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THE VALUE OF SKU RATIONALIZATION IN PRACTICE
(THE POOLING EFFECT UNDER SUBOPTIMAL

INVENTORY POLICIES AND NONNORMAL DEMAND)*

JOSÉ A. ALFARO AND CHARLES J. CORBETT
University of Navarra, Faculty of Economics and Business Administration, Campus

Universitario—Edificio de Bibliotecas (Entrada Este), 31080Pamplona (Spain)
The Anderson School at University of California, Los Angeles, 110 Westwood Plaza,

Suite B507, Los Angeles, California 90095-1481,USA

Several approaches to the widely recognized challenge of managing product variety rely on the
pooling effect. Pooling can be accomplished through the reduction of the number of products or
stock-keeping units (SKUs), through postponement of differentiation, or in other ways. These
approaches are well known and becoming widely applied in practice. However, theoretical analyses
of the pooling effect assume an optimal inventory policy before pooling and after pooling, and, in
most cases, that demand is normally distributed. In this article, we address the effect of nonoptimal
inventory policies and the effect of nonnormally distributed demand on the value of pooling. First,
we show that there is always a range of current inventory levels within which pooling is better and
beyond which optimizing inventory policy is better. We also find that the value of pooling may be
negative when the inventory policy in use is suboptimal. Second, we use extensive Monte Carlo
simulation to examine the value of pooling for nonnormal demand distributions. We find that the
value of pooling varies relatively little across the distributions we used, but that it varies considerably
with the concentration of uncertainty. We also find that the ranges within which pooling is preferred
over optimizing inventory policy generally are quite wide but vary considerably across distributions.
Together, this indicates that the value of pooling under an optimal inventory policy is robust across
distributions, but that its sensitivity to suboptimal policies is not. Third, we use a set of real (and
highly erratic) demand data to analyze the benefits of pooling under optimal and suboptimal policies
and nonnormal demand with a high number of SKUs. With our specific but highly nonnormal demand
data, we find that pooling is beneficial and robust to suboptimal policies. Altogether, this study
provides deeper theoretical, numerical, and empirical understanding of the value of pooling.
(POOLING; STOCK KEEPING UNIT; SKU; RATIONALIZATION; PRODUCT VARIETY; IN-
VENTORY MANAGEMENT; SUBOPTIMAL INVENTORY POLICY)

1. Introduction

The complexity of supply chains can be quite staggering, entailing high costs combined
with incessant customer service problems. Increasing variety is a critical ingredient of this
complexity, and managing this variety is becoming a field of research in its own right, as
witnessed by (among others) the recent book edited by Ho and Tang (1998). Roughly
speaking, variety can be induced by serving multiple geographic locations or stocking
multiple products or stock-keeping units (SKUs). A growing body of literature exists on how
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to deal with both types of variety, sometimes focusing on reducing lead times, sometimes on
various types of aggregation of uncertainty. Mitigating the impact of variety in turn can occur
through geographical “pooling” of inventories or through some form of rationalization of
product lines. In both cases, the general mechanism underlying pooling or SKU rationaliza-
tion is the ability to exploit “ statistical economies of scale” by aggregating uncertainties,
which reduces the total uncertainty one needs to deal with. The analysis here is presented in
terms of SKU rationalization, but the arguments are highly similar in the case of geographical
pooling; we use the term pooling to refer to both.

Sometimes, pooling inventories is easy to do and (almost) costless; in such situations, little
discussion is needed, and companies should seek and exploit such opportunities. A typical
example would be shipping kits with a single set of assembly instructions in multiple
languages rather than having to distinguish between kits intended for different markets.
However, often, the costs involved are more significant. Some people will argue that
reducing product variety, for instance by limiting the number of sizes in which toothpaste is
sold, leads to marketing disadvantage. In other cases, rationalizing product lines may directly
increase unit manufacturing costs, if multipurpose and more costly components or process
changes are required. A well-known example of this is the HP DeskJet printer (Lee,
Billington, and Carter 1993): the redesigned product could be localized at distribution centers
across the world, but final assembly of the power supply had to be made easier because it
would no longer be performed at HP’s central facility in Vancouver, leading to higher
component and assembly costs. However, these added costs were easily outweighed by the
inventory and customer service advantages HP gained. Lee and Tang (1997) developed
models to assist in this trade-off between delayed differentiation and increased manufacturing
costs. In such cases, more careful evaluation of the benefits of pooling and of possible
alternative strategies is needed.

Typically, a company’s interest in the various types of pooling that are available is sparked
by excessive inventory costs and/or constant customer service problems. Although pooling
should benefit such a company in most cases, these may merely be symptoms of poor
inventory management to begin with. Indeed, inventory policies in practice often are
suboptimal, sometimes dramatically so. Should such a company even consider pooling, or
should they get their inventory management sorted out first? In this study, we address this
dilemma by asking and answering the following questions:

1. How does the value of pooling behave under a suboptimal inventory policy?
2. Should a company suffering high inventory costs start by improving its inventory

policy or by implementing pooling? Ideally, one would do both, but given that practitioners
are often hard-pressed to find enough time to even implement one of the two, it is important
to know where to start.

3. How do correlation and concentration of uncertainty affect the value of pooling?
4. Do the answers to the foregoing questions vary if demand is not normally distributed?
These questions are particularly relevant because the literature has focused on the value of

the pooling effect when an optimal inventory policy is implemented and when demand is
normally distributed. This study analyzes the pooling effect from a more practical perspective
through its focus on suboptimal inventory policies and its use of nonnormal demand patterns.
Much of the literature related to the pooling effect assumes either identical or independent
demand distributions (or both). We show that, regardless of the underlying demand structure,
there is always a range of suboptimal inventory policies within which pooling is better than
improving inventory policy. For the multivariate normal case, we show how correlation but
also the level of concentration of uncertainty are key drivers of the value of pooling. To
answer the fourth question, we perform simulations based on the Johnson system (Johnson
1987) of distributions (multivariate normal, lognormal, logitnormal, and sinh�1-normal),
which allow for a wide variety of demand patterns. We find that the value of pooling is
relatively robust across different distributions when an optimal inventory policy is in place,
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but that, in some cases, pooling actually may increase costs if an equally suboptimal policy
is used before pooling (BP) and after pooling (AP). We also use empirical data that follow
no recognizable distribution to further study the drivers of the value of pooling.

Throughout, we focus explicitly on the inventory issues; benefits of pooling due to factors
such as manufacturing simplification can be (as) significant, but we do not consider those
here. Section 2 reviews literature on various types of pooling. Section 3 presents the
framework and basic model for analysis and compares the value of pooling with the value of
improving the inventory policy for general distributions; Section 4 does the same for
multivariate normal demand. Section 5 reports on our simulation study, and Section 6
analyzes the value of pooling using highly erratic but characteristic demand data from a
chemical manufacturer. Section 7 contains our conclusions.

2. Literature Review

The number of SKUs is the standard measure of product variety in a company. Each of
these SKUs may be stored in multiple locations, leading to geographical variety. Reducing
either product variety or geographical variety generally will allow a company to maintain
current customer service at lower cost (or improve service without incurring extra costs). The
fundamental mechanism underlying both approaches is equivalent, even if there are signif-
icant differences between them. In both cases, pooling can be defined as a business strategy
that consists of aggregating individual demands (Gerchak and Mossman 1992). The concept
of pooling originated with Eppen’s (1979) and Eppen and Schrage’ s (1981) work on
multiechelon inventory systems with geographically dispersed stocking locations. A typical
scenario includes a central depot that supplies N locations (or retailers or warehouses) where
exogenous, random demands for a single commodity must be filled. The assumptions made
there and in much subsequent work include that demand at each location i in period t is
normally distributed, that all locations have identical linear holding and penalty costs, that the
coefficient of variation is low enough that the probability of negative demand can be ignored,
that items are allocated to locations so as to equalize probability of stockout, that unsatisfied
demand is backlogged, and that material is nonperishable. Eppen and Schrage and many
others also assume that all demands are independent. Eppen (1979) was the first to show how
centralization of inventory could reduce expected costs in a multilocation single-period
newsboy problem. He called this “statistical economies of scale,” and concluded that the
expected holding and penalty costs in a decentralized system exceed those in a centralized
system. If demands are identical and uncorrelated, costs increase with the square root of the
number of locations; as demand correlation increases, this effect is reduced. Schwarz (1989)
defines this as the “ risk pooling incentive” for centralizing inventories.

In Eppen and Schrage (1981), the depot orders from the supplier and allocates products to
the warehouse each period or every m periods. They show that the reduction of total
inventory from pooling is greater as the depot’ s review period increases and is proportional
to the number of products. Erkip, Hausman, and Nahmias (1990) find that high positive
correlation among products and among successive time periods (around 0.7) results in
significantly higher safety stock than the no-correlation case. Schwarz (1989) focuses on lead
times and defines the price of risk pooling as the cost of the pipeline inventory caused by the
internal lead time. Jönsson and Silver (1987) present an exhaustive study on the impact of
changing input parameters on system performance; the redistribution system is more advan-
tageous in situations with high demand variability, a long planning horizon, many locations,
and short lead times. Gerchak and Mossman (1992) show how the order quantity and
associated costs depend on the randomness parameter in a simple and highly interpretable
manner. Federgruen and Zipkin (1984) extend Eppen and Schrage’ s (1981) model in three
important ways: finite horizon, other-than-normal demand distributions (including exponen-
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tial and gamma), and nonidentical retailers. Corbett and Rajaram (2001) generalize Eppen’s
model to (almost) arbitrary multivariate dependent demand distributions.

The benefits of delayed product differentiation are quite similar to those of the pooling
effect in multiechelon inventory systems. In fact, most work on postponement has drawn on
this body of research (Garg and Lee 1999), referring to multiple products instead of multiple
locations. Early research studied standardization of components. Collier (1982) and Baker,
Magazine, and Nuttle (1986) designed models to minimize aggregate safety stock levels by
using component standardization, subject to a service level constraint. More recently,
Groenevelt and Rudi (2000) and Rudi (2000) have examined the interactions between the
optimal inventory policy, the degree of component commonality, demand variability, and
correlation under bivariate distributions. Cattani (2000) showed that the benefits of risk
pooling may be sufficient to offset the higher costs caused by selling a universal product.
Recent research has also focused on various types of postponement, as in Lee and Tang
(1997; 1998) and Kapuscinski and Tayur (1999).

From a practical perspective, this literature suggests several questions. First, if a compa-
ny’s inventory policy is not optimal to begin with, how does that affect the value of pooling?
Second, how well does pooling work with nonnormal demand? These are precisely the
questions we answer in this study.

3. Framework and Basic Model

The literature on the various manifestations of the pooling effect makes the assumption
that the underlying inventory policy is optimal, i.e., that it minimizes total cost. However, in
practice, an “optimal” inventory policy can be very hard to determine, partly because the
exact costs are very difficult to estimate and demand distributions are not known. A
practitioner, faced with high variety and a suboptimal inventory policy, may well ask how
useful pooling will be in such a context. Should the practitioner first improve his inventory
policy or should he first implement pooling? Of course, doing both is always the most
desirable, but it is not clear which of the two approaches is the best place to start.

Assume that the company initially produces N SKUs; pooling means consolidating all
products into one, with demand equal to the sum of the demands of all the original SKUs.
We consider a single planning period. Initially, there are N SKUs, with demands zi that follow a
distribution Fi(zi). Given initial inventory yi for product i, total expected cost (TC) is given by

TC�yi � � �
0

yi

h�yi � zi �dFi�zi � � �
yi

�

p�zi � yi �dFi�zi �. (1)

We analyze TC before pooling and after pooling, and with a suboptimal and an optimal inventory
policy. Total expected cost before pooling is minimized at yi � y*i. The optimal inventory level
can be found from �*i � F(y*i ) � p/(p � h), where �*i is the optimal service level; for normal
distributions, this also can be expressed as y*i � �i � k*i�i, where k*i is the optimal safety factor
of product i.

We asked whether, starting with no pooling and a suboptimal inventory policy, it was
better to implement pooling or to improve inventory policy. To evaluate suboptimal policies,
let the current inventory level for product i be yi , while the optimal level would be y*i. Define
the “suboptimality factor” �i by �i � ( yi � y*i )/y*i ; �i indicates how far the optimal
inventory level deviates from the current level, so yi can be written as yi � (1 � �) y*i. For
instance, if �i � �2/3, current inventory yi is 2/3 below the optimal inventory y*i. Similarly,
if �i � 1/ 2, current inventory yi is 50% higher than y*i. Assume that �i � � for all products.
From this point on, we will often express total costs as a function of inventory level yi or of
suboptimality factor � interchangeably. The initial costs are given by TCBP(�), the two
alternatives (pooling and optimizing inventory policy) carry costs of TCAP(�) and TC*BP
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� TCBP(0). The following key proposition characterizes the trade-off between pooling and
optimizing inventory policy.

PROPOSITION 1. There is an interval [�L, �U], which contains 0, such that pooling under the
current suboptimal inventory policy is better than improving inventory policy without pooling
if and only if � � [�L, �U].

Proof. We need to compare TCAP(�) with TCBP(0). For � � 0 and any realization of
demand, the total costs after pooling cannot exceed total costs before pooling under optimal
policies, because one could always choose the optimal before pooling inventory level and
treat all products as separate after pooling. Therefore, also in expectation, TCAP(0)
� TCBP(0). Because TCAP(�) is convex in � and minimized at � � 0, the equation TCBP(0)
� TCAP(�) must have two (possibly equal) solutions �L � 0 � �U, which completes the
proof. �

Figure 1 shows total costs before pooling and after pooling as a function of � and illustrates
the “pooling range” [�L, �U]. As long as current inventory yi lies between (1 � �L) y*i � y*i
and (1 � �U) y*i 	 y*i , pooling is preferred over optimizing inventory policy. In general, this
interval [�L, �U] expands as the number of SKUs before pooling increases. To formalize
this, choose any distribution G( z) for aggregate demand Z. Consider any sequence {PN}N�1

�

of portfolios of N products, each with demand {Zi
(N)}i�1

N , jointly making up aggregate
demand so that Z �d ¥i�1

N Zi
(N), where the equality is in distribution. Assume that

TCBP(PN�1, �)���0 	 TCBP(PN, �)���0 for all N, i.e., there are no two portfolios in the
series such that the portfolio with the larger number of SKUs has lower expected costs under
optimal policies. A simple example of such a sequence of portfolios is that in which the N
products are i.i.d. with Zi

(N) � N(�/N, �2/N); clearly, aggregate demand Z � N(�, �2) for
any portfolio PN in this sequence, and TCBP � �N�[hk � ( p � h)In(k)] is increasing in
N. This expression for TCBP is discussed in more detail in the next section.

FIGURE 1. Total costs before pooling and after pooling under sinh�1-normal demand, with 
 � �0.7, p � 0.9,
h � 0.1, and �1 � �2 � 0.2.
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PROPOSITION 2. Given any sequence of portfolios {PN}N�1
� defined previously, the interval

[�L, �U] expands in N, i.e., �L(N) is decreasing in N and �U(N) is increasing in N.
Proof. To examine �U(N), define h(N, �) 	 TCBP(N, 0) � TCAP(N, �) on N 
 �0

�

and define �U(N) through h(N, �U(N)) 	 0. Existence of �U(N) 	 0 follows from
Proposition 1. Clearly, h(N, 0) 	 0 for all N � �. We know that TCBP(N, 0) is increasing
in N, by the assumption on {PN}N�1

� . TCAP(N, �) does not depend on N, and is increasing
in � for � 	 0. Therefore, h(N, �) is increasing in N for all � and is decreasing in � for all
N. The definition of �U(N) then implies that �U(N) must be increasing in N. The result for
�L(N) follows analogously. �

4. Pooling or Improving Inventory Policy: The Multivariate Normal Case

We have shown, for general distributions, that there is a unique interval [�L, �U] in which
implementing pooling is better than improving inventory policy. Here, we focus on the
multivariate normal case. First, we theoretically analyze the effects of correlation and of
concentration of uncertainty on the pooling effect. Then, we study in depth how the interval
[�L, �U] behaves under normal demand; in the next section we use simulation to examine
the behavior of [�L, �U] under nonnormal distributions.

Write � � 1/N ¥i�1
N �i and � � 1/N ¥i�1

N �i , the “average” mean and standard
deviation, and define a vector x of xi such that �i � xi� for all i and ¥i�1

N xi � N. If xi � 1
for all i, then all SKUs contribute equally to total uncertainty. Write �x

2 � 1/N ¥i�1
N ( xi

� 1)2 for the variance of the xi , a measure of how total uncertainty is dispersed among the
N SKUs. The higher �x

2, the more uncertainty is concentrated among fewer SKUs. Covariances
are given by �ij � �i�j
ij � xixj
ij�

2, so that � � �2x�Rx with R the correlation matrix. Assume
the coefficients of variation of demand �i/�i are small so that the probability of negative demand
can be ignored; for simplicity, we assume that all SKUs have the same penalty and holding
costs. Total costs for product i in the multivariate normal distribution are then

TC�yi � � h�yi � �i � � �p � h� �
y

�

�zi � yi �dFi�zi � � �hki � �p � h�In �ki ���i (2)

where ki � ( yi � �i)/�i and where In is the unit normal loss function (Eppen and Schrage
1981):

In�k� � �
k

�

� z � k�
1

�2�
e�z2/ 2dz �

1

�2�
e�k2/ 2 � k�1 � ��k�
 (3)

The term In(k) is convex decreasing in k, and limk2�� In(k) � � and limk1�� In(k) � 0.
At optimum, total expected costs for product i are

TC*i � �hk*i � �p � h�In �k*i �
�i � �hk*i � �p � h�In �k*i �
xi�. (4)

The optimal safety factor is the same for each product: k*i � k*. Lemma 1 is well known.

LEMMA 1. After pooling N SKUs into 1, demand for the consolidated product is N(�AP,
�AP

2 ), where �AP � N� and, letting � be the N-dimensional vector with all elements equal to
one,

�AP � ��
i�1

N

�i
2 � 2 �

i�1

N�1 �
j�i�1

N

�i�j
ij � ����� � ��x�Rx. (5)

Two special cases help us interpret this expression:
● When 
ij � 0 for all nondiagonal elements, so that R � I (the N-dimensional

unit matrix), then �AP � ��x�x � ��N(�x
2 � 1), where �x

2 � 1/N ¥i�1
N xi

2
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� (1/N ¥i�1
N xi)

2 � 1/N ¥i�1
N xi

2 � 1 because ¥i�1
N xi � N. Clearly, �AP increases

in �x
2, the concentration of uncertainty; it is minimized at x � �, in which case �x

2 � 0
and �AP � ��N.

● If all SKUs are identically distributed, i.e., x � �, then �AP � ��N � ¥i�j 
ij. Now,
�AP is increasing in all 
ij as expected, and R � I gives �AP � ��N.

In general, 0 � �AP � N�. Total costs before pooling and after pooling are also well known.

LEMMA 2. For any safety factor k, total inventory level and expected cost for the system
with N SKUs before pooling are given by

yBP � N� � Nk� (6)
TCBP � N��hk � �p � h�In �k�
. (7)

LEMMA 3. For any safety factor k, total inventory level and total expected cost for the
system after pooling N SKUs into 1 are given by

yAP � N� � k��x�Rx (8)

TCAP � ��x�Rx �hk � �p � h�In �k�
. (9)

Note that defining suboptimality in terms of (k � k*) is not equivalent to our definition of
�. For normal demand, (k � k*) � �(�/� � 1), so the conversion factor between (k � k*)
and � depends on � and hence is different before pooling and after pooling. Later, we will
see that examining � highlights some counterintuitive effects that are hidden when using (k
� k*). [The same is true using (k � k*)/k* as measure of suboptimality.] We can now
quantify the value of pooling under an optimal or suboptimal inventory policy, and the value
of improving inventory policy before pooling and after pooling. Actually arriving at the
optimal policy is hard to do in practice, so using the optimal policy as a benchmark gives an
upper bound on the benefits of improving inventory policy.

PROPOSITION 3. The effects of optimizing inventory policy before pooling and after pooling are

�yBP � y*BP� � N��k � k*� 	 ��x�Rx �k � k*� � �yAP � y*AP� (10)

TCBP � TC*BP � N��h�k � k*� � �p � h��In �k� � In �k*�



	 ��x�Rx �h�k � k*� � �p � h��In �k� � In �k*�

 � TCAP � TC*AP. (11)

Proposition 3 shows that the value of improving inventory policy depends on (k � k*), the
extent to which the safety factor k is above or below the optimal k*, and on In(k) � In(k*),
where k* itself depends on p/(p � h). Because of the convexity of TC, we know that the cost of
suboptimality is convex increasing in �k � k*�. The value of improving inventory policy before
pooling is also increasing in N and �, as expected. Finally, by the inequality in (10), the absolute
deviation from the optimal inventory level is greater before pooling than after pooling.

PROPOSITION 4. The effects of pooling under a suboptimal inventory policy are

yBP � yAP � �N � �x�Rx�k� (12)

TCBP � TCAP � �N � �x�Rx���hk � �p � h�In �k�
 	 TC*BP � TC*AP 	 0. (13)

For the effects of pooling under an optimal policy, substitute k* for k in (12) and (13).
Proposition 3 shows how the value of improving a suboptimal inventory policy depends

on the suboptimality (k � k*), and Proposition 4 shows that the effect of pooling is greater
under suboptimal policies. To further interpret Propositions 3 and 4, let us return to the two
earlier special cases, which confirm what is known (intuitively or explicitly) about the effects
of pooling. If R � I, then the cost reduction depends on (N � �x�x) � � (N
� �N(�x

2 � 1))�, which is decreasing in �x
2 and maximized at �x

2 � 0, or x � �. The more
evenly uncertainty is spread out among the SKUs, the greater the benefits of pooling.
Similarly, if x � �, the cost reduction depends on (N � �N � ¥i�j 
ij)�, which is
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decreasing in 
ij. The more positive correlation among demands, the lower the value of
pooling. One can restate Proposition 1 for the multivariate normal case and show that there
always exists a pooling range [kL, kU], which contains the optimal safety factor k* such that
pooling is preferred over optimizing inventory policy if and only if the current policy k lies
within [kL, kU]. For the multivariate normal case, one can go further: (13) implies that the
value of pooling is convex increasing in �k � k*�, i.e., the value of pooling is greater as the
current inventory policy is more suboptimal, when suboptimality is expressed in terms of
deviation from the optimal safety factor. Our numerical results in Section 5 show that, with
our more general definition of suboptimality, we cannot say that the value of pooling
increases with suboptimality, even for normal demand.

5. Comparing Pooling and Improving Inventory Policy for Normal and
Nonnormal Multivariate Distributions: Numerical Experiments

In this section, we report on an extensive Monte Carlo simulation study to examine how
the trade-off between pooling and improving inventory policy depends on the distribution,
the critical fractile � � p/( p � h), the correlation structure, and the concentration of
uncertainty. We generate bivariate normal random vectors, and then use Johnson’s (1987)
translation system to transform them to any of the three related distributions (lognormal,
logitnormal, and sinh�1-normal). Let X have a normal distribution with mean � and
covariance matrix �. The lognormal is then obtained by applying the transformation Zi

� �i e
xi � 
i for some parameters �i and 
i; the sinh�1-normal is obtained from Zi � �i sinh

(Xi) � 
i; and the logitnormal is obtained from Zi � �i[1 � eXi]�1 � 
i. See Johnson
(1987, Chapter 5) for an extensive discussion of these distributions and their characteristics;
they allow a wide range of behaviors, including skewed and multimodal distributions, which
are fundamentally different from the normal distribution. For instance, the logitnormal
distribution with different variances can lead to multimodal densities. Generating correlated
multivariate random vectors with other distributions is a major challenge in simulation
(Johnson 1987, pp. 3–4).

Following most of Johnson (1987) we focused on the case N � 2, as computation time
increased drastically with N � 2; in the next section we examine the trade-off between
pooling and improving inventory policy using empirical demand data with N � 2. For all
four distributions, we set �1 � �2 � 1, and used the following scenarios for the other
parameters. We used three values of concentration of uncertainty: �1 � �2 � 0.2 so that �x

2

� 0, �1 � 0.1 and �2 � 0.3 so that �x
2 � 0.25, and �1 � 0.05 and �2 � 0.35 so that �x

2

� 0.56. We used seven values for the correlation coefficient: 
12 � {�0.7, �0.5, �0.3, 0,
0.3, 0.5, 0.7}. As in Johnson, we specify the covariance matrix before applying the
transformations; Johnson (1987) gives the expressions for computing the corresponding
covariance structure after transformation. We used three values for p/( p � h): p � 0.9 and
h � 0.1 so that p/( p � h) � 0.9, p � 0.5 and h � 0.5 so that p/( p � h) � 0.5, and
p � 0.1 and h � 0.9 so that p/( p � h) � 0.1. This corresponds to an experimental design
with 4 
 3 
 7 
 3 � 252 scenarios. Additional simulations were performed but not reported
here because they do not provide further insights. The �i and �i values make the coefficient
of variation low enough to avoid negative demands.

The simulation study was based on a Monte Carlo approach; we generated random demand
vectors, determined the costs under each demand realization, and then numerically integrated
to calculate expected costs for a given inventory policy. We used MatLab6.0, and every
experiment was performed with 120,000 random observations (each is a two-dimensional
demand vector) and 2,000 intervals (for the numerical integration). This led to sufficient
accuracy for our purposes; some experiments were performed with more observations and
intervals, but no relevant differences existed and computational time drastically increased.
We used the same set of 120,000 normal random vectors for all experiments to allow more
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accurate comparisons. We repeated the experiments with several other sets of random
numbers but the results were very similar.

Tables 1–6 summarize the results obtained from the simulation. Tables 1–3 show the [�L,

TABLE 1

Pooling Ranges [�L, �U] for p � 0.9 and h � 0.1

Normal Lognormal Sinh�1-Normal Logitnormal

�L �U �L �U �L �U �L �U


12 � �0.7 �x
2 � 0 �19.9% 45.9% �25.4% 59.5% �29.7% 70.7% �5.5% 11.6%

�x
2 � 0.25 �19.6% 40.0% �24.9% 54.0% �29.6% 62.8% �5.2% 10.4%

�x
2 � 0.56 �18.2% 32.0% �24.7% 43.2% �28.2% 50.4% �4.8% 8.6%


12 � �0.5 �x
2 � 0 �20.0% 38.8% �25.8% 52.2% �29.5% 60.6% �5.5% 9.9%

�x
2 � 0.25 �19.2% 34.6% �25.0% 47.8% �28.9% 55.5% �5.3% 9.0%

�x
2 � 0.56 �17.5% 28.6% �23.8% 38.6% �26.6% 45.6% �4.8% 7.6%


12 � �0.3 �x
2 � 0 �19.2% 33.2% �25.2% 47.0% �29.2% 53.6% �5.5% 8.6%

�x
2 � 0.25 �18.3% 30.1% �24.4% 42.0% �28.1% 48.9% �5.0% 7.9%

�x
2 � 0.56 �16.9% 25.3% �22.3% 35.5% �25.9% 40.3% �4.5% 6.7%


12 � 0 �x
2 � 0 �17.7% 27.0% �23.6% 38.7% �27.1% 43.6% �4.9% 6.9%

�x
2 � 0.25 �16.7% 24.3% �22.6% 35.5% �25.8% 40.1% �4.6% 6.6%

�x
2 � 0.56 �15.0% 20.9% �20.3% 30.1% �22.8% 34.0% �4.1% 5.5%


12 � 0.3 �x
2 � 0 �15.2% 20.8% �21.3% 31.0% �24.3% 33.8% �4.2% 5.5%

�x
2 � 0.25 �14.1% 19.0% �20.1% 28.3% �22.6% 31.5% �3.9% 5.1%

�x
2 � 0.56 �12.8% 16.7% �17.4% 24.4% �20.2% 26.9% �3.5% 4.5%


12 � 0.5 �x
2 � 0 �12.8% 16.6% �18.9% 26.2% �20.9% 28.5% �3.6% 4.3%

�x
2 � 0.25 �12.3% 15.4% �18.0% 22.8% �19.8% 26.1% �3.4% 4.1%

�x
2 � 0.56 �11.1% 13.6% �15.6% 19.9% �17.4% 21.8% �3.0% 3.6%


12 � 0.7 �x
2 � 0 �10.3% 12.3% �15.3% 19.0% �16.9% 21.2% �2.9% 3.2%

�x
2 � 0.25 �9.6% 11.5% �14.0% 17.7% �16.1% 19.2% �2.7% 3.1%

�x
2 � 0.56 �8.5% 10.1% �12.5% 15.3% �13.6% 16.2% �2.4% 2.7%

TABLE 2

Pooling Ranges [�L, �U] for p � 0.5 and h � 0.5

Normal Lognormal Sinh�1-Normal Logitnormal

�L �U �L �U �L �U �L �U


12 � �0.7 �x
2 � 0 �35.4% 35.5% �32.3% 36.0% �43.3% 46.9% �9.6% 9.4%

�x
2 � 0.25 �33.7% 34.0% �29.8% 35.4% �41.2% 46.0% �9.3% 8.6%

�x
2 � 0.56 �30.7% 30.7% �26.5% 32.8% �36.8% 42.3% �8.6% 7.7%


12 � �0.5 �x
2 � 0 �34.6% 34.6% �31.9% 34.9% �42.1% 45.8% �9.4% 9.1%

�x
2 � 0.25 �32.7% 32.2% �28.9% 33.9% �39.7% 43.6% �8.9% 8.5%

�x
2 � 0.56 �29.3% 29.3% �26.1% 30.4% �35.7% 40.8% �8.1% 7.5%


12 � �0.3 �x
2 � 0 �33.1% 32.8% �30.2% 33.4% �40.9% 43.7% �9.0% 8.7%

�x
2 � 0.25 �31.1% 30.9% �28.1% 31.9% �38.1% 42.2% �8.5% 8.1%

�x
2 � 0.56 �27.6% 27.6% �25.5% 29.3% �33.8% 36.8% �7.6% 7.1%


12 � 0 �x
2 � 0 �29.5% 29.5% �27.9% 30.2% �37.5% 38.7% �8.1% 7.9%

�x
2 � 0.25 �27.7% 27.8% �25.8% 29.0% �34.5% 37.3% �7.7% 7.3%

�x
2 � 0.56 �24.3% 24.3% �23.2% 25.2% �30.2% 32.8% �6.8% 6.3%


12 � 0.3 �x
2 � 0 �25.6% 25.9% �23.5% 26.0% �31.6% 34.4% �7.0% 6.7%

�x
2 � 0.25 �23.6% 23.9% �22.2% 23.9% �30.1% 31.2% �6.5% 6.2%

�x
2 � 0.56 �20.9% 20.7% �20.1% 21.4% �25.6% 28.8% �5.7% 5.5%


12 � 0.5 �x
2 � 0 �21.9% 21.5% �20.8% 22.1% �27.8% 28.7% �6.0% 5.8%

�x
2 � 0.25 �20.5% 20.0% �19.6% 20.6% �26.1% 27.0% �5.5% 5.4%

�x
2 � 0.56 �17.7% 18.2% �17.5% 18.7% �22.6% 24.3% �4.8% 4.7%


12 � 0.7 �x
2 � 0 �17.1% 17.1% �16.9% 16.9% �21.8% 23.3% �4.6% 4.6%

�x
2 � 0.25 �15.8% 15.6% �15.1% 16.0% �20.2% 21.6% �4.3% 4.2%

�x
2 � 0.56 �13.8% 13.8% �13.2% 14.1% �17.8% 19.0% �3.8% 3.7%
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�U] intervals for each scenario, and Tables 4–6 show how pooling reduces total costs. In the
first row in Table 1, [�L, �U] � [�19.9% � 45.9%] for the normal distribution. This
means that for any inventory level between 81.1% and 145.9% of the optimal inventory level,

TABLE 3

Pooling Ranges [�L, �U] for p � 0.1 and h � 0.9

Normal Lognormal Sinh�1-Normal Logitnormal

�L �U �L �U �L �U �L �U


12 � �0.7 �x
2 � 0 �72.0% 31.8% �44.4% 24.0% �76.7% 37.0% �18.2% 7.8%

�x
2 � 0.25 �67.5% 32.3% �42.6% 22.0% �69.7% 34.2% �16.7% 8.1%

�x
2 � 0.56 �59.7% 33.5% �37.0% 19.8% �64.4% 37.3% �13.9% 8.1%


12 � �0.5 �x
2 � 0 �70.6% 36.8% �41.7% 25.0% �72.6% 41.1% �16.7% 8.5%

�x
2 � 0.25 �64.9% 36.3% �38.6% 22.4% �67.3% 37.7% �15.3% 8.4%

�x
2 � 0.56 �57.0% 35.6% �33.9% 20.5% �61.5% 35.3% �12.9% 8.0%


12 � �0.3 �x
2 � 0 �67.3% 39.4% �37.5% 25.7% �70.9% 45.6% �15.4% 8.9%

�x
2 � 0.25 �62.7% 37.8% �35.1% 22.7% �65.9% 40.8% �14.1% 8.4%

�x
2 � 0.56 �53.5% 35.8% �29.5% 21.2% �56.3% 36.0% �11.9% 7.9%


12 � 0 �x
2 � 0 �62.5% 42.6% �33.1% 24.2% �64.7% 47.0% �13.4% 8.6%

�x
2 � 0.25 �58.1% 39.2% �30.7% 22.3% �62.6% 43.2% �12.3% 8.3%

�x
2 � 0.56 �49.5% 35.7% �27.6% 19.0% �52.0% 36.2% �10.5% 7.4%


12 � 0.3 �x
2 � 0 �55.6% 41.5% �27.1% 22.3% �57.7% 44.4% �11.1% 8.0%

�x
2 � 0.25 �50.5% 37.7% �25.5% 20.0% �52.0% 39.1% �10.2% 7.5%

�x
2 � 0.56 �43.2% 32.6% �21.8% 18.4% �43.3% 36.4% �8.6% 6.7%


12 � 0.5 �x
2 � 0 �48.9% 39.6% �22.8% 19.7% �52.9% 43.7% �9.5% 7.4%

�x
2 � 0.25 �44.0% 34.3% �21.9% 17.9% �47.5% 40.1% �8.6% 6.8%

�x
2 � 0.56 �37.7% 30.4% �18.8% 15.2% �36.6% 31.4% �7.3% 5.9%


12 � 0.7 �x
2 � 0 �40.3% 34.0% �17.5% 15.7% �42.4% 37.4% �7.2% 6.1%

�x
2 � 0.25 �36.2% 29.8% �16.0% 13.4% �37.7% 35.4% �6.6% 5.5%

�x
2 � 0.56 �30.3% 25.1% �14.7% 13.9% �31.7% 26.9% �5.6% 4.9%

TABLE 4

Cost Reduction due to Pooling for p � 0.9 and h � 0.1 under Optimal Policy

Normal Lognormal Sinh�1-Normal Logitnormal


12 � �0.7 �x
2 � 0 61.0% 56.8% 59.0% 56.1%

�x
2 � 0.25 54.0% 45.6% 47.0% 52.8%

�x
2 � 0.56 43.3% 32.1% 33.4% 45.5%


12 � �0.5 �x
2 � 0 50.0% 49.1% 50.6% 45.1%

�x
2 � 0.25 44.8% 40.2% 41.0% 42.5%

�x
2 � 0.56 36.5% 28.5% 29.5% 37.4%


12 � �0.3 �x
2 � 0 40.9% 42.5% 42.3% 36.4%

�x
2 � 0.25 36.9% 34.8% 35.2% 34.6%

�x
2 � 0.56 30.6% 25.2% 25.5% 30.5%


12 � 0 �x
2 � 0 29.3% 32.0% 31.9% 25.5%

�x
2 � 0.25 26.8% 26.5% 26.8% 24.5%

�x
2 � 0.56 22.4% 19.3% 19.5% 21.9%


12 � 0.3 �x
2 � 0 19.5% 22.2% 21.9% 16.8%

�x
2 � 0.25 17.8% 18.4% 18.5% 15.7%

�x
2 � 0.56 15.0% 13.4% 13.6% 14.6%


12 � 0.5 �x
2 � 0 13.4% 15.7% 15.4% 11.4%

�x
2 � 0.25 12.4% 13.3% 12.8% 11.1%

�x
2 � 0.56 10.7% 9.6% 9.6% 10.0%


12 � 0.7 �x
2 � 0 7.8% 9.3% 9.2% 6.7%

�x
2 � 0.25 7.1% 7.8% 7.8% 6.4%

�x
2 � 0.56 6.2% 5.8% 5.8% 5.9%
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pooling is better than optimizing inventory policy. The corresponding entry in Table 4 shows
that (TCBP( y*) � TCAP( y*))/TCBP( y*) � 61.0%, the cost reduction achievable by
pooling under an optimal policy. We discuss the effects of suboptimal policies, demand
distribution, correlation structure, critical fractile �, and concentration of uncertainty sepa-

TABLE 5

Cost Reduction due to Pooling for p � 0.5 and h � 0.5 under Optimal Policy

Normal Lognormal Sinh�1-Normal Logitnormal


12 � �0.7 �x
2 � 0 61.2% 53.7% 56.2% 60.0%

�x
2 � 0.25 53.9% 48.8% 50.1% 53.8%

�x
2 � 0.56 43.2% 39.5% 39.8% 43.6%


12 � �0.5 �x
2 � 0 50.2% 44.4% 46.2% 49.3%

�x
2 � 0.25 44.7% 40.3% 41.7% 44.7%

�x
2 � 0.56 36.5% 33.2% 33.7% 37.0%


12 � �0.3 �x
2 � 0 40.8% 36.7% 38.0% 40.4%

�x
2 � 0.25 37.1% 33.5% 34.4% 36.9%

�x
2 � 0.56 30.4% 27.7% 28.2% 30.8%


12 � 0 �x
2 � 0 29.4% c26.7% 27.3% 29.2%

�x
2 � 0.25 26.7% 24.4% 24.9% 26.8%

�x
2 � 0.56 22.4% 20.3% 20.7% 22.9%


12 � 0.3 �x
2 � 0 19.5% 17.9% 18.1% 19.4%

�x
2 � 0.25 17.9% 16.3% 16.5% 18.0%

�x
2 � 0.56 14.9% 13.7% 13.8% 15.3%


12 � 0.5 �x
2 � 0 13.4% 12.3% 12.4% 13.4%

�x
2 � 0.25 12.5% 11.3% 11.4% 12.5%

�x
2 � 0.56 10.5% 9.5% 9.7% 10.6%


12 � 0.7 �x
2 � 0 7.7% 7.3% 7.2% 7.9%

�x
2 � 0.25 7.2% 6.6% 6.7% 7.3%

�x
2 � 0.56 6.1% 5.6% 5.7% 6.2%

TABLE 6

Cost Reduction due to Pooling for p � 0.1 and h � 0.9 under Optimal Policy

Normal Lognormal Sinh�1-Normal Logitnormal


12 � �0.7 �x
2 � 0 61.5% 48.9% 53.5% 62.6%

�x
2 � 0.25 54.0% 46.3% 49.9% 53.0%

�x
2 � 0.56 43.2% 41.2% 42.9% 41.2%


12 � �0.5 �x
2 � 0 49.9% 38.7% 43.0% 52.0%

�x
2 � 0.25 44.8% 36.7% 40.4% 45.3%

�x
2 � 0.56 36.6% 33.4% 35.1% 35.7%


12 � �0.3 �x
2 � 0 40.9% 30.6% 34.6% 43.2%

�x
2 � 0.25 37.1% 29.6% 32.8% 38.2%

�x
2 � 0.56 30.6% 27.2% 28.5% 30.3%


12 � 0 �x
2 � 0 29.2% 21.5% 24.6% 31.5%

�x
2 � 0.25 26.9% 20.6% 23.3% 28.1%

�x
2 � 0.56 22.4% 18.9% 20.2% 22.7%


12 � 0.3 �x
2 � 0 19.2% 14.0% 16.0% 21.0%

�x
2 � 0.25 17.8% 13.3% 15.1% 19.0%

�x
2 � 0.56 15.1% 12.4% 13.5% 15.5%


12 � 0.5 �x
2 � 0 13.4% 9.5% 10.9% 14.8%

�x
2 � 0.25 12.3% 9.1% 10.2% 13.2%

�x
2 � 0.56 10.5% 8.5% 9.2% 10.8%


12 � 0.7 �x
2 � 0 7.7% 5.4% 6.3% 8.6%

�x
2 � 0.25 7.3% 5.3% 6.0% 7.8%

�x
2 � 0.56 6.2% 5.0% 5.4% 6.5%
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rately. Figure 2 illustrates the effect of changes in correlation and in concentration of
uncertainty on the costs before pooling and after pooling and on the pooling range [�L, �U]
for four scenarios, to highlight the effect of individual parameters (
, �x

2, and �).
1. Suboptimal inventory policy. Clearly, when � � 0, TCBP(�) � TCAP(�) 	 0, because

after pooling one can always replicate the before pooling outcome for any demand realiza-
tion. However, Figure 2 shows that as � deviates from 0, it is possible to have TCBP(�)
� TCAP(�) � 0, i.e., total costs increase after pooling. If one defines suboptimality in the
more restricted way, as (k � k*), for normal distributions, we know from Proposition 4 that
TCBP(k) � TCAP(k) 	 0 for all k, from which one would infer that pooling always reduces
costs. By using the, in our view, more appropriate definition of suboptimality defined by �,
such possibilities are not obscured. Although this may sound counterintuitive, one has to
realize that this occurs because we are changing the total inventory level in order to keep the
suboptimality of the inventory policy constant before pooling and after pooling. For instance,
if � � �0.2, indicating that current inventory before pooling is 20% lower than the optimal
level, and the optimal total inventory after pooling is lower than before pooling, the
corresponding suboptimal inventory level after pooling is 20% below an already lower after
pooling optimal level.

FIGURE 2. Total costs before pooling and after pooling under normal demand.
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2. Demand distribution. Perhaps the most intriguing finding is how robust the value of
pooling is under nonnormal demand distributions. The percentage cost reductions under an
optimal policy do not vary dramatically between distributions. The pooling ranges [�L, �U]
seem to depend more heavily on the distribution. Particularly, the ranges are much smaller
for the logitnormal distribution than for the others: for instance, in Table 2, when � � 0.5,
when there is no correlation and when variances are equal, pooling is better than improving
inventory policy only if the current inventory level lies within approximately 8% of the
optimal inventory policy. For the other distributions, the range stretches between 27.9% and
38.7% on either side of the optimal policy. To summarize, in determining whether to focus
on pooling or on improving inventory policy, the demand distribution does have an impact,
while for determining the cost reduction, the distribution has relatively little impact.

3. Correlation. As expected, higher correlation leads to lower cost reductions. What is
remarkable again is the similarity across distributions. In Table 5, taking p � 0.5 and h
� 0.5 and equal variances, the value of pooling varies from 7.2% to 7.9% at 
12 � 0.7 and
from 53.7% to 61.2% at 
12 � �0.7. Consequently, the pooling ranges also shrink as
correlation increases. For instance, in Table 2, with p � 0.5 and h � 0.5 and equal variances
under a normal distribution, the pooling range increases from �17.1% at 
12 � 0.7 to
�35.5% at 
12 � �0.7. Simulations with higher (absolute) values of 
12 were consistent with
this but are not reported because the accuracy of the simulation results deteriorates as 
12 gets
closer to �1. Comparing Figures 2a and c, we observe a similar effect.

4. Critical fractile �. The higher � is, the more the pooling range is skewed “ to the right,”
and conversely for low values of �. In other words, when � is high, pooling is preferred over
improving inventory policy when current inventory is not too much below optimal but it can
be significantly above optimal. Compare, for instance, the pooling range for the normal under
equal variances and 
12 � �0.7; in Table 1, with � � 0.9, pooling is preferable whenever
current inventory lies within [�19.9%, �45.9%] from optimal, while in Table 3 with �
� 0.1, it can lie within [�72.0%, �31.8%] from optimal. This behavior is intuitive: when
� is high, costs increase sharply as suboptimality factor � drops below zero (i.e., as inventory
drops below optimal), and increase slowly as � increases above zero (i.e., as inventory
increases above optimal). Note that these percentages are expressed relative to optimal total
inventory level, not just the safety stock component, so they would be considerably higher
still in cases where higher demand uncertainty induces higher safety stock. Note also that the
optimal inventory levels y*i are much lower in Table 3 (because � is lower), so the ranges,
that are defined based on the suboptimality factor �i � ( yi � y*i )/y*i, will be much wider.
A similar effect may be observed by comparing Figures 2c and d.

5. Concentration of uncertainty. The value of pooling is lower when uncertainty is more
concentrated. For instance, in Table 4, under normal demand with 
12 � �0.5, p � 0.9,
and h � 0.1, the cost reduction due to pooling decreases from 50.0% to 36.5% as uncertainty
is more concentrated. Similar behavior occurs for the pooling range: the higher �x

2 is, the
narrower [�L, �U] tends to be. When �1 � 0.001 and �2 � 0.399 so that �x

2 � 0.99, with
no correlation and p � 0.5 and h � 0.5, pooling reduces costs by only about 4%. Therefore,
as �x

2 increases to its theoretical maximum of 1 for N � 2, the value of pooling tends to zero,
as expected. Comparing Figures 2a and b reveals a similar effect. In the empirical data with
larger N, the effect of concentration of uncertainty is even stronger.

Now that we have examined various nonnormal demand distributions with N � 2, let us
turn to our empirical demand data with N � 2.

6. SKU Rationalization in Practice

The objective of this section is to illustrate the results obtained in Sections 4 and 5 using
highly erratic demand data and high N values. We use 2 years of demand data from Pellton
International, a chemical manufacturer acting as a supplier to automotive suppliers. For
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reasons of confidentiality, the true company name is disguised; we have also omitted details
of lead times in these illustrations.

6.1. Pellton International

A more detailed description of Pellton International can be found in Corbett, Blackburn,
and Van Wassenhove (1997, 1999). Pellton supplies rolls of plastic to automotive suppliers,
ranging in width from 60 cm to 130 cm wide, in 1-cm increments; moreover, there are several
different chemical formulations, colors, etc., leading to a total of over 2,000 SKUs. We focus
on their two main formulations, grades S1 and S2, and only on the clear (uncolored) plastic.
Within grade S2, there is a special formulation for a key customer, grade S2/P. The plastic
is produced in rolls 320 cm wide and slit into rolls of the desired width; this slitting is an
integrated part of the production line. Because of the inflexibility of the process, Pellton
needs to make to stock. They constantly experienced stockouts and excessive inventory costs
and were interested in applying some form of SKU rationalization. There were two options:

● A program called “mastersizes,” in which rolls would only be produced in 5-cm
increments; the customers would then trim the excess material themselves, which was
not a problem, because the customers have to trim the plastic to shape anyway. This
would reduce the number of SKUs by approximately a factor 5; this reduction is only
approximate, because not all sizes with 1-cm increments are currently demanded.

● Postponement, separating the slitting operation from the production line. This would
allow Pellton to produce rolls of 320 cm and to postpone slitting to size until firm orders
were received. This option clearly would be preferable but also required more capital
investment, whereas the mastersizes program was relatively easy to implement.

We should emphasize that it is not our intention to provide an exact estimate of the value to
Pellton of pooling, because more specifics of their processes would need to be taken into
account. Rather, we merely use the demand patterns observed by Pellton for illustrative
purposes.

6.2. Demand Structure

Table 7 shows, among others, the number of SKUs produced and shipped in the 2-year
period considered for each grade and several measures of concentration of demand and of
uncertainty. The top graph in Figure 3 shows weekly demand for the highest-volume S1
SKU, accounting for 17.4% of total demand for grade S1. The lower graph gives the
frequency distribution. Aggregate weekly demand is similarly erratic. Incidentally, this is an
excellent illustration of the bullwhip effect: automotive assembly schedules do not vary
drastically from week to week, but the graphs show that demand two levels upstream in the
supply chain can be totally distorted.

We found that the correlation between SKUs for every product (S1, S2, and S2/P) within
weeks is in the (�0.1, �0.1) interval, which can be considered negligible. The demand data could
not be explained adequately by any reasonable distribution, after extensive goodness-of-fit tests
(using Crystal Ball and Maple). We used three standard tests: the chi-squared and the empirical
distribution function–based (EDF) tests, and the Kolmogorov-Smirnov (K-S) and Anderson-
Darling (A-D) tests. Stephens (1984) concludes that A-D is the recommended omnibus test
statistic for an EDF with unknown parameters, especially when tail behavior of the distribution
is important, as when studying inventory policies. The A-D statistic is a variation on the standard
K-S test and for n observations is defined as (Anderson and Darling 1954)

A2 � �
1

n ��i�1

n

�2i � 1��ln zi � ln�1 � zn�1�i �
� � n (14)

We also decomposed observed demand into two components: a Bernoulli distribution with
empirically determined probability pi for each SKU i of having positive demand in any given
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week, combined with a continuous distribution for the size of that demand. We fitted a wide
range of distributions and found that gamma, Weibull, and lognormal performed the best, but
even they were rejected more often than accepted and none performed well for a large
number of SKUs. We conclude that these empirical distributions allow us to analyze pooling
under highly erratic demand data, where concentration of uncertainty is not evenly dispersed
and with higher N, which complements the theoretical and numerical analysis of pooling
performed so far.

6.3. Pooling Under Optimal and Suboptimal Inventory Policies

The stockout and holding costs were estimated by Pellton to be p � 0.0769 and h
� 0.00278 ECU/m2 per week, respectively, leading to a critical fractile � � 0.965. (At the

TABLE 7

Number of SKUs and Concentration of Demand and Uncertainty at Pellton

S1 S2 S2/P

No. of SKUs before pooling (N) 35 80 34
No. of SKUs with mastersizes 11 34 9
No. of SKUs after postponement 1 1 1
Percentage of total demand 35.7% 48.6% 15.7%
Concentration of uncertainty �x

2 1.39 2.70 1.65
(TCBP(y*) � TCMS(y*))/TCBP(y*) 34.6% 41.1% 34.6%
(TCBP(y*) � TCAP(y*))/TCBP(y*) 77.6% 72.6% 49.4%
[�L, �U] For mastersizes [�44.0%, 68.0%] [�39.0%, 77.4%] [�35.2%, 56.0%]
[�L, �U] For postponement [�51.0%, 209%] [�51.8%, 197%] [�44.8%, 81.3%]

FIGURE 3. Weekly demand pattern and frequency distribution for major product.
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time, 1 ECU, or European Currency Unit, was equal to $1.30). Using these costs and the
empirical demand data, we followed a methodology similar to that in Section 5. First, we
simulated total costs over the 2-year period using the empirical demand data to obtain y*i.
Second, we repeated this exercise after aggregating weekly demand for all SKUs of the same
grade into 5-cm increments (the “mastersizes” program), and after aggregating weekly
demand for all SKUs into a single SKU (slitting to order or postponement of customization).
In this way, we obtained TC(�)���0 for the three strategies and the three grades of the
product. For some SKUs with very low demand, optimal inventory was zero. The influence
of these SKUs on total costs was insignificant; therefore, we set the optimal y*i for these
SKUs to be small but positive, to avoid division by zero in the definition of the suboptimality
factor �. Third, we simulated total costs, for each of the three strategies, for inventory policies
characterized by any suboptimality factor � � [�1, 3], corresponding to inventory levels
from 0 to 3 times the optimal level. This gave us the graphs for total costs for all three
strategies, shown in Figure 4 (for grade S1). Fourth, we calculated the cost reductions and the
pooling ranges [�L, �U], shown in Table 7, by finding those values of � for which total costs
under mastersizes and total costs under postponement for that � were equal to total costs
before pooling when � � 0.

The results in Table 7 give us some useful insights. First, we see that the cost reductions
from full postponement are much greater than the cost reductions in the bivariate simulations,
as one would expect, given that N is much larger here. The impact of concentration of

FIGURE 4. Total costs before pooling and after pooling and the “pooling range” for S1, where M � mastersizes
and P � postponement.
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uncertainty becomes clear by comparing S1 with S2/P, with 35 and 34 SKUs, respectively.
The cost reduction for S1 is 77.6%, compared with only 49.4% for S2/P; this is because the
concentration of uncertainty is higher for S2/P (at 1.65) than for S1 (at 1.39). The pooling
ranges [�L, �U] in Table 7 are consistent with those in Table 1 for high � and no correlation:
the general behavior is the same, i.e., the range is clearly “skewed to the right,” but for the
empirical results, the range is wider, because N is higher. This effect can be seen graphically
by comparing Figures 1 and 4. Overall, the empirical results are consistent with the
theoretical results and the simulations.

7. Conclusions

In this study we have provided a simple framework for comparing the relative value of
implementing some form of pooling against that of improving a suboptimal inventory policy.
We find that the value of pooling can be negative under suboptimal inventory policies,
keeping the same degree of suboptimality before pooling and after pooling. However, there
is always a uniquely defined interval within which pooling leads to greater cost reduction
than optimizing inventory policy; outside that “pooling range,” the reverse is true. This range
expands with the number of SKUs. The simulation results show that the pooling range often
is very wide, meaning that pooling is more effective than optimizing inventory policy even
when current inventory levels are severely suboptimal. The simulations also suggest that the
cost reductions achievable by pooling, under an optimal inventory policy, are remarkably
robust across a wide range of distributions, but that the sensitivity of the value of pooling to
suboptimal policies is less robust. We studied the general multivariate normal case and
showed how the combination of correlation and concentration of uncertainty affects the value
of pooling.

The managerial implications are significant. This study delves more deeply into how and
when one might expect cost reductions to result from pooling. We provide evidence that the
value of pooling under an optimal policy is robust across a range of different distributions.
In practice, an optimal policy is normally impossible to find, because the demand distribu-
tions and cost parameters are not known with any precision. We find that the degree of
suboptimality one can have before improving the inventory policy is better than pooling
depends heavily on the distribution, and that, in some cases, pooling can increase costs when
a suboptimal policy is used. The estimates in Section 6 are very easy to perform in any
spreadsheet such as Excel using historical demand data; before implementing pooling, one
should, at the very least, conduct an analysis of this type to construct a rough estimate of the
potential benefits.

This work poses several interesting questions for future research. For instance, it could be
extended to include measures of service performance, and other distributions could be added
to the study.1
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