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Chemoproteogenomic stratification of the
missense variant cysteinome

Heta Desai 1,2, Katrina H. Andrews1, Kristina V. Bergersen3, Samuel Ofori1,
Fengchao Yu 4, Flowreen Shikwana1,5, Mark A. Arbing1,6, Lisa M. Boatner 1,5,
Miranda Villanueva 1,2, Nicholas Ung1, Elaine F. Reed3,
Alexey I. Nesvizhskii 4,7 & Keriann M. Backus 1,2,5,6,8,9

Cancer genomes are rife with genetic variants; one key outcome of this var-
iation is widespread gain-of-cysteine mutations. These acquired cysteines can
be both driver mutations and sites targeted by precision therapies. However,
despite their ubiquity, nearly all acquired cysteines remain unidentified via
chemoproteomics; identification is a critical step to enable functional analysis,
including assessment of potential druggability and susceptibility to oxidation.
Here, we pair cysteine chemoproteomics—a technique that enables proteome-
wide pinpointing of functional, redox sensitive, and potentially druggable
residues—with genomics to reveal the hidden landscape of cysteine genetic
variation. Our chemoproteogenomics platform integrates chemoproteomic,
whole exome, and RNA-seq data, with a customized two-stage false discovery
rate (FDR) error controlled proteomic search, which is further enhancedwith a
user-friendly FragPipe interface. Chemoproteogenomics analysis reveals that
cysteine acquisition is a ubiquitous feature of both healthy and cancer gen-
omes that is further elevated in the context of decreased DNA repair. Refer-
ence cysteines proximal to missense variants are also found to be pervasive,
supporting heretofore untapped opportunities for variant-specific chemical
probe development campaigns. As chemoproteogenomics is further dis-
tinguished by sample-matched combinatorial variant databases and is com-
patible with redox proteomics and small molecule screening, we expect
widespread utility in guiding proteoform-specific biology and therapeutic
discovery.

The average human genome differs from the reference at roughly
5 million sites (~0.1% of the genome)1. This profound genetic
variation gives rise to human diversity and disease. While protein-
altering single nucleotide variants (SNVs) make up a small

fraction of all known variants, most known disease-causing
mutations are found in protein-coding sequences. Thus, under-
standing whether a genetic variant is translated and deciphering
the impact of that variant on protein activity are critical steps for
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characterizing the functional and therapeutic relevance of geno-
mic variation.

Proteogenomic studies that implement custom variant-
containing sequence databases have made significant inroads into
the former challenge, enabling proteome-wide detection of protein-
coding variants, including single amino acid variants (SAAVs) and
splice variants2–8 and have even achieved enhanced variant coverage
when paired with ultra-deep fractionation9,10. These studies all share
the same general data processing pipelines. Variant calling is per-
formed on next-generation sequencing (NGS) data. Customized data-
bases featuring both canonical protein sequences and sequences
encoding SAAV-, insertion/deletions (indels)-, or splice variant-
proteins are then generated using customized tools such as Spritz11,
CustomProDB12, Galaxy-P13, and sapFinder14. There are two central
complexities to these pipelines that have only recently begun to be
addressed. The first challenge is that, by relying on exome-only
sequencing and short-read sequencing, the relative proximity of two
or more variants in the same gene (whether they are on the same or
opposite chromosomes) is not typically apparent. A notable exception
is the recent integration of long-read sequencing for de-novo database
construction with sample-specific proteomics to characterize protein
isoforms15. However, such search strategies also introduce higher
chances of false positive identification16.

One solution to the false discovery rate (FDR) challenge is to
calculate a class-specific FDR (separating the FDR calculations for the
variant-containing peptides and reference peptides)16. A strategy for
assessing class-specific FDR is a two-stage FDRdatabase search17.While
the implementation of such strategies in prior proteogenomic studies
highlights the importanceof rigorous statistical validation of identified
variant-containing peptides17–19, the requirement for customized
pipelines has so far limited widespread adoption. Together with these
valuable technical innovations that enable rigorous proteogenomic
identification of SAAVs, an additional key opportunity for proteoge-
nomics is the delineation and monitoring of functional and disease-
associated variants.

Mass spectrometry-based chemoproteomics assays are ideally
suited to shed light on genetic variant significance. Exemplifying this
utility, chemoproteomics methods have been established that mea-
sure amino acid intrinsic reactivity, which is indicative of functionality,
potential druggability, and sensitivity to post-translational
modifications20–28. However, SAAVs are almost universally missed by
chemoproteomic studies. The key reason for this gap is that most
genetic variants are not found in referenceprotein sequencedatabases
used to identify peptides from acquired tandem mass spectrometry
(MS/MS) data20,21,29–36.

Across all chemoproteomic-detectable residues, cysteine is
uniquely suited to proteogenomic analysis. Quite surprisingly given
the relative rarity of cysteine (2.3% of all residues in a human reference
proteome)37, cysteine is the most commonly acquired amino acid due
to somatic mutations in human cancers38, with net 5% gained and 1%
lost cysteines encoded by the 2 million coding mutations that have
been identified in human cancers (Catalog of Somatic Mutations
[COSMIC] database). Given the unique chemistry of the cysteine thiol,
including its nucleophilicity and sensitivity to oxidative stress, a subset
of these residues almost unquestionably has a substantial impact on
protein function. Exemplifying this paradigm, a number of driver
mutations are gained cysteines, including KRAS G12C, SHP2 Y279C,
FGFR S249C, and IDH1 R132C39–43. A likely reason for the ubiquity of
cysteine acquisition is the comparative instability of CpG motifs; C-T
transitions are nearly ten times more common than other missense
mutations in cancer44, and these transitions should favor gain-of-
cysteine codons.

Here, we develop and deploy chemoproteogenomics as an
integrated platform tailored to capture the missense variant cystei-
nome. Chemoproteogenomics unites a missense-variant-focused

proteogenomic pipeline with mass spectrometry-based cysteine che-
moproteomics. By mining publicly available datasets, including COS-
MIC, dbSNP, and ClinVar, we reveal that gain-of-cysteine variants are a
ubiquitous consequence of genetic variation. We further reveal that
DNA repair-deficient cell lines are particularly enriched for acquired
cysteines, together with a general high burden of rare and predicted
deleterious variants. Guided by these discoveries, we generate com-
binatorial cell-specific custom databases built from whole exome and
RNA-Seq data for eleven cell lines. Chemoproteogenomic analysis with
a user-friendly FragPipe computational platform, extended to support
two-stage database search and FDR estimation, identified >1400 total
unique variants, including 677 chemoproteomic enriched variant-
proximal cysteines and 104 gain-of-cysteines. Chemoproteogenomics
also robustly identifies ligandable SAAVs that alter cysteine oxidation
state and outperforms bulk proteogenomic analysis for capture of
SAAVs with lower variant allele frequency. The utility of chemopro-
teogenomics is further showcased through our identification of
ligandable genetic variants that alter cytokine activity for HMGB1 and
protein interactions for CAND1. In sum, chemoproteogenomics sets
the stage for an enhanced global understanding of the functional and
therapeutic relevance of the missense variant proteome.

Results
Variant peptide identification enabled by MSFragger two-stage
database search and false discovery rate (FDR) estimation
To enable chemoproteogenomic identification of SAAV-containing
peptides, we established a customized proteogenomics pipeline
(Fig. 1A). Motivated by a prior report3 that demonstrated proteoge-
nomic sample searches performed with sample-specific databases
both improved coverage (~45%more variants) and decreased rates of
SAAV peptide false discovery, we generated a cell line-specific variant
peptide database from HEK293T RNA-seq data (Fig. 1A, Supplemen-
tary Fig. 1 and Supplementary Data 1). Next, to afford a reduction in
the likelihood that a variant peptide will be mismatched to wild-type
spectra17, we established a two-stage database search and FDR con-
trol scheme (Fig. 1A), using an MSFragger45,46 command line pipeline
within FragPipe computational platform. In this strategy, the first
search of acquired MS/MS spectra is performed against a reference
database of canonical protein sequences. Subsequently, peptide-to-
spectrum (PSM) matches identified with a certain high level of con-
fidence (e.g., passing 1% FDR) are removed, and the remaining
spectra are then searched against a variant-containing, sample-
specific database.

We then subjected our chemoproteogenomics pipeline to
benchmarking by generating a set of high-coverage cysteine chemo-
proteomics datasets (Fig. 1B) in which reference and variant protei-
nacious cysteines in cell lysates labeled with iodoacetamide alkyne
(IAA)20 and conjugated isotopically labeled ‘light’ (1H6) or’ heavy’ (

2H6)
biotin-azide reagents47 (+ 6Da mass difference between the reagents)
were combined pairwise in biological triplicate at different H/L ratios
(1:1,10:10, 1:4, 4:1, 1:10, and 10:1). By searching these datasets using our
two-stage FDR search, we sought to validate the accuracy of variant
identification. Peptide quantification using IonQuant48,49, following the
workflow shown in Fig. 1A, revealed MS1 intensity ratios for both
canonical and variant peptide sequences thatmatched closely with the
expected values (Fig. 1C and SupplementaryData 1).We also compared
the retention times of the heavy- and light-peptides and observed a ~2-
3 sec shift for the deuterated heavy sequences for both the variant and
canonical peptide sequences (Fig. 1D and Supplementary Data 1).
These retention time shifts are consistent with our previous study47

andwith prior reports50,51. Analogous to studies that utilize isotopically
enriched synthetic peptide standards to validate peptide
sequences52–54, the observed co-elution of both heavy and light variant
peptides provides further evidence to support the low FDR of our data
processing pipeline. Lastly, the high concordance between observed
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and expected MS1 ratios provides compelling support for the use of
the heavy and light biotin azide reagents in competitive cysteine-
reactive compound screens, in which elevated MS1 intensity ratios are
indicative of a compound-modified cysteine.

FragPipegraphical user interface (GUI)with improved two-stage
MSFragger search and FDR estimation
Motivated by the multi-faceted uses of the two-stage FDR search
pipeline for general proteogenomic applications, we next simplified
the search workflow by establishing a semi-automated execution of
these searches in FragPipe (see Supplementary Discussion for
details). To further improve the sensitivity of variant peptide iden-
tification, we added an option to run MSBooster and Percolator
instead of PeptideProphet (Supplementary Fig. 2). As part of our
semi-automated search pipeline, we enabled compatibility with iso-
baric labeling reagents, which we expect will further broaden the
utility of our approach (Supplementary Fig. 3). Using the GUI fea-
tures, we observed comparable coverage for both the command-line
and automated GUI implementations of the two-stage FDR search
with a slight increase in numbers of identifications observed for

datasets processed with MSBooster and Percolator (Supplementary
Fig. 4 and Supplementary Data 1). The ratio differences between
variant and reference cysteine peptides are comparable (Supple-
mentary Fig. 2). In total we identified 50 missense variants at the
protein level, including 11 acquired cysteines and 39 proximal to
reference cysteines. This very low coverage of variant data prompted
us to reconsider our cell line selection and to prioritize the addition
of whole exome sequencing data to enhance the coverage of func-
tionally significant variants.

High missense burden cancer cell lines are rich in acquired
cysteines, including in census genes
We hypothesized that the genomes of missense-variant rich cell lines
would similarly encode a high burden of acquired cysteine SAAVs
and SAAVs proximal to reference cysteines and, therefore, could
serve as useful model systems for establishing cysteine chemopro-
teogenomics. To test this hypothesis and establish a useful toolbox
of cell lines and genomics data for our chemoproteogenomics plat-
form, we analyzed the variant burden across all cell line data available
in the Catalog of Somatic Mutations in Cancer Cell Lines Project

Fig. 1 | Establishing an MSFragger-search pipeline for variant peptide identifi-
cation. A Two-stage FDR MSFragger-enabled variant searches–variant databases
are generated from non-redundant reference protein sequences that are in-silico
mutated to incorporate sequencing-derived missense variants followed by two-
stage FDR MSFragger/PeptideProphet search to identify confident variant-
containing peptides. First, raw spectra are searched against a normal reference
protein database, confidently matched spectra (passing 1% FDR) are removed, and
the remainder of spectra are searched with a variant tryptic database.
B Chemoproteomics workflow to validate heavy and light biotin47. HEK293T cell
lysates were labeled with pan-reactive iodoacetamide alkyne (IAA) followed by
‘click’ conjugation onto heavy or light biotin azide enrichment handles in known
ratios. Following neutravidin enrichment, samples are digested and subjected to

MS/MS analysis. C Heavy to light ratios (H:L) from triplicate datasets (n = 3) com-
paring identifications from reference and variant searches; mean ratio value indi-
cated, dashed lines indicate ground-truth log2 ratio, statistical significance was
calculated using a two-sided Mann-Whitney U test, **p <0.01, ns p >0.05 (1:1,
p =0.002; 10:10, p =0.083; 1:4, p =0.84, 4:1, p =0.093; 1:10, p =0.056; 10:1.
p =0.061). D Retention time difference for heavy and light identified peptides for
reference and variant searches; mean value indicated, statistical significance was
calculated using a two-sided Mann-Whitney U test, ns p >0.05 05 (1:1, p =0.47;
10:10, p =0.42; 1:4, p =0.45, 4:1, p =0.57; 1:10, p =0.13; 10:1. p =0.34)… Box plot
center line, median; limits are upper and lower quartiles; 1.5x interquartile range.
Proteomic data is found in Supplementary Data 1 and source data in the Source
Data file.
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database(COSMIC-CLP)55,56 (Fig. 2A). A comparatively small subset of
cell lines was observed to be particularly missense rich, with only 15
out of 1020 total cell lines in COSMIC harboring 77,693 or ~18% of the
~2 million unique missense variants cataloged (Fig. 2B, Supplemen-
tary Fig. 5A and Supplementary Data 2). Gratifyingly and consistent
with our hypothesis, cysteine was a top-gained amino acid, both
across all COSMIC cell line variants (23,220 total acquired cysteines;
5.4% of total COSMIC cell line mutations) and across the top 15 high
missense burden cell lines (4725 total acquired cysteines found in 3,
688 genes), with a strong correlation between overall missense
burden and net acquired cysteines (Fig. 2B–D and Supplementary
Fig. 6). These data suggested that a comparatively small fraction of
cell lines could prove useful for proteogenomic analysis of somatic
variants in cancer.

Nearly 30% (219/738) of the Census genes (v98) identified in the
top 15 missense-rich cell lines were found to harbor one or more
gained cysteines (Supplementary Data 2), and <10% of these genes
have been targeted by FDA approved drugs29,57 (Fig. 2E).

dMMR cell lines are enriched for SAAVs, including acquired
cysteines
Microsatellite instability (MSI) caused by deficiencies in mismatch
repair (dMMR), as opposed to functional MMR or proficient mismatch
repair (pMMR), is a prominent feature of missense mutation-rich cell
lines. Notably, 7 of the top 15 missense cell lines in COSMIC are known
mismatch repair deficient cell lines58–60 (Fig. 2D and Supplementary
Fig. 7), and only MeWo cells, which are derived from metastasized
melanoma, were reported to be microsatellite stable (MSS)58. The
majority of missense-rich cell lines, including the dMMR lines were
observed to encode between 5000 and 10,000 total SAAVs and 200
and 500 acquired cysteine SAAVs (Supplementary Fig. 5). By causing
C→T mutations primarily at CpG sites, the mutational signature of
defective mismatch repair (SBS6) should favor gain-of-cysteine61.
While the missense-rich nature of the dMMR cell lines provides an
exciting opportunity for high variant coverage proteogenomics, the
predominance of MSI across the cell line panel together with the
marked overrepresentation of colorectal carcinoma (CRC) cell lines

Fig. 2 | Acquired cysteines are prevalent across cancer genomes, particularly
for highmissense burden cell lines. A The full scope of acquired cysteines in the
COSMIC Cell Lines Project (COSMIC-CLP, cancer.sanger.ac.uk/cell_lines) (v96)55,56

were analyzed. B 1020 cell lines stratified by the number of gained cysteines and
total missense mutations; color indicates cancer type for the top 15 highest mis-
sense count cell lines. C Net missense mutations (gained-lost) from COSMIC-CLP

(v96). D Top 15 cell lines with highest missense burden from panel (B); linear
regression and 95% confidence interval shaded in gray. E Overlap of genes with
acquired cysteines in top 15 subsets from panel (B) with Census genes and targets
of FDA-approved drugs. F Panel of cell lines used in this study with MMR status
(dMMR=deficient mismatch repair, pMMR=proficient mismatch repair). Data is
found in Supplementary Data 2 and source data is in the Source Data file.
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(Fig. 2B and Supplementary Fig. 7) prompted us to broaden our cell
line panel to better represent genetic variation and to further assess
how cell line MSI status impacted variant content.

An expanded cell line panel incorporates high-value acquired
cysteines
Given the considerable interest in targeting G12C KRAS, we opted to
add several KRASmutated cell lines to our panel (MIA-PACA-2, H2122,
andH358) in order to favor the detection of theG12Cpeptide. Notably,
the smoking-associated mutational signature is C→A/G→T62, which
should also favor gain-of-cysteines. Therefore, we additionally sought
to test whether smoking-associated NSCLC-derived H2122 and H1437
adenocarcinoma cell lines would be enriched for acquired cysteines
when compared to other pMMR cell lines, including lung cancer cell
lines (H358 NSCLC and H661 metastatic large cell undifferentiated
carcinoma (LCUC) lung cancer cell lines). Lastly, we opted to include
CACO-2 cells, an MSS CRC cell line, given the preponderance of

missense rich dMMR CRC cell lines. Our prioritized cell line panel
features 11 cell lines in total (2 female and 9 male) spanning 6 tumor
types and encoding 22,559 somatic variants and 1296 somatic acquired
cysteines, as annotated by COSMIC-CLP (Fig. 2F and Supplementary
Data 2), with aggregate enrichment for gained cysteines observed for
the entire panel (Supplementary Figs. 8, 9). Of the proteins that harbor
gained cysteines, 486 are Census genes, and 5% are targeted by FDA-
approved drugs (Supplementary Data 2).

Incorporating rare variants into our proteogenomic pipeline
COSMIC and related cancer databases often do not report germline
variants found in the general population. Therefore, to enable che-
moproteogenomic assessment of non-cancer-associated SAAVs, we
sequenced exomes and RNA of our cell lines and subjected NGS reads
to variant-calling (Fig. 3A and Supplementary Fig. 10). For all 11 cell
lines sequenced, we identified average 82% of the variants reported in
COSMIC-CLP, including known driver mutations, and 70% of missense
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mutations reported by Cancer Cell Line Encyclopedia (CCLE)58 data-
bases (Supplementary Data 3). 9485 total rare variants and 22,010 total
common variants were identified that had been not previously repor-
ted in COSMIC-CLP. Of those variants not in the COSMIC-CLP 237 are
annotated as pathogenic/likely pathogenic/VUS in ClinVar, and 1251
variants encode acquired cysteines (Supplementary Data 3). Analysis
of DNA damage repair-associated genes revealed specific mutations
(Supplementary Data 3), including DDB2 R313* in MeWo cells, which
provide an explanation for the previously unreported high missense
burden—inactivating mutations in DDB2 are implicated in deficient
nucleotide excision repair63. Pointing towards opportunities to
improve coverage of reference-cysteine-containing peptides, 16,381
total reference cysteines were located proximal (within 10AA) to mis-
sense variants, including 10,508 variants not previously identified in
the COSMIC-CLP (Supplementary Data 3).

We also compared the variant landscape of each cell line with the
goal of identifying ubiquitous common variants together with rare and
cell line-specific variants. As with our analysis of COSMIC-CLP, we
detected a highmissense burden for the dMMR cell lines compared to
the pMMR cell lines (Fig. 3B). In total, 1634 variants were shared across
all cell lines, and 34,636 were unique to individual cell lines, which
illustrates the added value of analyzing multiple cell lines. Notably,
when compared to the pMMR cell lines, we found that nearly all of the
dMMR cell lines, most notably HCT-15 and Molt-4 cell lines, were
comparatively enriched for rare variants and particularly rare,
acquired cysteines compared to the pMMR cysteines (Fig. 3B,C), irre-
spective of sequencing coverage (Supplementary Fig. 11). In contrast,
both pMMR and dMMR genomes harbored comparable numbers of
common variants, including common acquired and lost cysteines
(Fig. 3D andSupplementary Figs. 12–14). Thisfindingpoints towards an
opportunity to use dMMR cell lines for proteogenomic analysis of rare
variants and particularly rare acquired cysteines.

Looking beyond cysteine acquisition, we also considered how the
broader missense amino acid signature varied across cell lines to
identify other features thatmight impact our proteogenomic pipeline.
For common variants, the amino acid gain/loss signatures were gen-
erally consistent across cell lines (Fig. 3D), including for smoking ver-
sus non-smoking-associated lung cancer cell lines (Supplementary
Fig. 15), characterized by marked enrichment for acquired histidine
and cysteine together with loss-of-arginine (Supplementary
Figs. 12–14). For rare variants, cell-line-specific differences in SAAV
content were observed, most notably when comparing the dMMR to
pMMR cell lines (Fig. 3D and Supplementary Figs. 12–14). MeWo cells
harboredmany gains of rare phenylalanine and lysine (Supplementary
Fig. 13), consistent with UV radiation-induced pyrimidine dimers
(Supplementary Fig. 16 and Supplementary Data 3). Thus, we expect
that the ubiquity of loss-of-arginine together with the MeWo gain-of-
lysine signature should alter the tryptic peptide landscape, and pro-
teogenomic analysis should enable improved detection of this class of
missense variants.

Acquired cysteines are ubiquitous in both healthy and diseased
genomes
Looking beyond cancer variants, we were also interested in deter-
mining whether our chemoproteogenomic platform could prove
useful for the study of acquired cysteines more broadly, including
ubiquitous common variants and rare variants that may have links to
monogenic disorders.We hypothesized that gain-of-cysteinemissense
variants should also be ubiquitous in healthy genomes, due to the
comparative instability of CpG–a key consequence of this instability is
the frequent loss-of-arginine codons (4/6 CG dinucleotides)64. To test
this hypothesis, we aggregated and quantified the amino acid changes
resulting from common missense variants reported by dbSNP65 (4-23-
18), a repository of single nucleotide polymorphisms, and ClinVar66

(09-03-22), a repository of variants with reported pathogenicity. We

find that cysteine acquisition is the third most common consequence
of missense variants identified in dbSNP (Fig. 3E and Supplementary
Data 2) for common variants—common variants are defined byNCBI as
of germline origin and/or with aminor allele frequency (MAF) of ≥0.01
in at least onemajor population, with at least twounrelated individuals
having the minor allele. Analogous stratification of variants reported
by ClinVar also revealed a preponderance of gained cysteines com-
pared with lost cysteines, albeit to a more modest degree than that
observed for cancer genomes (Supplementary Fig. 17 and Supple-
mentary Data 2). For the pathogenic variant subset of ClinVar, both
gain- and loss-of-cysteine and gain-of-proline were frequently
observed (Supplementary Fig. 17). Comparing the variants in our cell
line panel to those found in dbSNP and ClinVar, we find that 25,735
(dbSNP/common) and 3982 (ClinVar; 3409 common and 573 rare)
variants are found in our cell line panel, which highlights additional
opportunities for analysis of acquired cysteines relevant to other
genetic contexts, including rare disease and healthy genomes (Sup-
plementary Data 3). Notably, 3560 variants are found within 5 amino
acids of additional variants. The proximity of missense variants, par-
ticularly rare and common variants, points toward a need for combi-
natorial databases67 for proteogenomics.

Deploying chemoproteomics with combinatorial databases
improves coverage of acquired cysteines and proximal variants
To establish our proteogenomics pipeline, we were inspired by the
recent report68 combinatorial databases to improve the detection of
proximal SAAVs, such as the aforementioned variants that are found
within 30 amino acids. To improve the detection of such variants, we
established an algorithm (Supplementary Fig. 1B) to generate all
combinations of SAAVs derived from both RNA/WE-seq data within 30
amino acids flanking the variant site. These combinations were then
converted into a peptide FASTA database containing two tryptic sites
flanking each variant site (Fig. 3F). On average, >4500 total multi-
variant peptide sequences were generated per cell line. Our approach
differs from most prior custom database generators, which offer
‘Single-Each’12,52,69,70 or ‘All-in-One’ outputs71,72 for the former, all pro-
tein sequences harbor one SAAV each; for the latter, each protein
harbors all SAAVs detected. While establishing our combinatorial
databases, we observed that a small number of highly polymorphic
genes (Supplementary Data 4) markedly increased database size—
exemplifying this increased complexity, upwards of 1 billion combi-
nations (2^n -1) are possible for protein sequences with 30 or more
SAAVs. To determine the practical limit for the number of SAAVs/
protein, we performed test searches where we limited the number of
variants to combine (Supplementary Data 4). We find that nearly all
variants are retained with databases that include combinations for
proteins with up to 25 variants (Supplementary Data 4). For the small
set of highly polymorphic protein sequences (e.g., HLA, MUC, and
OBSCN (Supplementary Data 4), Single-Each sequences were sear-
ched (Fig. 3F).

Next, for all 11 sequenced cell lines (Supplementary Data 3), we
prepared and acquired a set of high-coverage cysteine chemopro-
teomics datasets (Fig. 4A) with the goal of identifying acquired
cysteines and variants proximal to reference cysteines. In aggregate,
32,638 total canonical cysteines were identified on 7233 total proteins
(Supplementary Fig. 18 and Supplementary Data 4). Two-stage
MSFragger search using our sample-specific combinatorial databases
identified a total of 59 gained cysteines and 302 SAAVs located prox-
imal to 343 reference cysteines (Fig. 4B and Supplementary Data 4).

Across all these identified SAAVs, we were particularly interested
in assessing the impactof our combinatorial exome andRNA-seq SAAV
databases on variant identification. We identify six multi-variant-
containing peptides (Supplementary Data 4). One noteworthy exam-
ple is the L86P/F92C peptide from the mitochondrial enzyme HADH,
which catalyzes beta-oxidation of fatty acyl-CoAs—two variants, one
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from RNA-seq and one from exome-seq were detected in this peptide.
For the I105V/A114V peptide from enzyme GSTP1, the I105V variants
were flagged as bad-quality reads fromRNA-seq data but passed filters
from the exome-seq data (Supplementary Data 4). Of these combina-
tion variants, two are exome-seq-only derived variants that span exon
boundaries. While the coverage of these multi-variant peptides is
modest, these examples illustrate the valueof combinatorial databases
for proteogenomic search.

We next investigated the specific features of the identified var-
iants, with the goal of determining if we were capturing cysteines not
covered in prior chemoproteomic studies, including those gained due
to variant-induced changes to the tryptic peptide landscape. By com-
paring to our high coverage database of cysteine chemoproteomic
data, CysDB29, we find that chemoproteogenomics identified 74 cano-
nical sequence cysteines located proximal to variants and 60 acquired
cysteines that had not been previously reported in CysDB (Fig. 4C).
Notable examples of acquired cysteine variants not reported in CysDB

include acquired cysteines KRAS G12C and PRKDC R2899C. Consistent
with the aforementioned genomic data findings, we observe arginine as
the most frequently lost out of detected Cys-proximal SAAVs (Fig. 4D).
We detect 15 total cysteines in peptides that harbor gain/loss-of-argi-
nine that were previously too long or too short to be identified (Fig. 4E
and Supplementary Data 4). Exemplifying these peptides, for the
cysteine protease cathepsin B (CTSB), we identify Cys207 in HCT-15
cells, which was not identified in CysDB–a K209Emutation that creates
a longer tryptic peptide sequence compared to the reference sequence
(‘CSK’ to ‘CSEICEPGYSPTYKQDK’) (Fig. 3K). Taken together, these
examples illustrate how the pronounced loss of arginine can impact the
detection of both reference and variant cysteines.

Chemoproteogenomics identifies both rare and common var-
iants including highly deleterious sites
One of our overarching goals for establishing chemoproteogenomics
was to enhance the discovery of likely functional variants. Therefore
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we next assessed features of chemoproteogenomic-identified SAAVs
that could provide insights into the discovery of SAAVs of functional
significance. Given the comparatively modest coverage of acquired
cysteine SAAVs, relative to the genomic dataset, we opted to analyze
both datasets in parallel to delineate specific features that could
inform both the likelihood of proteomic detection and residue
functionality.

With the goal of parsing features that favor SAAV detection, we
next asked whether chemoproteogenomics favored the detection of
rare or common variants or those identified in either or both RNA- and
exome-sequencing datasets,with the hypothesis that rare variantsmay
be less likely to be expressed at the protein level. We find that the
relative proportion of SAAVs identified by chemoproteogenomics
(Fig. 4B) largely parallels the trends observed in our sequencing data
(Fig. 3B), with higher detection for dMMR cell lines, particularly for
rare variants. These trends extend to acquired cysteines, with similar
proportions of rare and common cysteine SAAVs identified by both
genomic and chemoproteogenomic analysis. Notably, most chemo
proteogenomic-detected SAAVs were found in both the exome and
RNA-Seq datasets (Fig. 4B), pointing toward the likelihood that variant
calling from RNA-seq data should prove sufficient for variant
detection.

Towards guiding the discovery of functional SAAVs, we also
stratified the predicted deleteriousness of the identified missense
variants (Fig. 5A and Supplementary Data 3). We focused on the
Combined Annotation- Dependent Depletion (CADD) score due to its
highly reported specificity and sensitivity73 and our prior findings that
showed a strong association between cysteine functionality and a high
CADD score35. Unsurprisingly, our analysis revealed higher CADD
scores for rare variants compared to common variants, across the cell
line panel (Fig. 5B, C and Supplementary Data 3). More unexpectedly,
we observed a marked increase in the predicted pathogenicity of the
rare variants detected in dMMR cell lines compared with pMMR cell
lines (the top 1% most predicted deleterious mutations have CADD
phred-scaled scores >20) (Fig. 5B, C and Supplementary Figs. 19, 20).
These trends were maintained in our proteomic datasets, with
enrichment of high CADD score missense variants in the dMMR rare

variant subset, including for gain-of-cysteine SAAVs (Supplementary
Fig. 21). Even more striking, further stratification by specific gained or
lost amino acids (Fig. 5D andSupplementary Figs. 22–25), revealed that
gained cysteine missense mutations are the most significantly enri-
ched forhighpredicteddeleterious scores across all pMMRanddMMR
cell lines (Supplementary Data 3). These findings provide evidence in
support of the use of dMMR cell lines as useful model systems for
proteogenomic detection of likely deleterious variants.

Possibly complicating matters, nearly all of the 77 variants in
Clinvar and identified by chemoproteogenomics were annotated as
benign (Supplementary Data 4). Similarly, chemoproteogenomics
failed to capture several key Census gene SAAVs that we detected on
the genomic level (e.g., SMAD4 (D351H) in CaCo-2, FBXWY (R505C) in
Jurkat and CDK6 (R220C) in Molt-4 cells). These examples provide
additional anecdotal evidence of the challenges associated with
detecting deleterious variants.

Chemoproteogenomics did, however, capture 16mutations and 7
putative driver mutations (dN/dS p-values) that were identified in
Census genes. Several high-value census gene SAAVs were dis-
tinguished by both high CADD scores (>20) and proximity to known
pathogenic mutation sites. These variants of interest include MLH1
R385C, RAD17 L557R (proximal Cys551/556),MSN R180C, HIF1A S790N
(proximal Cys800) and CTCF R320C, a likely pathogenic position in
this protein (Supplementary Data 4). A prevalent driver was KRAS
G12C, which was identified in several of the cell lines known to harbor
this variant as a drivermutation (MIA-PACA-2 andH358but notH2122).
As KRAS expression is known to vary across cell lines58, this data sug-
gests both H358 and MIA-PACA-2 cell lines are suitable for chemo-
proteogenomic target engagement analysis of G12C-directed
compounds.

Chemoproteogenomics captures previously undetected
variants
Exemplifying the utility of chemoproteogenomics (Fig. 6A) to uncover
previously undetected variants, we find that 20 of the identified SAAVs
have not been previously reported in COSMIC, CCLE, or ClinVar
(Supplementary Data 4). One variant of unknown significance, not
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reported in ClinVar, is high mobility group box 1 (HMGB1) R110C
labeled in the Molt-4 cell line (Fig. 6B) (CADD score = 24.1). Adjacent
Cys106 is a cysteine under a highly controlled redox state that is
responsible for inactivating the immunostimulatory state of
HMGB174–77. We also identify Cullin-associated NEDD8-dissociated
protein 1 (CAND1) G1069C—a site which mutated in the Arabidopsis
thaliana ortholog reduces auxin response78—and SARS R302H (prox-
imal Cys300;CADD= 32), a mutation in the ATP binding site of serine-
tRNA ligase, which is a tRNA ligase involved in negative regulation of
VEGFA expression79. These three examples illustrate the capacity of
chemoproteogenomics for the identification of potentially function-
ally relevant variants.

Chemoproteogenomics identifies SAAVs proximal to likely
functional sites
As CADD scores only provide a prediction of deleteriousness, we also
asked whether any of the identified variants are located proximal to
known functional sites and sites of post-translational modification. At
the genomic level, we find that the dMMR rare variant set is enriched
for known proximal active site/binding site residues (Fig. 6C and
Supplementary Data 3). Within the proteomic dataset, only 3 variants
were located at annotated active or binding sites including previously
mentioned HMGB1 R110C, tRNA synthetase EPRS R1152L (proximal
Cys1148; CADD= 33), a mutation known to cause complete loss of
tRNA glutamate-proline ligase activity80, and SARS R302H. Thus, we
broadened our analysis to include SAAVs at or proximal to UniProtKB
annotated active sites (AS) andbinding sites (BS) (Fig. 6D).Wefind that
27 SAAVs are locatedwithin the permissive range of 10 amino acids of a
known functional residue, including 4 active sites and 24 binding sites.

Beyond AS/BS proximity, we also assessed proximity to other
likely functional sites, known functional domains, and PTM-modified
sites reported by Phosphosite81. We find generally no marked bias for
variants located in specific domain types, with the ubiquitous P-loop
NTPase domain as the most SAAV-rich domain (Supplementary Fig. 27
and Supplementary Data 4). We do, however, observe that variants in
GPCR transmembrane domains are likely challenging to detect by
proteogenomics. In our genomic datasets, GPCR transmembrane
domains are enriched for variants. This enrichment does not extend to
our proteomic analysis (Supplementary Fig. 27 and Supplementary
Data 4). This difference in coverage can be rationalized by membrane
proteins’ generally low abundance, hydrophobicity, and the lack of
tryptic sites in transmembrane domains, which together make pro-
teomic detection of peptides from GPCRs and related proteins parti-
cularly challenging9,82,83.

Intriguingly, analysis of known PTM-modified sites reported by
Phosphosite81 revealed a significant association between arginine
methylation sites and rare variants in dMMR cell lines (Fig. 6E).
Examples of such variants thatwe detected via chemoproteogenomics
include the methylation sites XRN2_p.R925C (CADD= 31) and
HSPH1_p.R265C (CADD= 32), as well as phosphorylation site
CNN2_p.S244Y (CADD= 27.5). These findings are consistent with loss-
of-arginine as a frequent consequence of exonic CpG mutability64,84,
together with the roles of MMR in protecting against CpG-associated
deamination85. As 60% of the gained cysteines in our data resulted
from loss-of-arginine (Supplementary Fig. 26), we expected that many
of these variants would result in altered PTM status.

Because cysteines play critical roles in protein structure via dis-
ulfide bond formation together with additional cysteine oxidative
modifications86, we asked whether identified loss-of-cysteine variants
(10 in total) were annotated as involved in disulfides. Likely due to the
comparatively small number of loss-of-cysteine variants, none were
observed with disulfide annotations. To further pinpoint whether any
variants are sensitive to oxidative modification, we subjected our
previously reported Jurkat cell redox chemoproteomics datasets to
reanalysis24. For nearly all of the cysteines quantified with proximal

variants, both in our reference database searches and second stage
searches, we observed a high concordance between variant- and
reference sequence oxidation (R2 = 0.77). One notable exception was
the Mitochondrial-processing peptidase enzyme (PMPCA) Cys225,
wheremarkedly different cysteine oxidation states were measured for
the reference peptide cysteine (~3% oxidation) and variant peptide
cysteine (~88% oxidation) (Fig. 6F). These data provide evidence that
the proximal P226S (CADD= 25.1) mutation profoundly impacts
Cys225 sensitivity to oxidative modifiers.

Chemoproteogenomics enables the high confidence detection
of multi-mapped genes, including for highly polymorphic
sequences
One challenge for chemoproteogenomics is the accurate assignment
of variant-containing peptide sequences to the corresponding muta-
ted gene. Exemplifying this challenge, and as a cautionary example in
mapping peptides, we identify several SAAV-peptides that match to
multiple protein sequences, including sequences in human leukocyte
antigens (HLA) and POTE ankyrin domain family proteins (Fig. 6G).
Most notably, the RHOT2 R425C (CADD= 23.2) mitochondrial GTPase
peptides in H358 cells have exact sequence similarity to KRAS G12C
peptides; these half-tryptic peptides are also identified in H1437 cells
that do not harbor the KRAS G12C variant. Thus, without cell-line
matched variant databases, chemoproteomic data for the RHOT2
cysteine could easily be misconstrued as reflective of the G12C KRAS
peptide.

The HLA or Major Histocompatibility Complex (MHC) Class I
molecules represent another particularly challenging class of sequen-
ces for chemoproteogenomic analysis, distinguished by the presence
of multiple possible variant combinations and high sequence redun-
dancy. HLA are highly polymorphic, with ~15,000 HLA alleles reported
in the human population87. Exemplifying the impact of this poly-
morphism on proteomic sequence coverage, our panel of cell lines
alone harbor >25 HLA-A, B, and C alleles (SupplementaryData 3), while
most protein reference databases only contain one copy of eachMHC
Class I and Class II molecule. This complexity together with the
important functions in innate immunity and therapeutic relevance of
the HLA proteins88–91 inspired us to assess the impact of chemopro-
teogenomics on achieving improved coverage of highly polymorphic
genes (Fig. 6H).

Demonstrating the value of our proteogenomic analysis, we
achieved ~50% more coverage of HLA-A sequence in comparison to
reference searches (Fig. 6I, Supplementary Fig. 28). A keyfindingof our
analysis was detection of HLA-B Y91C (CADD=4.9) (C67 post signal
peptide cleavage), which lies in the extracellular peptide binding
pocket of HLA-B and was identified as IAA-labeled in MeWo cells
(Fig. 6J). TheMeWocell lineHLA alleles (HLA-B*14:02 andHLA-B*38:01)
both harbor this comparatively rare Cys. Notably, this cysteine is also a
key feature of the pathogenic ankylosing spondylitis associated allele
HLA-B*27(Brewerton et al. 1973; Alvarez et al. 2001).

To further vet the capacity of our chemoproteogenomic platform
in faithfully capturing cysteine peptides frommulti-mapped genes, we
established a gel-based activity-based protein profiling (ABPP)92–94

platform for Cys67 HLA alleles. We co-expressed C-terminal FLAG
tagged HLA-B*38:01 and the related and pathogenic HLA-B*27:05
alleles with beta-2-microglobulin (β2m) and subjected cells to in situ
IAA labeling followed by lysis, FLAG immunoprecipitation to enhance
the detectability of the HLA cysteine and click conjugation to rhoda-
mine azide (Fig. 6K). Gratifyingly, we observed a Cys67-specific rho-
damine signal (Fig. 6L) that was blocked by the Cys67Ser point
mutation, showcasing the utility of gel-based ABPP in visualizing HLA
small molecule interactions. Notably IAA labeling was also observed
for HLA-B27:05, although the presence of a strong co-migrating band
in the HLA-B27:05 C67S immunoprecipitated sample complicates
interpretation of the specificity of this labeling to Cys67. We were
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unable to observe comparable signal in lysate-based labeling studies,
supporting enhanced accessibility of this cysteine to cell-based label-
ing (Supplementary Fig. 29).

Assessing how differential expression impacts chemoproteo-
genomic detection
Our comparatively modest coverage of SAAVs achieved by chemo-
proteogenomics (particularly when compared to our genomics data-
sets) is on par with the coverage reported by most prior
proteogenomics studies6,8,17. A notable exception is a recent study by
Coon and colleagues that implemented ultra-deep fractionation to
achieve more global coverage of variants9. Inspired by this work, we
next sought to ask whether chemoproteogenomics, with its built-in
enrichment step, would enable sampling of variants not detectable by
fractionationmethods (Fig. 7A).We subjected lysates fromHCT-15 and
Molt-4 cells, which were chosen based on high rare missense burden,
to tryptic digestion, off-line high pH fractionation and LC-MS/MS
analysis. In aggregate across both cell lines, we identified 8,435 pro-
teins and 149,006 peptides, including 1069 unique SAAVs found in
1352 total peptides using our two-stage FDRMSFragger search (Fig. 7B,
Supplementary Fig. 30 and Supplementary Data 5). Illustrating the use
of our combinatorial databases, 26 peptides were identified that con-
tained multiple variants (Fig. 3F and Supplementary Data 5).

With these bulk datasets in hand, we next compared the variant
content to that afforded by chemoproteogenomics for the matched
HCT-15 and Molt-4 proteomes (145 total SAAVs identified by chemo-
proteogenomics for these two cell lines). Net gained amino acid ana-
lysis (Supplementary Figs. 31, 32) revealed similar trends, with cysteine
in the top three gained and arginine as the most lost amino acid for
both enriched and unenriched datasets. Illustrating the added value of
chemoproteogenomics, 70 SAAVs, including eight acquired cysteines,
were uniquely identified compared tounenriched datasets (Fig. 7C and
Supplementary Data 4, 5). Furthermore, we find that enrichment
afforded a ~5-fold boost in the relative fraction of acquired cysteines
captured (Fig. 7D). Alongside the benefits of chemoproteomics cap-
ture, bulk proteomic analysis revealed unique variants. Bulk analysis
identified 85 notable variants belonging to Census genes, including
BRD4 E451G (CADD= 31) and KRAS G13D (CADD= 23.8), and 26 rare/
common variants of uncertain significance in ClinVar, including rare
gain-of-cysteines ubiquitin hydrolase USP8 Y1040C (CADD= 28.5) and
LMNA R298C (CADD= 27.2) (Fig. 7E and Supplementary Data 5). Most
of these census variants are found in peptides not containing cysteines
and thus, should not be detected by chemoproteogenomics.

Given that cysteine chemoproteomics requires peptide derivati-
zation with a comparatively large (463Da) biotin modification, we
additionally postulated that some differences in coverage could also
be ascribed to the behavior of peptides during sample acquisition.
Comparing the properties of the SAAV peptides detected by chemo-
proteogenomics versus proteogenomics, we observed a more
restricted charge state distribution for cysteine-enriched samples and
no appreciable differences in the amino acid content beyond enrich-
ment for cysteine (Supplementary Fig. 33). While we did not observe
differences in the peptide lengths in our comparison between the
chemoproteomic-enriched and high pH detected SAAV peptides, a
marked significant increase in SAAV peptide length (average 5AA
longer)was observed compared to referencepeptides in both datasets
(Fig. 7F). This increased peptide length is consistent with the ubiquity
of loss-of-arginine SAAVs in both datasets, which are favored in the
longer length peptides (Supplementary Fig. 34). Thus, we concluded
that chemical properties are not the primary reason for the difference
in coverage between bulk and cysteine enrichment proteomics.

Therefore, we asked whether protein or RNA abundance might
rationalize the differences in SAAV coverage for each method. Com-
parison of normalized transcript counts for SAAV-matched genes
identified either by chemoproteogenomics or in our bulk proteomic

dataset, for HCT-15 cells revealed no significant difference between
measured transcript abundance between the sets (Fig. 7G and Sup-
plementaryData 5).A SupplementaryData subset of SAAVs (3262 total,
including PIK3CA E545K, TP53 S241F, SMARCA4 R885C TCGA hotspot
mutations all with CADD>27) with low abundance transcripts (less
than 4000 normalized counts) were not detected in either the che-
moproteogenomics or bulk proteogenomics. This finding provides
evidence that low transcript abundance correlates with a decreased
likelihood of variant detection both for bulk proteomics and for che-
moproteomics. These trends for relative ease of proteomic detection
are not restricted to variants and also extend to reference cysteines,
with a marked enrichment of undetected cysteines encoded by low
abundance transcripts (Supplementary Fig. 35).

Given the likely disconnect between transcript abundance and
protein abundance95–97 for some SAAVs analyzed, we also extended
these analyses to measures of protein abundance. Using label-free
quantification (LFQ) analysis, no difference was observed in protein
abundance, inferred from quantified protein intensities, between the
bulk fractionated samples and the chemoproteogenomic samples
(Fig. 7H and Supplementary Data 5). Consistent with low abundance
protein variants being challenging to detect, SAAVs detected via both
proteomics workflows were observed to belong to more abundant
proteins, in comparison to variants only detected via genomics.

Both the transcript and protein abundance analyses do not
delineate reference from variant-specific transcript/protein sequen-
ces. Therefore, to further delineate the capacity of chemoproteoge-
nomics todetect lowabundancevariants,we assessed the variant allele
frequencies (VAF) for detected SAAVs. We find that high-pH variant
allele frequencies (VAF) were significantly higher than the chemopro-
teogenomic detected SAAVs, including the acquired cysteine subset,
which were comparable to the aggregate bulk RNA-seq VAFs (Fig. 7I,
Supplementary Data 5 and Supplementary Fig. 34). This enrichment
for lower VAF for the chemoproteogenomic detected SAAVs hints at
the utility of chemoproteogenomics for capture of rare variant-
containing peptides.

Guided by these findings, we asked whether chemoproteoge-
nomics was well suited to capture deleterious variants, with the
hypothesis that proteins harboring these likely damaging variantsmay
be lowly expressed. Consistent with this premise, the mean CADD
scores for the chemoproteogenomics identified variants were sig-
nificantly higher than those calculated for the variants identified via
bulk proteomics (Supplementary Fig. 36). Notable high-CADD score
(>29) variants identified only from enrichment include lysine deme-
thylase KDM3B D1444Y, RNA polymerase POLRMT R805C, glycopro-
tein transporter LMAN2 R218C and Serine/threonine-protein
phosphatase PP1-alpha catalytic subunit PPP1CA D203N (Fig. 7C).
Taken together these findings illustrate the added value of chemo-
proteogenomics in capturing functionally interesting variants.

Chemoproteogenomics enables ligandability screening
As demonstrated by our previous studies, cysteine chemoproteomics
platforms are capable of pinpointing small-molecule targetable
cysteine residues21,30,31,34. Therefore, we next paired our two-stage FDR
search method with cysteine-reactive small molecule ligandability
analysis to establish a chemoproteogenomic small molecule screening
platform (Fig. 8A). We first opted to use the widely employed scout
fragment KB0221 (Fig. 8B) to compare the ligandable variant pro-
teomes for three high variant burden dMMR cell lines (HCT-15, Jurkat,
andMolt-4). For KB02 treated samples,we identified 210 total variants,
of which 8 were ligandable (Fig. 8C). The high concordance for ratios
detected for variant peptides with multiple alleles provides evidence
of the robustness of our platform and hints that most cysteine prox-
imal variants do not substantially alter cysteine ligandability (Fig. 8D).

To provide a focused assessment of the structure-activity rela-
tionship (SAR) of small molecules for individual cysteines, we next
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subjected theHCT-15 proteome tomore in-depth analysis using a small
panel of custom electrophilic fragments (Fig. 8B and Supplementary
Fig. 37). We observed 27 total liganded variant peptides in 27 proteins
in the HCT-15 proteome, which were labeled by one or more

compounds (Fig. 8C). As with the KB02 cell line comparison, nearly all
multi-allelic peptides showed comparable ratios (Fig. 8E). One notable
exception was EPRS P1482T (CADD= 27.2), which showed markedly
different reference and variant ratios—the mutated proline nearby Cys
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1480may be requisite for labeling by electrophilic fragments (Fig. 8F).
As multi-allelic acquired cysteine sites cannot be captured sans
cysteine, no analogous ratio comparisons could be performed for the
6 total quantified acquired cysteines (Fig. 8G).

We also asked whether any of the ligandable variants would likely
alter protein activity. We chose to focus on three metrics to guide our
prioritization of likely variants for functional analysis, CADD score,
proximity to known functional sites, and variants that result in gained
cysteines.We analyzed active site and binding sites within 10 angstrom
distance of the ligandable cysteine residues and cysteine-proximal
variant sites (Supplementary Data 6). We find three ligandable
cysteines near or in active/binding sites including previously identified

HMGB1 Cys106 (R110C, CADD= 24.1) (Fig. 8A), as well as Aldolase A
ALDOA Cys178 (G196G, CADD= 26.2) and HLA-B/C Cys125 (V127L/
S123Y, CADD<1). Other notable sites were the aforementioned CAND1
G1069C and Tubulin beta 6 (TUBB6) G71C, CADD= 32, which resides
proximal to the GTP binding site (Fig. 8C, G).

Of these intriguing variants, we selected CAND1 and HMGB1 for
follow-up analysis. For each protein, we generated both the corre-
sponding gain-of-cysteine mutations together with tryptophan muta-
tions. Our prior work98 and that of others99 have shown the
comparatively bulky tryptophan mutation serves as a useful surrogate
for small molecule binding. Therefore, as our scout fragments are
modestlypotent,we chose touse tryptophanpointmutations in lieuof

Fig. 8 | Assessing ligandability of variant proximal cysteines and gain-of-
cysteines. A Schematic of activity-based screening of cysteine reactive com-
pounds; cell lysates are labeled with compound or DMSO followed by chase with
IAA and ‘click’ conjugation to heavy or light biotin click conjugation to our iso-
topically differentiated heavy and light biotin-azide reagents, tryptic digest, LC-
MS/MS acquisition, and MSFragger analysis. B Chloroacetamide compound
library. C Total quantified variants and total ligandable variants (log2 Ratio >2)

identified stratified by cell line (KB02 data) or compound (HCT-15 cell line).
D Correlation of high-confidence variant containing and reference cysteine ratio
values from KB02 data. E Correlation of high-confidence variant containing and
reference cysteine ratio values from SOcompound data.F Log2 heavy to light ratio
values for variant containing and reference cysteine peptides. G Subset of gain-of-
cysteine peptide variant log2 ratios. Data is found in Supplementary Data 6, and
source data is in the Source Data file.
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small molecule treatment to minimize the risk of non-specific com-
pound labeling complicating the interpretation of variant function-
ality. Using a coimmunoprecipitation assay, we find that CAND1
G1069C but not G1069W completely blocks interactions with CUL1
(Fig. 9A). This finding is notable given the important functions of this
hairpin inmediating SKP1-SKP2 dissociation from SCF, which is critical
to regulating the functions and composition of E3 ligase
complexes100,101.

As a second case study, we turned to HMGB1, which is known to
function as a redox-active cytokine74–76. Therefore, we opted to assess
its binding to toll-like receptor (TLR) 4, which has previously been
reported as bound specifically by the disulfide (Cys23-Cys45) form of
HMGB1—the fully reduced (all thiol) protein does not activate TLR4
signaling activity. Notably the fully oxidized (includingCys106) formof
HMGB1 is also inactive77. Thus, we hypothesized that the R110C
mutation we identified would decrease cytokine activity. To test this
hypothesis, we expressed and purified recombinant wild-type HMGB1
together with both the R110C and R110Wmutant proteins. Then using
a human TLR4 HEK-Blue reporter cell line74–76, we compared the rela-
tive TLR4 response to treatmentwith eachprotein. Providing evidence
that ourHMGB1protein is active in this assay,weobserveno significant

difference relative to commercially available (TECAN) disulfide (diS)
protein and our wild-type protein (Fig. 9B, C). Revealing the functional
impact of the R110 mutations, we find that both the acquired cysteine
and bulkier tryptophan scanning mutation significantly attenuate
HMGB1-induced TLR4 response, with a more substantial effect
observed for the tryptophanmutation. Taken together, these two case
studies illustrate the utility of chemoproteogenomics in the discovery
of functionally important gain-of-cysteine variants.

Discussion
SAAvs are a ubiquitous feature of human proteins, which remain
under-sampled in established proteomics pipelines. Guided by the
unique chemistry of the cysteine thiol, we focused our studies on
guiding the discovery of functional, redox-sensitive, and potentially
druggable acquired cysteine SAAVs together with variants proximal to
reference cysteines. To enable the discovery of the variant cysteinome,
we merged genomics with mass spectrometry-based chemopro-
teomics to establish chemoproteogenomics as an integrated platform
tailored to capture and functionally assess the missense variant
cysteinome. Our chemoproteogenomics study is distinguished by a
number of features including: (1) genomic stratification of the
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measurements. Data is found in Supplementary Data 6, and source data is in the
Source Data file.
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predicted pathogenicity of acquired cysteine residues, (2) cell-line
paired custom combinatorial search databases, (3) FragPipe enabled
two-stage FDR database search platform ensuring class-specific FDR
estimation, and (4) capacity to pinpoint both redox-sensitive and
ligandable genetic variants proteome-wide. To facilitate widespread
adoption of our approach, including for applications beyond the study
of the variant cysteinome, the user-friendly GUI-based FragPipe plat-
form now features a robust semi-automated version of our two-stage
FDR search (Supplementary Fig. 2). In total, across 11 cell lines
sequenced, chemoproteogenomics identified 1453 missense variants,
of which 116 led to gain-of-cysteine.

Our paired genomic andproteomic analyses revealed a number of
noteworthy findings that we expect should help to guide ongoing and
future efforts in pinpointing functional and therapeutically relevant
variants. We find that cysteine acquisition is a ubiquitous feature of
human genetic variation spanning rare and common variants identi-
fied in COSMIC, ClinVar, and dbSNP. The instability of CpG motifs is a
key driver of bulk cysteine acquisition, which occurs largely hand-in-
hand with bulk arginine depletion, across both cancer genomes and
healthy genomesWe also find that the previously reportedwidespread
cysteine acquisition in cancer genomes38,102 is predominated by mis-
match repair deficient cell lines, and particularly MSI high colorectal
cancer cell lines. Nearly all of the acquired residues in these lines are
not driver mutations, which complicates their use as models for
assessing the potential druggability of variantswith established clinical
connections. Further showcasing the challenges with identifying
acquired cysteine driver mutations, we find that many such variants
were only detectable at the genomic and not proteomic levels, for the
cell lines analyzed, including for both bulk proteomic and chemo-
proteomic analyses. Thus, we expect that future studies focused on
these high-value variants will benefit from targeted approaches, such
as GoDIG103, and together with CRISPR-Cas9 base editing to engineer
variants of interest into endogenous loci28,104–107. Furthermore, we
expect that a subset of the tough-to-detect variants may cause
decreased protein stability and premature degradation. Such variant-
induced changes in protein half-life may be detectable by pairing
proteasome inhibition with chemoproteogenomic analysis.

Our work highlights the potential synergy between chemopro-
teogenomics, small molecule screening, and redox biology. Our dis-
coveryof a cysteine inPMPCA that exhibits variant-dependent changes
in oxidation provides an intriguing anecdotal example that supports
the future utility of chemoproteogenomics in more broadly char-
acterizing themissense variant redox proteome. Given the critical role
that disulfidesplay in protein structure and folding and the causal roles
for cysteine mutations in human disease, for example, the NOTCH
mutations that cause the neurodegenerative disorder CADASIL108, we
expect a subset of these lost cysteines could be implicated in altered
protein abundance or activity. Through cysteine chemoproteomic
capture, we identified ligandable variant-proximal cysteines in Census
genes such as RAD17, including one gain-of-cysteine of uncertain sig-
nificance in LMNA (R298C). Other liganded cysteines proximal to
variants of uncertain significance include TJP2 (A906R) and SRRT
(R415Q). Demonstrating the utility of our approach, we identified a
Cys91 (Cys67) as labeled by IAA both by proteomics and gel-based
ABPP. As this cysteine is shared with the pathogenic HLA-B27, it is
exciting to speculate about the impact of covalent modification on
HLA peptide presentation. Our application of chemoproteogenomics
to screening of a focused library of electrophilic compounds identified
32 ligandable variant-proximal cysteines which demonstrates that
cysteine ligandability can be assessed proteome-wide in a proteoform-
specific manner. Consistent with the significance of the identified
variants our functional studies revealed that both HMGB1 and CAND1
variants substantially impact protein activity.

In planning for future enhancement of chemoproteogenomics,
we expect that the use of tumor-normal paired variant calling with

tools such as MuTect2109 will further decrease the likelihood of false
discovery introduced by factors such as cell heterogeneity and low
read quality—for cell lines that lack matched normal controls, we
expect that the pairing of publically available datasets (e.g., DepMap,
https://depmap.org/) with custom sequencing data, will prove another
useful strategy to further bolster the quality and accessibility of
variant-containing databases. Such multi-pronged approaches will
likely prove most useful when paired with combinatorial custom
databases, such as the peptide-based databases reported here, which
were designed to minimize increased search space complexity while
also more fully accounting for cell heterogeneity.

Looking beyond our current study, we anticipate multiple high-
value applications for chemoproteogenomics. Application to immu-
nopeptidomics should uncover additional covalent neoantigen sites,
analogous to the recent reports for Gly12Cys KRAS90,110. The pairing of
chemoproteogenomics with ultra-deep offline fractionation should
further increase coverage and allow delineation of variants that alter
protein stability, including the numerous high CADD score acquired
cysteines, which we find were underrepresented in our proteomics
analysis when compared to genomic identification. Inclusion of
genetic variants beyond SAAVs will allow for the capture of additional
therapeutically relevant targets that result from indels, alternative
splicing4,15,111, translocations, transversions, or even undiscovered open
reading frames such as microproteins112,113. Thus, chemoproteoge-
nomics is poised to guide the discovery of proteoform-directed
therapeutics.

Methods
Experimental details and Supplementary Data 1–7 can be found in the
Supporting Information.

Cell culture and preparation of cell lysates
Cell culture reagents including Dulbecco’s phosphate-buffered saline
(DPBS), Dulbecco’s modified Eagle’s medium (DMEM)/high glucose
media, Eagle’s Minimum Essential Medium (EMEM), Roswell Park
Memorial Institute (RPMI) media, trypsin-EDTA, and penicillin/strep-
tomycin (Pen/Strep), and Horse Serum, heat-inactivated (26-050-070)
was purchased from Fisher Scientific. Fetal Bovine Serum (FBS) was
purchased from Avantor Seradigm (lot # 214B17). All cell lines were
obtained from ATCC and were maintained at a low passage number
(<20 passages). HEK293T (ATCC: CRL-3216) cells were cultured in
DMEM supplemented with 10% FBS and 1% antibiotics (Penn/Strep,
100 µ/mL). MIA-PaCa-2 (ATCC: CRL-1420) cells were cultured in DMEM
supplemented with 10% FBS, 1% antibiotics (Penn/Strep, 100 µ/mL),
and 2.5% horse serum. H661 (ATCC: HTB-183), H1437 (ATCC: CRL-
5872), H358 (ATCC: CRL-5807), HCT-15 (ATCC: CCL-225), Jurkat (ATCC:
TIB-152), MOLT-4 (ATCC: CRL-1582) and H2122 (ATCC: CRL-5985) cells
were cultured in RPMI-1640 supplemented with 10% FBS and 1% anti-
biotics (Penn/Strep, 100 µ/mL). HEC-1-B (ATCC: HTB-113), MeWo
(ATCC: HTB-65), and CaCo-2 (ATCC: HTB-37) cells were cultured in
EMEM supplemented with 10% FBS and 1% antibiotics (Penn/Strep,
100 µ/mL). Cells were maintained in a humidified incubator at 37 °C
with 5% CO2. Cells were harvested by centrifugation (4500× g, 5min,
4 °C) and washed twice with cold DPBS. Cell pellets were then lysed
with sonication (amp = 10, 10 × 1 sec pulses). The lysates were then
transferred to a new microcentrifuge tube. Protein concentrations
were determined using a BioRadDCprotein assay kit fromBio-RadLife
Science (5000113, 5000114) and the lysate diluted to the working
concentrations indicated below.

RNA-seq variant calling
Total RNA was extracted from cells using the Invitrogen Purelink
RNeasy Plus Mini Kit (Qiagen, 166043750) or PureLink RNA mini kit
(ThermoFisher, 12183018 A) or Library preparation and RNA sequen-
cingwas carried out by theUCLATechnologyCenter forGenomics and
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Bioinformatics (TCGB). Libraries were prepared using the KAPA-
strandedmRNA kit. Paired-end sequencing (2 × 150) was performed to
a depth of 50–60x with an Illumina HiSeq3000 system. RNAFastq
paired-end reads for each cell line were aligned to Gencode reference
genome hg38 (GRCh38.p13) using STAR-2 PASS alignment (v2.7.3a)114.
We ran STAR with default settings for paired reads and the following
additional parameters:–outSAMtype BAM SortedByCoordinate, --out-
SAMunmapped Within, and --sjdbFileChrStartEnd in the second
alignment. Samtools (v1.7)115,116 calmd was used to add MD tags to
sorted BAM files. Opposum (v0.2, 02-23-2017)117 was used to split reads
and mark duplicates using default parameters and an additional
parameter --SoftClipsExist True. Platypus (v0.8.1)118 was used to call
variants and generate VCF files using default parameters. Samtools flag
stat was used to obtain BAM file-mapped read counts. Raw reads
submitted to Sequence Read Archive (SRA) as BioProject
PRJNA997729.

WE-seq variant calling
Genomic DNA was extracted from cells using the Zymo Quick DNA
Miniprep Plus Kit kit (Fisher Sci, 50-444-149). Library preparation and
exome sequencingwas carried out by theUCLATechnologyCenter for
Genomics and Bioinformatics (TCGB). Libraries were prepared using
the Nimblegen Capturing Kit. Paired-end sequencing (2 × 150) was
performed to a depth of 50–60x with an Illumina HiSeq3000 system.
Fastq paired-end reads for each cell line were aligned to Gencode
reference genome hg38 (GRCh38.p13) using BWA-MEM alignment and
default parameters for paired reads. Output SAM files were converted
to BAM files using Samtools (v1.7) and Picard (v2.21.4) (https://
broadinstitute.github.io/picard/) was used to generate coordinate-
sorted BAM files with read groups added. Samtools was used to
index the files and duplicates were marked with Picard. GATK-
HaplotypeCaller (v4.1.8.1)119 was used to split reads. Since we do not
have matched normal samples, we opted to use the germline caller
GATK-HaplotypeCaller for exome data. Variants were called using
default parameters with the exception of the ploidy option which was
set to the value outlined in Supplementary Data 3 (tab 23). GATK was
used to index the VCF file and filter the variants using the following
parameters: -window 35 -cluster 3 --filter-name FS --filter-expression
“FS >30.0” --filter-nameQD --filter-expression “QD<2.0”. Samtools flag
stat was used to obtain BAM file-mapped read counts. Raw reads
submitted to Sequence Read Archive (SRA) as BioProject
PRJNA997729.

HCT-15 expression analysis
5 biological replicate RNA extracts were sequenced as described and
aligned to hg38 as described in RNA-seq variant calling. Kallisto
(v0.46.1)120 was used to estimate transcript counts with indexed Gen-
code v28 transcriptome (gencode.v28.transcripts.fa) and -b (boot-
strap) set to 100. Abundance transcript files were normalized with DE-
seq2 (v1.28.1)121. The Counts table was subsetted to a curated set of
nonredundant CCDS transcript ID’s (24,950) in Supplementary Data 3
(tab 21), and mean counts were calculated for downstream analysis.
Raw reads submitted to Sequence Read Archive (SRA) as
PRJNA997729.

Predicting amino acid changes
Supplementary Data 3 (tab 21) (nonredundant CCDS transcript ID’s)
was used to remove redundant proteins. VCFs from variant calling
pipelines for both RNA and WES were processed using R package
‘Variant Annotation’122. First, a TxDB object was made using the
Gencode v28 annotation GTF file. The ‘predictCoding’ function using
genome hg38 (GRCh38.p13) was used to obtain protein level changes
from the VCFs, and ‘nonsynonymous’ and ‘nonsense’ changes were
extracted; the resulting table includes a set of internal transcript IDs
labeled ‘TXID’. A database of common SNPs from NCBI (04-23-2018

00-common_all.vcf.gz) was used to annotate SNPs from rare muta-
tions. The output missense table (Supplementary Data 3 tab 22) lists
reference/variant codons and amino acids. This table was filtered to
contain matches to the CCDS set of 24,950 Ensembl transcript IDs
only and those that resulted in single amino acid variants (SAAVs),
ignoring small indels and multi-nucleotide variants (48,552 variants).
Variants passing variant-calling filters were used in Figs. 3, 4 (48,301
variants), and non-PASS variants are included in the proteomics
analyses.

Generation of sample-specific custom databases with all com-
binations of variants
Several R packages were used in generating custom
databases: VariantAnnotation122, GenomicFeatures123, biomaRt124

and BSgenome.Hsapiens.UCSC.hg38 (10.18129/B9.bioc.BSgen-
ome.Hsapiens.UCSC.hg38). A curated set of CCDS transcript ID’s
(24,950) (Supplementary Data 3) was used to subset the Gencode
v28 protein coding translations FASTA file by Ensembl transcript
IDs. These sequences consist of a non-redundant UniProtKB125

subset of cross‐referenced CCDS proteins. Using the previously
generated TxDB object from ‘Predicting amino acid changes’, and
the biomaRt select function, corresponding TXID headers for the
protein FASTA file were obtained by selecting ‘TXID’ with Ensembl
transcript ID keys (‘TXNAME’). Matching TXIDs from all SAAVs with
new protein sequence TXIDs, positions in the corresponding wild-
type protein sequences were replaced with the corresponding
variant amino acid to generate a list of protein sequences con-
taining only one variant per sequence. Protein sequences con-
taining variants shared between RNA and exome-derived variants
were grouped as one sequence. For proteins containing multiple
variants, all possible combinations were generated for variants
within 30 amino acid windows for proteins with 25 (or 15, see SI
tables) or fewer total variants. Output sequences were written to a
FASTA file with headers containing corresponding Uniprot-ID,
Gene ID, Ensembl transcript ID, and missense changes, as well as
cell-line, and sequencing origin (RNA orWE). To limit the increased
search space, the database variant protein sequences were in-silico
digested. A custom Python script was used to in-silico digest the
FASTA to generate tryptic peptides containing 2 miss cleavages
(two tryptic sites flanking amino acids surrounding the individual
variant). Any duplicated peptide sequences were removed to leave
unique sequences. For compatibility with MSFragger-based sear-
ches, simplified FASTA headers were used containing only the
Uniprot ID. Result peptides are mapped back to detailed FASTA
files for variant information. Scripts are available at https://github.
com/BackusLab/chemoproteogenomics.

Proteomic sample preparation for unenriched sample analysis
HCT-15 and MOLT-4 lysates were incubated in 2M urea/PBS at RT
(final concentration = 2mg/mL). DTT (10 μL of 200mM stock in
water, final concentration = 10mM) was added to each sample, and
the sample was incubated at 65 °C for 15min. To this, iodoacetamide
(10 μL of 400mM stock in water, final concentration = 20mM) was
added, and the solutions were incubated for 30min at 37 °C. Fol-
lowing the addition of 3 μL trypsin solution (Worthington Biochem-
ical, LS003740, 1mg/mL in 666 μL of 50mM acetic acid and 334 μL
of 100mM CaCl2, final weight = 2 ng), digest was allowed to proceed
overnight at 37 °C with shaking. The next day, 90μL from each digest
was combined with 210μL water and 0.3μL TFA (final concentration
~0.1% TFA and ~180 μg peptides). Samples were fractionated into low-
bind Eppendorf tubes using a high-pH reversed-phase fractionation
kit (Pierce, 84868). Fractions were dried (Speed Vac) and then
reconstituted with 15μL 5% acetonitrile and 1% FA in MB water and
analyzed by LC-MS/MS. Samples were fractionated in triplicates for a
total of 48 samples.
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Proteomic sample preparation for cysteine-enrichment sample
analysis
Proteome samples (200 μL of 1mg/mL, prepared as described in the
preparation of cell lysates) Samples were then labeled with 2mM IAA
(2 μL of 200mMstock solution inDMSO, final concentration = 2mM)
for 1 h at RT (700 rpm). CuAAC was performed with biotin azide (2)
(4 μL of 200mM stock in DMSO, final concentration = 4mM), TCEP
(4 μL of fresh 50mM stock in water, final concentration = 1mM),
TBTA (12μL of 1.7mM stock in DMSO/tbutanol 1:4, final concentra-
tion = 100μM), and CuSO4 (4 μL of 50mM stock in water, final con-
centration = 1mM) for 1 h at ambient temperature. After CuAAC,
10 µL of 20% SDS was added to each sample. Samples were incubated
with 0.5 μL benzonase (Fisher Scientific, 70-664-3) for 30min at
37 °C. The samples were then subjected to SP3 sample loading, SP3
digest and elution, NeutrAvidin enrichment, and LC-MS/MS analysis,
as described below. Experiments were conducted in duplicate for
each cell line.

Proteomic sample preparation for ligandability screening
HCT-15, MOLT-4, and MeWo proteome samples (200 μL of
2mg/mL, prepared as described in the preparation of cell lysates).
Compound (500 μM) or DMSO vehicle was added to lysates for 1 hr
(2 μL 50mM stocks or 2 μL DMSO). Samples were chased with 2mM
IAA (2 μL of 200mM stock solution in DMSO, final concentra-
tion = 2mM) for 1 hr. CuAAC was performed with heavy biotin azide
(DMSO samples) or light biotin azide (compound labeled samples)
(4 μL of 200mM stock in DMSO, final concentration = 4mM), TCEP
(4 μL of fresh 50mM stock in water, final concentration = 1mM),
TBTA (12 μL of 1.7 mM stock in DMSO/tbutanol 1:4, final con-
centration = 100 μM), and CuSO4 (4 μL of 50mM stock in water,
final concentration = 1mM) for 1 h at ambient temperature. After
CuAAC, 10 µL of 20% SDS was added to each sample. Samples were
incubated with 0.5 μL benzonase (Fisher Scientific, 70-664-3) for
30min at 37 °C. The samples were then subjected to SP3 sample
loading using 80 μL total bead volumes, SP3 digest and elution,
NeutrAvidin enrichment, and LC-MS/MS analysis, as described
below. Experiments were conducted in triplicate for each com-
pound per cell line.

Proteomic sample preparation with TMT labeling
Jurkat lysates (each at 400 µg) were treated with either DMSO or
cysteine reactive compounds (KB2, KB3, JC19) for 1 h at ambient
temperature, each in duplicate. Treated lysates are then labeled
with 200 µM IAA for 1 h in the dark and then ‘clicked’ (via CuACC)
with biotin azide. CuACC conditions were as follows: (4 μL of
200mM stock in DMSO, final concentration = 4mM), TCEP (4 μL of
fresh 50mM stock in water, final concentration = 1mM), TBTA
(12 μL of 1.7mM stock in DMSO/tbutanol 1:4, final concentration =
100 μM), and CuSO4 (4 μL of 50mM stock in water, final con-
centration = 1mM). The samples were then subjected to SP3 sample
loading using 80 μL total bead volumes, SP3 digest and elution, and
NeutrAvidin enrichment, as described below. Samples were then
quantified using a Pierce™ quantitative peptide concentration assay
(ThermoFisher Scientific, 23275). Enriched samples were speed-
vacc’d, resuspended in 100mM TEAB, and labeled with TMT 10plex
reagents (ThermoFisher Scientific, 90114) at a ratio of (6:1 µg TMT
tag to µg of peptide) for 1 h at ambient temperature followed by
quenching with 5% hydroxylamine and acidification with 5% formic
acid. Samples were then cleaned up using Pierce™ C18 spin tips
(Thermo Fisher, Cat. No. 87784) according to the manufacturer’s
instructions. Samples were then combined and dried with Speedvac
and reconstituted with mass spectrometry solvent (5% acetonitrile
and 1% formic acid in molecular-biology grade water) and analyzed
by LC-MS/MS.

SP3 sample loading
SP3 sample cleanupwasperformed generally at a bead/protein ratio of
10:1 (wt/wt) (38). For each 200μL sample, 20μL (or 40μL) Sera-Mag
SpeedBeads Carboxyl Magnetic Beads, hydrophobic (GE Healthcare,
65152105050250, 50μg/μL, total 1mg) and 20μL (or 40μL) Sera-Mag
SpeedBeads Carboxyl Magnetic Beads, hydrophilic (GE Healthcare,
45152105050250, 50μg/μL, total 1mg) were aliquoted into a single
microcentrifuge tube and gently mixed. Tubes were then placed on a
magnetic rack until the beads settled to the tube wall, and the super-
natants were removed. The beads were removed from the magnetic
rack, reconstituted in 1mL of MBwater, and gentlymixed. Tubes were
then returned to the magnetic rack, beads allowed to settle, and the
supernatants removed. Washes 20 were repeated for twomore cycles,
and then the beads were reconstituted in 40μL MB water. The bead
slurries were then transferred to the proteome samples and incubated
for 10min at RT with shaking (1000 rpm).

SP3 digest and elution
Absolute ethanol (400μL) was added to each sample, and the samples
were incubated for 5min at RT with shaking (1000 rpm). Beads were
washed twice with 80% ethanol as described above. Beads were then
resuspended in 200μL 0.5% SDS in PBS containing 2M urea. DTT
(10μL of 200mM stock in water, final concentration = 10mM) was
added to each sample, and the sample was incubated at 65 °C for
15min. To this, iodoacetamide (10μL of 400mM stock in water, final
concentration = 20mM) was added, and the solution was incubated
for 30min at 37 °C with shaking. After that, absolute ethanol (400μL)
was added to each sample, and the sampleswere incubated for 5min at
RT with shaking (1000 rpm). Beads were then again washed three
times with 80% ethanol in water (400μL). Next, beads were resus-
pended in 150μL PBS containing 2M urea, followed by the addition of
3μL trypsin solution (Worthington Biochemical, LS003740, 1mg/mL
in 666μL of 50mM acetic acid and 334μL of 100mM CaCl2, final
weight = 2 ng). Digest was allowed to proceed overnight at 37 °C with
shaking. After digestion, ~4mL acetonitrile (>95% of the final volume)
was added to each sample, and themixtureswere incubated for 10min
at RT with shaking (1000 rpm). Supernatants were then removed and
discarded using the magnetic rack, and the beads were washed
(3 × 1mL acetonitrile). Peptides were then eluted from SP3 beads with
100μL of 2% DMSO in MB water for 1 h at 37 °C with shaking
(1000 rpm). The elutionwas repeated againwith 100μL of 2%DMSO in
MB water. A peptide concentration assay (Pierce, 23275) was per-
formed to test the concentration of the peptide. The elution can be
used for NeutrAvidin enrichment or analyzed by LC-MS/MS.

NeutrAvidin enrichment of labeled peptides
For each sample, 50μL of NeutrAvidin® Agarose resin slurry (Pierce,
29200) was washed three times in 10mL IAP (immunoaffinity purifica-
tion) buffer (50mM MOPS–NaOH (pH 7.2), 10mM Na2HPO4, 50mM
NaCl) and then resuspended in 500μL IAP buffer. Peptide solutions
eluted from SP3 beads were then transferred to the NeutrAvidin®
Agarose resin suspension, and the samples were then rotated for 2 h at
RT. After incubation, the beads were pelleted by centrifugation
(21,000× g, 1min) and washed by centrifugation (3 × 1mL PBS, 6 × 1mL
water). Bound peptides were eluted with 60μL of 80% acetonitrile in
MB water containing 0.1% FA (10min at RT). The samples were then
collected by centrifugation (21,000× g, 1min), and residual beads were
separated from supernatants using Micro BioSpin columns (Bio-Rad).
The remaining peptides were then eluted from pelleted beads with
60μL of 80% acetonitrile in water containing 0.1% FA (10min, 72 °C).
Beads were then separated from the eluants using the same Bio-Spin
column. Eluents were collected by centrifugation (21,000× g, 1min)
and dried (SpeedVac). The samples were then reconstituted with 5%
acetonitrile and 1% FA in MB water and analyzed by LC-MS/MS.

Article https://doi.org/10.1038/s41467-024-53520-x

Nature Communications |         (2024) 15:9284 17

www.nature.com/naturecommunications


Liquid-chromatography tandem mass spectrometry (LC-MS/
MS) analysis
The samples were analyzed by liquid chromatography tandem mass
spectrometry using a Thermo Scientific™ Orbitrap Eclipse™ Tribrid™
mass spectrometer coupled with a High Field Asymmetric Waveform
Ion Mobility Spectrometry (FAIMS) Interface. Peptides were resus-
pended in 5% formic acid and fractionated online using an 18 cm long,
100μM inner diameter (ID) fused silica capillary packed in-house with
bulk C18 reversed phase resin (particle size, 1.9μm; pore size, 100Å;
Dr. Maisch GmbH). The 70-min water acetonitrile gradient was deliv-
ered using a Thermo Scientific™ EASY-nLC™ 1200 system at different
flow rates (Buffer A: water with 3% DMSO and 0.1% formic acid and
Buffer B: 80% acetonitrile with 3% DMSO and 0.1% formic acid). The
detailed gradient includes 0 – 5min from3% to 10% at 300 nL/min, 5 –
64min from 10 % to 50 % at 220 nL/min, and 64 – 70min from 50 % to
95 % at 250nL/min buffer B in buffer A. For bulk fractionation data, the
detailed 80min gradient includes 0 – 3min from 1 % to 10 % at 300 nL/
min, 3 – 63min from 10% to 40% at 220 nL/min, 63 – 73min from40%
to 50% at 220 nL/min, and 73 – 80min from 50% to 95% at 250nL/min
buffer B in buffer A. Data was collectedwith charge exclusion (1, 8, >8).
Data was acquired using a Data-Dependent Acquisition (DDA) method
comprising a full MS1 scan (Resolution = 120,000) followed by
sequential MS2 scans (Resolution = 15,000) to utilize the remainder of
the 1 s cycle time. Time between master scans was set 1 s and 3 s for
compound labeling datasets, validation datasets, and fractionation
datasets. HCDcollision energy ofMS2 fragmentationwas30%. Rawfile
names used for figures are in Supplementary Data 7.

Command-line MSFragger-based variant peptide identification
and quantitation
Raw data collected by LC-MS/MSwere searched using a 2-stage search
scheme implemented using custom bash scripts: MSFragger (version
3.5), Philosopher (version 4.2.2) and IonQuant (version 1.8.0)
enabled45,46,48,49. Precursor and fragment mass tolerance was set as 20
ppm.Missed cleavages were allowed up to 2. Peptide length was set to
7 − 50, and peptide mass range was set to 500 − 5000. Cysteine resi-
dueswere searchedwith variablemodifications at cysteine residues for
carboxyamidomethylation (+57.02146), biotin-azide (+463.2366), and
heavy biotin-azide (+469.2742) added for quant searches in Fig. 8
datasets. Labelingwas set allowing for 3maxoccurrences and ‘allmods
used in first search’ checked. Peptide and protein level FDRwere set to
1%. For ligandability screening, permissive IonQuant parameters
allowedminimum scan/isotope numbers set to 1. First, raw spectra are
searched with normal reference protein sequences (CCDS set), and
peptide-to-spectrum matches (PSM) are filtered to 1% FDR. Custom
bash scripts were used to extract 1% FDR-filtered PSM scan numbers
from this first search. Prior to a second search using the same para-
meters and custom database, a text file of these scan numbers is
generated with leading zeros removed and included as option ‘exclu-
ded_scan_list_file’, allowing remaining scans to be searched with a cell
line-specific custom database containing Uniprot identifiers and tryp-
tic peptide sequences as described in Generation of sample-specific
custom databases. PeptideProphet126 was used for rescoring for both
searches. Bash scripts are available at https://github.com/BackusLab/
chemoproteogenomics.

FragPipe label-free quantitation of HCT-15 fractionation data
Raw data collected by LC-MS/MS were searched with the default LFQ-
MBR workflow provided by FragPipe. With each experimental group
corresponding to fractionation set for a total of three intensity values
per protein in combined.protein.tsv output.MeanLFQ intensities were
calculated, and the non-redundant set of UniProt IDs (Supplementary
Data 3 (tab 21)) was used in downstream analyses.

The MS search results and fasta files have been deposited
to the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the PRIDE partner repository127 with the
dataset identifiers PXD043879 for newly generated data, and
PXD023059 and PXD029500 for re-analyzed data..

Transient expression of HLA-B alleles
Expression plasmids (pTwist CMV) containing HLA-B*38:01, HLA-
B*27:05, HLA-B*38:01 C91S, and HLA-B*27:05 C91S inserts with
C-terminal FLAG-tags were obtained from Twist Bioscience.
pDONR223_B2M_WT was a gift from Jesse Boehm & William Hahn &
David Root (Addgene plasmid # 81810; http://n2t.net/addgene:81810;
RRID:Addgene_81810) and subcloned using GateWay cloning into
C-terminal FLAG destination vector generated from a pRK5 backbone
vector, which was a kind gift fromTWucherpfennig. Plasmids were co-
transfected into 60% confluent 6 cm plated 293 T cells using 14μL PEI,
140μL serum-free DMEM, and 1μg co-transfections or 2μg eGFP
expression plasmid. Cells were harvested after 24h transfections.
Construct sequences and sources available in Supplementary Data 8.

FLAG-IP and Gel based-ABPP of HLA-B alleles: cell surface and
lysate labeling
Cells were washed once with PBS and resuspended in 100μL serum-
freeDMEM.One-half of the cellswere rotated atRT in 200μMIAA (1μL
of 10mM IAA stock) for 1 hr for cell-surface labeling. After spinning
down at 1800× g, the supernatant was removed. Cells were lysed in
30μL 2% CHAPS/PBS for 30min on ice. Remainder cells were lysed
in 30μL 2%CHAPS/PBS. Dilute all samples to 300μL with PBS and spin
1800× g for 1min. Samples were adjusted to 2mg/mL using a Bio-Rad
DC protein assay kit from Bio-Rad Life Science (Hercules, CA). 200μL
of unlabeled lysates were incubated with 200μM IAA (2μL of 20mM
IAA stock) for 1 hr RT. 50 μL EZred FLAG bead suspension per sample
(Sigma, F2426) was washed with tris-buffered saline (TBS) buffer
according to manufacturer recommendations. 50μL washed beads
were added to each sample and rotated for 2 h at 4 C. Beads were
washed 3x with 500μL TBS pelleted at 8200 xg and resuspended in
50μL PBS with 250μg/mL 3x FLAG peptide (Sigma, F4799) and 0.2%
NP-40 alternative (Millipore Sigma, 492016) and rotated for 30min at
4 C. Beads were pelleted at 8200 xg to capture eluted proteins. Eluant
was clicked on to rhodamine-azide (Click Chemistry Tools, AZ109-5)
(25μM rhodamine-azide (1.25mM stock), 1mM Tris(2carboxyethyl)
phosphine (TCEP) (SigmaAldrich) (50mM stock), 100μM Tris[(1-ben-
zyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) (Sigma-Aldrich) (1.7mM
stock), 1mM CuSO4 (50mM stock)) for 1 h at RT. All samples were
denatured (5min, 95 °C) and loadedonto 4–12%CriterionTM XTBis-Tris
gels with XT MOPS running buffer from Bio-Rad followed by semi-dry
transfer to nitrocellulose membrane. 1:2000 dilution of anti-FLAG
rabbit antibody (14793, Cell Signaling) and followed by 1:5000 IRDye®
800CW Goat anti-Rabbit IgG (102673-330, VWR) as well as 1:3000
GAPDH rabbit antibody (2118S, Cell Signaling) followed by 1:5000
IRDye® 680RD Goat anti-Rabbit IgG was used for visualization of
loading and rho signal for IAA labeling.

CAND1 Mutagenesis
G1069C and G1069W point mutations were introduced to WT
pcDNA3-HA2-CAND1 plasmid (Addgene, plasmid #20719) using site-
directed mutagenesis. For G1069C: PCR samples were prepared by
mixing water (33 µL), 5X GC buffer (Phusion) (10 µL), DMSO (2 µL),
dNTP Mix RTU (Zymo) (5 µM, 1 µL), CAND1 plasmid (299 ng/µL, 1 µL),
the given forward and reverse primers (10 µM, 1 µL), and DNA poly-
merase (Phusion) (1 µL). For G1069W: PCR samples were prepared by
mixing water (34 µL), 5X GC buffer (Phusion) (10 µL), DMSO (1 µL),
dNTP Mix RTU (Zymo) (5 µM, 1 µL), CAND1 plasmid (299 ng/µL, 1 µL),
the given forward and reverse primers (10 uM, 1 µL), and DNA poly-
merase (Phusion) (1 µL). PCR amplifications were then performed by
heating the samples at the following temperatures: Step 1: 98 °C
(3min); Step 2: 25 cycles of 98 °C (10 sec), 56 °C (30 sec), 72 °C (5min);
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Step 3: 72 °C, 5min. Plasmid amplification was confirmed by DNA
agarose gel. The PCR products (25 µL)were digested by the addition of
Dpn1 (1 µL) and heated at 37 °C for 3 h before being transformed into
competent Stbl3 cells. Stbl3 cells (50 µL) were thawed on ice for
10mins and then incubated with the PCR products (2 µL) on ice for a
further 10mins. The cells were heated at 42 °C for 45 sec then cooled
on ice for 2min. Room temperature SOC (500 µL) was added, and the
cells were shaken (200 rpm) at 37 °C for 1 h. Themixtures (30 µL) were
spread over agar plates containing ampicillin and then incubated at
37 °C overnight. Single colonies were picked and added to LB (5mL)
with ampicillin (100 µg/mL) then the mixtures were shaken (200 rpm)
at 37 °C overnight. Plasmids were purified using a Zyppy Plasmid
Miniprep Kit (Zymo) and successful mutagenesis was confirmed by
DNA sequencing. Construct sequences and sources available in Sup-
plementary Data 8.

Cul1 and CAND1 Co-Transfections and FLAG-IP
HEK293T cells were co-transfected with 3xFLAG-CUL1-pCMV7.1
(Addgene, plasmid #155019) alongwith the given CAND1 plasmid (WT,
G1069C, G1069W) or control FLAG‑GFP plasmid. To the mixed plas-
mids (5 µg total DNA) was added serum-free DMEM (350 µL) followed
by PEI MAX- Transfection Grade Linear 39 Polyethylenimine Hydro-
chloride (MW 40,000) (Polysciences, Inc., 24765-1) (35 µL of 1mg/mL,
pH 7.4). The solutions were mixed and incubated for 15min at room
temperature before being added dropwise to 10 cm dishes at 60–70%
cell confluency. The cells were incubated at 37 °C, 5% CO2 in a humi-
dified incubator for ~44h before being harvested. The cells were
washed with cold phosphate-buffered saline (PBS) (2 × 3mL) by
resuspension and centrifugation (300 × g, 3min, 4 °C). The washed
cells were collected into cold PBS (1mL), centrifuged (300 × g, 3min,
4 °C), and the supernatant was discarded. The transfected cell pellets
were lysed by suspending in a cold solution of 1%NP-40, 50mMHEPES
(pH 7.4), 150mM NaCl, cOmplete™ Mini EDTA‑free Protease Inhibitor
Cocktail (1 tablet per 10mL) (Roche) (400 µL) and incubating on ice for
30min. The lysates were centrifuged (15000× g, 5min, 4 °C) and the
soluble fractions were collected. Protein concentrations were mea-
sured using a DC Protein Assay Kit (BioRad) (5000113, 5000114) and
each lysate was diluted to 2 – 3mg/mL in the lysis buffer, with all
samples from the same experiment normalized to the same con-
centration. EZview™ Red ANTI-FLAG® M2 Affinity Gel resin (Milli-
poreSigma) (13 µL per sample) was washed with cold Tris-Buffered
Saline (TBS) (2 × 1mL) by suspension and centrifugation (8200× g,
30 sec, 4 °C) before being suspended in cold TBS (100 µL per sample)
and distributed to each lysate sample. The samples were tumbled at
4 °C for 2 h before being centrifuged (8200 × g, 30 sec, 4 °C) and the
supernatant was decanted. The resin was washed with cold TBS
(3 × 600 µL) by resuspension and centrifugation (8200 × g, 30 sec,
4 °C) before being resuspended in 4X Laemmli buffer (BioRad) (40 µL)
and heated at 95 °C for 5min. Lysate input and flowthrough samples
were prepared by mixing lysate or supernatant (50 µL) with 4X
Laemmli buffer with 10% β‑mercaptoethanol (17 µL) and then heating
at 95 °C for 5min. The samples were loaded onto 26 well 4–20% Cri-
terion™ TGX Stain-Free™ Protein Gels (BioRad) along with Precision
Plus Protein™ All Blue Prestained Protein Standards ladder (BioRad)
and protein bands were separated at 140V. The gels were transferred
to nitrocellulose (0.2 µM) membranes (BioRad) using a Trans-Blot
Turbo System (BioRad) with the ‘Mixed MW’ setting. The transferred
membranes were blocked in 5% (w/v) milk in TBS for either 1 h at room
temperature or overnight at 4 °C. The membranes were washed with
TBS (3 × 5min), cut to separate the relevant high and low molecular
weight bands, then incubated with 1:1000 (CUL1 Rb Antibody #4995,
Cell Signaling; anti-HA-Tag Rb mAb #C29F4, Cell Signaling; anti
DDDDK-Tag Rb mAb #D6W58, Cell Signaling) or 1:2000 (β‑Actin Rb
mAb #AC038, ABclonal) primary antibody in 5% (w/v) milk in TBS at
4 °C overnight. The membranes were washed with TBS (3 × 5min) and

then incubated with 1:3000 IRDye 800CW Goat anti-Rabbit IgG Sec-
ondary Antibody (LI-COR) in 5% (w/v) milk in TBS with 0.1% Tween20
(Fisher) for 1 h at room temperature. The membranes were washed
with TBS (3 × 5min) and imaged using a ChemiDoc Imaging System.
Construct sequences and sources available in Supplementary Data 8.

HMGB1 expression and purification
Expression constructs obtained from TWIST Bio in pET29b were
transformed into E. coli BL21-Gold (DE3) cells (Agilent). An overnight
culturewasused to inoculate 3 L of Terrific brothmedia supplemented
with kanamycin (50μg/mL). The cultures were grown to an OD600 of
1.0, the temperature shifted to 20 °C, and protein expression induced
by the addition of IPTG (final concentration of 0.5mM). Cell growth
was continued overnight, and the cells were harvested by centrifuga-
tion. Cell pellets were resuspended in Buffer A (50mM Tris pH 7.5,
500mM NaCl, 20mM imidazole, 3mM B-ME) supplemented with
Complete protease inhibitor (Roche), PMSF (final concentration of
1mM), EDTA (final concentration of 1mM), and benzonase. The sus-
pension was lysed with three passes through an Emulsiflex C-3 (Aves-
tin) at 15000psi.MgCl2 was added to 1mM, and the lysate was clarified
by centrifugation (25000 × g, 30min, 4 °C). The clarified supernatant
was loaded on a 5ml NiNTA FF Crude column (Cytiva) equilibrated in
Buffer A. The columnwaswashed extensively with Buffer A and bound
protein eluted with a linear gradient to 100% Buffer B (Buffer A with
300mM imidazole). Fractions containing HMGB1 mutants were
pooled, concentrated using an Amicon Ultra-15 centrifugal con-
centrator, and further purified by size exclusion chromatography
using a Superdex 75 16/600 column (Cytiva) equilibrated in Buffer C
(50mM Tris pH 7.5, 125mM NaCl, 1mM DTT, 10% glycerol). Fractions
containing HMGB1mutants were pooled and diluted 1 in 3 with Buffer
D (50mM Tris pH 7.5, 10% glycerol) and loaded on a 1ml CaptoQ
column (Cytiva) equilibrated in Buffer E (50mM Tris pH 7.5, 50mM
NaCl, 1mM DTT, 10% glycerol). After washing, bound protein was
eluted with a gradient to 100% Buffer F (Buffer E with 1M NaCl).
Fractions containing the target protein were concentrated with Ami-
con Ultra-15 centrifugal concentrators. The protein was aliquoted,
flash-frozen with liquid nitrogen, and stored at − 80 °C pending
assaying.

HEK-Blue pattern recognition receptor (PRR) activation assay
and analysis
hTLR4 and Null control HEK-Blue reporter cell lines (InvivoGen, San
Diego, CA) were maintained and used in PRR assay according to pre-
viously published protocols76 and according to the manufacturer’s
instructions. For PRR assay, 20μL of HMGB1 proteins (commercially
manufactured by Tecan OR lab-manufactured) or 20 µL of positive
control LPS were added to respective wells of 96-well flat bottom
plates at various concentrations followed by 180μL of either hTLR4 or
Null HEK-Blue reporter cells in HEK-Blue Detectionmedia (InvivoGen).
Final working concentrations were as follows: all-thiol HMGB1 (0.2μg/
ML, Tecan); di-sulfide HMGB1 (0.2μg/mL, Tecan); WT HMGB1, R110C,
and R110W mutant (0.2μg/mL, 0.6μg/mL, 1μg/mL for each). Plates
were incubated at 37 °C, 5% CO2 for 16 h, and SEAP activity was mea-
sured by reading optical density (OD) at 650 nmwith a SpectraMaxM2
microplate reader (Molecular Devices, Sunnyvale, CA). To determine
response ratios, sample OD values (normalized with media-only
background absorbance subtracted) were divided by normalized
“cells + H2O” control OD values. Non-linear regressionwas used to plot
and analyze response ratio curves and to obtain EC50 and ECmax values
of positive control LPS for hTLR4 cells and Null controls. The final
working concentrations of LPS were as follows: 1μg/mL, 0.1μg/mL,
0.01μg/mL, 0.001μg/mL, 0.0001μg/mL, and 0.00001μg/mL. Prism
10.1 (GraphPad Software, La Jolla, CA) was used to plot data and for
statistical analysis. Statistical significancewas determined via unpaired
student’s t-test, and a p-value of <0.05 was considered significant.
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Data processing for cys-enrichment and quantitative ratio pep-
tide analysis
Custom R scripts were implemented to compile mod-
ified_peptide_label_quant.tsv (quant) outputs from the command line
MSFragger pipeline or FragPipe to count unique quantified cysteines.
Unique cysteines were quantified for each dataset using unique
identifiers consisting of a UniProt protein ID, the amino acid number
of the modified cysteine, and an additional parameter specifying
single or double isotopic labeling (heavy and/or light). Unique pro-
teins were established based on UniProt protein IDs. Residue
numbers were found by aligning the peptide sequence to the cor-
responding UniProt ID protein sequence specified by FragPipe out-
puts. Variant residue sites were obtained by mapping peptide
sequences to respective customFASTA files containing variant info in
the headers. For enriched samples, nonspecific non-Cys-containing
peptides were omitted from the analysis. For ratios data, methionine
oxidized peptides were omitted, and unpaired heavy or light-
identified peptides were kept by setting ratios to log2(20) or log2(1/
20). Outputs were generated by taking the median H:L ratio among
all tryptic peptides for unique cysteines in replicate datasets (mod-
ified_peptide_label_quant.tsv); mean ratio values were calculated
across replicate datasets; quantified cysteines appearing in at least
two replicates with ratio SD = <1 were kept (Figs. 8, 6 data) and no SD
filter was applied for Fig. 1 data to interpret ratio skew. For com-
parisons to CysDB cysteines, unique UniprotID_CysPosition identi-
fiers were used and FragPipe assigned Protein ID was used; for
ClinVar variant matching, chromosome position and nucleotide
changes of associated variants were used. The MS search results and
FASTA files have been deposited to the ProteomeXchange Con-
sortium via the PRIDE partner repository with the dataset identifiers
PXD043879 for newly generated data and FASTA files. R and
Python scripts are available at https://github.com/BackusLab/
chemoproteogenomics

Data processing for high-pH data analysis
Custom R scripts were implemented to compile peptide.tsv outputs
from command line MSFragger pipelines. Unique proteins were
established based on UniProt protein IDs. Variant residue sites were
obtained by mapping peptide sequences to respective custom FASTA
files containing variant info in the headers. Residue numbers were
found by aligning the peptide sequence to the corresponding UniProt
ID protein sequence specified by FragPipe outputs. For ClinVar variant
matching, chromosomeposition andnucleotide changes of associated
variants were used.

Linear sequence and spatial site-analysis
For linear sequence analysis in Fig. 6 datasets, residues ‘in or near’
UniProtKB annotated active or binding sites, DisProt annotated
sites128–130, or PhosphoSite annotated sites81 were within +/− 10 amino
acids in linear sequence. For Fig. 8 datasets, residues ‘in or near’
UniProtKB annotated active or binding sites, disprot annotated sites,
or phosphosite annotated sites were assessed using 3D Protein Data
Bank (PDB) structures. PDB structures were parsed to find all
neighboring residues within a 10 Angstrom distance of the liganded
Cys (alpha carbon atom). PDB_UniProtKB identifiers were created for
each cysteine and a corresponding list of neighboring residues. If the
UniProtKB annotated active or binding sites were resolved in an
associated crystal structure and found within the 10 Angstroms net,
they were classified as cysteine proximal to a known active or
binding site.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MS search results and fasta files have been deposited to the Pro-
teomeXchange Consortium (http://proteomecentral.proteomexchange.
org) via the PRIDE partner repository with the dataset identifiers
PXD043879 for data generated for this study, and PXD023059 and
PXD029500 for re-analyzed datasets. Sequencing data is deposited in
the Sequence Read Archive (SRA) as BioProject PRJNA997729. Source
data is provided as source data files for Figures and within the Supple-
mentary Information file for Supplementary Figs. Publicly available
databases used are COSMIC v96 (https://cancer.sanger.ac.uk/cell_lines),
dbSNP database (4-23-18) (https://www.ncbi.nlm.nih.gov/snp/), ClinVar
(09-03-22) (https://www.ncbi.nlm.nih.gov/clinvar/), The UniProt Con-
sortium (https://www.uniprot.org/), DisProt (https://disprot.org/),
Phosphosite (https://www.phosphosite.org/homeAction.action), Pro-
tein Data Bank (https://www.rcsb.org/). Source data are provided with
this paper.

Code availability
MSFragger can be downloaded as a single JAR binary file at
https://msfragger.nesvilab.org/. FragPipe is available on GitHub at
https://github.com/Nesvilab/FragPipe. Custom code is available
at https://github.com/BackusLab/chemoproteogenomics with
https://doi.org/10.5281/zenodo.13788083.
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