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ARTICLE OPEN

Water-driven microbial nitrogen transformations in biological
soil crusts causing atmospheric nitrous acid and nitric
oxide emissions
S. Maier 1,2,7✉, A. M. Kratz 2,7, J. Weber2, M. Prass 2, F. Liu 2,3, A. T. Clark1, R. M. M. Abed4, H. Su2, Y. Cheng 2, T. Eickhorst5,
S. Fiedler6, U. Pöschl2 and B. Weber 1,2✉

© The Author(s) 2021

Biological soil crusts (biocrusts) release the reactive nitrogen gases (Nr) nitrous acid (HONO) and nitric oxide (NO) into the
atmosphere, but the underlying microbial process controls have not yet been resolved. In this study, we analyzed the activity of
microbial consortia relevant in Nr emissions during desiccation using transcriptome and proteome profiling and fluorescence in situ
hybridization. We observed that < 30min after wetting, genes encoding for all relevant nitrogen (N) cycling processes were
expressed. The most abundant transcriptionally active N-transforming microorganisms in the investigated biocrusts were affiliated
with Rhodobacteraceae, Enterobacteriaceae, and Pseudomonadaceae within the Alpha- and Gammaproteobacteria. Upon desiccation,
the nitrite (NO2

−) content of the biocrusts increased significantly, which was not the case when microbial activity was inhibited. Our
results confirm that NO2

− is the key precursor for biocrust emissions of HONO and NO. This NO2
− accumulation likely involves two

processes related to the transition from oxygen-limited to oxic conditions in the course of desiccation: (i) a differential regulation of
the expression of denitrification genes; and (ii) a physiological response of ammonia-oxidizing organisms to changing oxygen
conditions. Thus, our findings suggest that the activity of N-cycling microorganisms determines the process rates and overall
quantity of Nr emissions.

The ISME Journal (2022) 16:1012–1024; https://doi.org/10.1038/s41396-021-01127-1

INTRODUCTION
Soils host one of the most diverse microbiomes on Earth [1] with
abundances of prokaryotes (bacteria and archaea) reaching
4 – 20 × 109 cm−3 [2]. These microorganisms are one of the
major biotic drivers of the biogeochemical cycles of carbon (C),
nitrogen (N), oxygen (O2), and sulphur [3]. Biological soil crusts
(biocrusts) represent a special type of soil microbiome, coloniz-
ing the uppermost layer of the soil in arid and semi-arid
ecosystems worldwide [4]. They are composed of a photoauto-
trophic upper layer with poikilohydric (desiccation-tolerant)
organisms, such as cyanobacteria, algae, lichens, and bryo-
phytes, and a layer below with heterotrophic microorganisms
[5–8]. Biocrusts occur globally in regions with dry microclimatic
conditions, such as drylands. They cover approximately 12% of
the Earth’s terrestrial surface, corresponding to an area of ~18 ×
106 km2 [9, 10]. In some desert regions, up to 70% of the soil
surface is covered by biocrusts [4].
Nitrogen represents an essential element for all living organisms

and most of them depend on bioavailable forms, like ammonium
(NH4

+) and nitrate (NO3
−), for growth. The availability of these

reactive forms of N relies on metabolically versatile microorgan-
isms carrying out N-transforming reactions, which are spatially

and/or temporally separated [11]. Microbial transformations of N
comprise the distinct processes of N fixation, assimilation into
organic N, ammonification (degradation of organic N), nitrification,
denitrification, and anaerobic ammonium oxidation (anammox)
[11]. The N-transforming processes have considerably different
fluxes, as the largest N fluxes are attributed to the interconversion
of ammonia (NH3) and organic N (ammonification and ammonium
assimilation) [11].
Nitrogen oxides (NOx= NO+ NO2) play a vital role in the

formation of ozone (O3) in the troposphere [12]. Tropospheric O3

is a component of photochemical smog and a short-lived climate
pollutant [13, 14]. Sources of tropospheric O3 are the stratosphere
and in situ photochemical O3 formation that is dependent on the
concentration of NOx [12]. Major sources of NOx in the tropo-
sphere are the combustion of fossil fuels, biomass burning, soil
microbial activity, and lightning [15]. Nitrous acid (HONO) is one of
the precursors of the hydroxyl radical (OH•). Through formation of
OH•, HONO regulates the oxidation capacity of the atmosphere,
which leads to the removal of most trace gases emitted by natural
and anthropogenic activities [16]. Proposed atmospheric reactions
for the formation of HONO involve gas phase and heterogeneous
reactions of NOx [17–21].
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Gas exchange studies showed that the atmospherically relevant
trace gases HONO and NO can be emitted from soil and biocrusts
[22–30]. About 15% of the NOx emissions to the atmosphere
originate from soils under natural vegetation [31], with substantial
amounts being emitted as NO due to the microbial processes
nitrification and denitrification [32–35]. Evidence suggests that
also biogenic sources of HONO exist in soil [23, 25]. It was
suggested that soil nitrite (NO2

−), derived from the biological
processes nitrification and denitrification, can be an important
source of atmospheric HONO [22] and that acidic conditions (at
least at the soil surface) are needed [26, 30, 36, 37]. More recently,
pure culture studies reported that ammonia-oxidizing bacteria
(AOB) and archaea (AOA) are involved in the formation of HONO
[23, 38], and thus also NH3 concentrations are likely relevant.
Hydroxylamine (NH2OH) has been identified as a further precursor
for the formation of HONO [38]. Peak fluxes of HONO were also
related to the abundance of nitrifying microbes in agricultural and
urban soil and stable isotope tracer experiments demonstrated
the microbial oxidation of NH4

+ to HONO [39]. Microbial NO3
−

reduction (denitrification) was described as another pathway for
HONO production via soil NO2

− in aerobic, agricultural soils [40].
For O2-limited microsites in wet soils, HONO emissions were
attributed to NO2

−, formed by microbial NO3
− reduction [41].

In multiple studies, NO and HONO emissions were strongly
related to the water content and emissions from drying soil, soil
bacteria, and biocrusts were minimum at high moisture, i.e., 100%
water holding capacity (WHC) [22, 23, 25, 26]. With progressive
moisture reduction, HONO and NO emissions started to rise,
reaching maximum values around 20–30% WHC. This study aims
to elucidate the microbial processes involved in HONO and NO
production. We combined continuous, dynamic NO and HONO
flux measurements with fluorescence in situ hybridization (FISH),
and transcriptome (microarray) and proteome profiling of drying
biocrusts. For this, biocrust samples were wetted to full WHC and
continuous flux measurements were conducted over the desicca-
tion cycle. At characteristic stages, i.e., at full WHC, before the
emission maximum, and shortly before complete drying, the flux
measurements were stopped to analyze the activity and
abundance of microorganisms. The functional gene microarray
(FGA) was applied to identify pathways and the taxonomic
identity of microorganisms involved in N transformations.
Fluorescence in situ hybridization was used to study the spatial
distribution and abundance of microbes that contribute to the N
cycle in biocrusts. In addition, the NO2

− and NO3
− content of the

samples was analyzed before and after a desiccation cycle, and in
a parallel approach the relevance of biotic processes was analyzed
by suppressing the biotic activity by methyl iodide (CH3I)
treatment of the samples. With this combined approach, we
aimed to (i) analyze the response of microorganisms to wetting
following a severe dry period, (ii) identify the organisms
responsible for the different N-transforming processes, and (iii)
investigate the temporal connection between microbial metabolic
activity and the emissions of HONO and NO. The results of this
study should help to elucidate the underlying microbial processes
causing the release of NO and HONO emissions by biocrusts.

MATERIAL AND METHODS
Study area and sampling
Samples were collected within the Succulent Karoo biome (Fig. S1),
stretching along the Atlantic coast of southwestern Namibia and South
Africa into the dry intermountain valleys and basins within the Cape
Fynbos biome [42]. The area is characterized by a semi-arid climate with an
annual precipitation of ~131mm occurring during the winter months (July
and August) and a mean air temperature of 19.4 °C [43, 44]. More
information on the study area is available in Haarmeyer et al. [43] and
additional information on the sampling procedure is available in the
Supplementary Material 1.

Overall experimental setup
Dynamic chamber measurements were conducted at 25 °C in the dark
(Fig. 1a). Biocrust samples were wetted with sterile, artificial rain water [45] up
to full WHC. At three characteristic stages during one desiccation cycle
(wetting and subsequent drying), the experiment was stopped, samples (n=
3) were removed from the chamber, and used for further analyses (Fig. 1b).
The first stage was 20–30min after wetting (T1; mean ~99% WHC; Table S1a),
the second at increasing emissions prior to maximum Nr fluxes (T2; mean
~30% WHC; 3.4–5 h after wetting; Table S1a), and the third shortly before
complete desiccation (T3; mean ~4% WHC; 6.3–8 h after wetting; Table S1a).
One part of the replicate of each desiccation stage was used for RNA
extraction and subsequent microarray analysis (GeoChip) to detect the
actively transcribed genes involved in biogeochemical cycling of N and a
second part was used for mass spectrometry-based metaproteomics. A third
part was used to quantify the number of bacteria, archaea and nitrite-
oxidizing bacteria (NOB) by means of CARD-FISH (Catalyzed Reporter
Deposition Fluorescence in situ Hybridization), but here only samples at T1
and T2 were investigated (Fig. 1b). In addition, we analyzed the NO2

− and
NO3

− contents before (Pre) and after a desiccation cycle (Post) and the
relevance of biotic processes was tested by suppressing the biotic activity by
means of a CH3I treatment. Furthermore, the O2 concentration was measured
using microsensors at T1 and T2. For details on soil analyses and local
measurements of O2, see Supplementary Material 1.

Dynamic chamber measurements
The measurement of HONO and NO emissions was conducted using a
dynamic Teflon chamber (Fig. 1a; Supplementary Material 1). The
emissions and mixing ratios of NO, HONO, NO2 (nitrogen dioxide) and
H2O were measured at the outlet of the chamber (volume of 0.047m3). NO
and NO2 were analyzed with a gas chemiluminescence detector equipped
with a blue light converter (Model 42 C, Thermo Electron Corporation,
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Fig. 1 Overview of the experimental setup. a Dynamic chamber
system for measurements of reactive nitrogen (Nr) fluxes; (b)
Representative emission curves/patterns with three stages during
a desiccation cycle (T1: early wetting; ~99% mean water holding
capacity (WHC); T2: intermediate drying; ~30% mean WHC; T3: late
drying; ~4% mean WHC). At each of the stages, the dynamic
chamber measurements were stopped and microarray, metapro-
teomic, and CARD FISH analyses were conducted (the latter only at
T1 and T2).
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Waltham, Massachusetts, USA). HONO was detected spectrophotometri-
cally using a long path absorption photometer (LOPAP, QUMA Elektronik &
Analytik GmbH, Wuppertal, Germany). Full details of the chamber
measurements are given in the Supplementary Material 1.

Quantification of bacterial, archaeal and NOB populations in
soil samples by CARD-FISH
CARD-FISH allows the quantification of soil microorganisms and the
analysis of spatial and temporal dynamics of native microbial populations
[46]. We utilized this method to obtain information on the cell number of
archaeal and bacterial cells and NOB at T1 and T2 in different biocrust
layers during the desiccation cycle.
Samples of the upper photoautotrophic (0– ~0.5 mm depth) and the

lower heterotrophic layer (~0.5–9mm depth) were analyzed at T1 and T2
to study the temporal and spatial distribution of the microbial populations.
For details on the CARD-FISH procedure, see the Supplementary Material 1.

GeoChip functional gene microarray
We applied the FGA GeoChip 5.0, manufactured by Agilent Technologies
(Santa Clara, CA, USA), to analyze the microbial transcriptional activity of
genes involved in N-cycling processes within biocrusts and its change over
the course of a desiccation cycle [47, 48]. As the probes on GeoChip are
based on gene sequences from pure cultures or from environmental
sequences of known taxonomic groups, the hybridization data enables an
assignment of the metabolic capabilities to bacterial and archaeal groups.
For information on RNA extraction, cDNA synthesis and data processing
see Supplementary Material 1.

Mass spectrometry-based metaproteomics
Mass spectrometry-based metaproteomics was used to determine which
proteins were produced during the three characteristic stages of
desiccation. The study of the entire set of proteins, resulting from cellular
processes of microorganisms within their natural environment, provides
insights into the microbial activity patterns [49]. Detailed information on
the analytical procedure is available in the Supplementary Material 1.

RESULTS
Nr emissions and mineral nitrogen content of biocrusts
Over the course of the flux measurements, the highest HONO and
NO emissions were observed at ~20% WHC (mean max. HONO:
71.82 ± 14.0 ng N m−2 s−1; mean max. NO: 153.49 ± 28.63 ng N
m−2 s−1). The maximum HONO and NO values at T2 were
significantly lower as compared to T3 (Fig. 2; HONOMax: DF= 4, t
value=−4.64, p= 0.01; NOMax: DF= 4, t value=−2.82, p= 0.048;
Table S1b), since the measurements were stopped before the
maximum emissions were reached. Also the integral emissions of
HONO and NO were higher for the samples stopped at T3 as
compared to those stopped at T2 (HONOInt: DF= 4, t value=
−17.69, p= 6.00 × 10−5; NOInt: DF= 4, t value=−7.08, p= 0.002;
Fig. 2; Table S1b).
Prior to full desiccation cycles, the NO2

−-N and NO3
−-N

contents of biocrusts were similar in control and CH3I treated
samples (Fig. 3a). After a desiccation cycle, the NO2

−-N and NO3
−-

N contents of the control samples tended to be higher, with a
statistically significant increase registered for the NO2

−-N content
(q= 6.607, p= 0.007, n= 3; Fig. 3a; Table S1c). Samples treated
with CH3I showed low NO2

−-N and NO3
−-N contents in a similar

range as the samples analysed before the desiccation experiment
(Fig. 3a).

Local measurements of O2
The average O2 saturation varied depending on the water content
of the biocrust. At T1 (~99% WHC), O2 was limited in the
photoautotrophic and more strongly in the heterotrophic layer. At
T2 (~30% WHC) we detected high O2 concentrations throughout
the biocrust (Fig. 3b).

Spatial and temporal distribution and abundance of microbial
populations
Cell numbers of bacteria and archaea were highest in the upper
layer at T2 showing values of 1.0 × 109 and 2.3 × 108 cells per gram
of soil, respectively (Fig. 3c). The number of bacterial cells per
gram of soil was 4.5–7.5 times higher than that of archaea and
about 1% of the bacteria belonged to the group of NOB (Fig. 3c).
Bacterial cell numbers and NOB cell numbers were significantly
higher in the upper layer compared to the one below (Bayesian
hierarchical model, p < 0.05, n= 3). In addition, the upper biocrust
layer showed significantly higher archaeal counts compared to the
lower layer for T1 and T2 (Bayesian hierarchical model, p < 0.05, n
= 3). For bacterial cell numbers and NOB, no statistically
significant differences were observed between T1 and T2. On
the contrary, the number of archaea in the upper biocrust layer
increased significantly by 72% from T1 to T2 (Bayesian hierarchical
model, p < 0.05, n= 3). In relation to all prokaryotic cells, the
percentage of archaea increased from 11.7% at T1 to 18.2% at T2,
whereas in the lower biocrust layer no clear change was
detectable. We were unable to detect signals when using the
probe Nso1225 for AOB (Table S2).

Microbes involved in nitrogen-transforming processes
Hybridization of cDNA was achieved for an average of 27.6% of
the 57,000 probes (Table S3), showing that the procedure worked
properly [48]. 13% of the probes with positive hybridization
signals could be allocated to the category of N-transforming
processes (Table S3). More explicitly, mRNA transcripts of genes
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encoding enzymes for N fixation, ammonification, nitrification,
denitrification, anammox, dissimilatory nitrate reduction to
ammonium (DNRA), and assimilatory nitrate reduction were
detected (Fig. 4a). Hierarchical cluster analysis (Figs. S2, S3) and
a nonmetric multidimensional scaling illustrated that the gene
expression profiles differed clearly between the three stages
during desiccation (Fig. 4b), with samples taken during the same
stage being more similar than those taken during different stages.
An analysis of similarity (ANOSIM) test supported the conclusion
that the metabolic potential was statistically different between the
three stages of desiccation (ANOSIM r= 0.876, p= 0.003, n= 3,
permutation= 9999). The overlap of the detected probes between
the samples is shown in Table S4 and S5.
Biocrust samples comprised a reservoir of transcripts (mRNA)

involved in the major pathways of the N cycle, suggesting
microbial contributions to the different N transformations (Fig. 4c).
The number of mRNAs detected differed widely, ranging from 0 to
~400, with the highest numbers observed for nifH and particularly
low numbers for genes encoding enzymes for nitrification and
anammox (Fig. S4). During the desiccation cycle, we observed a
rapid recovery of the metabolism, as at T1, 20–30min after
wetting, genes involved in all major N-transforming processes
were already induced (Fig. 4c, d). For most processes, the mRNA
levels of functional genes showed an increase with time, except
for anammox (Fig. 4c). For N fixation (nifH) and ammonification
(ureC), there was a rather homogeneous increase in gene
expression. Denitrification and assimilatory N reduction showed

a stronger increase during the first phase (from T1 to T2), and
DNRA during the second phase of the desiccation cycle (from T2
to T3) (Fig. 4d).
The number of N-transforming species increased significantly from

T1 to T2 (320 and 366 species) and from T2 to T3 (410 species;
Fig. 4e). Also on higher taxonomic levels, this overall increase could be
observed (Table S6). A large portion of the metabolically active
bacteria during the desiccation cycle belonged to Alpha- and
Gammaproteobacteria. The number of taxa involved in N-cycling
in biocrusts was quite similar for a large range of bacterial
families (ranging between ~5 and ~15) but there were also some
families that provided large numbers of taxa, as e.g., Rhodobacter-
aceae, Bradyrhizobiaceae, Enterobacteriaceae, and Pseudomonadaceae
(Fig. 4e).
The nifH genes, indicative of diazotrophic ability, were phylogen-

etically widespread, but particularly abundant among Euryarchaeota,
Firmicutes, Cyanobacteria, and Alphaproteobacteria (Fig. 5). The onset
of N fixation required more extended periods of recovery in
Methanoregulaceae, Methanomicrobiaceae, Clostridiales, Desulfomi-
crobiaceae, and Rhodobacteraceae as compared to the other
detected diazotrophs (Figs. 5, S5). Potential nitrification activity
was attributed to the domain of Archaea and the class of
Betaproteobacteria. The most abundant denitrifiers were concen-
trated within the phyla Bacteroidetes, Actinobacteria, and Proteobac-
teria. Ammonification genes were widely spread across the domains
Archaea, Bacteria, and Eukarya, and highest values of signal intensity
(for ureC), increasing during the desiccation cycle, were observed in
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organisms affiliated with Rhodobacteraceae, Streptomycetaceae, and
Enterobacteriaceae (Fig. S6).
The microarray profiles were compared to identify changes of gene

expression over the course of the desiccation cycle. Of the 2569
tested probes, the transcript levels of 221 probes changed

significantly during desiccation (Fig. 6a, c, e, g). Of these 221 probes,
some were expressed in several stages, others were only detected at
one point in time (expressed exclusively). Along with the increasing
number of detected probes, 7 (3.2%), 16 (7.2%), and 79 probes
(35.7%) were only detected at T1, T2, and T3, respectively (Fig. 6a, c,
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e). The analysis also revealed a strong overlap between the genes
induced during T2 and T3, as 99 probes (44.8%) were detected at T2
and T3 but not at T1 (Fig. 6g). Among genes, of which the expression
was initiated at T3 (Fig. 6e) or T2 and T3 (Fig. 6g), there were probes
coding for all studied N-transforming processes. In contrast, no genes

coding for N fixation, nitrification, and anammox were expressed
exclusively at T1, and those coding for nitrification and N reduction
processes were not expressed exclusively at T2 (Fig. 6a, c). Different
bacterial families became active and the number of families tended to
increase with progressing desiccation (Fig. 6b, d, f, h). Generally, at T1
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there were only few uniquely detected bacterial families, whereas
towards T2 and T3 the taxonomic diversity showed a substantial
increase.

Proteomic response to desiccation stress
A total of 60, 42, and 44 protein groups were identified for T1, T2, and
T3, respectively. There was a greater overlap in shared proteins
between T1 and T2 (18.6%) as compared to T2 and T3 (3.4%), whereas
6.4% of the proteins were shared between all three stages (Fig. S7a).

When considering the leading proteins, with the highest number of
identified peptides, 88% of the identified proteins were assigned to
bacterial species (mainly Cyanobacteria and Alphaproteobacteria),
while the remaining proteins originated from eukaryotes (fungi and
protists) (Supplementary Material 2). Proteins were grouped into ca-
tegories based on gene ontology terms. The majority of the identified
protein groups was related to ATP synthesis, photosynthesis, protein
biosynthesis, and stress response (Fig. S7b–e). Some categories, such
as ATP synthesis, carbohydrate metabolism, and protein biosynthesis
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were less represented in the samples of T3 compared to T1 and T2,
whereas the number of protein groups involved in fatty acid
metabolism and photosynthesis was higher at T3. Protein groups
linked to stress response, such as chaperones that are produced
during stress conditions e.g., desiccation, occurred in larger numbers
at T1 and T3 compared to T2 (Fig. S7). The identified proteins and
their taxonomic classifications are given in the Supplementary
Material 2. Proteins associated with N transformations could not be
identified.

DISCUSSION
Effect of soil moisture and mineral nitrogen content on Nr
emissions
At high water contents, nearly no HONO and NO emissions could
be determined (Fig. 2a). Starting between 70% and 80% WHC,
emissions increased, first in a linear and then in an exponential
manner. Maximum fluxes of 71.8 ± 14 ngm−2 s−1 of HONO-N and
153.5 ± 28.6 ngm−2 s−1 of NO-N were observed at ~20% WHC
(Fig. 2a). Similar emission ranges of HONO-N and NO-N from soil,
ranging between 2–260 ngm−2 s−1 and 2–135 ngm−2 s−1,
respectively, at WHC values between ~0% and 40% have been
previously reported [23]. Arid and semi-arid soils were observed to
emit NO-N ranging from 1.2 to 142 ngm−2 s−1 at optimum soil
moisture conditions [50]. In an earlier study, biocrusts from South
Africa released similar NO and HONO emission fluxes with
maximum values at 20–25% WHC [25]. Maximum HONO-N and
NO-N fluxes of 27.1 ± 16.1 and 26.5 ± 15.9 ngm−2 s−1, respectively,
for cyanobacteria-dominated biocrusts from the Mediterranean
island of Cyprus were measured at 17–33% WHC [26]. Thus, the
emission patterns and rates observed in this study are consistent
with previously reported data.
Measurements of soil N revealed a significantly higher NO2

−-N
content after a full desiccation cycle, and the NO3

−-N content showed
a similar trend, whereas for CH3I treated biocrust samples the
desiccation cycle had no substantial effect on NO2

− and NO3
−

production, most likely due to suppressed microbial activity (Fig. 3a).
These results are in line with findings of a previous study, reporting a
continuous NO2

− accumulation for a dryland soil over the course of
drying [51]. Su et al. [22] were one of the first who described that soil
NO2

− can serve as a strong source of atmospheric HONO and that
fertilized soils with high HONO* and low pH (given the same NO2

−

content) appear to be particularly strong sources of HONO and OH•.
The fluxes of HONO and NO have been shown to decrease by ~75%
for soil treated with CH3I compared to untreated soil [23], which was
concomitant with a 92% decrease in the ATP content, used as an
indicator for microbial activity. The addition of the nitrification
inhibitor thiourea (CH4N2S) blocked the oxidation of NH4

+ to NO2
−

and NO3
− in soils and caused decreased HONO emissions from

upland soils [29]. Similarly, NO and HONO emissions of autoclaved
dark cyanobacteria-dominated biocrusts from South Africa clearly
declined as a result of sterilization [25]. Thus, our results suggest,
coherently with previous studies, that microorganisms are responsible
for the production of NO2

− and increased emission rates of NO
and HONO.
The observed accumulation of NO2

− (and a similar trend for NO3
−)

in untreated biocrust samples during a desiccation cycle (Fig. 3a)
could be caused by an imbalance in the rates of its production and
consumption during localized N cycling processes, i.e., nitrification,
denitrification, assimilatory N reduction, DNRA, and anammox
occurring simultaneously in microenvironments. For NO2

− to
accumulate during nitrification, this would mean that the NH3-
oxidizing activity is stimulated and/or the NO2

−-oxidizing (and NO3
−

reducing) activity is limited relative to the NH3-oxidizing potential. This
can be caused by an inhibition of NO2

−-oxidizing bacteria by high soil
pH and/or high concentration of free NH3 and HNO2 during
nitrification [52, 53]. In non-cropped Oregon soils, NO2

− accumulation
caused by AOA and AOB occurred within 6 h after wetting to field

capacity and persisted over 48 h, whereas NO3
− accumulation

increased over time. Upon the addition of Nitrobacter vulgaris, a
NOB, to the soil slurry, NO2

− accumulation was inhibited and NO3
−

accumulation increased, while the overall rate of nitrification was
unaffected [54]. It is known that AOB retain their ammonia oxidation
capacity after long-term NH4

+ starvation [55–58], whereas Nitrobacter
winogradskyi, belonging to NOB, lost 80% of the NO2

−-oxidizing
capacity after NO2

− deprivation for six days. Accumulation of NO2
−

could also happen during denitrification, and here several factors are
involved in the process. Differential repression of nitrite and nitrate
reductases, the competition for electron donors between nitrite and
nitrate reductases, as well as pH values, O2 and NO3

− concentrations,
and utilisable C influence a potential NO2

− accumulation during
denitrification [59, 60]. Such a difference in the overall process rates
may explain a NO2

− (and NO3
−) accumulation in soil and biocrusts

over the course of a desiccation cycle.

Nitrogen-transforming microorganisms
The potential for N-transforming processes, represented by mRNA
transcripts [47, 48], increased over the course of the desiccation
cycle (Figs. 4c, d; S4). The nifH genes, indicative of diazotrophic
ability, were widespread, but particularly abundant among
Euryarchaeota, Cyanobacteria, Firmicutes, and Alphaproteobacteria
(Fig. 5). These results illustrate, that N fixation in biocrusts was not
solely accomplished by diazotrophic cyanobacteria, but also by
various other bacteria and archaea, corroborating previous
observations [61, 62].
Potential nitrification was attributed to Archaea and Betaproteobac-

teria, but the number of probes with positive hybridization signals and
the overall signal intensity was relatively low when compared to the
other processes, as N fixation and denitrification. Similarly low signal
intensities were observed in a previous study [63, 64], where the same
method (Geochip 5.0) was applied, whereas in other studies on
biocrusts the potential activity of nitrification enzymes was similarly
high as that of N fixation and denitrification enzymes [65]. Thus, it
seems that the probes for key nitrification genes of the FGA do not
cover a significant part of potential nitrifiers in biocrusts. Aerobic
ammonia-oxidizing organisms occur in phylogenetically coherent
groups within the Beta- but also Gammaproteobacteria (genera
Nitrosospira, Nitrosomonas, and Nitrosococcus) and in the Archaea
[66, 67]. Furthermore, for nitrifiers it has been shown, that also small
populations can be very important in N transformations, due to their
high substrate requirements, resulting in large quantities of inter-
mediates and the end product NO3

− [68].
Denitrifiers were broadly distributed across soil bacteria with

Bacteroidetes, Actinobacteria, and Proteobacteria as most abundant
phyla (Fig. 5). This is in line with the literature, describing
representatives of >60 genera of the domains of Bacteria and
Archaea, as well as some eukaryotes as denitrifiers [66, 67]. A
significant fraction of genes involved in denitrification and N
fixation were assigned to unclassified bacteria, which was also
observed in a previous study [64].
Proteins from genes associated with N transformations could

not be detected with the current approach (Fig. S7). This could be
caused by a general problem impeding proteome approaches, like
(i) difficulty to detect low-abundance proteins, as their detection is
obscured by highly expressed proteins (e.g., ATP synthases), (ii)
difficulty to identify proteins within complex environments such
as soils, and (iii) poor protein extraction efficiency from soil [69–
72]. Nevertheless, at T1 and T3, more chaperones were detected
than at T2, and more proteins involved in the fatty acid
metabolism occurred at T3 than at T2, presumably reflecting the
need for the community to cope with shifts in moisture conditions
[73–75]. Bacteria exposed to fluctuations in water status are
capable of modifying the cell membrane. The upregulation
of shock-response genes, including those encoding molecular
chaperones are associated with xerotolerance in bacteria [74]. The
observed drop in ATP and protein biosynthesis at T3 might
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indicate that microorganisms enter a reversible form of dormancy,
a common response of bacteria to abiotic stress [74, 76].

Timing and water dependency of microbial activity
In the current study, we observed that already shortly after
wetting of the biocrusts, the conditions became favourable for
microbial metabolism. As early as 30 min upon wetting,
significant amounts of mRNA transcripts of genes involved in
the major pathways of the N cycle, including N fixation,
denitrification, and nitrification, were detectable, suggesting that
the organisms and possibly enzyme activity persist during dry
periods in soil (Fig. 4c, d).
We observed an increase in the number of microbial taxa

becoming active along a desiccation cycle as well as a sequence of
different microbial taxa contributing to various N-transforming
processes (Figs. 4e, 5, 6). These results are consistent with previous
studies investigating the response of soil bacteria to desiccation
events [77–79]. Within two hours after rewetting, the soil bacterial
community (rRNA-based) returned to pre-dry community compo-
sition [79]. Furthermore, upon rewetting, transcript copies of
bacterial rpoB genes encoding a subunit of bacterial RNA
polymerase increased, indicating rapid resumption of transcrip-
tional activity [79]. In these studies, bacteria responding rapidly to
wetting have been linked to CO2 emissions. Most bacteria
displayed their highest activity 15 min to one hour after wetting
[78]. Such a “respiration burst” and a quick bacterial response
upon wetting events has also been described for biocrust
environments [80–82]. Denitrification in cyanobacteria-
dominated crusts from the Sultanate of Oman started within
two hours under wet and anaerobic conditions [83].
Already shortly after rewetting (at T1), AOB and AOA were

active, suggesting that a longer dry spell (likely accompanied by
a starvation of the microorganisms) did not have a major effect
on the ammonia oxidation capacity (Figs. 4d, 5). Similar
observations were made in a previous work, showing an
increase in transcripts of the bacterial amoA genes within one
hour and of archaeal amoA within nine hours after water
addition [55]. However, one also has to bear in mind that a
diffusion limitation of O2 at high water contents has a profound
effect on the physiology of ammonia-oxidizing microorganisms
[37]. Under oxic conditions, nitrification occurs in an unham-
pered way through the activity of AOB/AOA and NOB [84].
Under O2 limitation, however, AOB can undergo physiological
changes, e.g. by inducing nitrifier denitrification, which may
cause a release of NO. Besides the key enzyme ammonia
monooxygenase (AMO), most AOB have a nitrite reductase, NirK,
which is necessary for efficient ammonia oxidation at atmo-
spheric O2 levels and involved but not essential for NO
production during nitrifier denitrification [84]. The transcription
of nirk (nitrite reductase-encoding gene) was lower during O2-
limited conditions in Nitrosomonadaceae and was upregulated
at T3, likely as a result of higher NO2

− concentrations, indicating
efficient ammonia oxidation (Fig. 5). These gene expression
patterns are consistent with previous observations [84].
The expression of archaeal amoA and the increased number of

archaea, quantified by means of CARD-FISH at T2 (Fig. 3c), could
contribute to nitrite accumulation around T2. The increase in cell
numbers is likely caused by growth, as archaea are supposed to
have rapid reproduction times (often below 1 h) [85]. Molecular
studies indicate that AOA often outnumber nitrifying bacteria in
marine [86] and terrestrial ecosystems [87, 88], and there are
indications that AOA also contribute to nitrification in seasonally
dry ecosystems [89, 90].
Besides nitrification, also microbial NO3

− reduction processes may
be relevant. We found genes encoding denitrification, assimilatory N
reduction, and DNRA in substantial quantities, while anammox was
hardly observed (Fig. 4c), in coherence to former biocrust studies [64,
91]. The expression of narG, nirK, nirS, norB, and nosZ was

considerably higher than for other functional genes, suggesting that
denitrification may play a prominent role in reduction processes, and
thus in the HONO and NO emissions from biocrusts. There was a
substantial increase in narG, nirk, nirS, norB, and nosZ expression
between T1 and T2, which was by far lower between T2 and T3,
indicating that denitrifier activity may have been particularly strong
before maximum HONO- and NO-emissions (Fig. 4d). In addition, the
emission of HONO and NO has been suggested to be linked to a
strongly localized pronounced drop in pH, and denitrifiers are
hampered by O2 availability over the course of drying [37]. The
synthesis of denitrification enzymes has been shown to be controlled
by O2 levels, with NO2

− reduction as the most sensitive step during
denitrification [52, 92]. Our gene expression analyses showed that
narG expression (responsible for NO3

−reduction) within the families
Nocardiaceae, Pseudomonadaceae, Enterobacteriaceae, and Burkhol-
deriaceae was considerably higher at T3 than T2 or remained more or
less unchanged at T2 and T3 for Gordoniaceae (Fig. 5). On the
contrary, expression levels of the nirK and nirS genes (responsible for
NO2

− reduction) were lower than for narG (Pseudomonadaceae,
Burkholderiaceae) or no transcription could be detected during drying
(e.g., Nocardiaceae, Enterobacteriaceae, Gordoniaceae, Desulfurococca-
ceae, Veillonellaceae, Paenibacillaceae, Bacillaceae, Pseudonocardia-
ceae, Propionibacteriaceae, Mycobacteriaceae) (Fig. 5). These results
suggest that differences in the expression of nitrate and nitrite
reductases during the shift from O2-limited to aerobic conditions in
the course of drying as well as high NO3

−-N contents likely
contribute to accumulation of NO2

−, which is relevant for HONO and
NO emission fluxes from biocrusts and likely also from soils. In other
studies, high concentrations of NO3

−, free NH3, and HNO2 were
found to have an inhibitory effect on NO2

−reduction [92]. In the
literature, the role of denitrification in biocrusts has been considered
differently, ranging from largely irrelevant [91] to highly relevant [64,
83]. For HONO emissions from agricultural soils, Bhattarai and co-
authors recently identified denitrification as the major pathway [40].
The Nr measurements had to be carried out in the dark to avoid

photochemical reactions. This has to be considered when
interpreting the results. In other studies, it was shown that
photosynthesis and respiration in illuminated cyanobacterial
biocrusts recovered within minutes after water addition resulting
in the formation of disparate oxygen microenvironments ranging
from oxygen-supersaturated zones close to the surface to anoxic
zones at 1–3mm depth. Photosynthetic activity also affected the
pH gradients in the biocrust. Local pH values up to 10.5 due to
photosynthesis were measured, which may have consequences
for the Nr emission patterns [93, 94].
The observed increase in transcript levels at T3 (Fig. 4c, d) might

indicate that microorganisms remain in a state, enabling a rapid
recovery when conditions become favourable for growth. Compar-
ing transcript profiles of growing cells and substrate-deprived
bacterial cells, it was observed that transcript levels of some genes,
like amoCAB (Nitrosomonas europaea) or genes involved in
metabolic pathways (Mycobacterium tuberculosis) did not change
significantly under growth or starved conditions. Hence, the strategy
to cope with periods of starvation appears to include maintenance
of mRNA of key enzymes, like nitrification genes. This may allow a
rapid recovery when substrate becomes available [56, 57, 95, 96]. A
graphical representation of the temporal connection between
microbial metabolic activity and the emissions of HONO and NO
during desiccation is shown in Fig. S8.
The physicochemical and structural characteristics of the soil

environment create microenvironments differing in soil hydration
conditions, gas/liquid diffusion, and nutrient availability, causing a
heterogeneous, patchy distribution of microbes in the soil [22, 97–
102]. Moisture patchiness can result in aerobic and anaerobic
microsites in close proximity, allowing different N-transformations
to occur next to each other [103]. This patchy distribution of
organisms and processes likely has a pronounced impact on rates
and patterns of biogeochemical processes, like the emission of NO
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and HONO from biocrusts and soil, which needs to be investigated
by studies on the microscale.

CONCLUSIONS
Trace gas emission measurements over a desiccation cycle were
linked to FGA, CARD-FISH, and soil analyses to obtain a deeper
understanding of the biological processes involved in the
observed Nr gas emissions. Our data illustrated that organisms
involved in all major N-cycling processes became metabolically
active within 30 min after wetting. The soil N content analyses
showed a significant increase in NO2

−-content, which likely served
as a precursor for HONO and NO emissions peaking at relatively
low water contents around 20% WHC. This is likely caused by a
differential O2-dependent expression of nitrite as compared to
nitrate reductase encoding genes during maximum HONO and
NO emissions. Besides this, physiological responses in AOB
(nitrification at atmospheric O2-levels, nitrifier denitrification under
O2-limited conditions), and growth and transcriptional activity of
AOA during the transition from O2-limited to oxic conditions,
might contribute to the release of HONO and NO. Thus, our data
suggest that AOA are major contributors to ammonia oxidation in
biocrusts, and a differential expression of denitrification genes
during drying causes an accumulation of NO2

−, serving as a
precursor for HONO and NO emissions.
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