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Malignant brain tumors are a significant health problem in children and adults. Conventional therapeutic approaches
have been largely unsuccessful in providing long-term management. As primarily a metabolic disease, malignant
brain cancer can be managed through changes in metabolic environment. In contrast to normal neurons and glia,
which readily transition to ketone bodies ([3-hydroxybutyrate) for energy under reduced glucose, malignant brain
tumors are strongly dependent on glycolysis for energy. The transition from glucose to ketone bodies as a major
energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells

ﬁfﬁggﬁgsis during extreme shifts in nutritional environment. Only those cells with a flexible genome and normal mitochondria
Apoptosis can effectively transition from one energy state to another. Mutations restrict genomic and metabolic flexibility thus
Invasion making tumor cells more vulnerable to energy stress than normal cells. We propose an alternative approach to brain
Caloric restriction cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective
Glioma

and metabolically challenged tumor cells. This approach to brain cancer management is supported from recent
studies in mice and humans treated with calorie restriction and the ketogenic diet. Issues of implementation and use
protocols are presented for the metabolic management of brain cancer. This article is part of a Special Issue entitled:

Inflammation
Ketone bodies
Metabolic control analysis

Vascularity Bioenergetics of Cancer.

© 2010 Published by Elsevier B.V.

1. Introduction

Malignant brain cancer is a catastrophic disease of morbidity
and mortality in adults and is the second leading cause of cancer
death in children [1-7]. Despite advances in imaging technologies,
the standard therapies for malignant gliomas today are largely
similar to those that have been used for over five decades and
generally involve maximal surgical resection followed by chemo-
therapy with or without radiation therapy [7-12]. About 99% of
patients with glioblastoma multiforme also receive perioperative
corticosteroids (dexamethasone) as part of the therapy [10].
Although dexamethasone will reduce edema and swelling associ-
ated with surgery and radiation [13], it will also elevate circulating
levels of blood glucose [14,15]. Glucose is a major fuel for most
glycolysis-dependent brain tumor cells and elevated glucose is
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associated with poor prognosis [16-19]. Radiation therapy pro-
duces oxidative tissue damage and necrosis [20-24], which will
elevate glutamate levels in the microenvironment [25]. Glutamate
is cytotoxic and, through the glutamate-glutamine cycle, will be
rapidly metabolized to glutamine by the reactive astrocytes that
surround the neoplastic tumor cells [25-27]. Glutamine is a major
metabolic fuel for both brain tumor cells and tumor-associated
macrophages (TAMs) [28-31]. TAMs release pro-inflammatory and
pro-angiogenic factors creating a microenvironment that facilitates
aggressive growth of tumor cells [32,33]. While standard therapies
manage glioma growth over the short term (weeks to months),
they provide an abundance of glucose and glutamine needed for
rapid tumor growth and invasion. Ready access to energy
metabolites will facilitate glioma recurrence and enhance growth
rate over the longer term [33-35]. Indeed, the malignant
phenotype of brain tumor cells that survive radiotherapy is often
greater than that of the cells from the original tumor.

It is our opinion that the brain of patients with malignant gliomas
should rarely be irradiated and that radiation therapy for brain cancer
management is largely counterproductive to long-term patient sur-
vival [34]. This opinion does not mean that radiation therapy has no
redeeming value for patients suffering malignant brain cancer. Of course
radiation therapy can increase patient survival over the “no therapy”
option. Radiation therapy can also be as good or better than chemo-
therapy alone [36]. Our point is whether radiation therapy would be
better than non-toxic metabolic therapy for long-term brain cancer
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management. The issue could be settled with clinical trials where
patients receive metabolic therapy in the absence of radiation therapy.

Conventional chemotherapy has faired little better than radiation
therapy for the long-term management of malignant brain cancer [8,37-
39]. Brain tumor chemotherapy is often associated with adverse effects
that diminish the length or quality of life [12,37,38,40]. Like radiation
therapy, the widely used drug temozolomide can also enhance necrotic
damage in brain tissue [24]. This will contribute to the availability of
glutamate and glutamine needed for tumor progression. In an initial
study, bevacizumab (Avastin) with irinotecan therapy for malignant brain
cancer management killed 6% of those taking the drug, while an additional
38% of patients had to discontinue use due to toxicity issues [40]. Despite
the severity of these adverse effects, the investigators considered the
marginal response to bevacizumab therapy superior to that of other
available anti-angiogenic drug therapies. More recent studies indicate that
bevacizumab enhances the invasive properties of already highly invasive
brain tumors [39,41]. Indeed, bevacizumab is capable of enhancing the
invasive properties of the U87-MG human glioma, which is widely
recognized as a noninvasive tumor when grown as a xenograft [41]. Will it
be better for patients not to take bevacizumab or to develop new drugs
that inhibit bevacizumab-induced invasion? Recent studies also suggest
that some anti-angiogenic compounds block chemotherapeutic drug
delivery [42,43]. Viewed collectively, these findings indicate that most
conventional radiation and brain cancer chemotherapies can enhance
glioma energy metabolism and invasive properties, which would
contribute to tumor recurrence and reduced patient survival [34].

The therapeutic targeting of brain tumor-associated mutations,
while conceptually appealing, may also be problematic as hundreds of
mutations can be found in tumors and not all neoplastic cells within
the tumor express the same mutations [44,45]. Many targeted gene
therapies suffer from the misconception that mutations cause cancer
and that therapies targeting the effects of individual mutations will be
effective in managing tumor growth [38,46]. These misconceptions
have lead to the idea that cancer therapy can be personalized by
targeting signaling pathways unique to an individual's tumor. While
this therapeutic strategy could be effective for those tumors derived
from germ line mutations or situations where most neoplastic cells
within the tumor express the same genetic defect, most brain tumors
do not arise from germ line mutations and genetic heterogeneity
is common within most aggressive tumors [46,47]. Most tumor-
associated mutations arise as epiphenomena of tumor progression
and their association with causality and pathobiology is far from clear
[33,44,48-52]. It is therefore unlikely that targeting brain tumor-
associated mutations will have major therapeutic effect for most brain
cancer patients.

2. Application of metabolic control theory to brain
cancer management

We contend that all cancer regardless of tissue or cellular origin is a
disease of abnormal energy metabolism [48]. As such, the non-toxic
targeting of tumor cell energy metabolism becomes an attractive
alternative to the current standard of care for brain cancer management.
Principles of metabolic control theory/analysis can provide the general
concepts associated with therapeutic strategies that target tumor cell
energy metabolism. Basically, metabolic control analysis evaluates the
degree of flux in metabolic pathways and can be used to analyze and treat
complex diseases [53-60]. The approach is based on findings that
compensatory genetic and biochemical pathways regulate the bioener-
getic potential of cells and ultimately the phenotype. As rate-controlling
enzymatic steps in biochemical pathways are dependent on metabolic
environment, the management of disease phenotype depends more on
the flux of the entire system than on the flux of any specific metabolic
pathway or metabolite. In other words, complex disease phenotypes can
be managed through self-organizing networks that display system wide
dynamics involving oxidative and non-oxidative (substrate level)

phosphorylation [19,48,61-64]. Global manipulations of these metabolic
networks can restore orderly adaptive behavior to widely disordered
states involving complex gene-environmental interactions like cancer.

As abnormal energy metabolism and biological chaos characterize
brain tumors [8,19,33,65-67], general principles of metabolic control
analysis can be effective for brain cancer management. This hypothesis
is based on differences in energy metabolism between normal brain
cells and neoplastic tumor cells. As long as brain tumors are provided a
physiological environment conducive for their energy needs they will
survive; when this environment is restricted or abruptly changed they
will either grow slower, growth arrest, or perish [8,19]. In this review we
describe how calorie restricted diet therapies, which lower circulating
glucose and elevate ketone bodies (acetoacetate and B-hydroxybuty-
rate, 3-OHB), can target brain tumors while enhancing the metabolic
efficiency of normal neurons and glia. New information also suggests
that ketones are toxic to some human tumor cells and that ketones and
ketogenic diets might restrict availability of glutamine to tumor cells
[68-70]. The success of this therapeutic strategy is also based in large
part on the principles of evolutionary biology involving adaptability and
variability selection. The information presented in this review has been
compiled in part from information that we presented previously
[8,19,71,72].

3. Adaptability and variability selection

According to Rick Potts of the Smithsonian Institution, the
evolutionary success of our species has been due largely to the germ
line inheritance of traits that bestowed adaptive versatility [73,74].
These traits were honed over millions of years and enabled humans to
adapt rapidly to abrupt changes in the physical environment. The
adaptability to abrupt environmental change is a property of the
genome, which was selected for in order to ensure survival under
environmental extremes. This hypothesis is an extension of Darwin's
original theory (Chapter IV, Natural Selection) and can be applied to the
individual cells of the organism, which exist as an integrated society of
cells [75]. The success in dealing with environmental stress and disease
is therefore dependent on the integrated action of all cells in the
organism. Further, this integrated action depends on the flexibility of
each cell's genome, which responds to both internal and external signals
according to the needs of the organism. More specifically, only those
cells possessing flexibility in nutrient utilization will be able to survive
under nutrient stress. Environmental forcing has therefore selected
those genomes most capable of adapting to change in order to maintain
metabolic homeostasis [19,73-75].

The widely held notion that tumor cells are more “adaptable” or have a
“growth advantage” over normal cells is inconsistent with evolutionary
theory [19]. How can tumor cells that express multiple random
pathogenic mutations, chromosomal rearrangements, and mitochondrial
abnormalities be considered more “fit” or “advantaged” than normal cells
that possess a flexible genome, normal respiratory capacity, and adaptive
versatility? The answer is they are not. The issue is metabolic flexibility
that is inherited through the genome verses perceived metabolic
adaptability that is acquired somatically. Metabolic flexibility allows the
organism to respond in a coordinated way to environmental stress
according to Darwin's original theory. Although germ line changes could
give some organisms a selective advantage when confronted with a novel
environmental stress, most mutations reduce fitness. The genomic
changes in cancer cells are not inherited in the germ line, but are acquired
randomly [45,46]. Tumor cells survive in hypoxic environments not
because they have inherited genes making them more fit or adaptable
than normal cells, but because they have damaged mitochondria and have
thus acquired the ability to derive energy largely through substrate level
phosphorylation [48]. Energy through substrate level phosphorylation is
required for survival in hypoxia [76-78]. Tissue macrophages can also
survive in hypoxic (acidic) environments, as a part of their normal
function. Do neoplastic cells have a selective advantage over tissue
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macrophages, which evolved to function in hypoxic environments? The
energy transition from oxidative phosphorylation to substrate level
phosphorylation requires the activation of oncogenes and the inactivation
of tumor suppressor genes [48]. What appears as a growth advantage
is actually an abnormal phenotype of dysregulated cell growth [48].
Ammonia (NH3) released from glutamine metabolism could also
neutralize lactic acid acidity in the microenvironment by forming NHF
[28,30,79]. Normal cells can also grow faster than tumor cells during
normal wound repair [76]. If the acquired mutations expressed in tumor
cells provided a selective advantage, then tumor cells should adapt to
environmental and metabolic stress better than the normal cells, which do
not contain these mutations. The greater vulnerability of tumor cells than
normal cells to dietary energy restriction argues against the hypothesis
that tumor cells are more “adaptable” or “selectively advantaged” over
normal cells.

Cancer cells survive and multiply only in physiological environments
that provide fuels (mostly glucose and glutamine) subserving their
requirement for substrate level phosphorylation [48]. If these fuels
become restricted, tumor cells will have difficulty surviving and
growing. Multiple genetic defects will reduce genomic flexibility thus
increasing the likelihood of cell death under environmental stress.
Regardless of when or how genomic defects become involved in the
initiation or progression of brain tumors, these defects can be exploited
for the destruction or management of the tumor. In other words, the
types and kinds of genetic mutations expressed in brain tumor cells are
largely irrelevant in our approach to brain tumor management. How can
mutations be relevant to the nature of disease if the complement of
mutations differs from one neoplastic cell to the next within most
tumors of non-germline origin [44-46]? Although common gene
mutations occur in some tumors, it is unlikely that these mutations
are expressed in every individual cell of the tumor due to the cellular and
genetic heterogeneity. The data from Lobe and colleagues make this
fact abundantly clear [45]. It is nevertheless interesting that glioma
progression is generally slower in patients with chromosome 1p/19q
co-deletions, promoter hypermethylation of the O°-methylguanine
methyltransferase (MGMT) gene, or mutations in the gene for isocitrate
dehydrogenase1 (IDH1) [80-82]. Are we to consider these as “good”
mutations? Would targeting these genes reduce or enhance patient
survival? Considering the complexity of metabolic flux, genetic
heterogeneity, and gene-environmental interactions [47,58,59,61,83],
caution should be used in thinking that targeting any specific mutation
or pathway will have major effect on brain tumor growth or patient
survival. Our perspective is based on emerging evidence that cancer is
primarily a metabolic disease that can be managed through systemic
metabolic therapy [48]. Recent findings using restricted diets, that
produce systemic energy stress, provide direct support for our
hypothesis [18,62,84-88].

4. Energy metabolism in brain tumors

Major physiological changes occur during therapeutic fasting in
humans or dietary energy restriction in mice. Generally, insulin and
glucose levels become reduced, while glucagon, free fatty acids, and
ketone bodies (B-hydroxybutyrate and acetoacetate) become elevat-
ed [89-91]. While glucose is the preferred energy substrate of normal
neurons and glia, these cells will metabolize ketone bodies for energy
under fasting-induced reductions of blood glucose. Due to limited
uptake from the circulation, free fatty acids are not extensively
metabolized for energy by brain cells [89,92]. However, recent work
from Kashiwaya, Veech and co-workers showed that fatty acids
could be metabolized for energy in rat brain [68]. Brain ketone body
metabolism is a conserved physiological adaptation to prolonged food
restriction and evolved to enhance survival and maintain adequate
neural functions while sparing proteins [89,92-97]. In contrast to
normal brain, which can oxidize either glucose or ketone bodies for
energy, malignant brain tumors from either humans or animal models

lack metabolic flexibility and are heavily dependent on glucose for
energy [18,30,66,98-105]. Enhanced glycolysis produces excess lactic
acid that can return to the tumor as glucose through the Cori cycle
[106]. Although some neural tumors metabolize ketone bodies, this
metabolism could be more for lipid synthesis than for energy
production [107,108]. Many neural tumors also have reduced activity
of succinyl-CoA: 3-ketoacid CoA transferase, the rate-controlling step
for utilizing 3-OHB as a respiratory fuel [62,70,109-111]. Defects in
this enzyme will limit the ability of tumor cells to utilize ketone bodies
as an alternative fuel to glucose. Hence, metabolic stress following the
gradual replacement of glucose with ketone bodies will be greater in
tumor cells than in normal cells.

In addition to glucose, glutamine can also provide energy to
tumors through replenishment of TCA cycle metabolites (anaplerosis)
[30,112,113]. Glutamine, after metabolism to o-ketoglutarate, can
also provide energy through substrate level phosphorylation within
the TCA cycle itself [77,78,114]. TCA cycle substrate level phosphor-
ylation could, together with glycolysis, provide sufficient energy for
tumor cells with defective oxidative phosphorylation [48,115].
Ketones could also reduce the activity of succinyl-CoA synthetase
(SCS), which is required for TCA cycle substrate level phosphorylation
under hypoxia [78]. Ketones could therefore indirectly target ATP
production from glutamine metabolism. Considered together, these
studies indicate that brain tumors, like most malignant tumors,
depend heavily on substrate level phosphorylation for their metabolic
energy and either lack or have reduced capacity to metabolize 3-OHB
for energy.

5. Mitochondrial defects in brain tumors

Besides glycolytic dependence, most tumors including brain tumors,
express abnormalities in the number and function of their mitochondria
[19,48,101,116-123]. Such abnormalities would prevent the utilization
of ketone bodies for energy production since functional mitochondria
are necessary for ketone oxidation [62,124]. Integrity of the inner
mitochondrial membrane is necessary for ketone body metabolism
since 3-hydroxybutyrate dehydrogenase, which catalyzes the first step
in the metabolism of 3-OHB to acetoacetate, interacts with cardiolipin
and other phospholipids in the inner membrane [116,125,126]. Inner
membrane breakdown (cristolysis) and cardiolipin abnormalities
characterize many tumors including gliomas [48,116,122,127]. These
findings further suggest that glioma cells will be unable to generate
adequate levels of energy for survival if ketone bodies become a major
energy fuel for the brain.

Otto Warburg originally emphasized that the high glycolytic rate of
tumors resulted from diminished or disturbed respiration [76,128].
While most cells die from damaged respiration, those cells that can
enhance and modify their anaerobic glycolysis in response to respiratory
damage will survive and form tumors. Later studies in a variety of neural
and non-neural tumor systems showed that these respiratory dis-
turbances involve abnormalities in TCA cycle components, alterations in
electron transport, and deficiencies in oxidative phosphorylation
[48,105,113,121,129-132]. While mitochondrial DNA mutations can
also diminish respiration, many described tumor mtDNA mutations may
be artifacts of interpretation or appear to be non-pathogenic [133,134].
We purified and sequenced the entire mitochondrial genome from
isolated mitochondria in five independently derived mouse brain
tumors, but were unable to find a single pathogenic mutation in any
of the tumors [134]. Structural defects of the inner mitochondrial
membrane, that would alter the proton motive gradient, would also
prevent normal ATP production despite the appearance of oxidative
metabolism, i.e., oxygen consumption and CO, production
[48,116,122,130,135-137]. In other words, the mitochondria of many
gliomas and most tumors for that matter are dysfunctional. Although
electrons may be transferred, this transfer is not effectively coupled to
oxidative energy production. The bulk of experimental evidence
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indicates that mitochondria are dysfunctional in tumors and incapable
of generating sufficient ATP through oxidative phosphorylation
[48,116].

6. Mitochondrial lipid abnormalities in murine brain tumors

Our recent data show that murine gliomas contain numerous defects
in the content and composition of mitochondrial lipids especially
cardiolipin [121,138]. Cardiolipin is essential for efficient oxidative energy
production and mitochondrial function [139-154]. The lipid composition
of mitochondrial membranes also influences the activity of 3-hydro-
xybutyrate dehydrogenase, which is needed for ketone body metabolism
[62,126,155,156]. Any genetic or environmental alteration in the content
or composition of cardiolipin will compromise energy production through
oxidative phosphorylation [116,118,127,144,157-164]. Cardiolipin
defects in tumor cells are also associated with reduced activities of several
enzymes of the mitochondrial electron transport chain making it unlikely
that tumor cells with cardiolipin abnormalities can generate adequate
energy through oxidative phosphorylation [116,121,127,138].

Cardiolipin abnormalities can arise from any number of environ-
mental insults linked to the origin of cancer including radiation, hypoxia,
inflammation, etc [121]. Cardiolipin abnormalities can also arise from
simply growing mammalian cells in culture. It appears that the in vitro
growth environment alters cardiolipin composition, reduces Complex |
activity, and obscures the boundaries of the Crabtree and the Warburg
effects [138]. The Crabtree effect involves the inhibition of respiration by
high levels of glucose [165-167], whereas the Warburg effect involves
elevated glycolysis from impaired oxidative phosphorylation [76].
While the Crabtree effect can be reversible, the Warburg effect is largely
irreversible because its origin is with permanently damaged mitochon-
dria. We found that growth environment produced different types of
cardiolipin abnormalities. The tumor-specific abnormalities in cardio-
lipin composition observed in the in vivo environment were largely
different from the abnormalities found in the tumor cells when grown in
culture [138]. Moreover the cardiolipin composition of cultured brain
tumor cells was similar to that of syngeneic non-tumorigenic astrocytes
indicating that the in vitro environment produces cardiolipin abnor-
malities independent of those associated with tumorigenesis. This was
also supported by findings that lactic acid production was similar in
non-tumorigenic astrocytes and glioma cells [138]. Since energy
production through oxidative phosphorylation is dependent on cardi-
olipin composition, abnormalities in cardiolipin composition whether
genetic or non-genetic will inhibit respiratory energy production.

We consider it unlikely that the cardiolipin and mitochondrial lipid
abnormalities of gliomas can be corrected so that the cells could respire
normally [168]. The irreversible nature of the problem resides in the
complex process of cardiolipin remodeling required for normal
oxidative phosphorylation [116,169]. Moreover, we think that the
numerous somatic genetic mutations in tumor cells will “lock in” the
mitochondrial lipid abnormalities making complete restoration of
normal energy metabolism and the differentiated state highly unlikely.
Our findings from multiple murine brain tumors support the Warburg
theory of cancer as a disease of mitochondrial energy metabolism
[48,121].

The continued production of lactic acid in the presence of oxygen is
the metabolic hallmark of most cancers and is referred to as aerobic
glycolysis or the Warburg effect. Interestingly, Warburg considered
aerobic glycolysis as an epiphenomenon of tumor progression that was
too labile or too dependent on environmental conditions to be reliable
indicator of tumor metabolism [19,76]. This came from findings that
oxygen consumption and CO, production in tumor cells was not
associated with coupled respiration. Rather, Warburg emphasized the
importance of defects in the coordination of glycolysis with respiration.
The latency between tumor initiation and progression was considered
the period necessary for glycolysis to compensate for the impaired
respiratory function. Warburg clearly showed that glycolysis was

necessary to maintain cell viability when respiration was impaired
[76,128]. Considerable effort is now underway to explain the genetic
and biochemical basis of the Warburg effect [48,117,170-184]. If respi-
ration is damaged in tumor cells, it should be no surprise that expression
of many genes associated with glycolytic pathways will be upregulated
[48,85,117]. This upregulation is necessary for tumor cell survival. As
Warburg clearly showed, aerobic glycolysis becomes a necessary
compensatory energy source following respiratory damage [76]. We
recently described how the retrograde signaling system could induce
changes in oncogenes and tumor suppressor genes to facilitate tumor
cell survival following mitochondrial damage [48].

In addition to glycolysis, glutamine can also increase ATP
production under hypoxic conditions through substrate level phos-
phorylation in the TCA cycle after its metabolism to a-ketoglutarate
[77,78,185]. Increased c-MYC expression is associated with increased
glutamine metabolism [186,187]. Enhanced energy production
through TCA cycle substrate level phosphorylation using glutamine
as substrate could give the impression of functional oxidative phos-
phorylation since ATP is generated within the mitochondria. It is
difficult to determine with certainty, however, if mitochondrial ATP
production is generated through oxidative phosphorylation or
through increased succinyl-CoA synthetase activity in the TCA cycle
itself [78]. The later possibility can be considered “pseudo respiration”
especially if oxygen is consumed and electron transport is uncoupled.
Few investigators make the distinction between the different forms of
mitochondrial energy production. TCA cycle substrate level phos-
phorylation could therefore become another source of ATP production
in tumor cells with impairments in oxidative phosphorylation [48].
Our preliminary findings in metastatic tumor cells support this
possibility [115].

Our recent findings in a series of spontaneous murine brain tumors
suggest that mitochondrial lipid abnormalities, which alter electron
transport activities, can account in large part for the Warburg effect
[138,168]. These lipid abnormalities would compromise the proton
motive gradient thus uncoupling mitochondria. A dependence on
glucose and glutamine for survival together with multiple types of
mutations and mitochondrial defects makes most tumors potentially
manageable according principles evolutionary biology and metabolic
control analysis as recently described [19,48,50,188]. Our recent studies
with calorie restriction and the restricted ketogenic diet exploit the
Warburg effect for the metabolic management of malignant brain
tumors [62,84,85,88,189]. We also showed that targeting glutamine
could significantly reduce the systemic metastatic spread of brain tumor
cells [188]. Although extracranial metastasis is considered rare for
malignant brain tumors, there is a large literature indicating that brain
tumors are highly metastatic when growing outside the nervous system
[190-194]. Some tumors appear to be more dependent on glutamine
than glucose for survival and growth, whereas the opposite is the case
for other tumors. The difference depends in part on the type of cell from
which the tumor arises, with cells of myeloid origin being especially
dependent on glutamine. We proposed that targeting both glucose and
glutamine metabolism could be effective for managing most cancers
including brain cancer [48,188]. The ketogenic diet and dietary energy
restriction involving calorie restriction can help to reduce levels of
these energy metabolites. When combined with drugs that also target
glutamine metabolism, the restricted ketogenic diet can produce a
global metabolic management of tumor growth.

7. The ketogenic diet

In 1995, Nebeling and coworkers attempted the first nutritional
metabolic therapy for human malignant brain cancer using the
ketogenic diet [195]. The ketogenic diet (KD) is a high fat low carbo-
hydrate diet that has been used for decades as an effective therapy for
refractory seizures in children [19,196-198]. The objective of the study
was to shift the prime substrate for energy metabolism from glucose to
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ketone bodies in order to disrupt tumor metabolism while maintaining
the nutritional status of patients [195]. The patients in this landmark
clinical study included two female children with nonresectable
advanced stage brain tumors (anaplastic astrocytoma stage IV, and
cerebellar astrocytoma stage III). Measurable tumor remained in both
subjects following extensive radiation and chemotherapy. Although
severe life threatening adverse effects occurred from the radiation and
chemotherapy, both children responded remarkably well to the KD and
experienced long-term tumor management without further chemo or
radiation therapy. Indeed, one of the patients remains alive at the time of
this writing (Nebeling, personal communication). Positron Emission
Tomography with fluro-deoxy-glucose (FDG-PET) also showed a 21.8%
reduction in glucose uptake at the tumor site in both subjects on the KD
[195]. These findings indicate that a restricted ketogenic diet, which
lowers glucose and elevates ketone bodies, could reduce glycolytic
energy metabolism in these brain tumors. More recently we published a
case report showing that a modified ketogenic diet could help manage
glioblastoma growth in an older female patient [84]. These findings
show that the ketogenic diet, when consumed in restricted amounts, is
well tolerated and can be an effective non-toxic therapy for malignant
brain cancer in both children and adults.

Despite the efficacy of this metabolic approach to brain cancer
management, no clinical trials have been initiated in the United States to
date on the therapeutic efficacy of restricted ketogenic diets (RKD) for
managing brain cancer in either children or adults. What is the reason
for not initiating clinical trials on the RKD for brain cancer management?
Some have suggested that the North America Brain Tumor Collaborative
prefers “hand-me-down” drug therapies from other cancer studies
rather than exploring less costly and more effective alternative
approaches [12,19]. This is unfortunate for patients, as our recent
findings in brain tumor animal models show that the therapeutic
potential of the RKD, involving reduced glucose and elevated 3-OHB,
could be superior to that of most current brain tumor therapies
[62,72,88]. Moreover, the RKD would eliminate or greatly reduce the
need for adjuvant anticonvulsant and steroidal medications (dexa-
methasone) for brain tumor patients. The RKD was designed initially as
an antiepileptic therapy and can therefore be used to manage tumor-
associated seizure activity [196,198-202]. It is unclear why brain cancer
patients are given anticonvulsant medications when the KD can achieve
the same clinical endpoint while also targeting tumor growth. A clinical
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trial using the KD for recurrent glioblastoma has been initiated in
Germany (ERGO trial) under the direction of . Rieger at the University of
Tiibingen. Modest improvement was reported without adverse effects,
but no published information was presented on blood glucose or blood
ketone levels in the treated patients. This information is needed to gage
the degree of energy stress on surviving tumor cells. Unfortunately,
most patients in this trial suffered through the conventional standard of
care before receiving the KD. We consider the current standard of care
(primarily involving radiotherapy and dexamethasone) as counter
productive to long-term patient survival [34]. Preliminary findings in
humans and mice indicate that the RKD could be an effective nontoxic
therapy for malignant brain cancer [19,62,84,195].

8. Dietary energy restriction

We confirmed the findings of the Nebeling group in a series of
orthotopic mouse brain tumor models treated with the RKD and dietary
energy restriction [18,62,86-88] (Fig. 1). As with the KD, dietary
restriction (DR) reduces glucose and elevates ketone bodies
[18,63,64,91]. The DR-induced inhibition of brain tumor growth is
directly correlated with reduced levels of glucose and elevated levels of
ketone bodies [18]. The gradual transition from glucose to ketone bodies
as an energy source is key for the longer-term management of brain
tumors. The transition requires multiple gene and metabolic adjust-
ments, which tumor cells lack due to their accumulated mutations. DR is
produced from a total restriction of dietary nutrients and differs from
starvation in that DR reduces total calorie energy intake without
causing anorexia or malnutrition [55,203-207]. As a natural therapy, DR
improves health, prevents tumor formation, and reduces inflammation
[55,205,208-211]. Hence, reduced calorie intake is ideally suited as a
therapy for managing brain cancer without adverse effects.

Previous studies showed that the anti-tumor effects of DR result
more from calorie restriction per se then from the restriction of any
specific dietary component such as proteins, vitamins, minerals, fats, or
carbohydrates [18,206,207,212]. Reduced dietary copper levels, how-
ever, could reduce angiogenesis [213]. Caloric restriction, which lowers
glucose and elevates ketone bodies [63,64], improves mitochondrial
respiratory function and glutathione redox state in normal cells
[56,214,215]. Ketone bodies can also protect normal neurons and glia
from damage associated with aggressive tumor growth through a
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Fig. 1. Influence of diet on the intracerebral growth of the CT-2A brain tumor. The visual representation (A) and quantitative assessment (B) of the tumor growth in C57BL/6] mice
receiving the standard high carbohydrate diet (SD) or the ketogenic diet (KD) under either unrestricted (UR) or restricted (R) feeding as we described [86,88]. Values in B are
expressed as means with 95% confidence intervals, and n = the number of mice examined in each group. The dry weights of the tumors in R group were significantly lower than those
in the UR group at P<0.01. The results show that DR significantly reduces tumor growth. No adverse effects were seen in the mice maintained on the 30%-40% DR. Despite a reduction
in total body weight, the DR-fed mice were more healthy and active than the AL-fed mice as assessed by ambulatory and grooming behavior. No signs of vitamin or mineral
deficiency were observed in the DR-fed mice according to standard criteria for mice. These findings are consistent with the well-recognized health benefits of mild to moderate diet

restriction in rodents [86,88].
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variety of neuroprotective mechanisms including elevated glutathione
levels [96,124,216-223]. Although elevated ketone bodies are often
associated with diabetic states, ketone body elevation in people with
normal physiology is considered “good medicine” and therapeutic for a
broad range of cardiac, neurological, and neurodegenerative diseases
[57,91,94,96,224]. There is also a recent report indicating that ketone
bodies inhibit viability of human neuroblastoma cells, but not of normal
cells [70]. These findings indicate that elevation of ketone bodies in
individuals with normal physiology can be toxic to tumor cells while
therapeutic to normal cells.

DR naturally inhibits glycolysis and tumor growth by lowering
circulating glucose levels, while at the same time, enhancing the health
and vitality of normal cells and tissues through ketone body metabolism
[62,85,224]. 1t is important to recognize, however, that the physiological
response to DR is not the same in mice and humans due to differences in
basal metabolic rate. The health benefits documented in mice under 40%
DR can be realized in humans under very low calorie intake (400-
500 kcal) or with water only therapeutic fasting [91]. Alternatively,
these health benefits can also be achieved using the restricted KD, which
increases circulating levels of ketone bodies while maintaining low
blood glucose levels [62,64]. Recent studies from Kashiwaya, Veech and
co-workers suggest that diets supplemented with ketone esters could
also be effective in reducing blood glucose and glutamine while
elevating ketone levels [68].

9. Dietary restriction is antiangiogenic and proapoptotic
Payton Rous first suggested that DR inhibited tumor growth by
delaying tumor vascularity (angiogenesis) from the host [225].

Angiogenesis involves neo-vascularization or the formation of new
capillaries from existing blood vessels and is associated with the

EPEN

processes of tissue inflammation, wound healing, and tumorigenesis
[226-228]. A significant literature suggests that vascularity is rate
limiting for the formation of solid tumors, including brain tumors
[227,229-233]. The malignancy and invasiveness of brain tumors is
also correlated with the degree of their vascularity since prognosis
is generally better for tumors that are less vascular than for
those that are more vascular [230,234,235]. Inhibition of vascularity
is therefore considered an important therapeutic strategy for
managing brain tumors [40,229,236-238]. The challenge is to target
tumor angiogenesis without harming patients or reducing the
quality of life.

We corroborated the Rous hypothesis in our mouse and human
(U87-MG) brain tumor models by showing that DR is anti-angiogenic
(Fig. 2 and Table 1). Biomarkers for angiogenesis, to include insulin-
like growth factor 1 (IGF-1) and vascular endothelial growth factor
(VEGF) were significantly lower in all tumors when grown under DR
than when grown under unrestricted or ad libitum conditions [87]. DR
also reduces angiogenesis in prostate and breast cancer [212,239]. As
DR targets brain tumor angiogenesis naturally, while also enhancing
the health and vitality of normal brain cells, we suggest that the anti-
angiogenic effects of DR or calorically restricted ketogenic diets will be
superior to that of most known anti-angiogenic drug therapies for
brain tumors including those involving metronomic applications,
where multiple anti-angiogenic drugs are given together [240]. In
light of our findings, it is surprising that the field would persist in
treating brain cancer patients with toxic anti-angiogenic drugs that
show marginal efficacy.

Besides reducing angiogenesis, DR also significantly increases brain
tumor apoptosis or programmed cell death [86,87] (Table 1 and Fig. 2).
This was associated with enhanced caspase-3 activation and poly(ADP-
ribose) polymerase cleavage in mouse brain tumors. The proapoptotic

Us7-MG

Fig. 2. Influence of dietary restriction (DR) on morphology, microvessel density, and apoptosis in the mouse ependymoblastoma (EPEN) and the human malignant glioma (U87-MG).
DR was initiated as we previously described [87]. H&E stained tumor sections in an ad libitum-fed (AL) mouse and in a DR mouse (A) (100x). Factor VIII immunostaining from the
tumor grown in an AL mouse and in a DR mouse (B) (200x). TUNEL positive apoptotic cells (arrows) from the tumor grown in an AL mouse and in a DR mouse (C) (400x). Each
stained section was representative of the entire tumor. All images were produced from digital photography. The findings show that DR is anti-angiogenic and proapoptotic.
Reprinted with permission from Clinical Cancer Research [87]. DR had similar effects on the CT-2A malignant astrocytoma as we previously showed [86].
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Table 1
Effects of dietary restriction on biomarkers for vascularity and apoptosis in the CT-2A,
EPEN and U87-MG brain tumors.

Tumors Diet® MVDP Apoptosis  Proliferation®  IGF-1 VEGF
% % (ng/ml)  (pg/ml)
CT-2A AL 243+14 3.7+04 7143 273463 118417

(5 (5) (5) (12) (5)
DR 103£3.1* 81+12" 68+2 1704+29" 80+17"
(5) (5) (5) 17) (5)

EPEN AL 77+£24  34+09 4843 149+£19  86+19
(6) (6) (3) (4) (4)

DR 36+12" 81+29" 43+2 77144 94143
(5) (5) (3) (4) (4)

U87-MG AL  51.0+94 09+01 85+5 370+£134 136422
(7) (3) (3) (5) (5)

DR 283+33" 37+18" 6545 158+£25" 100+8*

(3) (3) (3) (6) (7)

2 Animals were fed either ad libitum (AL) or under dietary restriction (DR) as
described in Methods. All values are expressed as means + 95% CI. The asterisks indicate
that the values from the DR group differed from AL group at P<0.05 *P<0.01 ** as
determined by ANOVA. The details for each measurement and statistics are described in
[87].

b Microvessel density-Factor VIII positive microvessels were averaged in three
hotspot areas of each tumor section per high power field.

¢ Apoptotic index % as determined by TUNEL assay.

4 Proliferation index % as determined by PCNA assay.

€ Numbers in parentheses represent the number of independent samples analyzed.
With permission from Clinical Cancer Research [87].

effects of DR occur in large part from reduced glycolytic energy that
most tumors rely upon for growth [85,99,241]. DR can kill tumor cells by
depleting available energy or by creating tumor-specific oxidative stress
through glucose deprivation [19,242]. In contrast to producing oxidative
stress in tumor cells, DR will reduce oxidative stress in normal cells
through elevation of ketone bodies [216-219]. The widely held notion
that tumor cells are resistant to apoptosis is inconsistent with our
findings that DR enhances tumor cell apoptosis. We suggest that
apoptosis resistance arises largely from enhanced substrate level
phosphorylation of tumor cells and to the genes associated with
elevated glycolysis and glutaminolysis, e.g., c-Myc, Hif-1a, etc, which
inhibit apoptosis [48,85,243]. If energy from glycolysis and glutamino-
lysis is reduced, then many tumor cells will die or growth arrest from
energy deprivation. DR is a simple natural process by which tumor
glycolysis can be targeted without causing toxicity to normal cells.
Restricted ketogenic diets can also reduce availability of glutamine to
brain tumors since ketone bodies and the KD enhances glutamine
export from the brain [69]. Recent studies also show that ketone ester
diets, which elevate blood ketones, can also reduce brain glutamate and
glutamine, while reducing food intake and blood glucose levels [68].
Hence, DR with elevated ketones is a remarkably simple therapy for
targeting either glucose or glutamine metabolism in tumors.

In addition to showing that the CT-2A astrocytoma shares several
genetic and biochemical properties with that of human astrocytomas,
we found that late-onset DR (i.e. DR initiated 10 days after tumor
implantation rather than only 2-3 days after) could reduce tumor
growth, delay malignant progression, and significantly extend mouse
survival [85] (Fig. 3). These findings emphasize an important role for
autocrine/paracrine activation of the IGF-I/Akt signaling pathway in
potentiating the anti-apoptotic phenotype of astrocytomas and suggest
that DR targets this signaling pathway. The DR-induced reduction of
glycolysis, evidenced by declines in both circulating glucose and lactate
levels as well as in the expression of hypoxia-inducible factor-1oc (HIF-
1a) and the type 1 glucose transporter (GLUT1), was also associated
with a reduction in signaling through the IGF-I/Akt pathway [85].
Reduced glycolytic energy could increase ROS-related cell death in
tumor cells while reducing ROS levels in normal cells [242]. Normal cells
switch to ketone bodies for energy under low glucose, which reduces
ROS production [57,89,216]. The reduction the GLUT1 transporter in the
CT-2A astrocytoma cells under DR is opposite to the response of normal

brain cells, which increase expression of GLUT1 [85]. If the CT-2A cells
were more fit or adaptable than normal cells then GLUT1 expression
would be expected to increase more in tumor cells than in normal cells.
This was clearly not the case and indicates a differential response to
energy stress in normal cells and CT-2A tumor cells. Reduction of IGF-1
expression can be lethal to glycolysis-dependent tumor cells, but not
harmful to normal cells [ 18,85,87,244]. Recent studies show that dietary
energy restriction enhances phosphorylation of adenosine monopho-
sphate kinase (AMPK), which induces apoptosis in glycolytic-depen-
dent astrocytoma cells, but protects normal brain cells from death [245].
Viewed together, these findings illustrate further that a shift in energy
metabolism from glucose to ketone bodies protects respiratory
competent normal cells while targeting the genetically defective and
respiratory challenged tumor cells, which depend more heavily on
glycolysis than normal cells for survival [48,85].

It is important to mention that tumor growth site and host might
influence the therapeutic action of DR against brain cancer. For example,
we found that DR significantly reduces the growth of the PTEN-deficient
CT-2A malignant mouse astrocytoma and the human U87-MG glioma,
which have PI3K activation [85,246]. However, our findings with these
tumors differ from the findings in a more recent report showing that
DR was ineffective in reducing the growth of the U87-MG and other
human tumors when grown in mice with characteristics of diabetes,
i.e., non-obese diabetic/SCID mice [246,247]. In contrast to the Kalaany
and Sabatini study, we evaluated tumor growth in the orthotopic site
(brain) and in mice that did not have characteristics of diabetes [85,87].
It is therefore possible that the tumor implantation site and type of
host could influence the effects of DR on tumor growth. As a broad-
spectrum inhibitor of multiple signaling pathways related to apoptosis,
angiogenesis, and proliferation, DR should have significant anti-tumor
effects in vivo regardless of the number and types of mutations expressed
in the tumor cells.

Phosphorylation and inactivation of BAD and procaspase-9
mediate, in part, the anti-apoptotic actions of Akt activation
[248,249]. BAD transmits pro-apoptotic signals generated during
glucose/growth factor deprivation. We found that BAD was consti-
tutively phosphorylated in the CT-2A astrocytoma compared with
contralateral normal brain, and showed that DR suppressed BAD
phosphorylation and increased procaspase-9/-3 cleavage [85]. BAD
stimulates apoptosis by forming heterodimers with and inactivating
the anti-apoptotic proteins Bcl-2 and Bcl-xL [248,249]. DR is known
to reduce Bcl-2 and Bcl-xL expression and to increase the expression
of Bax, Apaf-1, caspase-9, and caspase-3 in experimental carcinomas,
suggesting that DR could inhibit tumor growth by inducing
mitochondrial-dependent apoptosis mediated by the dephosphory-
lation of BAD [250]. These findings are consistent with evidence that
DR is pro-apoptotic in malignant astrocytomas and support evidence
that BAD coordinates glucose/IGF-1 homeostasis and the induction of
apoptosis [85,87,245,248,249]. Thus, our findings showed that
reduced glucose availability and IGF-1 expression play a key role in
suppressing Akt and in mediating the pro-apoptotic effects of DRin a
PTEN/TSC2-deficient mouse astrocytoma [85] (Fig. 4).

10. Dietary restriction is anti-invasive in experimental glioblastoma

It is the highly invasive nature of malignant brain tumors that
makes them difficult to manage using most conventional therapies.
Although restricted ketogenic diets can be effective in managing
invasive brain cancer in children and adults [84,195], few studies
have evaluated the therapeutic effect of calorie or dietary restriction
on invasive brain cancer in mice. The invasive properties of many
malignant human brain tumors follow the “secondary structures of
Scherer,” which include diffuse parenchymal invasion, perivascular
growth, subpial surface growth, and growth along white matter
tracts [251,252]. We recently showed that the VM-M3 invasive
glioblastoma model, which was derived from a spontaneous brain
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Fig. 3. Influence of DR on tumor growth and survival in mice bearing the CT-2A malignant astrocytoma. Intracerebral tumor weight (A); subcutaneous tumor volume (B); and
Kaplan-Meier survival analysis (C). For (B, C), CT-2A tumor tissue was injected s.c. on day 0 and DR was initiated on day 14 when tumors were ~1000 mm? in volume. Subcutaneous
CT-2A tumor volume was significantly lower from day 18 to day 22 (P<0.01; Student t-test), and mouse survival was significantly longer (P=<0.01; Kaplan-Meier survival analysis
followed by Log-rank test) in the DR group than in the UR-fed control group. The asterisk indicates that average CT-2A tumor weight was significantly lower in the DR group than in
the UR group at *P<0.005 (Student t-test). Other conditions and details are as we previously described [85]. Reprinted from Clinical Cancer Research [85].

tumor in the VM inbred strain, is the only syngeneic mouse brain
tumor to our knowledge that expresses the full complement of
Scherer's secondary structures [253]. As seen in Fig. 5, CR reduced the
growth and invasion of the VM-M3 primary tumor. Compared to the
diffuse, ill-defined border of the VM-M3 tumor observed in the
unrestricted control mice, the tumor grown in the CR mice appeared
denser with a more defined border. CR also reduced the invasion of
tumor cells from the implanted ipsilateral cerebral hemisphere into
the contralateral hemisphere. While invading tumor cells were
identified in all regions of the contralateral hemisphere of the control
ad libitum-fed (AL) mice, only sub-pial invasion was found in the
contralateral hemisphere of the CR group (Fig. 6). The total
percentage of Ki-67-stained cells within the primary tumor and the
total number of blood vessels was also significantly lower in the CR-
treated mice than in the mice fed AL, indicating that CR is also anti-
proliferative and anti-angiogenic in this tumor [253]. Our findings
with CR therapy in the invasive VM-M3 glioblastoma model are
in contrast to those observed with bevacizumab therapy, which
appears to enhance glioma invasion without reducing Ki-67 positive
tumor cells [41,42,254]. Our findings suggest that CR could be a more
effective anti-angiogenic therapy than bevacizumab for brain cancer
management. Also, the therapeutic efficacy of CR was not associated
with diarrhea or other adverse effects, as occurs with the potent
epidermal growth factor receptor (EGFR) inhibitor, gefitnib [38].
Although the molecular mechanisms by which CR reduces invasion
are not yet fully described, these findings indicate that the anti-
invasive properties of CR can be due in part to a reduction of prolif-

erative, glycolytic, and angiogenic factors in both the tumor cells and
in the tumor microenvironment.

11. Drug/diet synergy for managing malignant astrocytoma

Although dietary energy restriction is effective in reducing brain
tumor growth and progression, this therapeutic approach alone is
unlikely to completely eradicate all types of malignant brain tumors. We
think that metabolic diet therapy could be enhanced when combined
with drugs that also target energy metabolism. Support for this
hypothesis comes from our recent pilot study showing that the non-
metabolizable glycolysis inhibitor, 2-deoxy-p-glucose (2-DG), worked
synergistically with the RKD to reduce CT-2A astrocytoma growth [189].
2-DG is readily transported into cells, is phosphorylated by hexokinase,
but cannot be metabolized further and thus accumulates in the cell
[255]. This leads to ATP depletion and the induction of cell-death. In this
regard, 2-DG has been described as a CR-mimetic, a drug that mimics
some aspects of calorie restriction [256,257]. However, treatment of
animal models and cancer patients with relatively high doses of 2-DG
(greater than 200 mg/kg) was largely ineffective in managing tumor
growth [258-260]. Side effects of 2-DG included elevated blood glucose
levels, progressive weight loss with lethargy, and behavioral symptoms
of hypoglycemia [258-262]. These findings indicate that 2-DG alone is
ineffective as a viable therapy for most cancers.

Few studies have evaluated the therapeutic efficacy of anti-glycolytic
or anti-cancer drugs in combination with restricted diets. Recent studies
suggest that calorie restriction and fasting can enhance the therapeutic
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Fig. 4. Proposed mechanism by which late-onset DR acts as a broad-spectrum inhibitor of Akt signaling and growth in the PTEN/TSC2-deficient CT-2A astrocytomas. DR reduces
glucose and IGF-1 (autocrine (A)/paracrine (P) and endocrine (E)) metabolism. Reduced production of IGF-1 will inhibit signaling through the IGF-1R/Akt pathway and lead to
activation of apoptotic pathways induced by the dephosphorylation of BAD (on S-136) and cleavage of procaspase-9/-3. The expression of HIF-1a and GLUT1 are regulated in part by
the level of Akt phosphorylation. Consequently, increased expression of HIF-1ae and GLUT1 confer protection against apoptosis. The DR-induced suppression of Akt phosphorylation
leads to reduced transcription and translation of HIF-1cx as well as to decreased expression of GLUT1. We propose that the inhibition of glucose metabolism by DR plays a central role
in mediating the antagonistic effects of DR in managing the metabolically inflexible PTEN/TSC2-deficient astrocytomas. In other words, the loss of PTEN and TSC2 expression in
malignant astrocytomas could impair adaptation to energy stress produced by DR. Moreover, the inability of CT-2A to shutdown protein synthesis during DR-owing partially to loss
of the PTEN and TSC2 tumor suppressors-may also contribute to DR-induced cell-death by accelerating ATP depletion. The shapes with green backgrounds represent signal
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downward facing arrows represent decreased expression. Question marks represent unknown transcription factors. Other conditions and details are as we previously described [85].

Reprinted with permission from Clinical Cancer Research [85].

action of anti-cancer drugs [263,264]. We showed that a low dose of 2-
DG (25 mg/kg) was ineffective in reducing CT-2A astrocytoma growth,
but that this same dosage had powerful anti-tumor effects when
combined with the RKD [189] (Fig. 7). Indeed, the KD-R supplemented
with a low dose of 2-DG was effective in reducing intracerebral tumor
growth to a greater extent than was either 2-DG or the KD-R
administered alone, indicating a synergistic interaction between the
drug and the diet. We suggested that energy stress was greatest in the
mice receiving the drug/diet combination [189]. Based on the findings
from this study and from those of the Longo group [263,264], we suggest
that the therapeutic efficacy of many anti-cancer drugs, which are

marginally effective or toxic when administered alone, could be more
effective when administered in combination with energy restricted
diets. It is important to mention, however, that calorie or dietary
restriction does not target glutamine, and might therefore be less
effective in managing the growth of tumors that depend more on
glutamine than on glucose [188]. Consequently, metabolic therapies
that target both glucose and glutamine are likely to have the greatest
therapeutic effect in managing tumor growth [48,188].

The findings in mouse brain tumors exemplify the efficacy and
versatility of reduced calorie intake as a broad-spectrum inhibitor of
malignant glioma growth and suggest that dietary energy restriction
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Fig. 5. Influence of calorie restriction on VM-M3/Fluc tumor growth. VM-M3/Fluc tumor fragments were implanted into the cerebral cortex fixed and were stained with
haematoxylin and eosin (H&E) as described [253]. Images are shown at 50x (T = tumor, H = Hippocampus). At least 3 samples were examined per group. Reprinted with permission

from ASN Neuro [253].

may extend survival in patients with advanced brain cancers because
it simultaneously targets multiple metabolic pathways in tumor cells
without causing adverse effects or toxicity to normal cells [84,85,253].
DR will facilitate ketone elevation while maintaining low normal
glucose levels. The global energy transition from glucose to ketones
will reduce inflammation in the tumor microenvironment thus
reducing progression. Basically, dietary energy restriction and ketone
body metabolism delays entropy [48,91]. Cancer is a disease of
accelerated entropy [48,265]. This metabolic therapy could be even
more effective when combined with drugs that also target energy
metabolism. Hence metabolic therapies, which lower glucose avail-
ability and elevate ketone bodies, can reduce brain tumor growth
through integrated anti-angiogenic, anti-invasive, and proapoptotic
mechanisms.

ippocampus

Cortex

12. Complicating issues for implementing metabolic therapy for
malignant brain cancer

Several issues can complicate attempts to implement metabolic diet
therapy for brain cancer management in patients. Availability of a drug
that would mimic the global therapeutic effects of dietary energy
restriction would certainly be the easiest way to implement the therapy.
However, no drugs are known that can simultaneously lower glucose
levels while elevating ketones in the absence of some form of calorie
restriction, though the recently described ketone ester diets could be an
exception [68]. Consequently, a major issue is the non-conventional and
non-pharmacological nature of the metabolic therapy. Modern medi-
cine has not looked favorably on diet therapies for managing complex
diseases especially when well-established procedures for acceptable

CbeIIum Brain Stem

Fig. 6. Influence of calorie restriction on VM-M3/Fluc tumor cell invasion to the contralateral hemisphere. VM-M3/Fluc tumor fragments were implanted as described [253].
Histological analysis (H&E) was used to validate the presence of tumor cells under AL (top) and CR (bottom) in cerebral cortex (200x ), hippocampus (100x ), cerebellum (100x), and
brain stem (200x). Arrows indicate the presence of tumor cells. At least 3 samples were examined per group. Reprinted with permission from ASN Neuro [253].
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number of tumor-bearing mice that were alive in each group at the conclusion of the study is listed as a ratio above each solid vertical bar (e.g. the “6/11” indicates that 6 of the 11
original mice were alive at the end of the study in the associated group). Reprinted with permission from Nutrition & Metabolism.

clinical practice are available, regardless of how ineffective these proce-
dures might be in managing the disease [34]. In the case of brain cancer
management, these approved practices generally involve maximal
surgical resection followed a few weeks later by either radiation therapy
or radiation and chemotherapy [10,12]. Some patients can also be
subjected to multiple surgeries that do little to enhance long-term
survival. Almost all patients receive corticosteroids, which significantly
elevate blood glucose levels. The type of therapy given will usually
depend on the age and health status of the patient. However, the
number of older patients with glioblastoma that are either offered no
therapy or who choose no therapy appears to be increasing [6].
Significant neurological damage can often occur in those children who
survive malignant brain cancer while the risk of developing long-term
morbidity and mortality is greatly enhanced [195,266-269]. Worse
yet, some conventional therapeutic protocols involving combi-
natorial radiotherapy with chemotherapy or anti-angiogenic therapy
may actually exacerbate the disease [35,41-43]. These situations are
unacceptable and highlight the inadequacies of conventional
approaches for malignant brain cancer management in either adults
or children. Indeed, healthy long-term survivors of these conventional
practices are more the exception than the rule.

Despite this bleak situation, the brain tumor field continues with
expensive clinical trials using new combinations of radiation and/or
toxic drug therapies in the hope of finding a therapeutic approach with

improved efficacy [8,37,38]. We find it remarkable that so many brain
cancer patients are recruited for therapies that are toxic, potentially
lethal, and offer little hope for improved clinical outcome. Why does this
situation persist? More than 60 years of clinical research indicates that
such approaches are largely ineffective in extending survival or
improving quality of life. Tragically, some of these therapies accelerate
the demise of some brain cancer patients. This is especially the case for
radiation with steroid therapy, which will elevate glucose and
glutamine in the microenvironment thus enhancing metabolic vitality
of surviving tumor cells [34]. Therapeutic approaches to brain cancer
management, which produce adverse effects and reduce quality of life,
should not be pursued, especially when more effective and less toxic
alternative metabolic therapies are available. A recent study showed
that the adverse effects of rash and diarrhea were correlated with very
modest increase in survival of GBM patients [38]. Without appropriate
control groups for rash and diarrhea, it is difficult to interpret such
findings. As most brain cancer therapies are toxic to cells and tissues,
toxicity has become the norm rather than the exception for new cancer
therapies. The situation could change once the field comes to appreciate
the nature of cancer as primarily a metabolic disease [48]. A problem is
in recognizing the existence and scientific basis for effective, non-toxic,
alternative metabolic approaches for brain cancer management.

How can effective non-toxic metabolic therapies be introduced as
part of the standard clinical practice in the field? It is incumbent upon
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neuro-oncologists to notify patients that effective alternatives to the
current standards of care exist for managing brain tumors. Patients
should also know that the RKD would retard tumor growth without
producing toxic adverse effects. It should be up to the patient and their
family to decide whether or not the RKD is a viable therapeutic option for
their situation. Patients with malignant brain tumors, especially those
with glioblastoma, should have the opportunity to compare and contrast
the results from recent drug studies [38,40], with those of metabolic
therapy using restricted diets [84,195]. While entrenched practices
within the field might make it difficult for some physicians to suggest the
RKD as a therapeutic option for brain cancer management, it is hoped that
some enlightened physicians will come to recognize the effectiveness of
the non-toxic metabolic approach to brain cancer management.

Another issue in implementing restricted diets for brain cancer
management concerns the mechanism of action. How can the process of
targeting glucose and glutamine, while elevating ketone bodies through
dietary energy restriction, be so effective in managing malignant brain
cancer? The process is rooted in the well-established scientific principle
that tumor cells are largely dependent on substrate level phosphorylation
for their survival and growth [48,62,76,85,177,195,270]. Glucose and
glutamine drive substrate level phosphorylation. Because tumor cells are
less flexible than normal cells in using alternative energy substrates
(ketones), tumor cells will experience more energy stress when access to
these fuels becomes restricted. While the concept might appear simple,
the underlying mechanisms are the subject of considerable investigation
and debate. This should not, however, retard initiation of clinical trials.

Another concern is how a metabolic therapy that reduces food intake
and body weight can be recommended to patients who might be loosing
body weight because of cancer cachexia [48]. Pro-cachexia molecules
such as proteolysis-inducing factor are released from the tumor cells
into the circulation and contribute to the cachexia phenotype
[106,271,272]. By targeting the glycolytically active tumor cells that
produce pro-cachexia molecules, restricted diet therapies can poten-
tially reduce tumor cachexia [18,48,106]. Once the tumor becomes
managed, patients can increase caloric consumption, which will
accelerate weight gain. Hence, restricted consumption of ketogenic
diets could be effective, in principle, for managing tumor growth in brain
cancer patients with cachexia [195,271].

In contrast to most conventional brain tumor therapies, which
expose both normal cells and tumor cells to toxic assaults, DR and
particularly the RKD, are the only known therapies that can target
brain tumor cells while enhancing the health and vitality of normal
brain cells [19,62,84,195]. In this regard, restricted calorie intake is
conceptually superior to most current conventional brain cancer
therapies. Support for our position on this issue can be established
through clinical trials for brain cancer patients similar to those trials
conducted previously for epilepsy patients [273].

Another difficulty with calorically restricted diets for brain cancer
management is the lack of a standardized use protocol for all patients.
In other words, how is the diet implemented? This is a legitimate
concern that hinders applicability to a broad range of patients, as most
neuro-oncologists are unfamiliar with the application of metabolic
therapy for brain cancer management. Similar concerns are often
raised for implementing the ketogenic diet as a therapy for persons
with epilepsy. Fortunately, several medical groups have established
protocols and menus for implementing ketogenic diet or low glycemic
diets in children [274-277]. Clinicians and could easily adapt these
protocols and menus for their brain cancer patients. Nebeling and
Lerner also provided a protocol for using the medium chain
triglyceride ketogenic diet for brain cancer management [278].

The KD for management of epilepsy and brain cancer would be
similar except in the degree of calorie restriction, which is somewhat
greater for brain cancer patients than for epilepsy patients in order to
more effectively reduce blood glucose levels. Since most reasonably
healthy adults can tolerate more dietary restriction than can children,
adults have greater flexibility than children in using calorically

restricted diet therapies for brain cancer management. Children with
brain tumors, however, respond well to the ketogenic diet as Nebeling
and co-workers showed. According to Herbert Shelton, a guru on human
fasting, most healthy adults can fast (water only) for up to 30 days
without adverse effects [91,279]. The issue of patient compliance should
not be a problem, as motivation for a potentially effective non-toxic
therapy is generally enhanced when confronting a life-threatening
disease like malignant brain cancer. If patients consider the “track
record” of success and the excessive toxicity and financial expense of
most conventional brain tumor therapies, motivation for using a RKD as
an alternative therapeutic option should not be a problem [8]. Why are
most patients not given this option?

13. Guidelines for implementing dietary management of
malignant brain cancer

We suggest a sequential series of therapeutic phases for the dietary
management of malignant brain cancer in patients. Phase one would
gradually lower circulating glucose levels and elevate circulating 3-OHB
levels over a 10- to 14-day period using restricted ketogenic diets or
therapeutic fasting [62,91]. Blood glucose ranges between 3.0 and
3.5 mM (55-65 mg/dl) and 3-OHB ranges between 4 and 7 mM should
be effective for tumor management. These values are well within
normal physiological ranges of glucose and ketones in humans and will
have anti-angiogenic and proapoptotic effects causing metabolic
isolation of tumor cells and significant growth arrest. We refer to this
state in mice as the zone of metabolic management (Fig. 8).

The importance of maintaining low blood glucose levels cannot be
overemphasized. Indeed, elevated blood glucose levels accelerate disease
progression in patients with gliomas [16,17]. We first showed that
astrocytoma growth rate in mice was directly correlated with blood
glucose levels, i.e., tumors grew faster under high circulating glucose
conditions and slower when glucose levels were reduced [18]. These
responses are almost entirely predicted based on the validity of Warburg
cancer theory. Dietary or calorie restriction provides an effective means
to maintain low blood glucose levels. It is important to recognize,
however, that “more is not better” with respect to the ketogenic diet, as
consumption of excessive amounts of the ketogenic diet will maintain
high blood glucose levels thus causing accelerated tumor growth
[18,62,88]. Consequently, this metabolic therapy will require
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considerable personal discipline as water-only fasting will occasionally
be required to lower glucose levels and to elevate ketone body levels in

order to reach the therapeutic zone for managing tumor growth (Fig. 8).

The RKD can reduce the feeling of hunger while maintaining low
glucose and elevated ketone body levels. A recent study in rats suggests
that diets supplemented with ketone esters might have a similar effect,
but this has not yet been tested in humans [68]. Glucose levels can be
monitored several times/day with any standard glucose meter, while
blood ketone levels can be monitored several times/week with either
blood glucose/ketone meters or with enzyme assay as we described [63].
It is necessary to measure ketone levels in blood rather than in urine, as
urine values may not reflect actual levels in the blood [280,281]. Evidence
in mice clearly shows that blood ketone levels are higher when the KD is
administered in restricted amounts than when administered in
unrestricted amounts [64]. It is also imperative that brain tumor patients
keep accurate daily records of their blood glucose levels and weekly
records of their ketone levels. These biomarker data can be used in
conjunction with tumor imaging data to better define the parameters for
the zone of brain tumor management [84]. Dietary supplements of
vitamins and minerals should not be a problem as long as their
consumption does not elevate circulating blood glucose levels or reduce
ketone levels. Flexibility in ketogenic and low glycemic food choices is
possible as long as blood glucose and ketones can be maintained within
the therapeutic range (Fig. 8).

Brain tumor imaging analysis can be used to periodically assess the
efficacy of the diet therapy on tumor progression [8,84]. Tumor imaging
using PET could be a problem, however, especially if the diet reduces
glucose uptake. This would actually be a favorable outcome and
suggestive of diet efficacy. Additionally, restricted ketogenic diets
would reduce the need for antiepileptic drugs or steroidal medications
for reasons described above. We discourage the use of high dosage
steroid medication for brain cancer patients, as dexamethasone
increases gluconeogenesis and blood glucose levels while enhancing
apoptosis resistance in tumor cells [ 14,34,48,84,270]. While steroids can
rapidly mitigate some aspects of the brain tumor phenotype over the
short term (paralysis, edema, etc), high dose steroidal use will
ultimately accelerate brain tumor recurrence and the demise of patients.
Hence the RKD therapy, though not as fast acting as dexamethasone, will
not harm patients as can high-dose dexamethasone.

Phase two of the therapy would involve surgical resection. We
suggest surgical resection as an option after first implementing the
restricted diet therapy. This option will only be possible if there is an
opportunity for a “watchful waiting” period prior to scheduled surgery
[282]. The option will not be possible, for those patients in a critical
condition at the time of presentation. The diet will reduce tumor
vascularization, progression, and will more clearly delineate tumor
tissue from surrounding normal brain tissue as shown in Fig. 5. This can
be assessed through MR and PET imaging [84,195]. Neurosurgeons
should recognize that smaller brain tumors with reduced vascularity
and clearly circumscribed boundaries should be easier to resect than
larger brain tumors with poorly circumscribed boundaries and
extensive vascularization. This would also ensure greater debulking
thereby increasing the likelihood of long-term survival. The standard
practice of surgical resection as soon as possible after tumor diagnosis
could be counter productive for some patients, especially for those with
lower-grade gliomas. The metabolic diet therapy will target angiogen-
esis and slow tumor progression naturally thus providing more time to
consider the surgical option. The diet could also be implemented before
surgical resection for some GBM patients, as surgical resection alone can
alter the microenvironment thus enhancing the invasive behavior of
tumor cells [33]. It is possible that progression free survival could be
significantly extended in some GBM patients if an aggressive metabolic
therapy were implemented prior to surgery. The urge to debulk
malignant brain tumors as soon as possible after diagnosis may not be
in the best interests of all patients and could actually exacerbate disease
progression in some patients.

Finally, phase three could involve carefully executed diet cycling
strategies to maintain metabolic pressure on surviving tumor cells
[19,84,283]. Diet cycling for humans could include weekly transitions
from calorically restricted ketogenic diets to nutritious low calorie,
low glycemic diets. Like the ketogenic diet, low glycemic diets have
also been used to manage seizures in children [284]. The input of
board certified nutritionists would be helpful in guiding patients
during these dietary transitions. An interesting therapeutic strategy
could also involve low doses of glycolysis inhibitors combined with
the RKD. We recently demonstrated a synergistic interaction between
the glycolysis inhibitor 2-deoxyglucose (under low dosage) and the
RKD for brain tumor growth inhibition [189]. We propose that diet/
drug cocktail therapies may be even more effective for long-term
brain cancer management than either therapy alone. Using this
approach, we believe that ketone bodies could protect normal cells
from the adverse effects of low glucose and ROS while effectively
targeting the energy metabolism of the tumor cells. We are aware of
several patients (both children and adults) who are presently using
the RKD for brain cancer management with considerable success in
retarding tumor growth.

14. Conclusions

We provide information on a new, alternative approach to brain
cancer management using metabolic therapy with restricted ketogenic
diets. The objective of this new therapeutic approach is to change the
metabolic environment of the tumor and the host. Only those cells with
a normal flexible genome, honed through millions of years of environ-
mental forcing and variability selection, are expected to survive extreme
shifts in metabolic environment [19]. Indeed, extreme conditions of
survival and fitness will test the limits of a cell population's persistence
in any given location over time [73,74]. Extensive genomic damage, as
exists in most tumor cells, will reduce fitness under nutritional stress.
We suggest that this therapeutic approach, illustrated with restricted
diets, will be more efficacious than current approaches for brain cancer
management because it is based on the principles of evolutionary
biology, metabolic control theory, and the Warburg theory of cancer.
While most of the research supporting our findings and recommenda-
tions has been conducted in animal models of brain cancer and in a few
patients, we think that humans with brain cancer will respond better
than the mice to this metabolic therapy. This comes from the work of
Cahill and Veech showing that humans are possibly the most capable
animal species in transitioning from glucose to ketone bodies for
survival under fasting [89,96]. Support for our contention, however,
must await clinical trials where patients have lowered their glucose
levels and elevated their ketones levels to the recommended metabolic
zone of therapeutic efficacy in the absence of radiation or toxic drug
therapies. While the use of this metabolic approach to brain cancer
management is presently not part of current medical practice in the
field, we are hopeful that oncologists and patients will come to
recognize the value of global metabolic transition for longer-term
management of malignant brain tumors.
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