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General classical arguments on the time evolution of the phase-space density can be used to derive
constraints on the mass of particle candidates for the cosmological dark matter (DM). The resulting
Tremaine-Gunn limit is extremely useful in constraining particle DM models. In certain models, however,
the DM particle mass varies appreciably over time. In this work, we generalize the phase-space limits on
possible DM particle masses to these scenarios. We then examine the ensuing cosmological implications on
the effective DM equation of state and indirect DM detection.

DOI: 10.1103/PhysRevD.107.103535

I. INTRODUCTION

The nature of the cosmological dark matter (DM)
continues to stand as one of the greatest mysteries at the
interface of particle physics and cosmology [1]. There
exists conclusive evidence that the solution to this puzzle
lies beyond the standard model of particle physics: The
only standard model particles that possess properties
adequate for them to be DM candidates are neutrinos;
however, neutrinos were quickly discarded as a DM
candidate using phase space arguments [2]: In the absence
of interactions leading to collision, dissipation, or particle
number changing processes, quantum mechanics dictates
that any fermionic species possesses a maximal phase-
space density f .« and that any coarse-grained phase-space
density must necessarily be smaller than f,.. Applying
this argument to light neutrinos with g, internal degrees
of freedom, and considering observational data from
DM-dominated structure, leads to the so-called Tremaine-
Gunn limit [2]

4\ /4 /100 km/s\ /4 (kpc 1/2
() () ()

gl/ JU rC
where o, is the structure’s velocity dispersion, r. =
/902 /4xGyp is the core (or King) radius, and in the
expression for r,. p is the core density [2,3]. For instance,
applying this limit to the Fornax dwarf spheroidal galaxy
(dSphs hereafter), one obtains m, > 164 eV [4]. Notice,

however, that in the presence of interactions, the Tremaine-
Gunn limit can be evaded, and lighter thermal DM
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candidates are observationally viable, see e.g., [5].
A second way to evade the lower mass bound is by
postulating a large number of fermionic species with almost
degenerate masses, filling up phase space without saturat-
ing it [6]. A generalization including bosons (and fermions)
with nonvanishing chemical potential was explored in a
series of subsequent papers [7-9]. Since the primordial DM
phase-space density is not accessible through astrophysical
observations, a surrogate quantity, more suitable for obser-
vational purposes, was defined in Ref. [10] as

p p
Q (07)32 = 3—0_13]' (2)

In Eq. (2), the quantities on the right-hand side are
determined from observations. Like its primordial counter-
part, the average halo phase density Q cannot increase with
time [10,11] during the evolution of DM in halos i.e.
Q; > Qy. This behavior has been proven to persist even
after significant phase mixing and violent relaxation phases
through explicit N-body simulations [12,13]. This property
yields different, but related, phase-space arguments, that
when applied to dSphs lead, in turn, to lower bounds on
DM patrticles [4,10,11,14,15] which are quite comparable
to the original Tremaine-Gunn limit. For recent works
along these lines, see e.g., [16-22]

The Tremaine-Gunn limit is a powerful constraint to
constrain the parameter space of particle DM models. The
purpose of this note is to extend the use of phase-space
arguments of the kind that lead to the Tremaine-Gunn limit
to more general situations where the mass of the DM
particle evolves with time or scale factor, i.e., m(a) with a
the cosmological scale factor. Since fermionic DM fields
generally get their masses through vacuum expectation

© 2023 American Physical Society
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values (VEV) of scalar fields ¢; (Yukawa couplings), it is
natural to expect that DM masses are dynamical parameters
controlled by the dynamics of scalars, my, « ¢;(t). For
instance, Ref. [23], aimed to decouple the constraints
stemming from sterile neutrino radiative decay by allowing
the mass to be a dynamical parameter i.e., m = m(a). In
this scenario, neutrino masses are controlled by the VEV
of a pseudoscalar field (an axion or an axionlike particle).
This is only but an instance of a scenario where the DM
particle mass varies considerably over the course of the
evolution of the universe (See for instance [24-28] for
earlier works and [29] for more recent studies).

Motivated by this, in this note we reconsider phase-space
constraints on the DM particle mass in scenarios where
the latter evolves with the scale factor. We explore the
consequences of a variable mass for cosmological obser-
vations, and outline new constraints from gamma-ray
observations.

Throughout this paper we use natural units: # = ¢ =
kg = 1. The remainder of the paper is organized as follows.
In Sec. II, we derive the constraints on the mass variation of
a DM particle using general classical arguments on the
evolution of phase-space. In Sec. IIl, we consider the
cosmological consequences and bounds on the scenario. In
Sec. IV, we consider yet another signature of the scenario
that leads to significantly modified expectations for gamma
rays from DM annihilations at all redshifts. Finally in
Sec. V, we give our conclusions and outlook.

II. THE LIOUVILLE THEOREM

The Liouville theorem, describing the evolution of a
collisionless and dissipationless system of particles in
phase space, is a cornerstone of classical mechanics
[30]. The theorem states that under certain circumstances
the volume of phase space occupied by a set of N particles
remains constant over time. The theorem hinges on the
following two assumptions: (i) the total number of particles
in phase space is constant, i.e., dN/dt =0, and (ii) the
phase space density, in absence of interaction, obeys the
identity

af(p.q) _of di

dp —=
= -V
dt ot dt

-Vaf—l—E

gf=0. (3)
By writing N = [y space /(P- @)dPdq and combining
with assumptions (i) and (ii) above, one can prove readily
that

d

¥ £(5.4)d5dG = 0. 4)
Phase space

In what follows, and in order to apply the Liouville theorem,
we will assume that (i) the particles under investigation
(whether they decoupled while relativistic or not) have
already chemically decoupled, so that number-changing

processes can effectively be neglected, but that the particles
are still in kinetic equilibrium.

A very useful and frequently encountered situation
occurs when the phase-space density depends only on
the Hamiltonian (i.e. there is no explicit time-dependence:
of (H)/ot = 0). In this case Eq. (3) can be cast as

d . Of~[oH . oH.(]
dtf(H)_()HZ[ampi+c%q,-qi} =0, (5)

automatically satisfying Liouville’s theorem. This happens
often in equilibrium statistical mechanics where energy is
conserved. Note, however, that this argument does not
depend on whether energy is conserved or not (i.e. whether
the Hamiltonian is time-dependent or not).

In general relativity, the phase-space density obeys

~

L[f] = C[f], where L is the usual Liouville operator
given by

N d
L= p*o,—Tg p/p P (6)

and C is the collision operator, describing scatterings,
production and annihilation (processes that would change
the number of particles). Considering a collisionless and
dissipationless system of particles in a geometry described
by a Friedmann-Robertson-Walker (FRW) metric, one gets'

of . of
E=—H[pP—==
o~ HIPP SR

0 (7)
It is instructive to see how this last identity Eq. (7) is
satisfied explicitly: in an isotropic and homogeneous
universe, the phase-space density of a species that chemi-
cally decoupled at temperature T4.., when the scale factor
was dge, 1S given by [31]

f(|ﬁ|9T) :f(|ﬁdec|adec/a’ T)’ (8)

where a(r) is the scale factor, and where we used the
usual redshifting relation for momenta. This scaling will be
valid as long as kinetic equilibrium is maintained. Now, to
go further, we need to specify the relationship between
temperature and scale factor for hot and cold relics
separately [31]

T~ { Tdec : (af;ec)

Tdec : (adec)z

a

for Tyee > m

©)

for Tgee < m
This means that the phase space density will remain
constant in both cases, since for 74, > m the energy E ~

|p| while for T4, < m, E =~ |p|*/(2m). More explicitly:

'See e.g., [31], Eq. (5.5).
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1 1
eE/T :l: 1 - eEdcc/Tdcc :t 1 ’

f(pl.T) = (10)

where the sign +(—) is for fermions (bosons). It follows
that, after decoupling the phase space density is constant
df(E,T)/dt = 0, in agreement with the Liouville theorem.
Note that this is not the case of a species that decouples
while semirelativistic, i.e., when T4.. ~ m: in that case the
phase space distribution does not maintain the equilibrium
form absent interactions [31]. In any case, if the particle
under consideration is to be a significant fraction of the
cosmological dark matter, structure formation enforces it to
decouple when nonrelativistic, hence the assumption that
df(E,T)/dt = 0 applies.

The Tremaine-Gunn limit states that the coarse-grained
space phase density is bounded from above by the
maximum value of its fine-grained counterpart. Let us
now calculate

A )
dT|;  T(r) ot TE oE
512
%(655‘7/;1)2 for Tdec >m (11)
= 512
%% for Tdec <m
where we have used Eq. (7) and the fine-grained phase
space density Eq. (10). This means that the phase space
density monotonically decrease with time, and thus
increase with temperature in a FRW universe i.e.,
f(ET,) 2 f(E.Ty), forT,>T,. (12)
Now, following the line of reasoning of [2], we will apply
Eq. (12) in its coarse-grained version to a fermionic
DM halo with an evolving DM particle mass. As in the
original Tremaine-Gunn limit, we will adopt the simplifying
assumption that DM particles will collapse to a self-
gravitating system described by an isothermal sphere [3]
with velocities following a Maxwell-Boltzmann distribution

Rialo (1)

—1;2/20%61" 13
e )
(2762)3?m3 P (13)

fhalo(ﬁ’ r)dﬁ =

where 6, = /T /m is the Maxwellian velocity dispersion at

any given temperature and ny,,(7) is the density of DM in
the halo

o

= 14
272Gy m (14)

Ralo ()

*We will focus on the case of a fermionic DM particle with a
vanishing chemical potential y = 0, as in the original Tremaine-
Gunn limit. The inclusion of non-vanishing chemical potentials
has been considered in [7-9].

In the strict sense, our results are correct for an isotropic halo.
A more accurate description of the halo would include a
proper Jeans analysis, taking into account the anisotropy
parameter f(r) = 1— (v3)/(v?). However, the effect of
p(r) is to rescale the phase-space density with a factor
[2log (r,/r.)]7%/?, where r, is the tidal radius [32].
Therefore, we do not expect this logarithmic correction to
affect significantly our analysis.

Since df},,,/dt = 0, by virtue of the Liouville theorem,
this implies that nyy,(r) = [ fraodp is also a constant i.e.,
dnypa,/dt = 0. Following Eq. (12), we get fhao(T1)|max =
Shato(T2)|max» Which in turn implies

m(Ty) Ty
m(Ty) ~ T,

> 1. (15)

~—

This is the main result of this note: the DM mass change
in the halo can only increase with time, as a consequence
of phase-space density limits. Note that the inequality
Eq. (15), constraining the mass to monotonically increase
with time, was obtained using the phase-space density
Fhaio(P> 7). We can obtain the same inequality using the
surrogate quantity Q defined in Eq. (2). As noted in [4,15],
the average halo phase-space density scales as Q ~ m* f.1o-
On the other hand, f},, scales as m™, see Eqgs. (13) and
(14). This means that one will obtain the inequality Eq. (15)
also as a consequence of Q; > Q.

Let us now comment on this important result. First,
Eq. (15) is consistent with expectations from general
thermodynamical arguments applied to an isothermal
DM-dominated halo in hydrostatic equilibrium at constant
volume and temperature. To prove this, notice that since the
number of DM particles in the halo N = 4z [ n,(r)r*dr
is conserved, this yields the scaling 62 ~ m, or T = m?/C,
where C is positive. Next, combining the hydrostatic
equilibrium equation of the halo

dp GyM(r) ,dp

—=—-———p=0;—, 16

dr r2 p 0-1) dr ( )
with the first law of thermodynamics one gets
dm

ds = (1 +0'%)pdV+NT (17)

This in turn allows us to compute the entropy change
between t; and t,:

m(t) (S mt)  d
ASy, :/ ’ (> dm :/ ’ N—m
m(n) \Om/)y min)y T

The second principle of thermodynamics implies Eq. (18)
should be positive, therefore m(t,) > m(¢;). Note that this
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inequality here assumes that (i) halos are in hydrostatic
equilibrium, and that (ii)) 7 and V do not change.

The second comment is that inequality Eq. (15) was
derived without assuming that the DM particles were
created thermally, or were in equilibrium before collapsing
into halos described by Maxwellian velocity distribution.
This means that it can be applied quite generally to mass-
varying DM scenarios irrespective of their production
mechanism.

III. COSMOLOGICAL CONSEQUENCES AND
BOUNDS

Let us now discuss the main cosmological consequences
of having a cold DM particle with a monotonically
increasing time-dependent mass mgyy,(a). We will focus
on the impact of mass variation on the DM equation of state
(EoS) @ym = Pdm/Pdm- As we will see shortly, we can
recast the experimental bounds on @y, as bounds on the
DM mass variation. In the standard case m/,,(a) = 0, and
after DM decoupling 7' < Ty the value of the equation of
state parameter is

0) Tdec Adec\ 2
w m=—"|\—
Mmym a

T 100 GeV a 2
— 1011 Zdee (2T (g
0 (eV)( Mym ) (a) (9)

This is an extremely small number which justifies the
approximation @y, = 0 at all times. Now, if the mass of the
DM particle varies, while retaining its stability, the number
density of DM will obey 74, + 3Hng,, = 0 exactly as in
the standard case m'(a) = 0. However, the DM energy
density pyy, = mgm(a) - ngy, will obey a different continuity
equation which can be seen as an effective DM equation of
state bdm + Sdem(l —+ wdm) = O, Wlth

 1ologmgy(a)

Wim = 3 (20)

dloga

Since, as we have concluded in Sec. II, mygy, grows
monotonically with the scale factor, Eq. (20) means that the
effective DM EoS is negative i.e., g, < 0. We can also
generalize this result to include scenarios where only a
fraction f = py,y/pior = of the total DM has my (a) # 0. In
this case, Eq. (20) becomes

folog myy(a)

Wam =73 dloga <0. 1)
This is the second main result of this note. The
contribution Eq. (21) to the DM EoS is expected to
dominate over the standard one, and as such we will
neglect Eq. (19) with respect to Eq. (21). In the following,
we will explore its observational constraints. As we have

0.15
PPS
—— PPS+Lens+BAO
0.10 — Wen=0,9=0
=== Wgm=—-02,g=3/5
0.05+ L Wam=—0.17,g=12
—= Wgm=-01,9=3/11
0.00
£
S -0.05
3
-0.10
-0.15
—0.20 7 e
-0.25 T T " .
10~4 103 102 101 10°
scale factor a
FIG. 1. Constraints (99% CL contours) on @y, from [33] using

Planck power spectrum (PPS) and BAO and lensing data. The
different datasets combinations are specified in the legend. The
horizontal lines stand for different varying DM masses, where

m(a) = mg(a/ay)’.

seen, Eq. (12) means that we can rephrase any bound on the
variation of my, (a) using the existing bounds on @y, This
last quantity describes how cold/warm is the DM particle,
and as such it has been the subject of multitude of studies
with a variety of motivations and emphasis [33—47]. It has
also been investigated in connection to DM bulk viscosity
(see e.g., [48]). In these studies, several datasets, probing
different redshift intervals, has been leveraged to extract
bound on the equation of state parameter (EoS) parameter
of dark matter wpy;. Unfortunately, a large number of the
aforementioned studies did not include negative values of
wpy 1n their priors (See for instance [42]). The main
motivation behind that bias toward positive wyy, is that one
expects a positive corrections to the DM EoS from kinetic
pressure. Yet, it has been noted in many studies that
negative values of @y, occur naturally [39,43,47], and
might even alleviate some of the problems/issues of ACDM
(Seee.g., [49] for a recent study addressing both the H, and
oy tension). For the purpose of this study, we will use the
results of the recent study [33], spanning a broad range
of redshifts and including negative values of the EoS
parameter. The constraints in [33] were obtained using
the Planck power spectrum (PPS), lensing (lens) and the
baryon acoustic oscillations (BAO). We plot resulting
bounds® in Fig. 1 where the light yellow (red) area
corresponds to the 99% confidence level (CL) contours
of allowed values of wy, versus the scale factor a =
1/1 + z using PPS (PPS + Lens + BAO). For illustration,
we plot horizontal lines (see Fig. 1 legend) corresponding

*For the purpose of the present study, we will focus on wy,, <0

and null speed of sound and shear viscosity ¢2 = c%is =0.
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Pseudoscalar mediator with mass ma = 100 GeV

10°
—— 4= 1GeV, mz)=mog

Fa= 1GeV, m(z) =mo/(1 +2)
—— Ta= 1GeV, m(z)=mg/(1+2)}?
—— 4= 1GeV, m(z) =mo/(1+2)?

10°

10*

10°

10%

Ratio 0ann(2)/00

10t

10°

107

Redshift z

10°
—— Mz=100GeV, 4= 1 GeV

Ma=200 GeV, (4= 1 GeV
—— Ms=200GeV, 4= 10 GeV

-
&3

=1

-
]

—
&

Relative y — rays at z
- -
2L R

-
?

._.
S

15 20 25 30 35 10
Exponent q

00 05 10

FIG. 2. Enhancement of the gamma-ray flux for mass-varying DM masses, where m(a) = mya?. The left panel shows the relative
gamma-ray flux at different redshifts for different values of ¢, while the right panel shows the relative gamma-ray flux as a function of ¢

at redshift z = 1.

to the simple power-law model (See Ref. [26] for details)
Mym =mg(a/ag)? and wg, =—q/3. Here a, is the scale
factor at which mg,, starts to evolve. In Fig. 1, there is no
significant difference in using the different datasets combi-
nations. However, and as previously noted in [33], the
strongest constraints on @y, are around matter-radiation
equality aeq ~3 x 10~ At later times z ~ 1-10, the con-
straints are less stringent and values of @y, ~ —0.15 can be
attained. Notice that all our bounds can be rescaled through
Eq. (21) if only a fraction of DM has m}, (a) # 0. This
leaves more room for specific models where m,,, increases
at low redshift. Finally, it would be interesting to include
more datasets to confirm this conclusion.

IV. GAMMA-RAY FLUXES FROM
MASS-VARYING DM ANNIHILATIONS

In this section, we discuss the impact of DM particle
mass variation on the expected flux of gamma rays from its
annihilation in dense halos. Neglecting the highly model-
dependent effect of mass on the gamma rays produced in a
single annihilation event, the flux of gamma rays from DM
annihilation in a specific DM halo varies with the DM mass
as ¢, ~ m(ag) ™2, where ag = 1+z and z; is the DM halo’s

redshift. However, when considering the signal from a
given direction and summing over halos at all distance
along that line of sight [50], the resulting gamma-ray flux
depends quite sensitively on myy,(a):

_ 2 Q)(pcrlt (1 +Z)3 <O-U>(Z)
Y= a2 / “THE) P
dN ( ) -7 zE
e 22)
where h(z) =[(1+2)°Q, + QY% E,=(1+2)E,

the optical depth, and f(z) a boost factor associated to
the “lumpiness” of the DM density distribution [51,52].
Notice that the pair annihilation rate can inherit a redshift

dependence from the dependence on redshift of mgy(z).
For concreteness, we consider a cross section correspond-
ing to a fermionic DM candidate pair-annihilating to a
fermion-antifermion pair via a pseudoscalar mediator
of mass M, and width I'y; the cross section at low
velocity depends on the DM mass mgyp, (z) via the following
scaling:

(M3 — 4mG, (2)? + TAM3;

631’1[1 (Z) &

Using the density contrast model “Bullock er al”
described in detail in [51] (see the solid line in Fig. 5,
left, of Ref. [51]), and assuming, for simplicity, negligible
effects from the gamma-ray optical depth (corresponding to
focusing on low energy photons only) and from the
variation of the photon number produced by annihilation
at different masses, we find the results shown in Fig. 2 for
the relative gamma-ray flux for a mass-varying mgy(z)
versus the constant mgy, (z) = m(0) case, for three different
choices of the redshift dependence ¢, where mgy,(z) =
mgy/(1 + z)9. The left panel shows the redshift-dependent
relative ratio of the mass-varying to constant mass photon
flux, for ¢ = 0.5, 1 and 2; the right panel shows the
resulting enhancement (and in some cases suppression, due
to the proximity of the on-shell condition for resonant
annihilation) to the photon flux, for m, = 100 GeV and
'y =1 GeV (blue line), my =200 GeV andI'y =1 GeV
(orange line) and m, = 100 GeV and T’y = 10 GeV
(green line).

V. SUMMARY AND CONCLUSIONS

We generalized the Tremaine-Gunn limit on the mass
of fermionic dark matter particles to mass-varying dark
matter candidates. Assuming persistent kinetic equilibrium,
and chemical decoupling as hot or cold relics, the latter
being required if the particle under consideration consti-
tutes a significant fraction of cosmological dark matter,

103535-5
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we showed that phase-space considerations force the mass
to be a growing function of time/scale factor (or equiv-
alently, in turn, a decreasing function of the universe’s
temperature). We showed that this is consistent with the
second principle of thermodynamics as applied to the
growing entropy in dark matter halos with time. We showed
that the effective dark matter equation of state resulting
from a mass-increasing dark matter candidate can be
constrained with observations. Finally, we showed that a
generic expectation of a consistent mass-varying dark
matter scenario is an increase of indirect dark matter

detection rates resulting from dark matter annihilation at all
redshifts.
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