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ABSTRACT 
 

The Neural and Behavioral Processes Underlying Limb Selection 
 

by 
 

Rebecca Handelman Stoloff Elenzil 
 

Joint Doctor of Philosophy  
 

with the University of California, San Francisco 
 

in 
 

Bioengineering 
 

University of California, Berkeley 
 

Professor Richard Ivry, Chair 
 
 

In the process of planning a reaching movement, people have two principle decisions: 
where to reach and which limb to reach with. Recent investigations have shed light on how the 
brain integrates value information about different stimulus-outcome pairs in order to make this 
first decision. However, recent work in neuroeconomics, while abundant, has almost exclusively 
focused on how we decided between stimuli external to the body and ignored how we decide 
between our two limbs. 

In this dissertation, I explore the psychological processes and neural correlates of hand 
choice in three experiments, all of which involve an unconstrained reaching task. The first study 
demonstrates that hand choice is influenced by recent reinforcement history: People increase the 
use of the non-dominant hand when the likelihood of hitting the target with the non-dominant 
hand is increased and/or the likelihood of missing the target with the dominant hand is decreased. 
In the second study, I use functional neuroimaging to explore the neural correlates of hand 
choice, comparing conditions in which people are either directed to use the left or right hand or 
free to choose between the two hands. The free choice condition led to increased hemodynamic 
activity in a network of cortical and subcortical areas, including the medial prefrontal cortex, 
posterior parietal area, basal ganglia, and cerebellum. In the third experiment, I lay the 
groundwork for a full characterization of the neural regions involved in value-based decision 
making between two targets and two limbs.  
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INTRODUCTION 
 
 Reaching to grasp an object is one of our most fundamental skills. While people prefer to 
use their dominant hand, we show amazing flexibility in hand choice. Recent work in 
neuroeconomics has almost exclusively focused on how we decide between stimuli external to 
the body. This work has focused on how we make a decision such as do we want an ice cream 
cone with chocolate or vanilla ice cream. Ignored in this literature is the fundamental question of 
how we decide which hand to use to pick up the ice cream cone. The behavioral and neural 
correlates of limb selection are largely unknown, yet this is an elementary decision that we make 
hundreds of times each day.  
 Characterizing this process is particularly compelling considering its potential application 
for physical rehabilitation after stroke. It is estimated that 795,000 strokes occur each year in the 
United States, making stroke the leading cause of serious, long-term disability and the 3rd 
leading cause of death (The Internet Stroke Center). Thus, the development of effective and 
accessible stroke rehabilitation therapies is of critical clinical importance.  
 The debilitating condition that most often results from stroke is hemiparesis, the partial 
paralysis of the limbs contralateral to the lesion. In order for stroke patients to regain function 
such that they are able to participate in normal daily living activities, it is important to develop 
rehabilitation therapies that facilitate increased use of the affected side. Even after regaining the 
ability to control the affected limb, many stroke patients continue to exclusively use the 
unaffected limb. This behavior has been viewed as the consequence of compensatory strategies. 
During the recovery period, the patients have learned to perform tasks with their unaffected 
limbs and continue to do so through the operation of simple reward mechanisms. This behavioral 
mechanism has been termed learned non-use (Taub 2000). The learned non-use theory postulates 
that even if a patient has the ability to perform a task with their affected side, they will choose to 
use their unaffected side due to behavioral factors such as attention, motivation, and sense of 
effort (Sterr 2002). This mechanism arises from the negative reinforcement that patients receive 
when they initially try to use their affected limb following the stroke.  
 Many rehabilitation strategies have focused on overcoming learned non-use as a means to 
increase the patients’ spontaneous use of the paretic limb. Han et al (2008) propose that 
rehabilitation training is required to increase spontaneous use of the paretic limb above a certain 
threshold in order to enter a virtuous circle of use and improved performance. Rehabilitation 
strategies that may help to reverse non-use and accelerate recovery after stroke include 
behavioral methods such as mirror visual feedback (MVF) therapy as well as physiological 
methods involving the excitation of the ipsilesional motor cortex and inhibition of the 
contralesional motor cortex with transcranial magnetic stimulation (TMS) (Ramachandran  2009, 
Oujamaaa 2009). 
 One strategy that has shown clinical efficacy (Wolf 2007) in overcoming learned non-use 
is constraint-induced movement therapy (CIMT). As the name suggests, this method involves 
imposing a physical constraint on the unaffected limb in order to force the patients to use their 
affected limb. The behavioral gains arising from CIMT have been correlated with structural brain 
changes and thus seen as facilitating neuroplasticity (Gauthier 2008). While there is compelling 
evidence for the efficacy of CIMT in improving function following stroke (Wolf 2006), the long-
term effects of this therapy have yet to be demonstrated. Furthermore, the therapy is labor 
intensive for the patient and therapist, and thus not accessible for many patients. In addition, a 
limitation of this therapy is that it relies on an external physical constraint. Investigations into 
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new strategies for overcoming learned non-use that fundamentally change the patients’ belief 
about the efficacy of their affected limb are necessary.  
 An alternative avenue for promoting use of an affected limb would be to exploit intrinsic 
reinforcement mechanisms that promote the selection of that limb. The work described in 
Chapter I of this dissertation demonstrates that recent reinforcement history affects hand choice: 
People increase their use of the non-dominant hand when the likelihood of successfully hitting a 
target with the non-dominant hand is increased or the likelihood of missing the target with the 
dominant hand is increased (Stoloff 2011). Participants reported little awareness in either their 
shift in hand use or the change in reward rates. Furthermore, the hand choice data was well 
described by a model of reinforcement learning (Sutton 1998). The model offers the potential to 
develop predictive computational tools that can be used to rigorously assess protocols designed 
to facilitate increased use of the affected limb after stroke. Taken together, this study provides a 
proof of concept of a paradigm that could facilitate increased use of the affected side in 
hemiparetic patients and thus lays the groundwork for translational research investigating this 
potential.  
 Behavioral and computational models provide one tool for investigating the mechanisms 
of limb selection. The development of translational methods, however, also requires basic 
neuroscientific investigations to define the mechanisms underlying limb selection. Studies in the 
decision making literature have shed light on how the brain integrates information to assess and 
compare the value of different stimulus-outcome pairs. A substantial body of work implicates the 
orbitofrontal cortex as the locus of the value signal (Chib 2009, Croxson 2009, Lim 2011, Wallis 
2011). Furthermore, it has been suggested that the dorsomedial prefrontal and parietal cortex 
serve as a comparator for these value signals (Hare 2011). Moreover, it has been shown that 
neurons in the parietal cortex reflect the values of competing actions (Sugrue 2004). Tosono et al 
(2008) demonstrate that increased activation in the contralateral parietal area is correlated with 
an arbitrary visual reach decision, corroborating the idea that accumulation of sensory evidence 
for decision making is linked to the specific planned action (Tosoni 2008). In addition, 
Gershman et al (2009) demonstrated that that left striatum and intraparietal sulcus code right-
hand choices (and vice-versa for the left-hand choices). While this work has emphasized that 
effector information is incorporated in the decision making process, the studies have generally 
entailed comparisons between different effector groups (e.g., hands vs. eyes). To date, no study 
has investigated the neural correlates of limb selection.  
 Even within the motor control literature, the focus has been on identifying the neural 
correlates of planning movements with a specified limb. For example, neurons in the posterior 
parietal cortex code the position of a target with respect to the body (Batista 2001). Similar 
representations are observed in frontal motor regions, including dorsal premotor cortex. In this 
region, neurons may reflect the parallel preparation of reaches to multiple targets, with the 
dynamics of activity eventually settling on a choice (Cisek 2005). Recent work in humans 
(Beurze 2007) and in monkey’s (Hoshi 2000), dating back to 2000, has demonstrated that target 
and body-part information are integrated in premotor cortex and the posterior parietal cortex. 
However, these studies do not provide a choice in target and limb, but instead specify the target 
and the limb with subsequent cues and hence do not address the question of how the organism 
determines which limb should be used to perform the action.  
 The work described in Chapter II and III of this dissertation is an investigation of the 
neural correlates of competition in limb selection. In the experiment described in Chapter II, I 
use functional magnetic resonance imaging (fMRI) to compare neural activity while participants 
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reach to targets on a touch pad in two different conditions: (1) participants are free to select their 
right or left limb for the reach and (2) participants are instructed which limb to reach with. While 
I am ultimately interested in exploring the neural correlates of variables that influence limb 
selection such as positive and negative reinforcement, it seemed essential to being with a simpler 
problem, asking about the neural networks that are engaged when people resolve the competition 
between the two limbs when reaching for an object when the main source of constraint is the 
location of the object. I hypothesize that the frontoparietal choice network that has been 
implicated in perceptual decision making will also be involved in the competitive process of limb 
selection. In addition, I anticipate that the cerebellum will be involved in the decision of what 
limb to reach with given its important role in motor control.  

The investigation in Chapter III of this dissertation begins to explore the neural processes 
involved in the positive and negative reinforcement of right and left limb use. In this work, I 
directly compare a hand choice task with a more traditional object choice task. In both tasks, I 
manipulate the reinforcement history and use a model-based approach to explore the dynamics of 
decision making in these two contexts. Moreover, I compare the performance of neurologically 
intact participants to patients with cerebellar ataxia, examining the role of the cerebellum in 
value-based decision processes for both object and limb choice. If the cerebellum is particularly 
involved in limb selection given it involves an assessment of the accuracy of each hand, I 
anticipate that patients with cerebellar ataxia will be selectively affected in the hand choice task. 
Finally, through the implementation of a mathematical to characterize choice behavior in both 
the hand and target choice tasks, I lay the groundwork for the neuroimaging work that will 
identify the neural processes involved in reinforcement learning in effector selection. 
  



	
  

	
   4	
  

CHAPTER I: Effect of reinforcement history on hand choice in an unconstrained reaching 
task. 
 
ABSTRACT 

Choosing which hand to use for an action is one of the most frequent decisions people 
make in everyday behavior. We developed a simple reaching task in which we vary the lateral 
position of a target and the participant is free to reach to it with either the right or left hand. 
While people exhibit a strong preference to use the hand ipsilateral to the target, there is a region 
of uncertainty within which hand choice varies across trials. We manipulated the reinforcement 
rates for the two hands, either by increasing the likelihood that a reach with the non-dominant 
hand would successfully intersect the target or decreasing the likelihood that a reach with the 
dominant hand would be successful. While participants had minimal awareness of these 
manipulations, we observed an increase in the use of the non-dominant hand for targets 
presented in the region of uncertainty. We modeled the shift in hand use using a Q-learning 
model of reinforcement learning. The results provided a good fit of the data and indicate that the 
effects of increasing and decreasing the rate of positive reinforcement are additive. These 
experiments emphasize the role of decision processes for effector selection, and may point to a 
novel approach for physical rehabilitation based on intrinsic reinforcement. 

 
INTRODUCTION  

Reaching to grasp an object is one of our most common actions. In the process of 
planning a reaching movement, people have two principle decisions (Horowitz 1999): where to 
reach (target selection) and which limb to reach with (effector specification). Target selection 
decisions are often dictated by a desired goal. If we want to take a break from our writing, we 
may decide to reach for the cup of coffee. The decision processes underlying effector selection 
are less clear. While people prefer to use their dominant hand, we also show impressive 
flexibility in hand choice in ousr everyday behavior (Johansson 2006). For example, we 
sometimes use the left hand to pick up the cup and other times use the right hand. Similar 
flexibility is observed in a variety of behaviors such as pointing out directions to a lost traveler or 
pressing the elevator call button. 

A substantial literature has focused exclusively on the problem of target selection, or 
more generally, decisions that require the person to make a choice between different objects. 
This literature has explored the relative importance of cost and reward in decision making 
(Rudebeck 2006), the neural representation of the value of competing perceptual targets 
(Churchland 2008; Cisek 2005; Sugrue 2004), and the effector-specific nature of these 
representations (Gershman 2009, Tosoni 2008). Goal-related activity in posterior parietal cortex 
(PPC) has been modeled as an accumulation process, resulting in the selection of one action over 
another (Batista 2001; Huk 2005; Churchland 2008; Seo 2009). Similar patterns of activation 
have been observed in frontal motor areas. Interestingly, activity in dorsal premotor cortex may 
reflect the presence of multiple response options, pointing to the parallel preparation of candidate 
movements, with the final selection of a single action dependent on a threshold process (Cisek 
2006).  

These studies have generally been restricted to experimental tasks in which a single 
effector is used (e.g., point to the chosen object) or effector selection is used to indicate the 
chosen object (e.g., use the left hand to chose object on the left). Work in humans (Beurze 2007; 
Medendorp 2005) and non-human primates (Hoshi 2000) has demonstrated that target and body-
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part information are integrated in premotor cortex and the posterior parietal cortex. However, an 
external cue is typically used in these studies to specify the target and effector. Few studies have 
been conducted in which the participant must self-select which effector to use to reach for a 
single target. One exception here has been the work of Schieber and colleagues. When monkeys 
are free to use either hand to retrieve a food reward, their choice is strongly biased by hand 
preference (Lee 2006). However, this bias can be modulated by other factors such as the location 
of the stimulus, with the animals exhibiting a preference to reach to eccentric targets with the 
ipsilateral hand (Schieber 2000; Gabbard 2004; Gardiner 2006), and head position (Dancause 
2010). Interestingly, hand/target choices were more closely linked with prior success for 
particular head/hand/location pairs rather than with movement speed, indicating that hand choice 
may be related to reinforcement history. 

In the present pair of experiments, we examine the role of reinforcement on effector 
selection during reaching. Reinforcement is likely related to hand preference: we are more likely 
to be successful in producing a skilled action when using our dominant limb. Of course this is a 
bit of a chicken-and-egg question. Do we become more skilled with one hand because of an 
intrinsic preference for one hand over the other? Or do we choose the preferred hand because it 
is, intrinsically more coordinated? Ontologically, the answer is probably a bit of both, with 
handedness constituting a self-reinforcing process. Nonetheless, over a shorter time scale, people 
exhibit flexibility in hand choice and their choices here may reflect recent reinforcement history. 
You can imagine that if you spilled your coffee when last using the left hand to pick up the cup, 
you would become more likely to use the right hand the next time. However, if you are holding 
something with the right hand, you might still choose to use your left hand to pick up the coffee 
cup. 

In this way, hand choice can be viewed as a decision process, with relative costs and 
rewards being assigned to competing action alternatives. Given that the likelihood of reward 
involves the effort of a particular action and the accuracy or proficiency of that action, we 
hypothesized that the competitive process underlying effector choice would be influenced by 
limb-dependent task success. To investigate the effect of reinforcement on hand choice, we 
varied limb-dependent task success in a target interception task. We first established a 
psychometric function describing hand choice as a function of target location in a task in which 
participants were free to use either their right or left hand. We then introduced an experimental 
manipulation in which we modified the reinforcement rate. Exploiting the fact that right-handed 
participants show an overall right-hand bias, we either increased the rate of positive 
reinforcement for the left hand, decreased the rate of positive reinforcement for the right hand, or 
simultaneously applied both manipulations. We compare the effectiveness of these 
manipulations in producing a shift in hand choice. Given this reinforcement-learning framework, 
we applied a Q-learning model to characterize the change in behavior over time.  

 
METHODS  

Participants.  
Fifty-six participants (27 females; age range 18-24) participated in Experiment 1 and 

received course credit for their participation. Twenty-seven (16 females; age range 19-30) 
participated in Experiment 2 and were paid for their participation. All participants were right-
handed. Data from six participants (three for each experiment) were excluded. Five participants 
were excluded because they almost always used one hand (right only=4; left only=1). One 
participant from Experiment 2 did not return for the second session. The protocol was approved 
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by the UC Berkeley Institutional Review Board and all participants provided informed written 
consent at the start of the test session.  

Design and Procedures. 
Experiment 1.  
The experiment was performed in a virtual environment that interfaced with a 3-D 

robotic manipulandum (PHANToM 1.5 System, SensAble Technologies). A mirrored projection 
system was used to display the visual stimuli (Figure 1). The participants' task was to reach 
through a target that appeared at one of 7 locations along a semicircular array. The participant 
held a robotic manipulandum in each hand and moved this device to reach through the target 
location. Movements were confined to the horizontal plane.  

 

 
Figure 1. (A) A computer monitor projected stimuli onto a mirror, creating the impression that the stimuli were in 
the same plane as the participant’s hands. The robotic device restricted movement to this plane. (B) Stimuli appeared 
in one of seven locations in Experiment 1 (shown here) and one of nine locations in Experiment 2. While the visible 
size of the targets remained constant, a staircase algorithm adjusted the radius of a virtual target region that was used 
to achieve a specified reward rate. 

 
Two green squares (2x2cm) centered 4.5 cm apart indicated the starting location for the 

hands. At the beginning of each trial, participants were instructed to move two spherical cursors, 
corresponding to the positions of the two hands, into these start squares. After the start positions 
were maintained for 200 ms, the blue cursors disappeared and a red target appeared at one of 7 
locations along a semicircular array approximately 9 cm from the start positions. The exact 
radius of the array was scaled to each individual’s arm length. The participants were instructed to 
reach with one hand until they saw the target explode, indicating a hit, or heard a tone (242 ms), 
indicating a miss. Vision of their hands was occluded by the mirror and the hand cursor was not 
displayed during the reaching movement. Thus, participants could not make online corrections to 
their movements. 

The participants were trained to move at a comfortable speed. Auditory feedback was 
also used to indicate if the movement time fell outside a criterion window of approximately 300 - 
700 msec. The precise time window depended on the arm-length scaled target distance. One 
sound was played if the movement time was too short (duration: 232 msec) and another sound 
was played if the movement time was too long (duration: 1200 msec). A high pitched beep was 
played if subjects stopped reaching before they hit the target (duration: 135 msec). These reaches 
were coded as errors and accounted for less than 2% of the trials. 

Participants completed 12 experimental blocks of 100 trials each (1200 trials total). 
Within a block of 100 trials, the target appeared at the ±55° locations on eight trials, the ±30° and 
±17.4° locations on 16 trials, and at the center location on 20 trials. This distribution was chosen 
to increase the sampling rate at locations in which participants were expected to use both hands 
(ambiguous locations). The eccentric, 55° locations were included to decrease the likelihood that 

Monitor

Mirror

(A) (B)
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participants would adopt a strategy of using one hand to reach to all of the targets. The sequence 
of target locations was randomized. 

Across the 12 blocks, we manipulated the target reward rate. The first four blocks served 
as the baseline phase. During these blocks, the target reward rate was set to 68% for each hand 
(see below for description of how we controlled the reward rate). Blocks 5-8 constituted the 
manipulation phase. During these blocks, the target reward rate was adjusted differently for four 
participant groups: BOOST (n=12): The left hand reward rate was increased to 86% while the 
right hand reward rate remained at 68%; TAX (n=14): right hand reward rate was reduced to 
50% while the left hand reward rate was maintained at 68%; BOTH (n=13): The reward rates for 
the left and right hands were adjusted to 86% and 50%, respectively; NOMANIP: (n=14): The 
target reward rates for both hands remained at 68%. The final four blocks served as the post-
manipulation phase. Here the reward rate for all four groups was set to 68% for both hands. 

The desired target reward rate was experimentally controlled using a variable ratio 
staircase procedure (Garcia-Perez 1998) in which the size of the virtual target was adjusted. The 
target displayed to the subjects was a consistent visual size (radius4 mm). However, we also 
defined a virtual target region; the hand had to pass within this region for the trial to result in a 
successful reach (i.e., a hit). The staircase procedure was used to adjust the size of the virtual 
target region. The size was decreased after a hit and increased after a miss. Following a miss, the 
radius of the virtual target region was always increased by 1.5 mm. Following a hit, the radius 
was reduced, with the amount of the reduction a function of the target reward rate. Reductions of 
0.3 mm, 0.6 mm, and 1.5 mm were used for target reward rates of 86%, 68%, and 50%, 
respectively. Note that the radius of the virtual target was limb specific since the target reward 
rate for the two hands could differ during the manipulation phase. 

To increase subject motivation, a point counter at the center of the screen kept a running 
tally on the number of hits. Between each block, the score for that block, as well as the total 
current score were displayed. 

Before the start of the experimental blocks, participants performed one practice block of 
100 trials. During the practice blocks, participants had online feedback of their hand position 
during the reaches (i.e., the spherical cursors remained visible). The virtual target and visible 
target were identical in this block and reinforcement was based on whether or not the 
participant's hand passed through the target. We also provided 10 practice trials with online 
feedback at the start of each of the 12 experimental blocks. These practice trials were included so 
that the participants remained calibrated throughout the experiment.  

Awareness. We included a debriefing survey to assess participants' awareness of the 
experimental manipulation. Participants were asked if they had noticed any change over the 
course of the experiment. Specifically they were asked if the task got easier, harder, or stayed the 
same for the right and left hand. Additionally they were asked if they used one hand more than 
the other, and if this changed over the course of the experiment. 

Experiment 2.  
The apparatus and stimulus displays were slightly modified in Experiment 2. First, we 

updated the virtual environment to include angled mirrors, providing for better 3-D vision. 
Movements were again confined to the horizontal plane. Second, the density of targets near the 
midline was increased such that a target could also appear at ±8.6°, increasing the number of 
target locations from seven to nine. The eccentric target was moved in to ±45° from ±55°. In a 
100-trial test block, targets appeared at the eccentric ±45° locations on six trials, at the three 
intermediary locations (±30°, ±17.4°, ±8.6°) on 12 trials each, and at the midline location on 16 
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trials. Third, approximate reach lengths were 11 cm compared to 9 cm in Experiment 1 (again 
scaled to arm length). Slightly longer reaches were possible given the new apparatus 
configuration. Fourth, a variable delay (50 - 250 ms) was introduced between the time the 
participants positioned their hands in the start squares and the onset of the target. Fifth, the point 
counter was not visible during the experimental blocks; summary feedback was only presented 
between blocks.  

The design of Experiment 2 involved two primary changes in the experimental design. 
First, to obtain a better understanding of the differences in the effects of increasing and 
decreasing positive reinforcement on hand choice, a within-subject design was adopted with 
testing limited to the BOOST and TAX conditions. Second, we modified the target reward rates 
so they were identical for the BOOST and TAX conditions in the manipulation phase. For the 
BOOST condition, the target reward rate was 70% for each hand in the baseline and post-
manipulation phases. During the manipulation phase, the reward rate for the left hand was set to 
84% and the right hand remained at 70%. For the TAX condition, the target reward rate was 84% 
for both hands during the baseline and post-manipulation blocks. During the manipulation phase, 
the reward rate dropped to 70% for the right hand and remained at 84% for the left hand. Thus, 
the manipulation phase always involved a change in the reward rate of 14% for one hand, and 
resulted in target rates of 70% and 84% for the right and left hands, respectively. We again used 
a staircase procedure to produce the desired reward rates. The base step size was increased to 3 
mm in Experiment 2, given the increase in reach distance and pilot work that indicated this 
would provide better experimental control of the reward rates.  

The BOOST and TAX conditions were tested in separate sessions, separated by one day. 
Within each session, the participants completed twelve experimental blocks with 100 trials each 
(1200 trials total), divided into four baseline blocks, four manipulation blocks, and four post-
manipulations blocks. Half of the participants started with BOOST and the other half started with 
TAX.  

As in Experiment 1, participants completed a practice block of 100 trials at the start of 
the test session.  

Awareness. We again included a debriefing survey to assess participants' awareness of 
the experimental manipulation. This survey was only given at the end of the second session. 
Participants were informed that they had been randomly assigned to one of two groups: Group A 
in which the reward rate for each hand was consistent throughout the experiment or Group B in 
which the reward rate changed in a way that corresponded to their particular condition. They 
were asked to indicate their perceived group assignment. 

Analysis 
Percent Right Hand Use. To measure hand preference, we calculated the total percent 

right hand use across all targets for each block. This value was also calculated for each target to 
obtain a psychometric function of hand choice as a function of target location. By fitting a 
logistic regression to this curve, we estimated the point of subjective equality (PSE), the 
theoretical point where the participant was equally likely to use his/her right or left hand. This 
procedure was performed separately for the three phases. To obtain estimates of the PSE values 
when performance was relatively stables, we limited the data set to the final two blocks of each 
phase (baseline: blocks 3-4; manipulation: blocks 7-8; post-manipulation: blocks 11-12). These 
values were entered into an ANOVA to determine the effectiveness of the experimental 
manipulations of reward rate.  
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Sequential Effects. We quantified sequential effects by calculating the probability of 
using the right hand at the center target on trial t given that the previous trial t-1 was either a 
right hand hit, a right hand miss, a left hand hit, or a left hand miss. Given the small amount of 
data for each pair of locations, the data were collapsed over the experimental phases and 
conditions. We also combined the data over all previous t-1 locations in an ANOVA designed to 
assess the probability of choosing the right hand on the current trial as a function of the Hand 
(right or left) and Outcome (hit or miss) from the previous trial. 

Reaction Time. Reaction time was defined as the interval between the onset of the target 
and the time at which the chosen hand left the start box. Our primary focus with these data was 
to compare the reaction time to targets at the center location to those at the more peripheral 
targets (±30°, ±17.4° in Experiment 1 and ±30°, ±17.4°, ±8.6° in Experiment 2). We did not 
include the data from the most eccentric locations in the RT analysis since these locations were 
used much less frequently. We excluded the data from the first block since we observed that 
participants' generally showed a considerable reduction in RT over the first 100 trials as they 
became familiar with the task. In order to have the same amount of data in each phase, we also 
excluded the first block for the manipulation and post-manipulation phases.  

Reinforcement Learning Model. A reinforcement learning model based on a temporal 
difference (TD) algorithm was fit to the data (Watkins 1992; Kaelbling 1996; Sutton 1998; 
Kaelbling 1996; Gersham et al 2009). The model assigns a value to each state-action pair where 
the state (s) is the target location and the action (a) is a right or left hand reach. The action values 
are learned and updated each trial t using the following update rule:  

 

 

Q at+1
c ,st+1( ) = Q at

c,st( ) 1!"( ) + "# t    (1) 

 

Q at+1
u ,st+1( ) = Q at

u,st( ) 1!"( ) !"# t    (2) 
 
where st represents the target location at the current trial t, and for the action, a, the superscript c 
or u refers to chosen and unchosen hand, respectively. The learning rate α is a free parameter. δ 
is the prediction error defined by the following equation:  
 

       (3) 
 

The probability by which a particular action is chosen on trial t is a function of the 
current action-state value Q and is given by a “softmax” (logistic) rule: 

 

     (4) 
 

On each trial, the probability of a particular action given by the softmax function was compared 
to a threshold of PT0.5 such that  
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The Q values were initialized using the average percent right hand use (PER) over the baseline 
phase (first 4 blocks). The Q values were set to PER - 0.5, bounding them between -0.5 and 0.5.  
 The model was fit to the data from the manipulation and post-manipulation phases 
(Blocks 5-12). We compared three models: Alpha_4:  For this model, we allowed alpha to have a 
different value for each condition (Experiment 1: αBOOST, αTAX, αBOTH, αNOMANIP ; Experiment 2: 

αBOOST-Day1, αTAX-Day1, αBOOST-Day2, αTAX-Day2); Alpha_1: Alpha was constrained to take on a single 
value for each experiment; No_Learn: A reinforcement-free model in which alpha was fixed at 
zero   The No_Learn model serves as a null model. Here, hand choice is restricted to the biases 
exhibited during the baseline phase and does not depend on changes in reinforcement history. In 
contrast, hand choice can vary with reinforcement history in the Alpha_1 and Alpha_4 models. 
For the former, hand choice will vary with reward rate in the same manor in all four types of 
manipulations. For the latter, the learning rates may vary as a function of the type of 
manipulation. In particular, we included the Alpha_4 model to ask whether learning rate differed 
for changes related to increasing the rate positive reinforcement, decreasing the rate of 
reinforcement, or, in Experiment 1, both manipulations.  

To obtain the best fitting values for the free parameter alpha in these Alpha_1 and 
Alpha_4 models, we minimized the negative log likelihood (-LL). For each value of alpha, the 
average percent hand use for each block, calculated from the data, was compared to the model 
prediction. The alpha value ranged from 0.01 to 0.49 and was incremented in steps of 0.01.  

We used a bootstrapping (Fisher 1993) procedure to determine the best fit learning rate 
(alpha) for each of the models Alpha_1 and Alpha_4. We generated 1000 group averaged data 
sets by randomly resampling with replacement from the original participant pool and fit the 
models to each data set. To evaluate the model fits, we used the likelihood ratio test statistic 
(LR): 

LR Model1 vs. Model2 -2(LLModel1-LLModel2)   (6)  
 
We also calculated the Pearson correlation coefficient (R2). To compare Alpha_4 and Alpha_1 to 
No_learn models, we calculated a pseudo-R2 statistic defined as the (R-Q)/R where R is the –LL 
for the random choice model and Q is the –LL for the Alpha_4 and Alpha_1 (Gershman 2009). 
 We explored models with more parameters. These included models in which different 
learning rates were set for the right and left hands, different learning rates were set for the chosen 
and unchosen hand, and models in which a temperature parameter that dictated how exclusively 
choices were restricted to the highest valued action was allowed to vary. These models did not 
significantly improve the obtained fits and, introduced considerable variability in the parameter 
selection. While a more complex model may capture nuances in the data, we focus on a 
simplistic model that can capture the way in which recent reinforcement history affects hand 
choice. 
 
RESULTS  

Experiment 1 
Reward rates. The observed reward rates were close to the desired target reward rates 

(Figure 2A). Participants were rewarded slightly more often during the baseline and post-
manipulation blocks than expected (69.3% compared to target rate of 68%). During the 
manipulation phase, the reward rate for the left hand increased to 83.1 ± 0.3% in the BOOST 
condition and fell to 49.9 ± 0.1% for the right hand in the TAX condition. Thus, while the 
experiment was designed to produce an 18% shift for both BOOST and TAX conditions, the 
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actual changes were approximately 14% and 19%. For the BOTH condition, the observed reward 
rates during the manipulation phase were 83.3 ± 0.3% % and 50.7 ± 0.2% % for the left and right 
hands, respectively.  

 

 
Figure 2. Observed rewards rates for the right hand (red) and left hand (blue)  Target reward rate was fixed for 
Blocks 1-4 (baseline), adjusted in Blocks 5-8 (manipulation), and then returned to the initial rates in Blocks 9-12 
(post-manipulation). (A) Experiment 1 reward rates for the four experimental conditions (BOOST: increase reward 
rate for left hand, TAX: decrease reward rate of right hand, BOTH: both tax and boost manipulations, NOMANIP: 
no manipulation. (B) Experiment 2 reward rates for the two experimental conditions and two subjects groups. 
 

Percent Right Hand Use/PSE. The psychometric function for hand choice was very 
steep (Figure 3A). Participants almost always used the right hand to reach for the three target 
locations in the right visual field, even during the manipulation phase when the reward rates 
favored left hand use. The left hand was selected for the majority of left visual field targets, but 
there were some trials in which the right hand was selected. More variability was evident at the 
center location, both within and across subjects. During the baseline phase, the right hand was 
used on 82.3 ± 1.9% (across all 53 participants) of the trials to reach to the center location. Right 
hand use decreased during manipulation phase for the BOOST, TAX, and BOTH conditions 
(Figure 3B). This shift was not evident in the control, NOMANIP condition.  
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Figure 3. Hand choice results for Experiment 1 in the BOOST (green), TAX (cyan), BOTH (magenta), NOMANIP 
(black) conditions. (A) Mean probability of right hand use as a function of target location. Solid lines are for data 
from the last two blocks of the manipulation phase (Blocks 7-8) and dotted lines are for data from the last two 
blocks of the baseline phase (Blocks 3-4). (B) Percent right hand use across all targets as a function of block number. 
(C) PSE values, calculated from the data for the last two blocks of each phase (B = Baseline, M = Manipulation, P = 
Post-Manipulation). 

 
To quantify these effects, PSE values were estimated for each phase. As can be seen in 

Figure 3C, the PSE values were all negative during the baseline phase, consistent with the right 
hand bias evident in the psychometric functions. During the manipulation phase, these values 
became less negative, indicative of greater left hand use. The main effect of phase was 
significant (F(2,98)=13.89, p<0.0001), and this factor interacted with condition (F(6,294)=2.80, 
p=0.02). When compared to the NOMANIP condition, the decrease in right hand use was 
reliable for all three conditions: BOOST (t(23)=2.30, p=0.01), TAX (t(25)=2.24, p=0.02), and 
BOTH (t(24)=3.50, p<0.001). Furthermore, changing the reward rate simultaneously for both 
hands had a larger effect on right hand use than either increasing the reward rate for the left hand 
(BOOST vs BOTH: t(23)=1.90, p=0.04) or decreasing the reward rate for the right hand (TAX 
vs BOTH: t(25)=1.98, p=0.03). There was no difference between the shift in hand use between 
the BOOST and TAX conditions (t(24)=0.03, p=0.49).  

This decrease in right hand use was maintained during the post-manipulation phase, and 
correspondingly, the PSEs during the post-manipulation phase were less negative than the PSEs 
during the baseline phase. In a series of pair-wise comparisons between the baseline PSE and the 
post-manipulation PSE, reliable effects were observed for the BOOST (t(11)=2.90, p<0.01) and 
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BOTH (t(12)=3.60, p=0.02) conditions. The effect for the TAX condition was marginally 
significant (t(13)=1.75, p=0.052). Again, there was no change in right hand use for the 
NOMANIP condition (t(12)=0.32, p=0.38). 

Sequential Analysis. Given that hand choice was influenced, albeit in a subtle manner, by 
the change in reinforcement rate, we performed a sequential analysis, asking if the cause of these 
shifts might be evident in the local reinforcement history. We note at the outset that this analysis 
is problematic because the shift in hand choice was most pronounced at the central location and 
targets only appeared at this location on 20% of the trials. As such, the trial-by-trial pairs 
involving non-central targets on trial t involve reaches where hand choice was dominated by 
target location.  

Nonetheless, we focus here on a qualitative analysis of reaches to the more ambiguous, 
center location, asking if hand choice on these trials is influenced by the location of the target, 
hand choice, and outcome on trial t-1. If hand choice was impervious to local history, then these 
functions would be flat. As can be seen in Figure 4A, sequential effects are evident in hand 
choices made to central targets. First, there is a bias for participants to use the same hand as was 
selected on the previous trial. This is most evident when the target on trial t-1 was also at the 
center location, but is also evident at the other locations (e.g., right hand at center location is 
greater after a right visual field target compared to a left visual field target). Second, there is a 
"contrast" effect in the sequential data. The more eccentric a target was on trial t-1, the more 
likely the participant was to switch hands when the target on trial t appeared at the center 
location. This effect was present for both hands.  

 
Figure 4. Sequential analysis of hand choice for Experiment 1 (A) and Experiment 2 (B). The functions depict the 
probability of right hand use for targets at the center location (0°) as a function of the previous trial (n-1), divided by 
the location of the last target, the hand used on the last trial, and the success on that trial. Right miss (red dashed), 
Right Hit (red solid), Left miss (blue dashed), Left hit (blue solid).  

 
The functions in Figure 4A indicate a modest effect of reinforcement on hand choice. 

Participants were more likely to use their right hand to reach to the center target if the left hand 
had missed a target on the previous trial (77.0 ± 2.7%) compared to when the left hand has 
successfully reached a target on the previous trial (73.9 ± 2.7%). Conversely, the participants 
were more likely to use their right hand if that hand had successfully intercepted a target on the 
previous trial (79.1 ± 2.5%) compared to a right-hand miss (77.7 ± 3.2%). In an ANOVA 
collapsing across t-1 target location, there was no main effect of the hand used on the previous 
trial (F(1,49)=1.50, p=0.23) nor on the outcome (hit or miss) of the previous trial (F(1,49)=0.93, 
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p=0.34). However, these two factors did interact (F(1,49)=5.12,  p=0.03), consistent with the 
hypothesis that hand choice was more likely to switch after a miss.  

Reaction Time. Figure 5 plots the RT data as a function of target position. We combined 
the data for targets at -30° and -17.4° using only left hand reaches and the data for the +30° and 
+17.4° targets using only right hand reaches. For the central target, the data are divided into right 
and left hand reaches. Note the number of observations is not equal for the two hands given the 
hand choice biases. Two trends are evident in the figure. First, right hand reaches were initiated 
faster than left hand reaches (F(1,49)=30.29, p<0.001, main effect of hand). Second, RTs to the 
center location were slower than RTs to more peripheral locations (F(1,49)=68.12, p<0.001, 
main effect of target). The hand by location interaction was also reliable (F(1,49)=15.73, 
p<0.001) due to the fact that the peripheral advantage was more pronounced for right hand 
reaches.  
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Figure 5. Left (blue) and right (red) hand reaction 
time data for Experiment 1. For each condition, the 
data are plotted separately for the three phases 
(baseline = left cluster; manipulation = center cluster; 
post-manipulation = right cluster). Within each 
cluster, the data were combined for eccentric targets 
at ±30° and ±17.4° for the left and right hands (EL 
and ER). Data for the central target (C) is depicted 
separately for right and left hand reaches. 
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Awareness. No participants spontaneously reported being aware of the experimental 
manipulation. Two participants in BOOST, two in TAX, eight in BOTH, and three in the 
NOMANIP condition commented that they used their left hand more over the course of the 
experiment. In general, these participants reported being concerned about the accuracy of their 
left hand initially, but became more confident over time. They tended to attribute the increase in 
left hand use to intrinsic factors. One subject remarked that they might have used their left hand 
more than they would have expected because they spend a lot of time playing video games, 
while another subject reported that over the course of the experiment they “put a little more faith” 
in their left hand. 

When directly asked whether the task became easier, harder, or stayed the same for the 
right and left hands, participants in the TAX and BOOST conditions were nearly equally likely 
to say that the difficulty remained the same across the experimental session as they were to state 
that the difficulty changed in accordance with their particular experimental manipulation. For 
example, 42% of the participants in the BOOST condition reported that the task got easier for the 
left hand, compared to 25% who reported it got harder. However, for the TAX condition, 46% 
also reported that the task got easier for the right hand!   Participants were more sensitive to the 
experimental manipulations in the BOTH condition. Here 57% reported that the task became 
harder for the right hand (compared to 14% who reported it got easier) and 64% reported that the 
task became easier for the left hand (compared to 0% who reported it got harder). While the 
participants in the NOMANIP group distributed their responses across the three choices with 
near-identical frequencies for the right hand, they were more likely to report that left hand 
reaches became easier (39%) compared to harder (15%). Thus, this control condition suggests 
that participants experienced a general practice effect when using their non-dominant limb.  

Summary:  The results of Experiment 1 indicate that, hand choice was sensitive to 
reinforcement. Regardless of whether we reduced the reinforcement rate for the right hand, 
increased the rate for the left hand, or introduced both manipulations, participants exhibited a 
spontaneous increase in the use of their left hand. The shift was generally restricted to regions in 
which hand choice exhibited some ambiguity in the baseline phase, and was of comparable 
values for the TAX and BOOST conditions. The increase in left hand use for these conditions 
occurred despite the participants' lack of awareness of the experimental manipulation.  

Our interpretation of this finding is that the change in reward rates led to a change in the 
value state associated with left and right hand choices, thus influencing the outcome of a 
competitive process underlying hand choice. The RT data are in accord with this hypothesis: 
participants were slower to initiate responses when the target appeared at the ambiguous, central 
location.  

Experiment 2.  
Although we did not observe a differential effect of increasing and decreasing the rate of 

positive reinforcement in Experiment 1, the data showed a trend for a larger effect of BOOST in 
the post-manipulation phase, the condition in which the left hand reward rate was increased. 
However, Experiment 1 might not provide a fair contrast of BOOST and TAX since the absolute 
reinforcement rates, as well as change in reinforcement rates, differ for the two conditions during 
the manipulation phase. Moreover, despite our efforts to use a constant size shift (18%), the 
observed changes in reward rates differed for the two conditions. To better compare the effects 
of increasing and decreasing the rate of positive reinforcement, we used a more powerful within-
subject design in Experiment 2. In addition, we equated the reward rates in the BOOST and TAX 
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conditions during the manipulation phase and added target locations at ±8.6°, close to the central 
location, to more densely sample the ambiguous area.  

Reward Rates. In Experiment 2, the average reward rates during the last three blocks of 
baseline and last three blocks of post-manipulation were were 69.5 ± 0.1% and 69.6 ± 0.1% for 
the right and left hands, respectively in the BOOST condition. For the TAX condition, the 
observed reward rates were 83.7 ± 0.2% for each hand over these two phases. These values are 
very close to the desired values of 70% and 84% (Figure 2B). During the manipulation phase, the 
reward rates for the two groups were near-identical (BOOST: 69.8  ± 0.1% (right), 83.5  ± 0.2% 
(left); TAX:  69.7 ± 0.3% (right), 83.6 ± 0.2% (left)).  

 

 
Figure 6. Hand choice results for Experiment 2 for participants who were tested on BOOST in Day 1 (left side) or 
TAX on Day 1 (right side). BOOST is shown in green and TAX in cyan. (A) Mean probability of right hand use as a 
function of target location. Solid lines are for data from the last two blocks of the manipulation phase (Blocks 7-8) 
and dotted lines are for data from the last two blocks of the baseline phase (Blocks 3-4). (B) Percent right hand use 
across all targets as a function of block number. (C) PSE values, calculated from the data for the last two blocks of 
each phase (B = Baseline, M = Manipulation, P = Post-Manipulation). 

 
Percent Right Hand Use/PSE. As in Experiment 1, the psychometric functions were 

very steep, with participants overwhelmingly preferring to use the ipsilateral hand when reaching 
to peripheral targets (Figure 6A). A right-hand bias was again observed at the center location 
(71.5 ± 2.6%), although there were a significant number of left hand reaches to this location 
during the baseline phase. The inclusion of target locations just off-center (±8.6°) increased the 
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occurrence of off-center ambiguity, with the right-hand being used to cross the midline on 
20.2±1.8% of the trials during the baseline phase. Interestingly, the inclusion of these locations 
may have reduced participants' willingness to use the right hand to reach to the -17.4° target (left 
of midline): The percentage of right hand reaches to this location during the baseline phase was 
only 5.8 ± 1.3%, compared to 16.1 ± 1.7% in Experiment 1. We did not analyze this effect given 
the various methodological differences between the two experiments. 

Figures 6B and 6C depict the shift in right hand use and corresponding changes in PSEs 
over the course of the experiment. In the ANOVA of the PSE data (within-subject factors: phase 
and condition, between-subject factor: order of conditions), we observed a marginally reliable 
main effect of phase (F(2,44)=2.57, p=0.09). The main effects of condition (F(1,22) =0.03, 
p=0.87) and test order were not reliable (F(1,22)=0.15, p=0.70), nor did any of the 2-way or 3-
way interactions approach significance. In pair-wise comparisons of the scores between baseline 
and manipulation phases, we observed a marginal shift in the PSEs during the manipulation 
phase for BOOST (t(22)=1.52, p=0.07) and a reliable shift for TAX (t(22)=2.92, p<0.01), Unlike 
Experiment 1, this shift was not maintained in the post-manipulation phase for either condition, 
relative to baseline (BOOST: t(22)=-0.59, p=0.28; TAX: t(22)=-0.002, p=0.50).  

Sequential Effects. Figure 4B shows the sequential analysis for Experiment 2, again 
restricted to trials in which the target on trial t appeared at the center location. As in Experiment 
1, participants exhibited a bias to reach with the hand used on the last trial (on top of an overall 
bias to use the right hand). Moreover, hand switches were more likely to occur when the center 
location was preceded by a target at a more eccentric location, an effect that was especially 
pronounced after hits. 

Unlike Experiment 1, we did not observe a win-stay/lose-shift strategy. There was a main 
effect of the hand used on the previous trial (F(1,23)=6.85, p<0.01) and an effect of the outcome 
of the last trial (F(1,23)=13.14, p=0.001). However, these factors did not interact (F(1,23)=0.01, 
p=0.92). Rather, there was an unexpected outcome-related sequential effect in Experiment 2: 
Independent of whether the last reach was with the right or left hand, participants were more 
likely to use their right hand after a miss compared to a hit. The probability of using the right 
hand at the center target after a left miss was 65.7 ± 4.7% compared to 59.7 ± 4.5% after a left 
hand hit. Surprisingly, the probability of using the right hand at the center target after a right 
hand hit was 76.1 ± 3.6% compared to 70.5 ± 3.6% after a right hand miss. One interpretation of 
this effect is that participants became more reliant on their dominant hand after an error, 
independent of which hand has produced the error. 

Reaction Time. The reaction time data were very similar to those observed in Experiment 
1 (Figure 7). Participants were faster to initiate reaches with the right hand (F(1,22)=16.20, 
p=0.001) and showed an RT cost when the target appeared at the center location compared to the 
more peripheral locations (F(1,22)=14.46, p=0.001). Unlike Experiment 1, the hand by target 
interaction was not reliable (F(1,22)=0.42, p=0.52).  
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Figure 7. Left (blue) and right (red) hand reaction time data for Experiment 2. The data are plotted for the three 
phases (baseline = left cluster; manipulation = center cluster; post-manipulation = right cluster). Within each cluster, 
the data were combined for eccentric targets at ±30°, ±17.4°, and ±8.6° for the left and right hands (EL and ER). 
Data for the central target (C) is depicted separately for right and left hand reaches. 

 
Awareness. As in Experiment 1, participants did not spontaneously report becoming 

aware of the experimental manipulations during either session of the experiment. Due to a filing 
error, the survey data were not retained for nine participants. For the other 18, eleven judged that 
they had been in a group in which the reward rate remained unchanged over the course of the 
experiment, with the percentage similar for the BOOST and TAX conditions.  

Summary. In Experiment 2 we equated the TAX and BOOST manipulations by 
employing different reward rates during the baseline phase. In both conditions, we observed an 
increase in left hand use when the reinforcement rates were altered for one of the two hands, 
although these effects were only marginally reliable in the overall ANOVA. We had hoped to 
observe more ambiguous target locations in Experiment 2 by including a denser sampling of 
midline targets (targets at ±8.6°). However, the inclusion of this target may have reduced the 
(small) ambiguity observed at more eccentric locations, and as such, effectively reduced the 
range of ambiguity compared to Experiment 1. The smaller sample of ambiguous targets could 
account for the smaller shift in hand choice observed in Experiment 2, as well as the lack of 
persistence of the hand choice shift during the post-manipulation phase (see Discussion).  

As in Experiment 1, we failed to observe any obvious differential effect of increasing or 
decreasing the rate of positive reinforcement. We examine this issue in more detail in the 
following section in which we apply a reinforcement learning model.  
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Reinforcement Learning Model.  
 We fit the hand choice data to a Q-learning model. We used the data from the baseline 
phase to establish initial Q values at each location. These data capture the biases of the 
participants to respond to eccentric targets with the ipsilateral hand and to prefer the dominant 
over the non-dominant hand (for most participants) for central locations. We then fit the data for 
the manipulation and post-manipulation phases. By comparing three models, we addressed two 
questions. First, is a better fit obtained when the model reflects recent reinforcement history?   
To address this question, we compared models that included a learning rate parameter, alpha, to a 
model in which hand choice preferences remained invariant over the course of the experiment 
(null model). Note that if reinforcement history modifies hand choice, we may observe an 
improved fit with the alpha model even in the condition in which we did not alter the success rate 
(NOMANIP in Experiment 1). Second, we compared two classes of models, one in which a 
single alpha value was set for all of the experimental conditions compared to one in which alpha 
was free to vary across experimental conditions. In this way, we could ask if hand choice was 
differentially affected by increasing or decreasing the rate of positive reinforcement, as well as 
whether choice behavior changed at a different rate when the success rate for both hands was 
simultaneously adjusted.  
 The model fits and free parameter estimates are presented in Table 1. For both 
experiments, the Alpha_1 models provide a much better fit than the null model. A likelihood-
ratio test as approximated by chi-square test of the log likelihood ratios showed that the fit was 
much better for the Alpha_1 model compared to the null model in both experiments (Experiment 
1:  χ2(1)1191, p<0.0001; Experiment 2: χ2(1) 1358, p<0.0001). Indeed, the percentage of 
variance accounted for (R2) was low for the set of null models, but rose to 94% and 97% for the 
Alpha_1 models in Experiments 1 and 2, respectively. Thus, while the effect of reinforcement 
was relatively modest in the group-averaged data of hand choice, recent reinforcement history 
had a significant impact on hand choice preferences. The R2 values are also very high for each 
condition in the Alpha_4 models.  
 It should be noted that the improved fit for Alpha_4 as compared to the corresponding 
null model holds even for the NOMANIP condition in Experiment 1, where we did not vary 
reinforcement rate. Thus, the effect of reinforcement history on hand choice does not require that 
the system be perturbed with a change in reinforcement rate: the current data suggest that hand 
choice preferences are constantly being updated as a function of success rates, at least when 
reaching to ambiguous locations. This observation is consistent with the fact that the participants 
exhibited minimal awareness of the experimental manipulation of reinforcement rates, yet altered 
their hand choice preferences.  
  The goodness-of-fit was similar for the Alpha_1 and Alpha_4 models. A chi-square test 
of the likelihood ratios did not show a reliable difference between the two alpha models in 
Experiment 1 (χ2 (3)2, p1). While the Alpha_4 model did provide a significant improvement over 
the Alpha_1 model in Experiment 2 (χ2(3)=24, p<0.0001). This effect is relatively modest, and 
likely reflects the fact that the alpha values were different for the two subject groups, and not for 
the two reinforcement manipulations. This difference .Thus, the modeling results confirm that 
participants were equally sensitive to reinforcement changes that either increased the success rate 
of the left hand or decreased the success rate for the right hand. While our manipulation 
confounds the form of reinforcement and hand, the results suggest that the increasing or 
decreasing the rate of positive reinforcement operate through a common mechanism. 
 In terms of the estimates of learning rate, the alpha values for the four conditions in  
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Experiment 1 were not reliably different from one another as estimated by a bootstrapping 
procedure (p>0.055, significance criterionp<0.0125 to correct for multiple comparisons) and 
were quite similar to the alpha value obtained for the Alpha_1 model. Of note here is that the 
estimate of the alpha rate for the BOTH condition is similar to the estimates for the TAX and 
BOOST conditions. Thus, it appears that simultaneously increasing and decreasing 
reinforcement rates has an additive effect on behavior.  
 The alpha estimates are more problematic for Experiment 2. Here we observed a much 
larger estimate of alpha for the participants who were tested in the BOOST condition on Day 1 
compared to those who were first tested in the TAX condition. While this might suggest greater 
sensitivity to positive reinforcement (or a manipulation targeted at the non-dominant hand), two 
features of the data suggest that this difference may be idiosyncratic to these particular groups of 
individuals. First, these differences were also evident in the estimates obtained from the day 2 
data. Second, the actual reinforcement rates are identical for the BOOST conditions in 
Experiments 1 and 2 (shift from 70/70 reinforcement rates during baseline to 85/70 during the 
manipulation phase). Nonetheless, the estimates of alpha were much larger in Experiment 2 for 
the BOOST data on day 1.  
 In summary, a reinforcement learning model provided an excellent fit to the data in both 
experiments. Participants altered their hand choice preferences for each location (Q values) as a 
function of their recent success or failure in reaching to targets at that location. Moreover, the 
modeling results indicate that participants were equally sensitive to manipulations that increased 
or decreased the rate of positive reinforcement. Not only were the estimates of alpha similar 
across conditions in Experiment 1 and within conditions in Experiment 2, but a model with a 
single learning rate performed essentially as well as one with separate learning rates for each 
condition.  
 
Table 1. Reinforcement learning model fits. 
 Model Condition α   -LL pseudo-R2 R2 

Ex
pe

rim
en

t 1
 

No_Learn 
 
 

BOOST  - 340 ± 37  - -0.03 ± 0.13 
TAX  - 392 ± 39  - 0.21 ± 0.14 
BOTH  - 557 ± 67  - 0.39 ± 0.07 
NOMANIP  - 419 ± 42  - 0.24 ± 0.06 
SUM  - 1708 ± 184  - 0.20 ± 0.05 

Alpha_1 ALL CONDITIONS 0.28 ± 0.09 1113 ± 14 0.35 0.94 ± 0.01 

Alpha_4 
 
  

BOOST 0.22 ± 0.05 253 ± 4 0.26 0.91 ± 0.03 
TAX 0.24 ± 0.15 310 ± 13 0.21 0.89 ± 0.05 
BOTH 0.25 ± 0.01 276 ± 2 0.50 0.95 ± 0.01 
NOMANIP 0.24 ± 0.12 273 ± 2 0.35 0.94 ± 0.02 
SUM  - 1112 ± 21 0.35 0.94 ± 0.01 

Ex
pe

rim
en

t 2
 

No_Learn 
 
 

BOOST - Day 1  - 387 ± 31  - 0.44 ± 0.13 
TAX - Day 1  - 412 ± 34  - 0.48 ± 0.16 
BOOST - Day 2  - 379 ± 13  - 0.75 ± 0.15 
TAX - Day 2  - 486 ± 116  - 0.62 ± 0.30 
SUM  - 1665 ± 194  - 0.64 ± 0.18 

Alpha_1 ALL CONDITIONS 0.38 ± 0.07 998 ± 6 0.40 0.97 ± 0.01 

Alpha_4 
 
  

BOOST - Day 1 0.37 ± 0.08  258 ± 9 0.33 0.96 ± 0.02 
TAX - Day 2 0.36 ± 0.12 273 ± 2 0.34 0.97 ± 0.01 
TAX - Day 1 0.23 ± 0.02 226 ± 2 0.40 0.98 ± 0.01 
BOOST - Day 2 0.25 ± 0.01 229 ± 4 0.53 0.97 ± 0.02 
SUM  - 986 ± 17 0.41 0.97 ± 0.01 
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DISCUSSION 
 The pair of experiments reported here demonstrate that hand choice in an unconstrained 
reaching task can be influenced by limb-dependent task success. Both decreasing the rate of 
positive reinforcement for the dominant hand and/or increasing the rate of positive reinforcement 
for the non-dominant hand increased the likelihood that participants would use their non-
dominant to reach to ambiguous target locations. We were able to account for these transient 
changes in performance within a reinforcement learning framework using a Q-learning model. 
 Hand Choice as a Competitive Process. Previous work on the behavioral and neural 
correlates of decision making during reaching has focused on target selection (Churchland 2008, 
Cisek 2005, Sugrue 2004). The current studies suggest that hand choice may also be viewed as a 
competitive process. Participants exhibited between-trial variability in hand choice at locations 
near the midline. Moreover, RTs at these ambiguous locations(s) were slower than RTs to targets 
at neighboring locations, an effect we interpret as a signature of a competitive process. This RT 
cost is not observed when the responses are limited to a single hand (Oliveira 2010). 
Interestingly, participants were faster when using their right hand in the current studies, whereas 
they showed a surprising left hand advantage in Oliveira et al. This difference may reflect the 
accuracy requirements used here. RTs were approximately 200 ms slower in the current 
experiments, likely due to the fact that accuracy constraints had to be incorporated in trajectory 
planning processes given that online corrections were precluded (Sainburg 2000). .  
 By viewing hand choice as a competitive process, it is reasonable to think that this simple 
decision might be affected by recent reinforcement history. An increase in the rate of positive 
reinforcement for the non-dominant limb or decrease in the rate for the dominant limb led to an 
increase in the use of the non-dominant limb. The small size of the shift likely arises from at 
least two factors. First, hand choice was strongly constrained by target position-- the participants 
showed a large bias to use their ipsilateral hand to reach to eccentric targets, an effect that may 
be especially pronounced when head position and fixation are centered near the midline 
(Dancause 2010). Thus, the effects of reinforcement are intermixed with other constraints 
determining hand choice. Second, the change in reinforcement rates was relatively subtle, an 
increase or decrease of around 20%, changes that are much smaller than those used in many 
studies of reinforcement learning (Daw 2006; Seymour 2007). We opted to use these values so 
that we could examine the effects of reinforcement in the absence of awareness. Indeed, none of 
the participants in the TAX and BOOST conditions of either experiment reported being aware of 
the experimental manipulation. Those who had a sense of increasing their left hand use tended to 
attribute the change in their behavior to intrinsic factors. 

The implicit nature of the changes observed here may have important implications for 
physical rehabilitation after neurological injury. Patients with hemiparesis frequently exhibit 
compensatory strategies, using the arm on their unaffected side to accomplish tasks previously 
performed with the affected limb. This shift may persist even after the individual exhibits 
considerable recovery with the affected limb, creating a significant loss of functional recovery. 
This effect has come to be referred to as learned nonuse (Taub 1980) and has been attributed to 
behavioral factors such as attention, motivation, and sense of effort (Sterr 2002). That is, the 
patient’s internal assessment, at least during the first months after the stroke, may be that use of 
the affected limb is not only much more effortful, but also less likely to be behaviorally 
successful. This experience is reinforcing, increasing the likelihood that the individual will 
continue to use the unaffected limb at the expense of the affected limb.  
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Clinical trials have been designed to counteract the effects of learned disuse. One 
approach is to force the individual to use the affected limb through constraint induced movement 
therapy (Wolf 2006) and/or with virtual reality environments that augment feedback (Merians 
2002; Piron 2010). However, the benefits of such interventions are modest and the mechanisms 
underlying such benefits remain unknown (Wolf 2007). The limited success of guided 
therapeutic interventions such as constraint-induced therapy may, in part, be related to their 
reliance on extrinsic manipulations of behavior. The person is physically restrained from using 
the affected limb. Such procedures, while producing improvements within the therapeutic setting, 
may not generalize well when the contextual cue is absent. Our implicit, reinforcement 
manipulation is designed to alter behavior through intrinsic processes. Altering the person's 
internal sense of success may prove to be an important component of inducing long-term 
changes in behavior.  
 Reinforcement Valence. We did not find a reliable difference in the efficacy of 
increasing and decreasing the rate of positive reinforcement for inducing changes in hand choice 
preference. The modeling results also suggest that the learning rate is comparable for conditions 
in which the rate of positive reinforcement is increased compared to conditions in which the rate 
of positive reinforcement is decreased. This suggests that a common underlying mechanism may 
be sensitive to these two types of reinforcement. It is important to note that, although we describe 
our experimental manipulations in terms of varying the rates of positive reinforcement, we did 
not test models in which we allowed different alpha values for updating the Q-values following 
hits versus misses. 

The neural mechanisms involved in limb selection, and how this process is influenced by 
reinforcement, remain to be explored. Using a similar task to that employed here, Oliveira et al 
(2010) observed that stimulation of posterior parietal cortex of the left hemisphere increased left 
hand use, an effect especially pronounced around the PSE. This effect suggest that activity in 
PPC contributes to effector selection. Other studies point to a role for premotor cortex in such 
decisions (Beurze 2007; Beurze 2009). Here we show that shifts in hand use can also be induced 
by short-term changes in reinforcement rates. The dopaminergic system has been implicated as 
facilitating learning for both positive and negative reinforcement. Dopamine bursts are 
associated with positive reinforcement, and through associative mechanisms, with prediction 
errors to a stimulus that foreshadows an unanticipated reward (Schultz 1997; O'Doherty 2003; 
O'Doherty 2004). Although the evidence is less compelling, a drop in the firing rate of 
dopaminegeric neurons can be observed when an expected reward is withheld (Schultz 1997; 
O'Doherty 2003; O'Doherty 2004). Similarly, high amounts of dopamine facilitate learning from 
positive reinforcement, while low amounts of dopamine facilitate learning from negative 
reinforcement (Frank 2004). The modulatory effect of dopamine is especially pronounced under 
conditions of uncertainty (Cooper 2008; Koch 2008), something that should be prominent in our 
experimental task given the relatively high error rates. Future studies can directly address the 
role of dopamine in modulating hand choice preferences, designed to ask if the effects on 
effector selection are similar to those observed in tasks examining goal selection. 

The Q-learning model was successful in capturing the gradual shifts in hand choice 
preferences as a function of reinforcement. However, the model fails to account for some of the 
trial-by-trial effects observed in the data (see Figure 4). First, when the target appeared at the 
same location on two successive trials, participants exhibited a pronounced bias to repeat the 
reach with the same hand. In its current form, location biases are established by choices 
exhibited in the baseline phase. Similarly, the model cannot account for the fact that the 
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likelihood of a hand switch was greater when the distance between successive targets increased. 
The updating of the Q-values following reinforcement was restricted to the pair of values 
associated with actions to the target location for that trial. Additional parameters would be 
required to impose additional biases related to repetition or “contrast” effects.  

Reinforcement learning should decrease the likelihood that a given action will be chosen 
following an error (and conversely, increase the likelihood of that action following a hit). Of 
course this does not mean that behavior will exhibit win-stay/lose-shift tendencies. The 
reinforcement-related changes may be insufficient to alter preferences to use one hand or the 
other at a given location. A win-stay/lost-shift tendency was observed in Experiment 1. However, 
we observed an unexpected sequential effect in Experiment 2: Participants were more likely to 
use the right hand after an error, regardless of whether that error was produced with the left or 
right hand. We hypothesize that the decrease in positive feedback may have biased the 
participants to resort to their dominant hand, reflecting a greater comfort level in using this hand 
to make accurate movements. It remains unclear why we observed different sequential effects in 
the two experiments. 

A second difference between the two experiments was observed in the post-manipulation 
phase. On average, participants in Experiment 1 continued to use their non-dominant limb more 
often than during the baseline phase, whereas those in Experiment 2 returned to baseline choice 
preferences. Given that the patterns within an experiment were quite consistent across 
experimental conditions, we expect the difference is related to the methodological changes 
introduced in Experiment 2. For example, we increased the step size of the staircase procedure 
and added a new target location to increase the number of trials involving reaches to ambiguous 
locations. The former change, adopted to help ensure that the average reward rate over an entire 
block of trials was more consistent across participants, may have increased the rate of learning. 
The latter may have increased the sensitivity of the experiment to learning effects, now evident 
during both the manipulation and post-manipulation phases. Models of hemiparesis suggest that 
efforts to increase the use of an affected limb should accelerate once some minimum threshold of 
use is achieved (Han 2008). Reinforcement manipulations may facilitate this process, especially 
if the observed rate of reinforcement exceeds the expected rate. In terms of rehabilitation, it will 
be desirable to design experimental manipulations that produce stronger and lasting changes in 
hand choice preferences than those observed with our current procedures. 
 Conclusions. Goal-oriented behavior requires the operation of decision processes at 
multiple levels. Fluid behavior involves that we successfully operate in a variable environment 
that presents a stream of choices. Moreover, the manner in which we interact with the 
environment is variable and context-dependent. We have focused here on a neglected, but 
fundamental decision process for motor control, the choice between executing an action with the 
right or left hand. In many situations, this choice is highly constrained, reflecting factors such as 
the position of the object with respect to the body or a lifetime preference for the dominant limb. 
Yet for many actions, especially those that do not involve tools, people exhibit considerable 
flexibility, switching readily between the two limbs. The experiments presented here 
demonstrate that principles derived from studies of goal-selection, can shed insight into the 
processes underlying limb selection.  
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CHAPTER II: Neural processes underlying free limb selection 
 
INTRODUCTION 

Interacting with the world involves the continuous selection of actions. Studies in the 
decision making literature have shed light on how the brain integrates information to assess and 
compare the value of potential actions. Neurophysiological (Hoshi 2000, Cisek 2005) and 
neuroimaging (Medendorp 2005, Tosoni 2008; Beurze 2007, 2009) studies have identified a 
frontoparietal network that is engaged in decision making tasks. While the contributions of 
different regions within this network remains the subject of considerable debate, a number of 
studies have focused on the role of orbitofrontal cortex (OFC) in the representation of value, 
integrating information about variables such as payoff, likelihood, and effort (Chib 2009, 
Croxson 2009, Lim 2011, Wallis 2011). One hypothesis is that value signals in the OFC bias 
activity in the dorsal medial prefrontal cortex and parietal cortex, supporting processes involved 
in the comparison and selection of actions (Hare 2011). Supporting this idea, Sugrue et. al (2004) 
found that neurons in the parietal cortex reflect the values of competing actions.  

Within the motor control literature, work has been done to identify the neural correlates 
of planning movements with a specified limb. Neurons in a region termed the parietal reach 
region, located in the posterior parietal cortex, code the position of a target with respect to the 
body (Batista and Anderson 2001). Similar representations are observed in frontal motor regions, 
including the dorsal premotor cortex. In this region, neurons may reflect the parallel preparation 
of reaches to multiple targets, with the dynamics of activity eventually settling on a choice 
(Cisek  and Kalaska 2005). Recent work in humans (Beurze 2007, 2009) and in monkeys (Hoshi 
2000) has demonstrated that target and body-part information are integrated in the premotor 
cortex and the posterior parietal cortex. Tosoni et al (2008) demonstrated that increased 
activation in the contralateral parietal area is correlated with an arbitrary visual reach decision, 
corroborating the idea that accumulation of sensory evidence for decision making is linked to the 
specific planned action. The question remains as to what extent the choice of where to reach is 
integrated with the choice of which limb to reach with. 

Choosing which limb to reach with is a fundamental decision process that involves 
varying degrees of competition depending on factors such as target location and hand dominance. 
While people favor their dominant limb, there is evidence for flexible hand use in object 
manipulation such that hand assignment is largely dependent on task goals (Johansson 2006). 
Work in motor control investigates how people decide to execute a selected action–for example, 
where should a tool be grasped. This work has focused on how stimulus factors (e.g., object 
orientation, handle width, object mass) and biomechanical factors (e.g., end-state comfort, 
bimanual symmetry) constrain such choices (Cohen 2004, Van der Wel 2010). Similarly, the 
effect of environmental factors on reach endpoint and trajectory selection has been investigated. 
People are able to integrate information about their own movement variability with 
environmental variability to move in a way that minimizes risk and maximizes reward 
(Trommershauser 2008). Another interesting and understudied question is what are the value-
based decision and control processes involved in deciding which limb to reach with.  
 In this study, we investigate what brain regions are involved in limb selection. Using 
functional magnetic resonance imaging (fMRI) we compare brain activity when the participants 
are free to reach with either limb to when the limb is specified. Since reaches during both 
conditions activate regions of the brain that are involved in integrating effector and target 
information, comparing brain activity during these two conditions will allow us to identify the 
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areas within this network that are specifically involved in the choice between effectors. We 
predict that a frontoparietal choice network associated with perceptual decision making will also 
be involved in the competitive process of limb selection.  
   
METHODS 
 Participants.  
 Fifteen participants (8 Females; mean age ± standard error 23.3 ± 1.3 years) participated 
in the experiment and were paid for their participation. All participants were right-handed. One 
participant was excluded from the analysis because he did not follow the instructions, failing to 
reach to the target on many trials. Thus, the behavioral and imaging data is from 14 participants. 
The protocol was approved by the UC Berkeley Institutional Review Board and all participants 
provided informed written consent before the start of the session. 
 Design and Procedures 
 Apparatus. The experiment was performed in an fMRI scanner (3 Tesla Siemans 
TIM/Trio scanner). The participant was in the standard supine position within the scanner, with 
two long cylindrical cushions placed along the trunk on each side to support their arms. The 
participant rested their hands on two low-resistance, large buttons on an MRI-compatible 
response box that was placed approximately 10 centimeters above their waist. A touch pad was 
supported by a triangular pillow, and thus placed at a 45° angle at the participant’s waist. A 
mirrored projection system was used to display the stimuli.  

Behavioral Task. Each trial began with a 750 msec presentation of a fixation bar that 
spanned the extent of the screen (32 cm wide - approximately 48° of visual angle). The fixation 
bar was then replaced by the appearance of a white circular target. The participant was instructed 
to reach to the position corresponding to the circular target on the touch pad as quickly as 
possible, using an out-and-back movement so that the hand returned to the resting position on the 
response box. The response box was used to detect which hand had been selected to make the 
reaching movement and to detect the reaction time. Reach lengths were approximately 10 cm. 
The target remained visible for 1750 msec, even though almost all of the responses were 
completed in a much shorter interval.  
 Blocks of trials alternated between two types: (1) free: the participant was free to choose 
their left or right hand to reach to the target and (2) forced: the participant was instructed what 
hand to use to reach to the target. In order to match behavior between the two conditions, the 
instructions for which hand to reach with during the forced blocks were based on which hand 
was chosen for each trial in the proceeding free block. Thus, if a participant had used the right 
hand on 65% of the trials during the free block, the participant would be instructed to use the 
right hand on 65% of the trials in the subsequent forced block.  
 During the free blocks, the fixation bar was either green indicating the subject should 
reach to the target with either their right or left hand (Go, 79% of Trials) or the fixation bar was 
red, indicating the subject should not reach when the target appeared (No-Go, 21%) (Figure 1A). 
During the forced blocks the fixation bar was either yellow or blue, indicating the subject should 
reach with their right or left hand, respectively (Go, 79%), or red (No-Go, 21%) (Figure 1B). By 
including No-Go trials, we ensured that the participant had to attend to the cue in both conditions, 
free and forced. Subjects were unaware that the sequence of target locations was repeated from 
the free block to the following forced block.  

Each participant completed four scanning runs. Each run was composed of eight blocks 
of 14 trials each. The eight blocks alternated between the free and forced conditions. Trials were 
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evenly spaced every 2.5 seconds and there was a 15 second rest between blocks. Thus each block 
lasted 35 seconds, and each scan lasted 6 minutes and 55 seconds. Across the four runs, there 
were a total of 448 trials (354 Go trials; 94 No-Go trials).  

Prior to the experiment, the participant completed one to two practice blocks in a “mock” 
scanner (a decommissioned fMRI scanner) to familiarize themselves with the task.  

 
Figure 1. (A) During free choice, participants fixated on a green bar and reached to a spot on the touch pad 
corresponding the displayed target location with either their right or left hand. (B) During forced choice, participants 
fixated on an instructive colored bar and reached with their right hand (yellow bar) or left hand (blue bar) when the 
target appeared. Behavior was matched during free and forced Choice. No-Go (red bar) trials were included to 
equate the attentional demands of the two tasks.  
 

At any one point in time, there were seven possible target locations (Figure 2). The 
vertical position of the target was fixed, appearing in the middle of the screen. The middle 
location was set to the current estimate of the participant’s point of subjective equality (PSE), 
determined by an adaptive procedure (see below). This location was flanked on each side by two 
target locations, one pair 0.5 cm from the PSE and the other pair 1.0 cm from the PSE. We chose 
to use this configuration to ensure a set of target locations in which effector selection was 
demanding. There were also two eccentric target locations, 7.8 cm to the left and right of the PSE. 
These eccentric locations were included to ensure that the participant did not adopt a single hand 
strategy. Note that we employed a fixation bar rather than a small central fixation symbol so that 
the cue did not provide a spatial referent for the target (i.e., leftward). 

 

 
Figure 2. On each trial a target location was drawn from an array 
of seven locations. The center of the array (dashed line), the 
estimated point of subjective equality, was continuously updated to 
generate approximately equal right and left hand usage. 

  

Fixate (0.75s)! Fixate (0.75s)! Fixate (0.75s)!Reach (1.75s)! Reach (1.75s)! No Reach (1.75s)!

Fixate (0.75s)! Fixate (0.75s)! Fixate (0.75s)!Right Reach (1.75s)! Left Reach (1.75s)! No Reach (1.75s)!

(A) FREE!

(B) FORCED!
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 During free blocks, the center of the target location array was continually updated using 
an adaptive staircase procedure. The procedure shifted the array to the left after a trial in which 
the right hand was chosen and shifted the array to the right after a trial in which the left hand was 
chosen. The array was shifted left or right between 10% and 100% of a 5 mm step size 
depending on the target location. This procedure was used to generate approximately the 
following right hand use at the seven target locations:  
 [0%, 25%, 37.5%, 50%, 62.5%, 75%, 100%].  
The percent step sizes for the seven target locations were as follows:   
 [10-100%, 33-100%, 50-100%, 100-100%, 100-50%, 100-33%, 100-10%]).  
For instance, after a left-handed reach to target #2 (5 cm to the left of the PSE), the center of the 
array was moved 33% of the 5 mm step size to the right (1.65 mm). After a right-handed reach at 
this location, the center of the array was moved the full 5 mm to the left. This algorithm is 
optimized to ensure that the participant will be equally likely to use each hand the trials at the 
center location, the PSE.   

Scan Acquisition. A localizer scan, an anatomical scan, and four experimental scans 
were obtained for each participant. To minimize head movement, a custom bite bar was fit to 
each participant. Additionally, two pilot participants completed one or two runs without bite bars 
in the mock scanner, where head movement in the x, y, and z directions were measured using an 
accelerometer. Pilot testing illustrated that even without a bite bar, head movement was minimal. 

Data was acquired on a 3-Tesla Siemans TIM/Trio scanner. Echo planar imaging 
sequences were used. Thirty-six (36) sagittal slices (including the cerebellum) with a 64 x 64 
matrix, voxel size of 3mm3, and 0.85mm spacing was used. The TR was 2 seconds. The total 
field of view was 19.2 cm x 19.2 cm x 13.9 cm. 
 Imaging Analysis. fMRI data processing was conducted with FEAT (FMRI Expert 
Analysis Tool) Version 5.98, a package within FSL (FMRIB's Software Library, 
www.fmrib.ox.ac.uk/fsl). Preprocessing analyses included motion correction (MCFLIRT,  
Jenkinson 2002), non-brain masking (BET, Smith 2002), spatial smoothing with a Gaussian 
kernel of FWHM 5mm, grand-mean intensity normalization of the entire 4D dataset by a single 
multiplicative factor, and highpass temporal filtering (Gaussian-weighted least-squares straight 
line fitting, with sigma=49.11s). ICA-based exploratory data analysis was carried out using 
MELODIC (Beckmann 2004) to investigate the possible presence of unexpected artifacts or 
activation. 
 Time-series statistical analysis was carried out using FILM with local autocorrelation 
correction (Woolrich 2001). Z (Gaussianised T/F) statistic images were thresholded using 
clusters determined by Z>2.3 and a (corrected) cluster significance threshold of P=0.05 (Worsley 
2001). Images were resampled to 2 mm cubic voxels, standardized to the corresponding MNI152 
template, and registered to high-resolution structural and/or standard space images (FLIRT, 
Jenkinson 2001, 2002). Registration from high resolution structural to standard space was then 
further refined using FNIRT nonlinear registration (Andersson 2007a, 2007b). Higher-level 
analysis was carried out using a fixed effects model, by forcing the random effects variance to 
zero in FLAME (FMRIB's Local Analysis of Mixed Effects) (Beckmann 2003, Woolrich 2004, 
Woolrich 2008). 
 We were particularly interested in the activity in posterior parietal cortex, dorsal 
premotor area, and medial prefrontal cortex in the comparison of the free and forced conditions. 
To identify regions of interests (ROIs) in these areas, a univariate contrast was performed, 
comparing the blood-oxygen-level-dependen (BOLD) activity for two contrasts: move versus 
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rest and free versus forced. The ROIs were identified by manual hill-climbing to find peaks from 
these contrasts. A connectivity analysis was performed between the ROIs. For this analysis, the 
Pearson product-moment correlation coefficient (R) between the average BOLD time course for 
each cubic 27 voxel ROI was calculated.  
  
RESULTS 
 Task Performance.  
 Percent Right Hand Use. Trials were grouped into seven bins using target positions in 4-
degree windows. While the targets could theoretically be presented at locations spanning the full 
width of the projection screen, the majority of target presentations were limited to a 30° window 
spanning the midline (-15° to 15°). Targets to the left of this range were only required for 
participants who exhibited a strong right-hand bias. The staircase procedure used to position the 
target array attempted to estimate each participant’s PSE, the location where the participant 
reached with the right and left hands on 50% of all trials. Given that all participants 
demonstrated a right hand bias, targets were more frequently presented on the left side of the 
screen than the right side (Figure 3B). 
 Overall, participants used their right hand on 45 ± 2% of the trials in the free choice 
condition and 44 ± 2% of trial in the forced choice condition. Note that since the target locations 
and hand specifications in the forced choice condition were repeated from each participant’s 
behavior in the previous free choice block, right hand use should have been exactly the same in 
the two conditions. The difference between right hand use during the free and forced choice 
conditions was caused by a small number of errors in the forced choice condition where the 
participant failed to use the instructed hand, as well as errors when participants reached on No-
Go trials.  
 
(A)               (B) 

   
 

Figure 3. (A) Average percent right hand use and (B) average target presentation frequency per run use as a function 
of target location (4-degree bin). The limited number of more peripheral target locations (> ±15°) are not included  
in the figure.     
 Reaction Time. The reaction time for the free and forced conditions were compared for 
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each hand (Figure 4). Reaction times were 61 ± 7 msec slower during free choice than forced 
choice [F(1,13) = 4.72, p = 0.04], where the reaction time for free choice was 499 ± 15 msec and 
the reaction time for forced choice was 438 ± 12 msec. There was no significant difference 
between reaction times for the left and right hands [F(1,13) = 1.12, p = 0.38], such that the 
reaction time for the left hand was 455 ± 15 msec and the reaction time for the right hand was 
482 ± 15 msec. These reaction times are roughly in line with reaction times in similar 
experimental set-ups (Sainburg 2009) where there is an indirect mapping between the stimulus 
and response space (stimuli appear on a monitor and participants reach along a table positioned 
in an orthogonal plane). 
 

 
Figure 4. Reaction time for the left (blue) and right hands (red) 
during free choice (dark) and forced choice (light). 

 
 Imaging Results.  
 MOVE > REST. We first compared the hemodynamic response between epochs in which 
the participants moved (free and forced) and epochs in which they were at rest. This contrast 
revealed the standard activation pattern for reaching (Table 1, Figure 5). Cortically, the BOLD 
response was larger during movement in the primary motor cortex (M1), dorsal premotor area 
(PMd), primary somatosensory cortex (S1), intraparietal sulcus (IPS), and precuneus (PCUN). 
Subcortically, movement led to a larger BOLD response in the basal ganglia (BG), inferior 
ceberellum (Vermis/Crus II), and superior cerebellum (Lobule V-VI). In all of these regions, the 
move > rest contrast was bilateral, consistent with the fact that participants used the right and left 
hands.  
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Figure 5. The move vs. rest contrast revealed the standard brain activation pattern for reaching. 

 
Table 1. ROI coordinates. 

 
  

x = 10 y = -18 z = 54

Anatomical Region Abbre-
viation

Hemi-
sphere

Peak 
Coordinates 
(MNI) (x,y,z)

Z-Score 
(at peak)

Move > Rest
Basal Ganglia BG L -16, -22, 6 5.15

R 16, -22, 4 4.82
Primary Motor Cortex M1 L -32, -26, 60 5.09

R 32, -26, 52 5.59
Dorsal Premotor Area PMd L -26, -6, 58 5.47

R 34, -4, 60 5.16
Precuneus PCUN L -10, -64, 50 4.50

R 10, -64, 50 4.22
Primary Somatosensory Cotex S1 L -32, -40, 50 5.15

R 34, -36, 56 5.27
Intraparietal Sulcus IPS L -30, -58, 48 5.43

R 30, -50, 52 4.99
Inferior Cerebellum iCB L -24, -48, -54 5.44

R 18, -58, -54 5.21
Superior Cerebellum sCB L -18, -46, -26 6.60

R 16, -44, -26 6.07
Free > Forced
Ventral Lateral Prefrontal Cortex vlPFC R 46, 16, 2 3.48
Posterior Parietal Cortex PPC1 R 40, -58, 44 3.47
Posterior Parietal Cortex PPC2 R 46, -54, 32 3.54
Cerebellum CB1 L -4, -78, -30 3.44
Cerebellum CB2 L -2, -68, -28 3.32
Dorsal Medial Prefrontal Cortex dmPFC1 R 10, 20, 56 3.68
Dorsal Medial Prefrontal Cortex dmPFC2 L -4, 22, 42 2.80
Dorsal Medial Prefrontal Cortex R 8, 22, 40 3.11
Paracingulate Gyrus PC Gyrus L -8, 36, 26 3.30
Paracingulate Gyrus R 10, 26, 40 3.17
Parietal-Occipital Sulcus P-O Sulcus R 16, -76, 42 3.26
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FREE versus FORCED. We next turned to the direct contrast between the free and 
forced choice conditions. It should be emphasized that the behavior in the two conditions is 
closely matched since we yoked the forced choice stimuli/responses to that obtained in the free 
choice condition. As such, the location of the stimuli and use of hands is essentially identical. 
Inclusion of No-Go trials insured that participants had to attend to the colored cue in both 
conditions. The main difference is that in the free choice condition, the participant was free to 
reach with either hand (and presumably this is the source of the increase in reaction time for the 
free choice condition).  
 Areas in the posterior parietal cortex (PPC), medial prefrontal cortex (mPFC), and 
cerebellum (CB) (Vermis/Crus II) showed a stronger BOLD response in the free condition 
compared to the forced condition (Table 1, Figure 6). Surprisingly, of these regions, only the 
cerebellum overlapped with the move > rest network. While the cerebellar activation difference 
was predominantly in the midline, both the parietal and prefrontal activation differences were 
mainly in the right hemisphere. It is possible that this right hemisphere bias reflects the fact that 
more of targets were presented in the left visual field (Figure 3B). However, it should be noted 
that the stimulus locations were matched in the two conditions. 
 We did not identify any brain regions that were more active during forced choice as 
compared to free choice.  
 

 
Figure 6. Areas of the brain where activity was greater during free choice than during force choice include the (A) 
cerebellum (CB) (B) dorsal medial prefrontal cortex (dmPFC), (C) ventrolateral prefrontal cortex (vlPFC), and (D) 
posterior parietal cortex (PPC). 
 
 Connectivity. We completed a multivariate analysis examining the connectivity between 
the ROIs identified in the move > rest and free > forced contrasts. Cubic 27 voxel ROIs centered 
at the peak activation were identified for each of these regions. A control region centered at the 
corner of the sampled space (88, -124, -70) was also included. The connectivity analysis was 
completed on the time course of the BOLD response during all movement (both free and forced 
conditions), as well as movement during the free condition only and movement during the forced 
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condition only. This allowed us to investigate the overall pattern of connectivity during 
movement, as well as any potential differences between the patterns of connectivity during the 
free and forced conditions.  

 
Figure 7. Correlation (R) between all ROIs identified in move>rest and free>forced contrasts1.  

 
Activity in all of the ROIs was positively correlated (Figure 7). We hypothesized that 

there would be greater connectivity between the parietal and premotor regions during free choice 
as compared to forced choice (Pesaran 2008). Contrary to this prediction, the correlations 
between the BOLD time courses for all ROIs was similar for the free and forced choice data 
(resulting in difference scores of approximately zero).  
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1Three ROIs listed in Table 1 were input into the connectivity analysis with slightly different coordinates. These 
were the Right Primary Somatosensory Cortex (46, -36, 52), the Ventral Lateral Prefrontal Cortex (50, 16, -4), and 
the Parietal-Occipital Sulcus (14, -76, 44). In addition the ROIs labeled PPC2, dmPFC2, and dmPFC3 were not 
included in the connectivity analysis. Given that we did not find any difference between the connectivity during the 
free and forced condition, we did not repeat the connectivity analysis with the most up-to-date list of ROIs. We do 
not anticipate that the results would be significantly different. 
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DISCUSSION 
 
 Research in decision making has mainly focused on how we select between competing 
alternatives out in the world. In the work presented here, we sought to identify regions in the 
brain that are involved in limb selection, a decision process internal to the body. We 
demonstrated that regions in the dorsal medial prefrontal cortex, posterior parietal cortex, and 
cerebellum are involved in limb selection. Activity in these regions was greater when 
participants were free to choose a limb to reach with as compared to when the limb to reach with 
was specified. 
 Neural processes in volitional action. A number of studies have been conducted to 
identify the neural correlates of volitional action. Typical investigations of volition look at neural 
process involved in deciding between multiple alternatives out in the world (e.g., abstract shapes, 
differently flavored juices). Once a decision is made, selection can be made with a button press 
or a reach with a specified limb to different locations. A large body of evidence has identified 
regions in the prefrontal cortex, particularly the supplementary motor area (SMA) and pre-
supplementary motor area (pre-SMA) as being involved in volitional action (Lau 2005, Rothwell 
2001, Haggard 2008). Lau et al (2004) found that activation was greater in the anterior cingulate 
cortex (ACC), pre-SMA, medial parietal cortex, and intra-parietal sulcus when people were free 
to choose a reach target in comparison to when the reach target was specified. Haggard (2008) 
has proposed that a basal ganglia (BG) – pre-SMA circuit is involved in the initiation of actions, 
whereas a premotor-parietal circuit arbitrates between competing options.  
 We sought to extend this work about the choice between objects to the choice between 
one’s right and left limbs. Consistent with the work described above, we found that regions in the 
dorsal medial prefrontal cortex, encompassing the anterior cingulate cortex and supplementary 
motor area, were more active during free effector selection than forced effector selection. Given 
that the free choice condition in our study required selecting the right or left hand, our finding 
supports the hypothesis that the ACC plays an important role in monitoring conflict between 
competing responses (Rothwell 2001, Lau 2005).  
 There is an alternative explanation for the higher BOLD response in the ACC during free 
effector selection. Participants were slower in initiating their responses in the free choice 
condition than in the forced choice condition. It is possible that the enhanced ACC response in 
the free choice condition reflects the increased time spent on task in this condition. Grinband et 
al (2011) reported that activity in the dmPFC is monotonically related to time on task, and that 
this hypothesis may account for previous effects attributed to processes such as response conflict 
or error likelihood. 
 Neural processes in value-based decision making. A large body of work has implicated 
a frontoparietal network in value-based decision making (Sugrue 2004, Cisek 2005, Daw 2006, 
Tosono 2008, Gershman 2009). This work has mainly focused on how we choose between 
different objects (e.g., coffee or tea, the bus or the train). In this study, we focus on identifying 
the neural representation of deciding between one’s left and right limbs. Interestingly, this type 
of choice termed effector selection activates many of the brain regions implicated in selecting 
between objects out in the world, including the dorsal medial prefrontal cortex and the posterior 
parietal cortex. This finding is in accordance with work that demonstrates that target selection is 
integrated with the specified effector (Medendorp 2005, Beurze 2007, 2009, Gershman 2009).  
 Interestingly, we did not observe task-relevant activation in the orbitofrontal cortex 
(OFC), a region that has been shown to play a critical role in standard neuroeonomic tasks 
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involving choice behavior (Chib 2009, Croxson 2009, Lim 2011, Wallis 2011). The OFC has 
been shown to represent the value of competing options in value-based object selection. Several 
explanations exist for this distinction from the traditional value-based decision making literature. 
 In our study, subjects made a body-based decision and not a decision between objects out 
in the world. Thus, the neural value signal may be closer to effector specific brain areas such as 
regions in the cerebellum or parietal cortex. In addition, participants were not rewarded for 
selecting one hand or the other, nor were they rewarded for hitting the target. Thus, there was no 
explicit reward or value signal which the OFC is shown to encode. As such, a neuroimaging 
study comparing the role of reward learning in object selection and effector selection should be 
undertaken to fully characterize the neural substrates of value-based decision making. A 
behavioral paradigm for such a study is outlined in Chapter III. 
 Cerebellar Activation. There is a wealth of research demonstrating the cerebellum’s role 
in sensorimotor control (Manto 2011). Patients with cerebellar lesions are impaired in a variety 
of motor tasks including visuomotor adaptation (Martin 1996; Baizer 1999) and sequence 
learning (Shin 2003). We found that there was greater activation in cerebellar regions 
traditionally involved in motor function during free choice as compared to forced choice (Küper 
2010). This activation overlapped with the cerebellar activation in the move > rest contrast. One 
explanation for the increased activation in the cerebellum during free choice is that this condition 
required participants to integrate target location information with body information to make an 
effector selection for action. The cerebellum may be critical for making motor control decisions 
with regard to effector selection. This is distinct from selecting between different objects out in 
the world. 
 Another explanation for the increased cerebellar activation during free choice as 
compared to forced choice involves the cerebellum’s important role in error-based learning. The 
cerebellum plays a critical role in integrating information about the body and world (Taylor 2010, 
Manto 2011). Even in our task, where participants have no explicit error signal and are not told 
whether they hit the target or not, they are still, as instructed, doing their best to reach to the 
touch pad at the correct spot. Participants have a forward model of their reach dynamics, and will 
make an internal judgment as to whether or not they were successful. Thus, it follows that more 
demand will be placed on the cerebellum when participants are free to choose their right or left 
hand as this choice will effect their chance of achieving a successful reach.  
 Recent evidence demonstrates that sequence learning in patients with cerebellar ataxia is 
persevered when the movements are directly cued (Spencer 2009). In the study described here, 
all movements were indirectly cued. Thus, a final additional explanation for the increased 
cerebellar activation during free choice is that this condition puts a higher demand on the 
cerebellum with regards to the indirect cuing of reaches.   
 Right lateralization of activity in the posterior parietal cortex. The right parietal reach 
region (PRR), but not the left, was more active during free limb selection than forced limb 
selection. Given that neuronal representation of reach direction is limb dependent, one 
explanation for this asymmetry could be that participants demonstrated a left hand bias, reaching 
with their left hand on 55% of all trials (Gershman 2009, Chang 2012, Bernier 2012). This is an 
unlikely explanation because the asymmetry was present in the free and forced condition. Still, to 
investigate the effect of the hand use asymmetry on the free > forced contrast, a subset of the 
participants (n=7) whose overall limb selection was more symmetrical (51 ± 2% left) was 
analyzed. This analysis confirmed that the BOLD response was greater in the right, but not the 
left, PRR.  
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 Another explanation for the asymmetry in PRR activity could be that target presentations 
were weighted towards the left side of the screen (Figure 3B). This asymmetrical stimulus 
display occurred because all subjects were right handed and an adaptive procedure moved the 
target display such that each hand was selected approximately 50% of the time. It is possible that 
this perceptual bias could have facilitated the laterality bias in the PRR. However, this is again an 
unlikely explanation because the perceptual bias was present equally in the free choice and 
forced choice conditions. 
 Oliveira et. al (2010) demonstrated that transcranial magnetic stimulation (TMS) to the 
left PPC, but not right PPC biases the competitive process of limb selection. One explanation for 
this effect is that the representation of reaches in the right hemisphere may be broader and thus 
harder to perturb with TMS. This broader representation in the right parietal cortex could explain 
the greater activity in the right PPC during free choice as compared to forced choice.  
 Connectivity. Planning and executing a reaching movement involves the frontal and 
parietal areas (Beurze 2007, Beurze 2009, Medendorp 2011, Pesaran 2008, Cisek 2005, Hoshi 
2000). Recent work has tried to elucidate the functional roles of these regions in action selection. 
Using fMRI, in a delayed reaching task where temporally distinct cues specified the effector and 
the target location, Medendorp et al (2005) demonstrated that target and effector information are 
integrated in the posterior parietal cortex (PPC) and the dorsal premotor cortex (PMd). To 
identify the neural substrates of this integration (how monkeys decided where to reach), Pesaran 
et al (2008) recorded from neurons in the PMd and the PRR while monkeys reached to a series of 
targets in two conditions: (1) free: monkeys were free to search for a reward at three targets in 
any order  (2) instructed: monkeys were instructed in which order to search the targets. Greater 
coherence was observed between neural activity in the PMd and PRR in the free reaching 
condition compared to when the monkeys were instructed where to reach.  
 We expected to find a similar enhancement of connectivity between PMd and PRR 
during the free condition. However, the analysis failed to show greater connectivity PMd and the 
other ROIs during free choice compared to forced choice. We did find that acitivity in the PMd 
was highly correlated to acitivity in the cerebellum and parietal cortex during movement in both 
condition (Figure 7). It is possible that fMRI was not a precise enough measure of neural activity 
to detect changes in connectivity in this task. Further electrophysiological work should be done 
to identify the neural circuit of free limb selection. 
 Conclusions. This study is some of the first work identifying the neural correlates of free 
limb selection and thus adds an important piece to the work in neuroeconomics investigating the 
processes underlying value-based decision making. Future work will move beyond this basic 
correlational study, and characterize the role of specific brain regions in specific effector 
selection processes including the role of uncertainty, effort, value updating, and selection for 
action. Given the clinical importance of developing rehabilitation therapies that facilitate the 
affected side after stroke, it is important to establish both behavioral and neuroscientific 
measures of functional recovery. Identification and characterization of the brain regions 
implicated in limb selection in healthy individuals will provide a basis for better evaluation of 
impairments and improvement in stroke patients and thus inform rehabilitation therapies.  
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CHAPTER III: The value-based decision processes of effector and target selection. 
 
INTRODUCTION  
 When planning a reaching movement, people have two principal decisions (Horowitz 
1999): where to reach (target selection) and which limb to reach with (limb selection). Research 
in the behavioral and neural processes of decision making have focused on the first choice: 
where to reach. A large body of work has implicated a fronto-parietal choice network in value-
based decision making (Tosoni 2008; Beurze 2007, 2009; Medendorp 2011; Hoshi 2000; Cisek 
2005). As described in the introduction of Chapter II, there is substantial neuroimaging evidence 
pointing to the orbitofrontal cortex (OFC) as the locus of the value signal (Chib 2009; Croxson 
2009; Lim 2011; Wallis 2011). In addition, patients with damage to their OFC show deficits in 
reward-based decision making (Izquierdo 2004; Fellows 2006). Further research points to the 
dorsomedial prefrontal cortex (dmPFC) and the parietal cortex as involved in the comparison of 
values and selection for action (Hare 2011).  
 The basal ganglia (BG) has been shown as the nexus of a prediction error signal, 
important for reward learning (Schultz 1997; O’Doherty 2003; Seymour 2007). More recent 
work has demonstrated the involvement of the cerebellum in reward learning processes. There is 
substantial evidence in the imaging literature showing that activity in the cerebellum codes the 
signed prediction error in appetitive conditioning and aversive learning tasks (O’Doherty 2003; 
Seymour 2004). The cerebellar activation was similar to that in the BG and OFC, only it 
responded significantly more to reward learning tasks with lower learning rates. Thoma et al 
(2008) found that patients with cerebellar lesions could initially acquire the contingencies in a 
reward-based associative learning task, but showed an impairment in reward-based reversal 
learning. Considering the well-established role of the cerebellum in sensorimotor learning 
(Manto 2012) and this more recent work demonstrating the cerebellum’s role in reward learning 
processes, we sought to understand the role of the cerebellum in value-based effector selection. 
Given our finding that the cerebellum is more active during free limb selection (Chapter II), we 
expected that patients with cerebellar ataxia would show a selective deficit in tracking limb-
dependent reward rates. 
 We previously demonstrated that reinforcement history affects hand choice in an 
unconstrained reaching task: People became more likely to use their non-dominant hand when 
the likelihood of hitting the target with the non-dominant hand was increased or the likelihood of 
missing the target with the dominant hand was increased (Stoloff 2011, Chapter I). We are 
interested in understanding the ways in which the value-based decision process of choosing a 
limb differs from the well-studied value-based decision process of choosing between objects out 
in the world. Work in value-based decision making has focused on questions such as how we 
decide between items such as chocolate, strawberry, and vanilla ice cream. The OFC codes the 
value of these items, and this value signal helps one decide between a scoop of the more desired 
chocolate ice cream and two scoops of the less desired vanilla ice cream. Less attention has been 
paid to the fundamental question of how we decide which hand to use to pick up the ice cream. 
Do we use our right, dominant hand even though the ice cream is on a table to our left? Where in 
the brain is the value signal that helps us make this decision, and what are the behavioral 
processes that contribute to updating this signal? 
 Research in value-based decision making has employed a novel technique to investigate 
the neural correlates of the different processes involved in action selection (e.g., the prediction 
error, the value signal, trading off between exploration and exploitation, etc.) (Daw 2006; 
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Gershman 2009; Rutledge 2009). This novel technique involves varying the probability of the 
rewards given for choosing competing alternatives (different shapes or colors). The reward 
functions either employ a step function (Rutledge 2009) or a Gaussian random walk (Daw 2006; 
Gershman 2009). Either way, the optimal choice changes over time, and participants must 
continually explore their environment to determine the best choice at any given time.  

In these studies, mathematical models of reinforcement learning are fit to the choice data 
to characterize the process involved in this sort of value-based decision making. The best-fit 
parameters of these models are used as regressors in fMRI analyses. These analyses have 
revealed that the striatum is the locus of the prediction error signal. Furthermore, regions in the 
parietal cortex and prefrontal cortex code the value signal (Daw 2006; Gershman 2009). In 
addition to this neuroimaging work, to support the critical role of dopamine and the striatum in 
reinforcement learning, Rutledge et al (2009) found that Parkinson’s patients on a dopamine 
agonist had a faster learning rate in a reward learning task compared to healthy controls. 
 In the study presented here, we directly compared the effect of recent reinforcement 
history in a hand choice task and a more traditional target choice task. Both tasks required 
participants to intercept a virtual target location. In the hand choice task, participants were free to 
reach with their right or left hand. Their choice behavior was influenced by an imposed limb-
dependent variable reinforcement rate. In the target choice task, participants were free to reach to 
a red or blue target. Their choice behavior was influenced by an imposed color-dependent 
variable reinforcement rate. A model of reinforcement learning was applied to characterize the 
change in choice behavior over time. This analysis allowed us to compare the processes involved 
in value-based decision making between two effectors and two targets for neurologically intact 
participants and patients with cerebellar ataxia.  
 
METHODS 
 Participants.  
 Thirty-three paid volunteers participated in the study: 9 patients with cerebellar ataxia (4 
females; mean age ± standard error: 49.4 ± 4.6 years), 12 matched healthy older controls (5 
females; 46.8 ± 4.1 years), and 12 younger controls (6 females; 21.6 ± 1 years). All participants 
were right-handed.  
 The data from six of the participants was excluded in the results presented here. Two 
participants (one older control and one younger control) exclusively used their right hand in the 
hand choice task. Two other participants (one older control and one younger control) adopted an 
outright strategy of simply switching between the two target colors and did not regard feedback 
in the target choice task. One patient in the cerebellar ataxia group did not complete the second 
task because of time limitations; only his data from the hand choice task is included. A second 
patient only completed the target choice task because of a problem with his left hand that was 
unrelated to his ataxia. The data from his performance on the target task is included.  
 The protocol was approved by the UC Berkeley Institutional Review Board. All 
participants provided informed written consent at the start of the test session. Prior to the test 
session, participants’ degree of handedness bias was assessed with the Edinburgh Handedness 
Questionnaire. Cognitive impairment in the patients with cerebellar ataxia and older controls was 
assessed with the Montreal Cognitive Assessment (MoCA). A quantification of impairment due 
to cerebellar ataxia was completed using the International Cooperative Ataxia Rating Scale 
(ICARS). Patients were scored in a variety of different areas including postural and gait 
disturbances, limb ataxia, dysarthria, and oculomotor disturbances. ICARS scores are out of 100, 
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with higher scores indicating a greater degree of impairment. ICARS scores have been shown to 
be correlated with the amount of cerebellar degeneration (Richter 2004). Patients in this study 
had ICARS scores ranging from 11 to 42.5.  
 Older controls and patients with cerebellar ataxia were well matched in their MoCA 
scores and years of education, but had a different degree of handedness bias as measured by the 
Edinburgh Handedness Questionnaire. This difference will be discussed in the results section. 
 
Table 1. Information for participants included in analysis (mean ± standard error) 

2 
 
 Design and Procedures. 
 The participants made horizontal reaching movements, sliding their hand along the 
surface of a table in an attempt to intercept a visually displayed target. The target was displayed 
on a 27 cm x 48 cm LCD computer monitor mounted horizontally 22 cm above the table top. 
The movements were tracked by a 3D motion tracking system (miniBIRD, Ascension 
Technology, Burlington, VT, USA; sampling rate = 138 Hz). A sensor was placed on the tip of 
the right and left index fingers (Figure 1A). This set-up allowed vision of the hand to be 
occluded such that we could best deliver feedback for the experimental manipulation of reward 
described below. This set-up allowed us to investigate the processes involved in value-based 
decision making in effector and target selection. 
 Each participant completed two tasks, always in the same order. First, each participant 
completed a task where they selected their right or left hand to reach through a blue circular 
target (diameter = 2cm). Second, each participant completed a task where they used their right, 
dominant hand to reach through a red or blue target. The targets were closer to coral and 
lavender in color, but I will refer to them as the red and blue target and use these colors in the 
figures for fluency purposes. 

 

 (A)       (B)              (C) 

 
Figure 1. (A) Reaching movements were displayed on a computer monitor 22 cm above the table top. (B) Blue 
targets appeared at one of seven locations in the hand choice task. (C) A red and blue (right/left randomized) target 
appeared at one of seven locations in the target choice task. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  The	
  mean	
  ages	
  reported	
  in	
  the	
  text	
  include	
  all	
  participants.	
  The	
  mean	
  ages	
  reported	
  in	
  the	
  table	
  include	
  only	
  the	
  
participants	
  included	
  in	
  the	
  following	
  analyses	
  (6	
  participants	
  excluded	
  per	
  description).	
  

Group Age   
(years)

Edinburgh 
Handedness 
Percentage

MoCA 
(score/30) Education ICARS

Younger Controls 
(n=10) 20.9 ± 0.7 75.8 ± 6.1 - - -
Older Controls 
(n=10) 48.1 ± 4.5 66.7 ± 4.3 27.1 ± 0.6 16.2 ± 0.7 -
Cerebellar Ataxia 
(n=8) 49.4 ± 4.8 77.1 ± 8.3 26.1 ± 1.3 15.7 ± 0.7 24.1 ± 3.9

!

42! 42!
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Hand Choice. On each trial, a single blue target was presented 12-14 cm from the 

starting location. Participants were instructed to reach with their right or left hand through the 
target and past an outer white line (Figure 1B). They were free to choose their right or left hand. 
Participants were instructed to reach at a comfortable speed, and a “fizzle” sounded if their 
movement time was greater than 700 msec. After each reach, two white filled-in circles 
(diameter = 0.8 cm) representing the position of participant’s right and left hands appeared as 
cursors. Participants were instructed to position these cursors in the start circles (diameter = 2.5 
cm). Once the participant held the start position for 200-500 msec, the start circles turned from 
white to green and another target appeared.  

On a successful reach (target hit), the target turned green, a “pop” sounded, and the point 
counter at the top of the screen ticked up one point. On an unsuccessful reach, the target turned 
red and a “buzzer” sounded. On experimental trials, the white cursor disappeared once 
participants started moving. Thus, the color (green or red) and sound (pop or buzzer) was the 
participant’s only indication of the outcome of a reach. Participants were told that this was a 
challenging task, but that they should do their best to hit the target. During experimental trials, to 
emphasize the accuracy requirement, a black dot or bulls-eye appeared at the center of the 
colored target. Participants were told that they would only receive a point if they hit this dot.  

In fact, the trial outcome was based on two factors. First, to qualify for a hit, participants 
had to be within 1.5 cm of the target center. Given that this qualification was met, whether or not 
a point was received was based on limb-dependent reward functions (Figure 2A). Similar 
protocols have been used for the study of value-based decision making between multiple 
alternatives (Daw 2009; Gershman 2009). Our reward functions were distinct from these similar 
protocols in that they were manually generated as opposed to being created by a Gaussian 
random walk. In addition, the functions varied between 25% and 75%, not 0% and 100%. We 
opted to generate the reward functions manually because we found that the jitter created by a 
Gaussian random walk was not detectable. In addition, we were interested in how participants’ 
choice behavior responded to their changing accuracy with their right and left hands. Thus it was 
important that participants believed the reward feedback reflected their own accuracy and was 
not imposed experimentally. To achieve this goal, it was important that the reward rate did not 
change too rapidly or reach unrealistic highs or lows. Finally, by creating the reward rate 
functions manually we could ensure that the reward rate for the right and left hands were 
moderately negatively correlated (R = -0.07). A high positive correlation would have made it 
nearly impossible to choose the higher valued option. A high negative correlation would have 
made the task trivial. The relationship between the reward functions was particularly important 
in our task because there were only two choices.  

Participants completed five blocks of 100 trials, for a total 500 experimental trials. Before 
the experimental trials, participants trained for 20 trials with their right hand, 20 trials with their 
left hand, and 50 trials in which they were free to use either the right or left hand. During these 
training blocks, the white cursors were visible at all times, providing on-line feedback of the 
position of both hands. This allowed participants to become calibrated to the environment. 
Additionally, at the beginning of each experimental block, participants practiced on 10 trials with 
full vision of the white cursors.  
 Targets were presented at one of seven locations: 0°, ±20°, ±40°, and ±60°, where the 0° 
target was at the center of the screen, and the ±20°, ±40°, and ±60° fanned out from there. The 
central location (0°) was sampled on 40% of trials, while each of the peripheral locations were 
sampled on 10% of trials. Hand choice shows a strong spatial bias such that participants have a 
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high probability of using their right hand for targets located on the right side of the table and 
their left hand for targets located on the left side of the table, regardless of the current limb-
dependent reward rates. As such, the peripheral locations insured that participants did not adopt a 
strategy of using just one hand throughout the experiment. The central location, where 
participants used their right and left hand interchangeably, was sampled more frequently than all 
other locations. This target location provided a measure of changing choice behavior in response 
to the experimental limb-dependent reward rate manipulation.  
 

    (A)    (B) 

 
 

Figure 2. Imposed reward rates for the right (pink) and left (green) hands and red (red) and blue (blue) targets. 
Reward rates were bounded between 25% and 75% and identical for the (A) hand choice and (B) target choice tasks. 
 
 Target Choice. On each trial, two targets, one red and the other blue was presented 12-14 
cm from the starting location. The relative right/left position of the colors of the targets was 
randomized, and there was no evidence that participants preferred to reach to one side or the 
other. Participants were instructed to reach with their right (dominant) hand through one of the 
two targets and past an outer white line (Figure 1C). The block structure, number of blocks, and 
target location were identical to the hand choice task. The main difference was the participant’s 
belief in the source of receiving a point. In the hand choice task, the importance of accuracy was 
emphasized. In the target choice task, the participant was told that the accuracy requirement had 
been eased. To emphasize this change, the bulls-eye was no longer presented at the center of the 
target. The participant was told that sometimes when they hit the target they would receive a 
point and sometimes they would not. They were free to choose the red or blue target. They were 
not told that the different colored targets would be probabilistically rewarded and change over 
time. They were simply told to do the best they could to earn as many points as they could.  

As in the hand choice task, subjects had to be within 1.5 cm of the center of the target to 
qualify for a point. Given that this criterion was met, a point was given probabilistically 
depending on the target color dependent reward rates (Figure 2B). The reward rates for the target 
choice task were identical to those in the hand choice task. The reward rate function for the red 
target was the same as for the right hand, and the reward rate function for the blue target was the 
same as for the left hand. This allowed us to best compare the processes involved in these two 
types of value-based decision making.  

Participants always completed the hand choice task and then the target choice task. In the 
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target choice task participants understood that sometimes they would not receive a point when 
they hit the target, and many surmised that the reward contingency was target color dependent. 
In the hand choice task, it was important for our experimental question that participants believed 
that when they hit the target they would receive a point, and when they missed the target they 
would not receive a point. Thus, it was important that their understanding of the reward 
contingency in the target choice task did not interfere with their belief about reward in the hand 
choice task. If participants completed the hand choice task after the target choice task, they may 
have begun to treat their hands like two objects. However, it should be noted that even with this 
concern, five pilot participants completed the target choice task before the hand choice task. 
These participants did not show any differences in behavior from the participants who completed 
the hand choice task first. 

Analysis 
The analyses performed were nearly identical for the hand choice and target choice tasks. 

I will describe how the data from the hand choice task were analyzed, and indicate, via 
parentheses, the parallel procedures for the target choice task.  

Choice Behavior. We sought to characterize the effect of reinforcement on hand and 
target selection. In order to fully understand the effect of reinforcement on choice behavior it is 
important to establish any initial biases in choice. To quantify the baseline bias in right hand 
choice (red target choice), the percent right hand choice (red target choice) was calculated over 
the first 100 trials (first block) where the reward rates for the right and left hands (red and blue 
targets) were fixed at approximately 62%. These values were entered into two separate ANOVAs 
(one for each task) to determine whether there were any between group differences in initial 
hand (target) choice bias.  

In addition, the amount of variation in choice over the course of the task was measured as 
the range between the minimum and maximum percent right hand choice (red target choice) 
from trials 101-500 (blocks 2-5) smoothing over a bin of 50 trials. These values were entered 
into two separate ANOVAs (one for each task) to evaluate group differences in the extent of the 
variation of hand choice (target choice). 

Sequential Effects. Recent reinforcement history can influence choice behavior on 
multiple time scales. For instance, participants may integrate reward rates over the last 10, 50, 
100, etc. number of trials to determine the highest valued choice. In addition, participants’ 
choices may be affected on a more local level, for instance, by the choice, outcome, and/or 
location of the previous trial. Participants may prefer to repeat previous choices regardless of the 
outcome on the previous trial. Alternatively, participants may adopt a win-stay lose-shift strategy 
where they are more likely to repeat a choice if it was rewarded on the previous trial and more 
likely to switch their choice if it was not rewarded on the previous trial. 

The effect of trial-by-trial dynamics on hand and target choice was analyzed. We 
quantified these effect by calculating the probabilities of choosing the right hand (red target) at 
the center target on trial t given that the previous trial t-1 was a right hand hit, right hand miss, 
left hand hit, or left hand hit (red target hit, red target miss, blue target hit, or blue target miss) at 
each of the target locations. These values were entered into an ANOVA that allowed us to 
determine the contribution of the location, choice, and outcome of the previous trial to the choice 
on the current trial.  

Reinforcement Learning Model. The experimental design was adopted in part because it 
is well suited to a model-based analysis that allows for a characterization of the processes 
involved in value-based effector and target selection. Thus, a model of reinforcement learning 
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(RL) based on a temporal difference (TD) algorithm was fit to the data (Watkins 1992; Kaelbling 
1996; Sutton 1998; Gershman et al 2009; Rutledge 2009). As with the choice and sequential 
analyses, the variables for the RL model will be described first in terms of their representation in 
the hand choice condition, followed in parentheses by their representation in the target choice 
condition.  

The model assigns a value to each state-action pair where the state (s) is the target 
location and the action (a) is a right or left hand reach (red or blue target choice). The action 
values are learned and updated each trial t using the following update rule (Eq. 1):  

 

         (1) 
  
where st represents the target location on the current trial t, and a represents the chosen action. 
Learning rate α is a free parameter. The prediction error δ is defined by the following equation 
(Eq. 2):  
 
 δt = rt – Q(at,st)          (2) 
 
where r = 1 for positively rewarded trials (hits) and r = 0 for negatively rewarded trials (misses). 
The probability by which a particular action is chosen on trial t is a function of the current 
action-state value Q and is given by a “softmax” (logistic) rule (Eq. 3): 
 

  (3) 
 

where R is a right hand choice (red target choice) and L is a left hand choice (blue target choice).  
This “softmax” function stands in contrast to deterministic action selection policy where the 
model would simply select the higher valued action. A “softmax” action selection policy is a 
more ecologically valid model and allows us to characterize the processes that contribute to 
decision making in an uncertain world.  

For this policy, β is a free parameter representing the inverse temperature. A low 
temperature signifies the tendency to explore the different choices and a high temperature 
signifies the tendency to exploit the higher valued choice. c is a free parameter representing the 
choice perseveration. CR = 1 if the last trial was a right hand choice (red target), and 0 otherwise. 
CL = 1 if the last trial was a left hand choice (blue target) and 0 otherwise (Rutledge 2009). A 
negative choice perseveration signifies the tendency to switch between the two choices and a 
positive choice perseveration indicates a tendency to repeat your previous choice, regardless of 
the current state-action values (Q). 
 The Q(R) values were initialized at the percent of right hand (red target) choices during 
the first block of 100 trials minus 0.5 and the Q(L) values were initialized at the percent of left 
hand (blue target) choice during the first block minus 0.5. As such, Q was bounded between -0.5 
and 0.5. It was important to initialize the Q values given the limited number of trials where there 
was a measureable change in choice behavior (central target presentation – 200 trials). Given this 
limited number of trials, if the Q values were not initialized, the optimization procedure 
(described below) for finding the best-fit parameter values would emphasize finding the baseline 
choice rate and not characterizing the changes in choice behavior over time.  

 

Q at+1,st+1( ) = Q at ,st( ) + !" t
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 A second model was evaluated where Q was only a function of hand choice (target 
choice), and not also target location. This second model was considered because it is possible 
that participants updated their value (Q) for actions independent of target location. Such value 
updating is more likely for the target choice task than for the hand choice task, given that effector 
selection has a large spatial bias. This model will be referred to as the state-independent model 
(as opposed to the state-dependent model). The update rule for the state-independent model is as 
follows (Eq. 4, 5):   
          (4) 
 δt = rt – Q(at)           (5) 
 
The probability by which a particular action is chosen on trial t  is given by the “softmax” rule 
(Eq. 6): 

    
(6) 

  
The goal of both the state-dependent and state-independent models is to characterize the 

processes involved in value-based decision making. There is evidence that learning from reward 
involves different behavioral and neural processes than learning from errors (Frank 2004). Thus, 
a state-dependent and state-independent model with a single learning rate (α) was compared to a 
model where the learning rate was different for positively and negatively rewarded trials such 
that:   
 α= αp for r = 1 
 α= αn for r = 0 
 
Model fits and comparisons were complete on four models: 

(1) State-Dependent – Single Learning Rate 
(2) State-Dependent – Dual Learning Rate 

(3) State-Independent – Single Learning Rate 
(4) State-Independent – Dual Learning Rate 

 
 All models were fit to data from blocks 2-5 (trials 101-500). To obtain the best-fit values 
for the free parameters (α , c, and β), we minimized the negative log likelihood . A proprietary 
procedure that uses gradient descent was employed for the optimization of parameter values 
(fminsearchbnd, Matlab Mathworks, Version R2011b) . The bounds for α , c, and β were [0, 1], 
[-10, 10], and [-50, 50]. These bounds were chosen to speed up the optimization procedure. They 
represented bounds that spanned the values found in an unbounded optimization procedure. 
When α = 0, the Q values are not updated at all and when α = 1, the Q values are updated by the 
entire amount of the prediction error. A negative c value indicates that the participant prefers to 
alternate choices independent of the Q values, and positive c values indicate that the participant 
prefers to repeat a previous choice independent of the Q values. Finally, high positive values of β 
indicate a tendency to exploit the highest valued option, whereas low positive values of β 
indicate a tendency to explore both choices. Negative β values must be considered, as these 
indicate a tendency to choose the lower valued option. 

 

Q at+1( ) = Q at( ) + !" t
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The Bayesian Information Criterion (BIC) was used for model comparison, where the 
BIC (Eq. 7) was a function of the negative log-likelihood (–LL), number of parameters (k), and 
number of trials (n): 

 
 BIC = -2ln(-LL) + kln(n)        (7)  
 

As with all mathematical modeling, it was imperative that we evaluate the possibility of 
over-fit. It is critical that a reinforcement learning model with a free learning rate parameter 
provides a better fit to the data than a model where the learning rate is not allowed to vary. This 
indicates that a reward learning process, as opposed to random variation, accounts for the change 
in choice behavior. Thus, a null model was also generated to which all four models were 
compared. In the null model, the Q values were fixed at the those initialized from the choice 
probabilities during the first block. The learning rate (α) was set to zero. The best-fit values for 
the choice perseveration (c) and temperature (β) parameters for the null model were found in the 
same way as the parameters for the models where the learning rate was allowed to vary. To 
compare the four models described above to the null model, we calculated a pseudo-R2 statistic 
defined by (R-Q)/R where R is the –LL for the null model and Q is the –LL for the single and 
dual learning rate models (Gershman 2009). 
 
RESULTS  

Choice Behavior  
Participants flexibly used their right and left hands during the course of the experiment. 

Similarly, participants varied their choices between the red and blue target. The variation in 
choice behavior seemed to correspond to the limb-dependent and target-dependent reward rate 
functions. Characterization of the changing choice behavior is described in the following 
analysis of percent right hand and percent red target choice as well as in the model-based 
analysis.  
 Hand Choice vs. Target Choice. In the hand choice task, all participants demonstrated an 
initial right hand bias. This stands in contrast to the target choice task, where participants were 
not biased to choose one color target over the other [F(2,24) =  35.537, p < 0.001] (Figure 3). 
Another significant difference in the choice behavior between the two tasks is that the change in 
choice over time was greater in the target choice condition than the hand choice condition 
[F(2,24) =  10.945, p < 0.01] (Figure 4). This change was measured as the difference between the 
maximum percent right hand (red target) choice and minimum percent right hand (red target) 
choice during trials 101-500 over a bin of 50 trials.  
 Hand Choice. The presence of an initial right hand bias in all three groups is 
demonstrated by the baseline percent right hand use. The percent right hand use during the first 
block (100 trials) where the reward rate for the right and left hands was fixed at 62% was 73.7 ± 
3.5%, 59.0 ± 4.5%, and 70.7 ± 5.0% for the younger controls, older controls, and patients with 
cerebellar ataxia, respectively (Figure 3A). These figures demonstrate that older controls had a 
significantly lower right hand bias than the younger controls or patients with cerebellar ataxia 
[F(1,27) = 3.403, p < 0.05]. This difference was expected given that we assessed that older 
participants had a weaker right hand bias using the Edinburgh Handedness Questionnaire (see 
discussion). Thus, younger participants who were well matched to patients with cerebellar ataxia 
with regards to degree of handedness bias were included in all analyses.  
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(A)           (B)                (A)       (B) 

 
Figure 3: (A) Baseline percent right hand choice and  Figure 4: (A) The difference between the maximum  
(B) baseline percent red target choice for younger   and minimum right hand choice and (B) the  
controls (Y), older controls (O), and patients with   difference between the maximum and minimum  
cerebellar ataxia (C).  The baseline is the choice   red target choice for trials 101-500 (Percentages are  
over the first 100 experimental trials.   taken over a 50 trial bin). 
          
 Throughout the course of the task, over trials 101-500, where the reward rates varied 
between 25% and 75%, participants in all three groups showed considerable variation in their 
hand choice. The percent right hand choice for the younger controls, older controls, and patients 
with cerebellar ataxia varied between 43.4 ± 5.9% and 80.9 ± 3.2% (range = 37.4 ± 3.6%), 29.3 
± 5.4% and 75.2 ± 3.5% (range = 46.0 ± 4.9%), and 53.3 ± 4.3% and 84.4 ± 4.0% (range = 31.1 
± 2.4%), respectively (50 trial bin) (Figure 4A, Figure 5A). These figures demonstrate that 
cerebellar patients varied less in their hand choice as indicated by a significantly lower range 
[F(1,27) = 3.43, p < 0.05]. 
 In order to best illustrate the extent to which choice behavior reflects the limb-dependent 
reward rate functions, we found the average normalized percent right hand choice and the 
average normalized difference between the right and left hand reward rates (Figure 5C). This 
illustration demonstrates that choice behavior closely follows the changing reward rates, with a 
lag between the change in reward rates and the change in choice behavior. A further analysis of 
the extent to which the changing reward rates affect hand choice is found in the model-based 
analysis below. 
 Target Choice. Participants were not initially biased to choose the red or blue target. The 
percent red target choice during the first block (100 trials) where the reward rate for the red and 
blue targets was fixed at 62% was 48.8 ± 1.8%, 48.8 ± 1.9%, and 48.2 ± 6.9% for the younger 
controls, older controls, and patients with cerebellar ataxia, respectively (Figure 3B). These 
figures demonstrate that there was no difference in the baseline percent red target choice between 
the three groups [F(1,27) = 0.009, p = 0.991].  
 Throughout the course of the task, over trials 101-500, where the reward rates varied 
between 25% and 75%, participants in all three groups showed considerable variation in their 
target choice. The percent right hand choice for the three groups varied between 16.8 ± 4.1% and 
70.3 ± 4.4% (range = 53.5 ± 6.4%), 14.3 ± 3.5% and 74.1 ± 4.9% (range = 59.8 ± 7.4%), and 
21.2 ± 3.4% and 69.3 ± 4.0% (range = 48.1 ± 5.9%), respectively (50 trial bin) (Figure 4B, 
Figure 5B). There was no difference in the amount of variation as indicated by the range between 
the three participant groups [F(1,27) = 0.729, p = 0.492]. The normalized difference between the 
red and blue reward rates and normalized red target choice (Figure 5D) provide an illustration of 
the extent to which target choice behavior followed the changing reward rates. A further analysis 
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of the extent to which the changing reward rates affect the target choice is found in the model-
based analysis below. 
 
  (A)            (B)                (C)   (D) 

 
Figure 5. (A) Average percent right hand use and (B) average percent red target choice as a 50 trial moving average 
(black) are presented with the average experienced reward rates for the right (pink) and left (green) hands and red 
and blue targets. The three participants groups are presented: younger controls (top), older controls (middle), 
patients with cerebellar ataxia (bottom). (C) Average normalized percent right hand use and (D) average normalized 
percent red target choice as a 50 trial moving average (black) are presented with the average normalized difference 
between the experienced reward rates for the right and left hands (pink-green) and red and blue targets (red-blue).  
 
 Choice by Target Location. The choice percentages described above collapse over all 
target locations. In the hand choice task, hand choice demonstrates a strong spatial bias. When 
the targets were on the far right side of the screen, participants almost always used their right 
hand. When the targets were on the far left side of the screen, participants almost always used 
their left hand (Figure 6A). Given that hand choice demonstrates this strong spatial bias, in order 
to get a measure of the effect of the limb-dependent reward rates on hand choice, we sampled the 
center target location (0°) on 40% of all trials.  
 The spatial bias present in the hand choice task is not present for the target choice task 
(Figure 6B). In the target choice task, regardless of the target location, participants varied their 
choice between the red and blue target in response to the changing color-dependent reward rates. 
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 -60°             -40°         -20°       0°  20°            40°        60° 
Figure 6. (A) Average percent right hand use and (B) average percent red target choice as a function of target 
location for each of the participant groups: younger controls (light gray), older controls (dark gray), and patients 
with cerebellar ataxia (black).  
 
 Sequential Effects. We performed a sequential analysis to determine to what extent hand 
and target choices were influenced by the choice, outcome, and location of the previous trial. 
Given the strong spatial bias in the hand choice task described above, the examination of the 
trial-by-trial effects only included trials where the current trial was a target presentation at the 
center location (0°). Since 40% of the targets were presented at the center location, we were 
afforded many trials where we could look at how choice behavior changed in response to the 
choice, outcome, and location of the previous trial.  
 Hand Choice. Sequential analysis revealed that hand choice on the current trial was not 
affected by the reward outcome on the previous trial [Main effect of outcome: F(1,25) = 0.004, p 
= 0.953]. However, the analysis revealed that the younger controls and older controls were more 
likely to choose their right hand after a right handed trial, and choose their left hand after a left 
handed trial, regardless of outcome of the previous trial (Figure 7A). [Main effect of choice: 
F(1,25) = 38.893, p < 0.001]. This effect was strongest when the target repeated at the center 
location on successive trials3 [Main effect of location: F(3,23) = 13.867, p < 0.001]. Interestingly, 
this perseveration effect was not present in the patients with cerebellar ataxia [Interaction 
between participant group and choice: F(2,25) = 5.888, p < 0.01]. One might explain the lack of 
perseveration in patients with cerebellar ataxia by their high right hand bias. However, it should 
be noted that younger controls also had a high right hand bias, but still showed this perseveration 
effect (see discussion). 
 Target Choice. The target choice analysis revealed that participants were more likely to 
choose the red target after a red target hit than after a red target miss (Figure 7B). Similarly, they 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 For the hand choice sequential analysis, it should be noted that while there are seven different target locations, given the 
limited number of right hand choices for targets located on the left side of the screen and left hand choices for targets located on 
the right side of the screen, only four locations for each hand were input into the statistical analysis (right: 0°, 20°, 40°, and 60°, 
left: 0°, -20°, -40°, and -60°). 
 For the target choice sequential analysis, given the large possible number of target location sequences (49), each sequence of 
target location presentations was only sampled a few times. Thus the statistical analysis collapsed over all seven locations. 
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were more likely to choose the red target after a blue target miss than after a blue target hit 
[Interaction between choice and outcome, collapsed over all locations: F(1,25) = 38.388, p < 
0.001]. Unlike in the hand choice task, the participants’ choice on a given trial was influenced by 
the choice and reward outcome on the previous trial. This win-stay lose-shift effect was present 
in all three participants groups.  
 
 (A)               (B) 
 Younger Controls    Older Controls    Cerebellar      Younger Controls       Older Controls           Cerebellar 

 
Figure 7. Sequential analysis of hand choice and target choice for each of the three participants groups: younger 
controls (left), older controls (center), and patients with cerebellar ataxia (right). (A) The hand choice functions 
depict the probability of right hand use for targets at the center location (0°) as a function of the previous trial’s (t-1) 
target location, hand choice, and outcome: right miss (pink dashed), right hit (pink solid), left miss (green dashed), 
and left hit (green solid). The solid black line indicates the average right hand choice over all types of trials. (B) The 
target choice functions depict the probability of a red target choice at the center location (0°) as a function of the 
previous trial’s (n-1) target location, target choice, and outcome: red miss (red dashed), red hit (red solid), blue miss 
(blue dashed), and blue hit (blue solid). The solid black line indicates the average red target choice over all types of 
trials.  
 

 Reinforcement Learning Model  
We fit a reinforcement learning model to the hand choice and target choice data. Four 

models that all included learning rate as a free parameter were evaluated and compared to a 
model that fixed the learning rate at zero. A model with a single learning rate and a model with 
positive and negative learning rates were compared. In addition, a model with state-dependent 
(target location) Q values was compared to a model with a state-independent Q value such that 
the Q value was only distinct for the choice (right or left; red or blue), and not for the seven 
different target locations.  
  Principally, it can be seen that our reinforcement learning model with a single learning 
rate can capture the fundamental changes in choice behavior in our two tasks (Figure 8). The 
state-dependent model provided a better fit for the hand choice data, while the state-independent 
model provided a better fit for the target choice data, as can be seen by inspection4 (Figure 8). 
This was not surprising, as hand choice is subject to a large spatial bias, whereas target choice 
only depends on the value of the colors, independent of target location (Figure 6).  
 Thus, data presented in Table 2 and Figure 9 are from the state-dependent model for hand 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 Poorer model fits generally result in a smoother (less variable) prediction. This is because in the case of a model that cannot 
successfully capture the data, the best-fit parameters are found such that the residuals between the model prediction and the 
choice data are positive and negative and sum close to zero. 
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choice and the state-independent model for target choice. As such, separate task-specific 
statistical analyses were performed on the best-fit parameter values for the model fits. A between 
task analysis was completed with the understanding that there were fundamental differences 
between the type of models applied to the two tasks. These differences could account for any 
effects that we find.               (A)                 (B) 

 
Figure 8. (A) Average percent right hand use and   Figure 9. Best-fit parameter values for the  
(B) average percent red target choice as a 10 trial moving  learning rate reinforcement learning model of 
average (black) are presented with the average percent right  (A) hand choice and (B) target choice for younger   
right hand use and red target choice predicted by the best-fit  controls (Y), older controls (O), and patients with  
model with state-dependent Q values (red) and state-   cerebellar ataxia (C). 
independent Q values (blue). The three subjects groups are  
presented: younger controls (top), older controls (middle),  
patients with cerebellar ataxia (bottom). 
 

Table 2. Reinforcement learning model best-fit parameter values (mean ± standard error). 
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 The single learning rate model provided an excellent fit to the choice data. We also 
looked at models where there were separate learning rates for positively and negatively rewarded 
trials. The best-fit parameter values for the negative learning rate were less than the positive 
learning rate in the hand choice model fit, but not in the target choice model fit. This suggests 
that the decision process of choosing the right or left hand is affected differently by hits and 
misses (see discussion). 
 However, while the introduction of positive and negative learning rates resulted in a 
lower negative log-likelihood (-LL), when taking into account the additional free parameter with 
the Bayesian Information Criterion (BIC), the positive and negative learning rate model did not 
provide a superior fit. Furthermore, for the dual learning rate model, the best-fit negative 
learning rate for multiple subjects was zero. This could possibly suggest that the introduction of a 
second learning rate parameter resulted in an over-fit of the data. However, if this was the case, 
one would expect that the best-fit parameters would be identical for the positive and negative 
learning rates. Given that there was not an improvement in fit and that there is no clear 
explanation for the zero value of the negative learning rate, statistical analyses were not 
performed on the models with separate parameters for positive and negative learning rates.  
 For hand choice, the patients with cerebellar ataxia had a marginally lower learning rate 
[F(2) = 2.288, p = 0.122] and a significantly lower choice perseveration [F(2) = 4.380, p = 0.023]. 
These findings are in accordance with the choice behavior analysis and sequential analysis that 
demonstrated that patients with cerebellar ataxia show less variation in their hand choices and do 
not perseverate. There was no difference between the groups in the temperature [F(2) = 0.723, p 
= 0.495] (Figure 9A).  
 For target choice, there was no difference in the best-fit parameter values (learning rate: 
[F(2) = 0.204, p = 0.817], choice perseveration: [F(2) = 1.875, p = 0.174], and temperature: [F(2) 
= 1.494, p = 0.244]) between the three participant groups (Figure 9B).  
 For all three parameters, there was an effect of condition. The learning rate was lower for 
hand choice as compared to target choice [F(1,24) = 18.274, p < 0.001]. The choice 
perseveration was higher for hand choice as compared to target choice [F(1,24) = 17.458, p < 
0.001]. Finally, the temperature was higher for hand choice as compared to target choice [F(1,24) 
= 93.396, p < 0.001] .  
 
DISCUSSION 
 The study described here extends our findings from Chapter I and demonstrates that hand 
choice can be influenced by dynamic limb-dependent task success. Through direct comparison to 
a parallel target choice task, we were able to elucidate the similarities and differences between 
value-based effector selection and target selection. We found that patients with cerebellar ataxia 
only behaved differently in the hand choice task when compared to healthy controls. This 
supports the findings in Chapter II, pointing to a critical role of the cerebellum in effector 
selection. Both the hand choice data and target choice data were well fit by a model of 
reinforcement learning. The model-based analysis lends support to our behavioral findings. 
 Hand Choice vs. Target Choice. One fundamental difference between hand choice and 
target choice is that hand choice demonstrates a strong initial bias. Participants prefer to reach 
with their right, dominant hand. In contrast, participants are not initially biased to choose the red 
or blue target. In our study, the initial hand choice bias was markedly different in the three 
participant groups as assessed with the Edinburgh Handedness Questionnaire and with the 
percent right hand use over the first 100 experimental trials. Younger controls and patients with 
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cerebellar ataxia demonstrated a stronger right hand bias than older controls. Przybyla et al 
(2011) showed that motor asymmetries between the dominant and non-dominant limb decrease 
with age. It is possible that given that cerebellar ataxia results in motor impairments, even in the 
absence of hemiparesis, these patients do not experience this stereotyped reduction in motor 
asymmetries. Thus they maintain a strong handedness bias as they age. To ensure that any affects 
we found of cerebellar ataxia on choice behavior could not be simply attributed to this high 
degree of handedness bias, data from younger controls was included in all analyses. Younger 
controls were well matched to the patients with regards to their handedness bias. 
 Another one of the most notable differences between effector selection and target 
selection is that effector selection demonstrates a strong spatial bias (Gardiner 2006; Dancause 
2010). People prefer to use their ipsilateral limb to reach to items regardless of hand dominance 
or current reward contingencies. Target selection does not demonstrate this spatial bias. In our 
tasks, this difference is demonstrated by participants’ hand choice variation at the center target 
location and nearly static hand choice at the peripheral target locations. In contrast, participants 
vary their target choice at all target locations. This behavioral difference accounts for the 
difference in the best-fit model for the two tasks.  

The hand choice data is best accounted for by a model with state-dependent Q-values 
(Kaebling 1996) whereas the target choice data is best account for by a model with state-
independent Q-values (Daw 2006; Gershman 2009). This fundamental behavioral difference, 
captured by two distinct models, may account for the difference in the best-fit learning rates 
found in the two tasks. In effect, in the target choice task, participants are afforded more trials to 
learn the reward contingencies. In the hand choice task, participants’ reward rate learning is 
limited to 40% of the trials where they use their right and left hands interchangeably. Thus, there 
is a higher learning rate in the target choice task than in the hand choice task. The difference in 
learning rates could account for the differences the patients with cerebellar ataxia demonstrate in 
choice behavior in the hand choice task, but not in the target choice task. 

Patients with Cerebellar Ataxia. Patients with cerebellar ataxia had a smaller range in 
hand choice variation as compared to healthy controls. Furthermore, the best-fit learning rate was 
lower for the patients with cerebellar ataxia. O’Doherty et al (2003) showed that the cerebellum 
codes a signed prediction error in an appetitive conditioning task. While activity in the striatum 
and orbitofrontal cortex (OFC) were fit equally well by fast and slow learning rates, the activity 
in the cerebellum was significantly better fit by slower learning rates. As such, given the slow 
learning rates in the hand choice task, patients with cerebellar ataxia may have been 
differentially affected in this task. In the target choice task, activity in the striatum and/or the 
OFC could have been sufficient for the value-based decision making processes. 

Another notable difference in hand choice behavior between patients with cerebellar 
ataxia and healthy controls is that patients demonstrated less perseveration in their choices. 
Healthy controls were more likely to choose their right hand when the previous trial was a right 
hand choice, and were similarly more likely to choose their left hand when the previous trial was 
a left hand choice. This effect was most prominent for repeated trials at the center target location. 
This effect was not present in the patients with cerebellar ataxia, as confirmed by the sequential 
analysis and lower choice perseveration parameter in the model-based analysis.  

Rutledge et al (2009) found that Parkinson’s patients showed greater perseveration in 
their choices in a reward learning task. This affect was reduced to the perseveration level of 
healthy older controls when the patients took a dopamine agonist. In this case, it is hypothesized 
that the decreased dopamine level in Parkinson’s patients contributes to a deficit in switching 
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choices. In contrast, in our study, it is possible that damage to the cerebellum contributed to a 
deficit in repeating choices in the hand choice task. 

There was no difference between the groups in the sequential effects in target choice 
behavior. All groups demonstrated a win-stay lose-shift pattern such that they were more likely 
to choose a red target if the previous trial was a red target choice that was rewarded than if it was 
a red target choice that was not rewarded. Similarly, they were more likely to choose a red target 
if the previous trial was a blue target choice that was not rewarded than if it was a blue target 
choice that was rewarded.  

 Reinforcement Learning Model. We investigated four different reinforcement learning 
models: (1) State-Dependent – Single Learning Rate, (2) State-Dependent – Dual Learning Rate, 
(3) State-Independent – Single Learning Rate, (4) State-Dependent – Dual Learning Rate. The 
rationale for the state-dependent and state-independent models is described above. Models with a 
single learning rate and a distinct learning rate for positively and negatively rewarded trials were 
included in order to characterize differences in learning from positive and negative outcomes. 
This characterization will allow for a better comparison of the behavioral processes of value-
based effector selection and the behavioral processes of value-based target selection. In addition, 
there is evidence that different neural structures and processes contribute to learning from reward 
and learning from punishment. For instance, “…high amounts of dopamine facilitate learning 
from positive reinforcement, while low amounts of dopamine facilitate learning from negative 
reinforcement” (quoted from Stoloff 2011; Frank 2004). In accordance with this finding, 
Rutledge et al (2009) demonstrated that patients taking a dopamine agonist had a heightened 
positive, but not negative, learning rate in a model-based analysis of reward-based decision 
making.  
 The cerebellum has a well-established role in error-based learning (Manto 2012). More 
recent work points to the important role of the cerebellum in reward-based learning (O’Doherty 
2003; Seymour 2004; Thoma 2008). As such, it is critical to elucidate the mechanisms by which 
the cerebellum contributes to value-based decision making. Characterizing the distinct role the 
cerebellum plays in learning from positive and negative reinforcement will add to this 
understanding. Unfortunately, our findings with regards to the positive and negative learning 
rates in the model-based analysis were inconclusive. While it appeared that the hand choice task 
was best fit by a lower negative learning rate, the finding that many participants had a best-fit 
negative learning rate of zero made it difficult to interpret this result. Thus, future work should 
be undertaken to characterize how positive and negative outcomes differentially affect value-
based decision making. This work should include both value-based effector selection and target 
selection in healthy controls and different patient populations including patients with cerebellar 
ataxia, Parkinson’s disease, and damage to the OFC. 
 Future Directions. Activation in the prefrontal cortex (PFC), and specifically the orbital 
frontal cortex (OFC) as measured by functional magnetic resonance imaging (fMRI) has been 
shown to code the value signal for decision making (Chib 2009, Croxson 2009, Lim 2011, Wallis 
2011). Furthermore, there is evidence that patients with damage to their OFC acquire and 
organize value information for decision making differently than people with no neurological 
impairment. When comparing the value of different apartments, neurologically intact participants 
compare category specific information such as rent or noise level across apartments, whereas 
patients with OFC damage organize information around specific apartments. This difference in 
value information acquisition is potentially due to their “…impaired ability to determine the 
relative value of alternatives” (Fellows 2006). Similarly, Izquierdo et al (2004) found that rhesus 
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monkeys with bilateral OFC lesions were impaired at making choices guided by reward. 
 Considering this work demonstrating the importance of the OFC in value-based decision 
making, we have begun evaluating patients with OFC damage on the hand choice and target 
choice tasks described in this study. We anticipate that we will replicate the result that patients 
with damage to the OFC are impaired in reward-based decision making in the target choice task 
(Wallis 2007, Kennerly 2011). Given that their impairment in decision making is thought to arise 
in part from an inability to correctly code and use the prediction error signal, it is possible that 
OFC patients will also be impaired in the hand choice task. Furthermore, the impulsive nature of 
patients with damage to the OFC may results in deficits in both tasks. 
 The neuropsychological work reported in this study with patients with cerebellar ataxia 
and the work proposed with patients with damage to their OFC provides one piece of the puzzle 
in identifying the regions of the brain involved in value-based effector and target selection. In 
conjunction with this work, neuroimaging techniques can provide more information to 
characterize the neural processes in value-based decision making. Computational models of 
reinforcement learning provide an important tool for identifying and characterizing the 
behavioral processes involved in decision making. Together with neuroimaging, these 
mathematical models allow us to more specifically characterize the function of different brain 
regions. Daw et al (2009) fit a reinforcement learning model to choice behavior in a probabilistic 
reward-learning task. Using fMRI, they demonstrated that activity in the striatum was 
significantly correlated with the prediction error (δ). Furthermore, using the reinforcement model 
to characterize choices as exploitive or exploratory (β), they found that activation was greater in 
the intra-parietal sulcus (IPS) for exploratory choices. Similarly, Gershman et al (2009) used 
fMRI and an RL model to show that activity in the parietal cortex and prefrontal cortex 
correspond to the chosen value (Q) and that activity in the striatum corresponds to the prediction 
error (δ). 
 Given this work demonstrating the fruitfulness of combining neuroimaging techniques, 
psychophysical studies of reinforcement learning, and mathematical models in identifying and 
characterizing the neural regions involved in value-based decision making, we have begun to 
adapt the tasks described in this chapter for a study in the fMRI scanner. We have already 
demonstrated that the choice behavior in the hand choice and target choice task can be well fit by 
a mathematical model of reinforcement learning. Thus, by adapting these tasks to the scanner, 
we will be able to establish the model elements including the Q value, the learning rate (α), the 
temperature (β), and the choice perseveration (c) as regressors in an fMRI analysis. As such, we 
will be able to identify the role of specific brain regions in the value-based decision making 
processes of choosing a hand and choosing a target.  
  Conclussions. Goal directed reaching requires two principal decisions: where to reach 
and which limb to reach with. In this study, we extended our previous work on the effect of 
recent reinforcement on effector selection (Chapter I, Stoloff 2011) in order to compare and 
contrast the processes involved in reward-based effector selection and target selection. As such, 
we were able to continue to shed light on the processes involved in value-based decision making. 
We provided further evidence of a critical role of the cerebellum in effector selection. In addition, 
we established congruous behavioral paradigms and models of reinforcement learning for the 
study of effector and target selection. Thus, the stage has been set for future neuroimaging 
studies that will identify and characterize the neural regions involved in value-based effector and 
target selection. 
	
  



	
  

	
   55	
  

CONCLUSION 
 
 Interacting with the world requires the continuous selection of actions. For instance, on a 
typical morning, before you have even left the house, you will make decisions about what to 
where (e.g., a skirt or slacks), what to drink (e.g., orange juice or coffee), what to eat for 
breakfast (e.g., toast, cereal, eggs), and which mode of transit to take to work (e.g., bike, car, 
subway). The decisions you make will likely be based on your previous experiences. You are 
more likely to choose cereal if the cereal you had yesterday was delicious than if it left you with 
a funny feeling in your stomach. Furthermore, your decisions will interact with one another. If 
you choose to ride your bike, you may opt to wear slacks instead of a skirt. 
 These decisions about objects in the world will interact with decisions about how to 
perform these actions. For instance, if you choose to drink coffee, you may prefer to lift the mug 
with your dominant hand given that the weight and temperature of the coffee require that you 
keep the mug steady. If you choose orange juice, you will not be as particular how you lift the 
cup, and you may even use a straw and not lift it at all.  
 Recent work in the neuroscience of decision making has focused on how we make 
decisions about objects in the world (i.e. do we want orange juice or coffee). Less attention has 
been paid to how we decide between competing responses, and specifically how we decide 
between using our right or left hand in everyday, moment-to-moment decisions.  
 The findings in the first study (Chapter I, Stoloff 2011) described in this dissertation 
demonstrate that recent reinforcement history affects limb selection. This study provides a proof 
of concept of a paradigm that could be effective in facilitating use of the effected side after a 
stroke. A secondary finding of this study is that there is a cost of competitive limb selection as 
evidenced by an increased reaction time at target locations where the right and left are selected 
interchangeably.  
 In Chapter II of this dissertation, we sought to characterize the neural processes involved 
in competitive limb selection by comparing neural activity when participants were free to reach 
with either limb to neural activity when the limb to reach with was specified. We found that 
regions implicated in decision making, including the prefrontal cortex, the posterior parietal 
cortex, and the cerebellum, were more active during free effector selection than specified 
(forced) effector selection.  
 Finally, in Chapter III, we sought to further characterize the processes involved in 
effector and target selection. We compared behavior in a traditional value-based decision making 
task between two probabilistically rewarded targets (target choice) to behavior in a value-based 
decision making task between the two effectors (hand choice). We found that patients with 
cerebellar ataxia showed selectively different behavior in the hand choice task. Furthermore, we 
fit a mathematical model of reinforcement learning model to the choice behavior in both tasks to 
help characterize these selective differences. We found that patients with cerebellar ataxia 
showed less variation in their hand choice and tended to switch their hand choice more 
(perseverate less) than older and younger controls. 
 Taken together, the work presented in this dissertation makes a substantial contribution to 
the current research on the behavioral and neural processes of value-based decision making. A 
fundamental understanding of the processes underlying limb selection are particularly important 
in light of the pressing need to develop effective and accessible rehabilitation strategies after 
stroke. In order to best help hemiparetic patients, it is critical that we have a full understanding of 
the behavioral and neural processes underlying limb selection in healthy people. This work, 
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particularly the work described in Chapter III, provides a foundation for future investigations of 
the neuroscience of limb selection. 
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