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Temporal Metric Spaces in Radiative Transfer Theory

V. Local Temporal Diameters

Rudolph W. Preisendorfer

Scripps Institution of Oceanography, University of California

La Jolla, California
INTRODUCTION

In this paper, the last of the present series on temporal metric

spaces, we conclude our study of temporal diameters begun in paper IV
with a detailed look at their local counterparts: the local temporal
diameters. The temporal diameters describe the time required for a
transient n-ary light field to come to steady state throughout a bounded
medium. This time was found to depend, among other things, on the
location of the source /1%’ within the medium. In this paper we con-
sider, in addition to /z¥: , a receiving point /Q%k , and inguire: for
a given /2%' and & given fQ%# , at what time will the n-ary radiance
field attain steady state at /f#-? Apparently this time depends on the
location of not only /Qak , but also that of/éZ*#-, and to point up

»x
this fact, we will designate the n-ary local temporal diameter by 7;?72,/2 J.

The main emphasis here as in all the preceding papers of this series,
is on the study of the time-dependent radiant flux problem with the

emphasis on basic knowledge rather than immediate applications.
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As in paper 1V, the present geometric setting is an arbitrary closed
bounded optically convix subset @ of E?; X = with respect to a
temporal metric ‘f . But as promised in IV, we will also briefly con-
sidor the problem of defining temporal diameters of unbounded carrier

spaces. At the conclusion of this paper we will have fulfilled the

program of investigation outlined in peper I.
LOCAL n-~AKY TEIPOHAL DIAMETER

We continue to use the not~tion established in paper IV, Specifically,
we now considcr the subset 5:\—1 of S,_, which consists of all points
of G, , whose ith and (i*l)th coordinates are adjacent in Px P .

That is, O/

n-i

of (n-1)-tuples: {(ﬁ")ﬁ’) ) (ﬂz,ﬂ;)’, ) (ﬂ"": /4”)501‘ points of éﬁé y

is the collection of all of the following special kind

#
Definition 1, Let ,Q* be a local source in @ , and ﬁ/ an arbitrary

point of @ (the general obscrvation point). Then the local n-ary

temporal diameter _I:(p.’lfp#) of 5 with respect to /e* and /Q#

is defined for each N =/ as:

n-1

Ta ﬂ*; /L#) = e {LZ(/"-,‘; A1) +Z<’=‘ / Zc(ﬂJ‘//a'J"") (1)
/
" -+ f(ﬂﬂ,ﬂ#)}

.

It is evident that 7/;(/4 i;‘l#/ gives the least local epoch time

(relative to ,o,* ) at which /Q# is receiving n-ary scattered radiant

flux from all points of % .
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If one were to stand at ,2 and wait for n-ary scattered radiance

from ﬂ* > the first burst would be carried by the flux traveling along

the natural path from /aAk to ,a# . Then as time progressed, other

points off the natural path would be contributing n-ary scattered flux

to ,a,# . Morc rrecisely, the subregion of é that is actively

contributing n—ary scattered flux to /2# at local epoch time T ”(/4#7
g(/d ,6 T#’[/L#/) --the characteristic ellipsoid of the source-

7).

recciver pair (/é

~

If, for example, /27t were the fundamental source, and emitted
radiant flux steadily, then ilhe primary scattered flux ot /Q # would
build up until 7-«//4#/_::—4(/4%’ #'+7-(ﬂ #/. For 7,2* (/eﬁl/
greater than this value, the primary radiation field would be in the steady
state with respect to thc source /@% . This would mean, geometrically,
that the characteristic ellipsoid of the point pair (ﬁ -T/Z #/ would

contain é as a proper subset for such times T ""(/2'#/ that excecd

~2e* 1)+ T e K %)

For the same reasons as those uscd in the discussion of T g_é) and
=X
ﬁ{ﬁ,) (namely continuity of f on fﬂ § ) we may represent

Tiet /4#) by a finite sum of the kind:

Treple?) = e ,4#/—’-2 LR ) # Lo, 2

This observation forms the basis for the following theorem:



SIO Ref: 59-18 - 4L -

*
Theorem 1. For all ﬂ#g E and any fixed local source ,)Q & % .
TN )= Tcr™) n=ti2, 0

Proof: Using the finite sum representations of 7;//1 %‘) and

Z/ﬂtﬂ#) , we havc:
To (X)) =2 (R TR+ i+ Hpn ene),
Tn(pT 1) = tepF )+ < Lirh, 2F) (2)

But /. (p *)  is the meximum of a sct of sums which includes (2) as

a special casc, hence the theorem follows.
Corollary 1: /7, (ﬂ*/ = LUR f%—/ﬁ)érﬁ#} 2L Egj

Corollary 2: By Theorcem 3, paper IV, and the preceding Theorem, we have
N2 4 L T 5

Tk 2 ¥ dmype*) + (1+2) T8 so that 7;/,475/4#/ is bounded

for all /Q* , /Q# and 1=/ .

The preceding corollariis give explicit upper bounds on /ﬁ //Z )
In particular, Corollary 1 states that 7,_,/% ) is never less than
a (}Q#(//Z #) , and is generally appreccicbly greater than 7/, {/2 ,é#/

However, ther: is an obvious upper limit to the difference between

Tn(2¥) g Tnre® %) wnich is given by
# )/

2 #
Theorem 2. 7/-1-(,4. ) cannot cxceed 7;//%,«’ / by more than 7(£Z /

for all n and all ,ﬁx in £ s i.C., 7"-64 */ é%/,é‘fﬂ""/ +7¢B)
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Proof: Representing Tn(ﬁ*) as a finite sum:
To(e™ )= N+ o+t (g r 0,
we can use part of this representation, namely
Lg% goie o Ao 20)

#
as a typical sum occurring in the definition of Tn (,4-7‘(, ~ ) . That

is, let
! g H# L ¢ {( /Zh3j+£(/zh,/l#)
Toc @ p®) = [H@T ey~ weten, ,
Then

TN o T (5 et = 4 (e 2™ =T(E),

But ‘T;\((fk\ 23 #3 is the supremum of all such values as T,,;(,é:‘jﬂ#}
Hence the desired inequality follows by taking the supremum of each side
of the preceding inequality over E;é-, .

In analogy to Thedrem 4 of paper IV, we have

~k
Theorem 3. If ‘n‘(ﬁ } ﬂﬂ&) is the local n-ary temporal diameter of

@ for the point pair {,Q:g) /Q:# ), then

——

“  #
)Imn_)w I"(@n’ﬂ ) = T(<P)

J
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= #
for all A . 2 € -&5 .
[ 4

/

Proof: The method of proof follows closely that used to establish Theorem

4 of paper IV, and thecrefore need not be given here.

Also, in analogy to Theorem 5, papcr IV, we have the corresponding

result for Ip (ﬂ*) /2:#)

Theorem 4. The sequence ZS é(ﬂ"'“J/Z”)} of summands in the finite sum

T ¥ pF#*
representation of [n (P, ~ ) converges to 77-@_/ for all given

=%
_J , and /2# .

[ 4

Proof: Tollows the proof of Theorem 5, paper IV. Observe that the

summand Z{(IQ"J IQ#) is excepted, since the path associated with this
#

extremal time is constraincd to have an endpoint at the fixed point ﬂ .

The following simplc but useful theorcm locates those points of éﬁ

used in the finite sum reprcsentation of 7;/,843/62#/ :

Theorem 5. For spaces é of constant index of refraction, the points

,Q/,m,r/z 7 in the finite sum representation of 7;//4#(; /Z #/ (and

hence of 7;(/2‘4‘/] ) all lie on the boundary of ,52— .

Proof: Because of the hypothesized constancy of the index of refraction,
the proof reduces to a simple exercise in analytic geometry, and will be

omitted here.
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Examples of Local n-ary Diameters

Example 1. Let @ be a spheroid of diameter /D (in the usual metric),
and let the index of refraction be a constant on é , (Figure 1).

Let /2# be at a distance /,, from the fundamental source ﬂo located
at the center of é' . To calculate T//éo//e#) we use Theorem 5

to restrict attention to the boundary of § . To locate the position
of /4, on the boundary we imagine it in motion on the boundary of é
and then observe that O/(K/“é‘#/ can increase as ﬁ/ approaches the
diameter of é defined by 2o and ﬂ#. Q//ﬂ,//é#/ attains a
maximum when ﬁ/ is on the endpoint of the diameter farthest from /Q#

(i.e., such that ﬂa is in the segment defined by /Q/ and /é’#). Hence

it follows that

TtRe,p¥) = (For+ D))V,

where 2~ is the speed of light in E .

To compute 72_{/20//2'#) we once again use Theorem 5 to initially
locate /2/ and /:_ on the boundary of é (Figure 2). We see that,
by holding /4/ fixed, O/(///,Zz) is a maximum if the natural path
P(p,f:]  is coincident with a diameter of _@f . The remaining path
/7(/2”2#/ has its length maximized by requiring /O/,éz,,é#/ to be in

the diameter of ég determined by ﬂo and 2 # such that /Lo is
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in P(ﬂa/,é# Thus,
To Cpop?) = (Fo+20)/7"

In a similar menner, it is easy to show that

T 2o o %) = (Fo+ 0 O) V.

For this special space, we see that
T lpo, g ®) =T (po,p?) = (<=1 ) TCE )

wherc 77{/=D/2/—

From the particular representation of _/:,—/ﬁ 0,2 #/ above, we

may illustrate the general contents of Theorems 3 and 4. Specifically,

/ — )
AU?’n.—-aJ /n (/¢i9/27¢) (//“a i é%;’ — 177<é5/

= Iy sa LNV

and

Z{(ofﬁ—/)/gh) = ;r?:é;) , n =2 .

Example 2. Let @ be a rectangular parallclepiped of diameter D (in
the usual metric) and with constent index of refraction (Figure 3). Let

the fundamental source ﬁo be at the center of E . Let /77) be the
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meximum distance from g2 to the eight vertices of f . Then it is

easy to see that

‘rg(@o)ﬂ-#): [Pm+(£]é__—_ll]/’lf> Nn=l,

and that

Ti(o, p#) =T (po,e®) = (i~4) TCE),

where T(§)=D/2}' .

Again, we have particuler examples of Theorems 3 and 4:

#

Tn(Re R b (20-1D] =
im AT S N AN LA = T (

and

Lo, 2n] = T(E), =2 .

In addition, the preceding examples serve also to give simple illustrations
of the corollary to Theorem AL, paper IV, which dcals with the bounds on
03
the difference M’ — T¢&) . The same corollary has obvious
n

extensions to T, (ﬂ*, : #) .
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TIME CONSTANTS FOR UNBOUNDED SPACES

General Remarks

The various temporal diameters [ () ,—]T,,(p_:r) , and 7:.(@7){/4#)
studied so far all become infinite in unbounded spaces. From an operational
point of view this means that cxperiments conducted with ideal instruments
in such spaces would reveal that no true steady state is ever attained.
Specifically, the instruments would record a continuous build-up or decay
of radiance over all time: the light ficld would approach but never

actually attain an extreme value such as a maximum or minimum.

In reality, it is impossible to have infinite spaces, ideal instru-
ments, and continuous evolution of the light field to cxtreme values., Of
these three idealizations, the most impractical--for thc purposes of
radietive transfer studies in recal mcdia--is the ideal instrument. While
there are supportable objections to the infinite-space and continuous-
light idealizations, thesc objections carry less weight than those

directed at ideal instruments.

Each real flux-measuring instrument has a certain absolute threshold
of sensitivity. If the amount of radiant flux impinging on its light-
sensitive element is below this threshold, the instrument will record that
no flux is incident on it. More generally, at each level P of incident
irradiation, the instrument has a threshold Sp(P) of sensitivity to
chenge in the level of irradiation. Below this level it can no longer

sense the relative change in the amount of incident radiant flux.
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Thus, if an amount P > O of flux is incident on the instrument!s
receptor, and the amount is changed to P/:‘- P+AP , then if the
absolute magnitude of the relative change ‘A P/P! is less than So(P),
the instrument will say that (@= P/ . The sensitivity threshold <, (pP)

generally depends on [ . A good instrument is defined here as one for

|
which S, is independent of P , and such that Go < 55.

In this section we briefly consider the problems of defining the
counterparts to the local temporal diametcr [p (;2*/ ﬂ#) and the temporal
diameter J( @") in an unbounded space. The definition will be made with
the aid of a good instrument whose absolute threshold radiance sensitivity
is Np and whose relative threshold(radiance) sensitivity is S for a
given wavelength. To keep the discussion free of irrelevant complexities
we will assume that the location space of é is Eg ~-infinite
euclidean three-space. Furthermore, é will have a constant index of
refraction n’ a constant volume attenuation function o , but a volume
scattering function whose angular dependence is arbitrary. Generalizations
of the following results to other types of infinite spaces (half-spaces,

slabs, etc.), more general source conditions, and attenuation conditions

offer no essential obstacles, but will not be considered here.
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Formulation of thc n-ary Time Constant Problem

Suppose a fundamental source at ,Qo in gE is turned on at epoch
time = O, and radietes energy at a2 uniform rate for all subsequent
#
time. Suppose further that a radiance meter is located at /_ in §
2 distance of= C/(p b,/z#J from Ao and that the meter cen detect
and record the n-ary radiancc N "(914{)’7‘) in each direction (@, #)
(with respect to some refererce frame) at each epoch time [ over a
certain interval of time., If the steady statc n-ary radiance distribution
at Id# is designated by [Jn(QJ ¢, w} , let s’ e, &, 7) be defined as
N n —_—
N"(e, o) —N"(8,4,T)

%n(e)‘?{‘)-r) = n «
N"(e, ¢, )

Then in general g”(ejé,‘r) — @ monotonically as | ~—=> &2 for

all (8,¢J and N =/ . Therefore, for each (9)<ﬁJ and each r)?,_/ s

there is a unique time [,  such that

%n(91¢177‘) = So

Our problem is to determine Th . This time 7; clcarly depends on

(GJgé) in addition to d .

We can simplify the present problem of determining 7,  and mke
its results more amenable to practical applications by redefining 7; S0
that it does not depend on (8,¢) . In order to free [/, of its

(9}(}5) --dependence we agree to consider only the maximum value of
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Nn( 9.)‘751 T ) over the unit sphere = at time "] . Let us

designate this maximum by N "(T) . N "(T) exists because

Nn('; %) T} is generally a continuous function on the closed subset

= of E_3 . _T;, now depends only on the separation d between
RN

fo md 27 . The function S"(8,@ T) now takes the following

form:

N o) =N (T

SnT) = . )
N “(e0)
and 'T,I (CJ\ is defined as the solution of the equation
§°(T) = S . (3)

We shall refer to Tn (d) as the time constant for n-ary radiance in

é with respcct to Lo /2 # , and the instrument whose relative
threshold is Do . Tn (d) is the unbounded-space counterpart to the
local n-ary temporal diameter Tn(po, g*) considered above. Becausc
of the way in which _T;\ (d) is defined and the type of space with which
it is associated we expect its propertics to have only a superficial

resemblance to those of |n (ﬂv)ﬂ#) .
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Derivation of the Formula for the n-ary Time Constant

In order to obtain an explicit formula for —T,-n(d} we must solve

the functional equation (3). which may be rewritten as:

N"¢T) (4)

Now, the recsults of an earlier work provide the basis for an explicit
approximation of N “(T)/n"(w) for all ;y=| and all T wunder

the same conditions as those of the present problem.2 This expression is:

g ]
Wn(-(—)/,:}'“(m) _____[l_ex'p;—o\f‘('i’)}] h) (5)

(n=1)

where

Ty = (vT+d)/e, (6)

is simply the distance from ﬂ to the far end of the major diameter
of the characteristic ellipsoid 8(,00),2:#5 7) (see paper III.).
Replacing N (T) /N"(Co\ by its equivalent, (5), and then solving

(4) for 7T , we have

N 1 d
To(d)y= — 2T« In !-/\} |~ So ]———7;-(7)
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The expression 7—0( = l/'U"OK is the time constant for reduced

flux (scattering order N= ¢ ) in @ , and, of course,

‘E(Po'ﬁ'#)’—‘ d(po, %) /v = d/r

where Y is the speed of light in § .

Observations on |n (d)

(a). Equation (7) is applicable as long as N(T) exceeds No the
absolute threshold radiance of the instrument. According to (5),

N"(m] >N"(T) , so that if [—\I_"(O)) > No , Equation (7) can
generally yield a positive, finite value for T;\(C“ . But, according

to the results of referecnce 2, the order of magnitude of ﬁ"(w) is

-[\-Jo U)on , wherc N‘o is the maximum inherent radiance of the source,
and o= A/KX < | , where 4 is the volume total scattering coefficient.
It follows that there is generally an integer M such that for all

n> M, Nn(a,) < No - For these values of f] , the instrument
will not detect N"{E)J 9, T) for any T and (9, ¢5) , and Equation (7)

will not apply.

(b). For a given d , Th(d)—> a0 monotonically as N> . This

property agrees qualitatively with the conclusion of Theorem 3. However,
#) . The

latter eventually increases linearly with ) , while [n/( d ) eventually

Tn (c’) goes to 00 at a much slower rate than T,,(,Qa,/a

increases logarithmically with ) .
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(c). For very large )C(ﬁa) ﬁﬁ‘) (or, equivalently, large

d= d(ﬂu, (2&) ) and relatively small [, (optically dense media)
it is possible for _ﬂ\(d) to be negative for many of the smaller
scattering orders. This indicates that, for sufficiently small Do,
the instrument at ﬂ# can sense only highly diffuse light from the

source /Qo —--subject to the conditions of Observation (a).

(d). According to (a), (b) and (c) above, there will generally be, for
a given medium, source, and d , only a finite number of 7o (0’/ R
A=y, Np , for which 7/—1/0// is finite and non-negative,
indicating that the scattering orders /2= /77, (0, , Ap are the

7

"
only ones detectable for the given conditions. For good instruments (7)

may be approximated by

o
Tr(d) 2= — 2 7w /n[%‘]‘?

Derivation of the Formula for the Basic Time Constant

In formulating a definition of the time constant associated with
n-ary radiance we managed to find an unbounded-space counterpart to
Tn //i-s'k, YA #) . We now introduce a concept which has no counterpart
in the bounded-space theory of temporal diameters as developed so far,
though we could, if requircd, easily find a suitable candidate for the

part in thet theory. This concept is the basic time constant 7/0//
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for @ , and is defined as follows. Let

_— NI N (T
S(T) = '\“0‘1 NCT) ,
N (00)

where

}

~ .
N(T) Z:“-,—_ONJ(T)'

Then T(d] is defined as the solution of the equation

§(T) = Do . (8)

Since §(T) monotonically decreases toward zero as | —>CO
there will generally exist for every So> O a unique time T(d)
satisfying (8). For epoch time T > T(d) , the instrument will
sense no further temporal change in the radiance distribution about /é# .

With respect to such an instrument, the light field will be in steady

state at ﬂ,:# for all T = T(C’) .

Now, according to the results of reference 2, the ratio

'N'( T)/ N(a)) may be approximated by the expression:

| — wo
N(T)/ N(w) = > (9)
N /N ) | — ou‘,[l—c:c,a{——a(@(?’)}]
where F(T) is defined in (6) above, and Wo =A/X = | is the

albedo for single scattering already encountered in Observation (a) above.
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With this expression for T\)-(T)/U(a)) , Equation (8) is readily
solved. The solution is:

So (I—wWo)
woll— So)

d
Td) = — 2T« In = (10

Observe how T(d) depends jointly on (vo and So. If, for
example, &, is small, T(Gl) is large. If on the other hand We
were small, then '1—(61) would be small., FEach of these features are
quite what one would expect of —TTC/) . Further observations can be

made on 'T(c” . They would for the most part parallel those of

Ta (d) above.

It is of interest to observe that, while the concepts of the n-ary
diameters for bounded spaces could not be carried over into the unbounded

context, the methods developed here for the various time constants

'T;, (d\ and T(d) can be applied, mutatis mutandis, to the bounded
context. We shall not, however, pursue this interesting problem of time
constants in general any further for the present, for we have already
accumulated sufficient evidence of the power and scope of the n-ary

scattering approach.

Thus we conclude a brief study of the theoretical and practical
possibilities inherent in the n-ary approach to the time-dependent multiple

scattering problem.
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