
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Resolved Outflow Kinematics in Lensed Galaxies at Cosmic Noon

Permalink
https://escholarship.org/uc/item/4g21m4xn

Author
G.C., Keerthi Vasan

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4g21m4xn
https://escholarship.org
http://www.cdlib.org/


Resolved Outflow Kinematics in Lensed Galaxies at Cosmic Noon

By

KEERTHI VASAN G.C.
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

PHYSICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Tucker Jones, Chair

Christopher Fassnacht

Andrew Wetzel

Committee in Charge

2024

i



© Keerthi Vasan G.C., 2024. All rights reserved.



ii



Contents

Abstract v

Acknowledgments vii

Chapter 1. Introduction 1

1.1. Galaxies in the ΛCDM paradigm 2

1.2. The baryon cycle and the role of Outflows 4

1.3. Galaxies at Cosmic Noon 7

1.4. Strong gravitationally lensed galaxies 9

1.5. Thesis overview 11

Chapter 2. Optimizing machine learning methods to discover strong gravitational

lenses in the Deep Lens Survey 13

2.1. Abstract 13

2.2. Introduction 14

2.3. Deep Lens Survey Data 17

2.4. Deep Learning Architecture and learning methods used 18

2.5. Training and Validation data 25

2.6. Metric to evaluate model performance 31

2.7. Results and Discussion 32

2.8. Conclusions 49

Appendix: Model performance and final lens sample 52

Chapter 3. Resolved velocity profiles of galactic winds at Cosmic Noon 61

iii



3.1. Abstract 61

3.2. Introduction 62

3.3. Sample and spectroscopic data 66

3.4. Velocity structure of ISM gas 70

3.5. Kinematic Features of the Gaseous ISM at Cosmic Noon 79

3.6. Trends with Galaxy properties 101

3.7. Summary and Conclusions 111

Appendix: Absorption profiles and best-fit parameters for the lensed sample 114

Chapter 4. Spatially Resolved Galactic Winds at Cosmic Noon: Outflow Kinematics

and Mass Loading in a Lensed Star-Forming Galaxy at z = 1.87 115

4.1. Abstract 115

4.2. Introduction 116

4.3. KCWI observations 119

4.4. Lens Model 121

4.5. Spatially resolved ISM gas kinematics 126

4.6. Results and Discussion 133

4.7. Conclusions 144

Chapter 5. Conclusion and future directions 146

5.1. New insights on star formation feedback and galactic outflows using gravitational

lensing 146

5.2. Future work 148

Bibliography 153

iv



Abstract

‘Cosmic Noon’ is an epoch spanning ∼2–6 billion years after the Big Bang when galax-

ies are undergoing rapid star formation, morphological evolution, gaining mass and ejecting

significant amounts of gas. Strong gravitational lensing by massive foreground galaxies en-

ables detailed studies of the kinematic and morphological properties of galaxies during their

crucial formative epochs at cosmic noon. This thesis focuses on studying galactic outflows

of gas using strong gravitationally lensed galaxies. Outflows play the crucial role of regulat-

ing the galaxy growth by modulating the amount of gas available in a galaxy’s interstellar

medium at any time. However, fundamental questions about galactic outflows remain un-

constrained for galaxies during this epoch. Physical properties such as the velocity at which

gas is launched in outflows, the amount of mass lost via these outflows, and the fate of the

ejected gas are highly uncertain. Establishing these properties will markedly improve our

current understanding of how feedback processes regulate galaxy formation and evolution.

This thesis represents significant progress toward establishing these quantities in galaxies at

cosmic noon.

The three projects presented in this thesis describe the methodology to identify and

spectroscopically confirm the lensed nature of a large sample of newly discovered gravitational

lens systems, and conduct spectrally and spatially resolved studies utilizing the magnification

from lensed galaxies to measure their outflow properties. By employing state-of-the-art semi-

supervised learning techniques within a deep learning architecture and utilizing a training

dataset containing both simulated lenses and non-lensed survey images, I demonstrated that

we can greatly reduce the human effort required to find lensed candidates from imaging

surveys. These machine learning methods dedicated to identifying lensed candidates exhibit

remarkable effectiveness, achieving a success rate of ∼90%. I studied a sample of 20 lensed

galaxies with good spectral resolution to characterize the kinematic structure of outflows

at cosmic noon, finding good agreement with predictions for momentum-driven outflows.
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These observations confirm that galaxies at this epoch launch powerful, fast, metal-enriched

outflows ubiquitously during their formative stages. I also performed a spatially resolved

pilot study of the outflows in one lensed galaxy, which showed that the rates of mass loss due

to these outflows are comparable to star formation rates. This suggests efficient coupling

between stellar feedback and the driving of outflowing mass in galaxies at cosmic noon.

Much of the ejected gas from these outflows, however, remains confined within the galaxy

halo, indicating that outflows play a crucial role in shaping the circumgalactic medium and

providing a reservoir of gas to sustain extended star formation at later times. Finally, I

outline several strategies to study the impact of stellar feedback and its influence on galaxy

evolution through future integral field spectroscopic observations of gravitationally lensed

galaxies
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CHAPTER 1

Introduction

As a human being on this fascinating planet, gazing upon the vast cosmos on a cloud-

less night is a profoundly humbling experience; one that transcends temporal and cultural

boundaries. Galaxies, which make up much of the night sky and a key part of this experi-

ence, are quite special in that their existence and evolution is uniquely driven only by the

laws of physics. Unlike things on our planet where we, as a species have asserted a sense

of dominance by being able to control our environments, we cannot physically interact with

and alter the thousands of galaxies in the night sky to our desires (yet). Our inability as

a species to do so, perhaps, strangely, has also fueled our immense curiosity to investigate

and understand these galaxies that make up the cosmos. However, the only information

that we have at our disposal is the light that galaxies radiate and their location on the sky.

Therefore, it is not surprising that throughout the history of modern physics and astronomy,

we have built sensitive instruments on progressively larger telescopes to capture the light

(via images and spectra) from galaxies and devoted our time analyzing their properties (e.g.,

morphology, kinematics). Doing this for a statistical sample of galaxies on the sky, we have

now developed theoretical frameworks capable of describing how galaxies in the universe

grow and evolve in time to render the cosmic canvas that we see today. I outline the seminal

and widely accepted theoretical foundations of galaxy formation and evolution in Section 1.1.

However, there are still numerous fundamental gaps in our understanding of the physics

used in these frameworks and this thesis will focus on establishing them in the most formative

early phases of galaxy formation using resolved observations of strong gravitationally lensed

galaxies. Specifically, the broad goal of this thesis is to focus on ‘galactic ouflows’ that are
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Figure 1.1. An illustrative history of the ∼14 Billion years of the universe
from the Big Bang to the present day (Image Credit: NASA).

powered by ‘feedback’ processes which play a vital role in shaping a galaxy’s evolutionary

trajectory.

1.1. Galaxies in the ΛCDM paradigm

Our current theoretical understanding of the universe is best described by the Big Bang

and the Lambda Cold Dark Matter (ΛCDM) paradigms (illustrated in Figure 1.1). This

model captures the universe’s nearly 14 billion year history using a cosmological constant (Λ)

associated with dark energy, Cold Dark Matter (CDM), radiation and baryonic matter. The

theoretical foundations of these paradigms are described in great detail in many textbooks

(e.g., Peebles, 1980; Kolb & Turner, 1990; Cimatti et al., 2019), and I summarize the key

components essential to understand galaxy formation and evolution here.
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According to this model, the universe began with a hot Big Bang, initially characterized

by a hot and dense primordial state undergoing rapid expansion. During the early universe,

matter and photons were tightly coupled (undergo frequent interactions) through Thomson

scattering from free electrons and this radiation pressure prevented them from gravitating

towards the denser regions and collapsing under the influence of gravity. However, this is not

the case for cold dark matter particles, which are believed to not interact with the photons,

and as a result, continue to grow into increasingly massive large-scale structures, seeding

the growth of the cosmic web structures consisting of voids, walls, filaments, and halos

that we see today. As the universe reaches around 3000 K (∼380,000 years after the Big

Bang), the temperature is finally cool enough for electrons and nuclei to combine into neutral

atoms (almost entirely Hydrogen and Helium), thus decoupling from the radiation field. The

photons that free stream across the universe from this epoch are our earliest observable

probe of the universe and are detected today as a faint background radiation across the sky

(known as the Cosmic Microwave Background Radiation; CMBR). Following this epoch is

a period known as the ‘dark ages’ which is characterized mainly by gravitationally-driven

growth of large scale structure. Eventually the density of baryonic matter at the centers of

dark matter halos becomes sufficient for the first stars and galaxies to form, within ∼100-200

million years from the Big Bang. Star formation and hierarchical growth in the following

∼13 billion years leads to the galaxies we observe in the universe today.

Numerical simulations using this relatively simple ΛCDM model (e.g., Frenk & White,

2012; Somerville & Davé, 2015a) have been remarkably successful in explaining numerous

observations at the large scales, notably the power spectrum and the properties of the CMB,

the primordial nucleosynthesis yields and the large-scale structure of the universe. However,

within this framework, the recipe to transform the baryonic material into the metal-rich

galaxies with complex morphologies such as bars and spiral arms that we see today is not

yet fully established.
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1.2. The baryon cycle and the role of Outflows

The baryon cycle provides a comprehensive framework to study the formation and evolu-

tion of galaxies across cosmic time by disentangling the various physical processes involved.

In this cycle, galaxies form and evolve through a combination of accretion, star formation,

recycling, and outflows. Clouds of gas fall into cold dark matter halos, where they form

stars from the gravitational collapse, converting primordial Hydrogen and Helium into heav-

ier elements through stellar nucleosynthesis. Physical processes (collectively referred to as

‘feedback’) such as supernova explosions and accretion onto supermassive black holes impart

large amounts of energy and momentum to their ambient Inter-Stellar Medium (ISM), driv-

ing outflows that transport the gas and heavy elements from nucleosynthesis throughout the

galaxy’s halo. Some of the gas launched through these outflows recycles back into the ISM

at later times, providing the fuel for future star formation, and perpetuating this cycle across

cosmic time. This can be summarized using the following simple mass balance equation

Ṁgas = Ṁin − Ṁout − Ṁ∗ +RṀ∗

where ˙Mgas is the change in the gas mass, Ṁin is the gas accretion rate, Ṁout is the outflow

rate, Ṁ∗ is the rate at which gas in the ISM is converted to stars and R is the fraction of

stellar mass that is returned to the ISM (e.g., Bruzual & Charlot, 2003). Outflows play a

vital role in this cycle, acting as regulators of galaxy growth by modulating the gas available

in the ISM at any given time. Since stars form from gas in the ISM, an increased mass

loss rate via outflows would lead to a reduced gas mass and thus reduced star formation.

Outflows, by transporting heavy elements from the ISM, enrich the circumgalactic medium

(CGM) that surrounds galaxies. This process is crucial in shaping fundamental properties of

galaxies such as their metallicity and the mass-metallicity relationship (see Tumlinson et al.,

2017, and references therein).

4



Gaseous outflows are observed ubiquitously in galaxies where the star formation surface

density exceeds ≳ 0.1M⊙yr
−1kpc−2 (Heckman, 2002). Many studies have established the

occurrence of outflows across all accessible redshifts (e.g., Heckman et al., 1990; Martin, 2005;

Steidel et al., 2010; Rubin et al., 2014; Jones et al., 2018; Vasan G. C. et al., 2023). Star-

forming galaxies at high redshifts typically exceed this star formation threshold, and outflows

are accordingly quite common in the high redshift universe, contributing to the conclusion

that outflows play a vital role in the formative early phases of galaxy formation. The role of

outflows has been explored using simplified ‘bathtub models’ (e.g., Bouché et al., 2010; Lilly

et al., 2013; Belfiore et al., 2019) which make reasonable approximations regarding galaxy

properties (e.g., that higher star formation rates are associated with higher gas mass and

higher outflow rates, and that total gas masses vary slowly on average). These models, along

with more comprehensive cosmological simulations with careful treatment of outflows (e.g.,

Somerville & Davé, 2015a; Bullock & Boylan-Kolchin, 2017), have been largely successful in

reproducing many observed scaling relations such as the evolution of the mass-metallicity

relation and metallicity gradients, the typical specific star formation rates of galaxies, and

the galaxy stellar mass function.

Based on our current understanding, outflows are driven by a combination of stellar and

supermassive black hole feedback processes. Stellar feedback (e.g., supernova) is dominant

in galaxies at the intermediate and low mass range (stellar mass logM∗/M⊙ ≲ 11) whereas

AGN feedback plays a significant role at the high mass range (logM∗/M⊙ ≳ 11). The

galaxies studied in this thesis have intermediate masses, such that we expect stellar feedback

processes to dominate. An example of a galactic scale outflow driven by stellar feedback

in the nearby starburst galaxy M82 is shown in Figure 1.2. Below, I summarize the key

processes contributing to stellar feedback in galaxies such as M82 as well as the rest of the

galaxies presented in this work:
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Figure 1.2. Outflows in the nearby starburst galaxy M82 driven primarily
by stellar feedback processes (Image Credit: NASA, ESA, JPL-Caltech and
the Hubble Heritage Team).

• Mass loss, radiation pressure and photo-ionization from young stars: Young stars

dynamically interact with the ISM, contributing significantly to stellar feedback.

These stars emit copious amount of photons, which can be absorbed and scattered

by the ISM gas, injecting momentum into it. This interaction not only ionizes the

gas but also increases its temperature. Furthermore, young stars expel winds from

their surfaces at high velocities, reaching up to ∼ 1000 km/s. This shocks and

provides a large amount of thermal energy to heat the surrounding gas.

• Supernovae: When stars explode as supernovae (core-collapse and Type Ia), they

inject large amounts of energy, momentum and heavy elements into the ISM. Core-

collapse supernovae occur on shorter timescales and more frequent compared to

Type Ia (e.g., Tsujimoto et al., 1995). In a galaxy, several such supernovae events
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can overlap to form ‘Superbubbles’ leading to large-scale outflows of gas from the

ISM.

• Cosmic Rays: Approximately 10% of the ∼ 1051 ergs in kinetic energy released

from a supernova explosion is thought to go into primary cosmic ray protons (and

other nuclei). This could potentially play an important role in stellar feedback by

applying an outward pressure force on the surrounding ISM. Several mechanisms

have been proposed for their effect on the ISM and are still being investigated (e.g.,

Chan et al., 2019).

Theoretical analyses suggest that outflows are driven by a complex interplay between these

various feedback processes (e.g., Murray et al., 2005, 2011; Hopkins et al., 2014; Recchia et al.,

2016; Fielding et al., 2018). Since the resulting outflows are challenging to predict theoreti-

cally, careful observational measurements are important to determine the actual properties

of outflows, and constrain the feedback models used in theory and simulations.

1.3. Galaxies at Cosmic Noon

‘Cosmic Noon’ is a dynamic and transformative period in the universe’s history spanning

roughly ∼2–6 Gyr after the Big Bang. This epoch is characterized by galaxies in vari-

ous stages of development experiencing rapid star formation, morphological evolution, mass

growth, and ejecting significant amounts of gas from their ISM via outflows (e.g., Figure 1.3).

Examining galaxy formation during this epoch provides valuable insight into the complex

evolutionary trajectories of galaxies in the universe. Stellar feedback during this epoch is

predicted to be highly efficient with high mass loss rates and outflow velocities (e.g., Pandya

et al., 2021; Nelson et al., 2019).

To reliably study outflows, we require resolved observations of galaxies. Spectrally re-

solved observations are essential to probe the outflow kinematics of the ISM gas such as max-

imum outflow velocity, and to establish global outflow scaling relations. Spatially resolved

observations are vital to estimate the mass loss rates and dependence of outflow velocity on
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Figure 1.3. Plot of Star Formation Rate Density (star formation rate per
cubic megaparsec) across cosmic time (modified from Madau & Dickinson,
2014) 1. This thesis focuses on studying galaxies during the epoch of ‘Cosmic
Noon’ (denoted by the gray region), a period roughly 2 – 6 billion years after
the Big Bang during which the star formation rates peaked in galaxies before
exponentially declining.

local global properties such as star formation surface densitiy. Such high-resolution obser-

vations have been carried out in great detail in nearby galaxies such as M82 (e.g., Lehnert

et al., 1999; Xu et al., 2022b, Figure 1.2). However, galaxies at Cosmic Noon are faint and

have small angular sizes on the sky making it extremely challenging to study them. Thus,

fundamental quantities essential to understand feedback at Cosmic Noon still remain subject

to large uncertainties.

This thesis makes use of strongly gravitationally lensed galaxies, which are brighter and

magnified compared to unlensed galaxies, mitigating major observational challenges asso-

ciated with studying galaxies at early times. Combined with strong lensing, the epoch of

1Republished with permission of Annual Reviews, Inc., from Annual Review of Astronomy and Astrophysics,
17 Aug 2014, Vol. 52, Issue 1, pages 415 - 486, Cosmic Star-Formation History (2014) by Piero Madau and
Mark Dickinson; permission conveyed through Copyright Clearance Center, Inc.
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Cosmic Noon is relatively accessible for outflow studies using rest-frame UV ISM spectral

features, which are redshifted to optical wavelengths where they can be observed with sensi-

tive instruments on 8-10m class telescopes. In particular, the advent of powerful integral field

spectrographs (IFS) on large ground-based telescopes now allow us to spatially map lensed

galaxies during their formative early phases. In recent years, numerous lensed galaxies at

Cosmic Noon have been discovered in wide-area surveys (e.g. Tran et al., 2022a, discussed

in Section 1.4), making this a prime time for their investigation.

1.4. Strong gravitationally lensed galaxies

Gravitational lensing (e.g., Schneider et al., 1992) is an observational phenomenon

wherein a massive object deflects light from a background object, which can lead to large

magnification of the total flux and angular size of the background object compared to its

unlensed configuration. Strong gravitational lensing (e.g., Narayan & Bartelmann, 1996) is

a special case of lensing when the background galaxy is brighter, magnified and spatially

stretched out into multiple images on the sky in an arc or ring configuration. Figure 1.4

shows a montage of strong gravitationally lensed galaxies.

The main observational challenge with strong lensing is that the spatial alignment of a

background galaxy with a suitably massive foreground galaxy (or cluster) is quite rare. For

example, in the entire SDSS imaging survey, only of order 100 lensed galaxies have been dis-

covered (e.g., Belokurov et al., 2009). This landscape has entirely changed recently, thanks

to the rich availability of computing resources, progressive machine learning techniques and

the advancements in imaging capabilities. These technological strides now enable efficient

searches of wide-area imaging surveys to find thousands of lensed galaxy candidates (e.g.,

Sonnenfeld et al., 2018; Jacobs et al., 2019a; Petrillo et al., 2019; Huang et al., 2020; Ro-

jas et al., 2022). For example, Jacobs et al. (2019a) used a convolutional neural network

(CNN) approach on millions of images of galaxies in the entire DES/DECaLS fields, finding

9



Figure 1.4. Color composite images of a few gravitationally lensed systems
that were discovered using machine learning techniques (Jacobs et al., 2019b;
Keerthi Vasan et al., 2023) in ground-based surveys, for which I led the spectro-
scopic confirmation campaign as part of the AGEL survey (Tran et al., 2022c).
The lensed galaxies in these images are at high redshifts (z ∼ 1− 4), and are
brighter and have enlarged apparent size compared to unlensed galaxies at
this epoch thanks to typical magnification factors of ∼ 10. These systems are
therefore ideal for probing the nature of feedback in galaxies at high redshifts.
Furthermore, thousands of such lensed systems will be uncovered by future
space missions (e.g., Euclid, Roman) which will survey the sky at greater sen-
sitivity and resolution compared to current data.

∼ 500 lensed candidates. In Chapter 2, I demonstrate that pipelines employing state-of-

the-art deep learning models along with data augmentation techniques tasked with finding

strong lens systems can be highly efficient, minimizing the amount of human inspection re-

quired. Gravitational lens modeling techniques have seen similar improvements. Modelling
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the foreground galaxy mass distribution is essential to remove the lensing effect (‘de-lens’)

and examine galaxy properties in the source plane, but this process can be highly time

consuming and challenging, often requiring high resolution space-based or adaptive optics

imaging. Several automated/semi-automated lens modelling pipelines have been developed

in recent years (e.g., Ertl et al., 2023; Sahu et al., 2024) which have significantly reduced

the time required by an investigator to model the foreground galaxy mass distribution, thus

enabling rapid lens modelling of the hundreds of newly discovered lensed galaxy systems.

One of the notable advantages of the lenses selected morphologically using Machine Learn-

ing techniques is that the arcs are bright and well resolved in the ground-based imaging, i.e.,

the massive deflector galaxy and the arc are several arcseconds apart. This is contrasted

with spectroscopic approaches where the sources cannot be resolved in ground-based follow-

up programs (e.g., Bolton et al., 2006; Brownstein et al., 2012) where the lenses have smaller

Einstein Radii (ΘE ≤ 1.5′′). As part of this dissertation, I have searched for and spectro-

scopically confirmed many such lens systems, including as part of the ASTRO 3D Galaxy

Evolution with Lenses (AGEL) survey discussed below. A subset of confirmed systems from

AGEL are shown in Figure 1.4, exhibiting dramatic strong lensing morphologies with typical

image separations of several arcseconds

1.5. Thesis overview

I summarize the key projects that form the basis of my thesis below. This thesis is

divided into two broad projects: (a) Identification and spectroscopic confirmation of lensed

galaxies, and (b) Studying galactic outflows and stellar feedback in lensed galaxies in the

early universe.

Chapter 2 (Keerthi Vasan et al., 2023) describes deep learning techniques to identify

strong gravitational lenses on the sky. This project focuses on optimizing models and aug-

mentations to boost the performance of the machine learning models to minimize the human

effort of sorting through thousands (or even millions) of images. A companion paper focusing
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on the methodology used in this project is presented in Sheng et al. (2022, on which I am

the second author). In addition to identifying lens candidates, I led a spectroscopic cam-

paign to confirm the lensing nature of ≳ 100 such candidates found using machine learning

techniques as part of the AGEL survey (described in detail in Tran et al., 2022c, and Barone

et al., in prep). One of the cornerstones of this campaign was to establish that machine

learning methods tasked with finding lensed candidates are highly effective, with a success

rate (defined as the number of spectroscopically confirmed lenses among the total number of

lensed candidates observed) of ∼ 90%. A subset of the data obtained from this survey are

featured in the work presented in Chapters 2 and 3, and Chapter 5 outlines future projects

that I will work on using this sample.

The rest of this thesis (Chapters 3 and 4) primarily focuses on lensed galaxies at Cos-

mic Noon. Key outflow properties are currently unconstrained for these galaxies, and the

work presented in this thesis represents significant progress in characterizing typical outflow

properties. Chapter 3 uses slit spectroscopy to probe the outflowing gas kinematics at good

spectral resolution in a sample of 20 lensed galaxies, and Chapter 4 uses deep integral field

spectroscopy (IFS) to spatially probe outflow properties in a single galaxy. In these chap-

ters, I describe new measurements of resolved velocities and column densities of outflowing

gas from individual galaxies, which constrain their outflow kinematics, mass loss rates and

mass loading factors. This in turn provides a better understanding of the effects of feedback

processes and their role in galaxy formation, particularly at the most formative epoch of

Cosmic Noon.
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CHAPTER 2

Optimizing machine learning methods to discover strong gravitational

lenses in the Deep Lens Survey

Published as Keerthi Vasan et al. (2023) in Monthly Notices of the Royal Astronomical

Society, Volume 524, Issue 4, October 2023.

2.1. Abstract

Machine learning models can greatly improve the search for strong gravitational lenses

in imaging surveys by reducing the amount of human inspection required. In this work, we

test the performance of supervised, semi-supervised, and unsupervised learning algorithms

trained with the ResNetV2 neural network architecture on their ability to efficiently find

strong gravitational lenses in the Deep Lens Survey (DLS). We use galaxy images from the

survey, combined with simulated lensed sources, as labeled data in our training datasets. We

find that models using semi-supervised learning along with data augmentations (transforma-

tions applied to an image during training, e.g., rotation) and Generative Adversarial Network

(GAN) generated images yield the best performance. They offer 5–10 times better precision

across all recall values compared to supervised algorithms. Applying the best performing

models to the full 20 deg2 DLS survey, we find 3 Grade-A lens candidates within the top 17

image predictions from the model. This increases to 9 Grade-A and 13 Grade-B candidates

when 1% (∼ 2500 images) of the model predictions are visually inspected. This is ≳ 10×

the sky density of lens candidates compared to current shallower wide-area surveys (such as

the Dark Energy Survey), indicating a trove of lenses awaiting discovery in upcoming deeper

all-sky surveys. These results suggest that pipelines tasked with finding strong lens systems
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can be highly efficient, minimizing human effort. We additionally report spectroscopic con-

firmation of the lensing nature of two Grade-A candidates identified by our model, further

validating our methods.

2.2. Introduction

Under rare alignment configurations, the gravitational potential of a massive galaxy can

cause light from a distant galaxy located behind it to take multiple paths around it. This

results in the formation of several distinct images of the distant galaxy around the massive

galaxy, a phenomenon known as strong gravitational lensing (e.g., Treu, 2010). These multi-

ple images are magnified by factors that can reach >10 times, making them appear brighter

and more spatially extended. Such magnification makes these systems ideal for studying the

formation and evolution of galaxies across cosmic time (e.g., Wuyts et al., 2014a; Pettini

et al., 2002a; Swinbank et al., 2009a; Koopmans et al., 2006; Leethochawalit et al., 2016a),

while analysis of the lensing mass distribution enables insight into the nature of dark matter

(e.g., Chiba, 2002; Bradač et al., 2002; Miranda & Macciò, 2007; Gilman et al., 2019; Shajib

et al., 2022).

The main current challenge in working with strong lens systems is their scarcity on the

sky. Therefore, methods which are able to efficiently identify lensed galaxies from wide-

area sky surveys are extremely beneficial. Automated methods will be especially valuable

for lens searches in upcoming wide-area sky surveys to be carried out by the Vera Rubin

Observatory, Euclid, and Roman (e.g., LSST Science Collaboration et al., 2009; Laureijs

et al., 2011; Spergel et al., 2015), whose improvements in sensitivity, angular resolution and

sky coverage will enable detection of far more lens samples than are currently known.

Early approaches to finding strong lens systems included various algorithms searching for

multiple lensed images or arc shapes, manual searches around massive galaxies, and citizen

science projects (e.g., Moustakas et al., 2007; Paraficz et al., 2016; Seidel & Bartelmann,

2007; Gavazzi et al., 2014; Alard, 2006; Fassnacht et al., 2004; More et al., 2016; Belokurov
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et al., 2009; Diehl et al., 2009; Garvin et al., 2022). While successful, these methods are time-

consuming and difficult to incorporate into an automated framework. Convolutional Neural

Networks (CNNs; LeCun et al., 1989; Krizhevsky et al., 2012), which have been successfully

developed into a standard tool in the field of computer vision in the past decade, are a

promising approach to solving image recognition problems. Depending on the problem, there

are various neural network architectures that can be optimized for the desired objectives.

CNNs and machine learning techniques in general have indeed been used with success in

the past few years to uncover gravitationally lensed candidates in wide-area imaging surveys

(e.g., Jacobs et al., 2017, 2019a; Sonnenfeld et al., 2018; Pourrahmani et al., 2018; Huang

et al., 2020; Li et al., 2020; Cañameras et al., 2020).

Most machine learning searches for lenses have relied primarily on supervised learning

methods (i.e., using a data set consisting of labeled lensed and non-lensed galaxies to train

a model). However, while non-lensed galaxies are plentiful, current surveys have very few

known lenses to be used as positive labels. Instead, machine learning models are trained on

simulated lenses, which can be generated in abundance (e.g., Jacobs et al., 2017). However,

this presents a new problem, that the training data distribution (i.e., the simulated lenses)

differs from the test data distribution (i.e., the real lenses) – a problem called distribution

shift (Quinonero-Candela et al., 2008). To overcome distribution shift, machine learning

researchers have repurposed semi-supervised learning methods, which use unlabeled data

and data augmentation to adapt the trained model to the test data (Berthelot et al., 2021).

An advantage to the semi-supervised learning approach is that it can learn from the

abundance of unlabeled images from the survey, which allows models to generalize better to

unseen images. This is particularly useful to improve performance given millions of galaxy

images that are detected in sky surveys but not included in the training data. The model

performance is further improved through augmentations applied to images during training

(e.g., translation and rotation). In addition to conventional transformations, a rich source
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of data augmentation can be derived by making use of unsupervised learning algorithms

(e.g., Goodfellow et al., 2014; Kingma & Welling, 2014; Erhan et al., 2010). Given the

range of methodologies available, we now seek to address the question of which combination

of machine learning methods (supervised and semi-supervised) and augmentations are best

suited for finding strong gravitational lenses.

We seek efficient models which minimize human effort by reducing the number of images

that must be visually inspected to recover a given sample of lenses. In this work we apply

CNN models to the Deep Lens Survey (DLS; Wittman et al. 2002), which has relatively good

image quality and also remains relatively unexplored in terms of machine learning searches,

thus serving as a good testbed for this study. Also, because of the small size of known

lenses from the DLS survey, we reserve those for use only in our test dataset. Training

and validation datasets will only contain simulated lenses. In our previous methodology

paper (Sheng et al., 2022, hereafter S22), we discussed the CNN models and lens detection

techniques used in this work. Herein, we describe our training data in detail and focus on

evaluating the performance of the different models on the DLS dataset.

This paper is organized as follows. In Section 2.3 we give an overview of the Deep Lens

Survey and our source selection used for this work. We summarize our machine learning

architecture and learning methods in Section 2.4. Section 2.5 describes the method used

to generate training, validation, and testing data from DLS images. Section 2.6 discusses

our metric to evaluate the performance of the different CNN models. We discuss the results

from our experiments in Section 2.7, including the sample of new lens candidates from DLS

and spectroscopic confirmation of two systems. Finally, we summarize the main conclusions

in Section 2.8. Throughout this paper we use the AB magnitude system and a ΛCDM

cosmology with ΩM = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.
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2.3. Deep Lens Survey Data

Here we give a brief overview of imaging data from the Deep Lens Survey (DLS) which

we use to test and optimize strong lens detection methods. The DLS consists of relatively

deep imaging over 20 square degrees in five independent 2◦ × 2◦ fields which are widely

separated in the sky (Wittman et al., 2002). Each field was imaged in BVRz photometric

filters (Schmidt & Thorman, 2013) using the 4-meter Mayall telescope at Kitt Peak National

Observatory or Blanco telescope at Cerro Tololo Inter-American Observatory, depending on

declination. The survey was carried out over ∼120 nights. The survey was designed for

weak gravitational lensing measurements, with stringent requirements on image quality and

limiting magnitude, such that the data are naturally well suited for identifying strong lens

systems. Typical 5σ point-source detection limits are 25.8, 26.3, and 26.9 AB magnitude in

the B, V , and R filters respectively (Schmidt & Thorman, 2013). The R band limit is only

∼0.6 magnitudes shallower than the expected depth to be reached by Rubin observatory’s

10-year survey (Ivezić et al., 2019). The seeing is by design best in the R band (FWHM≲0.′′9)

and is typically ≳0.′′9 in the B, V, and z bands (Wittman et al., 2002). Images in the z band

are shallowest and typically subject to worse seeing conditions. In this paper, we use only

the BV R data.

2.3.1. Source selection and regions of interest. The DLS catalog includes ∼5 million

detected galaxies across 20 square degrees. However, only those of moderate redshift and

relatively high mass will act as detectable strong lenses (i.e., with Einstein radii ΘE ≳ 1

arcsecond). We applied a magnitude cut of 17.5 < R < 22 (similar to that used by Jacobs

et al. 2017) in order to remove objects which are unlikely to produce a detectable lensing

effect. Additionally, we use SExtractor (Bertin & Arnouts, 1996) flags to eliminate saturated

low-redshift galaxies, and exclusion masks to remove galaxies around bright stars or at the

edge of the field. This results in 281,425 objects (hereafter referred to as the SurveyCatalog).

We find that SExtractor flags and exclusion masks remove ∼ 5% of the galaxies from the
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survey which reduces the effective sky area probed by our SurveyCatalog to ∼ 19 square

degrees. We set aside 2277 (∼0.8%) randomly sampled object images from this catalog to

experiment and tune the HumVI scaling parameters (discussed in Section 2.5.1). All model

training analysis in this paper pertains to the remaining set of 279,149 objects (hereafter

referred to as the TrainCatalog).

For our analysis we extract image cutouts spanning 25.′′7 × 25.′′7 (100 × 100 pixels)

centered on each object. This size is sufficient for galaxy- and group-scale lenses (ΘE ≲ 12”);

we do not focus on the most massive cluster lenses which are already well cataloged (Ascaso

et al., 2014) and simpler to identify. We create color-composite images from the source

BV R FITS files for all targets in the SurveyCatalog (Figure 2.4; discussed in detail in

Section 2.5.1). These color composite images have smaller file sizes compared to original

data, enabling us to keep the rest of the analysis computationally efficient. These images

are still able to capture the detected low-suface brightness features, while not saturating the

brightest objects of interest for this work.

Additionally, they are better suited for the machine learning architecture and methods

used in this work (discussed in Section 2.4).

2.4. Deep Learning Architecture and learning methods used

The task at hand is to establish a machine learning (ML) algorithm that efficiently

classifies the 281,425 color-composite images from the survey into lensed and non-lensed

galaxies. Furthermore, by ranking the images from highest predicted probability of being a

lens to lowest, we can order the images for human inspection. This requires the selection of

an architecture (i.e., a function that takes images as input and gives prediction probabilities

as output) and learning methods (i.e., a way for our function to learn from the data). The key

components of our ML training pipeline are a supervised convolutional neural net (CNN),

domain adaptation with semi-supervised learning, and augmenting training samples with
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Figure 2.1. Schematic depiction of the ResNetV2 deep learning architecture
used in this work. The input to the network is an RGB color-composite image
generated from the BVR fits files (Section. 2.5.1), and the output is a value
between 0 and 1 indicating the probability of the input image being a lens.
The general network consists of three stacks, each containing 3n residual units.
In this work, we use a stack size of n = 1 resulting in a total of three residual
units. Each residual unit consists of two sets of Batch Normalization (BN),
Rectified Linear Unit activation function (ReLU), and Conv units, where Conv
denotes a convolutional layer with kernel size 3×3 and appropriate stride size.
The network ends with global average pooling and a softmax layer.

generative adversarial nets (GAN). A more detailed account of our ML method can be found

in S22.

2.4.1. Convolutional neural network architecture. CNNs have previously been used for

classifying and identifying lens candidates (e.g., Jacobs et al., 2017). They are a specific form
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of neural network that learns translation invariant representations via trainable convolution

kernels. This is particularly well suited to astronomical images where patterns are repeated

throughout the sky. Deep CNNs are models where these learned non-linear representations

of the image (called layers) are stacked on top of one another. Deep CNNs are trained using

variations of stochastic gradient descent, where an objective function is evaluated on small

subsets of the data, called mini-batches, and the parameters are updated by subtracting

some fraction of the objective’s gradient.

There are many choices of how precisely these layers are constructed and combined, such

as selection of the convolutional kernel size, number of output channels for each convolution

layer, the non-linear activation function, and the incorporation of other layers that improve

performance such as Batch Normalization (Ioffe & Szegedy, 2015). All of these details

together are called the model architecture.

We make use of the ResNet version-2 architecture (ResNetV2; He et al., 2016a,b) de-

signed for the CIFAR10 dataset (Krizhevsky, 2009a), shown schematically in Figure 2.1.

It is one of the widely used industry standard networks for image classification problems

(e.g., Litjens et al., 2017; Gu et al., 2018; Madireddy et al., 2019). The ResNetV2 used

in this work consists of three stacks (see Figure 2.1; green blocks) and each stack consists

of n residual unit blocks, where n is a parameter to be chosen that controls the depth of

the neural network. A deeper neural network has more learning capacity but requires more

computational power and training samples. Each residual unit block consists of three con-

volution layers of kernel size 3 × 3 and one skip connection. To match the feature map

dimensions (width, height) and the number of channels between stacks, a few extra convo-

lution layers are included at the input and the beginning block of each stack. Therefore,

9n+ 4 convolution layers are present in the network in total. For all the models used in this

work, we adopt n = 1. With strided convolutions, the feature map dimensions to each stack
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decrease by a factor of 1/2. The number of input and output channels to each stack are:

(16 → 64), (64 → 128), (128 → 256).

The network ends with global average pooling, a fully-connected layer and softmax.

The global average pooling constrains the output to be rotationally invariant. The softmax

transforms the output to be a value between 0 and 1 which can be interpreted as a probability.

Throughout this work, a value of 1 is designated for lensed candidates (referred to herein as

Lenses) and 0 for nonlensed candidates (referred to as NonLenses).

2.4.2. Domain adaptation with semi-supervised learning. In supervised learning, our

algorithm is trained via mini-batches of images X and corresponding labels y (1 for Lenses

and 0 for NonLenses). The algorithm then tries to learn the neural network parameters,

collectively referred to as Θ. The output of the neural network after the softmax activation

produces a prediction pΘ(X), which is our predicted probability of X being a lens. Our

supervised learning objective function is the cross-entropy loss function, denoted ℓS, which

is a measure of the quality of our predictions, pΘ(X), when compared to the true labels, y.

Merely using supervised learning does not perform well in the face of distributional shift,

and we turn to semi-supervised learning (SSL) methods which make use of the unlabeled

test data to adapt to this domain. There are many semi-supervised approaches to deep

learning. The methods we explore are FixMatch1 (Sohn et al., 2020), MixMatch (Berthelot

et al., 2019), Virtual Adversarial Training (Miyato et al., 2019), Mean Teacher (Tarvainen

& Valpola, 2017), Π-Model (Laine & Aila, 2017), and Pseudo-Labeling (Lee, 2013).

Most SSL algorithms follow the same template. We minimize an objective function

consisting of a supervised component (i.e. ℓS losses), where the label is provided, plus an

unsupervised component (i.e. ℓU losses). Both are optimized together over mini-batches,

now consisting of labeled and unlabeled data, but without significant modification to the

stochastic gradient descent algorithm. The main feature that distinguishes our setting from

1FixMatch was not part of the original lens search study since this technique had not been published at the
time. We are including it in our results here to be thorough.
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RGB-shuffle Randomly perturb the order of the channels in the images
JPEG-quality 50-100%

Rot90 Randomly rotate the images by a multiple of 90 degrees
Translations Randomly translate the images by at most 20 pixels in the up, down, left and right directions

Horizontal flips Randomly flips the images across the x-axis
Color augmentation Randomly perturb the brightness(-0.1-0.1), saturation(0.9-1.3)

hue(0.96-1.00), and gamma(1.23-1.25) of the images

Table 2.1. Data augmentations used on images in the semi-supervised training pipeline.
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typical SSL is that our training NonLenses and test set come from the same pool of data,

while the simulated Lenses do not exist in the test data. This is in contrast to Jacobs et al.

(2017) for example, in which they produce simulated NonLenses as well, but do not attempt

domain adaptation.

In the Pseudo-Label algorithm (Lee, 2013), we assign pseudo-labels to unlabeled data

by taking the model’s predicted class as the label. We can then use the same loss as in the

supervised task (i.e., ℓS = ℓU). The motivation is that we are implicitly enforcing entropy

minimization by forcing the model to be confident on unlabeled samples. An alternative

approach to SSL is consistency regularization, where two independently augmented samples

of the same test image are encouraged to produce similar predictions. The Π-model algorithm

(Laine & Aila, 2017) directly uses consistency regularization. The idea is to take two random

augmentations of the same sample data point, X, and compute the squared difference of

the model outputs for the augmented copies. We use aug, ãug to denote two independent

augmentations, which can be produced by selecting different randomization seeds. The

unsupervised loss is then

(2.1) ℓU(X) = ∥pΘ(aug(X))− pΘ(ãug(X))∥2 .

The choice of stochastic augmentation function is up to the modeler and will often be domain

specific.

The Mean Teacher algorithm (Tarvainen & Valpola, 2017) also uses consistency regular-

ization, but replaces one of the augmentations in Equation 2.1 with the output of the model

using an exponential moving average (the teacher model) of model parameters, Θ. Fix-

Match (Sohn et al., 2020) and MixMatch (Berthelot et al., 2019) employ both consistency

regularization and entropy minimization. MixMatch was originally proposed as a heuristic

approach, and FixMatch was later derived as a more principled simplification of MixMatch

and other related SSL methods. Virtual adversarial training (VAT; Miyato et al., 2019) uses
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an adversarial, worst-case, augmentation. This adversarial augmentation pushes the image

in the direction which will cause the greatest increase in loss. One downside to VAT is that

the adversarial augmentations are not able to encode the domain specific prior information

that random augmentations can provide (see Table 2.1).

2.4.3. Data augmentation and GANs. Data augmentation serves as a crucial regularizer

in semi-supervised learning (SSL) algorithms. Several SSL algorithms, including those men-

tioned in this paper such as pi-model (Laine & Aila, 2017), MixMatch (Berthelot et al., 2019),

and fixMatch (Sohn et al., 2020), utilize data augmentation techniques. The data augmen-

tation techniques we employed in our study are provided in Table 2.1, and are particularly

well-suited for DLS images.

RGB-shuffle randomizes the order of channels and Color augmentation perturbs the col-

ors in the images. These have the effect of accounting for systematic bias in channel and color

information introduced by the simulation pipeline. JPEG-quality augmentation accounts for

varying levels of noise and image quality, and applies to any color composite image irrespec-

tive of the format that the image is saved in (e.g., in this case we use png format instead of

jpeg). Rot90, Translations, and Horizontal flips induce translational and rotational invari-

ance in the predictions. Examples of these augmentations are shown in Figure 2.2. We note

that even though some augmentations (e.g., RGB-shuffle) result in unrealistic images, our

empirical tests described in Section 2.7.1.1 indicate that these augmentations yield improved

model performance. Domain adaptation problems employing semi-supervised algorithms

(SSLs) have been shown to benefit greatly from data augmentations in general (e.g., Sohn

et al., 2020), suggesting that this effect is not specific to our lens search.

A second tool that we use to augment our data is to generate new images that mimic the

simulated lenses. In deep learning, the state-of-the-art method to produce generative models

is by using Generative Adversarial Networks (GANs; Goodfellow et al., 2014; Arjovsky et al.,

2017). GANs generate unseen samples that are distinct from the original images, but are
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Original Shuffle RGB channel JPEG quality Random rotation 90 degrees Random translation Random flips Random color adjust

Original Shuffle RGB channel JPEG quality Random rotation 90 degrees Random translation Random flips Random color adjust

Figure 2.2. Example of augmentations used during training. From left to
right, the original RGB color composite image undergoes the series of augmen-
tations described in Table 2.1: RGB-shuffle, JPEG quality, Rot90, Translation,
Flip, Color adjustment. The final image is then passed as input to the model.

distributionally quite similar. These generative models are trained along with an adversarial

discriminator that is attempting to distinguish between the fake and real images.

We trained a WGAN-GP (Wasserstein GAN + Gradient Penalty; Gulrajani et al., 2017)

on simulated lenses and add the generated images (see examples in Figures 2.3 and 2.4) to

our training set as another form of data augmentation. The motivation is that GANs can

provide a rich source of more exotic data augmentations.

Figure 2.3 gives a brief summary of the steps discussed thus far. The training, testing,

and validation data along with the model checkpoints used in this paper are made available

on our GitHub repository 2.

2.5. Training and Validation data

One of the challenges that we face in gravitational lens searches is trying to generate

a training and testing dataset when having limited knowledge of the type of strong lenses

that we might find in a survey. Prior to this work, Kubo & Dell’Antonio (2008) used a

semi-automated method to search for lensed candidates in one of the DLS fields (F2) and

uncovered two lens candidates. But in order to train a machine learning model to recognize

2https://github.com/sxsheng/SHLDN
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Figure 2.3. Schematic of the pipeline used in this work to test the perfor-
mance of different learning methods described in Sections 2.4.2 and 2.4.3 (see
text for details). The GAN generated lenses are only included in the training
data for unsupervised learning methods (e.g., GAN+MixMatch).

lenses, we require Lens and NonLens image samples on the order of a few thousand. This

is not a problem for NonLens galaxies, as they are abundant. But this is challenging for

Lenses, as the known samples are extremely small compared to training requirements. We

note that although the DLS area overlaps with other surveys used for strong lens searches

(e.g., SDSS), no lens candidates have been published from these other surveys within the DLS

footprint. This is likely due to the shallower depth of other surveys (see Section 2.7.4). We

must therefore generate an artificial lens training set. We describe our process of generating

the training and testing datasets in this section.

2.5.1. Generating the NonLenses dataset. Color png images centered on each object

in the SurveyCatalog are constructed from BV R fits files using HumVI (Marshall et al.,
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2015). HumVI is based on the color composition algorithm described in Lupton et al. (2004)

and offers several tunable parameters to control the output image (e.g., contrast). We

randomly sample objects from the SurveyCatalog and visually inspect the effect of changing

the HumVI parameters s and p which control the contrast and color balance respectively.

Although there is a degeneracy in the choice of these values, we pick ones that reasonably

represent both the bright and dim features in the data (i.e., spanning the range of detectable

surface brightness). Table 2.2 lists our chosen HumVI parameters and Figure 2.4 (top panel)

shows 4 randomly selected color-composite survey images generated using these values. The

chosen HumVI parameters are kept constant and applied to all images in the survey. It is

beyond the scope of this work to explore the effect of choosing different HumVI parameters

on the performance of the models, but we note that color augmentations applied during

training (Table 2.1; Section 2.7.1.1) have the effect of making our models invariant to small

perturbations in color.

2.5.2. Generating the simulated Lenses dataset. As described above, the scarcity of

known lensed galaxies requires us to generate simulated lens samples for training ML mod-

els. Our approach is to add simulated lensed galaxies onto survey images, as has been used

successfully in prior work (e.g., Jacobs et al., 2017, 2019a). For this work, we adopt an agnos-

tic procedure for simulating lensed arcs which does not rely on photometric measurements

of the deflector galaxy. We consider all galaxies which satisfy the magnitude cut criteria

described in Section 2.3.1 (regardless of their color) for simulating the lensed arcs. We note

that ∼ 50% of the galaxies in our SurveyCatalog have a BPZ best fit photometric template

from Schmidt & Thorman (2013) indicating that they are massive early-type galaxies at

intermediate redshifts, and are indeed likely to act as strong lenses. We discuss the actual

color distribution for lens candidates in Section 2.7.2.3.

Given any object from the training dataset, we assume that the central galaxy (“deflec-

tor”) is at a redshift zdef ∈ [0.3, 0.7] and is characterized by a Singular Isothermal Ellipsoid
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Figure 2.4. Top row: Four randomly selected color composite survey images
generated by running HumVI on their respective BVR FITS files. These im-
ages are examples of NonLenses used for training the network. Each image
spans 25.′′7 × 25.′′7 on the sky. Table 2.2 lists the HumVI parameters used
to generate these images. Middle row: The same set of survey images as in
the top row, but superimposed with simulated lens configurations generated
with glafic. Section 2.5.2 discusses the steps involved in detail. These images
are examples of Lenses used during training. Bottom row: GAN generated
simulated lenses. These are added to the training data as Lenses for our un-
supervised models (e.g., GAN+MixMatch; Section. 2.4.3).

(SIE) mass density (Kormann et al., 1994). The mass profile is dependent on the galaxy’s po-

sition (xdef, ydef), ellipticity (edef), position angle (θdef), velocity dispersion (σdef), and choice

of rcore,def. The values for these parameters are sampled from a uniform distribution span-

ning the ranges listed in Table 2.2. These values ensure that the resulting mass profile of

the deflector is sufficient to produce a detectable lensing effect (i.e., ΘE ≳ 1 arcsecond).

A background galaxy (“source”) is assumed to lie at a redshift zsrc with morphology given

by a Sérsic profile parameterized by its position (xsrc, ysrc), central brightness (in units of

counts/pix2), ellipticity (esrc), position angle (θsrc), and a Sérsic index of 1. The value for
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Parameter Value
glafic

Position xdef, ydef, xsrc, ysrc U(-0.5,0.5)
(arcseconds)

PA θdef, θsrc U(0,180)
(degrees)
Ellipticity edef, esrc U(0.3,0.7)
Dispersion σdef U(250,450)
(km s−1)

rcore, def U(0,0.5)
Brightness U(200,600)

(counts/pix2)
Redshift zdef U(0.3,0.7)
Redshift zsrc U(zdef + 0.5, zdef + 2.5)

HUMVI
-s 0.2,0.7,1.3
-p 2.5, 0.01
-m 0.1

Table 2.2. Values for the glafic and HumVI parameters used to generate the
simulated arcs and png color-composite images respectively. U(xmin, xmax)
indicates that the value was sampled from a uniform distribution with xmin

and xmax being the minimum and maximum values.

zsrc is randomly chosen from a uniform distribution between zdef + 0.5 and zdef + 2.5. These

values for the deflector and source redshifts are typical of spectroscopically measured values

from previous strong lens surveys (e.g., Sonnenfeld et al., 2013; Bolton et al., 2008; Tran

et al., 2022a).

The light from the background galaxy is traced using glafic (Oguri, 2010) to produce a

simulated lensed arc in the image plane. The simulated lensed arcs are convolved with the

point spread function (PSF) of the survey, scaled by a factor of (1,1.5,3) for the BVR filters,

and then added to the BV R fits images of the galaxy. We model the PSF of the survey in

all the three filters as a 2D Gaussian kernel with a FWHM of ∼1 arcsecond corresponding to

the approximate average seeing conditions. In addition to smoothing, we add Poisson noise

in order to produce more realistic simulated arc images. The fits images are converted to a

color png image using HumVI (as described in Section 2.5.1). For this paper, we focus on
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generating moderately bright blue lensed arcs, and the parameter ranges that produce these

configurations are listed in Table 2.2. Figure 2.4 illustrates common configurations of the arcs

produced using this method. However, we note that the RGB-shuffle augmentation which is

applied during training produces arcs of different colors (e.g., Figure 2.2). We find that such

an approach, where the simulated arcs are not dependent on the photometric properties of the

central deflector galaxy, likely serves as an additional form of augmentation. This approach

prevents over-fitting of our deep learning models while allowing for rapid prototyping and

testing.

2.5.3. Generating the training datasets: TrainingV1 and TrainingV2. Using the Lenses

and NonLenses datasets, we construct two training sets: TrainingV1 and TrainingV2. The

main difference between the two training sets is the number of labeled images used as Lenses

and NonLenses. Prior work using CNNs (e.g., Jacobs et al., 2019a) have favored large

training datasets (i.e., ≳150,000 galaxies). Therefore, for TrainingV1 we use 266,301 images

for non-lenses and 257,874 corresponding simulations as lenses (described in Section 2.5.2).

Since semi-supervised training requires both labeled and unlabeled data, TrainingV1 cannot

be used to test semi-supervised learning methods.

For TrainingV2, we choose the number of images for each class to be similar to those used

in standard computer vision datasets such as Canadian Institute for Advanced Research-10

(CIFAR-10; Krizhevsky, 2009b) and Street View House Numbers (SVHN; Netzer et al., 2011)

dataset. We use a set of 7,074 human-labeled objects as NonLenses and 6,929 corresponding

simulations as Lenses. The human labeling was carried out on randomly chosen images from

Field-1 (F1) of the DLS. We note that the choice of labeling the data only from F1 does

not affect the results presented in the rest of the paper (see Appendix 2.8). The 259,248

NonLens images which are not part of TrainingV2 serve as unlabeled data for our semi-

supervised learning methods (e.g., MixMatch; Section 2.4.2).
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Counter-intuitively, we find that too much training data from simulated lenses and ran-

domly selected NonLenses can hurt the performance of our algorithms. We refer readers to

Section 2.7.1.2 and S22 for further discussion of sample size effects, which can also contribute

to differences in performance between the training sets. We note that the TrainingV2 labeled

datasets are comparable to the size where we find peak performance.

We performed a 90-10 split for both TrainingV1 and TrainingV2, where 90% of the data

was allocated for training the ResNetV2 model and 10% was kept aside for validation. We

chose the maximum number of epochs (passes through the training dataset) for each training

combination as 100, since this was sufficient to observe a plateau in the validation metrics.

For each of the training combination described in Section 2.4, we conducted four independent

trials and selected the checkpoint with the best validation metrics for testing it on the survey

data.

2.6. Metric to evaluate model performance

We have described several models which are each tuned to optimize validation accuracy,

which is measured on the validation dataset (Section 2.5.3) consisting of simulated Lenses

and survey NonLenses. In order to gauge the performance of the models on their ability to

find real lenses from the survey, we require a testing dataset consisting of lenses from the

survey, as well as a metric to evaluate them on.

2.6.1. Generating the Testing dataset. Curating testing data in our case is a challenging

task. As discussed earlier, only two strong lenses in the entire survey were known prior to

this work, which is insufficient for meaningful evaluation. Therefore, we use an ensemble of

5 ResNet models trained on simulated lenses but using polar transformed images as input

to the network. The exclusive task of this model is to find real lens candidates to add to

our test dataset. We emphasize that this model is independent of the rest of the models

discussed so far in this paper, and does not influence their performance in any way. Details
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of its implementation are discussed in S22. It is beyond the scope of this paper to quantify

the performance of ensemble models or the effect of polar transformation during training,

but it is an interesting avenue for future work.

We find 52 likely lens candidates from this model, of which 27 are deemed to be good

candidates upon visual inspection. Therefore, we create two testing datasets: TestV1 and

TestV2. TestV1 contains all the 52 lens candidates found using our ensemble model approach,

while TestV2 contains the 27 best visual candidates. NonLenses for both TestV1 and TestV2

were formed by randomly selecting 874 of our 8734 human-labeled non-lenses (Section 2.5).

2.6.2. Precision and Recall. A standard metric widely used in machine learning to evalu-

ate the performance of test data on a trained model is the Precision-Recall curve (PR curve),

where precision and recall are defined as follows:

(2.2) Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.

Here TP, FP, and FN are the number of True Positive, False Positive, and False Negative

images respectively. These values are computed by passing a labeled test dataset (TestV1 and

TestV2 in this case) through a trained model (e.g., GAN+Mixmatch) and setting different

prediction thresholds.

Since the primary goal of this work is to find models which minimize the number of

nonlensed images that an investigator encounters while maximizing the number of lensed

images found (i.e., less FP and FN values), we seek models which have high precision at high

recall. We present the results from our PR curve analysis in the next section.

2.7. Results and Discussion

2.7.1. Semi-supervised algorithms with GANs and Augmentations have superior per-

formance. We consider 17 variations on the learning approaches described in Section 2.4: 4
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supervised, 6 semi-supervised, and 7 semi-supervised with GANs. SupervisedV1 and Super-

visedV2 are our baseline models. They were trained using a supervised learning approach

with no data augmentation on TrainingV1 (∼250,000 Lenses and NonLenses) and Train-

ingV2 (∼7000 Lenses and NonLenses) respectively. On the other hand, SupervisedV1+DA

and SupervisedV2+DA were trained using supervised learning with data augmentation (DA).

The rest of the models were trained on TrainingV2 using semi-supervised learning methods

with DA or with DA + GANs. In this subsection, we summarize the performance of these

different models. We primarily use the PR curve (Section 2.6.2) evaluated on our TestV1

and TestV2 sets to gauge which models perform best. We note that our methodology paper

S22 includes an additional discussion of these results.

We plot the PR curve obtained for our best-performing baseline models (SupervisedV1,

SupervisedV2) along with a subset of semi-supervised and GAN+semi-supervised models

in Figure 2.5 (see Tables 3 and 4 of S22 for additional model results). Table 2.3 lists the

precision value obtained for a subset of models at 100% recall. We find that our models

tend to generalize poorly when trained without any augmentations. Our baseline models,

trained without any data augmentation, performed worst out of all models at every recall

level. For example, at 100% recall, the baseline SupervisedV1 and SupervisedV2 have a

precision of ∼ 3% on our TestV2 set, whereas the GAN+Π-model has a precision of ∼ 22%.

The poor precision values of our supervised models may reflect challenges in simulating the

characteristics of lenses from a survey given limited priors. Fortunately, we find that data

augmentation methods are able to address this problem. We find a factor ∼5-10× improved

precision across almost all recall levels when applying the full set of augmentations (Table 2.1)

to our supervised models.

The improvement of semi-supervised over supervised algorithms suggests that valuable

features can in fact be extracted from the mostly unlabeled NonLenses, providing benefits

in the classification of real lenses. Adding GAN images to our training pipelines had a
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seemingly profound impact at all recall levels, especially at higher recalls where more difficult-

to-classify images come into play. This suggests that GAN-generated images contain subtle

variations which, while not necessarily significant to the naked eye, do in fact produce a

strong regularizing effect when used in training.

2.7.1.1. Ablation study on data augmentations. We investigated the impact of each of the

data augmentations we used by doing an ablation study using TrainingV2. The results from

this study are tabulated in Table 2.7. We find that removing GAN images from the training

sets causes a noticeable decrease in model performance at all recall levels, which agrees with

our earlier conclusion. It also appears that color augmentations and JPEG quality play

a very significant role in model performance. Including these three augmentations in our

training pipelines is apparently what allows our model to generalize so well, despite relying

on simulated lenses for training. A curious result from this ablation study is that multiples

of 90-degree rotations actually had a negative effect on model performance. The difference in

performance is relatively small compared to that seen for other augmentations (e.g., GANs),

but persists at all recall rates. A possible reason for this could be our small validation and

test sets. Because the validation set is small, model selection may be biased towards certain

orientations of the image. Likewise, an equally small test set may have preferred orientations

that the model does not generalize to, resulting in degraded performance.

2.7.1.2. Larger non-lens training samples can degrade the classifier’s performance. To

understand why our larger training set (TrainingV1) led to poorer generalization, we also

performed a test where we fixed the number of simulated Lenses and varied the number

of NonLenses in the dataset (see S22, Table 5). As we gradually increased the number of

NonLenses in the training data from 0 to 256,000, we saw that precision gradually increased

and peaked at around 8000-16000 NonLenses, then started to significantly decrease to around

∼6% precision for nearly all recall levels. One possible explanation for this effect is that as

we increase the number of NonLenses in training, we also increase the number of NonLens
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Figure 2.5. Precision-Recall curves (PR curves) for a subset of the models
described in Section 2.4 obtained using TestV1 (Left) and TestV2 (Right).
TestV1 contains 52 lens candidates found using our ensemble model approach,
while TestV2 contains the 27 best visual candidates (Section 2.6.1). Su-
pervisedV1 and SupervisedV2 are our baseline models. They were trained
using a supervised learning approach with no data augmentation on Train-
ingV1 (∼250,000 Lenses and NonLenses) and TrainingV2 (∼7000 Lenses and
NonLenses) respectively. The rest of the models were trained on TrainingV2
with augmentations. MixMatch and Π-Model are semi-supervised learning ap-
proaches, whereas GAN+MixMatch and GAN+Π-Model use GAN generated
images along with semi-supervised learning (see Figure 2.3 and Section 2.4 for
details). GAN+SupervisedV2 uses supervised learning with GAN generated
images. Models which use semi-supervised learning along with GANs clearly
outperform our baseline supervised learning models at all recall values, with
GAN+Π-model having the highest precision at 100% recall (see results in Ta-
ble 2.3; we note that Table 2.3 reports the average of our four runs while this
figure shows the runs with the best precision).

false positives which appear similar to real lenses in the survey data (and perhaps even

more similar to real lenses than the simulations we use). As a result, the decision boundary

for non-lenses overlaps more with the regions occupied by real lenses, leading to higher

levels of misclassification. Therefore, care must be taken in constructing training data based
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Model Training data used TestV1 Precision(%)TestV2 Precision(%)
SupervisedV1 TrainingV1 w/ no augmentation 5.62±0.01 3.01±0.02
SupervisedV2 TrainingV2 w/ no augmentation 5.65±0.02 3.06±0.04
MixMatch TrainingV2 w/ augmentation 12.28±5.09 6.84±3.00
Π-Model TrainingV2 w/ augmentation 13.41±2.33 8.68±1.49

GAN + Supervised TrainingV2 w/ augmentation 8.25±2.85 6.05±2.69
GAN + MixMatch TrainingV2 w/ augmentation 14.13±6.53 7.97±3.93
GAN + Π-Model TrainingV2 w/ augmentation 15.2±6.21 22.27±7.71

Table 2.3. Average precision values were obtained for a subset of the models
tested at 100% recall. We note that a table with the performance of all the
models at various recall values is presented in S22. Here the average is com-
puted from the performance of four independent runs on the test sets. The
uncertainties are 1σ standard deviations from the mean.
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Figure 2.6. Grade-A lenses found in the DLS along with the rank
(Section 2.7.2) assigned to them by GAN+MixMatch(MM) and GAN+Π-
model(PI) models. All Grade-A lenses have a clear arc morphology and are
located near a moderately massive galaxy or group, making them convincing
lens candidates. Among these candidates, 212072337 and 432021600 have been
spectroscopically confirmed to be true strong lens systems (Section 2.7.2.2).

on simulations. Arbitrarily increasing the size of the training data can evidently lead to

significantly worse performance than using a smaller well-curated training set.

To summarize, we find that models trained with a semi-supervised learning approach

using TrainingV2 and GAN-generated images along with all of our proposed list of data

augmentations have high precision values at all recall values. In particular, among the
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Figure 2.7. Grade-B lenses found along with the rank (Section 2.7.2) as-
signed to them by GAN+MixMatch(MM) and GAN+PiModel(PI) models.
Targets in this category have either a tentative nebulous arc-like feature sur-
rounding a massive galaxy, or have approximately linear extended morphology
near an apparent galaxy group or cluster. It is hard to discern if these features
correspond to lensed arcs or are caused by blending of multiple sources, hence
the uncertain Grade-B classification.

models tested, the top two performing models are GAN+MixMatch and GAN+Π-model. In

the following subsection, we turn to apply these models to the full set of DLS survey images

(i.e., SurveyCatalog in Section 2.3.1)

2.7.2. Catalog of Lens candidates found. Having established which of our trained models

perform best on our test set in terms of PR curves, we now turn to the key question of how

many lenses are identified in the DLS and importantly, how much human inspection effort

is required to find them.

We obtain a ∼97% and ∼86% precision at 50% recall (i.e., to find 50% lenses from our

test set) for the GAN + MixMatch and GAN + Π-model respectively. On the other hand,
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Rank Number of unique Number of Number of Total lenses Number of Number of Number of
threshold lenses investigated Grade-A lenses Grade-A lenses Grade-A Grade-A lenses Grade-A lenses Grade-A lenses

(G+MM,G+PI) (G+MM) (G+PI) (both models) (SupervisedV2) (SupervisedV2+DA) (SupervisedV2+DA+GAN)

12 9, 9 1 1 1 0 0 0
25 19, 16 1 3 3 0 0 0

100 67, 56 2 3 3 0 1 2
800 513, 430 4 3 4 1 2 3
2800 1735, 1459 6 5 8 - - -

4000 2459, 2076 7 5 9 - - -

Table 2.4. Comparison of the number of Grade-A lenses found by different models tested. The predic-
tions from the models are ranked such that the most likely predicted lens has rank=1. The rank threshold
value sets the number of lenses that an investigator has to visually inspect. The left two columns show
the chosen rank threshold and the number of unique lenses that it corresponds to (removing duplicates as
described in Section 2.7.2). Our best performing models GAN+MixMatch (G+MM) and GAN+PiModel
(G+PI) find 4 and 3 lensed candidates each among the top ∼500 unique images (top 800 ranks), and
7 lensed candidates each when the top ∼ 2300 images are investigated. Combining the results from
both the models, we find 9 Grade-A candidates (shown in Figure 2.6). The right three columns show
the number of lenses found from the SupervisedV2, SupervisedV2+Data Augmentation(DA) and Super-
visedV2+DA+GAN. Although they find fewer (≲ 50%) lens candidates than our best performing models,
we can see that DA and GANs are able to boost the number of lenses found from 1 to 3 at a rank threshold
of 800.

Rank Number of unique Number of Number of Total lenses Total lenses

threshold lenses investigated Grade-B lenses Grade-B lenses Grade-B lenses Grade-A+B lenses
(G+MM,G+PI) (G+MM) (G+PI) (both models) (both models)

12 9, 9 0 0 0 1
25 19, 16 0 0 0 3
100 67, 56 0 2 2 5
800 513, 430 2 5 5 9
2800 1735, 1459 6 11 12 20
4000 2459, 2076 9 11 13 22

Table 2.5. Similar to Table 2.4 but for Grade-B lenses.
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We note that the relative ranks which we use in this study will be unaffected under such

scaling transformations.

One substantial caveat when looking at the top n predictions is that, due to the density of

galaxies in the sky and our image selection method, the top predictions are not necessarily

unique. For example, the top 25 predictions from the GAN+Π-Model contain 17 unique

sources and 8 duplicates centered on different nearby objects (shown in Figure 2.13 in the

Appendix). For the top 2800 predictions, the number of unique candidates is ∼ 1600 on

average (i.e., ∼ 40% are repeated). Since this is a significant portion of the number of

images and would increase human effort during labeling, we remove such repetitions based

on their sky coordinates. Given our image size, we remove duplicates within a radius of 26

arcseconds of each object in the top n predictions.

The remaining images are then replaced with a larger field of view, ensuring that a

given region of the sky needs to be visually inspected only once. We note that removing

duplicates is strictly a post-processing step. Two of us (KVGC and TJ) visually inspected

the lens candidates and classified them into confidence categories: Grade-A, Grade-B, Grade-

C, and non-lenses. Grade-A indicates a high likelihood of being a strong lens system, on

the basis of a clear arc morphology and/or coincidence with a moderately massive group of

galaxies. Grade-B lenses generally have a nebulous arc-like feature surrounding a massive

galaxy and/or have approximated linear extended arc morphology near a group or cluster of

galaxies. It is uncertain if these features are from the lens or the effect of blending multiple

sources. Grade-C lenses (not discussed in this paper) are the lowest-confidence candidates

which typically show blended arc-like features likely arising from spiral arms, tidal features,

or asymmetric diffuse light from the onset of mergers.

Figures 2.6 and 2.7 show the color composite images for the 9 Grade-A and 13 Grade-B

lenses found from the survey upon visually inspecting ∼ 2500 unique candidates (the top

4000 by rank). Their sky coordinates are listed in Table 2.8 in the Appendix. Several of
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the Grade-A lenses appear to be compound lenses or part of a moderately massive group or

cluster of galaxies. This is interesting since our training data consists of only galaxy-galaxy

lenses. This is likely due to the addition of GAN-generated images to our training data, as

the GAN-generated images (Figure 2.3) include irregularly shaped arcs.

2.7.2.1. Human inspection effort. We now examine how much human effort is required

to find the 22 Grade-A and B lens candidates. To quantify the effort we consider the

number of lenses found at different ranks, listed in Table 2.4. The rank threshold determines

the number of unique images which must be visually inspected. Looking at the top 800

predictions from the GAN+MixMatch and GAN+Π-model (corresponding to 513 and 430

unique lens candidates respectively), we find 4 and 3 Grade-A lenses, and 2 and 5 Grade-B

lenses respectively. This is several times (≳3×) higher sky density than has been found from

the shallower ground-based DES survey, and smaller than the density found in COSMOS

with HST, as expected. The number of lens candidates found increases to 9 Grade-A and 13

Grade-B candidates when the top 4000 candidates (∼2500 unique images) are considered.

This corresponds to ∼1 lens per deg2 searched, which is ≳10× higher sky density of lenses

compared to previous shallower ground-based surveys (as we discuss in Section 2.7.4).

In comparison, our supervised models (e.g., SupervisedV1, SupervisedV2) find ≲ 50%

of these top lens candidates. They also have lower precision values (Table 2.3), with no

compelling lenses found within the top 17 candidates inspected (whereas G+PI finds 3 within

this threshold range). This again highlights the value of adding data augmentation and GAN

images. The SupervisedV2+DA+GAN model finds 3 times more lenses than SupervisedV2

within the same threshold range. These results demonstrate the efficiency with which the

models explored in this work can find strong lenses.

2.7.2.2. Spectroscopic confirmation of two Grade-A lenses. While image morphology can

provide compelling evidence for strong gravitational lensing, spectroscopic redshifts are the

standard to unambiguously establish the lensing nature of a system. We have obtained
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DLS212072337 (z = 1.81)

DLS432021848 (z = 1.94; tentative)

Figure 2.8. (Top): NIRES spectra of Grade-A lens DLS212072337 at a
redshift of z = 1.81 with prominent [O iii] emission lines marked in blue.
(Bottom): NIRES spectra of DLS432021848 showing the single emission line
detected at 1.93µm which we tentatively identify as Hα at z = 1.94. In both
panels the scaled sky spectrum is shown in orange (offset by -100), with gray
shading denoting regions affected by strong sky lines.
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2162 galaxies 1838 galaxies

Figure 2.9. Distribution of the top 4000 lenses found by GAN+Π-model in
color-color space. The left panel shows B − R vs B − V and the right panel
shows B −R vs R− z. The images above show examples of galaxies found in
the two regions of the left panel separated by the purple line. Low-z galaxy
candidates are clustered in the region above the trend line whereas all of the
Grade-A lens candidates are below it. The right panel additionally shows that
lens candidates are typically redder in R − z colors (≳ 0.5). A color selection
based on the purple lines in each panel would yield higher precision in our lens
candidate samples while retaining nearly all of the most probable lenses.

spectroscopy with Keck Observatory to confirm the lensing nature of two Grade-A systems

presented herein: DLS212072337 and DLS432021848 (Figure 2.8). Observations of the arcs

were conducted with NIRES (Wilson et al., 2004) on the Keck II telescope. Full details of the
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observations and data reduction are described in Tran et al. (2022a), along with spectroscopic

redshifts for DLS212072337 (reported as AGEL091935+303156). We find a secure redshift of

zarc = 1.81 for DLS212072337 from detection of Hα λ6564 and [O III] λλ4960,5008 emission

lines. The deflector galaxy is at a redshift of zdef = 0.43, based on stellar absorption features

from optical SDSS/BOSS spectra.

We observed DLS432021848 with NIRES on 12 January 2022 using the same method-

ology. We obtained 6 exposures of 300 seconds each. We detect a single emission line at

λ = 1.93µm which we tentatively identify as either Hα at zarc = 1.94 or [O III] λ5008 at

zarc = 2.85. However, we are unable to confirm the redshift with other strong lines, which

fall in regions of poor atmospheric transmission at both potential redshifts. We find further

support for the lensing nature of DLS432021848 from its morphology in follow-up HST imag-

ing (discussed in Section 2.7.4), which shows clear kurtosis and evidence of multiple lensed

images. Thus we are reasonably confident that this is indeed a strong lensing system on

the basis of high-resolution imaging, despite the limited spectroscopic information. Together

with DLS212072337, these results give additional confidence in the sample of lens candidates

presented in this paper and demonstrate that our methods are successful.

We note that redshifts are known for two additional Grade-A candidate deflectors (DLS212148326,

DLS421095124) from archival data. DLS212148326 is at zdef = 0.424 from SDSS/BOSS spec-

tra, while DLS421095124 is part of a massive galaxy cluster spectroscopically confirmed at

zdef = 0.680 (Wittman et al., 2003, 2006, reported as DLSCL J1055.2-0503). These redshifts

are promising, as the distances and approximate masses are consistent with the deflection

angles implied by the strong lensing interpretation of these images.

2.7.2.3. Distribution of lensed candidates in color-color space. The analysis and model

performance described thus far in the paper is based on a source selection using an in-

tentionally simple R band magnitude cut and SExtractor flags (Section 2.3.1). We have
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demonstrated in the above sections that such cuts are sufficient to search for lensed candi-

dates in the DLS. However, more sophisticated selections can increase the efficiency of lens

searches. Here we briefly consider how color selection can provide higher-purity samples.

In Figure 2.9 we show the distribution of Grade-A and B lenses from Section 2.7.2 in

various color-color spaces, along with the top 4000 ranked images from the GAN-Π-model as

an example. These colors generally correspond to the central (candidate deflector) galaxy.

The top lens candidates are not distributed uniformly, and we demonstrate two color-color

selections where the top candidates are clustered: (B − V ) < 0.56(B − R) − 0.02 (purple

line in left panel), and R − z ≳ 0.4 (right panel). Such simple color cuts can retain all

Grade-A lenses while removing the majority of false positives, thereby reducing the required

human inspection effort. Physically, these colors are indicative of 4000 Å breaks at redshifts

z ≳ 0.25 (i.e. in the V or R band) whereas lower-z galaxies are less likely to act as strong

lenses.

The distribution of lens candidates in color space suggests that the precision of our models

can be further improved by adopting color criteria as a pre- or post-processing step, with

minimal loss of the best candidates. Using photometric redshift and mass estimates is a

similar and potentially even more promising method (Schmidt & Thorman, 2013) although

it is beyond the scope of this paper. Alternatively, a state-of-the-art automated means to

address this would be by using self-similarity based approaches (e.g., Stein et al., 2021),

wherein a CNN further classifies the lens probabilities based on their similarity with each

other.

2.7.3. Lensing signatures identified by the models. We now examine which features

of the lens candidate images are most relevant for the model predictions. Deep neural

networks (such as ResNetV2 used in this work) are often considered as “black boxes” with

all input information collapsed to a simple prediction for the user to interpret. Having only

a single output, it is impossible to discern which distinguishing features of a gravitational
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Simulated Lens

Lens found in DLS

False Positive

NonLens

Figure 2.10. Grad-CAM++ heatmaps for an example simulated lens, two
Grade-A lenses, two false positive lenses, and a NonLens. The left column
shows the color composite image obtained from HumVI and passed to the
model. The right column shows the Gradcam++ heatmaps. The red and green
shading indicates regions of high and moderate importance to the model, re-
spectively, whereas blue represents low importance. The middle column shows
the heatmaps superimposed on input images for visualization purposes. For
the simulated lens, we can clearly see that the entire lensed arc region is taken
into consideration. For the Grade-A lens candidates found in DLS, we also
find that the lensed arc features are considered important by the model, de-
spite a range of lensing morphologies and colors. This suggests that models
have indeed successfully generalized to the survey data. Notably, the massive
deflector (i.e., the luminous red galaxy) causing the lensing effect is not high-
lighted in the simulated or candidate lens systems. Additional objects in the
field are also highlighted in heatmaps for the Grade-A lenses, which is also
apparent in the False Positive and NonLens examples. In the case of the False
Positives, the highlighted object distributions resemble an“Einstein cross” lens
configuration. Heatmaps for all the Grade-A lenses are provided in Figure 2.15
in the appendix. 45



lens are actually being identified and considered by the models. Fortunately, in the past

few years, there have been a variety of methods proposed to alleviate this such as occlusion

methods, Guided Backprop (Springenberg et al., 2015), CAM (Zhou et al., 2016), Grad-

CAM (Selvaraju et al., 2017), Grad-CAM++ (Chattopadhay et al., 2018), and DeepSHAP

(Fernando et al., 2019).

Gradient-based interpretation methods (e.g., Grad-CAM++) effectively compute gradi-

ents on intermediate feature maps of the network to determine the importance of a feature.

These gradient maps can then be overlaid on top of the original input image, in order to

assess which image regions are contributing most to the predicted output from the classi-

fier. These methods are not without drawbacks (e.g., Adebayo et al., 2018) but can provide

valuable insight. Here we use Grad-CAM++ to analyze some of our trained models.

Figure 2.10 shows Grad-CAM++ heatmaps obtained for a few illustrative examples. We

consider a simulated lens from the training data, real Grade-A lenses from the survey, false

positive images (i.e., images which are classified as lenses but show no visual evidence of

lensing), and a non-lens. In the case of the simulated lens, it is clear that the model is

indeed making its prediction based on the lensed arc features. For the Grade-A lenses, the

model does indeed discern the lensed arcs, but there are additional unrelated regions within

the images that also influence its decision. Curiously, the central massive deflector galaxy

is not highlighted in these cases. In the case of the false positives, the model encouragingly

is not misled by the extended central galaxies, but rather the heatmap highlights multiple

sources of similar color which surround the central galaxy. For example in the spiral galaxy

false-positive image, it is clear that the model picks up on the three nearby red objects.

The location and color of these nearby objects is indeed similar to plausible multiple-image

lensing configurations. It thus appears that the model has successfully learned to identify

the astrophysical signatures of strong lensing.
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2.7.3.1. Finding red arcs. As discussed in Section 2.5.2, our Lens dataset used for training

only consists of lensed arcs with blue optical colors. However, it is encouraging that the

models have also identified red arcs such as the system DLS212148326 (Figure 2.6). The

network may be learning to identify red arcs through color augmentations (Figure 2.2).

Although red-lensed arcs are known to exist, presumably a training dataset consisting of

only blue arcs is not ideal to robustly search for and quantify them. It could be the case

that adding more augmentations or fine-tuning existing ones might suffice to search for arcs

of various colors. Alternatively, a broader range of arc colors could be used in the simulated

training set, or a separate classifier could be constructed from a training set of red arcs.

Given our adopted training set, we consider the number of red-lensed arcs found from this

work to be a lower limit (relative to the blue arcs). Additionally, there are likely many fainter

blue or red arcs which our training set does not represent, although the detection of fainter

objects is naturally more challenging.

2.7.4. Implications for future large-area sky surveys: sensitivity and angular resolution.

The next generation of wide-area sky surveys is expected to uncover≳ 105 strong lens systems

(e.g., Oguri & Marshall, 2010; Collett, 2015). Here we consider the gain in lens detection

with survey depth and angular resolution based on our DLS sample from Section 2.7.2. We

compare the sky density of detected lens candidates with two other illustrative examples

of CNN-based searches in Table 2.6. In our DLS search, we find ∼0.5 Grade-A lenses per

square degree (or ∼1 Grade-A+B lenses per square degree). This is considerably larger than

found in shallower surveys such as SDSS and DES, which have uncovered ∼0.1 lenses per

square degree (in regions far from the galactic plane). While these surveys have a comparable

seeing-limited resolution, sharper image quality enables more lenses to be found. An example

is the search of COSMOS HST imaging by Pourrahmani et al. (2018) using a CNN approach,

which found 13 Grade-A candidates and 70 Grade-A+B candidates in the 2 square degree

field (i.e., ∼35 per square degree). Therefore, we see that the sky density of detectable
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Survey Lenses found 5σ point FWHMReferences
per sq.deg source detection

(r/R/F814W-band
magnitude)

DES/DECaLS ∼ 0.1 23.6 (r) 0.′′98 J19
DLS 1 26.7 (R) 0.′′9 This work

COSMOS ∼ 35 27.2 (F814W) 0.′′07 P18,K07

Table 2.6. Number of lenses found using machine learning methods per
square degree of sky in different surveys, along with the 5σ point source de-
tection depth and median angular resolution (given as the FWHM: full-width
at half maximum). We note that CNN and grading methods employed to find
lenses in each survey are different; the density of lenses should thus be treated
as an approximate comparison. References are as follows. J19: Jacobs et al.
(2019a), P18: Pourrahmani et al. (2018), K07: Koekemoer et al. (2007).

strong lens systems increases by ∼10 times when going from shallower ground-based surveys

(e.g., SDSS) to the DLS, and by another factor of ≳10 when the angular resolution is

improved by an order of magnitude with space-based HST imaging at modest depth. These

results generally support the predictions of large lens samples which will become detectable

with near-future surveys planned with the Rubin (LSST Science Collaboration et al., 2009),

Roman (Spergel et al., 2015), and Euclid (Laureijs et al., 2011) observatories.

To visually illustrate the detection of lenses at different depths and angular resolutions,

Figure 2.11 compares DECaLS, DLS, and HST imaging3 for the Grade-A lens candidate

DLS432021848 found in this work. A blue arc is clearly visible in the DLS image and shows

typical lensing morphology in the high-resolution HST image. However, the arc is only

marginally visible in shallower DECaLS imaging. Indeed, most (if not all) of the Grade-A

lens candidates found from this work would be difficult to detect in shallower imaging surveys

(e.g., DECaLS; hence for example they are not included in the catalog of Huang et al. 2020).

3The HST image was secured as part of program HST-GO-16773 targeting lens candidates identified primarily
in DES and DECaLS imaging (Tran et al., 2022a). In brief, the HST image in Figure 2.11 was taken with
WFC3-IR in the F140W filter with ∼30 minutes of exposure time (<1 orbit), and reduced using standard
procedures. Details of the HST program will be described in a forthcoming paper.
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DECaLS DLS HST

Figure 2.11. Comparison of the image quality from different observations
of the lens system DLS432021848, which shows a prominent blue arc in DLS
imaging (below center of images; all panels show the same field of view). Left :
The arc is apparent but not well detected in DECaLS imaging, which has
modest sensitivity. This image would likely be flagged in a low-confidence
category and indeed was not identified in previous lens searches (e.g., Huang
et al., 2020). Middle: DLS image of the target showing a prominent blue
arc-like feature below the red deflector galaxy, characteristic of a gravitational
lens system. The increased sensitivity of DLS compared to DECaLS imag-
ing (Table 2.6) enables clear arc detection. Right : Near-infrared image of the
same target observed with HST, with a diffraction-limited angular resolution
approximately 6 times sharper than DLS or DECaLS images. The HST image
reveals the lensed arc morphology at a high signal-to-noise ratio. This demon-
strates the capabilities of a ground-based telescope at good depth (e.g., DLS),
and a diffraction-limited space-based telescope with moderate exposure time
(e.g., HST).

Given the detectability of many lens systems with upcoming surveys, it is clear that

machine learning approaches (such as those we have explored here) will be vitally important

for the efficient selection of large samples. We have also demonstrated the feasibility of

spectroscopically following up on these moderately faint arc systems (Section 2.7.2.2), which

will be vital for confirmation and subsequent analyses.

2.8. Conclusions

In this paper, we have evaluated the performance of different CNN learning approaches

and data augmentations on their ability to efficiently find gravitational lens candidates in the

Deep Lens Survey. We make use of the deep learning architecture ResNet for our experiments,
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along with a training dataset consisting of simulated Lenses and survey image NonLenses.

We demonstrate that by using these state-of-the-art semi-supervised learning approaches,

we can greatly reduce the human effort required to find lensed candidates from a survey. We

summarize our key results below.

(1) Among 17 variants of learning approaches tested in this work, we find that our best

performing models (i.e., those which have high precision and minimize false positives

during human inspection) are GAN+MixMatch and GAN+Π−model. They have a

precision of ∼ 86% and ∼ 97% at 50% recall and, ∼ 22% and ∼ 8% at 100% recall

respectively. In comparison, our supervised models have a precision of ∼ 3% at

100% recall. This increase in the performance of the best models can be attributed

largely to three factors. (1) They leverage data augmentation (Table 2.1) during

training, which helps them to generalize better. (2) The datasets used to train these

models to contain simulated Lenses as well as GAN-generated images (Section 2.4),

which serves as an additional form of data augmentation. (3) Both of these top

models employ a semi-supervised learning approach (MixMatch, Π-model) which

enables our methods to adapt to distributional shift (Section 2.4.2). These results

indicate that data augmentation, GANs, and semi-supervised learning are highly

effective approaches for building an efficient lens classifier.

(2) We investigated the Grad-CAM++ feature maps (Section 2.7.3) used by our best

performing models to make their predictions, finding that they indeed are influenced

mostly by lensed arc regions and are generally not misled by other galaxies/artifacts

(e.g., diffraction spikes) in the images. This supplements our results presented above

that salient information regarding the arcs needed for classification has been suc-

cessfully learned by the models through our methods. This is encouraging for future
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lens searches, since simulated Lenses used in this work are generated without rely-

ing on photometric data of the deflector galaxy (Section 2.5), making it simpler to

automate the task of generating a training dataset.

(3) Applying the GAN+MixMatch and GAN+Π-model to the entire DLS survey, and

visually inspecting the top ∼ 2500 lens candidates, we find 9 Grade-A and 13 Grade-

B lensed candidates (22 in total). 3 out of the 9 Grade-A candidates are found within

the top 17 ranked images. The number of lenses found in the DLS corresponds to ∼

10× higher sky density of lenses per deg2 compared to the shallower DES/DECaLS

survey imaging and supports predictions that vast numbers of lens systems (≳ 105)

will be detectable in the upcoming generation of sky surveys. We further confirmed

the lensed nature of 2 Grade-A candidates with spectroscopy and high-resolution

imaging, demonstrating that our methods are successful.

We have generally explored methods intended to find as many lenses as possible while

minimizing human inspection effort. While there are likely additional detectable lenses be-

yond those we have identified, it is encouraging that our models have been able to identify

lenses that are not represented in the training set. In particular, our training set focused

on blue lensed arcs, while our models also find red arc candidates such as DLS212072337

(Section 2.7.3.1), although at a lower rank compared to the bluer lenses. Additional aug-

mentation methods and/or training datasets may be able to provide further improvement

for diverse lens system properties. Another straightforward improvement to our lens search

efficiency is to include simple cuts in color-color space as demonstrated in Section 2.7.2.3.

Such cuts can help increase the model precision by excluding sources that are not likely

to act as strong lenses based on their color and magnitude (which is physically related to

their mass and distance). Since our sample is agnostic to color information, our results are

well-suited for assessing the color space distribution of the best lens candidates.
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The scope of our models is currently limited to the DLS. However, our methodology

can be adapted for other data sets, and we note that the DLS fields overlap with wide-area

surveys such as DECaLS and SDSS. Exploring ways to translate these models across sur-

veys would be greatly beneficial. Finally, confirming the lensing nature of new candidates

either through spectroscopy (Section 2.7.2.2) or via arc morphology (Section 2.7.4) is essen-

tial for a variety of investigations, including probes of galaxy evolution and cosmology. We

have demonstrated the feasibility of confirming moderately faint arcs in our sample. Ac-

complishing confirmation for the thousands of lenses that will be discovered in forthcoming

surveys (such as with Rubin/LSST, Roman, and Euclid) will aid in our understanding of the

formation and evolution of galaxies and the contents of the Universe.

Appendix: Model performance and final lens sample

In this appendix, we provide some additional details of the model performance and the

top lens candidates identified in this work.

Figure 2.12 shows the distribution of model scores across the different DLS fields (F1 to

F5), demonstrating similar performance in each field. This is generally expected given the

similar image quality across the DLS survey. Importantly it shows that our use of labeled

training data from only F1 does not substantially affect the model performance in the other

fields.

Table 2.7 lists the results from our ablation study discussed in Section 2.7.1.1. We show

the precision across recall rates from 50-100%. The performance differences are generally

similar across all recall rates. Color augmentation, JPEG quality, and GAN images appear

to most prominently improving the model performance (i.e., the models perform significantly

worse when these augmentations are removed).

We show the top 25 predicted lens candidates from the GAN+Π-model and GAN+MixMatch

models in Figures 2.13 and 2.14, respectively. These include several of our top lens candidates

based on human inspection (see Figures 2.6) and 2.7), but many do not show obvious signs
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Figure 2.12. Histogram of the scores obtained by the GAN+MixMatch and
GAN+Π-model in the five independent DLS Fields F1 through F5. As dis-
cussed in Section 2.5, the training set used to train our models (TrainingV2)
contains human labeled NonLenses which were randomly sampled only from
Field F1. But as we clearly see, the distribution of scores (and performance of
the models as a result) is independent of the field chosen.

of strong lensing. There are several duplicate images at slightly different sky positions as dis-

cussed in the main text. In Figure 2.15 we include the GradCAM++ heatmaps obtained for

all the Grade-A candidates (analogous to the example subsets shown in Figure 2.10). These

heatmaps were generated using our best performing models: GAN+MixMatch or GAN+Π-

model (discussed in Section 2.7.3). Finally, we list the sky coordinates of all Grade-A and

Grade-B lenses in Table 2.8.
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Table 2.7. Ablation performance for 50–100% recall rates (in steps of 10%) for the GAN+Supervised
model using TrainingV2. The first row of each recall rate shows the baseline precision value obtained
from the model on the test sets (TestV1, TestV2) when none of the augmentations are removed. In
the subsequent rows, we report the precision obtained when the model was trained without the specified
augmentation. For example, the baseline model at 50% recall has a precision of 80.19% for TestV2 and
decreases to 55.77% when GAN images are removed during training. The difference in the obtained
precision values are quoted in the last two columns. Augmentations which improve model performance
(i.e., improve precision when included and decrease decrease precision when removed) are shown in red,
while those which decrease model performance are shown in blue. Overall, the models perform worse when
color augmentations, JPEG quality and GANs are not included, indicating that these augmentations are
important for optimal performance. The errors quoted here are 1σ.

Augmentation removed TestV1 Precision(%) TestV2 Precision(%) TestV1 baseline difference(%) TestV2 baseline difference(%)

Performance at 50% recall rate

None 84.95± 8.70 80.19± 17.08 - -

GAN 65.46± 15.00 55.77± 17.43 -19.49 -24.42

RGB shuffle 44.8± 24.32 35.45± 21.75 -40.15 -44.74

JPEG quality 65.30± 13.84 56.84± 14.06 -19.65 -23.35

Rot90 91.81± 4.41 89.96± 6.33 +6.86 +9.77

Translations 89.47± 10.34 84.59± 13.04 +4.52 +4.4

Horizontal flips 84.63± 10.85 75.74± 13.96 -0.32 -4.45

Color augmentation 71.88± 17.35 68.23± 15.2 -13.07 -11.96

Performance at 60% recall rate

None 79.88± 6.30 78.03± 12.45 - -

GAN 55.54± 13.13 44.09± 12.94 - 24.34 -33.94

RGB shuffle 34.25± 24.49 26.14± 15.9 - 45.63 -51.89

JPEG quality 52.75± 24.68 51.69± 17.91 - 27.13 -26.34

Rot90 84.94± 7.04 78.99± 5.23 +5.06 + 0.96

Continued on next page
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Table 2.7

Augmentation removed TestV1 Precision(%) TestV2 Precision(%) TestV1 baseline difference(%) TestV2 baseline difference(%)

Translations 74.95± 16.11 72.26± 24.65 -4.93 -5.77

Horizontal flips 71.15± 11.46 60.64± 12.27 -8.73 -17.39

Color augmentation 63.24± 15.67 50.91± 15.53 -16.64 -27.12

Performance at 70% recall rate

None 69.42± 4.60 68.05± 12.96 - -

GAN 46.45± 14.49 37.24± 12.85 -22.97 -30.81

RGB shuffle 26.68± 17.28 18.75± 11.78 -42.74 -49.3

JPEG quality 40.38± 18.64 40.52± 21.74 - 29.04 -27.53

Rot90 79.97± 12.15 73.69± 7.11 +10.55 +5.64

Translations 67.69± 12.67 59.31± 22.34 -1.73 -8.74

Horizontal flips 67.36± 11.95 55.94± 14.71 -2.06 -12.11

Color augmentation 52.79± 14.92 45.93± 13.97 -16.63 -22.12

Performance at 80% recall rate

None 54.35± 4.57 40.98± 17.12 - -

GAN 33.02± 10.26 24.37± 10.50 -21.33 -16.61

RGB shuffle 15.34± 7.59 11.75± 4.90 -39.01 -29.23

JPEG quality 21.33± 8.29 15.25± 3.41 -33.02 -25.73

Rot90 62.63± 12.43 52.2± 13.65 +8.28 +11.22

Translations 52.17± 12.92 35.09± 16.64 -2.18 -5.89

Horizontal flips 60.54± 9.78 36.46± 9.03 +6.19 -4.52

Color augmentation 39.47± 13.24 33.84± 10.92 -14.88 -7.14

Performance at 90% recall rate

None 34.12± 7.47 16.33± 8.661 - -

GAN 22.60± 4.78 10.99± 4.25 -11.52 -5.34

Continued on next page

55



Table 2.7

Augmentation removed TestV1 Precision(%) TestV2 Precision(%) TestV1 baseline difference(%) TestV2 baseline difference(%)

RGB shuffle 10.37± 4.68 5.88± 2.61 -23.75 -10.45

JPEG quality 15.15± 6.37 6.18± 2.41 -18.97 -10.15

Rot90 40.72± 12.74 21.79± 3.08 +6.6 +5.46

Translations 32.88± 3.35 16.14± 6.72 -1.24 -0.19

Horizontal flips 30.81± 20.44 14.72± 6.59 -3.31 -1.61

Color augmentation 23.86± 8.13 14.25± 8.45 -10.26 -2.08

Performance at 100% recall rate

None 8.25± 2.85 6.05± 2.69 - -

GAN 8.13± 2.49 5.79± 3.93 -0.12 -0.26

RGB shuffle 6.43± 0.97 3.84± 1.02 -1.82 -2.21

JPEG quality 5.88± 0.21 4.14± 2.09 -2.37 -1.91

Rot90 14.76± 8.42 13.00± 5.16 +6.51 +6.95

Translations 10.83± 2.46 7.37± 3.66 +2.58 +1.32

Horizontal flips 15.74± 3.06 8.86± 1.84 +7.49 +2.81

Color augmentation 11.42± 7.25 6.84± 4.12 +3.17 +0.79
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212037916 212072337 312113398 312115456 313061432 313061831

412108621 412109246 421042511 421045132 421093628 421094894

421095028 432073432 432073661 432084332 432084829 432085076

432128113 511062020 513097808 523005873 523006308 532016801

532017387

Figure 2.13. DLS images of the top 25 predictions from GAN+Π-model.
Several show clear evidence of strong lensing, while other images appear to
be false positives. We note that many images are duplicates (at overlapping
regions of the sky), which we remove before visual inspection.
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212037335 212037916 223061592 223062288 223064991 223072761

223075771 223075958 223076088 223076089 223076194 311015978

311036310 321139042 412137329 421045132 421094894 421095124

431043897 432073661 432084332 432084829 432085076 512030657

533070519

Figure 2.14. Equivalent to Figure 2.13, showing the top 25 predictions from
GAN+Mimatch.
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object ID RA DEC Field Rank (GAN+MixMatch) Rank (GAN+Π-model)

Grade-A candidates

421095124 163.792076 -5.070373 F4 2 12
513097468 209.340092 -10.244328 F5 38 13
212072337 139.896040 30.532355 F2 181 21

322054393 79.839914 -48.949647 F3 733 8326
432021600 162.750073 -5.941902 F4 1262 12424
431010921 163.364259 -5.789092 F4 1279 19826
512037933 209.677055 -10.687652 F5 7461 2068

421117552 163.897903 -5.054885 F4 4799 2768
212148326 139.512033 30.953524 F2 3579 23223

Grade-B candidates

313032462 78.742878 -48.149829 F3 365 59
331108599 81.300608 -49.432676 F3 1974 98
132023380 13.551513 11.794606 F1 3400 462

533097114 209.328083 -11.993324 F5 518 676
433116975 162.551767 -5.697394 F4 13673 720
233074254 139.046712 29.298535 F2 870 2320

413115231 162.585545 -4.498548 F4 8839 884
211134050 140.304878 30.471131 F2 12662 979
122079323 13.182525 12.323637 F1 8567 1145

312158847 80.455801 -48.489660 F3 3896 1209
322092794 80.115321 -49.246309 F3 1234 24945
421019105 163.411890 -4.870280 F4 1996 2702

221061603 140.662872 29.846367 F2 3990 8584

Table 2.8. Grade-A and Grade-B Lens candidates found from this work with their object ID, RA
and DEC coordinates, DLS field (F1 through F5), and their corresponding ranks from GAN+MixMatch
and GAN+Π-models. The rank is obtained by passing all the survey images (281,425 objects in total;
Section 2.3) through the models and sorting them based on their prediction scores. High-confidence
Lens candidates have lower ranks and high prediction scores. For example, the Grade-A lens candidate
DLS212072337 whose lensing nature has been spectroscopically confirmed (Section 2.7.2.2) has a rank of
21 from the GAN+Π-model and a prediction score of ≃ 1. The ranks quoted here represent an upper
bound on the number of images an investigator has to look at to find the lens candidate, as they do not
account for duplicated sky regions which we remove before visual inspection (as discussed in Section 2.7.2),
reducing the number of unique lens candidates investigated.
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212072337 (MM)

322054393 (MM)

421095124 (MM)

421117760 (PI)

431010921 (MM)

432021600 (MM)

512037933 (PI)

513097329 (PI)

212148326 (MM)

Figure 2.15. GradCAM++ heatmaps for all Grade-A lenses, equivalent to
Figure 2.10. Each image is labeled with its object ID, and the model corre-
sponding to the heatmaps (MM = GAN+MixMatch, PI = GAN+Π-model).

60



CHAPTER 3

Resolved velocity profiles of galactic winds at Cosmic Noon

Published as Vasan G. C. et al. (2023) in The Astrophysical Journal, Volume 959, Num-

ber 2, 2023.

3.1. Abstract

We study the kinematics of the interstellar medium (ISM) viewed “down the barrel” in

20 gravitationally lensed galaxies during Cosmic Noon (z = 1.5 − 3.5). We use moderate-

resolution spectra (R ∼ 4000) from Keck/ESI and Magellan/MagE to spectrally resolve

the ISM absorption in these galaxies into ∼10 independent elements and use double Gauss-

ian fits to quantify the velocity structure of the gas. We find that the bulk motion of

gas in this galaxy sample is outflowing, with average velocity centroid ⟨vcent⟩ = −141 km s−1

(±111 km s−1 scatter) measured with respect to the systemic redshift. 16 out of the 20 galax-

ies exhibit a clear positive skewness, with a blueshifted tail extending to ∼ −500 km s−1. We

examine scaling relations in outflow velocities with galaxy stellar mass and star formation

rate (SFR), finding correlations consistent with a momentum-driven wind scenario. Our

measured outflow velocities are also comparable to those reported for FIRE-2 and TNG50

cosmological simulations at similar redshift and galaxy properties. We also consider impli-

cations for interpreting results from lower-resolution spectra. We demonstrate that while

velocity centroids are accurately recovered, the skewness, velocity width, and probes of high

velocity gas (e.g., v95) are subject to large scatter and biases at lower resolution. We find

that R ≳ 1700 is required for accurate results for the gas kinematics of our sample. This

work represents the largest available sample of well-resolved outflow velocity structure at

z > 2, and highlights the need for good spectral resolution to recover accurate properties.
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3.2. Introduction

The formation and evolution of galaxies is regulated by feedback from star formation and

supermassive black hole growth (e.g., King, 2003; Veilleux et al., 2005a; Di Matteo et al.,

2005; Fabian, 2012; Somerville & Davé, 2015b). The energy released by high star formation or

black hole accretion rates can drive powerful galactic-scale outflows of gas and dust, limiting

future star formation (e.g., Zhang, 2018; Naab & Ostriker, 2017; Hayward & Hopkins, 2017).

At redshifts z ≃ 2 − 3, corresponding to the peak period of cosmic star formation activity

(“Cosmic Noon”; e.g., Madau & Dickinson, 2014), virtually all star-forming galaxies exhibit

outflows (e.g., Frye et al., 2002; Shapley et al., 2003; Sugahara et al., 2019). This is indeed

expected based on their high star formation rate (SFR) surface densities (Heckman, 2002;

Cicone et al., 2016).

Outflows in high-redshift galaxies are typically identified by interstellar medium (ISM)

features in the rest-frame ultraviolet spectrum. Outflowing gas produces blueshifted absorp-

tion, and redshifted emission in Lyα and other resonant lines. This signature is observed

ubiquitously in z > 2 star-forming galaxies (Weiner et al., 2009; Shapley et al., 2003; Vanzella

et al., 2009; Steidel et al., 2010; Jones et al., 2012; Du et al., 2018). However, while large sam-

ples are available, the spectral resolution R is typically too low to resolve the outflow velocity

structure. At R ∼ 600 the full width at half-maximum (FWHM) resolution is ∼ 500 km s−1,

which is comparable to the maximum observed velocities, whereas in this work we will focus

on R ≳ 4000 corresponding to FWHM ≲ 75 km s−1. Furthermore, many studies rely on

stacking analyses which preclude characterizing individual systems. Our current knowledge

is thus largely limited to the average velocity centroid, which encompasses both outflows

and ambient interstellar material. This leaves key questions unanswered, such as the pro-

portion of gas which is able to escape the galaxy halo (as opposed to low-velocity gas which

will remain in the circumgalactic medium (CGM) or recycle back to the galaxy), and the

covering fraction of low-ionization gas which regulates the escape of ionizing photons (e.g.,
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Du et al., 2018). Low-resolution data are likewise unable to disentangle outflows from the

non-outflowing ISM component.

A promising way forward is to observe bright gravitationally lensed galaxies, which can be

magnified by factors of ∼10×. Such bright sources enable moderate resolution spectroscopy

with good sensitivity on 8–10m telescopes. Early studies of a few individual systems at

z ≃ 2− 3 revealed the velocity structure of ISM and outflowing gas spanning ∼1000 km s−1

(Pettini et al., 2002b; Quider et al., 2009, 2010; Dessauges-Zavadsky et al., 2011). Simi-

larly, Jones et al. (2013a) and Leethochawalit et al. (2016d) used deep spectroscopy of seven

strongly lensed z > 4 galaxies to measure their covering fraction profiles, revealing a consid-

erable diversity among the star-forming population.

The number of well-characterized strongly lensed systems has grown tremendously over

the last decade thanks to all-sky surveys and dedicated lens searches (e.g., Sonnenfeld et al.,

2018; Jacobs et al., 2019a; Huang et al., 2020). Previously, Jones et al. (2018) conducted a

study of 9 bright lensed galaxies from the CASSOWARY survey (Belokurov et al., 2009; Stark

et al., 2013), quantifying their bulk outflow velocities and chemical compositions. This

work aims to compile a larger sample of 20 targets observed at moderate spectral resolution

(R ∼ 2530− 6300) with the main goal of quantifying the ISM outflow velocity structure in

a statistical sense. With these results we seek to aid and improve upon the interpretation of

larger samples at lower spectral resolution, by comparing trends in outflow velocities between

low and moderate resolution data. Finally, we seek to compare the measured outflow veloc-

ities with those obtained in simulations with different feedback prescriptions, and provide a

benchmark data sample for future comparison with cosmological simulations.

This paper is organized as follows: Section 3.3 describes the lensed galaxy sample and

moderate resolution spectroscopy. In Section 3.4 we derive velocity profiles of the interstellar

and outflowing gas, while Section 3.5 discusses the kinematic features of the ISM. Section 3.6

compares the observations of outflow velocities with scaling relations from previous work and
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simulations. We summarize the main conclusions of this work in Section 3.7. Throughout

this paper, we use the AB magnitude system and a ΛCDM cosmology with ΩM = 0.3,

ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.

Figure 3.1. Color composite images of the gravitationally lensed galaxies
used in this paper obtained either from DECaLS, SDSS, or the Hubble Space
Telescope archive. The galaxies are arranged in order of increasing outflow
velocity parameter (v75,V 2), from top to bottom. Each image is centered on
the deflector(s) contributing to the lensing potential. These lensed galaxies are
bright and appear highly magnified on the sky with a mean magnification value
of µ = 9. The images are oriented North-up, East-left with the image sizes
labeled in arcseconds. The RA, Dec slit position and the position angle (PA)
used for observations can be found in Table 3.1 and the references provided
therein.
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Table 3.1. Table of Galaxy properties. References for each survey are as follows. MEGASAURA: Rigby
et al. (2018), CASSOWARY: Jones et al. (2018), AGEL: Tran et al. (2022b), KOA: Keck Observatory
Archive. zs is the source galaxy systemic redshift, and R is the spectral resolution. RA, Dec and PA
(position angle) correspond to the slit locations used to observe the galaxies. The spectral features used
to determine zs are listed under Notes.

Object ID RA (slit) Dec (slit) PA (slit) zs Notes Survey R
J0004 00:04:51.685 −01:03:20.86 parallactic 1.6812 stellar absorption MEGASAURA 2750

RCSGA0327-G 03:27:26.626 −13:26:15.30 parallactic 1.70385 nebular emission MEGASAURA 2830
J0108 01:08:42.206 +06:24:44.41 parallactic 1.9099 stellar absorption MEGASAURA 4380

CSWA103 01:45:04.38 −04:55:50.8 115 1.95978 C III] CASSOWARY 6300
AGEL231935+115016 23:19:34.66 +11:50:18.1 -40 1.99256 ISM absorption AGEL 4700

Clone 12:06:10.65 +51:44:44.1 40 2.0026 stellar absorption KOA 4700
CSWA19 09:00:02.80 +22:34:07.1 86 2.03237 C III] CASSOWARY 6300
CSWA40 09:52:40.29 +34:34:39.2 70 2.18938 stellar absorption CASSOWARY 6300
CSWA2 10:38:41.88 +48:49:22.4 17 2.19677 C III] CASSOWARY 6300
CSWA128 19:58:35.44 +59:50:52.2 60 2.22505 O III] CASSOWARY 6300
HorseShoe 11:48:33.264 +19:29:59.11 parallactic 2.3814 stellar absorption MEGASAURA 3980

AGEL014106-171324 1:41:06.1273 −17:13:23.545 320 2.43716 ISM absorption AGEL 4700
CSWA164 02:32:49.93 −03:23:25.8 158 2.51172 stellar absorption CASSOWARY 6300
8oclock 00:22:40.36 +14:31:27.6 -276 2.735 stellar absorption KOA 4700
J1527 15:27:45.116 +06:52:19.57 parallactic 2.76238 stellar absorption MEGASAURA 2740
J1429 14:29:54.857 +12:02:38.68 parallactic 2.8241 stellar absorption MEGASAURA 3500

CSWA38 12:26:51.48 +21:52:17.9 130 2.92556 stellar absorption CASSOWARY 6300
CosmicEye 21:35:12.7 −01:01:42.9 parallactic 3.0734 stellar absorption MEGASAURA 2530

AGEL183520+460627 18:35:20.55 +46:06:35.4 16 3.38845 nebular emission AGEL 4700
J1458 14:58:36.143 −00:23:58.17 parallactic 3.487 stellar absorption MEGASAURA 4000
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3.3. Sample and spectroscopic data

The goals of this work require moderate resolution spectroscopy (R ≳ 4000) in order to

sample the ISM absorption profiles with ∼10 independent spectral resolution elements. We

have compiled a sample from our previous work, other archival data, and new observations

from an ongoing survey of bright lensed galaxies discovered in wide area imaging surveys.

The full sample used in this work is listed in Table 3.1, and color images of each source are

shown in Figure 3.1. Below we describe the spectroscopic data sets.

(1) CASSOWARY: The Cambridge And Sloan Survey Of Wide ARcs in the skY (CAS-

SOWARY, abbreviated CSWA) consists of bright lensed galaxies discovered in Sloan

Digital Sky Survey (SDSS) imaging (Belokurov et al., 2009; Stark et al., 2013). Fol-

lowup echellete spectra were taken with ESI (Sheinis et al., 2002) at Keck Obser-

vatory using an 0.′′75 slit width, resulting in R = 6300 resolution (FWHM = 48

km s−1) covering a wavelength range of 3900–11000 Å. These data are described in

Jones et al. (2018) including an analysis of the ISM chemical composition. 7 targets

from this sample (CSWA2, CSWA19, CSWA38, CSWA40, CSWA103, CSWA128,

and CSWA164) have sufficient data quality and coverage of the ISM lines needed

for this work.

(2) MEGASAURA: The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Ref-

erence Atlas (MEGaSaURA) consists of spectra of lensed galaxies taken with the

MagE spectrograph on the Magellan telescopes, extracted over the wavelength range

3200–8280 Å (Rigby et al., 2018). 8 targets from this sample (J0004, J0108, J1429,

J1458, J1527, CosmicEye, HorseShoe, and RCSGA0327-G) are used in this paper.

A range of MagE slit widths were used resulting in spectral resolution ranging from

2530-4400, with an average R = 3300.

(3) AGEL: As part of the ASTRO3D Galaxy Evolution with Lenses (AGEL) project,

we have obtained Keck/ESI spectra of bright lensed galaxies discovered from a
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Figure 3.2. Spectra of the 20 lensed galaxies used in this work showing the
rest-frame wavelength range 1500–1950 Å. The spectra are sorted from top
to bottom in the increasing value of v75,V 2 (75% outflow velocity measured
considering only gas with v < 0; see Table 3.2), and offset for clarity. Low
ionization (e.g., Si II, Al II) and high ionization (e.g., C IV) lines are marked
in blue and purple respectively. The interstellar transitions probe a range of
optical depth, from the strong lines such as Si II λ1526 and Al II λ1670 to the
weak (optically thin) Ni II features. A median-stacked spectrum is shown in
the top row to demonstrate the various ISM absorption features with higher
signal-to-noise.
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machine learning search in wide area imaging. The search methodology and a subset

of targets are described in Jacobs et al. (2019a). Spectra were taken with a 1.′′0

slit providing R = 4700 resolution (FWHM = 64 km s−1) covering a wavelength

range of 3900-11000 Å. The observations are described in Tran et al. (2022b). 3

targets (AGEL231935+115016, AGEL122651+215218, AGEL183520+460627) from

the AGEL sample are used in this paper.

(4) KOA: Data for 2 additional bright lensed galaxies (Clone, 8oclock) were obtained

from the Keck Observatory Archive (KOA) and reduced using MAKEE written by

Tom Barlow1 for inclusion in this analysis. These observations were taken with the

same setting as the AGEL sample, using the 1.′′0 slit. The reduction was performed

following the same methods used for the AGEL data (Tran et al., 2022b), with

default settings prescribed for ESI. A manual extraction region covering the entire

galaxy light was taken to be the continuum, with the rest of the slit considered as

the sky to generate the error spectra. Extracted 1D spectra are binned to a common

dispersion of 11.5 km s−1 per pixel.

Our sample is comprised of moderately massive, star-forming main-sequence galaxies (Sec-

tion 3.6), which show no evidence of AGN in the available spectra. Those with resolved spec-

troscopic observations exhibit a wide range of kinematic structure (e.g., Stark et al., 2008;

Jones et al., 2013b; Wuyts et al., 2014b; Bordoloi et al., 2016; Leethochawalit et al., 2016b;

Chisholm et al., 2018; James et al., 2018a; Shaban et al., 2022) with HorseShoe, Clone and

CosmicEye being rotationally supported whereas CSWA2, CSWA19, CSWA38, CSWA128,

and RCSGA0327 appear to be mergers/interacting systems. Figure 3.2 plots spectra of the

full sample between 1500-1950 Å, with prominent absorption features labelled.

3.3.1. Systemic Redshifts. Systemic redshifts are needed to characterize ISM kinematics

with respect to the stars. Table 3.1 lists the redshifts for galaxies in our sample, which span

1https://www2.keck.hawaii.edu/inst/esi/makee.html
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z = 1.6–3.5, along with the type of features used for these measurements. In most cases, the

systemic redshift is based on stellar photospheric absorption lines with a typical uncertainty

of ≤ 30 km s−1. In some cases where suitable stellar features are not reliably measured

(e.g., CSWA19), we use nebular C III] or O III] emission lines to establish the redshift.

Photospheric absorption or nebular emission lines are available for 18 of the targets in our

sample. For 2 targets (AGEL231935+115016, AGEL014106-171324) where none of these

features are securely measured, we estimate the systemic redshift from the ISM absorption

lines themselves in the following way: we find the velocity corresponding to the maximum

covering fraction and then apply an offset of +172 ± 19 km s−1 (i.e. zsys = zCf,max +

172 km s−1/c±19 km s−1/c). This offset value is derived as the median difference and sample

standard deviation between the systemic and zCf,max from the 18 galaxies in the sample with

robust systemic redshifts. The offset between systemic and ISM absorption velocities in our

sample is comparable to measurements from non-lensed galaxies at similar redshifts (e.g.,

Steidel et al., 2010; Jones et al., 2013a).

3.3.2. Continuum normalization. In this work, we are interested in the strength of inter-

stellar absorption relative to the stellar continuum. In order to achieve a constant continuum

level around the ISM lines, the spectra from all targets are initially normalized by a run-

ning median of 2001 pixels (∼20,000 km s−1) which removes any large scale structures in

the spectra arising from effects such as dust attenuation, flux calibration, and flat fielding

uncertainties (e.g., Figure 3.3 - top). To remove any local scale structures, we consider a

region spanning −2000 to 2000 km s−1 around the ISM line of interest and divide it by the

median value of the local region. We then average the ISM lines (Section 3.4.1) and divide

by a third order polynomial fit to the continuum around the absorption profile, to account

for any residual structure. This achieves a continuum level close to 1 for the mean absorption

profile in all target galaxies (e.g., Figure 3.3). Any absorption can then be interpreted as gas

present along the line-of-sight in front of this continuum starlight.
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We note that using a third order polynomial normalization increases the ∆v90 line widths

by 48±36 km s−1 on average compared to using only a median normalization, although there

is no effect on the centroid (−3±7 km s−1). Additionally, we estimate the typical uncertainty

in continuum level using the third order polynomial normalization to be approximately ∼1%,

which propagates to a ∼3% average change in the width of ISM absorption as parameterized

by ∆v90 (Section 3.5) or similar quantities, while velocity centroids remain consistent within

the statistical uncertainties. The effect is such that an underestimated continuum implies an

underestimated ∆v90 and absorption equivalent width from best-fit profiles. This uncertainty

does not significantly affect the main results and conclusions presented herein.

The normalization procedure described here is relatively insensitive to the ISM line itself.

In some cases the lensed galaxy spectra are subject to blending with the deflector light due

to the nature of the observations, especially with AGEL and MEGASAURA data. This can affect

the relative depth and equivalent width of ISM absorption profiles. However, the kinematic

measurements used in this work are robust to blending with other sources, provided they

have smooth continuum spectra. Any strong spectral features which interfere with the ISM

lines of interest are masked out and not used in our analysis. In some cases, there are strong

intervening absorption systems at lower redshift, which are likewise masked and not used in

this analysis.

3.4. Velocity structure of ISM gas

Ultraviolet ISM absorption lines probe the velocity structure of gas seen along the line of

sight toward (“in front of”) the young stars in a galaxy. Spectrally resolving the absorption

velocity profile is a practical and powerful way to probe the baryon cycle, as illustrated

schematically in Figure 3.4. Interstellar gas within the galaxy will absorb at the systemic

redshift (i.e., v = 0) with a velocity range set by the galactic rotation curve and velocity

dispersion. Inflowing gas gives rise to redshifted absorption (at v > 0), while outflows result

in blueshifted absorption (v < 0) which may even exceed the escape velocity. Recycling gas
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– which transitions from outflowing to inflowing at moderately low velocity – would result

in absorption near v ≈ 0.

In this section we describe our methodology to determine spectrally resolved ISM absorp-

tion profiles, in order to characterize the gas kinematics and geometric covering fractions in

our sample. The observed intensity I for an interstellar absorption line is

(3.1)
I(v)

I0
= 1−Ψ(v),

where I0 is the intensity of stellar continuum and Ψ(v) describes the absorption depth as a

function of velocity v. It is dependent on the covering fraction of gas Cf (v) and the optical

depth τ in the following way:

(3.2) Ψ(v) = Cf (v)(1− e−τ ) ≈ Cf (v)

where the latter approximation is valid for the case of optically thick absorption τ ≫ 1. In

this work, we are interested in studying the ISM gas kinematics by measuring the covering

fraction as a function of velocity Cf (v) from galaxy-integrated slit spectra. We describe

the ISM absorption profiles and velocity structure for lines of different optical depth in

Section 3.5.3.1. The profiles are consistent among the stronger transitions indicating τ ≳ 1

around the line center, suggesting that they largely trace the covering fraction. For our

analysis we use these strongest lines with τ ≳ 1, such that Equation 3.2 is a reasonable

approximation. We note that if the gas is not optically thick (e.g., as may be the case at

higher velocities), then these represent a lower limit on the covering fraction.

3.4.1. Kinematics of the low-ionization gas. The rest-frame UV spectra used in this

work include interstellar absorption from both low- and high-ionization species, as well as

stellar features, Lyα in absorption and/or emission, and other features such as nebular and

fine structure emission (see Figure 3.3 for an example). We focus on ISM kinematics of the

low-ionization phase, from which there are numerous prominent transitions of Si II, O I, C II,
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Figure 3.3. Top: Example normalized spectrum of one of the lensed galaxies
in our sample, CSWA38. Prominent low ionization and high ionization ISM
lines from the source galaxy at z = 2.92 are marked in blue and purple dashed
lines. Mg II absorption from an intervening absorber galaxy at z = 0.77
(Mortensen et al., 2021a) is marked in violet. Bottom Left: Mean absorption
profile of gas as a function of velocity obtained from a weighted average of the
low-ionization Si II λ1260, O I λ1302, Si II λ1304, C II λ1334, Si II λ1526,
and Al II λ1670 lines. The mean absorption profile is related to the covering
fraction as 1-Cf (v) (Equation 3.2). The gray shaded regions represent the error
spectrum. The blue line is a double Gaussian fit to the data, showing good
agreement, while the dashed line is a best-fit single Gaussian (SG) profile. The
green vertical line indicates the outflow velocity parameter v75,V 2 defined as
the velocity (in km s−1) at 75% absorption considering only absorption with
v < 0 (see Figure 3.6). Bottom Right: Spectra of low-ionization lines used to
obtain the covering fraction profile. Regions which have no error bars (gray
shading) are not included for the weighted average. In these cases the regions
are excluded due to absorption from an intervening galaxy (e.g., > 200 km s−1

in Si II λ1260) or the blended nature of the O I λ1302, Si II λ1304 lines.
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Figure 3.4. A guide to interpreting ISM velocity profiles in terms of the
baryon cycle, shown as a schematic on the left with corresponding ISM ab-
sorption signatures on the right. Outflowing gas has blueshifted absorption
(i.e. v < 0) whereas inflowing gas has redshifted absorption (v > 0). Recy-
cling gas which arises from the outflowing gas transitioning to inflowing gas
has velocities v ≈ 0. The systemic velocity of the stars and their dispersion is
centered at v = 0 by definition. The region v < −vesc corresponds to gas with
velocities greater than the escape velocity of the ISM.
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AGEL183520 (v75, V2=-137) CSWA2 (v75, V2=-212) AGEL231935 (v75, V2=-256) J1527 (v75, V2=-262)

cosmiceye (v75, V2=-264) CSWA128 (v75, V2=-305) CSWA38 (v75, V2=-328) J0004 (v75, V2=-331)

CSWA19 (v75, V2=-337) CSWA164 (v75, V2=-345) clone (v75, V2=-360) RCSGA0327-G (v75, V2=-369)

AGEL014106 (v75, V2=-377) CSWA103 (v75, V2=-380) horseshoe (v75, V2=-419) CSWA40 (v75, V2=-428)

J1458 (v75, V2=-438) J1429 (v75, V2=-440) 8oclock (v75, V2=-465) J0108 (v75, V2=-533)

Figure 3.5. Plots of ISM absorption profiles for the full sample, sorted by
increasing values of the outflow velocity parameter v75,V 2 (given in km s−1).
The normalized flux profiles are related to covering fraction as 1−Cf (v), and
v75,V 2 is the 75% percentile of absorption measured by considering gas only at
v < 0, where v = 0 is the systemic velocity (see Table. 3.2 and Section. 3.5
for more details). Denoted in red is the observed velocity profile, gray regions
show the 2σ confidence interval, blue lines are double Gaussian (DG) fits to
the data, and dotted lines are single Gaussian (SG) fits. The green vertical
lines indicate the measured v75,V 2 in each case with the value (in km s−1) given
above each plot.
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Al II and Fe II. These metal ion transitions are often optically thick, approximately tracing

the gas covering fraction as a function of velocity (Equation 3.2). This is in contrast to the

H I Lyα profile which is complicated by resonant emission and damping wings.

For each spectrum we measure the ISM absorption profile I/I0 from an average of the best

available strong low-ion metal lines. We select those with good continuum sensitivity which

appear to be saturated (based on multiple lines showing similar absorption profiles). Each

absorption line is interpolated to a common velocity grid of 25 km s−1 and we take an inverse-

variance weighted mean of the median-continuum-normalized flux at each velocity. Those

which are affected by features such as strong sky emission, telluric absorption, bad pixels, or

intervening absorption systems are excluded from this analysis. For blended transitions (e.g.,

O I λ1302 and Si II λ1304), only regions of interest corresponding to the transition are taken

into account. Specifically, we use typical velocity ranges v ≲ 0 km s−1 and v ≳ −500 km s−1

for the λ1302 and λ1304 transitions, respectively, similar to the approach of Jones et al.

(2018). Other ISM lines are affected to a lesser extent by blending with weak features

such as [S II] λ1259 (blended with Si II λ1260), C II* λ1335 (affecting C II λ1334), and

stellar photospheric features near the O I λ1302 line. These features and their effects on

derived ISM absorption profiles are typically not detected in individual galaxy spectra. We

therefore do not mask these regions, effectively treating them as part of the stellar continuum

(which is generally full of lines with low equivalent width). From analysis of the high-SNR

stacked spectrum, we find that these blends can cause an increase in the measured ∆v90

by up to ≲ 70 km s−1 depending on the lines used. This represents a source of systematic

uncertainty in the absorption profiles, with magnitude comparable to uncertainty arising

from the continuum normalization (Section 3.3.2).

Figure 3.3 illustrates this process for an example galaxy in the sample, with equivalent

figures for the full sample displayed in Appendix 3.7. We derive the low-ionization ISM
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covering fraction profiles Cf (v) from these mean absorption profiles for the galaxies in our

sample, shown in Figure 3.5.

3.4.2. Fitting Cf (v). The mean ISM absorption profiles shown in Figure 3.5 encode the

key observational results of this paper. From these profiles we can examine the typical outflow

velocities, the maximum velocities with substantial gas covering fractions, and diversity

within the sample, among other properties. For analysis purposes, it is useful to have an

analytic form which captures the velocity structure of ISM absorption profiles. For quasar

sightlines a Voigt profile is appropriate to describe distinct absorption components, but this is

not suitable for galaxy spectra whose profiles represent a large number of interstellar clouds.

Although we adopt the weighted mean profile measurements shown in Figure 3.5 as the

ground truth, we also fit two analytic functions to each profile. The first is a single Gaussian

(hereafter SG) function of the form:

(3.3) Cf (v) = Asg exp[(v − vsg)
2/2σ2

sg]

where the subscripts indicate a single Gaussian (sg). This does not capture the clear asym-

metries seen in most of the sample (Figure 3.5). It is nonetheless instructive since this fit

captures the information equivalent of a low-resolution (R ∼ 300−1000) spectrum, in which

the absorption would be only marginally resolved. The second profile is a double Gaussian

(hereafter DG) function of the following form:

(3.4) Cf (v) = A0 exp[(v − v0)
2/2σ2

0] + A1 exp[(v − v1)
2/2σ2

1]

where (A0, v0, σ0, A1, v1, σ1) are the parameters to be fit. We adopt a convention that

v0 < v1. The DG is relatively simple but versatile. We find that it yields a reasonable fit

to the velocity substructure detected in our sample. The median residuals of the best fit

DG model measured between the velocity range v99 and v01 are ∼ 0.03 whereas for the SG

they are ∼ 5× higher. We therefore make use of the DG fits to derive kinematic properties
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such as the velocity centroid and width (Section 3.5.1). The SG fits are used mainly as an

emulator of lower spectral resolution data.

To quantify the uncertainty in each parameter, we fit each weighted mean absorption pro-

file with 250 realizations of the Basin-Hopping stochastic algorithm (Wales & Doye, 1997).

For each realization we add random 1σ noise to Cf (v) based on the error spectrum. The veloc-

ity centroids (vsg, v0, v1) are allowed to vary from −700 to 500 km s−1, dispersions (σsg, σ, σ1)

from 50 to 700 km s−1, and absorption depth (Asg, A0, A1) from 0.1 to 1. For each realization,

all parameters are initialized to random values within the above ranges. These bounds are

chosen based on the observed covering fraction profiles such that they sample the entire pa-

rameter space. We place an additional constraint −800 km s−1 < (v0− v1) < 0 km s−1 when

fitting the double Gaussian. This ensures that the same component (v0) always captures the

blueward absorption, which we will generally attribute to outflowing gas. We note that this

approach is somewhat more general than that of e.g. Bordoloi et al. (2016) in which one

component’s centroid is fixed to represent the systemic component; here we do not require

any component to exactly trace the systemic velocity.

Table 3.2. Definitions of velocity measurements presented in this paper. We
note that v50 is the centroid velocity and is used interchangeably with vcent.

Parameter-DG Parameter-SG Description

v05 v05,SG Velocity at 5% absorption

v50 = vcent v50,SG = vcent,SG Velocity at 50% absorption

v90 v90,SG Velocity at 90% absorption

v95 v95,SG Velocity at 95% absorption

v99 v99,SG Velocity at 99% absorption

∆v90 ∆v90,SG v95 − v05
v05,V 2 v05,SG,V 2 These quantities are

v50,V 2 v50,SG,V 2 calculated in the same

v90,V 2 v90,SG,V 2 way as described

v95,V 2 v95,SG,V 2 above but considering

v99,V 2 v99,SG,V 2 only absorption with v < 0
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Figure 3.6. Illustration of the velocity measurements used in this work. Left:
An example normalized flux profile analogous to those in Figure 3.5. Right:
The normalized Cumulative Distribution Function (CDF) of the absorption
profile shown in the left panel. This is essentially the CDF of the covering
fraction Cf (v) (Equation 3.4.2). Both panels show velocities v50, v75, v95, and
v99 which are defined as the 50%, 75%, 95% and 99% percentiles of absorp-
tion (as seen from the CDF). A subscript of V2 (e.g., v75,V 2 shown in green)
indicates that only v < 0 was considered; essentially the CDF is normalized to
zero at v = 0 for this case. Table 3.2 lists the entire set of quantities used.
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The median fit values obtained at the end of 250 realizations are used to estimate all

velocity measurements used in this paper. The 1σ standard deviation of each quantity is

calculated as σ ≈ MAD/0.675 where MAD = Median Absolute Deviation. Unlike the mean

and standard deviation which are easily affected by spurious outliers, the median value and

MAD offer better quantifiable values to describe the fits. The resulting best-fit profiles are

plotted in Figure 3.5 along with the data and observational uncertainties. Appendix 3.7 lists

the fit parameters obtained for each of the targets along with the derived uncertainties.

In all targets we find that the DG fits are able to capture the broad asymmetric wings

which are ubiquitously present in the absorption profiles. In addition, they also accommo-

date complex absorption profiles such as the Cosmic Eye which includes a strong redshifted

component. The performance of the SG fits on the other hand varies heavily depending on

the asymmetry of the profile. In some cases (e.g., CSWA103), they provide reasonably good

fits whereas in more asymmetric cases (e.g., CSWA128) there are large residuals, especially

at high velocities. Encouragingly, the residuals obtained for the DG fits are consistently

centered around 0 with the standard deviation being generally compatible with the signal-

to-noise of each spectrum, indicating a reasonable fit to the data.

3.5. Kinematic Features of the Gaseous ISM at Cosmic Noon

Having obtained a covering fraction profile including parametric fits for each galaxy, we

now explore kinematic properties of the sample. We measure various standard quantities to

facilitate comparison of these moderate resolution down-the-barrel results with other probes

(including quasars, low resolution galaxy spectra, and theoretical simulations). To best

compare with the literature we adopt two parallel lines of analysis: (a) considering the entire

covering fraction profile; and (b) considering only the absorption at v < 0 (i.e., blueshifted)

which we denote with a V 2 subscript. The latter is useful in comparison with theoretical

studies which consider only outflowing gas. However we note that the v < 0 absorption still

includes approximately half of the systemic component.
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For both analyses we measure the velocity corresponding to the percentiles 5%, 75%,

95%, 99%, and 50% of absorption (denoted as v05, v90, etc.), larger percentiles being more

blueshifted. Here v50 = vcent is the velocity centroid (v50 and vcent are interchangeable). We

also measure the velocity width ∆v90 = v05−v95, spanning the 5–95 percentile of absorption.

Table 3.2 lists all quantities used in our analysis, and we illustrate some of these for an

example velocity profile in Figure 3.6. All quantities are calculated for both the SG and DG

fits, with results given in the appendix. These quantities have been found useful to describe

the kinematics in observational and simulation studies in the literature, and we adopt the

same conventions for ease of comparison.

3.5.1. Bulk outflow motion of ISM gas. A visual inspection of the global covering frac-

tion profiles obtained in Section 3.4 and Figure 3.5 indicates that the bulk motion of the

gas in the ISM is outflowing, with blushifted velocity centroids (vcent < 0). Quantifying

the kinematic properties is an important step towards understanding the feedback processes

which drive these outflows and impact the host galaxy evolution. In this section we probe

the outflow velocity structure quantitatively in terms of vcent, v75, and v95.

The centroid vcent gives a measure of typical outflow velocities, which can readily be

compared with other samples. The median absorption centroid and its sample standard

deviation for the galaxies in the sample is −141 ± 111 km s−1 for the full profiles, and

−216 ± 61 km s−1 if we consider only the velocities v < 0. This latter number is a lower

limit to the purely outflowing gas component (as opposed to the total including systemic

interstellar absorption). Figure 3.7 illustrates the histogram obtained for both these metrics.

These values are similar to measurements from larger samples of z ≃ 2–3 galaxies at lower

spectral resolution (e.g., −168±16 km s−1 from Steidel et al. 2010 compared with our sample

median −141± 25 km s−1). The covering fraction at vcent,V 2 ranges from 18-95% for galaxies

in this sample with a median of 50%, suggesting a patchy covering fraction of the outflowing

gas with substantial variations within the sample.
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The v75 and v95 values probe the high-velocity blueshifted tail of outflowing gas. The

distributions of these values for the lensed sample are also shown in Figure 3.7 (lower panel).

Compared to the centroid velocity (vcent = v50), we find that the median v75 ≈ 2× vcent and

v95 ≳ 3 × vcent. Thus we see clear signatures of outflows at >3 times the centroid velocity,

with absolute v95 typically extending beyond 450 km s−1, although the covering fraction is

smaller at larger absolute velocity.

3.5.2. Quantifying the asymmetry in absorption. Another significant visual feature of

the covering fraction profiles is the asymmetry. The quantities |v50 − v05| and |v50 − v95|

trace the extent of the gas present redward and blueward of the bulk outflowing gas velocity.

The median |v50 − v05| and |v50 − v95| measured with the DG are 292 km s−1 (≈ 1.7× |v50|)

and 357 km s−1 (≈ 2.1 × |v50|) respectively, indicating a clear skewness on average with a

shallower slope for the blueshifted velocity range. In comparison, a SG fit gives 340 km s−1

(≈ 2×|v50|) for the same quantities, which are identical by symmetry of the single Gaussian.

Figure 3.8 plots a histogram of the skewness ratio defined as

(3.5) Skewness Ratio =
|v50 − v95|
|v50 − v05|

− 1

where a positive Skewness Ratio indicates that the blue wing is more extended than the red

wing.

16 out of the 20 galaxies in our sample have positive skewness (i.e. Skewness Ratio > 0).

Looking at the covering fraction profiles of galaxies which have Skewness ratio < 0 (e.g.,

J1458), one can clearly see that they have an inverted skewed profile wherein the redshifted

side has a shallower slope (e.g., Figure 3.8) which can give rise to a negative skewness (i.e.

|v50 − v95| < |v05 − v50|). The origin of this skewness in the profile is an interesting but

challenging question which we do not tackle in this paper, but in a simplistic sense, the

different skewness ratios could be interpreted as the response of the ISM gas to a galactic

wind captured either at different points in time or viewing angles. A key point is that such
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details about the kinematic structure are not captured by the SG fits (nor by low resolution

spectra). This illustrates the need for good spectral resolution to reveal the complex velocity

structure of outflowing gas.

3.5.3. Width of absorption using ∆v90. The ∆v90 diagnostic is commonly used in the

literature for quasar absorption systems, and is usually defined as the velocity range spanning

5% to 95% of the total column density. However there are some key differences between

quasar probes and our measurements. First, quasars probe the full line-of-sight through a

halo (distances −∞ to∞) whereas our“down-the-barrel”galaxy spectra sample only half the

halo (0 to ∞). Our spectra do not probe the redshifted outflowing gas on the far side of the

galaxy, causing ∆v90 to be smaller than for a background quasar at impact parameter b = 0.

Sec ond, quasars probe a narrow “pencil beam” area which is prone to stochastic sampling

of absorbing gas clouds (e.g., Marra et al., 2022), whereas our galaxy spectra encompass a

much larger cross-sectional area of several kpc2. Thus we may expect our galaxy spectra

to be more representative of the gas covering fraction. Third, the absorption profiles from

Section 3.4 are constructed from the strongest ISM lines, which are more sensitive to gas

covering fraction as opposed to column density. In summary, the ∆v90 values for our sample

represent approximately the velocity width of covering fraction profiles through half of the

host galaxy halos.

3.5.3.1. Kinematics at different optical depths(τ). To assess how well the absorption pro-

files from strong ISM lines trace the column density, we compare them with weaker ISM

absorption lines whose apparent optical depth is τ ∼ 0.1–1. The low ion velocity profiles

are typically constructed from the strongest ISM transitions, with τ ≳ 1 (see appendix).

We compare these with the Al II λ1670 and Fe II λ1608 lines which are often unsaturated

(τ ∼ 1), as well as the optically thin (τ ≪ 1) transition Si II λ1808. Median velocity profiles

for each of these lines are obtained by stacking the spectra from all objects in the sample
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with the relevant wavelength coverage. Figure 3.9 shows a plot of the median stacked profiles

for these different ISM absorption features as function of optical depth.

Visually inspecting the profiles reveals a remarkable similarity in the kinematics probed

by the different transitions, despite the varying optical depths. Assuming that the stack of

strong lines traces the covering fraction at τ ≫ 1 (Equation 3.2), the maximum absorption

depth suggests τ ≃ 1.5 for Al II λ1670, τ ≃ 0.6 for Fe II , and τ ≃ 0.1 for Si II λ1808

(supporting an optically thin interpretation). The Si II λ1808 profile exhibits blueshifted

absorption consistent with the stronger features, although at lower signal-to-noise ratio. We

perform a DG fit to the strongest ISM absorption line profiles and Si II λ1808 line to derive

the velocity centroid (vcent) and ∆v90 values, as described above. Figure 3.9 plots these

quantities (lower panels). We find the velocity centroid is ≈ −160 km s−1 for all transitions.

The ∆v90 for the stronger low-ion transitions is ∼ 630 km s−1, including for Fe II which has

apparent τ < 1, whereas for Si II λ1808 it is ∼ 400 ± 100 km s−1. Visually, this difference

in ∆v90 between the optically thin and thick lines likely arises from the higher outflow

velocity regions, which may be affected by lower τ in addition to reduced signal-to-noise.

Nonetheless the line widths are broadly similar across a range of optical depth, indicating

that we can use the ∆v90 measurements obtained from strong low ion transitions to compare

with measurements based on optical depth from quasar sightlines, with the caveat that values

based on optical depth may be lower by ∼ 250 km s−1.

3.5.3.2. Comparison to quasar sightlines. In this subsection, we compare the width of

absorption measured using ∆v90 and Equivalent Width (EW) as we step away from “down-

the-barrel” observations to pencil beam quasar sightlines probing larger impact parameters.

Figure 3.10 plots the ∆v90 measurements as a function of redshift (z). These values are

compared with various quasar surveys: XQ-100 (Berg et al., 2016), EUADP (Quiret et al.,

2016), and “Dusty DLAs” with 2175 Å dust attenuation bumps (Ma et al., 2017). The

galaxies from this work have ∆v90 values ranging between 440 and 920 km s−1 with a median
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Figure 3.7. Top: Histogram of the absorption velocity centroid vcent for the
sample measured by considering (i) the entire profile (solid), and (ii) only
v < 0 km s−1 (dashed). Bottom: Histogram of vcent, v75, and v95 values for all
targets in the sample. The mean and sample standard deviation of each quan-
tity are given above the plots. The aggregate sample shows typical centroids
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absorption extending to outflow velocities of 300–500 km s−1 or more.
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Figure 3.9. Top: Median stacked absorption profiles for lines with different
optical depths (τ) : Si II λ1808 (green), Fe II λ1608 (orange), and Al II λ1670
(red). A joint stack of the strongest low ion transitions (Si II, C II, Al II)
is shown in black. Bold lines are running medians of each profile whereas
the lighter shade is the full-resolution data. Si II λ1808 probes optically thin
gas (τ ≪ 1), while Fe II and Al II have apparent optical depths of order
unity (τ ∼ 1) and the strong transitions have τ ≳ 1. The green vertical
line is the median v75,V 2 = −327 km s−1 measured from this work shown as
a reference point. Notably the profiles of different τ all show similar mean
blueshifted velocities, indicating that velocity centroids are robust to the choice
of absorption lines. Bottom: v50 (centroid) and ∆v90 measurements for the
four profiles shown above, with τ increasing toward the right. We determine
v50 and ∆v90 from a DG fit to the absorption profiles. The main results
are unchanged if SG fits are used. vcent is approximately constant across the
range of optical depths, as can be seen visually in the top panel. In contrast,
∆v90 is smaller for the optically thin lines which trace the bulk of the total
column density, although the difference is comparable to the uncertainty. This
indicates that high-velocity absorption seen in the strongest transitions is likely
a small fraction of the total outflow mass.
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of 630 km s−1. These galaxy values are ∼ 6 times greater than those observed in the quasar

absorption samples, falling near and beyond the largest values seen toward quasars. However,

we caution that there are two main caveats in this comparison: (1) ∆v90 for the low ions is

likely overestimated by ∼ 250 km s−1 compared to the optically thin lines (Section 3.5.3.1),

and does not separate the systemic interstellar gas from outflowing and inflowing components.

(2) ∆v90 for the galaxies probes only one side of the galaxy (along our line-of-sight), such that

it is smaller than would be observed toward a background source which would capture the

highly redshifted outflowing gas on the far side of the galaxy. Despite these caveats, whose

effects are in opposite directions, it is clear that the galaxy absorption profiles span velocity

ranges comparable to the largest seen in quasar absorber systems at similar redshifts.

The large ∆v90 values in our sample are likely driven by gas at smaller impact parameters

than probed towards quasars. For most quasar absorbers, the host galaxy position and hence

impact parameter is unfortunately unknown. This is particularly true for galaxies at higher

redshifts since they are fainter and harder to identify from available imaging. Figure 3.11 (top

panel) plots the ∆v90 measurements from this work alongside those obtained from quasar

sightlines of a DLA sample with known host location (Fynbo et al., 2013) as a function of

impact parameter (b). As shown in the figure, these DLAs have lower ∆v90 measurements

even at modest impact parameters b ∼ 10 kpc.

Dedicated surveys such as MAGIICAT (Nielsen et al., 2013a) and MEGAFLOW (Schroet-

ter et al., 2016) have studied quasar absorption associated with known host galaxies. This

provides information on trends with impact parameter, although the hosts are at lower red-

shifts than our sample. MAGIICAT galaxies have measurements of equivalent width (EW)

of Mg II, a low-ion species with which we can directly compare. For a subset of our sam-

ple which has spectral coverage and good SNR for both Mg II and shorter-wavelength low

ionization lines, we find that the Mg II profile closely traces the ISM absorption line profiles
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Figure 3.10. Comparison of ∆v90 measured in this work with those obtained
from surveys of background quasar sightlines: XQ-100 (Berg et al., 2016),
EUADP (Quiret et al., 2016) and Dusty-DLAs (Ma et al., 2017). Compared to
quasar absorber samples, this work probes gas at very low impact parameters
(b = 0) and larger cross-sectional area, while sampling only the foreground
region (R = 0 → ∞ c.f. background quasars which probe R = −∞ → ∞).
Despite probing only half of the halo, the typical ∆v90 ≃ 600 km s−1 for this
work is considerably larger than for quasar absorber systems. Only the most
extreme quasar systems have comparable ∆v90 values. This suggests that the
high-velocity gas which is ubiquitous in our down-the-barrel galaxy sightlines is
located at small impact parameters which are extremely rare in quasar samples.
DLAs at similar redshifts with known hosts have been found to probe impact
parameters b ≲ 25 kpc and ∆v90 ≲ 350 km s−1 (Figure 3.11; Fynbo et al.,
2013).
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Figure 3.11. Top: Comparison of ∆v90 as a function of impact parameter
b for our sample (at b = 0 but plotted here at b = 1 kpc for clarity), and
for DLAs at z ∼ 2 probed by quasar sightlines (Fynbo et al., 2013). Even at
impact parameters ≲ 25 kpc, these DLAs have smaller ∆v90 values than those
obtained from “down-the-barrel” galaxy observations. Bottom: Comparison
of absorption equivalent width (EW, in Å) as a function of impact parameter
(b) for our sample and the MAGIICAT survey (Nielsen et al., 2013b) of Mg II

absorbers in background quasar sightlines. The average EW clearly drops off
by orders of magnitude as we move to higher impact parameters. The dashed
line denotes the best fit to the MAGIICAT sample extrapolated to lower impact
parameters, and it appears to be consistent with the EWs obtained from this
work. We note that the large EW for our sample at small impact parameters is
primarily due to the large velocity widths from outflows, whereas large EW for
MAGIICAT galaxies might also arise from narrower absorption (smaller ∆v90)
with higher covering fractions. EW values obtained from quasar sightlines at
low impact parameters (b ≲ 5kpc; Kacprzak et al., 2013) and from galaxy-
galaxy pairs at z ∼ 2 from Steidel et al. (2010) are shown in green points and
dotted lines respectively, also showing a similar trend.
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used in this work, including in the high-velocity wings. Therefore, we convert the low ion

covering fraction to an expected EW of Mg II λ2796 as follows:

(3.6) EW (in Å) =
Wvel

c
λ2796

where

(3.7) Wvel =
∑

Cf (v)∆v

and λ2796 corresponds to the rest frame wavelength of Mg II. This EW estimate assumes

τ ≳ 1 for Mg II λ2796 absorption in our sample, which we expect based on the observed low

ions. Here Wvel is effectively an equivalent width in units of velocity, calculated by summing

the covering fraction profiles.

Figure 3.11 (bottom panel) compares the EW obtained for our sample, MAGIICAT (with

typical z ∼ 0.4), and stacks of z ∼ 2 galaxy-galaxy pairs from Steidel et al. (2010). The

galaxy-galaxy pairs are a useful comparison since they probe the cross-sectional area of a

background galaxy, similar to down-the-barrel spectra. The galaxies from Steidel et al.

(2010) have similar stellar mass and SFR as our sample, and those from MAGIICAT have

similar stellar mass (Churchill et al., 2013). Our z ∼ 2 sample at b ≃ 0 kpc spans EW = 1–

5 Å, whereas MAGIICAT probes larger impact parameters and has a median EW of 0.43 Å.

The width of absorption drops by orders of magnitude as b increases away from the galaxy.

Extrapolating the trend line obtained from Nielsen et al. (2013b) for MAGIICAT (EW ∝

10−0.015b) to lower impact parameters provides a good match to our sample average. This

result is complimented by the galaxy-galaxy pairs which also show low ion EW decreasing

similarly at higher impact parameters. We can see that the galaxy-pair trend line obtained

for C II 1334 is a better match to the MAGIICAT sample, whereas Si II 1526 falls below

90



this trend line. This may be due to lower optical depth of Si II 1526 compared to both C II

1334 and Mg II 2796.

Looking at the maximum EW obtained in the quasars, one can find some values which

seem to have comparable EW to the high-z sample. These may be associated with orientation

effects where the quasar sightline probes near the minor axis where we would expect outflows,

or if the sightline incidentally passes through a fast moving cloud of gas. The background

galaxy samples are likely to show smaller scatter because of the greater cross-sectional area

probed. For our sample, the effective area varies for each source and is typically of order

half the total cross-section of the galaxy (based on spectroscopic slit placement), or several

square kpc (and ≳ 1 kpc2 in all cases). Arc tomography studies probing ∼kpc2 regions

have indeed found smaller scatter than observed toward quasar sightlines (Mortensen et al.,

2021a; Lopez et al., 2018a).

In summary, we find that the absorption width (EW and ∆v90) values obtained in this

work at b ≈ 0 are higher than those typically observed in quasar sightlines at larger impact

parameter. However, extrapolating the trend in quasar absorption (EW ∝ 10−0.015b) to

lower impact parameters offers reasonable agreement. We find similar agreement with mea-

surements from galaxy-galaxy pairs at z ∼ 2, suggesting a smooth decrease in absorption

equivalent width with impact parameter with little redshift dependence. This indicates that

the large EW and ∆v90 in our down-the-barrel spectra arises from gas at small distances

(≲ 10 kpc) from the host galaxy. Spatially resolved emission line studies mapping Fe II*

and Mg II in one of the lensed galaxies in this work (RCSGA0327-G; Shaban et al., 2022)

and other star-forming galaxies (e.g., Finley et al., 2017a; Burchett et al., 2021a) find simi-

lar spatial extent, further supporting a relatively small distance for the gas associated with

down-the-barrel absorption.

3.5.4. Kinematics at intermediate and high ionization states. The warm ISM and CGM

gas with T ∼ 104 K is multiphase, with contributions from H I, H II, and a range of metal
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Figure 3.12. Median absorption profiles of gaseous species with different
ionization potentials, compared to the stellar kinematics. We show stacks of
stellar photospheric lines in dark blue, Al III λλ1854,1862 in cyan, a stack of
strong low ions (Si II, C II and Al II) in black, and Si IV λλ1393,1402 in red.
The green line shows the median v75,V 2 = −327 km s−1 value measured from
this work, for reference. Stellar absorption kinematics show a median v = 0
as expected, while the ISM profiles are clearly blueshifted due to prominent
outflows (associated with the baryon cycle schematic illustrated in Figure 3.4).
The low ions, Al III and Si IV all show nearly identical kinematics suggesting
that these phases are co-spatial and powered by the same outflow mechanism.
We note that the Al III transitions appear to have moderate optical depth
τ ≲ 1, while other interstellar absorption profiles appear to be optically thick
and thus trace the gas covering fraction.
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Figure 3.13. Top panels : Example of an absorption profile used for the SG
fitting at different spectral resolution. The gray line denotes the profile in its
native resolution, whereas purple lines show the profile after smoothing and
rebinning. Lower panels : vcent, ∆v90, v05 and v95 values obtained from double
Gaussian (DG) fits compared with single Gaussian (SG) fits to the covering
fraction profiles, at (i) the native resolution (R ≳ 4000; Left), (ii) R ∼ 1700
(Middle) and (iii) R ∼ 600 (Right). We describe the method used to trans-
form our observed data to lower spectral resolution in Section 3.5.5.2. The SG
fits are representative of the information content for lower spectral resolution
data, whereas DG fits accurately capture the full velocity structure resolved
in our sample. The black dashed line in each panel represents one-to-one cor-
respondence between the two fits. The centroid velocity measurements of the
SG fits agree well with those obtained from the DG, whereas the ∆v90, v05 and
v95 measurements show larger scatter around the average linear trend. Some
metrics are clearly biased in the SG fits, most clearly seen for v05 where the SG
value is systematically larger. This scatter and bias is explained by asymmetry
in the observed profiles, with most galaxies having a skewness ratio > 0 (see
Section 3.5.2 for discussion), which the SG is unable to capture. Specifically,
galaxies with higher skewness ratios are systematically more biased (see Fig-
ure 3.14). 93



0 200 400
v05-DG

0

200

400

v 0
5-S

G

v05-DG vs SG

0.0

0.2

0.4

0.6

Skewness
Ratio

800 600 400 200
v95-DG

800

600

400

200

v 9
5-S

G

v95-DG vs SG

0.0

0.2

0.4

0.6

Skewness
Ratio

500 1000 1500 2000 2500 3000 3500 4000
Resolution (R)

0.2

0.0

0.2

0.4

0.6

Sk
ew

ne
ss

 R
at

io

Unresolved Resolved

Figure 3.14. Top: v05 and v95 values obtained from double Gaussian (DG)
fits compared with single Gaussian (SG) fits to the covering fraction profiles
at R ≳ 4000, color coded by Skewness Ratio of the absorption profile (Sec-
tion 3.5.2). v05 measurements tracing the redshifted velocities show a clear
bias, whereas v95 which probes the high velocity outflowing gas has a lower
bias but a larger scatter of 85 km s−1 (see Table 3.3). Absorption profiles which
have higher Skewness Ratio values (e.g., J0004, RCSGA0327-G, CSWA128)
show a clear bias in both v05 and v95 measurements. This suggests that veloc-
ity metrics other than the centroid (v50) are not captured by symmetric fitting
profiles, and thus are largely unreliable at low spectral resolution. Bottom:
Average Skewness Ratio of absorption profiles in the sample, fit with a Double
Gaussian (DG) after smoothing to different spectral resolution (R). The sam-
ple standard deviation and uncertainty in the mean are denoted in black and
orange error bars respectively. At R < 600, the profiles uniformly appear sym-
metric (Skewness Ratio = 0) even when fit with a DG. We find that R ≳ 1700
is essential to recover the shape of the velocity profiles (e.g., skewness) and
reduce biases that might be introduced due to lower resolution. This region
is labeled as ’Resolved’ indicating where the intrinsic profile skewness in our
sample is recovered with a DG fit. This threshold corresponds to a FWHM
spectral resolution of 4× smaller than the ∆v90 line width, to adequately re-
solve the asymmetry.
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thought to predominantly trace H I. Here we briefly examine species of different ionization

potential in order to assess whether the low-ion results are applicable to other phases.

We construct median stacks of Al III λλ1854, 1862, and Si IV λλ1393, 1402 absorption

lines with the same methodology as in Section 3.5.3.1. These span ionization potentials from

1–3.3 Rydberg. Figure 3.12 compares the stacked velocity profiles of these species along with

the stacked low ions used in previous sections. An equivalent stack of stellar photospheric

lines (Si III λ1294, Si III λ1417, S V λ1501, and N IV λ1718) is also plotted to show the

stellar velocity range, which likely reflects that of the systemic (as opposed to outflowing)

gas. We confirm that the stellar absorption is symmetric about v = 0 as expected. The

kinematic structure of Si IV and Al III is similar to the low ion stack, suggesting that these

species exist co-spatially. We note that Al III is unsaturated with τ ≲ 1, as the λ1854 line is

clearly stronger than λ1862, whereas the low ions appear optically thick.

In summary, all of these ions – which are typically associated with ∼104 K gas – exhibit

similar kinematics. Chisholm et al. (2018) have also analyzed O VI for one of the lensed

galaxies in this sample (CSWA38), and find that this hotter O VI phase is likely also co-

spatial with the low ions, although with a different column density profile. We conclude from

the similar absorption profiles that the various ions associated with ∼104 K gas are likely

co-spatial, tracing the same outflows.

3.5.5. Implications for low spectral resolution surveys. In this section we assess the

extent to which lower-resolution spectra can accurately capture the kinematics of outflowing

gas. There have been several large surveys of galaxies at z ≳ 2 which have characterized

ISM absorption at lower spectral resolution R ≲ 1000 (e.g., Shapley et al., 2003; Vanzella

et al., 2009; Steidel et al., 2010; Weldon et al., 2022). In order to examine which kinematic

properties can be reliably obtained with such data, we consider two scenarios below. First, we

examine single Gaussian fits to the absorption profiles, which represents an idealized case. We

then perform an equivalent analysis after smoothing and rebinning the data to mimic lower
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resolution surveys, with potentially detrimental effects from blending of adjacent spectral

features. In practice, such blending may also affect the continuum normalization which

would result in larger biases (i.e., worse performance) than the idealized case we consider

herein

We note that the data used as the basis of comparison in this section has finite resolution

R ∼ 4000. Given the line widths, correcting for the instrument line spread function (LSF)

has a small effect: ∆v90 decreases by 8 km s−1 on average and v50 remains unchanged. As

this is a small difference relative to the uncertainties, we report measurements directly from

the R ∼ 4000 spectra without correcting for the LSF. The true intrinsic line widths are thus

∼1% smaller than these reported values.

3.5.5.1. Single Gaussian fit to R ∼ 4000 data. Single Gaussian (SG) fits to the ISM

absorption profiles are described in Section 3.4.2 along with the resulting velocity metrics.

Figure 3.13 (left panel) compares the quantities ∆v90, vcent, v05, and v95 obtained from the

SG and Double Gaussian (DG) fits, both at the native R ∼ 4000 spectral resolution. The

mean offset and scatter between SG and DG fits for each metric are listed in Table 3.3.

Velocity centroids show excellent agreement, with a mean offset ⟨vcent,DG − vcent,SG⟩ of only

−4± 1 km s−1 and sample standard deviation of 10 km s−1.

The limitations of SG fits (and of low resolution spectra) are nonetheless apparent in

higher-order velocity measurements. The v05 velocity in Figure 3.13 shows a clear bias

(mean offset of −52 ± 4 km s−1) and substantial scatter (indicating error for individual

objects) with SG fits. This bias is also evident in v95 and ∆v90 which have a smaller mean

offset but larger scatter. The bias is a consequence of the intrinsic asymmetry in observed

line profiles which is not captured by a SG fit; a single Gaussian profile cannot recover the

skewness (Section 3.5.2). Consequently we also find that absorption profiles with higher

Skewness Ratios have larger biases in SG fits (Figure 3.14, Top).
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These results demonstrate that asymmetric fitting profiles are essential to recover the

covering fraction, skewness, and higher-order velocity measurements of absorption profiles.

While a symmetric SG profile is able to recover accurate velocity centroids, the quantities

describing both the blue- and red-shifted velocity extremes (such as v95 and v05) are subject to

large scatter and systematic biases. Consequently the spectral resolution must be sufficiently

high to distinguish the asymmetric profile shapes.

3.5.5.2. Profile fits at lower spectral resolution. We now consider the quantitative effects

of fitting to data of lower spectral resolution, where the intrinsic asymmetry of absorption

profiles is less apparent. We smooth the absorption profiles to a spectral resolution of R ≃

1700, 1000, and 600 via convolution with a Gaussian kernel (of σsmooth = 75, 125, and

200 km s−1 respectively). The smoothed spectra are also rebinned to σsmooth per spectral

pixel. The set of R is chosen to span an illustrative range, with the lowest resolution being

comparable to large z ≳ 2 galaxy samples observed with Keck/LRIS and VLT/FORS2.

Figure 3.13 (top row) shows the rebinned and smoothed absorption profile of an example

target spanning the range of resolutions considered here. We fit the smoothed and rebinned

data with a SG and DG profile following the same methods as for R ∼ 4000 (Section 3.4.2).

Parameters from the SG and DG fits are then corrected for the effect of smoothing (i.e.,

deconvolved from the smoothing kernel). Mathematically this can be expressed as:

(3.8) vdeconv = vfit

(3.9) σdeconv = s× σfit

97



Table 3.3. Performance of a single Gaussian (SG) fit to absorption profiles at different spectral resolu-
tions compared to a double Gaussian (DG) fit at higher R ∼ 4000. The mean offset (e.g., measured as
⟨vcent,DG − vcent,SG⟩ for vcent) and the sample standard deviation (σ; e.g., of vcent,DG−vcent,SG) are given for
the velocity metrics ∆v90, vcent, v05, and v95. This sample σ represents the typical error introduced by not
resolving deviations from a symmetric Gaussian profile, which varies for individual objects depending on
their actual profile shape, such as skewness (Figure 3.14). The skewness ratio (discussed in Section 3.5.2)
as measured by a single Gaussian fit is 0 by symmetry, whereas it varies between -0.2 to 1.0 for the double
Gaussian.

Quantity R ∼ 4000 R ∼ 1700 R ∼ 1000 R ∼ 600
measured Mean offset Sample σ Mean offset Sample σ Mean offset Sample σ Mean offset Sample σ

km s−1 km s−1 km s−1 km s−1 km s−1 km s−1 km s−1 km s−1

vcent -4±1 10 0±2 11 5±2 13 8±4 21
∆v90 -20±6 97 -21±8 88 -16±10 84 -14±17 104
v05 -52±4 40 -48±5 39 -40±6 41 -34±10 55
v95 -28±5 85 -22±6 77 -20±6 69 -15±10 70
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(3.10) Adeconv =
Afit

s

(3.11) where s =

√
1−

(
σsmooth

σfit

)2

,

with σfit being the best-fit Gaussian velocity dispersion to the smoothed profile. The value of

σdeconv can then be compared directly to the velocity dispersion obtained at higher resolution.

The median scaling factor to correct for instrument resolution is s = 0.92 at R ∼ 1700 and

s = 0.64 at R ∼ 600. In other words, the intrinsic line profiles are broadened by a factor

1
s
≃ 1.6 at R ∼ 600, which can be reasonably corrected in most cases. Velocity metrics

are measured from this scaled velocity profile using the same methods described earlier

(Figure 3.6). We note that at R ∼ 600, the intrinsic ∆v90 absorption profile widths of our

targets are sampled with only ≲1.5 independent FWHM spectral elements, while objects in

our sample with the smallest widths (e.g., J1527) are effectively unresolved. The middle and

right columns in Figure 3.13 compare the vcent, ∆v90, v05, and v95 values obtained from the

SG fits at different spectral resolution to the DG fits (at R ∼ 4000). Table 3.3 summarizes

the mean offset and sample standard deviation for each quantity at different R.

We find that the results of SG fits are generally unaffected by degraded spectral resolution,

agreeing within 1σ of the SG fits to R ∼ 4000 data (Section 3.5.5.1). This is expected since

the spectral resolution has been corrected using precise knowledge of the smoothing kernel.

We thus obtain approximately the same systematic bias and scatter in SG fits to lower-R

data as for the case of R ∼ 4000.

The performance of SG fits discussed here should be taken as an optimal scenario given

the good signal-to-noise ratio (SNR) of the lensed galaxy sample. Typical survey data will

have larger statistical uncertainty. SNR is not necessarily a limiting factor however, as
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line width metrics are limited by the intrinsic scatter found between DG and SG fits (e.g.,

∼100 km s−1 scatter for ∆v90 seen in Figure 3.13 and Table 3.3).

Our analysis has demonstrated that quantifying the asymmetric structure of absorption

profiles is necessary for accurately measuring quantities such as the maximum outflow ve-

locity (e.g., v95). This in turn is crucial for establishing galaxy scaling relations with outflow

velocity, and comparing to feedback models (as we discuss in Section 3.6). We now quantify

the resolution needed to recover the full asymmetric covering fraction profile structure of our

sample. We make use of the skewness ratio defined in Section 3.5.2 as a reliable measure of

this asymmetry. A skewness ratio of 0 indicates a symmetric profile, whereas most of the

galaxies in our sample (80%) have skewness ratios > 0. Figure 3.14 (bottom) plots the skew-

ness ratio obtained by a DG fit to the rebinned and smoothed absorption profile at different

resolution (R). We find that at R ∼ 1700, the shape of the profile is largely recovered: the

mean and sample standard deviation in skewness ratio is 0.22±0.32 compared to 0.23±0.30

for the R ∼ 4000 data. We also find that at R ∼ 1700, other velocity metrics (∆v90, v95, v05)

have a mean offset of ∼ 0 km s−1 and a modest sample scatter of ∼ 50 km s−1 cf. R ∼ 4000

measurements.

However, at R ∼ 600, the skewness ratios are uniformly near zero indicating that the

diversity and asymmetry of absorption profile shapes is not recovered for any of our targets

at such low resolution. At the intermediate R ∼ 1000, the average recovered skewness ratio

is approximately half that of the high-resolution data. Individual galaxies with narrower

profiles will have worse results at degraded resolution. In other words, the R required to

distinguish asymmetric structure depends on the profile width. In this case the threshold

R ≳ 1700 corresponds to sampling the average ∆v90 with ≃4 independent FWHM resolution

elements. For samples with different gas kinematics, the required resolution should scale as

the inverse of the profile width (e.g., R ∝ 1/∆v90).
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To summarize, lower resolution data are sufficient to recover vcent, while higher resolution

R ≳ 1700 is required to recover the full asymmetric covering fraction profile structure and

outflow velocity metrics for our sample (e.g., v95,∆v90). The threshold R required for reliable

results will vary with the intrinsic profile width, which effectively corresponds to the gas

outflow velocity. This analysis also demonstrates that the well-resolved profile shapes of our

sample (Figure 3.5) can provide guidance for trade studies of spectral resolution and SNR

for future surveys, which may be optimized for different scientific goals.

3.6. Trends with Galaxy properties

In order to understand the feedback effects of galactic outflows, we seek to compare out-

flow properties with galaxy demographics such as stellar mass and star formation rate (SFR).

We necessarily restrict this analysis to the subset of the lensed sample with suitable ancil-

lary data. In particular, for accurate stellar population properties, we require photometry

at infrared observed wavelengths, as well as a lens model to correct for magnification by the

foreground deflector galaxy.

Out of the 20 targets in our sample, 12 have reliable stellar mass and SFR measurements

(and one more has SFR only). Masses and SFRs for six CASSOWARY targets are reported by

Mainali et al. (2023a), while measurements for other sources are compiled from the literature.

Table 3.4 lists the adopted stellar mass, SFR, and lensing magnification (µ) values along with

the original references. All stellar population parameters are scaled to the Chabrier (2003)

IMF where necessary. The stellar masses span logM∗/M⊙ = 9.1− 10.8 and the SFRs range

from 10–210 M⊙ yr−1, which are typical of moderately massive star forming main-sequence

galaxies at these redshifts (e.g., Speagle et al., 2014).

One caveat in comparing the galaxy properties to the outflow properties is that the

inferred SFR and stellar mass are global galaxy properties, whereas outflows may vary across

different star-forming clumps (e.g., Bordoloi et al., 2014). In the following section, we assume
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Objid log
(

M∗
M⊙

)
SFR µ Ref

CSWA2 9.1+0.3
−0.3 32+23

−13 8.4 A0

RCSGA0327-G 9.80+0.05
−0.05 40+10

−10 17.2± 1.4 A5,A6

CSWA38 9.8+0.2
−0.2 10+0.2

−0.2 7.5± 1.5 A7

8oclock 9.90+0.12
−0.13 162+124

−95 5± 1 A4

Horseshoe 9.9+0.2
−0.3 210167−167 10.3± 5.0 A1

J1527 9.9+0.3
−0.4 116+86

−60 15 A0

CSWA128 9.9+0.1
−0.1 11.69+2

−1 10 A0

Clone 10.1+0.2
−0.2 68+24

−44 13.1± 0.7 A1

CSWA103 10.4+0.1
−0.2 23+18

−7 4.7 A0

CSWA19 10.5+0.1
−0.1 27+10

−5 6.5 A0

CosmicEye 10.76+0.07
−0.08 37.6+4.3

−4.3 3.69± 0.12 A2

CSWA40 10.8+0.2
−0.2 169+146

−66 3.2 A0

J1429 - 90 8.8 A3

Table 3.4. Stellar mass, SFR (in units of M⊙ yr−1), and magnification val-
ues for the targets presented in this paper. All values have been scaled to a
Chabrier (2003) IMF. References are as follows. A0: Mainali et al. (2023a)
A1: Jones et al. (2013a) A2: Richard et al. (2011) A3: Marques-Chaves et al.
(2017) A4: Dessauges-Zavadsky et al. (2011) A5: Wuyts et al. (2014c) A6:
Wuyts et al. (2010) A7: Solimano et al. (2022)
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Figure 3.15. Plot of |v75,V 2|, |v99| and ∆v90 versus SFR for the galaxies in
our sample which have reliable SFR measurements in the literature. There
is a clear correlation in that galaxies which have high SFR values also tend
to have higher outflow velocities. Trend lines of the form v ∝ (SFR)0.25

corresponding to a momentum-driven wind scenario are shown in the figure for
reference. We can see that v ≈ 225(SFR)0.25 km s−1 is able to capture the |v99|
and ∆v90 velocity measurements from this work, while 125(SFR)0.25 km s−1

better describes |v75,V 2|. This supports a positive correlation of outflow velocity
and SFR which is close to the expected scaling relation for momentum-driven
outflows. We note that this result holds for various ways of defining the outflow
velocity as shown in each panel. Mass weighted radial velocity values measured
in the ISM of FIRE-2 simulated galaxies at similar redshifts are denoted in
purple, and are scaled by a constant factor to match the approximate average
trend of the lensed galaxies.
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that the global galaxy averaged outflow properties are sufficiently captured by our slit spectra,

which probe several square kpc in the source plane.

3.6.1. Galaxies with high SFR also have high outflow velocities and absorption widths.

One of the key trends we want to explore is whether higher outflow velocities – traced by

v75,V 2 and ∆v90 values for example – correlate with higher SFR in the host galaxies. Such a

correlation may be naturally expected since the outflows are driven by energy and momentum

released by star formation. We consider a simple power law response of the following form:

v = v0SFRα and ∆v = ∆v0SFRα. Physically, the value for α is determined by the mode

of feedback. For example, Murray et al. (2005) find that in galactic winds primarily driven

through momentum injection from supernovae, the luminosity (L) scales with the galaxy

velocity dispersion (σ) as L ∝ σ4 whereas an energy-driven wind would follow L ∝ σ5. They

also find that for starburst galaxies at high-z, momentum driven winds are more favorable,

as have other studies (e.g., Davé et al., 2011). Therefore, taking the SFR to be a tracer of

luminosity and the outflow velocity to roughly scale linearly with the galaxy dispersion (e.g.,

Cicone et al., 2016), we might expect the kinematics of the outflowing gas also to scale as

SFR0.25 (i.e. v ∝ SFR0.25 and ∆v ∝ SFR0.25).

Figure 3.15 plots the SFR versus the outflow velocity (v99, v75,V 2, and ∆v90 metrics) along

with a power law scaling relation motivated by the momentum-driven wind scenario. As we

can see from the figure, a power law fit is a reasonably good description of our measurements.

Notably, we find a similar power law correlation for all three outflow velocity metrics, which

primarily differ in normalization as expected. We overlay scaled mass-weighted radial outflow

velocities (e.g., v = 1.4 ⟨vrad,ISM⟩) obtained in FIRE-2 simulated galaxies at z = 2 − 4

(discussed further in Section 3.6.2), which also show reasonable agreement with this power

law correlation. We find that among the different metrics tested, ∆v90 correlates well with

SFR, having a Spearman correlation coefficient of 0.7 and p-value = 0.007. The best fit

power law between ∆v90 and SFR for our sample is given by (389 ± 77)SFR0.13±0.05. The
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slope of the best-fit relation is somewhat shallower than expected for momentum-driven winds

at ∼ 2σ significance, although this power-law slope is consistent with the relation between

SFR and velocity FWHM (with α = 0.19) found at low redshift by Xu et al. (2022a) for

their sample which probes a larger dynamic range in SFR. We note that Xu et al. (2022a)

also find a marginally steeper slope (α = 0.22) in SFR versus outflow velocity, and find good

overall agreement with a momentum driven wind scenario.

Various studies of galaxy outflow velocities and their scaling relations, spanning a wide

range of redshift and galaxy properties, have found that the power law coefficient α (where

v ∝ SFRα) ranges from α ∈ (0.03−0.35) (e.g., Martin, 2005; Rupke et al., 2005; Weiner et al.,

2009; Steidel et al., 2010; Martin et al., 2012; Erb et al., 2012; Bordoloi et al., 2014; Chisholm

et al., 2015, 2016; Heckman & Borthakur, 2016; Sugahara et al., 2017). A key challenge is

that different studies employ inhomogeneous data and analysis techniques, including the

definition of outflow velocity (such as the maximum outflow velocity vmax, ISM velocity

centroid vIS, and others). Our analysis suggests that ∆v90 is potentially of broad use for

comparison, as it is more readily measured than quantities such as v99, while it correlates

well with other metrics and is reasonably robust to spectral resolution effects (Section 3.5.5).

3.6.2. Comparison to cosmological simulations. In this section, we focus on comparing

our observational results with predictions for outflow properties obtained from recent cosmo-

logical simulations which incorporate stellar feedback. Such comparisons are a valuable test

of feedback models used in these simulations, and we also highlight pathways which would

be beneficial for future investigation. In particular, we compare observations with results

from two sets of simulations: TNG50 (Nelson et al., 2019) and FIRE-2 (Pandya et al., 2021).

These were chosen due to the availability of suitable outflow velocity metrics.

One challenge in comparing with simulations is that the radial distribution of gas respon-

sible for the absorption in our sample is unknown. The observational data probe the total

projected velocity of gas along the line-of-sight only on the near-side of a target galaxy. This
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Figure 3.16. Top left: Comparison of measured outflow velocities for the
lensed galaxies (v75,V 2: black points with error bars) with 75th percentile out-
flow velocities in the TNG50 simulation and mass-weighted radial velocity from
FIRE-2. The solid and dotted black trend lines from TNG50 are the median
values at r = 10 and 30 kpc, while shaded regions show the scatter (16–84
percentile range). The observations and TNG50 simulations appear generally
comparable in terms of the overall trends and scatter (see Section 3.6.1). Sur-
rounding panels: Velocity profiles for several of the lensed galaxies are shown
to illustrate the velocity structure across the range of properties spanned by
the sample (see Figure 3.5 for the full sample), with v75,V 2 values denoted by
vertical green dashed lines. A key issue for comparison is that the observa-
tions include absorption from interstellar (systemic) and recycling gas, whereas
TNG50 and other simulations can isolate purely outflowing material. We also
note that the TNG50 results include highly ionized gas, although our analysis
shows no significant difference in the velocity structure of low and intermedi-
ate ion species (see Section 3.5.4). The FIRE-2 radial outflow velocities are
comparable to those obtained from the 75th percentile outflow velocities from
TNG50 at 10kpc. 106



does not necessarily correspond with the metrics used in theoretical analysis or reported

by simulations, where full 3-D spatial and velocity information is available. For example,

TNG50 and FIRE-2 are able to examine gas outflow velocities as a function of radius from

the host galaxy. To provide better context for comparison, we thus first consider the likely

radial distribution and dynamical timescale of absorbing gas in the observed galaxy sample.

Following Jones et al. (2018), we expect that the majority of absorption occurs within at

most a few tens of kpc from the host galaxy. If we assume that outflowing gas starts at

radius r = 0 and is driven at constant velocity, then its radial distance after a time t is

(3.12) r =
v

−150 km s−1

t

100 Myr
× 15 kpc.

Given typical velocities ∼150 km s−1 and r ≲ 50 kpc (and quite possibly much smaller r)

deduced from comparison to quasar sightlines, this implies the gas seen in absorption was

launched ≲ 300 Myr ago.

In Figure 3.16 we compare our measured outflow velocities with TNG50 simulated galax-

ies at z = 2 and FIRE-2 galaxies in the z = 2−4 bin, as a function of stellar mass. Specifically,

we compare v75,V 2 values from this work with the 75 percentile mass-weighted velocities at

different radii in TNG50 simulations. We expect these to be comparable, although they are

not strictly identical measures. The observations are well bounded by TNG50 values for

r ≲ 30 kpc as shown in Figure 3.16, indicating reasonable agreement between the data and

simulations. FIRE-2 galaxies, on the other hand, have measurements of mass-weighted radial

velocity (⟨vradial,ISM⟩) for gas in the radius range r = 0.1 − 0.2rvir with typical rvir ≳ 150

kpc. Encouragingly, these values are also comparable to those seen in observations and those

from TNG50 at r = 10 kpc. Therefore, the feedback prescriptions used in the TNG50 and

FIRE-2 simulations yield outflow velocities comparable to those seen in observations. We

discuss prospects for future work in this direction in Section 3.6.2.2

3.6.2.1. Enrichment of the CGM/IGM via outflows. A key question for galaxy formation

is the amount of outflowing material which is able to escape a galaxy’s gravitational potential,
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as opposed to remaining in the CGM and potentially recycling back into the galaxy, and how

this varies with galaxy mass. To address this, we compare our measured outflow velocity

profiles with estimated escape velocities of the sample.

The escape velocity vesc is related to the rotational velocity of a galaxy (vrot,max) and the

virial radius (rvir). In the case of an isolated galaxy with a truncated isothermal sphere mass

distribution, the relation is

(3.13) vesc(r) = vrot,max

√
1 + log

(rvir
r

)
for gas at radius r (Veilleux et al., 2005b). We estimate rotation velocities vrot,max ≃

150 − 200 km s−1 for the lensed sample based on the width of stellar photospheric fea-

tures (Figure 3.12; Section 3.5.4), which is also supported by rotation curves of galaxies with

similar redshift and stellar mass (e.g., Wisnioski et al., 2015; Förster Schreiber et al., 2018).

Assuming r ∼ 0.1 − 0.2 rvir, the escape velocity for these galaxies is 200-300 km s−1 from

Equation 3.13. The mean 75% outflow velocity seen in our lens sample is |v75| ∼ 300 km s−1

(Section 3.5.1), suggesting that ∼ 25% of the gas absorption profile has sufficient velocity to

escape into the IGM. However, this simple analysis does not account for the interaction of

outflows with the ambient CGM and the role of environment, such that the actual amount

of gas exceeding the escape velocity may be smaller.

Figure 3.17 shows the escape velocity of gas at 0.1rvir and at the halo radius (rvir)

obtained in the FIRE-2 simulations, compared to outflow velocities measured for the lensed

sample (specifically v99,V 2, v75,V 2, and v50,V 2 corresponding to the 99, 75, and 50 percentiles

of absorption blueward of systemic velocity). The v99,V 2 and v75,V 2 metrics trace the faster

moving outflowing gas seen in absorption, whereas v50,V 2 traces the bulk motion of gas

(Section 3.5.1). From the figure, it is clear that the v99,V 2 values are higher than those needed

to escape the gravitational potential of the simulated galaxies and their halos, whereas the

gas at v75,V 2 velocities would be able to escape only if the absorbing gas is located at large
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Figure 3.17. Comparison of the escape velocity vesc obtained in FIRE-2
simulations with outflow velocities measured from the lensed sample. The v99
metric corresponds approximately to the largest velocity at which outflowing
gas is detected in absorption. The simulations show a trend of vesc increas-
ing with mass, and decreasing with radius, as expected. The measured v99,V 2

values are comparable or larger than vesc even at small radii (∼ 0.1rvir), such
that the highest velocity gas is able to escape the galaxies’ gravitational po-
tential. However v50,V 2 is typically below the escape velocity even at the virial
radius, indicating that the majority of outflowing gas will remain gravitation-
ally bound.
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radii (> 0.1rvir). On the other hand, the mean outflow velocity centroid for the sample is

|vcent,V 2| = 188 km s−1 which is below the escape velocity even at rvir.

Based on this analysis, the majority of the T ∼ 104 K outflowing gas, although moving

at over a hundred km s−1, appears to be bound within the halo and/or ISM of the galaxy

(i.e. it is recycling gas; Figure 3.4). The fastest moving gas seen in absorption (v > v75,V 2)

is capable of escaping into the CGM/IGM, enriching it with heavy metals, but is subject

to deceleration from interactions with gas and dust along its path. This is consistent with

results from Rudie et al. (2019), who find that 70% of the galaxies with detected metal

absorption in the CGM also have unbounded metal-enriched gas capable of escaping the

halo.

3.6.2.2. Spatial distribution of the ISM gas. Finally, we return our attention to the spatial

distribution of the ISM gas around a galaxy. This is an essential quantity for determining

outflow rates, mass loading factors, and whether outflowing gas will become unbound and

escape into the IGM. However it is challenging to determine, as the observed absorption

profiles do not directly depend on galactocentric radius. As discussed in Section 3.5.3.2, we

can place constraints on the radius of outflowing gas seen in absorption based on comparison

with background sightline samples at different impact parameters. The large absorption

velocities and equivalent widths seen in our sample indicate the bulk of outflowing gas is at

relatively small radius (conservatively within a few tens of kpc). Here we briefly consider

prospects for future work.

Considering the encouraging comparison with simulations, a promising approach is to

compare measured outflow velocity profiles with “mock spectra” generated from simulations

where the spatial distribution of gas is known. This could be useful to assess the likely

radial distribution of gas seen in absorption, and as a further test of feedback prescriptions

used in simulations. Simulations can also be used to disentangle the outflowing, systemic,

and recycling gas components and assess their relative contributions to the total absorption
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profile. Tools such as TRIDENT (Hummels et al., 2017) and FOGGIE (Peeples et al., 2019)

are promising for such analyses. However, a challenge for such work is to self-consistently

model the incident spectra and ionization state of the gas; in this case the host galaxy stellar

emission may dominate over the extragalactic UV background. Finally, the technique of arc

tomography (in which lensed arcs are used to spatially map CGM gas of lower-z galaxies

in absorption) has recently proven to be highly effective (e.g., Lopez et al., 2018b, 2020;

Mortensen et al., 2021a). While current studies are limited to z < 1, expanding to higher

redshifts with multiple-arc systems is a promising future avenue. Strong lensing galaxy

clusters such as the Hubble Frontier Fields (e.g., Mahler et al., 2018) may prove valuable for

such analyses.

3.7. Summary and Conclusions

In this paper, we have used moderate resolution spectra (R ≳ 4000) to characterize the

ISM and outflowing gas in a sample of 20 strongly lensed galaxies at z = 1.5− 3.5 observed

“down-the-barrel.” We construct the covering fraction profile (Cf ) of absorbing gas, and

measure various metrics of the gas kinematics. In this work, we examine the outflow velocities

(parameterized by v50, v75, etc.), width of absorption (∆v90), skewness of absorption profiles,

and optical depth (τ) of absorbing gas. We also explore the relations between outflowing

gas kinematics and the host galaxy properties (e.g., M∗ and SFR), and compare them with

those obtained in cosmological simulations. We demonstrate the importance of having good

spectral resolution in studies of outflowing gas by considering which of our results can be

accurately recovered from lower resolution spectra (R ≲ 1000), and which results would be

biased. Below we summarize the main properties of the absorbing gas kinematics found from

this work:

(1) The low ionization gas is characterized by a diverse range of covering fraction pro-

files (Figure 3.5; Sections 3.3, 3.4). The profiles are asymmetric, typically with a

steep ingress at redshifted velocities and a shallow egress at blueshifted (outflowing)
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velocities. 80% of the sample exhibits this skewness toward blueshifted velocities

(Figure 3.8). A double Gaussian fit is sufficient to capture the structure of ISM

absorption kinematics as measured at R ≃ 4000 and SNR ≃ 10 for the full sample.

(2) We observe ubiquitous outflows with a typical median velocity of v50 ≃ −150 km s−1,

with the extent of detected absorption reaching 3× this median value in most cases

(∼ −500 km s−1; Section 3.5). The typical width of absorption profiles is ∆v90 ≃

600 km s−1, which is around 6 times larger than in typical DLA systems at similar

redshifts probed by quasar spectra. Given the large absorption widths, it is likely

that our down-the-barrel spectra are predominantly probing gas close to the center

of the host galaxies (within a few tens of kpc or ∼10% of the virial radius), whereas

quasar absorption systems typically sample larger impact parameters. We note that

our ∆v90 values are measured for strong transitions which probe the gas covering

fraction. Stacks of optically thin transitions suggest that the column density profile

width is likely smaller (∆v90 ∼ 400 km s−1; Figure 3.9), although still very large

compared to quasar DLA systems.

(3) The lensed sample spans more than an order of magnitude in stellar mass and SFR,

allowing us to examine scaling relations with outflow properties along the star form-

ing main sequence at these redshifts (Section 3.6). We observe a positive correlation

of outflow velocities and absorption widths (∆v90) with both SFR and stellar mass,

although the correlations are of modest significance within this sample. Among the

metrics tested, ∆v90 correlates well with SFR with a Spearman coefficient of 0.7 at

2.7σ significance (p-value = 0.007). We compare these measured trends in outflow

velocity with the TNG50 and FIRE-2 cosmological simulations, and find reasonable

agreement, which is encouraging for future work using simulations to help interpret

outflow properties. The observed scaling relations are consistent at the 2σ level with

expectations for momentum-driven outflows.
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(4) To assess which kinematic properties can be recovered from low-resolution spec-

tra, we compare results from the well-resolved velocity profiles with quantities de-

rived from a single Gaussian fit (Figure 3.13; Section 3.5.5), both at R ∼ 4000

and at degraded resolution (down to R ∼ 600). A single Gaussian is appro-

priate for the information content of marginally-resolved spectra, and applying

such fits at different R allow us to assess possible biases. We find that for sin-

gle Gaussian fits, velocity centroids are largely reliable, having a mean difference

⟨vcent,DG − vcent,SG⟩ = 8±4 km s−1 and a scatter of only±21 km s−1 (1σ) at R ∼ 600.

Centroid measurements are nonetheless more precise and have lower scatter with in-

creasing spectral resolution (Table 3.3). Velocity widths such as ∆v90 are affected

by large scatter with single Gaussian fits and require caution to avoid bias. Velocity

metrics which are sensitive to the asymmetry in the absorption profile, such as v95 or

other indicators of “maximum” outflow velocity, show a large scatter and clear bias

even at R ∼ 4000 when fit with a symmetric Gaussian profile, illustrating that such

metrics are only reliable when the resolution and measurement method is sufficient

to capture asymmetric structure. We find that R ≳ 1700 is needed to adequately

capture the shape (e.g., skewness) of the absorption profiles in our sample. This

corresponds to a FHWM resolution element ≲ ∆v90
4

. These results highlight the

important role that spectral resolution plays in inferring key outflow properties.

This work represents the largest sample to date of well-resolved velocity profiles of gas

outflows driven by star forming galaxies at cosmic noon (z ∼ 2–3). We have robustly

characterized the typical outflow kinematics and diversity among the galaxy population,

with ∼10 independent resolution elements across the velocity profiles. While such analysis is

currently practical only for galaxies which are highly magnified by gravitational lensing, this

sample provides context for interpreting outflow properties from far larger existing samples

of high-redshift galaxies with lower spectral resolution. For example, our findings that the
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v50 and ∆v90 metrics can be robustly recovered at low spectral resolution validate their use to

characterize outflow scaling relations across larger samples and broader dynamic range than

in this work. Moreover, these results can inform the optimal spectral resolution to be used

for z > 2 galaxy surveys with upcoming 30-meter class extremely large telescopes (ELTs).

A promising avenue for future work is to explore spatially resolved outflow structure,

along with the local conditions which launch strong galactic winds. As an immediate next

step, some targets from this work are being followed up using the Keck Cosmic Web Imager

to spatially map these ISM lines. Some will also be part of the galaxy evolution Key Sci-

ence Program with KAPA (Keck All-sky Precision Adaptive Optics; Wizinowich et al., 2020)

which will provide kinematic maps of the nebular emission at ∼100 parsec resolution, provid-

ing a detailed view of the star formation morphology and ionized gas kinematics. Combining

spatially resolved galaxy structure with spatially+spectrally resolved outflow properties will

provide greater insight into the physical process responsible for the feedback which regulates

galaxy formation.

Appendix: Absorption profiles and best-fit parameters for the lensed sample

The appendix material corresponding to this chapter can be accessed in the digital edition

of the respective journal publication.
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CHAPTER 4

Spatially Resolved Galactic Winds at Cosmic Noon: Outflow Kinematics

and Mass Loading in a Lensed Star-Forming Galaxy at z = 1.87

Submitted as Vasan G.C. et al. (2024) to The Astrophysical Journal (eprint available on

arXiv: 2402.00942).

4.1. Abstract

We study the spatially resolved outflow properties of CSWA13, an intermediate mass

(M∗ = 109 M⊙), gravitationally lensed star-forming galaxy at z = 1.87. We use Keck/KCWI

to map outflows in multiple rest-frame ultraviolet ISM absorption lines, along with fluorescent

Si II* emission, and nebular emission from C III] tracing the local systemic velocity. The

spatial structure of outflow velocity mirrors that of the nebular kinematics, which we interpret

to be a signature of a young galactic wind that is pressurizing the ISM of the galaxy but

is yet to burst out. From the radial extent of Si II* emission, we estimate that the outflow

is largely encapsulated within 3.5 kpc. We explore the geometry (e.g., patchiness) of the

outflow by measuring the covering fraction at different velocities, finding that the maximum

covering fraction is at velocities v ≃ −150 km s−1. Using the outflow velocity (vout), radius

(R), column density (N), and solid angle (Ω) based on the covering fraction, we measure the

mass loss rate log ṁout/(M⊙yr
−1) = 1.73± 0.23 and mass loading factor log η = 0.04± 0.34

for the low-ionization outflowing gas in this galaxy. These values are relatively large and the

bulk of the outflowing gas is moving with speeds less than the escape velocity of the galaxy

halo, suggesting that the majority of outflowing mass will remain in the circumgalactic

medium and/or recycle back into the galaxy. The results support a picture of high outflow
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rates transporting mass and metals into the inner circumgalactic medium, providing the gas

reservoir for future star formation.

4.2. Introduction

Galaxies self-regulate their growth across cosmic time through processes of gas outflows,

inflows, and recycling (e.g., Davé et al., 2011; Lilly et al., 2013). As stars form and evolve

in a galaxy, they inject energy and momentum into the surrounding gas through feedback

processes such as stellar winds and supernovae, which in turn redistribute and enrich the

interstellar and circumgalactic medium (ISM and CGM) with metals (e.g., Péroux & Howk,

2020). Surveys of high redshift z ≳ 2 star-forming galaxies (e.g., Shapley et al., 2003;

Steidel et al., 2010) have detected near-ubiquitous outflow signatures in absorption, and

the prevalence of a metal-enriched CGM has been established to z ∼ 6 and beyond using

background quasars (e.g., Becker et al., 2009). The primary mechanism attributed to the

outward transport of gas and metals is galactic-scale outflows, i.e., gas being expelled across

the entire galaxy.

Theoretical work has suggested that galactic outflows in intermediate mass galaxies at

z ∼ 2 have typical mass loading factors η ∼ 1–10 (where η = Ṁout

SFR
, Ṁout is the mass

outflow rate, and SFR is the star formation rate; e.g., Muratov et al., 2015, 2017; Nelson

et al., 2019; Pandya et al., 2021). Chemical evolution analysis supports similarly high mass

loading (e.g., Sanders et al., 2021). However, directly measuring the gas mass loss rates

(and mass loading factors) from galaxies has been challenging due to the need for spatial

information. Characterizing galaxies at high redshifts requires sophisticated instruments and

long integration times on 8–10m class telescopes. Even with such facilities, the ability to

conduct spatially resolved observations is limited to the brightest galaxies at high redshifts.

Gravitational lensing, whereby distant background galaxies are magnified by massive galaxies

along the line of sight (e.g., Schneider et al., 1992; Narayan & Bartelmann, 1996; Treu, 2010,

and references therein), offers a promising way to carry out resolved studies at high redshifts
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(e.g., Jones et al., 2013c; Bordoloi et al., 2014; Leethochawalit et al., 2016c; Spilker et al.,

2020; Shaban et al., 2022). Dedicated searches for strong lens systems have resulted in

substantial and growing samples (e.g., Stark et al., 2013; Tran et al., 2022b).

Tens of lens systems have now been followed up with deep slit spectroscopy to characterize

their outflow properties (e.g., outflow velocity), taking advantage of the lensing magnification

(Jones et al., 2018; Rigby et al., 2018; Vasan G. C. et al., 2023). Recently, integral field

spectroscopic (IFS) observations have shown great promise in spatially resolving the outflows

in high-redshift galaxies, including direct measurements of their spatial extent (Finley et al.,

2017b; Burchett et al., 2021b; Shaban et al., 2022, 2023). In the case study presented in this

paper, we seek to more robustly establish the mass loss rate (Ṁout) and mass loading factor

(η) of the low-ionization gas phase by combining IFS measurements of H I column density,

outflow velocity, radial extent and the spatial structure of outflowing gas.

Our target is CSWA13, a bright star-forming galaxy discovered as part of the Cambridge

And Sloan Survey Of Wide ARcs in the skY (CASSOWARY; Belokurov et al., 2009). The

lensing nature of this system was spectroscopically confirmed by Stark et al. (2013) with

redshifts of zd = 0.41 for the foreground deflector galaxy and zs = 1.87 for the background

bright arc. An analysis of the stellar populations and UV nebular emission of this target

is presented by Mainali et al. (2023b). Here, we use integral field spectroscopy from the

Keck Cosmic Web Imager (KCWI; Morrissey et al., 2018) at the W. M. Keck Observatory

to spatially map the outflowing gas from this galaxy.

This paper is organized as follows. Section 4.3 describes the KCWI observations and data

reduction. Section 4.4 describes the lens model used to obtain accurate intrinsic properties

of the source galaxy. The spectroscopic analysis methodology is described in Section 4.5.

We discuss the results in Section 4.6 with conclusions in Section 4.7. Throughout this work,

we assume a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and Ωm = 0.3.
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Figure 4.1. Left: HST near-infrared image of CSWA13 in the F140W filter, which probes rest-frame
optical wavelengths (B/g-band) at z ≃ 1.87. East is left and North is down. The multiple images of the
three bright distinct star-forming clumps of the galaxy are denoted as A, B and C. Identification of these
multiply imaged regions is also confirmed by the KCWI spectra, which show distinct velocity profiles for
each source-plane region (see Section 4.5.1). Right: KCWI color image centered on the main arc and
deflector. The color channels were constructed by summing three broad wavelength regions (B: 3530–

3930 Å, G: 4230–4630 Å, R: 4930–5330 Å) of the datacube. The lensed galaxy images form prominent
bright blue arcs.
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4.3. KCWI observations

We observed CSWA13 with KCWI on 06 April 2022 with the BL grating and Medium

slicer configuration. The total wavelength coverage is 3229–5825 Å corresponding to 1127–

2032 Å in the z = 1.87 galaxy rest frame, with spectral resolution of 2.4 Å FWHM (R ≃

1800). The total exposure time was 2 hours, with six exposures of 1200 seconds each. Three

exposures were taken at each of two orthogonal position angles (PA) of 0 and 90 degrees,

both of which covered the entire lens system (Figure 4.1). The observing conditions ranged

from clear to thin clouds with seeing of ∼ 1 − 1.′′3 FWHM. For sky subtraction, a nearby

blank sky reference area was observed for 300 seconds with each set of PA exposures.

The data were reduced using the IDL version of the KCWI data reduction pipeline

(KDERP-v1.0.2)1. We initially ran stages 1–4 of the pipeline, which perform bias, gain, and

dark current corrections as well as cosmic ray rejection. We use the observed sky frame

for sky subtraction in stage 5 of the pipeline, as there is insufficient blank sky background

in the lensing field of CSWA13 itself. Flux calibrated and DAR (differential atmospheric

refraction) corrected datacubes are obtained by running stages 6–8. Flux calibration was

carried out using observations of the standard star BD26D2606 taken on 20 June 2020 using

the same instrumental setup. The flux calibration is uncertain due to the non-photometric

conditions, but the analysis and results of this paper do not require absolute flux calibration.

We correct for any nonzero residual background in each wavelength slice in the following way:

we consider the median flux within a 48 Å wavelength bin centered on each slice, mask out

regions containing detected sources, fit the resultant background profile with a 2D first-order

polynomial, and remove its contribution from the 2D slice. This is similar to the procedure

described in Mortensen et al. (2021b), which was applied to a narrow wavelength range,

while here we are interested in features that span the entire wavelength range of the KCWI

spectra. The processed datacubes were then resampled to a common grid, aligned, averaged,

1www.github.com/Keck-DataReductionPipelines/KcwiDRP
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Figure 4.2. (a): Flux-calibrated KCWI spectrum of CSWA13 obtained by
summing the flux from all spaxels covered by the arc. Prominent low ion-
ization (e.g., Si II λ1260, λ1526, Fe II λ1608, Al II λ1670), high ionization
(e.g., C IV λλ1549,1551) and optically thin absorption lines (e.g., Si II λ1808,
Ni II λ1317, λ1370, λ1709, λ1741) are marked in blue, purple, and green re-
spectively. Fine structure emission from Si II* and nebular emission lines
(e.g., C III]) are marked in coral. (b): Velocity profiles of various low-ion ISM
absorption lines (from Si II, C II and Al II) used in this study. The gray
shaded regions are masked and not used for ISM absorption analysis due to
the presence of other significant features. For example, C II λ1334 is flanked
by absorption lines from intervening systems which are masked out. Similarly,
for Al II the region affected by nebular O III] λ1666 emission is also excluded
from the absorption line analysis. Panel (c) shows the average ISM absorption
profile obtained from combining the different low-ionization absorption pro-
files shown in panel (b). We use this combined absorption profile to probe the
outflow kinematics across the arc (described in Section 4.5.2). The lower-right
panel (d) shows strong C III] nebular emission which we use to trace the sys-
temic velocity field across the arc. 120



and rebinned to a spatial pixel size of 0.′′3×0.′′3. We also converted the pipeline output from

air to vacuum wavelengths. We use the 1σ standard deviation of flux from blank regions of

the sky to estimate the uncertainty of our spectra.

Figure 4.1 shows a color composite image generated using HumVI (Marshall et al., 2015)

from the reduced KCWI data cube by summing three broadband wavelength regions centered

at 3730, 4430 and 5130 Å, each with a width of 400 Å. Multiple images of the arc are clearly

identifiable by their blue color in the KCWI data, as well as prominent spectral features.

Figure 4.1 (Left panel) also shows the Hubble Space Telescope (HST) near-infrared image

obtained with WFC3-IR using the F140W filter. We identify three distinct star-forming

complexes in the HST image (A, B, and C), which are multiply imaged across the entire

arc. The integrated KCWI spectrum from summing spaxels containing the arc is shown

in Figure 4.2(a) for the rest-frame wavelength range 1200–1930 Å. Metal absorption lines

from three intervening galaxy systems at z = 1.67, 1.69, and 1.74 are also detected in the

arc spectra, with prominent C IV and other features. We mask their contribution in all the

analyses presented in the rest of this paper.

4.4. Lens Model

Gravitational lens modeling is necessary to reconstruct the galaxy’s source plane morphol-

ogy and intrinsic properties. We use the lens modeling software lenstronomy (Birrer &

Amara, 2018; Birrer et al., 2021) to build the lens model. We adopt the conjugate point mod-

eling method which is commonly used in cluster-scale lens modeling (see Kneib & Natarajan,

2011, and references therein), with multiple image positions for the A, B, and C components

of the source (Figure 4.1). Our KCWI data confirm the multiple image nature of compo-

nents A, B, and C, for example via their distinct velocity structure and Lyα profiles. The

lens model is optimized with the nested sampler dynesty (Speagle, 2019). Our lens model

consists of an elliptical Navarro–Frenk–White (NFW; Navarro et al., 1996, 1997) halo profile

for the lensing galaxy group, a double Chameleon profile for the stellar mass distribution of
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the central galaxy (Dutton et al., 2011), a point mass to account for the supermassive black

hole (SMBH) at the center of this galaxy, eight singular isothermal ellipsoid profiles to model

the eight brightest galaxies within 20 arcsec of the central galaxy (Kassiola & Kovner, 1993),

a residual shear field and a residual flexion field.

The ellipticity of the projected NFW halo is parameterized in the convergence or the

surface density and not in the potential (Oguri, 2021). The Chameleon profile is a combi-

nation of two non-singular isothermal ellipsoids that provide a good approximation to the

Sérsic profile within 0.5−3Reff , where Reff is the half-light radius (Sérsic, 1968; Dutton et al.,

2011). We find that a superposition of two Sérsic profiles is necessary to fit the light distri-

bution of the central galaxy well (Claeskens et al., 2006; Suyu et al., 2013). We convert the

best-fit parameters of the double Sérsic profile into the parameters of the double Chameleon

profile. The pre-fitted parameters determining the angular and radial shape of the double

Chameleon profile are fixed during the lens model optimization, and only the mass-to-light

ratio is free. We fix the NFW halo mass to be 1014M⊙ and impose a Gaussian prior on the

concentration parameter (c200 = 5.0± 0.8) following the results of Newman et al. (2015) for

group-scale halos. The ellipticity and centroid of the NFW halo are fixed to be the same

as the ellipticity and centroid, respectively, of the central galaxy’s light distribution. Thus,

the concentration is the only free parameter for the NFW profile. We impose a prior on the

stellar mass to SMBH mass relation using the results from Li et al. (2023).

For the eight nearby galaxies included explicitly in the model, we use the photutils

package to measure aperture photometry and ellipticity. We fix the centroid and ellipticity

of these galaxies and only allow the Einstein radii of each galaxy as free parameters. The

residual shear (also called“external shear” in the literature) has two free parameters (i.e., the

shear magnitude γshear and angle ϕshear) and the residual flexion field has four parameters.

These residual shear and flexion fields account for both the “internal” angular structure of

the central lensing galaxy that is not fully captured by the ellipticity parametrization of
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Figure 4.3. Top: Illustration of the best-fit lens model (described in Sec-
tion 4.4). The critical and caustic curves are shown in blue and orange re-
spectively. Bottom: Source plane reconstructed maps of the HST and KCWI
continuum images, revealing the clumpy galaxy morphology of CSWA13. Pur-
ple lines denote the contours obtained from the source plane HST imaging. The
three distinct star-forming regions A, B and C span a physical distance of ∼ 8
kpc in the source plane.
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Figure 4.4. Left : Zoom-in of the C III]λλ1907, 09 emission and Si II λ1526
ISM absorption line profile in regions A, A+B and C. Middle: Spatial maps of
the centroid velocity of nebular C III] emission which traces the young stars,
and the outflow velocity v50. The outflow velocity maps are measured with re-
spect to a systemic redshift of zs = 1.865947 obtained from a galaxy-integrated
spectrum. A similar velocity structure is apparent in both, suggesting that the
outflowing gas is closely associated with the stars within each ∼ kpc spatial
resolution element. The fold-symmetry of the velocity fields in the image plane
is a result of the multiple image lensing configuration (Figures 4.1, 4.3). Right :
Source plane maps of the centroid velocity of nebular C III] emission and out-
flow velocity v50. The purple lines show contours from HST imaging, as in
Figure 4.3. The ISM absorption profiles show significant spatial variation, and
we can clearly see that the outflow velocity mirrors the systemic velocity struc-
ture along the major axis. We discuss the quantitative comparison of outflow
and nebular velocity and its implications in Section 4.6.1.
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the NFW and Chameleon profiles, and also “external” contributions from mass structure

beyond the galaxies, which are explicitly accounted for in our model. The residual flexion

field is also necessary to correctly reproduce the atypical image configuration of the multiple

components in this system. This residual flexion is plausible since many group-member

galaxies are not accounted for in our lens model except for the brightest eight. Our model

has 17 free parameters in total, and there are 24 data points from 4 positions for each of

the A, B, and C image sets. The lens model is optimized by minimizing the total distances

between the mapped positions of each image set on the source plane.

Figure 4.3 illustrates the best-fit lens model with the caustic and critical curves. The lower

panels of Figure 4.3 show the intrinsic galaxy morphology from HST and KCWI continuum

images, reconstructed in the z = 1.87 source plane. The three star-forming complexes

(A, B and C) span a physical distance of ∼ 8 kpc in the source plane, using our fiducial

cosmology. We find that the mean areal magnification of the southwestern counter-image

of the galaxy is |µ| = 12 ± 3. We obtain a magnification corrected stellar mass and SFR

of log10(M∗/M⊙) = 9.00 ± 0.32 and log10(SFR/(M⊙ yr−1)) = 1.71 ± 0.21 after scaling the

BEAGLE outputs presented in Mainali et al. (2023b).

4.4.1. Galaxy morphology. CSWA13 is a moderately dusty (τV ∼ 0.5) galaxy with spe-

cific SFR placing it above the star-forming main sequence at z ∼ 2 (e.g., Whitaker et al.,

2012). The spatially resolved kinematics from this work uniquely allows us to tie the observed

morphology with the kinematics of the gas around the galaxy. The clumpy morphology of

CSWA13 (Figure 4.3) resembles a tadpole or a chain galaxy (e.g., Cowie et al., 1995; van

den Bergh et al., 1996; Elmegreen et al., 2005; Förster Schreiber et al., 2009; Elmegreen &

Elmegreen, 2010) with a bright head (region A) and a tail (regions B and C). These tadpoles

are common at z ∼ 2, comprising ∼10% of the galaxies in the Hubble Ultra Deep Field

(HUDF) and ∼44% if these tadpoles are indeed edge-on projections of the clump-cluster

(Elmegreen et al., 2004) and chain galaxies. While the nebular kinematics for a handful
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Figure 4.5. Top: Spatial map of the covering fraction Cf of the low ion-
ization gas at outflow velocities of v = −400 to −100 km s−1 along with the
systemic velocity (v = 0 km s−1). Bottom: Distribution of Cf in each velocity
bin. Gas at higher outflow velocities is more uniformly distributed across the
entire galaxy, for example with a mean Cf (v = −250) = 0.43 with a relatively
small scatter of 0.06. However, at systemic velocities it is more heterogenous,
with a substantial variation in the covering fraction of gas with region A and B
having Cf ∼ 0.6 compared to Cf ∼ 0.1 in region C. We also find that regions
A+B have blueshifted Lyα absorption and redshifted emission (Figure 4.6)
whereas region C has broad Lyα emission extending to blueshifted velocities.
Therefore, regions A+B likely have a higher column density of slow-moving
gas at systemic velocities seen in metal absorption transitions as well as Lyα,
with a paucity of gas at v ∼ 0 in region C.

of tadpole galaxies at z ∼ 2 were measured as part of the SINS survey (Förster Schreiber

et al., 2009) and show similar nebular kinematics as CSWA13, this paper is the first study

to simultaneously map nebular and outflow kinematics in a galaxy of this type.

4.5. Spatially resolved ISM gas kinematics

Our overall aim is to quantify the key properties of outflows in CSWA13 such as the

spatial extent, mass loss rate, and mass loading factor. This in turn requires measuring
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Figure 4.6. Spectra of regions A, A+B and C (black) along with the best-fit
Voigt and stellar population fit (described in Section 4.5.3) shown in red. The
gray lines show the 100 independent realizations used to obtain the best fit.
Bottom Right : Close-up of the Lyα profile showing differences in blueshifted
emission (v < 0 km s−1) from each region. Region A+B has higher column
density and covering fraction (logN ∼ 21; fcov ∼ 0.6) compared to Region C.
This is complemented by our spatial maps of covering fraction (Cf (v)) obtained
by independently analyzing the ISM metal absorption lines (Figure 4.5) which
show a similar variation in Cf across the galaxy.
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Figure 4.7. Top Left : Image plane Si II* λ1533 emission line map obtained
from a single Gaussian fit (described in Section 4.5.4). Contours of the con-
tinuum and Si II* emission are shown in blue and green respectively. We find
that the fluorescent emission is spatially extended compared to the continuum
in all the three fold images of the arc. Top Right : Source plane continuum
and Si II* λ1533 emission line maps. The purple box shows the position of a
pseudo slit used to extract the continuum and emission line flux. It is centered
on regions A+B which show the highest column density in absorption, and
aligned roughly along the kinematic minor axis (see Figure 4.4). Bottom Left :
Plot of extracted continuum and Si II* flux from the pseudo slit as a func-
tion of distance, showing larger spatial extent of fluorescent Si II* compared
to the stellar continuum. Bottom Right : Illustration of two different outflow
scenarios (young outflow, evolved outflow) in this phase space. R measures
the radial extent of the outflowing gas from the center of the galaxy. ∆R in
the spherical shell model represents the thickness of the shell that the outflow
is enclosed in. Here we assume that the center of the galaxy is at the center
of pseudo slit and define ∆R = R − Rcont,50 where Rcont,50 is the radii where
the flux reaches 50%. Based on this nomenclature, we estimate R ∼ 3.5 kpc
and R/∆R ∼ 2.
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various physical quantities which we address in this section: spatial maps of outflow velocity

(vout), covering fraction and solid angle (Ω), H I column density (N), and the radial extent

of outflowing gas (R). Ultimately the spatially resolved KCWI spectroscopy provides a

comprehensive view of the warm (T ∼ 104 K) outflowing gas, including the mass loss rate

(e.g., Ṁ ∝ voutΩNR), as we will discuss in Section 4.6.

4.5.1. Systemic redshift and velocity field. For spatial analysis of the outflow kinematics,

we require not only the systemic redshift but rather the velocity field of young stars in the

galaxy. We obtain this using the nebular C III]λλ1907, 09 emission line doublet, which we fit

with a double Gaussian function assuming the same redshift and velocity dispersion for both

lines. For the integrated spectrum, we obtain a systemic redshift zs = 1.865947± 0.000031.

The best-fit velocity centroid in each spaxel relative to this systemic redshift is shown in

Figure 4.4, revealing a coherent velocity shear of ∼150 km s−1 seen consistently in all four

multiple images.

A fit to the stellar photospheric absorption lines Si III λ1294,1298 yields a systemic

redshift of zs = 1.865687 ± 0.000307, which agrees with C III] within the measurement

uncertainties. This supports the use of C III] to trace the velocity field; we use the emission

lines due to their higher signal-to-noise ratio relative to stellar absorption. We note that the

difference between stellar and nebular systemic redshift corresponds to a ∼ 2% change in the

measured outflow velocity (v50), which does not affect our results. A detailed analysis of the

stellar kinematics will be presented in a future work (Rhoades et al. in prep). We use the

redshift obtained from the integrated spectrum for measuring the outflow velocities (v50) in

Section 4.5.2 and discuss the spatially resolved outflow kinematics (i.e., v50− vsys) further in

Section 4.6.1.

4.5.2. Outflow velocity and covering fraction. We follow the methodology described in

Vasan G. C. et al. (2023) to analyze the ISM absorption profiles and derive outflow velocity

metrics. For each spaxel, we obtain a covering fraction profile (Cf ) by normalizing the spectra
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and combining the flux from Si II λ1260, C II λ1334, Si II λ1526 and Al II λ1670 using

an inverse variance weighted average. We mask regions in the spectra which are affected

by intervening absorption systems (e.g., −1000 and 1000 km s−1 from C II) and nebular

emission features (e.g., O III] blueward of Al II). Figure 4.2’s bottom panels demonstrate

our methodology applied to the integrated galaxy spectrum. We note that the low-ion ISM

absorption lines seen in Figure 4.2 as well as in individual spaxels show a clear asymmetric

profile, with a blueshifted velocity centroid and an absorption wing extending to outflow

velocities v ≳ 250 km s−1. Thus, we use a double Gaussian function to fit the resulting mean

absorption line profile, which adequately captures the skewness apparent in the absorption

line (Vasan G. C. et al., 2023). The covering fraction in each spaxel can be parameterized

in the following form for ISM absorption lines with high optical depths (τ ≫ 1):

(4.1)
I

I0
(v) = 1− Cf (v)

(4.2) Cf (v) = Cf,G1(v) + Cf,G2(v)

where Cf,G1 and Cf,G2 are Gaussian functions which capture the faster- and slower-moving

velocity components respectively.

From the fitted profiles, we measure the velocity centroid v50 (defined as the 50th per-

centile of absorption equivalent width) which traces the bulk outflow motion in the galaxy.

The v50 metric is also robust to resolution and blending effects (as discussed in Vasan G. C.

et al., 2023). Figure 4.4 shows the v50 map obtained for all spaxels in the arc which have a

continuum signal-to-noise ratio (SNR) > 4 per pixel at representative wavelengths, enabling

reliable fits to the ISM absorption. The v50 maps show that the bulk outflow velocity of the

ISM gas varies across different star-forming complexes in the galaxy, from |v50| ≲ 100 km s−1

in region A to |v50| ≳ 200 km s−1 in region C, relative to the adopted zs = 1.865947. The
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spatial structure of v50 from outflows is however quite similar to the nebular emission veloc-

ity (Section 4.5.1). The outflow velocity relative to local systemic redshift is thus relatively

constant. We discuss the implications of this in detail in Section 4.6.1.

Figure 4.4 (left panel) also shows the ISM absorption profile obtained from regions A,

A+B and C revealing that region C has comparable absorption at high outflow velocities

(|v| ≳ 250 km s−1) but lower covering fraction at v ∼ 0 relative to the other regions. This

suggests that spatial variation in the observed outflow kinematics in this galaxy is due to

the paucity of slower moving gas at systemic velocities, i.e., lower covering fraction at v ∼ 0.

We quantify this further by considering spatial maps of the covering fraction across the arc.

Figure 4.5 shows the spatial map of the best-fit covering fraction profile (Cf ) at different

velocities along with a histogram of its spatial variation. We find that the gas at higher

outflow velocities has a relatively uniform covering fraction, with mean Cf = 0.22 and 1σ

spatial scatter of 0.06 at v = −400 km s−1. At the systemic velocity, the covering fraction

varies with mean and spatial scatter Cf = 0.39± 0.24. Specifically, at v ∼ 0, region A has a

Cf ∼ 0.6 compared to Cf ∼ 0.1 in region C.

We can summarize the variations in outflow velocity as having a mean and spatial scatter

of vout = −144± 79 km s−1. The covering fraction varies both spatially and spectrally, with

typical value and scatter of approximately Cf = 0.4± 0.2.

4.5.3. Column density of H I. The low-ionization phase of outflowing gas is dominated

by H I, whose column density we can measure directly from Lyα absorption. This provides

important information on the total outflowing gas mass. We use a linear combination of

Starburst99 templates (Leitherer et al., 1999) and a Voigt profile to simultaneously fit the

Lyα absorption as well as the stellar continuum (Chisholm et al., 2019; Hu et al., 2023).

During fitting, we mask out the strong stellar and interstellar features as well as the Lyα

emission region, and fix the velocity centroid of the Lyα absorption to be the same as the v50

obtained from ISM absorption lines. We allow the extinction E(B − V ), Doppler parameter
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b, column density NHI , and covering fraction fcov to be free parameters. The best fit values

are obtained from taking the median and Median Absolute Deviation (MAD) from running

100 independent realizations. Here we refer to covering fraction as fcov in the context of

Lyα Voigt profile fitting, where fcov can be thought of as the typical value for high column

density gas. The covering fraction Cf (v) derived from metal absorption lines is used when

we are considering the velocity structure.

Figure 4.6 shows the resulting best fit to the spectrum of regions A, A+B and C. In the

brightest region A+B of the galaxy, we obtain a value of log(NHI) = 20.81 ± 0.08 for the

column density of the H I gas and a covering fraction of fcov = 0.56± 0.06. This gives us a

mean column density along the line of sight as log(Nmean) = log(NHI × fcov) = 20.56± 0.05.

This is characteristic of damped Lyα absorption systems and is comparable to the column

densities seen in other star-forming lensed galaxies at similar redshift (e.g., Jones et al., 2018).

In contrast, region C does not show such strong Lyα damping wings and we find an order

of magnitude lower Nmean compared to region A+B. We note that the fcov values obtained

from this fitting routine are consistent with the Cf obtained from independently fitting the

ISM absorption lines. Based on these findings, we use the Nmean (Table 4.1) obtained from

region A+B as the dominant outflow mass component for estimating the mass loss rate and

mass loading factor, discussed further in Section 4.6.3.

4.5.4. Si II* emission line map. In this section, we examine fluorescent Si II* emission

to establish the spatial profile of outflowing gas. Si II* emission predominantly occurs when

a Si+ ion absorbs a photon from the ground state and subsequently decays to an excited fine

structure ground state, producing a photon with slightly lower energy (longer wavelength)

than the one originally absorbed. These Si II* transitions appear to be optically thin in our

target, such that the fluorescent emission directly traces the spatial distribution of absorbing

gas (e.g., Jones et al., 2012; Prochaska et al., 2011), which is dominated by the outflowing

component. We use the Si II* λ1533 line (Figure 4.2) which is detected across the entire arc
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and free from intervening absorption. However, it falls within the broad C IV stellar wind

feature. Therefore, we fit a small region around Si II* λ1533 with a Gaussian emission line

profile combined with a linear continuum to account for the slope of the stellar wind feature.

Figure 4.7 (top panel) shows the resulting spatial map of fine structure emission flux in

both the image and source plane, with the underlying continuum removed. We find that

Si II* emission is patchy but spatially extends across the entire galaxy. The emission is

strongest around regions A and B, which have both stronger continuum emission and higher

H I column density than region C (Section 4.5.3). Together with the velocity measured from

corresponding absorption lines, this indicates that the bulk of outflowing mass is associated

with regions A and B.

Figure 4.7 also shows the continuum and Si II* spatial profiles extracted from a pseudo-

slit through region A+B, probing the minor axis of the galaxy. The emission is well detected

to a radial distance of R ∼ 3.5 kpc. Si II* is more extended than the stellar continuum

but with a rapidly declining flux profile. This suggests that the majority of outflow column

density seen in absorption arises from gas confined to small radii (and impact parameters),

R ≲ 5 kpc, which is supported by observations from galaxy-galaxy pairs and quasar sightlines

(e.g., Steidel et al., 2010; Nielsen et al., 2013b; Vasan G. C. et al., 2023).

The spatial extent of outflows as probed in emission by Si II*, in combination with the

kinematics and column density discussed previously, allows a direct measurement of outflow

mass loss rate in the low-ionization phase. We discuss the mass loss and its implications in

the following section.

4.6. Results and Discussion

4.6.1. Absorption traces recently-launched outflows. Comparing the spatial maps of

outflow velocity and nebular emission kinematics allows us to examine whether the outflows

are associated with local launching sites, or galaxy-wide winds. We consider three example

scenarios in the evolution of a galactic-scale wind: (a) young outflow, where the gas is still
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Figure 4.8. Left: Source plane HST image with a pseudo-slit (purple) along
the major axis, used to characterize the outflow velocity structure. Center:
Systemic and outflow velocity as a function of distance measured along the
pseudo-slit. The black and blue lines represent the median systemic and out-
flow velocities, respectively. The shaded regions show the 1σ scatter from
collapsing the slit. The gray dashed line shows the vCIII] median line offset by
−170 km s−1, showing an approximately constant outflow velocity relative to
the local systemic redshift. Right: Schematic illustration of different stages in
the evolution of a galactic scale wind (with velocity v) as a function of distance
from the center of a galaxy (d). The rotation curve of the galaxy tracing the
motion of the stars is denoted by vsys. With respect to this systemic veloc-
ity (vsys), three different stages of an outflow are shown: (a) young outflow
(vout = vsys+constant), (b) collimated outflow (vout = vsys+constant+ f(r)),
(c) evolved outflow (vout = constant). Each of these scenarios can be dis-
tinguished observationally by measuring vout − vsys versus d. Based on our
schematic, CSWA13 follows the young outflow case, with outflows mirroring
the nebular kinematics.

located close to its launching site; (b) collimated outflow, launched from the central regions

of a galaxy with a modest opening angle; and (c) evolved outflow, with coherent motion at

distances larger than the galaxy stellar radius.

In the early stages of outflow, feedback processes (e.g., radiation pressure and supernovae)

drive the ISM outward from regions of recent star formation. If the initial launching velocity

is relatively uniform across different regions in a galaxy, then we would expect the galaxy’s

rotation curve (vsys, defined as the local velocity of stars and H II regions) to be imprinted

in the outflow: vout ≈ vsys + constant. We consider this scenario where the ISM is being
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pressurized by feedback but is yet to burst out of the confines of the galaxy as a ’young

outflow.’

As momentum continues to build up in the ISM, the gas can be preferentially launched

from regions of low density (e.g., orthogonal to a galactic disk) resulting in a collimated bi-

conical outflow. In this case, the outflow velocity would be higher in the region of collimation

compared to the rest of the galaxy, i.e., vout = vsys+constant+f(r) where f(r) is a function

of galactic radius. After a sufficient time, the wind may travel well beyond the galaxy’s

stellar radius and mix with the CGM, with any signal of the initial launching momentum

being mixed such that the outflow velocity appears relatively uniform in down-the-barrel

sightlines: vout = constant. As galaxies evolve in time with multiple feedback episodes, we

would expect the relation between the systemic and outflow velocity to be a combination of

all of these scenarios.

Figure 4.8 (right) shows an illustration of these three scenarios. The observed outflow

velocity profile of CSWA13 closely follows that of the nebular velocity (vsys) with a constant

offset, as shown in the top right panel of Figure 4.8. This is also evident in the spatial

maps discussed earlier (Figure 4.4) which show similar gradients. We thus conclude that the

outflows seen in absorption are dominated by the ’young outflow’ scenario. Similar spatially

resolved studies, although at coarser resolution, have found that in a z = 4.9 arc (Swinbank

et al., 2009b) the outflows mirror the nebular emission similarly to CSWA13, whereas in the

cosmic horseshoe (z ∼ 2.4; James et al., 2018b) the velocity follows the evolved outflow case.

We find a median and 1σ scatter in velocity centroid of v50 = −144 ± 79 km s−1 from

spatially resolved regions in CSWA13 (Section 4.5.2). This is similar to down-the-barrel

integrated absorption profiles at z ∼ 2 (mean v50 = −141 and sample scatter ∼100 km s−1)

from Vasan G. C. et al. (2023) and Steidel et al. (2010). However, when we consider the local

outflow velocity relative to the star formation regions (i.e., v50 − vCIII]), the scatter is only

41 km s−1. This spatial variation in outflow velocity is similar to the ±40 km s−1 differences
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found in a lensed z ∼ 1.7 galaxy by Bordoloi et al. (2016). Thus we find that the outflow

velocity is closely connected to the bulk motion of star-forming gas in the galaxy.

4.6.1.1. Outflows are encapsulated within the continuum. Based on our previous discus-

sion, if the outflows are indeed young then we expect a small radial extent. In this case,

the fluorescent fine structure emission should be closely connected to the stellar morphology

traced by continuum emission. We can estimate a characteristic timescale of the ongoing

star formation as sSFR−1 ≃ 25 Myr (Mainali et al., 2023b). A galactic wind launched ∼25

Myr ago with constant velocity −150 km s−1 would travel a radial distance of ∼ 4 kpc. In

contrast, for an older evolved outflow we would expect fine structure emission to arise at

larger radial galactocentric distances. From the 2D maps of continuum and fluorescent Si II*

emission (Figure 4.7; described in Section 4.5.4), the Si II* is detected across the spatial

extent of the galaxy and is patchier. This suggests that the radial extent of the outflowing

gas is comparable to the projected size of the galaxy which is ≲ 8 kpc.

One might also expect that turbulent young outflows at close radial distances would

entrain the ambient gas surrounding the H II regions (e.g., McKee & Ostriker, 1977) resulting

in broad emission lines. Visually inspecting the C III] and O III] nebular emission lines in

region A+B where the SNR is high, we find that the nebular lines show a clear blueshifted

wing component, with the velocity centroid of the blueshifted component similar to that seen

in the absorption. This suggests that the outflow emission originates from the same regions

as the absorption and supports the idea of a multi-phased wind being launched across the

galaxy. This may also enable thorough mixing of the ambient ISM.

4.6.2. Outflowing gas is inhomogeneous. It is clear from the previous subsection that

the outflows detected ubiquitously across the galaxy are likely young and radially confined

within≲ 8 kpc. In this subsection, we explore the ‘geometry’ of the outflow as revealed by the

variation in covering fraction Cf (v) of the ISM gas at different velocities. Cf (v) is measured

from ISM absorption profiles in each spaxel (using double Gaussian fits; Section 4.5.2).
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Figure 4.9. Illustration of the observed low-ionization outflow kinematics in
CSWA13 using a spherical shell geometry. Gas at systemic velocities (v ∼ 0)
is shown in green. The blue and purple regions denote the azimuthal variation
of the outflowing ISM gas at v = −150 and v = −250 km s−1, with solid
angles Ωslow and Ωfast respectively. Our observations of the covering fraction
of outflowing gas (Figure 4.5) suggest that gas at higher outflow velocities is
more homogenous compared to the slower moving gas. The receding side of
the outflow causes backscattering of Lyα photons from H I atoms, resulting in
redshifted Lyα emission which we detect across the entire galaxy (Figure 4.6).
We also observe blueshifted Lyα photons leaking along the line-of-sight of
region C in the galaxy from forward scattering, which is likely due to low
column density of neutral gas at systemic velocities. The orange arrows denote
kinematics of the nebular gas (Section 4.5.1) in the galaxy.

Assuming our line-of-sight is representative, the covering fraction is related to the outflow

solid angle Ω as Cf (v) = Ω(v)/4π, wherein a spherically symmetric outflow would correspond

to Cf = constant in all spatial regions.

Figure 4.5 plots the covering fraction (Cf ) at v = −400,−250,−100 and 0 km s−1 which

correspond roughly to 2.7×, 1.7× and 0.7× the median outflow velocity (v50) of the galaxy.

We note that the data plotted here is not corrected for the instrumental line spread function.

This has the effect of decreasing Cf at the tails of the distribution and increasing it near

the v50 velocities. Nonetheless, the velocity channels in Figure 4.5 are nearly independent,

and the spatial variation in Cf is robust to spectral resolution effects. At slower outflow

velocities (v ≳ −100km s−1), we can clearly see that the covering fraction of gas in regions A
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and B of the galaxy is significantly larger by up to ∼ 6× than in region C. However, at faster

outflow velocities v ≲ −250 km s−1, the covering fraction is approximately uniform across the

galaxy. This suggests that the high-velocity gas is more homogeneous compared to the slower

moving gas. Additionally, we do not find any significant difference between the low-ionization

absorption profiles and the intermediate-ionization species (e.g., Al III, C IV) suggesting that

the covering fraction does not vary significantly between these ionization states. We note

however that the mean covering fraction measured at different outflow velocities is Cf ∼ 0.4

(corresponding to a solid angle of Ω = 1.4π steradians if our sightline is representative),

indicating that the overall geometry of the outflow is patchy and asymmetric.

Figure 4.9 illustrates our findings on the spatial and velocity-resolved Cf (v) with a simple

spherical shell outflow schematic. We find further evidence of the patchiness of outflowing

ISM gas from variations in Lyα absorption across different regions of the galaxy (e.g., Fig-

ure 4.6). Region A has damped Lyα absorption and exclusively redshifted emission, whereas

region C does not show clear damping wings and exhibits a blueshifted emission component.

This indicates a significantly lower column density of H I and associated low-ionization gas

toward region C, along with the lower covering fraction (Figure 4.5).

4.6.3. Mass loss rate is comparable to the star formation rate. We now use the mea-

surements of outflow geometry, velocity, and column density to estimate the mass loss rate

and mass loading factor. Thanks to the spatial and spectral resolution of KCWI data, we can

largely avoid systematic uncertainties arising from low spectral resolution, unknown radial

distribution of outflowing gas, geometry, and/or outflow velocity relative to systemic, which

have presented challenges for earlier efforts (e.g., Pettini et al., 2000; Chisholm et al., 2017).

If the outflowing gas is described by a spherical shell geometry, with average radial

distance R and width ∆R, then we can estimate the mass loss rate through the shell as

follows:
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Figure 4.10. Comparison of mass loading factor (η = Ṁout/SFR; left) and
mass loss rate (Ṁout; right) obtained for CSWA13 from this work (black point)
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shift universe. The average η obtained from the FIRE-2 (Pandya et al., 2021)
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at R = 10 kpc. The η measured in local star-forming regions from Chisholm
et al. (2017) are shown in blue. The gray dashed line shows the best fit from
low-redshift quiescent galaxies (Leethochawalit et al., 2019).

(4.3)

Ṁout(v50) = (4π)(µmp)× (fcovNHI)× v50 ×R× R

∆R

= (77µ)×
(

fcovNHI

1021 cm−2

)
×(

v50
−150 km s−1

)
×
(

R

5 kpc

)
×
(

R

∆R

)
M⊙yr

−1

where µ ≈ 1.4 is the average mass per hydrogen atom in the outflow (mainly accounting

for hydrogen and helium), fcov is the mean covering fraction of the outflowing ISM gas over

the entire solid angle of 4π steradians, NHI is the average column density obtained from

the integrated spectrum of the galaxy, and v50 is the median outflow velocity. The negative
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sign in velocity indicates that the gas is outflowing from the galaxy. This is similar to the

formalism used in Jones et al. (2018) and Pettini et al. (2000), with the normalization in

Equation 4.3 chosen such that each term in the parentheses is ∼ 1 for our target. Rewriting

Equation 4.3 in logarithmic units, with µ = 1.4 and Nmean = fcov × NHI (discussed in

Section 4.5.3), we obtain

(4.4)

log
Ṁout(v50)

M⊙yr−1
= 2.033 + log

(
Nmean

1021 cm−2

)
+ log

(
v50

−150 km s−1

)
+ log

(
R

5 kpc

)
+ log

(
R

∆R

)
.

If the ratios in each term are of order unity, then the inferred mass loss rate is Ṁout ∼

100M⊙yr
−1.

Throughout this paper (Section 4.5.2, 4.5.3, 4.5.4), we have used the spatially resolved

data to constrain each term in Equation 4.4. We summarize these values in Table 4.1. The

median and 1σ spatial scatter of the covering fraction of the gas is Cf = 0.4±0.2 outflowing at

v50 = −144±79 km s−1. Based on the fluorescent emission, we find that the wind is confined

to a radius similar to that seen in the stellar continuum (R ∼3.5 kpc) with the thickness of

the shell ∆R ∼2 kpc. The mean H I column density of gas in the outflow is ∼ 1021 cm−2 with

region A+B having the dominant contribution. Based on these measurements, we estimate

the mass loss rate for the low ionization phase as log(Ṁout/(M⊙yr
−1)) = 1.73 ± 0.23. The

derived mass loss rate is similar to predictions from FIRE-2 simulations at z ∼ 2 measured

at a radial distance of R = 0.1 − 0.2 Rvir given the stellar mass of CSWA13 (Figure 4.10).

We note that this value for the low-ionization outflowing gas represents a lower limit on the

total mass loss rate of the galaxy, which likely has contributions from other ionization phases

(i.e., ionized and molecular hydrogen). For example, analysis of the FIRE simulations by

Muratov et al. (2017) suggests that ∼ 70% of the outflowing and circumgalactic gas is in
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the low-ionization phase for galaxies with similar mass and redshift as CSWA13. Including

the contribution from other phases would therefore increase our estimate of the total mass

loss rate Ṁout, total by ∼ 0.2 dex. The contribution of different ionization states can also be

quantified with column densities of various metal ions measured from their absorption lines

(e.g., Chisholm et al., 2016; Jones et al., 2018), although this is beyond the scope of this

paper.

Despite the measured high mass loss rate in CSWA13, the bulk of the ISM gas entrained in

the outflow is likely unable to escape its gravitational potential well. We find that the outflow

velocity (v50 ≃ −150 km s−1) is lower than the escape velocity estimated from the stellar

mass, via the stellar-to-halo mass relation (e.g., Behroozi et al., 2019) or estimated escape

velocities in FIRE-2 simulated galaxies with similar stellar mass (Vasan G. C. et al., 2023).

This suggests that the gas launched via outflows from the ISM will remain bound within the

halo and/or recycle back at later times. Given a constant mass loss rate, CSWA13 would

need only ∼20 Myr to enrich its CGM with a gas mass comparable to its stellar mass. The

large outflow rate, if sustained, is thus capable of creating a metal-enriched circumgalactic

gas reservoir which can in turn sustain future star formation via recycling.

We now turn to the efficiency of stellar feedback in driving these powerful outflows.

This is quantified by the mass loading factor (η = Ṁout

SFR
), defined as the ratio of the mass

loss rate of outflowing gas to the SFR of the galaxy. Cosmological simulations such as

TNG50 (Nelson et al., 2019) and FIRE-2 (Pandya et al., 2021) predict that galaxies at

z ∼ 2 are highly efficient at driving outflows with typical mass loading factors ranging from

log η ∼ 0–1.7 (factors η ∼ 1–50) in the stellar mass range logM∗/M⊙ = 8–10 (Figure 4.10).

For CSWA13, using our resolved observations, we measure the mass loading factor for the

low-ionization gas phase as log η = 0.04± 0.34. This efficiency value is similar to predictions

from FIRE-2, nearby star-forming galaxies (Chisholm et al., 2017), low-redshift quiescent

galaxies (Leethochawalit et al., 2019) as well as lensed quiescent galaxies at z ∼ 1 (Zhuang
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Quantity Measured value Reference
Stellar Mass logMa

∗ 9.00± 0.32 M⊙ Section 4.4
Star Formation Rate log SFRa 1.71± 0.21 M⊙ yr−1 Section 4.4

Outflow velocity Centroid v50 −144± 79 km s−1 Section 4.5.2, Figure 4.4
Mean Column Density log(Nmean)

b 20.56± 0.05 cm−2 Section 4.5.3, Figure 4.6
Radial extent of outflowing gas R 3.5 kpc Section 4.5.4, Figure 4.7

Thickness of radial shell ∆R 2 kpc Section 4.5.4, Figure 4.7

Mass loss rate log Ṁ b
out 1.73± 0.23 M⊙ yr−1 Section 4.6.3, Figure 4.10

Mass loading factor log ηc 0.04± 0.34 Section 4.6.3, Figure 4.10

Table 4.1. Summary of measured quantities. a - Corrected for lensing magnification |µ|.
b - Here Nmean = NHI × fcov where fcov is obtained from fitting the Lyα profile, as opposed to Cf (v)
obtained from the absorption profile of metal ion transitions.
c - Assuming a spherical geometry with R

∆R
= 1.75

.
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et al., 2023), but it is an order of magnitude lower than those predicted by TNG50 at similar

redshifts (Figure 4.10). We note that this is not strictly a direct comparison as the methods

employed to observationally estimate η differ, and the simulation values correspond to a

fixed radii (e.g., R = 10 kpc for TNG50) and thickness (e.g., 0.1 – 0.2 Rvir for FIRE-2)

and can make use of full spatial and kinematic information as opposed to down-the-barrel

observations of a cylindrical sightline. Nevertheless, our spatially resolved observations serve

as an excellent test of different feedback prescriptions, and we view further direct comparison

with simulations as a promising prospect.

4.6.4. Spatial variation in outflow properties. We have demonstrated significant spatial

variation in the outflow properties of CSWA13, with the higher surface brightness regions

A+B also having stronger outflows (i.e., larger mass loss rates) compared to region C. We also

observe variation in the velocity structure, with larger effective outflow velocity in region C.

One might expect a correlation of higher star formation densities leading to higher outflow

velocities (e.g., Heckman, 2002; Cicone et al., 2016), in contrast to our results. However,

the higher outflow velocity in region C is driven by a lower Cf at low velocities. This may

indicate less mass loading of the ambient ISM from region C, resulting in higher velocity

from momentum conservation. This is supported by Lyα measurements indicating a lower

H I column density and mass loading factor toward region C.

The complex morphology of CSWA13, aided by gravitational lensing, illustrates the value

of spatially resolved information for characterizing gas outflows. We have found order-of-

magnitude variation in the total column density toward different regions of the galaxy, with

resolved spectroscopy pinpointing regions A+B as the dominant outflow launching sites. We

also observe variation in Cf and Lyα emission profiles. The lower covering fraction and

blueshifted Lyα emission component in region C may be particularly interesting in terms of

understanding how ionizing photons escape from galaxies, as these signatures are indicative

of significant ionizing escape fractions (e.g., Verhamme et al., 2008; Jones et al., 2013c;
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Leethochawalit et al., 2016d). The rich variations revealed in this galaxy clearly demonstrate

inhomogeneous outflow properties, and the value of spatially resolved information.

4.7. Conclusions

In this paper, we have investigated the spatially resolved outflow properties and kine-

matics of a z ∼ 2 gravitationally lensed star-forming galaxy (CSWA13) using Keck/KCWI.

We map outflows in multiple ultraviolet ISM absorption lines, along with fluorescent Si II*

emission tracing the outflow spatial structure, and nebular emission from C III] tracing the

systemic redshift and velocity structure. We summarize our key findings below.

(1) The spatial structure of outflow velocity resembles that of the nebular kinematics,

which we interpret to be a signature of a young galactic wind that is pressurizing

the ISM of the galaxy.

(2) From the radial extent of Si II* emission, we estimate that the outflow is largely

encapsulated within 3.5 kpc. We explore the geometry (e.g., patchiness) of the

outflow by measuring the covering fraction at different velocities, finding that the

maximum covering fraction is at velocities v ∼ −150 km s−1. We find significant

variation in the outflow covering fraction near this peak velocity, with lower but

more uniform covering fraction in the higher-velocity gas.

(3) We calculate the mass loss rate and mass loading factors from measurements of the

outflow velocity, radius, column density, and covering fraction for the low-ionization

outflowing gas in CSWA13. The mass loss rate (log Ṁout/(M⊙yr
−1) = 1.73±0.23) is

comparable to the star formation rate (log SFR/(M⊙yr
−1) = 1.71±0.21) resulting in

a mass loading factor log η ∼ 0.04± 0.34 in the galaxy, indicating efficient coupling

of stellar feedback to drive outflowing mass that is likely to remain in the inner

circumgalactic medium or be recycled back into the galaxy. This low-ionization

outflow rate is a lower limit on the total mass loss rate of the galaxy, although the low

ionization phase is likely the dominant contributor. Based on theoretical predictions,
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we estimate that the total outflow rate is ∼ 0.2 dex higher with all ionization

phases included (Section 4.6.3). We compare our measurement with cosmological

simulations, finding that the mass loading factor agrees with predictions from FIRE-

2 but is lower by an order of magnitude than those seen in TNG50.

(4) The outflow properties of CSWA13 exhibit significant spatial variation, with the

higher surface brightness regions A+B being the dominant launching site of strong

outflows (i.e., larger column density and mass loss rate) compared to the lower

surface brightness region C. We also observe variation in the velocity structure,

with larger effective outflow velocity in region C. Spatially resolved data aided by

gravitational lensing is important for capturing the rich variations in inhomogeneous

outflow properties in high-redshift galaxies such as CSWA13.

Overall, these findings support a picture in which outflows observed ubiquitously in early

star-forming galaxies such as CSWA13 are responsible for transporting large amounts of mass

and metals into the inner circumgalactic medium. This process provides a gas reservoir to

sustain star formation at lower redshifts. This work represents early results of our ongoing

efforts to spatially resolve outflow (and systemic) kinematics and composition in lensed

galaxies at cosmic noon (z ≃ 2 − 3), and demonstrates the power of sensitive rest-frame

ultraviolet IFS to characterize the effects of feedback on the ISM and CGM at these redshifts.

An enlarged sample will help to demonstrate scatter in the population and scaling relations

with galaxy mass and other properties. Ultimately the methods used herein represent a

path toward establishing the cosmic history of baryon cycling and providing a benchmark

for comparison with theoretical models of feedback and galactic outflows.
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CHAPTER 5

Conclusion and future directions

In this chapter, I provide a brief summary of the work presented in this thesis and outline

exciting projects that I intend to work on as a postdoctoral researcher in the upcoming years.

5.1. New insights on star formation feedback and galactic outflows using gravitational

lensing

Chapter 2 evaluated the performance of different CNN learning approaches and data

augmentations on their ability to efficiently find gravitational lens candidates. Using state-

of-the-art semi-supervised learning approaches on deep learning architecture, along with a

training dataset consisting of simulated lenses and survey image non-lenses, this work demon-

strated that we can greatly reduce the human effort required to find lensed candidates from

imaging surveys. Applying this approach to the entire Deep Lens Survey (DLS) survey,

and visually inspecting the top ∼ 2500 lens candidates, we found 9 Grade-A and 13 Grade-B

lensed candidates (22 lensed candidates in total). The lensed nature of 2 Grade-A candidates

were confirmed with spectroscopy and high-resolution imaging, demonstrating that our meth-

ods are successful. The number of lenses found in the Deep Lens Survey (DLS) corresponds

to ∼ 10× higher sky density of lenses per deg2 compared to the shallower DES/DECaLS

survey imaging. This supports predictions that vast numbers of lens systems (≳ 105) will

be detectable in the upcoming generation of all-sky surveys (such as Rubin/LSST, Roman,

and Euclid) which will survey the sky at high angular resolution and sensitivity.

Magnification from strong lensing enables observations with good spectral resolution,

thus allowing us to characterize the complex kinematic structure of ISM gas. Chapter 3

represents the largest sample to date of well-resolved velocity profiles of gas outflows driven
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by star forming galaxies at cosmic noon. This work used moderate resolution (R ≳ 4000)

‘down-the-barrel’ ISM absorption line spectra to characterize the ISM and outflowing gas in

a sample of 20 strongly lensed galaxies, probing the absorption lines with ∼10 independent

spectral resolution elements. We examined the covering fraction profile (Cf ) and outflow ve-

locities (parameterized by v50, v75, etc.), width of absorption (∆v90), skewness of absorption

profiles, and optical depth (τ) of absorbing gas. We observed ubiquitous outflows with a typ-

ical median velocity of v50 ≃ −150 km s−1, with the extent of detected absorption reaching

3× this median value in most cases. We also explored scaling relations between outflowing

gas kinematics and the host galaxy properties (e.g., M∗ and SFR), finding that ∆v90 corre-

lates well with SFR and that the observed scaling relations are consistent with theoretical

expectations for momentum-driven outflows. We demonstrated the importance of having

good spectral resolution in studies of outflowing gas by showing that R ≳ 1700 is required

to recover the full asymmetric covering fraction profile structure. Outflow velocity metrics

such as maximum velocity and ∆v90 that are crucial for establishing galaxy scaling relations

show a clear bias and substantial scatter at lower spectral resolution. We compared these

measured trends in outflow velocity with the TNG50 and FIRE-2 cosmological simulations,

and find reasonable agreement, which is encouraging for future work using simulations to

help interpret outflow properties.

Spatially resolved data aided by gravitational lensing is important for capturing the rich

variations in inhomogeneous outflow properties in high-redshift galaxies. Using the power

of Integral Field Spectroscopy (IFS), Chapter 4 investigated the spatially resolved outflow

properties and kinematics of a z ∼ 2 gravitationally lensed star-forming galaxy (CSWA13)

using Keck/KCWI. We mapped outflows in multiple ultraviolet ISM absorption lines, along

with fluorescent Si II* emission tracing the outflow spatial structure, and nebular emission

from C III] tracing the systemic redshift and velocity structure. The outflow properties

of CSWA13 exhibit significant spatial variation, with the higher surface brightness regions
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being the dominant launching site of strong outflows (i.e., larger column density and mass

loss rate) compared to the lower surface brightness regions. The Si-II* emission shows larger

spatial extent compared to the stellar continuum and from its radial extent, we estimate

that the outflow is largely encapsulated within 3.5 kpc. We calculated the mass loss rate and

mass loading factors from measurements of the outflow velocity, radius, column density, and

covering fraction for the low-ionization outflowing gas in CSWA13. Overall, these findings

support a picture in which outflows observed ubiquitously in early star-forming galaxies such

as CSWA13 are responsible for transporting large amounts of mass and metals into the inner

circumgalactic medium. This process provides a gas reservoir to sustain star formation at

lower redshifts. An enlarged sample will help to demonstrate scatter in the population and

scaling relations with galaxy mass and other properties. Ultimately, the methods used herein

represent a path toward establishing the cosmic history of baryon cycling, and providing a

benchmark for comparison with theoretical models of feedback and galactic outflows.

5.2. Future work

Chapter 4 has demonstrated the power of sensitive rest-frame ultraviolet IFS to charac-

terize the effects of feedback by measuring the mass loss rate and mass loading factor. All

current models of galaxy evolution agree that feedback via outflows is an essential compo-

nent of galaxy formation. However, the actual mass loss rates are largely unknown, with

the prevailing uncertainties typically of an order of magnitude. For example, the FIRE (e.g.,

Muratov et al., 2015, 2017; Pandya et al., 2021) and TNG50 (Nelson et al., 2019) cosmolog-

ical simulations at z ∼ 2 predict large outflow mass loading factors ranging from η ≳ 100

at low mass (Mh ∼ 109M⊙) to of order unity at higher masses (Mh ∼ 1011M⊙). The high η

values predicted for low-mass and high-redshift galaxies have yet to be confirmed by obser-

vations. Outflow scaling relations have been studied in galaxies at z ∼ 0 using HST/Cosmic

Origins Spectrograph reaching down to M∗ ∼ 106 M⊙ (Xu et al., 2022b) with a measured

η ∼ 10 for the low mass galaxies and η ≲ 1 for the intermediate-mass galaxies. As part
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of this thesis, I have obtained suitable IFS data to measure the outflow velocity, spatial

extent of outflowing gas, gas column densities and eventually the mass loss rate and mass

loading factor in a sample of ≳ 10 lensed galaxies at z ∼ 2 that span an order of magnitude

in their properties such as SFR and stellar masses. Chapter 4 represents the first results

using such spatially resolved IFS measurements to establish the mass loading factor in a

lensed galaxy with a stellar mass of M∗ ∼ 109 M⊙. Over the course of the next few years,

I plan to use the methodology described in Chapter 4 to self-consistently establish these

quantities in the lensed galaxy sample. Additionally, I will utilize down-the-barrel ‘mock

spectra’ of z ∼ 2 galaxies generated from simulations using different feedback prescriptions

to directly compare measurements of outflowing gas such as mass loss rate and outflow ve-

locity with observations. This could also be useful to assess the likely radial distribution of

gas seen in absorption, and as a further test of feedback prescriptions used in simulations.

Cosmological simulations (e.g., Pandya et al., 2021) also predict that the warm ∼ 104K gas

phase dominates the mass loading fraction in intermediate-mass and dwarf galaxies, carrying

most of the momentum, energy and metals. Conducting a study similar to Chapter 4 on

intermediate/high-ionization absorption lines such as Si IV and O VI (e.g., Chisholm et al.,

2018) would provide useful constraints on the relative contributions of the gas phases to the

mass loading.

A complimentary approach to test different prescriptions of feedback is to characterize

the spatially resolved maps of galaxies gas-phase metallicity (‘metallicity map’) and their ra-

dial gradients (‘metallicity gradient’). For example, stronger feedback leads to more mixing

of heavy elements in the ISM and CGM, resulting in flatter metallicity gradients. This rep-

resents a major science goal of KAPA (Keck All-sky Precision Adaptive Optics), an ongoing

major upgrade to the Keck I adaptive optics system with completion expected in mid-2025,

for which I am a science team member. Specifically, one of KAPA’s Key Science Programs

aims to measure metallicity gradients for 40 lensed galaxies, along with their ISM kinematics

149



and resolved star formation. Lensed galaxies with AO give the best possible spatial reso-

lution for understanding the structure of distant galaxies, along with spectral resolution to

map kinematics and gas metallicity from nebular emission lines. Resolved measurements of

metallicity gradients in galaxies at sub-kpc scales will help further understand the physical

processes that drive outflows in galaxies at Cosmic Noon and offer observational constraints

to sub-grid physics models used in the current generation of simulations. In addition to

the metallicity maps that I will obtain from KAPA, as part of my postdoctoral position, I

will be analyzing the nebular kinematics and metallicity of lensed galaxies observed using

JWST/NIRSpec.

Finally, the technique of arc tomography offers a unique possibility to probe the structure

of the circumgalactic medium (CGM), which represents a key component in the baryon cycle.

In this method, bright lensed arcs are used as background lights against which absorption

from CGM gas can be spatially mapped. During my graduate studies, I worked on one of

the first such studies using this technique (Mortensen, Vasan G.C. et al. 2021), wherein two

lensed arcs at z = 2.92 were used to spatially probe the CGM of a z = 0.77 galaxy. We contin-

uously mapped the spatial and kinematic distribution of the CGM gas using Mg II absorption

out to 30 kpc, finding that the CGM gas is mainly dispersion-supported, anisotropic and

optically thick, with the absorption strength decreasing with increasing impact parameter.

This provides evidence of a reservoir of metal-enriched, dispersion-supported gas recycling

through the CGM, serving as the fuel for future star formation and perpetuating the baryon

cycle in this galaxy. In the sample of Keck/KCWI observations that I have obtained to probe

the mass loss rates and mass loading factors, I have identified numerous cases of multiple-arc

systems at high redshifts or other intervening absorbers at lower redshifts that are optimal

for arc tomography. I am currently conducting the first such tomographic study to probe the

CGM in the high redshift universe (Vasan G.C. et al., in prep) using these observations and
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Figure 5.1. (Left): Comparison of the image quality of a lensed galaxy found
using Machine Learning techniques (Keerthi Vasan et al., 2023) as seen in dif-
ferent ground-based surveys (SDSS, DECaLS and DLS). The depth and sen-
sitivity of the images increases from left to right. (Right): Diffraction-limited
space-based (HST) observations of the same lensed galaxy showing a typi-
cal lensing morphology with numerous multiply imaged star-forming regions.
Euclid and the soon-to-be-launched Roman missions will image thousands of
lensed galaxies at diffraction-limited angular resolutions and good depths. Ad-
ditionally, these campaigns will be complemented by wide-area deep imaging
from telescopes such as Rubin Observatory, and the availability of sensitive in-
struments on the upcoming ELTs. Our understanding of galaxy evolution will
immensely benefit from the detailed explorations that these upcoming missions
will enable.

aim to extend this technique to a larger sample of galaxies across cosmic time to statistically

probe the CGM gas surrounding galaxies in the future.

This is an absolutely exciting time to be working on strong gravitationally lensed galax-

ies. The number of known lensed galaxies has significantly increased due to state-of-the-art

machine learning methods such as those described in Chapter 2. Using these methods on

the diffraction-limited, resolved, deep and multi-band observations from wide-area survey

missions such as Rubin/LSST, Euclid and Roman will dramatically increase the number of

known highly-magnified systems. A large sample of lensed galaxies discovered from these

surveys will probe fainter sources (low-mass/high-z) and smaller Einstein Radii (low-mass

deflectors) which will allow us to study galaxies across a wide range of galaxy properties at

spectacular angular resolution. Figure 5.1 compares the image quality of a lensed galaxy
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observed with multi-band, ground-based imaging survey at good depth (e.g., DLS) and

diffraction-limited space-based telescope (HST) with moderate exposure time demonstrat-

ing the significant gain we will derive from upcoming wide-area surveys. Chapters 3 and 4

have clearly demonstrated the power of good spectral resolution and sensitive IFS observa-

tions to characterize the effects of feedback on the ISM and CGM at high redshifts. The

upcoming sensitive IFS instruments equipped with AO capabilities on 30m class telescopes

which are currently being built, will have better light-gathering capability and angular reso-

lution compared to the current ground-based telescopes. Our understanding of the formation

and evolution of galaxies will benefit immensely from well resolved observations of lensed

(and unlensed) galaxies using the numerous IFS instruments that will be on-board these

telescopes.
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Bouché N., et al., 2010, ApJ, 718, 1001
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