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 Current State of the Art in Solar Forecasting 
 

Jan Kleissl, University of California, San Diego 
 
Abstract:  As solar thermal and photovoltaic generation begin to have a larger role in electrical 
generation in California, the California Independent System Operators needs to accommodate their 
variable nature in its forecasting and dispatching. This project reviews and evaluates current knowledge 
and models for forecasting solar resources and considers options for improving forecasts through RD&D 
and additional measurements.  
Satellite and numerical weather prediction (NWP) have been shown to be the best tools for hour ahead 
and day ahead forecasts at this time. However, NWP solar forecast performance has yet to be evaluated 
for California, where the coastal microclimate especially may present a significant challenge. To validate 
and calibrate such forecasts, an aggregated real-time production database for all metered PV systems is 
deemed to be the most spatially dense and economical set of “measurements.” A research roadmap for 
improving Direct Normal Irradiance forecasts is provided. 
 
Keywords: solar thermal, photovoltaic systems, energy, renewable, forecast, NWP, modeling 

Overview:  As solar thermal and photovoltaic (PV) penetration increases, the California Independent 
System Operators (CAISO) needs to accommodate their variable nature in its forecasting and dispatching.  
This project reviews and evaluates current knowledge and models for forecasting solar resources and 
considers options for improving forecasts through research and measurements. 
 
Summary of recommendations (more detail is provided in section 4.3): 

a) Current Forecast Skills: Satellite and numerical weather prediction (NWP) are currently the 
best tools for hour ahead (HA) and day ahead (DA) forecasts, respectively. Efforts are underway 
by solar forecasters and NOAA to improve mesoscale NWP for the HA market.  

o Further research should be conducted on the forecast skills of the low hanging fruit - 
operational NWP models - for California. The applicability of mesoscale NWP to locally 
enhance forecast skill should also be quantified. This research would enable wind 
forecast providers to adapt their existing products for the solar forecasting market and 
quantify the potential success of such an approach. 

o Support should be provided to CAISO to conduct a 12 months forecast ‘competition’ to 
evaluate forecast skills of forecast providers and maturity of different approaches. Careful 
design of such a study is critical and stakeholders should be consulted in the planning 
stage. 

b) Expanding ground measurements: Ground measurements of global horizontal irradiance (GHI) 
(and direct normal incident irradiance (DNI) for concentrating plants) should be (and currently 
are) required by CAISO for utility scale solar farms. To improve HA and intra-hour forecasts 
statewide, more ground data are necessary. The most economical approach would be to require or 
incentivize 3rd party data providers / aggregators to share PV output and radiometer data in real 
time with the ISO, utilities, and forecast providers. Models should be developed to derive solar 
irradiance values from such ground PV data. The advent of smart meters that can monitor 
residential PV outputs provides an additional avenue to implement this strategy. Also, research on 
sky imager deployments in areas with high PV penetration should be pursued. 

c) DNI Forecasts: Research on radiative transfer in the atmosphere related to direct normal incident 
(DNI) forecasts is necessary. These forecasts should evaluate the effects of cirrus clouds, forest 
fire smoke, dust storms, and urban aerosol air pollution transport on concentrating solar power 
plants in California. 
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1. Solar Forecasting Needs, Market Connection and Stakeholders (Task 1.1) 
This report reviews and evaluates current knowledge and models for forecasting solar 
resources, and recommends ways in which forecasting can be improved. Table S6 lists the 
tasks and corresponding sections in this report. 
 
Table S6: List of tasks for POB248-D76 Task 1. 

Task Section 
1.1. Review the current state of the art in wind and solar 
forecasting in support of California grid operations including a 
review of opaque and transparent commercial models 

Sections 1 and 2. 
Table S2. 

1.2. Summarize and assess sources of real time wind and solar 
data used to calibrate day-ahead and hour-ahead forecasts. 

Section 3.  Table S4. 

1.3. Review data on actual and forecast wind and solar thermal 
plant output ramp rates.  

Section 2.1. and Figs. 
S2a and S2b. Actual 
plant output could not 
be obtained. 

1.4.-1.6: Recommendations for expanded sensor deployment 
and data collection. Recommendations for forecasting at high 
renewable penetration levels. 

Section 4. 

 
Load forecasts have been an integral part of managing electric energy markets and 
infrastructure for many decades. Consequently, experiences, regulations, and planning by 
utilities and independent system operators (ISO) are the dominant consideration for this report. 
Furthermore the rules established by ISOs will impact the economic value of forecasting to other 
stakeholders such as owner-operators. Consequently, in the near-term the primary stakeholder 
to be considered for forecasting needs and plans is the California Independent System 
Operators (CAISO). Secondary stakeholders are utilities who will see greater distributed PV 
penetration on their urban distribution feeders. Currently on a few utilities have mechanisms in 
place to use solar forecasts for local automated response to voltage fluctuations caused by 
solar production.  
 
The market need for better solar power integration and planning tools have been widely 
recognized (e.g. DOE FOA 0085, CEC PON 08-11, CSI RD&D Round 1). CAISO uses the 
following forecasts: The day ahead (DA) forecast is submitted at 0530 prior to the operating day, 
which begins at midnight on the day of submission and covers (on an hourly basis) each of the 
24 hours of that operating day. Therefore, the day ahead forecast is provided 18.5 to 42.5 hours 
prior to the forecasted operating day. The vast majority of conventional generation is scheduled 
in the DA market. The hour ahead (HA) forecast is submitted 105 minutes prior to each 
operating hour. It also provides an advisory forecast for the 7 hours after the operating hour. 
CAISO also is studying in intra-hour forecasts on 5 minute intervals. FERC has issued a Notice 
of Proposed Rulemaking requiring public utility transmission providers to offer all customers the 
opportunity to schedule transmission service every 15 minutes, and requiring providers with 
variable renewables on their systems to use power production forecasting. 
 
Currently, under the CAISO Participating Intermittent Resources Program (PIRP), a 
participating intermittent resource receives special settlement treatment that nets output 
deviations over a month’s period if the resource’s scheduling coordinator submits hour ahead 
forecasts developed by a forecast service provider for that operating hour (de Mello and 
Blatchford, personal communication, 2010). Although the PIRP program does not require them, 
in practice DA forecasts are provided under the same contract. Wind units may participate in DA 
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market however no special settlement treatments apply. Forecasts are integrated in CAISO 
planning, but there is no financial incentive to the forecast providers for accurate forecasts.  
 
At some point PIRP may be modified and renewable generators will be required to participate in 
parts of the regular DA and HA markets. In that case some of the economic benefit and interest 
in forecasting would shift to the owner-operators of renewable power plants which would 
dramatically change the marketplace for renewable forecasting. An example of such a system is 
the Spanish ‘premium tariff’ for the regulation of renewable energy which allows operators of 
power plants to participate directly on the electricity market instead of reverting to flat-rate 
prices. The premium tariff option motivates operators of renewable energy plants to increasingly 
act like managers of conventional plants, selling electricity at the liberalized market. Just like a 
normal market participant, the operator places bids in advance on the DA market and is obliged 
to fulfill them. Thus there is the need for operators of renewable energy plants to be able to 
provide predictable and dispatchable energy in the profitable premium tariff. 
 
Wind forecasting has been important for severe weather events for decades and even wind 
forecasting for renewable energy is a fairly mature field with several major market players. While 
solar radiation forecasting is standard in numerical weather prediction (NWP, the sun’s energy 
is the primary driver of all meteorological processes), the accuracy requirements on solar 
radiation forecasts per se were low and the priority was on forecasting rain and air temperature. 
Consequently there is significant potential for improvements of solar forecasts from NWP. 
 
For solar forecasting different types of solar power systems need to be distinguished (Table S2). 
For solar concentrating systems (concentrating solar thermal or concentrating PV, CPV) the 
direct normal incident irradiance (DNI) must be forecast. Due to non-linear dependence of 
concentrating solar thermal efficiency on DNI and the controllability of power generation through 
thermal energy storage (if available), DNI forecasts are especially important for the 
management and operation of concentrating solar thermal power plants. Without detailed 
knowledge of solar thermal processes and controls, it is difficult for 3rd parties (solar forecast 
providers and CAISO) to independently forecast power plant output. 
 
On the other hand, CPV production is highly correlated to DNI. DNI is impacted by phenomena 
that are very difficult to forecast such as cirrus clouds, wild fires, dust storms, and episodic air 
pollution events which can reduced DNI by up to 30% on otherwise cloud-free days. Water 
vapor, which is also an important determinant of DNI, is typically forecast to a high degree of 
accuracy through existing NWP. Major improvement in aerosol and satellite remote sensing are 
required to improve DNI forecasts. 
 
For non-concentrating systems (i.e. most PV systems), primarily the global irradiance (GI = 
diffuse + DNI) on a tilted surface is required which is less sensitive to errors in DNI since a 
reduction in clear sky DNI usually results in an increase in the diffuse irradiance. Power output 
of PV systems is primarily a function of GHI. For higher accuracy, forecast of PV panel 
temperature are needed to account for the (weak) dependence of solar conversion efficiency on 
PV panel temperature (Table S2). 
 
Table S2: Quantities relevant to solar forecasting. GI: global irradiance. 
Forecast 
Quantity 

Application Primary 
Determinants 

Importance 
to market 

Current 
Forecast Skill 

Global Irradiance  PV Clouds, solar 
geometry 

high medium 

Cell temperature PV GI, air low high 
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temperature, wind 
Direct Normal 
Incident (DNI) 

Concentrating 
Solar Power 

Clouds, aerosols, 
water vapor 

medium Low 

 
 

2. Solar Forecasting Methodologies (Task 1.1) 
2.1. Forecasting Methods  
The purpose of this section is to assess methodologies to forecast solar generation in California, 
to review best practices, and identify available data for validation and calibration of the 
forecasts. 
 
For solar forecasting very different methodologies are preferred depending on the forecast 
horizon (Table S1, Figures S1 and S2d): 

• Persistence forecast is based on current or recent PV power plant or radiometer output 
and extrapolated to account for changing sun angles. Persistence forecasts accuracy 
decrease strongly with forecast duration as cloudiness changes from the current state. 

• Total sky imagery can be used to forecast from real time (nowcast) up to 15-30 minutes. 
by applying image processing and cloud tracking techniques to sky photographs (Fig. 
S1c). The method assumes persistence in the opacity, direction, and velocity of 
movement of the clouds. Irradiance is predicted for the current cloud shadow and then 
the cloud shadow is moved forward in time based on cloud velocity and direction. 

• For satellite imagery (Fig. S1b) the same methods as in total sky imagery are applied. 
Clouds reflect more light from earth into the satellite leading to detection and the ability 
to calculate the amount of light transmitted through the cloud (transmissivity = 1 – 
reflectivity – absorptivity). The lower spatial and temporal resolution causes satellite 
forecasts to be less accurate than sky imagery on intra-hour time scales. Satellite 
imagery is the best forecasting technique in the 1 to 5 hour forecast range. Classical 
satellite methods only use the visible channels (i.e. they only work in day time), which 
makes morning forecasts less accurate due to a lack of time history. To obtain accurate 
morning forecasts, it is important to integrate infra-red channels (which work day and 
night) into the satellite cloud motion forecasts (Perez, et al. 2010). 

• NWP is the best forecasting technique for long time horizons of more than 5 hours. NWP 
models solar radiation as it propagates through the atmosphere including the cloud 
layers represented in the model. Operational National Weather Service models do not 
have the spatial or temporal resolution for accurate HA forecast. Consequently, NWP 
models are probabilistic because they infer local cloud formation (and indirectly 
transmitted radiation) through numerical dynamic modeling of the atmosphere. NWP 
models currently cannot predict the exact position of cloud fields affecting a given solar 
installation (Perez et al. 2009). High-resolution rapid-refresh NWP that are currently 
developed by NOAA and wind forecasters may be able to approach the resolution of 
satellite forecasts (1 km) within a few years and allow the application of high-frequency 
variability techniques (Mark Ahlstrom, Windlogics). 

 
Table S1: Characteristics of solar forecasting techniques. 

Technique Sampling 
rate 

Spatial 
resolution 

Spatial 
extent 

Suitable 
Forecast horizon 

Applicatio
n 

Persistence High One point One Point Minutes Baseline 
Total Sky Imagery 
(Fig. S1c) 

30 sec 10s to 100 
meters 

2-5 mile 
radius 

10s of minutes Short-term 
ramps, 

regulation 
GOES satellite 15 min 1 km US 5 hours Load 
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imagery (Fig. S1b) following 
NAM weather 
model (Fig. S1a) 

1 hour 12 km US 10 days Unit 
commitment 

 

 

 

Figure S1a: Map of the forecast GHI [W m-

2, colorbar] in March 2010 at midday from 
the North American Mesoscale model 
(NAM). 

Figure S1b: Map of the forecast GHI [W 
m-2, colorbar] for San Diego on January 
24, 2009 at 1245 PST using the GOES-
SUNY satellite model. 

  
Figure S1c: Cloud motion vectors (right) and sky image (left) at the UC San Diego 
campus on August 19, 2009 at 1431 PDT. 
 
Statistical methods can be applied to correct for known deficiencies of different forecasting 
methods through corrections for known model biases or automated learning techniques. 
Examples are modeled output statistics (MOS), autoregression techniques, and artificial neural 
network (ANN). For example, MOS uses statistical correlations between observed weather 
elements and climatological data, satellite retrievals, or modeled parameters to obtain localized 
statistical correction functions. This allows, for example, for the enhancement of low-resolution 
data by considering local effects (e.g. topographic shading) or for correcting systematic 
deviations of a numerical model, satellite retrievals, or ground sensors. A disadvantage of 
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statistical methods is the large amount (typically at least one year) and accuracy of 
measurement data needed to develop statistical correlations separately for each location. This 
means that MOS-based forecasts are not immediately available for larger areas or for locations 
without prior measurements, such as most non-urban solar power plants in the California. 
 
2.2. Evaluation of Numerical Weather Prediction Solar Forecasts in California 
For Task 1.3 we conducted an analysis of the intra-day solar forecast skill of the current 
operational NWP model – the North American Mesoscale (NAM) model for February to June 
2010 using California Irrigation Management Information System (CIMIS) GHI measurements. 
NAM provides hourly forecast up to 72 hours ahead on a 12 km grid within the Continental US.  
 
A 24 hour persistence forecast was more accurate forecast in clear sky conditions than in 
overcast conditions (Fig. S2b). This indicates that clear conditions are persistent, but during 
times of transitional weather patterns P is inaccurate. Generally, P is an inaccurate method for 
more than 1 hour ahead forecasting and should be used only as a baseline forecast for 
comparison to more advanced techniques. 
 
The original NAM forecast for GHI consistently over-predicts solar irradiation during clear sky 
situations, but under-predicts GHI for cloudy conditions (Fig. S2c). On average, these bias 
errors can exceed 25%.  The consistent errors in NAM motivate application of a bias correction, 
termed model output statistics (MOS), as a function of solar zenith angle and clear sky index. 
Through the use of MOS, the bias error was eliminated and the root mean square error (RMSE) 
was significantly improved (Fig. S2b). The RMSE for the corrected forecasts ranges from 25% 
under very cloudy conditions to 8% under clear conditions. 
 

 
 

Fig. S2a: Camarillo, CA original NAM 
forecast N and MOS corrected NC 
forecasts compared to CIMIS ground 
data on Feb 13, 2010. Blue: Original 
NAM forecast, dashed blue: bias 
corrected NAM forecast, black: CIMIS 
measurement. The MOS reduces 
forecast error by nearly 200 W m-2 at 
mid day. 

Fig. S2b: Relative root mean square error (y-
axis, normalized by 1000 W m-2) of different 
forecasts as a function of total cloud cover (x-
axis) for February-June 2010 in California. 
Blue solid: original NAM model; blue dashed: 
bias corrected NAM model; red dashed: 
persistence forecast; black: clear sky forecast. 
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Figure S2c: Relative mean bias error [%/100, colorscale] of NAM forecast N as a 
function of solar zenith angle (θ) and forecasted clear sky index (kt*) from February to 
June 2010 compared to CIMIS measurements.   
 

 
Fig. S2d: Root mean square error (RMSE) of different solar forecasting techniques 
obtained over a year at seven SURFRAD ground measurement sites (from Perez et al. 
2010). The red line shows the satellite nowcast for reference, i.e. the satellite ‘forecast’ 
for the time when the satellite image was taken. Cloud motion forecasts derived from 
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satellite (yellow and white lines) perform better than numerical weather prediction 
(NDFD) up to 5 hours ahead. Numerical weather prediction has similar accuracy for 1 
hour to 3 days ahead. 
 
 

2.3. Literature Survey of Forecasting Applications 
2.3.1. Peer-reviewed research 

Table A1 in the appendix provides an overview of studies validating solar forecasting methods. 
The most extensive body of research is from Germany by the groups of Prof. Heinemann at the 
University of Oldenburg and Dr. Schroedter-Homscheidt at the German Aerospace Agency. No 
studies exist that examine forecasts for California, partly because there is no high-quality 
SURFRAD measurement site in California for forecast validation. A comprehensive study of 
forecasts at seven SURFRAD sites in the US (Perez et al. 2010, Fig. S2d) is probably generally 
applicable to most inland areas of California. The coastal California meteorology poses unique 
challenges and forecast models will have to be independently validated there. Generally, 
published results of forecast error have to be examined with care. The forecast error strongly 
depends on the amount and variability of cloudiness, making comparison between studies 
performed in different seasons and climates difficult. Nevertheless, a few general conclusions 
can be drawn from the literature survey: 

a. Surprisingly, significant bias errors (i.e. persistent high or low deviations) exist in NWP 
models. However, these errors could be corrected through MOS. NWP model errors 
should be carefully examined in California. 

b. Only for clear sky conditions can accurate forecasts be obtained with as low as 6% 
RMSE. 

c. For all conditions (cloudy and clear) all forecasts that are compared to ground data have 
RMSEs of at least 20% but as large as 40-80% for cloudy conditions. The main reason 
for these large errors is the difference in spatial scale between a satellite pixel or NWP 
model grid cell and the measurement station. Unless local techniques with a finer 
resolution are employed such as sky imagery, the forecast error will always be large, 
especially for sub-hourly intervals and cloudy conditions. 

d. DNI forecasts are associated with about twice the RMSE than GHI forecasts. 
 
The recommendations for the best solar forecasting approach are well summarized by 
Schroedter-Homscheidt et al. (2009), who propose to use 

• deterministic NWP schemes in the day-ahead market with ensemble prediction 
technologies for GHI. Post-processing of NWP should be used to derive hourly DNI from 
NWP. 

• aerosol optical depth modelling from air quality applications in the day-ahead prediction 
(for DNI). 

• nowcasting of cloud fields and irradiance from satellites. Cloud motion vector forecasting 
including both visible and infrared channels should be used for the 1 to 5 hour forecast 
horizon (satellite-based aerosol added for DNI). 

• ground measurements for intra-hour forecasts. 
 
References: 
Bacher, P., H. Madsen, H. A. Nielsen, Online short-term solar power forecasting, Solar Energy 
83:1772–1783, 2009 
Bofinger, S., G. Heilscher, Solar radiation forecasts based on ECMWF and model output 
statistics. Technical Report ESA/ENVISOLAR, AO/1-4364/03/I-IW, EOEP-EOMD. 
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Breitkreuz, H., M. Schroedter-Homscheidt, T. Holzer-Popp, S. Dech, Short-Range Direct and 
Diffuse Irradiance Forecasts for Solar Energy Applications Based on Aerosol Chemical 
Transport and Numerical Weather Modeling, JAMC, 48:1766, 2009 
Hamill, T.M., T. Nehrkorn, A Short-Term Cloud Forecast Scheme Using Cross Correlations, 
Weather and Forecasting, 8(4):401-411 
Hammer, D. Heinemann, E. Lorenz, B. Luckehe, Short-term forecasting of solar radiation: a 
statistical approach using satellite data, Solar Energy,(67):1–3, pp. 139–150, 1999 
Heinemann, D. E. Lorenz, and M. Girodo, “Forecasting of Solar Radiation,”in Solar Energy 
Resource Management for Electricity Generation from Local Level to Global Scale, E. Dunlop, 
L. Wald, and M. Suri, Eds. Commack, NY: Nova, 2006, pp. 83–94. 
Jensenius, J.S., G.F. Cotton, The development and testing of automated solar energy 
forecasts based on the model output statistics (MOS) technique, Proc. 1st workshop on 
terrestrial solar resource forecasting and on the use of satellites for terrestrial solar resource 
assessment, Newark, 1981, American Solar Energy Society, 1981. 
Lorenz, E., J. Hurka, D. Heinemann, H.-G. Beyer, Irradiance Forecasting for the Power 
Prediction of Grid-Connected Photovoltaic Systems, IEEE J. of Selected Topics in Applied Earth 
Observations and Remote Sensing, (2):1, 2009 
Modica G.D., R. d'Entremont, E. Mlawer, and G. Gustafson, Short-range solar radiation 
forecasts in support of smart-grid technology, American Meteorological Society Conference, 
2010 
Perez, R., K. Moore, S. Wilcox, D. Renne, A. Zelenka, Forecasting solar radiation – Preliminary 
evaluation of an approach based upon the national forecast database, Solar Energy 81:809–
812, 2007 
Perez R., S. Kivalov, A. Zelenka, J. Schlemmer and K. Hemker Jr., Improving The Performance 
of Satellite-to-Irradiance Models using the Satellite’s Infrared Sensors. Proc., ASES Annual 
Conference, Phoenix, Arizona, 2010 
Perez R, S Kivalov, J Schlemmer, K Hemker Jr., D Renne, TE Hoff, Validation of short and 
medium term operational solar radiation forecasts in the US, Solar Energy, in press, 2010. 
Remund, J., R. Perez, E. Lorenz, Comparison of solar radiation forecasts for the USA, 2008 
European PV Conference, Valencia, Spain 
Schroedter-Homscheidt, M., C. Hoyer-Klick, E. Rikos, S. Tselepsis, B. Pulvermüller, 
Nowcasting and forecasting of solar irradiance for energy electricity generation, SolarPACES 
2009 
Wittmann, M., H. Breitkreuz, M. Schroedter-Homscheidt, M. Eck, Case Studies on the Use of 
Solar Irradiance Forecast for Optimized Operation Strategies of Solar Thermal Power Plants, 
IEEE J. of Selected Topics in Applied Earth Observations and Remote Sensing, (1):1, 2008 
 
 

2.3.2. Solar forecast providers 
For this section solar forecast providers were invited to describe their forecasting model, 
quantify forecast accuracy, and comment on research needs. Generally there are two camps of 
solar forecast providers. Especially established wind forecast providers apply techniques 
developed for wind forecasting to solar, which implies running dedicated mesoscale NWP 
together with machine learning (MOS, ANN) techniques to nudge the forecast to a particular 
site. Providers specializing in solar forecasts tend to use (government supplied) NWP data for 
DA forecasts, but use satellite cloud fields for intra-day or HA forecasts. We believe that for HA 
forecasts in the coming 3 years the satellite-based method has the greatest maturity, 
highest spatial resolution, and accuracy. However, as NWP approaches smaller grid 
sizes and NWP and mesoscale models are improved to assimilate satellite data, NWP 
may become superior to satellite-based methods. For DA forecast NWP is and will always 
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be the most promising forecasting method. A review of models from different providers 
follows (in alphabetical order): 
 
3Tier does not provide details on solar forecasting capability on its website, but since it uses 
satellite-based technologies for its solar resource assessment it is likely to possess cloud 
forecasting capability. 3Tier was invited to comment, but has not responded. 
 
AWS Truepower (AWST): “The production of forecasts in the AWST solar forecasting system 
is based on the dynamic weighting of an ensemble of forecasts generated by a combination of 
physics-based (also known as Numerical Weather Prediction (NWP)) models, advanced 
statistical procedures and cloud pattern tracking and extrapolation techniques.   The individual 
members of the ensemble are weighted for each look-ahead time period (e.g. 1–hour, 2-hours 
etc.) according to their relative performance in a relevant sample (e.g. a rolling period prior to 
the forecast time or a set of cases that are similar to the current weather regime).  The 
independent weighting for each look-ahead period allows the system to shift from heavy 
reliance on one method for a particular look-ahead interval to a heavy weighting of another 
method for a subsequent look-ahead interval according to the statistical performance 
characteristics of each method for each look-ahead interval.  Currently, the AWST cloud pattern 
tracking procedure is under development and not yet used as part of the operational ensemble.  
AWST expects this approach to be added to its operational ensemble once development and 
testing is completed shortly. 

The current operational version of the AWST’s solar forecasting system consists of four major 
components. The first is the generation of a set of mesoscale NWP simulations using the 
MASS, WRF and ARPS models. These models are run from several sets of initialization and 
boundary conditions to generate an ensemble of mesoscale NWP forecasts.  Most of the 
simulations employ the standard government-center 6-hour NWP update frequency.  However, 
a small subset are operated in a rapid update cycle mode, which initializes a new simulation 
every 1 or 2 hours using the latest available data including synthetic moisture data inferred from 
cloud patterns in satellite images.  This is intended to improve the short-term NWP prediction of 
cloud patterns and characteristics and is still being refined. 

The second phase of the forecast production process employs statistical models such as 
multiple linear regression, Artificial Neural Networks (ANN) and support vector regression to 
create an ensemble of forecasts of irradiance and other relevant parameters (such as panel 
temperature).  The input into these models includes the output from the NWP simulations, 
recent time series data from the forecast site and off-site locations and in the future the output 
from the cloud pattern tracking schemes.  The statistical models serve to correct system errors 
in the NWP simulations as well as to adjust the NWP forecasts to account for recent trends 
revealed by the on-site or off-site measurement data.  The output is an ensemble of forecasts 
for the site. 

The third major component is the generation of a either a (1) deterministic forecast by 
statistically weighting members of the ensemble according to their performance in a relevant 
training sample or (2) a probabilistic forecast based on quantile regression using information 
about the dispersion of the forecasts in the ensemble and also trained on a relevant training 
sample.  

The fourth component is the transformation of forecasted irradiance and other meteorological 
parameters to power output power output values by using a statistical or physics-based solar 
plant model.  This can be done prior to or after the construction of the ensemble composite (i.e. 
applied to the individual members of the forecast ensemble or the ensemble composite 
predictions of the meteorological parameters).” 



12 
 

Provided by John Zack, AWS Truewind, john@meso.com  
 
Clean Power Research offers the SolarAnywhere® solar resource assessment and solar 
forecasting service. Hourly GOES satellite images are processed using the most current 
algorithms developed and maintained by Dr. Richard Perez at the University at Albany (SUNY). 
The algorithm extracts cloud indices from the satellite's visible channel using a self-calibrating 
feedback process that is capable of adjusting for arbitrary ground surfaces. The cloud indices 
are used to modulate physically-based radiative transfer models describing localized clear sky 
climatology. Near term irradiance datasets are produced hourly and are accessible via the 
SolarAnywhere website or programmatically via web services. 
 
SolarAnywhere provides hourly forecasts up to 7 days in advance using a cloud motion 
algorithm for short term forecasts and a NWP algorithm for longer term forecasts. The transition 
point between the short term and long term forecasts is automated in order to produce a unified 
dataset every hour containing 1 to 168 hours of forecast irradiance for each location. The 
accuracy of the forecast technique is reviewed in several papers Perez et al. (2009, 2010) 
 
Clean Power Research and SUNY are in the process of increasing the spatial resolution from 
10km to 1km and temporal resolution from one hour to one minute as part of the California Solar 
Initiative Advanced Modeling and Verification for High Penetration PV study. Other 
improvements in the near term include the imminent release of the v3.0 SUNY algorithm which 
will incorporate the four infra-red channels from the GOES satellites. Access to the new IR 
channels will enable early morning cloud motion forecasts during a time period that currently 
has an inadequate visual image history. Incorporation of the infra-red channels will achieve 
significant improvements in high albedo locations by enabling better differentiation between 
naturally highly reflective locations and intermittent snow cover. 
 
Garrad Hassan is an established wind forecast provider. The entry into the solar market will 
likely be based off of existing NWP and mesoscale modeling capabilities. Garrad Hassan was 
invited to comment, but has not responded. 
 
Green Power Labs (http://www.greenpowerlabs.com/services_forecasting.html) 
“provides solar radiation and power production monitoring and forecasting for utilities, 
independent system operators and solar power producers. The technology developed by Green 
Power Labs for broadband modeling of solar radiation at the Earth’s surface is based on the 
analysis of GOES satellite visible spectrum images. The model software is implemented as 
plug-in for ESRI’s ArcGIS9.3 suite. 
 
Solar radiation monitoring is based on a physical model that relates the satellite-derived Earth-
atmospheric reflectivity from the visible spectrum channel of the satellites to the transmissivity of 
the atmosphere. The model calculates the sun’s position, air mass and extraterrestrial radiation 
and, in conjunction with digital databases of surface elevation, Linke turbidity data, produces 
estimates of clear-sky global radiation at the Earth’s surface. The amount of solar radiation 
reflected by clouds is determined from the satellite-derived data. The resulting data of overcast 
global radiation at the Earth’s surface are produced at a resolution of 1x1 km at the satellite’s 
nadir, at 30 minute intervals. The SolarSatData results are adjusted to the site-specific 
conditions using World Meteorological Organization - grade weather monitoring stations initially 
set up at solar power generation sites. 
 
Solar radiation forecasting works on a basis of physical relationship between cloud cover and 
solar radiation. The forecast system is based upon the cloud cover forecasts from two 
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Numerical Weather Prediction systems. These are the high resolution Nonhydrostatic 
Mesoscale Model (NAM) provided by the National Oceanic and Atmospheric Administration 
(NOAA) National Centers for Environmental Prediction, covering North America and adjacent 
waters at 10 km resolution, and the Global Environmental Multiscale model provided by 
Environment Canada at 15 km resolution in its regional configuration. The solar radiation and 
solar energy generation system performance forecasts for the next 48 hours at hourly intervals 
are produced daily from the 00Z and 12Z runs and are made available online. GPLI solar 
radiation forecasts are well correlated with ground observations. 
 
Solar power generation forecasting utilizes recognized models of solar power generation 
technologies. The service currently offers PV power generation forecasting for utility-scale and 
distributed systems as well as spatial aggregation of solar power generation in utility areas of 
service. ” (Tony Daye, Senior Manager, Green Power Labs Inc., 
tony.daye@greenpowerlabs.com)	
  
 
Solarcasters (http://www.solarcasters.com/dayahead.htm, http://www.solarcasters.com/hourahead.htm, 
http://www.solarcasters.com/minuteahead.htm):  
“offers a line of technical and engineering support services for utility-scale solar power 
generation.  The line includes forecast services for the day-ahead (DA) and hour-ahead (HA) 
time frames. A service for forecasts in the 0-60 minute time frame is also under development. 
 
SolarCasters DA forecasts predict irradiance and resulting power production in 3-hour average 
time blocks.  Forecasts are made twice each day for the following 24-hour period (...).  
SolarCasters provides both irradiance forecasts and plant-specific power generation forecasts 
using its TRNSYS-based plant simulation software.  Integration of these forecasts with electrical 
dispatch master controls systems from Siemens and GE is underway. 
 
DA forecasts are based primarily on numerical weather prediction (NWP) with proprietary 
algorithms used to forecast cloud cover based on NWP results.  The forecasts also use 
proprietary radiative transfer models to predict the irradiance reaching the ground.  A proof-of-
concept study at a desert location generated mean average errors (MAE) of around 1% and an 
RMS error of 11%.  Forecasting in a humid semi-tropical environment proved more difficult with 
a MAE of -7% (the model under predicts the observed) and an RMS error of 38%. 
 
HA forecasts predict 1-hour average power production for the 2-5 HA time frame and are 
generated using a series of proprietary algorithms based on analysis of satellite images, 
together with the SolarCasters radiative transfer modeling.  The MAE at the desert site in this 
time period was typically 2% with 12% RMS error.  Again the semi-tropical site proved more 
problematic with MAE of -8% and RMS errors near 25%. 
 
The proof-of-concept studies were conducted on short time series and the results presented 
here may not be representative.  All forecast results are expected to improve when site-specific 
corrections (MOS) derived from long-term observations are applied. 
 
The forecast technology for the 0-60 minute time frame involves on-site imaging equipment and 
the use of geometric transforms to track and predict cloud-related transients affecting all or only 
a portion of a generating site.  An X-band radar system for predicting cloud cover in this time 
frame has also been tested and may prove useful for the largest generating sites.  Neither of 
these technologies has yet been subject to a proof-of-concept.” 
Provided by: Steve Ihnen, CTO, SolarCasters, Inc., Redmond, WA  98052, o. (425) 736-4631, 
steve@solarcasters.com  
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Solardatawarehouse.com is an aggregator and data provider of solar irradiance data from 
3600 stations throughout the US. Solardatawarehouse also offers a forecast product based on 
the dense ground measurements, airport METAR observations, and National Digital Forecast 
Database data. “The forecasting model has two separate components: One predicts solar 
radiation based on meteorological observations, while the second learns to recognize seasonal 
climate patterns at the site. Outputs from the two models are combined to forecast solar 
radiation one hour and three hours into the future. The models are adaptive and capable of self-
learning based on the training data presented them.” (James Hall – JHtech, (719) 748-5231, 
JamesHall@jhtech.com). 
 
Windlogics has been developing expertise in solar resources and forecasting (e.g. Ahlstrom 
and Kankiewicz, Utility-scale PV variability workshop, 2009; Kankiewicz et al. American Solar 
Energy Society conference, 2010) and may be entering the market with new solar forecasting 
products soon. 
  
 
3. Data Sources for validation and calibration (Task 1.2) 
Solar forecasts from NWP or satellite models are of limited accuracy. Clouds are not resolved or 
modeled poorly in NWP. Satellites can observe large clouds directly, but they measure only the 
light reflected by clouds, atmosphere, and ground. Solar irradiance reaching the ground has to 
be modeled using various assumptions. Consequently, accurate data from ground stations is 
required to validate and calibrate NWP and satellite model forecasts.  
 
In Table S4 sources of real time solar data are listed. Unlike for wind, there is an extreme 
shortage of publicly available ground based solar irradiance measurements. The following 
observations apply: 

• There are only three stations in California (NOAA-ISIS at Hanford and NREL-MIDC in LA 
and Rancho Cordova) that provide publicly available, measured, real-time data. 
However, due to lack of funding and/or supervision even for these stations data quality 
is a concern (Manajit Sengupta, NREL, personal communication). 

• The California Irrigation Management Information System (CIMIS) measurement 
network covers the entire state at decent resolution, but data are only available in hourly 
intervals and are only downloaded 1x / day in the evening making these data largely 
useless for solar forecasting applications. 

• CAISO also presently has very little solar generation data, since many solar power 
plants have gas-fired backup generators which are not separately metered. 

• GOES satellite data is currently the most promising resource due to real-time availability, 
large coverage, and decent accuracy. 

• A powerful, but so far untapped resource are the more than 2000 metered PV systems 
around the state. Since PV power output is near linearly related to solar irradiance, 
these systems effectively act as distributed solar irradiance sensors. If the 
measurements could be linked to a national database in real-time, they would be a very 
valuable and economical resource for solar forecasting. 

 
Also note, that recently NOAA and NREL (Michalsky et al. 2010) have proposed the upgrade of 
Climate Reference Network (CRN) to measure GHI, DNI, and DIF. However, with only 7 CRN 
stations in California these measurements would not be sufficient in their spatial density for 
California’s solar forecasting needs. NOAA estimates that the cost of expanding the CRN 
network would be $1.5 M for the 7 sites in California. NREL also runs the SOLRMAP initiative to 
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provide quality control for 3rd party installed irradiance sensors, but the data remain proprietary 
to the operator. 
 
Table S4: Available irradiance measurements in California. ISIS: Integrated Surface Irradiance 
Study; CIMIS: California Irrigation Management Information System; ASOS: Automated Surface 
Observation System; PBI: Performance Based Incentive; MIDC: Measurement and 
Instrumentation Data Center. 

Name Type Resolution / # 
of stations 

Time 
step 

Real Time? Accuracy for 
GHI 

GOES Satellite 1 km 15 min Yes Low 
NOAA ISIS Ground GHI, 

DNI, DIF 
1 (Hanford) 3 min Yes Medium – 

High 
NREL MIDC Ground GHI, 

DIF 
2 (LA, Rancho 

Cordova) 
1 min Yes (30 min) Medium – 

High 
CIMIS Ground GHI 134 1 h No (1x / day 

download) 
Medium 

NOAA 
ASOS 

Cloud height 
and density 

82 (airports) 10 min Yes Low 

CSI PBI PV output, 
some GHI 

>2070 15 min No, NDA 
required1 

Low 

UCSD Sky 
Imager 

Sky Image 50 m 30 sec Yes Low 

 
 

4. Discussion 
4.1. Evaluation of forecast accuracy 
4.1.1. Error Metrics 
Due to the binary nature of solar radiation (cloudy or clear) the choice of error metric is very 
important for the evaluation of solar forecast models. The root mean square error (RMSE) 
metric is problematic as it is dominated by large errors. Thus if a forecast model is usually 
correct but occasionally off by a large amount it may score worse than a model that is always 
slightly off but never way off. We recommend adding the mean absolute error (MAE) or mean 
absolute percentage error (MAPE) as a standard evaluation metric since it is less sensitive to 
large errors. 
 
4.1.2. Economics versus Irradiance 
All forecast evaluations (given for reference in Table A1) calculate the forecast error in W m-2 or 
% of solar irradiance. This has the advantage of comparability, but is not the most economically 
relevant metric. For example, a forecast error during peak load is likely both economically and 
operationally more significant than an error during off-peak times. To quantify the economic 
value of radiation forecasts and forecast errors we recommend that researchers use the CAISO 
OASIS site which continually updates prices in the HA and DA market.  
 

4.2. Single site versus Regional Forecasts 
Solar forecast quality dramatically improves when several sites are aggregated over a region 
(e.g. Lorenz et al. 2009), because average cloudiness in a region can be forecast more 
accurately than cloudiness at a particular site. Since shorter time-scale fluctuations in power 
output are uncorrelated across sites only a few miles apart (i.e. the clouds responsible for these 
fluctuations are usually smaller than the distance between sites) aggregation of power output 
                                           
1 May be available real-time in the future through smart meters. 
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from several sites mitigates the issue of large ramps over short time-scales. The larger the 
forecast region and the larger the number of sites within that region, the less important small 
scale variability becomes. For example, Mills and Wiser (2010) showed that 1 minute 
fluctuations are uncorrelated over distances as small as 20 km meaning that the relative 
variability standard deviation decreases with the square root of the number of sites – 4 sites 
means half the relative variability. They concluded that the increase in spinning reserve costs for 
solar are smaller than those for wind. 
 
In the current market, prices are set at each node in the electric grid. Consequently, the 
economic value of forecasting is primarily in localized forecasting for a particular solar plant or 
an urban distribution feeder. However, for other applications such as congestion management 
and grid operation on larger scales, often aggregate or ensemble forecast are sufficient or 
desirable.  
 
Likewise for solar forecasting in urban areas, the PV sites are distributed across different 
rooftops and aggregate forecasts are of greater relevance than forecasts for individual PV 
systems. 
 

4.3. Recommendations 
 

a) Type of solar forecast: GOES satellite and NWP data are the most accurate solar forecast 
sources for hour-ahead (HA) and day-ahead (DA) forecasts, respectively. An overwhelming 
body of research (Section 2.2) shows that solar forecast based on satellite models 
outperform NWP forecasts up to around 5 hours ahead. In turn, persistence forecasts give 
similar results as satellite forecast up to 1 hour ahead. 
 
Mesoscale Numerical Weather Prediction (NWP) 
Why: In the long term as computing power and models improve, NWP will be the most 
promising tool to forecast solar irradiance. This research would enable wind forecast 
providers to adapt their existing products to solar forecasting and quantify the potential 
improvement in accuracy. 
What to do: Research should be conducted on the forecast skills of operational numerical 
weather prediction models for California and the applicability of mesoscale meteorological 
models to locally enhance forecast skill. 
Who can do it: In collaboration with NREL (Bill Mahoney) and NOAA scientists (Stan 
Benjamin), California researchers should conduct modeling and evaluation studies for 
California. Scripps Institution of Oceanography researcher Masao Kanamitsu has significant 
experience in mesoscale meteorological modeling in California. 
 
Conduct a forecast competition: CAISO has successfully conducted a wind forecast 
competition in 2008/2009 and would like to repeat a similar project for solar forecasting. Any 
forecast providers could bid and provide forecasts for a few representative sites to the ISO 
for one year. The following parameters should be forecast: Global Horizontal Irradiance, 
Diffuse Horizontal Irradiance, Direct Normal Irradiance, Global (diffuse + direct) plane of 
array irradiance for fixed tilt PV, PV panel temperature for fixed tilt PV mounted onto a 
flat area, Global (diffuse + direct) irradiance for a two-dimensional tracking CSP plant. 
The California Solar Energy Collaborative (CSEC) could provide independent analysis of 
such a dataset for CAISO to evaluate operational forecast skill for different providers. Similar 
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to a previous study on wind forecasting, forecast providers would need to be reimbursed for 
these services by CAISO and their input to the design of such a study should be sought.2 
Why: No peer-reviewed studies exist that evaluate solar forecast performance for California. 
With its unique microclimates California presents a significant challenge to forecast models. 
What to do: Contact CAISO’s James Blatchford as to the timeline and support required to 
conduct such a study.  
Who can do it: CSEC has the experience, knowledge, and independence to work with 
CAISO in planning, execution, and analysis of such a study. 

 
b) Ground measurement networks: More ground measurements of solar irradiance would 

improve HA and intra-hour forecasts. Ground measurements of GHI (and DNI for 
concentrating plants) should be (and currently are) required by CAISO for large solar farms 
(similar to wind measurements in the PIRP program). However, we believe that establishing 
and maintaining a separate dedicated network of solar irradiance sites in California would not 
be the most economical approach to improving forecast skill. High-quality irradiance sites are 
labor intensive to install and operate as most DNI sensors require daily cleaning. E.g. NOAA 
estimates that the cost of upgrading the Climate Reference Network to conform to solar 
resource and forecasting needs would be $1.5M for just 7 sites in California. Yet the high 
accuracy does not necessarily translate to reduced forecast error since clouds are spatially 
localized and their detection and prediction would require extremely dense networks. No 
peer-reviewed research study exists that shows advantages of non-local measurements 
networks for solar forecasting. However, if other energy meteorology networks were 
established (e.g. for wind forecasting for which the advantages of such networks are more 
obvious), it would be useful and economical to ‘piggyback’ off of these sites and install low-
maintenance GHI silicon pyranometers. 
 
The most economical approach to enhance ground measurements would be to require 
and/or incentive 3rd party data providers (e.g. SunPower, Energy Recommerce, Fat Spaniel) 
to share their data in real time with the ISO and/or solar forecast providers which – under 
NDAs – could operate a data warehouse for utilities, and forecast providers. The cost to 
sharing such data is minimal as the infrastructure is in place such as more than 2000 
sensors, meters, telemetry, and databases (Table S4). The only change to the current mode 
of operation is that database access would be provided in real-time instead of sending 
monthly summaries to CSI as is done currently. This approach would be expected to cost a 
fraction of a new station network and could be operated by CAISO and the energy industry in 
an open market. The advent of smart meters that can monitor residential PV outputs 
provides an additional avenue to implement this strategy. 
 
Why: There is a lack of solar irradiance measurements in California. 
What to do: Research should be funded by the California Solar Initiative or PIER or both in 
collaboration to develop models to derive solar irradiance values from ground PV data and 

                                           
2 John Zack from AWS Truepower comments that “A rigorous competitive evaluation of forecast providers is 
fundamentally a good idea to establish level of performance expectations and an estimate the variation in forecast 
performance among providers.  However, it is important to realize that the information obtained from such a study will 
be limited by the design of the study.   A particular method may perform very well for one objective but not as well for 
another. (e.g forecasting of routine events vs anomalous events) and some methods may perform much better if 
certain types of data are available but may not have any advantage if those data are not available.  The danger is that 
conclusions derived from a specific set of forecast evaluation conditions will be extrapolated to general conclusions, 
which may to lead to erroneous decisions on how to best address other forecasting objectives.  We have 
encountered this issue in many of our wind forecasting applications.” 
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demonstrate the potential and feasibility of such an approach to improve the accuracy of 
solar forecasting. 
Also research on total sky imager (Figure S1c) deployments in areas with high PV 
penetration should be pursued. Sky imagers can survey a large area from a single site. The 
reduced accuracy in the irradiance measures determined by a sky imager (compared to a 
pyranometer) will be more than overcome by the spatial density and cloud tracking capability 
of the observations. 
Who can do it: Kleissl is conducting Total Sky Imager work at UC San Diego. For the data 
aggregation work, collaborators with a background in data assimilation would be useful. 
 

c) Forecast aerosol optical depth for DNI: Depending on the expected market share of 
concentrating solar power (CSP) plants in California, research should be conducted on DNI 
forecasts examining the integration of aerosol models into weather forecast models. These 
forecasts should especially be able to consider cirrus clouds, forest fire smoke predictions, 
dust storms, and urban aerosol air pollution transport that may affect CSP in California.  
Why: Aerosols can significantly decrease DNI which could impact CSP plants. 
What to do: Evaluate satellite remote sensing products of aerosol optical depth and their 
assimilation into solar forecasting. 
Who can do it: Since aerosols may not be detectable on the ground, satellite remote 
sensing techniques hold the most promise, especially if coupled with NWP. A joint NASA-
NOAA-EPA effort seems to be the most advanced 
(http://www.star.nesdis.noaa.gov/smcd/spb/aq/). With the exception of work in Germany 
(Breitkreuz et al. 2009), prior AOD work is focused on air quality applications. Additional 
research is required to determine the skill in determining solar irradiance. 
 

 
 
 
5. Glossary 
 
The NREL ‘Glossary of Solar Radiation Resource Terms’ defines the following: 
 
AOD: Aerosol Optical Depth: AOD is the "extinction per unit path length due to aerosols 
alone". Extinction of solar radiation occurs due to water vapor, ozone, mixed gases, and 
'equivalent extinction' represented by Rayleigh scattering of atmospheric molecules, and what is 
'left over' is the aerosol extinction. 
 
DIFF: Diffuse Sky Radiation (or Diffuse Horizontal Irradiance): The radiation component 
that strikes a point from the sky, excluding circumsolar radiation. In the absence of atmosphere, 
there should be almost no diffuse sky radiation. High values are produced by an unclear 
atmosphere or reflections from clouds. 
 
DNI: Direct Normal Irradiance: Synonym for beam radiation, the amount of solar radiation from 
the direction of the sun. 
 
GHI: Global Horizontal Irradiance: Total solar radiation; the sum of direct, diffuse, and ground-
reflected radiation; however, because ground reflected radiation is usually insignificant 
compared to direct and diffuse, for all practical purposes global radiation is said to be the sum of 
direct and diffuse radiation only. 
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Irradiance: The rate at which radiant energy arrives at a specific area of surface during a 
specific time interval. This is known as radiant flux density. A typical unit is W/m2. 
 
MBE: Mean Bias Error: Metric to compare the b. MBE can be negative (forecast is too small, 
on average), zero (forecast has no bias), and positive (forecast is too large, on average). 
 
Mesoscale: Scale of numerical weather prediction models with domain sizes on the order of 
1000 km and grid cells on the order of 1 to 5 km. Mesoscale models provide more fine-grained 
information than macroscale models (which predict weather for the entire US or even the globe), 
but are limited in the area over which they forecast. 
 
MOS: Model Output Statistics: Statistical method to correct model errors in postprocessing 
based on predetermined bias errors. 
 
NWP: Numerical Weather Prediction: Weather forecasting using computer models. 
 
PV: Photovoltaic: Technology for converting sunlight directly into electricity, usually with 
photovoltaic cells. 
 
Pyranometer: An instrument with a hemispherical field of view, used for measuring total or 
global solar radiation, specifically global horizontal radiation; a pyranometer with a shadow band 
or shading disk blocking the direct beam measures the diffuse sky radiation, as is illustrated in 
the picture below. A picture of the Eppley PSP pyranometer is included in the PSP definition 
above. 
 
RMSE: Root Mean Squared Error: Metric to compare forecasts to actual data. 
 
Rotating Shadow Band Radiometer: An instrument that determines total solar radiation and 
diffuse sky radiation by periodically shading the total sky sensor from the sun with a rotating 
shadow band. Below is a picture of a rotating shadow band radiometer at the Solar Radiation 
Research Laboratory. The curved black shadowband at the right of the instrument is at rest; 
once every minute, it rotates 180° to obscure the sun for a few seconds, then returns to its 
resting position. 
 
Scattered Radiation: Radiation that has been reflected from particles, disrupting the original 
direction of the beam 
 
Silicon Sensor: A photovoltaic cell that is being used to measure solar irradiance. Because its 
spectral response is not as exact as that of thermopile instruments, it has a higher uncertainty. 
 
Solar Concentrator: A solar collector that enhances solar energy by focusing it onto a smaller 
area through mirrored surfaces or lenses 
 
Solar Thermal Electric: Technology for using the sun's energy to produce steam to run 
turbines that generate electricity. 
 
Transmittance: The fraction or percent of a particular frequency or wavelength of 
electromagnetic radiation that passes through a substance without being absorbed or reflected. 
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Turbidity: A measure of the opacity of the atmosphere. A perfectly clear sky has a turbidity of 0, 
and a perfectly opaque sky has a turbidity of 1. Turbidity is affected by air molecules and 
aerosols. 
 
Zenith Angle: The angle between the direction of interest (of the sun, for example) and the 
zenith (directly overhead). 
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Appendix 
Table A1: Review of studies for solar energy forecasting. Modica et al. (2010) showed first results for forecasts with sky imagery. 
NDFD: National Digital Forecast Database (National Weather Service, NOAA, Washington, DC); ECMWF: European Center for 
Medium-range Weather Forecasting; Meteosat: Geostationary european satellite. 
 

Study Location Quan 
tity 

Forecast 
Source 

Avera-
ging 

Interval 

Time 
Horizon 

Error 
Metric 

Error Value Comment 

Schroedter 
et al(2009), 
Breitkreuz et 
al (2009) 

121 sites 
in Europe 

GHI NWP (ECMWF) 1 h 1 - 72 h RMSE 
MBE 

10% (clear) – 40% (all) 
-10% 

  GHI Aerosol + 
Mesoscale 
Model (AFSOL) 

1 h 1 - 72 h RMSE 
MBE 

8% (clear) - 60% (all) 
5% up to -25% (all) 

For clear-sky situations aerosol 
modeling significantly improves 
GHI and especially DNI irradiance 
forecasts relative to ECMWF. On 
the other hand, for cloudy 
conditions the AFSOL forecasts 
leads to significantly larger forecast 
errors. 

  GHI Meteosat 1 h 1 - 72 h RMSE 
MBE 

6% (clear) – 22% (all) 
0 

I believe Meteosat was calibrated 
to data 

  DNI NWP 1 h 1 - 72 h RMSE 
MBE 

30% (clear) – 82% (all) 
-25% (clear) up to -35% (all) 

Overall: 31.2% or 159 W m-2 
-26.3% or -134 W m-2 

  DNI AFSOL 1 h 1 - 72 h RMSE 
MBE 

20% (clear) - 85% (all) 
10% (clear) up to -15% (all) 

18.8% or 96 W m-2 
11.2% or 57 W m-2 

  DNI Meteosat 1 h 1 - 72 h RMSE 
MBE 

15% (clear) – 38% (all) 
<3% 

15.6% or 80 W m-2 
-1.7% or -9 W m-2 

 Forecast length has a significant impact on forecast accuracy, as long as cloudy situations are included in the analysis: for the 
AFSOL system, this can be quantified by RMSEs of 49.7% for the first day, 62.4% for the second day, and 67.7% for the third 
day. When considering only cloud-free cases, forecast length has no effect on bias or RMSE for any of the model systems 
analyzed. Thus, it can be deduced that this error tendency is caused exclusively by difficulties in cloud forecasts that increase 
with growing forecast duration. 

Wittman 
(2008) 

1 site in 
Spain, 
July 2003 

GHI NWP (ECMWF) 1 h 1 - 72 h RMSE 
MBE 

18.5% or 109 W m-2 
-11.1% or -65.6 W m-2 

Similar order but better results for 
clear skys only. AFSOL GHI on 5% 
RMSE. 

  GHI AFSOL 1 h 1 – 72 RMSE 25.1% or 148 W m-2  
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h MBE -2.2% or -12.7 W m-2 
  DNI ECWMF 1 h 1 – 72 

h 
RMSE 
MBE 

41.7% or 184.9 W m-2 
-23.3% or -103.2 W m-2 

 

  DNI AFSOL 1 h 1 – 72 
h 

RMSE 
MBE 

47.0% or 208.6 W m-2 
15.6% or 69.4 W m-2 

 

Lorenz et al. 
(2009) 

Europe GHI ECMWF 1 h 3 h -  RMSE 
MBE 

12% (clear) to 85% (cloudy) 
0% (clear) to 25% (cloudy) 

   ECMWF + MOS 1 h  RMSE 
MBE 

12% (clear) to 80% (cloudy) 
<5% 

For both ECMWF and ECMWF + 
MOS: Day 1: RMSE = 35%, Day 2: 
RMSE = 40%, Day 3: RMSE = 
55%.  

 Study also shows confidence intervals for prediction. For ensembles distributed over a region of a size of 3o x 3o, the RMSE of 
the forecast is about half the RMSE of a single site. The RMSE is reduced to one third of the site-specific RMSE for regions of a 
size of about 8o x 8o. 

Perez et al. 
(2007) 

Albany, 
NY 

GHI NDFD 3 h 3-72 h RMSE 
MBE 

32% (<4 ) to 40% (>26h) 
-10% (<4 h) to -4% (>26 h) 

National Digital Forecast Database 
only output cloud cover 

Hammer et 
al. (1999) 

Central 
Europe, 
April - 
June 

GHI Meteosat - 
Heliosat 

instanta
neous 

0.5 – 2 
h 

RMSE 18% for 30 minutes (vs 26% 
persistence), 22% for 1 h, 
28% for 2 h, 38% for 3 h. 

RMSE is satellite forecast versus 
satellite actual, i.e. no ground 
station data were used. Numbers 
were estimated from graphs. 
Filtering improves the forecast 
quality. 

Bacher et al. 
(2009) 

Denmark Pout Autoregressive 
models based 
on Pout (t-1) and 
NWP 

1 h 1 h – 
30 h 

RMSE 40 - 100% (normalized by 
mean power) for same day, 
5% - 13% (normalized by 
peak power) for next day 

For horizons below 2-h solar 
power is the most important input, 
but for next day horizons no 
considerable improvement is 
achieved from using available 
values of solar power, so it is 
adequate just to use NWPs as 
input. 

Hamill & 
Nehrkorn 
(1993) 

Eastern 
2/3 of US 

Brig
htne
ss 

GOES cross-
correlation 

instanta
neous 

0.5 h – 
2.5 h 

RMSE 9% (0.5 h) to 18% (2.5 h) 
for fall, winter, spring. 11% 
to 25% for summer 

RMSE is satellite forecast versus 
satellite actual in gray-shade 
values. Persistence was 12% to 
21%. Using 500 mbar wind field 
nearly as good as crosscorrelation 
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method. 11 km pixel resolution. 
Heinemann 
(2006) 

Germany 
Saarbruec
ken 8 
Stations 

GHI Meteosat – 
Heliosat from 
Hammer et al. 
(1999) 

 0.5 h – 
6 h 

RMSE 25% (0h) to 42% (6 h) with 
motion & smoothing. 25% 
(0h) to 55% (6 h) with 
persistence 

With increasing forecast the 
influence of smoothing becomes 
more important than the application 
of motion vector fields.. Variability 
in the cloud field has a strong effect 
on forecast RMSE. 

 Same as 
above 

GHI MM5 1 h 1 h to 
48 h 

RMSE with MOS: 33% for day 1 
and 36% for day 2 
with MM5: 52% for day 1, 
55% for day 2 

40 days in summer 2003 

Jensenius 
(1981) 

  MOS on NWP   RMSE 
MBE 

25% for 1 day 
2% for 1 day 

 

Bofinger and 
Heilscher 
(2004) 

32 sites in 
Germany 

 MOS on 
ECMWF 

  RMSE 
MBE 

32% for hourly and 19% for 
daily. Persistence was 55% 
for hourly and 48% for daily. 
2.9% for hourly and 2.8% 
for daily 

1 year 

 same  Meteosat - 
Heliosat  

1 h  RMSE 
MBE 

26% for hourly and 12% for 
daily 
3% for hourly and daily 

 

Perez et al. 
(2009) 

6 sites in 
US 

GHI Satellite 1 h 1 h to 6 
h 

RMSE 
MBE 

53 to 64 Wm-2 (1h) to 100 
to 133 Wm-2 (6h) 
(persistence: 53 to 65 Wm-2 
(1h) to 108 to 125 Wm-2 
(6h) 
-3 to 12 Wm-2 (1h) to -3 to -
13Wm-2 (6 h) (persistence: 
2 to 11 Wm-2 for 1h, 6 to -
23 Wm-2 for 6h) 

8/23/2008-1/31/2009. Persistence 
forecast included extrapolating 
measured irradiances using a 
constant GHI/GHIclear ratio. 
Forecast errors for Boulder, CO, 
are much higher due to local 
topography and are excluded. 

 same GHI NDFD 1 h 1 
(same 
day) to 

RMSE 
MBE 

75 to 114 Wm-2 (same day) 
to 97 to 146 Wm-2 (7 days) 
(persistence: 150 to 211 

All NDFD forecasts originate at 
11:00 GMT. 
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7 days Wm-2 (7 days)) 
-25 to 32 Wm-2 (same day) 
to -18 to 41 Wm-2 (7 days) 
(persistence: -8 to 10 Wm-
2) 

 Cloud-motion forecasts are more accurate than NWP up to 4-5 hours ahead with a performance gain approaching nearly 40% 
for the 2-hour forecast. The forecasts also perform better than on-site measurement extrapolation with performance gain 
peaking at hour 4. NDFD overpredicts irradiance, even after it was adjusted empirically to prevent overprediction. Comparing 
range of mean monthly values within a 2o by 2o gridbox to absolute RMSE errors at the site shows that the RMSE errors are 
much smaller. 

Remund et 
al. (2008) 

3 sites in 
CO, NV, 
MS 

GHI NDFD 1 h 1 day RMSE 
MBE 

18% (NV), 41% (CO), 36% 
(MS) 
2% (NV), 3% (CO), -4% 
(MS) 

   EMCWF V2   RMSE 
MBE 

18% (NV), 40% (CO), 32% 
(MS) 
3% (NV), 11% (CO), 6% 
(MS) 

April – September 2007. The 
breakeven of persistence is 
reached after 2-4 hours. The 
breakeven is dependent on the 
uncertainty. For ECMWF and 
NDFD this value is reached at 2 
hours for GFS/WRF at 3 hours. 
The errors for same day and 2 day 
forecast are only marginally 
different from 1 day (shown on left). 

   GFS/WRF   RMSE 
MBE 

18% (NV), 50% (CO), 41% 
(MS) 
2% (NV), 19% (CO), 18% 
(MS) 

Also conducted Kolmogorov-
Smirnov test. 
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