
UC Irvine
UC Irvine Previously Published Works

Title
Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep 
learning

Permalink
https://escholarship.org/uc/item/4g13t9zh

Journal
Journal of Instrumentation, 17(03)

ISSN
1748-0221

Authors
Anker, A
Baldi, P
Barwick, SW
et al.

Publication Date
2022-03-01

DOI
10.1088/1748-0221/17/03/p03007

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4g13t9zh
https://escholarship.org/uc/item/4g13t9zh#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Journal of Instrumentation
     

PAPER

Improving sensitivity of the ARIANNA detector by
rejecting thermal noise with deep learning
To cite this article: ARIANNA collaboration et al 2022 JINST 17 P03007

 

View the article online for updates and enhancements.

You may also like
Observation of classically `forbidden'
electromagnetic wave propagation and
implications for neutrino detection.
S.W. Barwick, E.C. Berg, D.Z. Besson et
al.

-

An improved trigger for Askaryan radio
detectors
C. Glaser and S.W. Barwick

-

Probing the angular and polarization
reconstruction of the ARIANNA detector at
the South Pole
A. Anker, S.W. Barwick, H. Bernhoff et al.

-

This content was downloaded from IP address 128.200.102.174 on 13/03/2023 at 19:46

https://doi.org/10.1088/1748-0221/17/03/P03007
/article/10.1088/1475-7516/2018/07/055
/article/10.1088/1475-7516/2018/07/055
/article/10.1088/1475-7516/2018/07/055
/article/10.1088/1748-0221/16/05/T05001
/article/10.1088/1748-0221/16/05/T05001
/article/10.1088/1748-0221/15/09/P09039
/article/10.1088/1748-0221/15/09/P09039
/article/10.1088/1748-0221/15/09/P09039


2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
0
3
0
0
7

Published by IOP Publishing for Sissa Medialab

Received: December 3, 2021
Accepted: February 11, 2022

Published: March 8, 2022

Improving sensitivity of the ARIANNA detector by
rejecting thermal noise with deep learning

ARIANNA collaboration
A. Anker,𝑎,∗ P. Baldi,𝑏 S.W. Barwick,𝑎 J. Beise,𝑐 D.Z. Besson,𝑑 S. Bouma,𝑒 M. Cataldo,𝑒

P. Chen, 𝑓 G. Gaswint,𝑎 C. Glaser,𝑐 A. Hallgren,𝑐 S. Hallmann,𝑔 J.C. Hanson,ℎ S.R. Klein,𝑖

S.A. Kleinfelder, 𝑗 R. Lahmann,𝑒 J. Liu,𝑎 M. Magnuson,𝑑 S. McAleer,𝑏 Z.S. Meyers,𝑔,𝑒

J. Nam, 𝑓 A. Nelles,𝑒,𝑔 A. Novikov,𝑑 M.P. Paul,𝑎 C. Persichilli,𝑎 I. Plaisier,𝑒,𝑔 L. Pyras,𝑔,𝑒

R. Rice-Smith,𝑎 J. Tatar,𝑘 S.-H. Wang, 𝑓 C. Welling𝑒,𝑔 and L. Zhao𝑎

𝑎Department of Physics and Astronomy, University of California,
Irvine, CA 92697, U.S.A.

𝑏Department of Information and Computer Science, University of California,
Irvine, CA 92697, U.S.A.

𝑐Uppsala University Department of Physics and Astronomy,
Uppsala SE-752 37, Sweden

𝑑Department of Physics and Astronomy, University of Kansas,
Lawrence, KS 66045, U.S.A.

𝑒ECAP, Friedrich-Alexander Universität Erlangen-Nürnberg,
91058 Erlangen, Germany

𝑓 Department of Physics and Leung Center for Cosmology and Particle Astrophysics, National Taiwan
University,
Taipei 10617, Taiwan

𝑔DESY,
15738 Zeuthen, Germany

ℎWhittier College Department of Physics,
Whittier, CA 90602, U.S.A.
𝑖Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, U.S.A.
𝑗Department of Electrical Engineering and Computer Science, University of California,
Irvine, CA 92697, U.S.A.

𝑘Research Cyberinfrastructure Center, University of California,
Irvine, CA 92697, U.S.A.
E-mail: aanker@uci.edu, sbarwick@uci.edu, christian.glaser@physics.uu.se,
mppaul@uci.edu

∗Corresponding author.

c© 2022 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1748-0221/17/03/P03007

mailto:aanker@uci.edu
mailto:sbarwick@uci.edu
mailto:christian.glaser@physics.uu.se
mailto:mppaul@uci.edu
https://doi.org/10.1088/1748-0221/17/03/P03007


2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
0
3
0
0
7

Abstract: The ARIANNA experiment is an Askaryan detector designed to record radio signals
induced by neutrino interactions in the Antarctic ice. Because of the low neutrino flux at high
energies (𝐸𝜈 > 1016 eV), the physics output is limited by statistics. Hence, an increase in sensitivity
significantly improves the interpretation of data and offers the ability to probe new parameter
spaces. The amplitudes of the trigger threshold are limited by the rate of triggering on unavoidable
thermal noise fluctuations. We present a real-time thermal noise rejection algorithm that enables
the trigger thresholds to be lowered, which increases the sensitivity to neutrinos by up to a factor
of two (depending on energy) compared to the current ARIANNA capabilities. A deep learning
discriminator, based on a Convolutional Neural Network (CNN), is implemented to identify and
remove thermal events in real time. We describe a CNN trained on MC data that runs on the current
ARIANNA microcomputer and retains 95% of the neutrino signal at a thermal noise rejection factor
of 105, compared to a template matching procedure which reaches only 102 for the same signal
efficiency. Then the results are verified in a lab measurement by feeding in generated neutrino-like
signal pulses and thermal noise directly into the ARIANNA data acquisition system. Lastly, the
same CNN is used to classify cosmic-rays events to make sure they are not rejected. The network
classified 102 out of 104 cosmic-ray events as signal.

Keywords: Neutrino detectors; Real-time monitoring; Cherenkov detectors
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1 Introduction

Ultra-high-energy (UHE, defined here as 𝐸𝜈 > 1017 eV) neutrino astronomy expands the opportunity
to learn more about the fierce processes of astronomical objects [1]. Neutrinos are ideal messengers
because they have negligible mass, are neutral in charge, and, due to the fact that they only interact
through the weak force, have a low interaction probability. Once created, these properties allow
them to travel through space unhindered by intervening matter or radiation such as dust, gas, and
electromagnetic fields. The same properties also make them challenging to detect. Even at the
extreme energies relevant to radio neutrino detectors, neutrinos rarely interact with matter. When
this feature is combined with the low expected fluxes, and stringent experimental upper limits have
been published by the IceCube Collaboration [2], the detector architecture must incorporate large
volumes of target material. A rough estimate suggests that instrumented volumes must reach of
order one teraton (1012 m3) to observe a few neutrinos per year for commonly discussed theoretical
models of neutrino production [3].

Radio based neutrinos experiments have been successfully explored in the past with pilot arrays
such as the ARA experiment [4] and the ARIANNA experiment [5], the latter being the focal point
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of this paper. These efforts helped focus in on the radio techniques required to operate in extremely
cold and harsh conditions. While these experiments showed the technical feasibility, they were too
small to measure the low neutrino flux. Undeterred, several radio-based experiments in development
are further illustrating the capabilities of this detection method, such as ARIANNA-200 [6], the radio
component of IceCube-Gen2 [7], the Radio Neutrino Observatory in Greenland (RNO-G) [8], Giant
Radio Array for Neutrino Detection (GRAND) [9], Taiwan Astroparticle Radiowave Observatory
for Geo-synchrotron Emissions (TAROGE) [10], and Payload for Ultrahigh Energy Observations
(PUEO) [11], a successor to ANITA [12]. These experiments exploit various target materials such
as ice, water, mountains, and air.

The challenge for experimenters is to reach the teraton detection volumes at a reasonable cost.
One of the most promising methods for observing UHE neutrinos in large target volumes exploits
radio detection in ice [13, 14]. For this reason, locations such as Greenland and Antarctica are
popular sites for radio detection experiments. Ice is transparent to radio signals, with field attenuation
lengths ranging from 0.5 km at Moore’s Bay (Antarctica) [15] to more than a kilometer in colder
ice found at the South Pole [16] or the Greenland ice sheet [17]. Radio pulses are created via the
Askaryan effect [18] when interacting neutrinos create particles showers in ice, which in turn generate
a time-varying negative charge excess that produces radio emission in the 50 MHz to 1 GHz range.

The radio technique enables cost-efficient instrumentation for monitoring large detection
volumes. However, because of the low flux of UHE neutrinos, event rates are still small even for the
large array of hundreds of radio detector stations that is foreseen for the next-generation neutrino
observatory at the South Pole, IceCube-Gen2 [19]. Thus, improving the sensitivity of the detector
is one of the primary objectives. The easiest way to increase the sensitivity — but also the most
expensive way — is to build more radio detector stations. A more efficient way is to increase the
sensitivity of each radio detector station and a lot of work has been made towards this goal.

The sensitivity can be increased by simply lowering the trigger threshold which records
additional neutrino interactions that produce smaller signal strengths in the radio detector. The
problem with this is that the trigger thresholds are already set close to the thermal noise floor such
that the trigger rate is dominated by unavoidable thermal noise fluctuations. The trigger rate on
thermal noise fluctuations changes drastically with threshold. For example, an amplitude threshold
trigger with a two out of four antenna coincidence logic has a trigger rate increases by about six
orders-of-magnitude if the trigger threshold is lowered from four times the RMS noise, 𝑉noise

RMS , to just
three time 𝑉noise

RMS [20]. Therefore, the trigger threshold is limited by the maximum data rate a radio
detector can handle which is typically on the order of 1 Hz if a high-speed communication link exists.
If the communication relies on Iridium satellite communication, the maximum data rate is limited to
0.3 mHz. However, if thermal noise fluctuations are identified and rejected in real time, the trigger
thresholds can be lowered while maintaining the same data rate, thus increasing the sensitivity of the
detector. The sensitivity can be improved by up to a factor of two with the intelligent trigger system
presented here (cf. section 2.2).

In this paper it is demonstrated that deep learning can be used to reject thermal noise in real time
by implementing these techniques in the current ARIANNA data acquisition system. Deep learning,
a modern rebranding of neural networks, has been shown to outperform other methods in a variety
of scientific and engineering areas, including in physics [21, 22]. The significant amount of data that
need to be classified in real time with low latency in high energy physics experiments makes deep
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learning an ideal tool to use [23, 24]. By rejecting thermal events, the trigger rate can be increased
dramatically while maintaining the required low rate of event transmission over the communication
links from the remotely located ARIANNA stations. Overall, lower thresholds increase the effective
volume of ice observed by each station, which is proportional to the sensitivity of the detector.

This paper is organized as follows. Additional details on the ARIANNA detector are provided,
along with the expected gain in sensitivity for this study. Next the trade off between network efficiency
and processing time is assessed to find the optimal deep learning models for a representative sample
of microprocessor platforms. The deep learning method is then compared to a template matching
study to determine how well the more common approach performs. Then the current ARIANNA
data acquisition system is evaluated to determine the suitability for a deep learning filter. Moreover,
the specific predictions for the optimal deep learning model are experimentally verified for the
current microprocessor hardware. Lastly, the deep learning filter is tested on measured cosmic rays
to verify that they are classified similar to neutrino signal and not rejected as thermal noise. The
paper concludes with a short summary and plans for the future.

2 The ARIANNA experiment and expected gain in sensitivity

The ARIANNA experiment [25] is an array of autonomous radio stations located in Antarctica.
Stations have operated at sea-level on the Ross Ice Shelf in Moore’s Bay, about 110 km from McMurdo
Station, which is the largest research base on the continent. In addition, two stations have operated
at the South Pole, which is colder and higher in elevation than the environment at Moore’s Bay.

2.1 Detector description

Several architectures were implemented in the prototype array at Moore’s Bay. Most stations
consisted of four downward facing log periodic dipole antennas (LPDAs) to specifically look for
neutrino events, as shown in figure 1. Two other stations at Moore’s Bay and two at the South Pole
were configured with eight antennas, which included a mixture of LPDAs and dipoles. These stations
were simultaneously sensitive to cosmic rays that interact in the atmosphere [26, 27] and neutrinos.
The radio signals are digitized and captured using a custom-made chip design known as the SST [28].
The analog trigger system of ARIANNA imposes requirements on individual waveforms; a high and
low threshold must occur within 5 ns, and multiple antennas channels (at least two of four antennas)
must meet the high-low threshold within a 30 ns coincidence window. These criteria are based on
the expectation that thermal noise fluctuations are approximately independent, whereas neutrino
signals produce correlated high-low fluctuations in a given antenna, and produce comparable signals
in multiple antenna channels. These requirements reduce the rate of thermal noise triggers for
a given trigger threshold while maintaining the sensitivity to Askaryan pulses from high-energy
neutrinos. Once a station has triggered, the digitized waveforms of every antenna channel contain
256 samples with a voltage accuracy of 12 bits. The event size in an eight-channel station is 132 kbits.
The waveform data from all channels are piped into an Xilinx Spartan 4 FPGA, and then further
processed and stored to an internal 32 GB memory card by an MBED LPC 1768 microcontroller.
There are up to eight channels on each board that process the radio signal from each antenna.

Once a triggered event is saved to local storage (the memory card) it is then transferred to UC
Irvine through a long-range WiFi link (AFAR) [29] during a specified communication window. The
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Figure 1. Diagram of a typical ARIANNA station consisting of four downward facing log periodic dipole
antennas (LPDAs) located three meters below the Antarctic Ice.

ARIANNA stations also use Iridium satellite network as a backup system. Satellite communication
is relatively slow, with a typical transfer rate of one event every 2–3 minutes [30]. For both
communication methods, currently the hardware system is limited to either communication or data
collection. Therefore, neutrino search operations are disabled during data communication. As
radio neutrino technologies move beyond the prototype stage, the relatively expensive and power
consumptive AFAR system will be eliminated. Perhaps it will be replaced by a better wireless system,
such as LTE, for sites relatively close to scientific research bases, but for more remote locations, only
satellite communications such as Iridium are feasible. Given the current limitation of 0.3 events/min
imposed by Iridium communication, and the fact that neutrino operations cease during data transfer
which generates unwanted deadtime, stations that rely solely on Iridium communication are expected
to operate at trigger rates from ∼ 0.3 mHz to keep losses due to data transfer, 𝑓trans, below 3%.

The trigger thresholds of ARIANNA are adjusted to a certain multiple of the Signal to Noise
Ratio (SNR), defined here as the ratio of the maximum absolute value of the amplitude of the
waveform to the 𝑉noise

RMS . Currently, the pilot stations are set to trigger above 4.4 SNR to reach the
constrained trigger rate of order 1 mHz. In the next section, the expected gain in sensitivity is studied
for a lower threshold of 3.6 SNR, which corresponds to 100Hz, the maximum operation rate of the
stations. For more information on the ARIANNA detector, see [6, 31].

2.2 Expected gain in sensitivity

The real-time rejection of thermal noise that is presented in this article would enable the trigger
threshold to be lowered significantly — thus increasing the detection rate of UHE neutrinos — while
keeping a low event rate of a few mHz. To estimate the increase in sensitivity, the effective volume
of an ARIANNA station is simulated for the two trigger thresholds corresponding to a thermal noise
trigger rate of 10 mHz (the current ARIANNA capabilities), and a four orders-of-magnitude higher
trigger rate (enabled through the deep-learning filter that rejects 99.99% of all thermal noise triggers).
We use the relationship between trigger threshold and trigger rate from [20] to calculate the thresholds.

NuRadioMC [32] is used to simulate the sensitivity of the ARIANNA detector at Moore’s Bay.
The expected radio signals are simulated in the ARIANNA detector on the Ross ice shelf, i.e., an ice
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Figure 2. Expected improvement in sensitivity to high-energy neutrinos with the deep-learning trigger
developed in this work. The improvement in sensitivity directly translates into the number of observed
neutrinos. The baseline is the standard ARIANNA high/low trigger with a 2 out of 4 antennas coincidence
requirement for the nominal bandwidth of 80–800 MHz at a thermal noise trigger rate of 10 mHz. The blue
dashed curve shows the sensitivity for a trigger threshold corresponding to a trigger rate of 100 Hz and
otherwise the same simulation settings.

shelf with a thickness of 576 m and an average attenuation length of approx. 500 m, and where the
ice-water interface at the bottom of the ice shelf reflects radio signals back up with high efficiency.
The generated neutrino interactions are distributed uniformly in the ice around the detector with
random incoming directions. The simulation is performed for discrete neutrino energies and includes
a simulation of the full detector response and the trigger algorithm as described above. The resulting
gain in sensitivity is shown in figure 2 and increases by almost a factor of two at energies of 1017 eV.
The improvement decreases towards higher energies because fewer of the recorded events are close
to the trigger threshold but at 1018 eV there is still an increase in sensitivity of 40%.

3 Thermal noise rejection using deep neural networks

To implement a deep learning filter, the general network structure needs to be optimized for fast
and accurate classification. For accuracy, the two metrics are neutrino signal efficiency (defined
here as the ratio of correctly identified signal events to the total number of signal events) and noise
rejection factor (defined here as 1

(1−𝑁ratio) , where 𝑁ratio is the ratio of correctly identified noise events
to the total number of noise events). The goal is to reject several orders-of-magnitude of thermal
noise fluctuations while retaining most of the neutrino signals. In the following, the target is 5
orders-of-magnitude thermal noise rejection while providing a high signal efficiency at or above 95%.

Typically using a more complex network structure yields more accurate results, but this also
creates a slower network. These two constraints need to be optimized as the deep learning architecture
is developed. In the following two sections, deep learning techniques are used to train models then
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study their efficiency and processing time. In section 5.1, a commonly used method of template
matching will be investigated to compare with the deep learning approach.

3.1 Generation of training data sets

NuRadioMC [32] is used to simulate a representative set of the expected neutrino events for the ARI-
ANNA detector, following the same setup as described in section 2.2 but for randomly distributed neu-
trino energies that follow an energy spectrum expected for an astrophysical and cosmogenic neutrino
flux; the astrophysical flux measurement by IceCube with a spectral index of 𝛾 = 2.19 [33] is combined
with a model for a GZK neutrino flux [34, 35] based on Auger data for a 10% proton fraction [3].

The resulting radio signals are simulated in the four LPDA antennas of the ARIANNA station
by convolving the electric-field pulses with the antenna response, and the rest of the signal chain is
approximated with an 80 MHz to 800 MHz band-pass filter. An event is recorded if the signal pulse
crossed a high and a low threshold of 3.6 times 𝑉noise

RMS within 5 ns in at least two LPDAs within 30 ns.
At such a low trigger threshold, noise fluctuations can fulfil the trigger condition at a non-negligible
rate. Therefore, the signal amplitude is required to be at least 2.8 times the 𝑉noise

RMS before adding
noise to avoid spurious triggers on thermal-noise fluctuations. In total 121,597 events that trigger
the detector are generated and this is called the signal data set in the following.

The training data set for thermal noise fluctuations is obtained by simulating thermal noise in
the four LPDA antennas and saving only those events where a thermal noise fluctuation fulfills the
trigger condition described above. In total 1.1 million events are generated and this is called the
noise data set in the following.

The limitations of the simulations and their impact on the obtained results are discussed at the
end of this article.

3.2 Network structures and training

All of the networks are created with Keras [36], a high-level interface to the machine-learning
library TensorFlow [37]. Our primary motivation is to develop a thermal noise rejection method that
operates on the existing ARIANNA hardware with an evaluation rate of at least 50 Hz, which is a
factor of 104 larger than our current trigger rate. To increase the execution rate of the neural network,
the hardware is one option to optimize; however, any alteration to the hardware is constrained by
two main factors: the power consumption of the component and the reliability in the cold climate.
Thus, this study will focus primarily on optimizing the execution rate by identifying the smallest
network that reaches our objective. While the number of trainable parameters can give an indication
of network size, the number of Floating Point Operations (FLOPs) is the chosen metric for network
size in this paper. The number of FLOPs can be approximated by multiplying the amount of (+,-,*,/)
operations performed by floating point numbers with the amount of nested loop iterations required
to classify incoming data.

Besides making the network size smaller, another way to improve the network speed is to reduce
the input data size. Instead of feeding the signal traces from all four antennas into the network, one
way to cut down on the size of input data is to use only the two antennas that caused the trigger. As
each signal trace consists of 256 samples, the total input size to the network is 512 samples. In
addition, a further reduced input data set is studied for various sizes by selecting the antenna with
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Figure 3. Baseline architecture of a fully connected neural network (FCNN) on the left and a convolutional
neural network (CNN) on the right. The FCNN contains one hidden layer with ReLU activation and a sigmoid
activation in the output layer. The CNN in composed of a convolution with ReLU activation, max pooling, a
flattening layer where the data are reshaped, and a sigmoid activation in the output layer.

the highest signal amplitude and only using a window of values around the maximum absolute value.
The window size was not fully optimized, but a good balance between input data size and efficiency
is 100 samples around the maximum value. The reasoning for this is that the dominant neutrino
signal does not span over the whole record length and typically only spans over less than 50 samples.

The two network architectures studied in the following are a fully connected neural network
(FCNN) [38] and a convolutional neural network (CNN) [39, 40], depicted in figure 3. The FCNN
used in this baseline test is a fully connected single hidden layer network with a node size of 64 for
the 100 input samples and 128 for the 512 input samples, a ReLU activation, and a sigmoid activation
in the output layer. The CNN structure consists of 5 filters with 10x1 kernels each, a ReLU activation,
a dropout of 0.5, a max pooling with size 10x1, a flattening step to reshape the data, and a sigmoid
activation in the output layer. Both the CNN and FCNN are trained using the Adam optimizer with
varying learning rates from 0.0005-0.001 depending on which value works best for each individual
model. The training data set contains a total of 100,000 signal events and 600,000 noise events,
where 80% is for training and 20% is to validate the model during training. Once the network is
trained, the test data are used which contain 21,597 signal events and 500,000 noise events.

3.3 Deep learning performance

The signal and noise event classification score distributions from the networks are distinct. With the
sigmoid activation in the output layer, the classification distribution falls between 0 and 1, where
close to 0 is noise-like data and close to 1 is signal-like data. Once trained, with the 100 input sample
CNN mentioned above, the distribution shown in figure 4 is obtained. From this distribution, the
amount of signal efficiency vs. noise rejection can be varied by choosing different network output
cut values. Training and testing these networks with each input data size yields the signal efficiency
vs. noise rejection plot in figure 5. Each data point corresponds to a different network output value,
and the final cut value is chosen by optimizing the noise rejection for the desired signal acceptance.
All of these input data sizes produce efficiencies above the required threshold of 95% for signal, and
all were able to reach at least 5 orders-of-magnitude noise rejection.

Since all of the networks have efficiencies above our target of 95% for signal at 105 noise
rejection, the main consideration is the amount of FLOPs required for each network because this
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Figure 4. Histogram of the network output for signal and noise classification. The network used for training
and validation was a CNN with one convolutional layer comprised of 5 10x1 filters and input data of 100
samples around the maximum value of the waveform.

Figure 5. Signal efficiency vs. noise rejection factor for FCNN’s and CNN’s with two different input data
sizes (100 samples and 512 samples). Both CNN’s have the structure of one convolutional layer containing 5
10x1 filters. The FCNN’s have one fully connect layer with node size 64 for the 100 samples input data and
node size 128 for the 512 samples input data.
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directly impacts the processing time. Typically, CNN’s have less parameters overall due to their
convolutional nature, which focuses on smaller features within a waveform; comparatively, the FCNN
considers the whole waveform to make its prediction, so it requires more node connections. The next
step is to investigate the FLOPs for each network, and determine the processing time on a given device.

4 Processing time and reliability on devices

In this section, the processing time of the deep learning filter is studied. As the filter is intended as a
real-time trigger, a fast execution time is crucial. The current ARIANNA hardware is used to test
and measure the execution time under realistic conditions.

There are several time components that impact the physics capabilities of the ARIANNA
detector: (1) the time to transfer the data from the waveform digitizers to the microcomputer, 𝑇read,
(2) the time to reformat and calibrate the raw data for the deep learning evaluation, 𝑇 𝑓 , and (3) the
time to evaluate the event with deep learning and make a decision, 𝑇𝑑𝑙 , (4) the time to store an event
to the local SD card, and (5) the time to transmit the event via the Iridium satellite network. The
architecture of the ARIANNA pilot station cannot acquire neutrino events while the data acquisition
system is processing events or during the transmission of data over Iridium satellite. It is useful to
express the processing time in terms of fractional loss of operational time, or deadtime. Operational
livetime, L, is the calendar time of nominal operation, T, corrected for the time losses due to event
processing and transmission. Often, the operational livetime is reported as a fractional quantity,
𝑓𝐿 = 𝐿/𝑇 and the fractional operational deadtime, 𝑓𝐷=1- 𝑓𝐿 .

If the rate of saving events to the SD card is sufficiently small, then the time to process an event
using deep learning is given by 𝑇min = 𝑇read + 𝑇 𝑓 + 𝑇𝑑𝑙 . As shown in this section, the latter two time
scales depend on the microprocessor. The time to transfer data to the microprocessor depends on the
details of the data acquisition system. This is known for the pilot ARIANNA stations, 𝑇read = 7.3 ms,
but the design of this station did not focus on minimizing 𝑇read, and this value can be reduced by
redesigning the hardware. It is assumed to be negligible when evaluating new platforms for future
designs of the ARIANNA data acquisition system.

4.1 Processing time

Two microprocessors are explored for their processing time and power consumption: a Raspberry Pi
compute module 3+ microcomputer and an MBED LPC1768 ARM microcontroller. The MBED
is the current device installed in ARIANNA and is implemented through custom C code. The
Raspberry Pi is a microcomputer with a Raspbian operating system, which is based on Debian. As
with the MBED, the neural network is implemented with a similar custom code on the Raspberry Pi.
Since the optimal networks found in the previous section are small and shallow, a custom code is
written that implements the trained neural networks in C for maximum performance. To test the
prediction capabilities and the classification time in both devices, a simulated event is read in and
either matrix multiplied by the array of weights and biases in the FCNN case or convolved with the
weights and bias filters in the CNN case.

Two methods are used to measure the MBED and Raspberry Pi processing times, 𝑇𝑑𝑙 . For the
Raspberry Pi, since it is not attached to the ARIANNA data acquisition system (DAQ), the processing
time is measured by looping over the processing code 100 times, while measuring the total time for
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100 loops with the clock function in C. The total time divided by 100 is the average processing time per
event. For the MBED, since it is attached to the ARIANNA board, it has the ability to be probed for re-
set pulses. Reset pulses are used by the MBED to reset the logic of the FPGA and triggering circuitry to
prepare for a new event. The time between reset pulses will provide the total deadtime. In the case that
the station is triggered continuously, which would result in 0% livetime, the time between reset pulses
corresponds to the processing time. Livetime is defined as the time between the reset pulse of the previ-
ous event and the trigger of a new event. To accomplish this setup, a pulse is injected into the hardware
with an amplitude large enough to trigger the system. By increasing the injection rate until the system
experiences 0% livetime, the minimum time difference between reset pulses, 𝑇min, can be found.

𝑇min can be broken down into three time components that when summed together make up the pro-
cessing time, 𝑇min = 𝑇read +𝑇 𝑓 +𝑇𝑑𝑙 . To measure each component, different processing functions are
disabled. For example, when the deep learning code and reformatting code are disabled, 𝑇min = 𝑇read.
The processing time 𝑇𝑑𝑙 and reformatting time 𝑇 𝑓 for both devices are shown in table 1 for a given
model along with the FLOPs of each network. While table 1 shows that the relationship is not com-
pletely linear, FLOPs provide a reasonable proxy to estimate the relative speeds of specific deep learn-
ing models. All models listed reach the required efficiency of 95% neutrino signal at 105 noise rejec-
tion. Therefore, the fastest network is chosen for the lab tests, which is the CNN with 100 input samples.

Table 1. Processing times per event, 𝑇𝑑𝑙 and the number of Floating Point Operations (FLOPs) of various
models that demonstrate the required efficiency, and the reformatting time per event 𝑇 𝑓 for 100 and 512 input
data sizes respectively, for an MBED and a Raspberry Pi. *memory limitations prevented this measurement.

Variable model FLOPs MBED Raspberry Pi
FCNN 512 samples 131,457 45 ms 2.5 ms
CNN 512 samples 55,816 * 1.5 ms

𝑇𝑑𝑙 FCNN 256 samples 32,961 13 ms 1.0 ms
CNN 256 samples 27,376 9.4 ms 0.95 ms
FCNN 100 samples 12,993 4.7 ms 0.46 ms
CNN 100 samples 10,096 3.7 ms 0.39 ms

𝑇 𝑓 all networks 1.3−1.9 ms 0.095−0.12 ms

4.2 Reliability and power consumption

Optimizing the network architecture and processing time are not the only factors to consider when
implementing a deep learning network onto ARIANNA. Reliability in the harsh Antarctic climate
must be considered as well as the limited power available in the remote location of Antarctica. The
MBED was tested in the field for reliability in cold temperatures (averaging −60 °C) and meets the
specification on power consumption, operating under one Watt. In contrast, the Raspberry Pi is rated
to −25 °C [41] and requires more power than the MBED. The Raspberry Pi was stress tested under
cold conditions, running it from 20 °C to −60 °C. It ran continuously with the deep learning filter for
the hour it took to cool down to −60 °C, and then it was run for an additional hour at this temperature.
Once it was brought back up to room temperature, the Raspberry Pi was still operational. If chosen
as the optimal device in the future, the Raspberry Pi would need to be tested further for long term
operational reliability such as temperature cycling.
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Due to the extensive work required to implement the deep learning network on a new device,
for this paper the first analysis is done with the current MBED microcontroller. As discussed in
the previous section, the 100 input sample CNN is chosen for the experimental verification study.
Next, the template matching method is applied to the same simulated data set to compare with the
100 input sample CNN. Then the 100 input sample CNN is implemented into the current MBED
software for experimental verification.

5 Performance verification

In this section, the performance of a deep learning filter is compared to the commonly used template
matching, verified in a lab measurement, the ARIANNA hardware’s computing performance is
studied, and measured in situ cosmic-ray data are classified by the filter to study signal performance.

5.1 Comparison to template matching

We compare the performance of a deep learning filter to a realistic template matching procedure
using a single template, similar to what was used in a previous analysis [42]. It is found that the
deep learning method is typically faster and performs better.

A neutrino template is constructed by convolving a predicted Askaryan pulse with the antenna,
amplifier and filter responses of the ARIANNA signal chain as already done in previous analyses [42].
A single template is used to minimize the computational costs, and also because of the observation
that the template is dominated by the detector response; variations in the predicted Askaryan pulse
have only a small influence on the resulting templates (see e.g. [42, 43]). The plot of the general
simulated template waveform is found in figure 6, and for this study, the amplifier response is added
to this waveform without noise. Following the same data format as the 100 input sample CNN,
the template was trimmed to 100 samples around the maximum absolute value of the waveform.
This template was cross-correlated with the simulated signal and noise data sets, and the maximum
absolute value of the cross-correlation is used as a measure for signalness, i.e., the output is a
number between 0 (noise-like) and 1 (signal-like) as in the deep learning case. To compare the
performance of the template and neural network method, the signal efficiency vs. noise rejection
factor is computed and compared to the CNN result which is presented in figure 7.

The CNN method is found to perform significantly better. At the benchmark value of 95%
signal efficiency, the template method only achieves a little more than two orders-of-magnitude
noise rejection. One explanation for this is that the CNN identifies smaller 10x1 features within
the training sets, which gives it more flexibility. Additionally, the CNN has 5 times the amount
of features to extract compared to the template’s single waveform/feature. Another aspect of the
template matching technique is to determine the processing speed. Estimating the processing speed
for this method, the FLOPs are roughly 29,900, which is close to three times the amount of FLOPs of
the 100 input sample CNN. Narrowing in further on the template signal pulse to 50 samples around
the maximum of the waveform, the FLOPs are roughly 7,450. This is now less FLOPs compared
to the 10,096 FLOPs of the 100 input sample CNN, but the efficiency of the template matching is
still significantly worse. Therefore, the cross-correlation neutrino template matching method is less
efficient and (depending on the input data size) slower than the CNN technique.
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Figure 6. Comparison of the analog/measured neutrino template signal being produced by the pulse generator
and the simulated neutrino template. For details on the pulses see section 5.2.

Figure 7. Signal efficiency vs. noise rejection factor for the 100 input sample CNN and the 100 samples
template matching method. The template matching technique uses a simulated neutrino template (with
antenna and amplifier response, and no noise) to perform a cross-correlation on the same simulated data used
to train the 100 input sample CNN.

5.2 Laboratory verification

The deep learning filter uses the 100 input sample CNN described in section 3. Data taking with LPDA
antennas proves a challenge in the lab due to the lingering radio frequency noise present in the envi-
ronment. Without a radio quiet space, one cannot replicate the environment of the Antarctic ice since
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Figure 8. Diagram showing the set up for the collection of measured signal. The neutrino template was
loaded onto the Agilent Tech. Arbitrary Pulse Generator and converted to an analog signal. The analog
neutrino template was then injected into a series 300 amplifier then into the ARIANNA DAQ board which
contains triggering circuitry, an SST Chip, FPGA, and MBED.

the antennas would measure local radio sources which would bias the data. Thus, for in-lab tests of the
deep learning implementation, an experimental “post LPDA antenna” radio neutrino pulse is created
and injected into the ARIANNA hardware, bypassing the antenna, to verify the simulated results.

The expected neutrino template is generated with the standard simulation tool, NuRadioMC [32],
which convolves the expected electric field at the detector with the LPDA antenna response. This
neutrino template is then programmed into an Agilent Tech. 81160A arbitrary pulse generator to
produce an analog version of the neutrino template as observed by the LPDA antenna. This waveform
is then injected into the Series 300 amplifier of the ARIANNA pilot station, which adds realistic
amplifier noise. By adjusting the input amplitude of the template, the SNR can be tuned to arbitrary
values. Figure 8 shows a diagram of the experimental set up. The noisy signal is then routed to the
input of the ARIANNA DAQ for data taking. Figure 6 gives a comparison of the simulated neutrino
template to those produced by the analog pulse generator, known as measured neutrino template.

The DAQ consists of an SST chip, an FPGA, and an MBED microcontroller. Once digitized
by the SST chip, the FPGA passes the digitized data (event) to the MBED, where the channel with
the largest signal is chosen and runs through the deep learning filter. Once finished, the filter gives
the network output value of the event to determine its classification. Any event whose probability
is below the cutoff would normally not be saved to memory. For testing purposes, all events are
saved into memory along with the deep learning calculated probability. The deep learning filter
performance on the ARIANNA hardware is also checked on a local computer which takes the
digitized data and recalculates the probability. Both methods show equivalent results.

This setup allows for the recording of neutrino signal data sets and noise data sets. To record
the noise data set, the neutrino signal generator is deactivated so that the ARIANNA DAQ only sees
thermal noise amplified by the amplifiers. This test focuses on low SNR events which are the most
difficult to differentiate between signal and noise. Therefore, the high/low trigger threshold is set to
an SNR of 3.6 and a two of four coincidence logic between channels is required. The corresponding
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Figure 9. Histogram of the Signal to Noise Ratio (defined here as the ratio of the maximum absolute value
of the maximum waveform to the noise RMS, 𝑉noise

RMS ) distributions for simulated thermal noise, measured
thermal noise, simulated singular neutrino template, measured singular neutrino template, and simulated full
neutrino spectrum. The template data have Gaussian noise added to the template to get the distribution above.
The full neutrino distribution data set was used to train all of the networks in section 3.

SNR distribution is shown in figure 9, where the SNR is calculated as the maximum amplitude of
any of the channels divided by the RMS noise. The measured noise distribution matches well to the
SNR distribution of the simulated noise data set used in the previous sections.

Recording the neutrino signal data set is more challenging because at these low thresholds,
a noise fluctuation might trigger the readout. So instead of a self-trigger, the ARIANNA DAQ is
externally triggered via the trigger output of the pulse generator. The time delay is adjusted so that
the signal pulse is at the correct location as expected from the ARIANNA high/low trigger. The
amplitude of the signal pulse is adjusted to produce a low SNR distribution just above the trigger
threshold. The neutrino template in figure 6 remains constant for all of the tests, but since the
noise added by the amplifier follows a Gaussian distribution, the resulting SNR follows the same
distribution. As seen in figure 9, the distribution is broader and shifted to a slightly higher mean than
the noise data sets. This is expected because the interference of the extended signal pulse with noise
gives several chances for an upward fluctuation, and the maximum value of any channel is chosen for
the SNR estimate. The resulting SNR distribution of this low-amplitude simulated neutrino signal
data set matches the experimental distribution.

To test the deep learning filter and verify that the simulated hardware components are comparable
between measured and simulated data, a histogram of the network output values is plotted. This
distribution is obtained by using the trained 100 input sample CNN to classify simulated and
measured events. As seen in figure 10, the distribution of the simulated MC data set agrees well
with the experimentally measured distributions. The small deviations are likely due to differences

– 14 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
0
3
0
0
7

Figure 10. Histogram of the network output values of simulated and measured signal template and noise.
The values are obtained from the network’s output layer (a sigmoid activation function).

in SNR distributions and environmental effects such as strong radio pulses leaking into the cables.
This gives us confidence that the MC simulation indeed describe measured data and that the inferred
noise rejection factor and signal efficiency are credible.

5.3 ARIANNA hardware computing speed for the CNN filter

The deep learning filter will increase the low-level trigger rate to 100 Hz. This significant change in
trigger rate raises the question of whether or not the current hardware will be able to handle triggering
effectively at 100 Hz. This section explores the hardware computing performance of the ARIANNA
pilot station, which includes the waveform digitizers, the readout into the FPGA, the transmission
from FPGA to the MBED for further processing, and the application of the deep learning filter.
Taking the values from table 1, and now including 𝑇read = 7.3 ms (which was experimentally obtained
with the same procedure as 𝑇𝑑𝑙), the MBED has the event readout time 𝑇min = 12.3 ms.

This deadtime is the total processing time of transferring and packaging the data, and running
on-board analysis programs. Deadtime is acquired by measuring the time delay between reset pulses,
which is sent by the MBED when it is ready to receive a new event. To study the effect of 𝑇min

on operational livetime, the ARIANNA triggering system is simulated. 𝑇min is directly related to
operational livetime. First the effect of the deadtime on the triggering system is simulated by writing
code that takes an exponential distribution of times, dt, representing the time between incoming
triggers with a mean of 𝑅−1

𝑇
, where 𝑅𝑇 is the noise trigger rate. When an event is being processed no

other triggers can be accepted until after the previous event is finished processing. The simulation
uses the distribution of times to calculate a fractional livetime as a function of 𝑅𝑇 by calculating the
average portion of time spent in deadtime due to 𝑅𝑇 over a time 𝑇 .

To confirm the simulation results for the fractional livetime as a function of noise trigger rate, the
ARIANNA DAQ board is injected with signal-like voltage pulses periodically at a rate of 100 mHz
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Figure 11. Livetime, L, as a function of Noise Trigger Rate, 𝑅𝑇 , for three assumptions on the instrumental
deadtime. Also plotted are data (black dots) from experimental verification study.

and a high enough amplitude that always fulfills the trigger condition. At the same time, the trigger
threshold is lowered after every trial to increase the noise trigger rate. For example, at a noise
triggering rate of 0 Hz, 100% fractional livetime is expected since the injection rate of the periodic
pulses is greater than the deadtime, allowing all injected pulses to be processed and saved to the SD
card. In figure 11, the results of the experiment can be seen as the threshold is lowered, which in
turn increases the noise rate and decreases the livetime. The measurement is described well by the
corresponding simulation for 𝑇min = 12 ms.

At 100 Hz noise triggering rate, the livetime decreases to an unacceptably low value of below
50%. The CNN reaches a rejection factor of 105, but trigger rates are limited to 10 Hz or lower to
keep instrumental deadtime under 10%. This result motivates the consideration for improvements in
hardware, such as replacing the MBED with a faster processing device.

5.4 Classification of cosmic-ray data

The ARIANNA detector stations are simultaneously sensitive to cosmic rays that interact in the
atmosphere and neutrinos; in addition to the downward facing antennas that are designed to detect
neutrinos, the ARIANNA detector contains upward facing antennas to detect cosmic rays. Cosmic
rays provide a calibration beam with similar radio frequency content and time variation as expected
from neutrinos [26]. Moreover, both cosmic rays and neutrinos have bipolar signals that are short
compared to the response time of the antennas, and their signals are significantly distinct from
thermal fluctuations. Therefore, they provide another opportunity to verify the behavior of the CNN
on signals that should not be rejected as noise. Cosmic rays trigger a given station at a rate of only a
few events per day, so it is important to keep as many cosmic-ray events as possible.
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To test the network, a set of cosmic-ray events from ARIANNA station 52, collected between
November 2018 and March 2019, are used [27]. For this data, the two of four coincidence logic
trigger is set to a threshold of 4.4 SNR, and the event set has an expected purity of > 95%. Then
the 100 input sample CNN trained on neutrino data and described in section 3 is used on these
cosmic-ray data. This network classifies 102 out of 104 cosmic-ray events as signal, which is a
greater value than neutrino efficiency in this study because the thresholds are slightly larger (4.4 SNR
compared to 3.6 SNR in the simulation study). A network trained only with neutrinos still identifies
cosmic rays adequately. It is likely that an even better cosmic-ray efficiency can be obtained by
including them in the training data for a more robust CNN filter.

6 Summary, discussion, and future plans

Due to the low neutrino flux at ultra-high energies, the sensitivity of the detector to a flux of
high-energy neutrinos is limited by statistics. Probing new parameter spaces is made possible by
implementing deep learning techniques to increase the sensitivity of the ARIANNA detector. A small
convolutional neural network (CNN) was implemented on the ARIANNA MBED microcontroller
to discriminate between thermal noise fluctuations and neutrino signal. It was shown that CNN
filters were much more accurate and computationally faster than simple cross-correlation methods
(template matching) in distinguishing between thermal events and neutrino signals. Only one thermal
event in every 105 thermal triggers was misidentified by the CNN, while 95% of the neutrino signal
was correctly identified. Consequently, the trigger rate can be increased by five orders-of-magnitude
while transmitting at an event rate of 0.3 mHz over the Iridium communication network. This results
in an increase in neutrino sensitivity of 40% at 1018 eV and up to a factor of two at lower energies.
The simulation study was verified by lab measurements that found an excellent agreement between
the measured and simulated distributions of both neutrino and thermal noise events. Then, a group
of measured cosmic rays were run through the 100 input sample CNN, and 102 out of 104 events
were classified as signal.

At the moment, the processing speed of the ARIANNA hardware is the limiting factor and
restricts the low-level trigger rate to smaller than 10 Hz to avoid deadtime. In the future, several
improvements to the ARIANNA hardware will be considered. First, the ARIANNA hardware that
sends the digitized data from the FPGA to the microprocessor can be parallelized to decrease the
time to readout an event, which would provide the opportunity to trigger the detector at even higher
rates. Second, more capable computing on the ARIANNA station through improved electronics
will be studied. The current generation of ARIANNA hardware is now more than 10 years old, and
many recent microcomputer systems offer more performance at comparable power consumption. An
increase in computer speed allows more complex CNN architectures with an equivalent improvement
in the trade off between neutrino signal efficiency and background rejection. The combination of
these two changes would increase the sensitivity of the ARIANNA detector even if the communication
transfer rates remained the same. However, the next generation of Iridium satellites, Iridium Next [44]
has been recently deployed. This system has the potential to increase the transfer rates by many
orders-of-magnitude relative to the SBD message transfer system currently used by ARIANNA.

Reliance on deep learning filters may lead to unwanted results when incoming data deviates
from training data, so they must be carefully evaluated by laboratory and field studies. The lab
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measurements described in this paper are encouraging, and suggestive that the simulations describe
reality. The next stage of confirmation studies follow a similar plan that was used to validate the
simulation studies of the sensitivity of the ARIANNA detector. After modifying the software in the
data acquisition system to include the CNN filter, we plan to (1) use a variety of radio transmitters
within a preexisting borehole drilled to a depth of 1700 m at the South Pole (the SPice core [45]), to
confirm signal efficiency at various thermal noise trigger rates, and (2) compare the rate and physical
properties of cosmic-ray events to data samples collected without the filter.

In addition to the current hardware constraints, there are limitations on the simulation tools
as well. This analysis was able to use simulated data to achieve 5 orders-of-magnitude thermal
noise rejection, but the simulations do not yet include a number of real world effects that can create
small corrections to the data. One example is in the ice model, which does not include the layering
structure of the ice density (stratification) when signals propagate through it. The incompleteness of
the simulations can affect the in-field performance. However, these are known limitations that will
be explored in the next round of simulations.
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