according to the manufacturer9s protocol. Luciferase

values were normalized using Renilla values.

ChIP-seq. ChIP-seq was performed as described in Supple-

mentary Information S1. Briefly, cells were crosslinked, chromatin

was extracted and sonicated to an average size of 300–500 bp, and

individual ChIP assays were performed using antibodies to

modified histones and protein G-coupled magnetic beads. ChIP

libraries were created as described previously [32], using 15–18

cycles of amplification. Libraries were run on a 2% agarose for gel

purification. Library DNA was quantitated using either a

Nanodrop or a BioAnalyzer and sequenced on an Illumina GA2

by the DNA Technologies Core Facility at the University of

California-Davis (http://genomecenter.ucdavis.edu/dna_technol

ogies/) or at the University of British Columbia Genome Science

Center. Lists of all the ChIP-seq experiments and information

concerning the antibodies used for each histone mark are provided

in Table S1 and the coordinates of the primers used for ChIP

assays are listed in Table S2; see Supplementary Information S1

for antibody validation. The hES ChIP-seq experiments were

performed as part of the NIH Roadmap Epigenome Mapping

Consortium (http://www.roadmapepigenomics.org/) and a small

set of loci have been previously analyzed using these datasets [22].

ChIP-seq peakcalling. Peaks were identified using version 2 of

the Sole-search software. Version 2 of this program has been

designed to run more quickly and efficiently on the increasingly

large ChIP-seq data sets, to more accurately analyze ChIP-seq

data from any species, and to improve peak-calling for proteins

and histone modifications which are characterized by spreading.

Figure 8. ZNF 39 exons are covered by H3K9me3 and H3K36me3 in both pluripotent and differentiated cell types. Shown are the
ChIP-seq profiles of H3K9me3 and H3K36me3 for a section of chromosome 19 from Ntera2 (pluripotent testicular embryonal carcinoma from a 22
year old male), Proliferating Blood Mononuclear Cells (PBMC) from a 28 year old male), K562 (chronic myelogenous leukemia from a 53-year-old
female), and U2OS (moderately differentiated sarcoma of the tibia of a 15 year old girl) cells. The number of sequenced tags is plotted on the y-axis,
the positions of 3 ZNF genes are indicated on the x axis (the direction of transcription is indicated by the arrows), and the antibody used for each
experiment is indicated on the right side of the figure.
doi:10.1371/journal.pone.0017121.g008
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Several changes, as compared to the original Sole-search program

[20], were implemented to achieve these goals. This new software

is comparable to its predecessor in the ability to accurately

determine transcription factor binding sites but greatly improves

peak-calling for spreading marks, such as histone modifications;

see Supplementary Information S1 and Figure S1 for more details.

Episomal ChIPs (eChIPs): All regions to be cloned into the

episomal vector (with the exception of GMNN which has been

described previously in [23] were amplified from Ntera2 genomic

DNA by PCR with Pfx Polymerase (Invitrogen) using primers that

introduced unique XhoI and HindIII sites immediately 59 and 39

to the region of interest, respectively. The target sequences were

then cloned into the pFC62 episome using the XhoI and HindIII

sites; successful cloning of the various inserts was confirmed by

sequencing at the UC Davis Sequencing Facility. The episomal

constructs (1 mg) were transfected into HEK293c18 cells stably

expressing EBNA-1 in 6-well dishes using FuGene 6 Transfection

Reagent (Roche) according to manufacturer’s recommendations.

Forty-eight hours after transfection, cells were selected in medium

containing 500 mg/ml of G418 (Sigma) and 200 ug/ml Hygro-

mycin B (CellGro), and drug resistant colonies were pooled and

expanded. Pooled colonies were assayed for the presence of the

correctly sized episomal insert using primers that flanked the

cloning site and genomic DNA prepared from the stably

transfected cells. To perform the eChIP assays, HEK293cl18 cells

stably transfected with a particular episome were harvested when

the cells were ,75% confluent. Cells were cross-linked and

chromatin was prepared and analyzed using our standard ChIP

protocol (http://www.genomecenter.ucdavis.edu/farnham) with a

few modifications. Namely, ,20 ug of chromatin was used for

each IP and the amount of antibody was greatly reduced (0.2 ug of

Anti-H3me3K9 (Abcam, #8898), Anti-H3me3K36 (Diagenode,

# pAb-058-050), or non-specific rabbit IgG antibody (Alpha

Diagnostics, # 20009-5) was used). Complexes were recovered

with 10 uls of StaphA cells for 15 minutes at room temperature.

Washes, elution and purification of the ChIP samples were

performed according to the standard protocol. PCR reactions

were performed using only 1 ul of the immunoprecipitated sample

and amplified for only 28 cycles.

Supporting Information

Supplementary Information S1 This file includes a descrip-

tion of Sole-search version 2, antibody validation documents, and

the ChIP-seq protocol.

(PDF)

Figure S1 Major steps implemented in Sole-searchv2.
The original Sole-search program has been modified to improve

the ability to determine statistically and biologically significant

peaks in both transcription factor and histone modification

datasets. (A) Input data is smoothed and duplication and deletion

events are determined based on fold coverage of these regions

compared to average coverage. Next, specific regions of the

genome that have a higher sequence coverage than expected by

chance, due to experimental method, are determined using a t-

statistic. Raw ChIP-seq data is normalized based on duplication

event copy number and enrichment of input reads, so that the data

to be analyzed will reflect a single copy genome without

sequencing bias (see the track corresponding to ‘‘Normalized

ChIP-seq data’’). (B) The second, optional step smoothes data that

spreads over large regions (e.g. data from histone modification

ChIP-seq experiments), using a sliding average, so that non-

uniform ‘‘mountain range’’ peaks are more easily detectable as

broad regions. Previously, these regions would be identified as

having many, distinct peaks. Also certain smaller peaks would fail

to be detected. This smoothing step allows detection of both broad

regions and smaller. (C) The third major step determines a

statistically significant peak height cutoff. Tags are randomly

sampled from the input dataset to create bins. Tags are then

shuffled within the bins. Height cutoff is determined based on a

user-defined FDR. The cutoff value increases until the number of

peaks found within the randomly generated background is

sufficiently low, compared to the number of peaks found in the

ChIP-seq dataset at the same height.

(PDF)

Figure S2 20744 H3K9me3 peaks and 20744 H3K36me3
peaks were searched for tandem repeats using the
program XSTREAM (http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2233649/), identifying sequences
that are 50bp or larger, repeated at least 5 times in
the human genome, with at least 60% conservation
between repeat elements. The percent of each peak that was a

repetitive element was then calculated. A greater number of the

H3K9me3 peaks had high percentages of repetitive regions. For

example, there are ,17 times more H3K9me3 peaks that consist

of 91-100% repetitive elements.

(PDF)

Table S1 Summary table of ChIP-seq data sets.

(PDF)

Table S2 List of primers used in this study.

(PDF)

Table S3 RNA-seq SNP frequencies.

(XLSX)
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