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Temporal Metric Spaces in Radiative Transfer Theory 

V. Local Temporal Diameters 

Rudolph W. Preisendorfer 

Scripps Institution of Oceanography, University of California 

La Jolla, California 

INTRODUCTION 

In this paper, the last of the present series on temporal metric 

spaces, we conclude our study of temporal diameters begun in paper IV 

with a detailed look at their local counterparts: the local temporal 

diameters. The temporal diameters describe the time required for a 

transient n-ary light field to come to steady state throughout a bounded 

medium. This time was found to depend, among other things, on the 

>t 

locat ion of the source f3- within the medium. In t h i s paper we con-

s ider , in addition to A , a receiving point ft , and inquire : for 

a given ft and a given ft , at what time wi l l the n-ary radiance 

f ie ld a t t a in steady s t a t e at ft ? Apparently t h i s time depends on the 
vi. -al­

location of not only /Z , but also tha t of x2- , and to point up 
t h i s fac t , we w i l l designate the n-ary local temporal diameter by Trifftj/2' ' 

The main emphasis here as in a l l the preceding papers of t h i s s e r i e s , 

i s on the study of the time-dependent radiant flux problem with the 

emphasis on basic knowledge rather than immediate appl ica t ions . 
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As i n paper IV, the p re sen t geometric s e t t i n g i s an a r b i t r a r y c losed 

bounded o p t i c a l l y convex subset dp of f , X "='_ wi th r e spec t to a 

temporal me t r i c x . But as promised in IV, we w i l l a l so b r i e f l y con­

s i d e r t h e problem of de f in ing temporal d iameters of unbounded c a r r i e r 

spaces . At the conclus ion of t h i s paper we w i l l have f u l f i l l e d the 

program of i n v e s t i g a t i o n o u t l i n e d i n prper I . 

LOCAL n-ARY TEMPORAL DIAMETER 

We cont inue to use the n o t a t i o n e s t a b l i s h e d i n paper IV. S p e c i f i c a l l y , 

we now cons ide r the subset S n - i °f 5 n _ , which c o n s i s t s of a l l p o i n t s 

° f Sn_i whose i t h and ( i + l ) t h coo rd ina t e s a re ad jacent in cp K <£> 

That i s , 'c* , i s t h e c o l l e c t i o n of a l l of the fol lowing s p e c i a l kind 

of ( n - 1 ) - t u p l e s : j( /*i , /*,) , (h>Pi)}...} ( / In- . , /^)\of p o i n t s o f $ * & • 

Definition 1. Let p. be a local source in cp , and /2- an arbitrary 

point of 93 (the general observation point). Then the local n-ary 

temporal diameter ~f^/£* «2^J of <5> with respect to ft and ft 

is defined for each 0 ~^- I as: 

To ( A t*) « ^-^ \^^>^ + ̂ i-'*(^»^l) (1) 

It is evident that Ip (ft ]ft ) gives the least local epoch time 

(relative to n, ) at which ft. is receiving n-ary scattered radiant 

flux from all points of cp 
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# 
If one were to stand at ft and wait for n-ary scattered radiance 

from ft , the l i rs t burst would be carried by the flux traveling along 

the natural path from ft to ft Then as time progressed, other 

points off the natural path would be contributing n-ary scattered flux 

to ft . More precisely, the subrcgion of Cjp that is actively 
IJ. 

contributing n-ary scattered flux to 4. at local epoch time TZ+Y/^^J 

is C (fl. j ft } 7Zi'(ft•)/ —the characteristic ellipsoid of the source-

receiver pair (ft j ft ) • 

If, for example, £ were the fundamental source, and emitted 

radiant flux steadily, then the primary scattered flux at /2. would 

build up u n t i l T^ft^j^^ftft^ft*} + T(/2 */e*J. For Tp+ (/**' 

greater than this value, the primary radiation field would be in the steady 

state with respect to the source ftL . This would mean, geometrically, 

that the characteristic ellipsoid of the point pair (ft } ft ) would 

contain <2> as a proper subset for such times 7a.* (fi- ' that exceed 

-*</•*,**)i-Tfa*,ft*) • 

For the same reasons as those used in the discussion of ~l~t$>) and 

~V> [CL J (namely continuity of •£ on 3?* £> ) we may represent 

~T~/jn^ fi. ) b y a finite sum of the kind: 

This observation forms the basis for the following theorem: 
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Theorem 1 . For a l l ft E i and any f ixed l o c a l source ftL g j 

!Z(A*,A*J^ K(A*) , /i=hZj^ . 

Proof: Using t h e f i n i t e sum r e p r e s e n t a t i o n s of ~T/> (ft "J and 

~fc(ft*,A?) > we have : 

~U (ft*) = £ (£*P") + '" 1- +(£" ,ftn+,) , 

Tn(/L*,A-*)~ i(ftfftf)--- t(fi'*t**) . (2) 

But ~77> (ft / i s the maximum of a s e t of sums which inc ludes (2) as 

a s p e c i a l ca se , hence the theorem fo l lows . 

Corollary 1: TP (ft* )•=* ^."A f %(£*,£* ) './**£] 

Coro l l a ry 2 : By Theorem 3, p-"per IV, and the p r ec td ing Theorem, we have 

Z(/L*ft*)^ 4„/A*J -*-("^)Ttil so that 7i (ft* A*) i s bounded 

for a l l ft* , ft^ and 0^ / . 

The preceding c o r o l l a r i e s give e x p l i c i t upper bounds on ~T^}(ft') ft ) 

In p a r t i c u l a r , Coro l la ry 1 s t a t e s t h a t fa (^. ) i s never l e s s than 

In (fl;ft J , and i s g e n e r a l l y apprec ieb ly g r e a t e r than ~Tn (ft ft. ) 

However, t h e r e i s an obvious upper l i m i t to t h e d i f f e r ence between 

7/7 (ft J ^ d 7r>(fljft) which i s given by 

Theorem 2 . m (ft / cannot exceed 7 / ^ 1 ft J by more than T^S J 

for a l l n and a l l fi* in § . i . e . . 7 (ft *) ^7> {ft* ft*) -j-T(&) 

l 
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Proof: Represent ing | n / o " J as a f i n i t e sum: 

Tn [fi*) = £ (£^ ft') -r- ••' •+- -L ( £», (2. ^ , ) ? 

we can use p a r t of t h i s r e p r e s e n t a t i o n , namely 

T-({ , fit) + " ' •+• "C (£r>-«. £ " 0 

as a t y p i c a l sum occur r ing in t h e d e f i n i t i o n of In (ft f ft ) . That 

i s , l e t 

# > 
x ; ^ i * / ) = [i^^^o.^c^^^-ij + ic^"^ >. 

Then 

But "Tn(f^^ /-i ) i s t h e supremum of a l l such va lues as ~l~n (j£'} ftS J. 

Hence the d e s i r e d i n e q u a l i t y fol lows by tak ing the supremum of each s ide 

of the preceding i n e q u a l i t y over S ^ . / • 

In analogy to Theorem 4 of paper IV, we have 

Theorem 3. If *n((L ) ft ) ±s the local n-ary temporal diameter of 

g? for the point pair (ft > fi^ ) , then 
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for al l P. . & £ Q. P- V 
Proof: The method of proof follows closely that used to establish Theorem 

4 of paper IV, and therefore need not be given here. 

Also, in analogy to Theorem 5* paper IV, we have the corresponding 

result for Tn ( (L*} ft ^ ) : 

Theorem 4. The sequence { £ (F-f\-<} ftn } j pf summands in the finite sum 

representation of \* (r > r- ) converges to ~T~(2?) for al l given 

fl. , and ^ . 

Proof: Follows the proof of Theorem 5, paper IV. Observe that the 

summand L.(fi.n ft ) is excepted, since the path associated with this 
M. 

extremal time is constrained to have an endpoint at the fixed point ft? 

The following simple but useful theorem locates those points of cp 

used in the finite sum representation of ln (ft jft J ' 

Theorem 5. For spaces *5? of constant index of refraction, the points 

Aij"'jft'? in the finite sum representation of >» (A iA / (and 

hence of //i (ft } ) a l l l ie on the boundary of 3^ 

Proof: Because of the hypothesized constancy of the index of refraction, 

the proof reduces to a simple exercise in analytic geometry, and will be 

omitted here. 
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Examples of Local n-ary Diameters 

Example 1. Let Cp be a spheroid of diameter £) (in the usual metr ic) , 

and l e t the index of refraction be a constant on <£> , (Figure l ) . 

Let ft be at a distance ra from the fundamental source /2-0 located 

at the center of 2 ? . To calculate ~7(A*>ft ) w e u s e Theorem 5 

to r e s t r i c t a t tent ion to the boundary of j ^ . To locate the posit ion 

of $./ on the boundary we imagine i t in motion on the boundary of y? 

and then observe that C*((2^ft^] can increase as (2/ approaches the 

diameter of ££? defined by ftl o and ft^ . (^/(ft^ft^J a t t a in s a 

maximum when Ki i s on the endpoint of the diameter fa r thes t from ftl ** 

( i . e . , such tha t &o i s in the segment defined by (3/ and & ) . Hence 

i t follows tha t 

T(ft0lA^)= (Ao+£>)M ; 

where IT i s the speed of l igh t in £? 

To compute Jz (A °j A ^ w e o n c e a g a in use Theorem 5 to i n i t i a l l y 

locate ft/ and £i on the boundary of _$P (Figure 2 ) . We see t ha t , 

by holding (2./ fixed, C/(/ /,fti) i s a maximum i f the natural path 

f(/2ij(?i} i s coincident with a diameter of <gj . The remaining path 

/(fajft*^) has i t s length maximized by requiring A(A*iA J to be in 

the diameter of 5 ? determined by /2o and A such that /^o i s 
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in P(ft*)(2
i* . Thus, 

In a s imilar manner, i t i s easy to show that 

For t h i s special space, we see that 

7: (fiolfi. #J - ~7](/u,/* *J - ^'-j'J 77$), 
where 7 7 . ^ 7 = £>/2/"~. 

From the particular representation of In (A °/A I aDOve> w e 

may illustrate the general contents of Theorems 3 and 4. Specifically, 

and 

icftfi-^fa) = Td) t nsz * 

Example 2. Let ^ be a rectangular parallelepiped of diameter O ( in 

the usual metric) and with constant index of refraction (Figure 3 ) . Let 

the fundamental source (I t> be at the center of C£ . Let / ^ , be the 
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maximum distance from ft to the eight ver t i ces of Cp . Then i t i s 

easy to see that 

T (*,,,**) = [ » + (22^4 ] / * - , o=i 

and tha t 

T ^ ^ / ^ - ^ A / ) - U-j)Tc£), 

where 7(£}=D/ir . 

Again, we have particular examples of Theorems 3 and 4: 

^^^ m "™/)-»a> |_ nor ^n2T -i J 

n 

and 

{cftn-^ft.} - 7Y^V, /; ̂  . 

In addition, the preceding examples serve also to give simple illustrations 

of the corollary to Theorem 4, paper IV, which deals with the bounds on 

the difference [intfi J _ "J*/ JT) . The same corollary has obvious 

n ~~y 

extensions to "T\ fftff- a TT\ . 
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TIME CONSTANTS FOR UNBOUNDED SPACES 

General Remarks 

The various temporal diameters ~T($j )~Tr\(p- > > and mCf2)/^ ) 

studied so far all become infinite in unbounded spaces. From an operational 

point of view this means that experiments conducted with ideal instruments 

in such spaces would reveal that no true steady state is ever attained. 

Specifically, the instruments would record a continuous build-up or decay 

of radiance over all time: the light field would approach but never 

actually attain an extreme value such as a maximum or minimum. 

In reality, it is impossible to have infinite spaces, ideal instru­

ments, and continuous evolution of the light field to extreme values. Of 

these three idealizations, the most impractical—for the purposes of 

radiative transfer studies in real media—is the ideal instrument. While 

there are supportable objections to the infinite-space and continuous-

light idealizations, these objections carry less weight than those 

directed at ideal instruments. 

Each real flux-measuring instrument has a certain absolute threshold 

of sensitivity. If the amount of radiant flux impinging on its light-

sensitive element is below this threshold, the instrument will record that 

no flux is incident on it. More generally, at each level F* of incident 

irradiation, the instrument has a threshold S 0(P)
 o f sensitivity to 

change in the level of irradiation. Below this level it can no longer 

sense the relative change in the amount of incident radiant flux. 
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Thus, i f an amount p > O of flux i s incident on the instrument 's 

receptor, and the .amount i s changed to p =• P-f A P , then i f the 

absolute magnitude of the r e l a t ive change \AP(PJ i s l e ss than S o ( P j > 

the instrument w i l l say that P= P . The sens i t iv i ty threshold So(P) 

generally depends on P . A good instrument i s defined here as one for 

which S o i s independent of p , and such tha t S o ^ ^O • 

In t h i s section we br ie f ly consider the problems of defining the 

sic ^J-

counterparts to the local temporal diameter "Tn (f- j ft- ) and the temporal 

diameter "77 <3? ) in an unbounded space. The definition will be made with 

the aid of a good instrument whose a.bsolute threshold radiance sensitivity 

is b$o and whose relative threshold (radiance) sensitivity is S o for a 

given wavelength. To keep the discussion free of irrelevant complexities 

we will assume that the location space of y^ is EL^ —infinite 

euclidean three-space. Furthermore, 9? will have a constant index of 

refraction fL a constant volume attenuation function cL , but a volume 

scattering function whose angular dependence is arbitrary. Generalizations 

of the following results to other types of infinite spaces (half-spaces, 

slabs, etc.), more general source conditions, and attenuation conditions 

offer no essential obstacles, but will not be considered here. 
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Formulation of the n-ary Time Constant Problem 

Suppose a fundamental source at D0 in ^ i s turned on at epoch 

time ~T~— O , and radia tes energy at a uniform rate for a l l subsequent 

time. Suppose further that a radiance meter i s located at ftL in ifc: 

a distance cl—d(pb £L ) from A° a^d that the meter can detect 

and record the n-ary radiance (J (Q.^.T)
 i n e a c n d i rect ion (Sj <P) 

(with respect to some reference frame) at each epoch time 7~ over a 

cer ta in in te rva l of time. If the steady s t a t e n-ary radiance d i s t r ibu t ion 

at d. i s designated by fj n(0J ^ w\ , l e t S Y © ; ^ ~ J be defined as 

S'O^T) 
^"(Bj^Oo) 

Then in general S C®i<kj~T') ~*" & monotonically as ~T~*" oD for 

a l l ( 0 j ^ ) and O & l « Therefore, for each (Oj <£>} and each ()^.( , 

there i s a unique time ~7ri such that 

Our problem i s to determine T/> . This time ~fn c lear ly depends on 

(g) <(\ in addition to ci . 

We can simplify the present problem of determining ~Tn and moke 

i t s r e su l t s more amenable to p rac t i ca l applicat ions by redefining 7r> so 

tha t i t does not depend on (Bj<Pl . In order to free 7 o f i t s 

(Q cf)) —dependence we agree to consider only the maximum value of 
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IS/ ( ^ T J "T" ) over the unit sphere _=_ at time ""~j"~ . Let us 

designate t h i s maximum by N CT") . f\j (T") ex i s t s because 

M ("./ "j 7 / i s generally a continuous function on the closed subset 

~ of £ . 3 . T/i now depends only on the separation CL between 

y&0 and ft, . The function S ^ S j 4>) 7~) now takes the following 

form: 

and | n (<J ) i s defined as the solution of the equation 

& n ( T ) - S o , (3) 

We shal l refer to ~T*\ (d) as the time constant for n-ary radiance in 

<3? with respect to ft-o > P- > a°d the instrument whose re la t ive 

threshold i s S o . ~Jn (d) i s t n e unbounded-space counterpart to the 

loca l n-ary temporal diameter ~Trt (/£ o )/2- ) considered above. Because 

of the way in which "]7i Cd) i s defined and the; type of space with which 

i t i s associated we expect i t s proper t ies to have only a superf ic ia l 

resemblance to those of 1~n((2.o)f2i^J • 
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Derivation of the Formula for the n-ary Time Constant 

In order to obtain an expl ic i t formula for ~T^(dj we must solve 

the functional equation (3)- which may be rewri t ten as : 

Now, the resu l t s of an e a r l i e r work provide the bas is for an exp l i c i t 

approximation of fsj n(T)/Un t&) for a l l n 2 l and a l l T~ under 
o 

the same conditions as those of the present problem. This expression i s : 

TTn(T-)/K)7aJ)=[l-^p[-^^r)}] ; (5) 

(nei) 

where 

HT) •= ( v T + d ) ^ , (6) 

i s simply the distance from ft. to the far end of the major diameter 

of the charac te r i s t i c e l l ipso id 8(/2o)ft*$ ~TI (see paper I I I . ) . 

Replacing j\j 7 T ) / N "(CO 1 by i t s equivalent, (5 ) , and then solving 

(4) for ~~f , we have 

- j-

-Tn(d)~ -ZT« InM ~ N 
5!. (7) 



SIO Ref: 59-18 - 15 -

The expression ~P/ == 1/VoC i s the time constant for reduced 

flux ( sca t te r ing order (1 •=• O ) in Cf> , and, of course, 

where if i s the speed of l i gh t in cj? . 

Observations on \n(d) 

( a ) . Equation (7) i s applicable as long as hJ ( T ) exceeds K/o the 

absolute threshold radiance of the instrument. According to (5) , 

N7<*>) > N *LT) } go tha t i f /V Vco) "> M o , Equation (7) can 

generally yie ld a posi t ive , f i n i t e value for lr\ (d ) . But, according 

to the resu l t s of reference 2, the order of magnitude of N (OJ) i s 
—i o ^ — n 

N i^o , where \s} i s the maximum inherent radiance of the source, 

and OJo ~ ^(o^ ^ I , where *4L i s the volume t o t a l sca t ter ing coeff icient . 

I t follows tha t there i s generally an integer M such tha t for a l l 

fl *> IŜ I » N (<X>) <T M o • F o r these values of (1 , the instrument 

w i l l not detect N^(8j 4) T j for any T and (Bj ft) , and Equation (7) 

wi l l not apply. 

(b ) . For a given (jl , ~J~n (J) -> CO monotonically as ft-^OO . This 

property agrees qua l i t a t ive ly with the conclusion of Theorem 3 . However, 

"Trt (o\ goes to CO a t a much slower rate than \n^ftoffiL ) . The 

l a t t e r eventually increases l i nea r ly with D , while ~Xn(a) eventually 

increases logarithmically with f) . 
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( c ) . For very l a r g e U(P.Q (L ) (° r> e q u i v a l e n t l y , l a r g e 

CI = w(^uj/2- ) ) and r e l a t i v e l y small ~ToL ( o p t i c a l l y dense media) 

i t i s p o s s i b l e fo r In id) to be nega t ive for many of t h e smal le r 

s c a t t e r i n g o r d e r s . This i n d i c a t e s t h a t , f o r s u f f i c i e n t l y smal l S ° , 

the ins t rument a t ft can sense only h igh ly d i f fuse l i g h t from t h e 

source (l0 —sub jec t to t h e cond i t i ons of Observat ion ( a ) . 

( d ) . According to ( a ) , (b) and (c) above, t h e r e w i l l g e n e r a l l y be , f o r 

a given medium, source , and ct , only a f i n i t e number of in (& J , 

fi-flit •>• ) /?/> , fo r which ln(dj i s f i n i t e and non-nega t ive , 

i n d i c a t i n g t h a t the s c a t t e r i n g o rde r s D ~ Rt} >" i /?/? a re the 
v u 

only ones d e t e c t a b l e f o r t h e given c o n d i t i o n s . For good ins t rumen t s (7) 

may be approximated by 

-Tn(c/) ~ - ^7oi A L TTJ v 

Derivation of the Formula for the Basic Time Constant 

In formulating a definition of the time constant associated with 

n-ary radiance we managed to find an unbounded-space counterpart to 

In (ft j ft J . We now introduce a concept which has no counterpart 

in the bounded-space theory of temporal diameters as developed so far, 

though wc could, if required, easily find a suitable candidate for the 

part in that theory. This concept is the basic time constant ~J~ (a J 
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for <5? > and i s defined as follows. Let 

where 

SCT) = — 0 

h)LT) = ^7f o N"(r) 

Then "TY^l i s defined as the solution of the equation 

S ( T ) = So . 
(8) 

Since S Cl~) monotonically decreases toward zero as T — ^ OO , 

there w i l l generally exis t for every S o > C ) a unique time 7(d) 

satisfying (8 ) . For epoch time T ^ 7 ~ ^ ) > t n e instrument w i l l 

sense no further temporal change in the radiance d i s t r ibu t ion about ft-

With respect to such an instrument, the l ight f ie ld w i l l be in steady 

s ta te at f ? for a l l T -2=. ~TY ef) . 

Now, according to the resu l t s of reference 2, the r a t i o 

NJ ( T ) / KI(&>) ma^ b e approximated by the expression: 

| — UJa 

s™/*"»> = TTZf^T^^T3 (9) 

where h£T) i s defined in (6) above, and (jJc>~ <4-(oL *£= \ i s the 

albedo for single scat ter ing already encountered in Observation (a) above. 
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With t h i s expression for N ex)/KJ CdO) , Equation (8) i s readi ly 

solved. The solution i s : 

S o (t-cuo) 7 _ d_ 

Coo(\ 

I [" S o (l-CUo) "") _ d_ 
T ( d ] = - a T o c In / 7 - 7 — ^ J ir (10) 

Observe how ~T(d) depends jo in t ly on LVO and S>-o . If, for 

example, £ 0 i s small, 7(d) i s l a rge . I f on the other hand ^ o 

were small, then 7(d) would be small. Each of these features are 

quite what one would expect of ~T~(J J . Further observations can be 

made on ""["(«J • T n e y would for the most par t pa ra l l e l those of 

Trx(d) above« 

I t i s of in te res t to observe t ha t , while the concepts of the n-ary 

diameters for bounded spaces could not be carried over into the unbounded 

context, the methods developed here for the various time constants 

~"[7i (d \ and 7(d) can be applied, mutatis mutandis, to the bounded 

context. We shal l not , however, pursue t h i s in te res t ing problem of time 

constants in general any further for the present, for we have already 

accumulated sufficient evidence of the power and scope of the n-ary 

scat ter ing approach. 

Thus we conclude a br ie f study of the theore t ica l and p rac t i ca l 

p o s s i b i l i t i e s inherent in the n-ary approach to the time-dependent multiple 

scat ter ing problem. 
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