Lawrence Berkeley National Laboratory

LBL Publications

Title

Magnetic Induction Mapping of TFTR Three Channel Deflection Magnet

Permalink

https://escholarship.org/uc/item/4g25g8q2

Author

Green, Michael I

Publication Date

1979-06-01

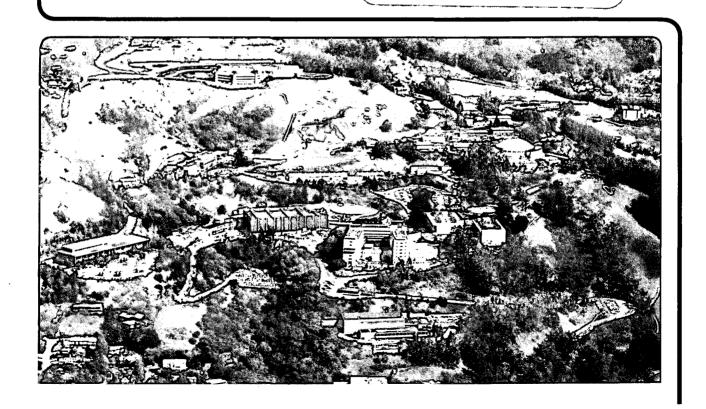
Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA, BERKELEY

Engineering & Technical Services Division


RECEIVED
LAWRENCE
BERKELEY LABORATORY

APR 10 1980

LIBRARY AND OCUMENTS SECTION

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

MAGNETIC INDUCTION MAPPING OF TFTR THREE CHANNEL DEFLECTION MAGNET

Michael I. Green

Date
June 29, 1979

Rev. A 1/09/80

TABLE OF CONTENTS

I.	INTROD	RODUCTION								Page	3		
II.	INSTRU	MEN'	TATION			,					Page	4 -	- 5
	FIGURE	1	SCHEM	ATIC DIAGRA	AM (OF INS	STRU	MENTATION	1		Page	6	
	TABLE	1	INSTR	UMENTATION	LIS	ST					Page	7	
	FIGURE	2	FRAME	OF REFEREN	ICE	FOR 1	1AGNI	ETIC MEAS	SUREMI	ENTS	Page	8	•
III.	DATA		•			,				() () () () () () () () () ()	Page	9	
	TABLE	2	PARAM	ETERS OF CI	ENTI	ER GAI	e sca	ANS			Page	10 -	- 13
	FIGURE	3	CHART	RECORDING	OF	RUNS	8	THROUGH	22,	CENTER GAP SCANS	Page	14	
	FIGURE	4	CHART	RECORDING	OF	RUNS	24	THROUGH	35,	CENTER GAP SCANS	Page	15	
	FIGURE	5	CHART	RECORDING	OF	RUNS	36	THROUGH	48,	CENTER GAP SCANS	Page	16	
	FIGURE	6	CHART	RECORDING	OF	RUNS	49	THROUGH	62,	CENTER GAP SCANS	Page	17	
	FIGURE	7	CHART	RECORDING	OF	RUNS	63	THROUGH	67,	CENTER GAP SCANS	Page	18	
	FIGURE	8	CHART	RECORDING	OF	RUNS	68	THROUGH	84,	CENTER GAP SCANS	Page	19	•
	FIGURE	9	CHART	RECORDING	OF	RUNS	85	THROUGH	90,	CENTER GAP SCANS	Page	20	
	FIGURE	10	CHART	RECORDING	OF	RUNS	93	THROUGH	100,	CENTER GAP SCANS	Page	21	
	FIGURE	11	CHART	RECORDING	OF	RUNS	104	THROUGH	110,	CENTER GAP SCANS	Page	22	
	TABLE 3 PARAMETERS OF LEFT-HAND-SIDE GAP SCANS								Page	23 -	- 24		
	FIGURE	12	CHART	RECORDING	OF	RUNS	111	THROUGH	118,	LHS GAP SCANS	Page	25	
	FIGURE	13	CHART	RECORDING	OF	RUNS	119	THROUGH	131,	LHS GAP SCANS	Page	26	
	FIGURE	14	CHART	RECORDING	OF	RUNS	132	THROUGH	142,	LHS GAP SCANS	Page	27	
	FIGURE	15	CHART	RECORDING	OF	RUNS	143	THROUGH	144,	LHS GAP SCANS	Page	28	
	FIGURE	16	CHART	RECORDING	OF	RUNS	145	THROUGH	156,	LHS GAP SCANS	Page	29	

MT Book No. 595 LBID-087-1 MT-273-A

NAME

PAGE 2 of 47

SUBJECT

MAGNETIC INDUCTION MAPPING OF TFTR THREE CHANNEL DEFLECTION MAGNET

Michael I. Green
June 29, 1979

Rev. A 1/09/80

TABLE OF CONTENTS

IV.	RESULTS AN	D DATA ANALYSIS	Page 30 - Rev.
	A. MAGNET	Page 30	
	FIGURE 17	MAGNETIZATION CURVES	Page 31 - Rev.
	B. COIL R	ESISTANCE	Page 32
	C. MAGNET	Page 32	
•	FIGURE 18	CENTER GAP COIL RESISTANCE VERSUS CURRENT	Page 33
	FIGURE 19	LEFT-HAND-SIDE GAP COIL RESISTANCE VERSUS CURRENT	Page 34
	FIGURE 20	PLOT OF CENTER GAP MAGNETIC FIELD	Page 35
	D. NUMERI	CAL DATA RUNS	Page 36
	TABLE 4	RUN 23 NUMERICAL DATA	Page 37
	TABLE 5	RUN 101 NUMERICAL DATA	Page 38
	TABLE 6	RUN 102 NUMERICAL DATA	Page 39
	TABLE 7	RUN 103 NUMERICAL DATA	Page 40
	TABLE 8	RUN 157 NUMERICAL DATA	Page 41
	FIGURE 21	NORMALIZED NUMERICAL DATA	Page 42
v.	ACKNOWLEDG	EMENTS	Page 43
VI.	REFERENCES		Page 43
APPE	ENDIX A		Page 44
	DATA ACQUI	Page 44 - 45	
	TABLE A-1	TYPICAL LOG SHEET	Page 46
DIST	Page 47		

MT Book No. 595

LBID-087-1 MT-273-A PAGE 30 of 47

SUBJECT

MAGNETIC INDUCTION MAPPING OF TFTR THREE CHANNEL DEFLECTION MAGNET Michael I. Green

Date June 29, 1979

Rev. A 1/09/80

IV. RESULTS AND DATA ANALYSIS

A. MAGNETIZATION CURVES

Figure 17 plots the magnetization curves B(0,0,0) and the Hall Probe excitation curves for the left-hand-side and the center gaps. The B versus I data points for the two gaps were super-imposed and reproduced each other except for slight hysteresis effects (typically under 1%). For currents up to 700 amps (2.2 kG), the magnetization curve is linear and can be expressed

B (Gauss) = $3.132 \times I$ (amps).

The following relationships between magnetic induction and the Hall Probe outputs were determined by utilizing a linear least squares fit program on a TI-52 calculator.

Left-Hand-Side Gap

B (Gauss) =
$$mV_{HP \ 1} \times 23.57 - 26.4$$

B (Gauss) =
$$mV_{HP}$$
 2 x 24.35 + 16.7

Center Gap

B (Gauss) =
$$mV_{HP 3} \times 23.12 - 141.9$$

B (Gauss) =
$$mV_{HP \ 4}$$
 x 24.64 - 146.2

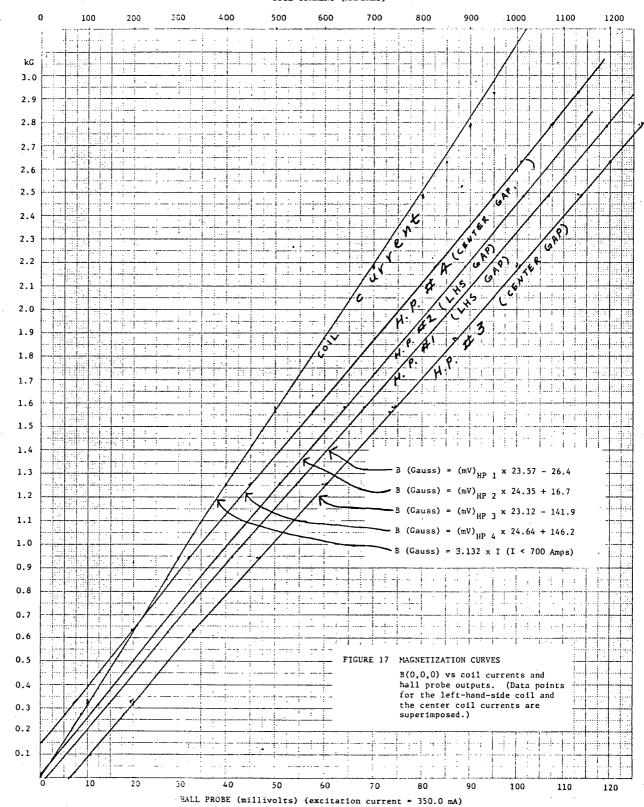
LAWRENCE BERKELEY LABORATORY - UNIVERSITY OF CALIFORNIA

ENGINEERING NOT

MT Book No. 595 LBID-087-1 MT-273-A PAGE 31 of 47

SUBJECT

Đ


U C T MAGNETIC INDUCTION MAPPING OF TFTR THREE CHANNEL DEFLECTION MAGNET

Michael I. Green

June 29, 1979

Rev. A 1/09/80

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720