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Abstract This report examines the Extracellular-Membrane-Intracellular (EMI)
framework for modeling action potentials along 3D axons. We investigate the effect
of myelination and the potential for ephaptic coupling in this model. Additionally,
we assess the convergence and stability of a range of Runge-Kutta time-stepping al-
gorithms on simple geometries with manufactured solutions. We first analyze single
axons and the influence of myelin on the speed of action potentials. Then, we use a
3D geometry of nine cylinders to represent an axonal bundle and study the induced
potential in the central axon in both myelinated and unmyelinated cases. Finally, we
discuss the biological implications of ephaptic coupling and the importance of 3D
modeling for precise simulations of spiking neurons.

0.1 Introduction

Hodgkin and Huxley’s 1952 work [16] was a pioneering effort to quantitatively
describe the chemical processes that cause excitatory neurons to fire. Since then, a
variety of alternative models, such as FitzHugh-Nagumo [9] and Hindmarsh-Rose
[14] ODE models, have been developed to model excitable cells. The emergence
of neural networks has further led to the modeling of neurons as single points in
space with only time-dependent dynamics. In this report, we explore two biological
scenarios in which spatial and temporal dynamics are necessary to accurately model
the propagation and induction of action potentials. Specifically, we investigate the
effects of myelination [13] and ephaptic coupling in axonal bundles [2]. To do this, we
use the recent EMI model to incorporate spatial dynamics into a partial differential
equation (PDE) framework [26].

0.1.1 Myelination

The myelin sheath is an extended and modified plasma membrane that is wrapped
around the nerve axon in a spiral pattern [19]. It is derived from and is part of
Schwann cells in the peripheral nervous system (PNS) and oligodendroglial cells
in the central nervous system (CNS). Each myelin-generating cell provides myelin
for only one segment of the axon. The nodes of Ranvier, which are short portions
of the axon left uncovered, are essential for the functioning of myelin. This myelin
sheath increases the resistance of the axonal membrane, lengthening its electrical
space constant, and thus facilitating signal transmission along the axon. Additionally,
myelin decreases the capacitance of the axonal membrane, so that less charge (in the
form of 𝑁𝑎+) is required to depolarize the cell. Both of these effects increase the
speed of action potential propagation.
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0.1.2 Ephaptic coupling

The term ephapse was proposed in 1941 by Arvanitaki [3] to describe neural struc-
tures coming into contact or in close proximity, without coupling via anatomically
differentiated synapses. Where Arvanitaki had been studying an experimental prepa-
ration with two giant axons (from Sepia officinalis) forming an ephapse by making
the axons touch (for 5 𝑚𝑚 in 4 to 5 𝑐𝑚 long axons), the term ephaptic coupling
has since come to describe short-range coupling between noncontiguous neuronal
membranes [17], alternatively described as ‘electric field effects’ [1].

Similarly to how spiking individual neurons can give rise to extracellular action
potentials, network-level activity can alter the local electric environment in nervous
tissue. This spatiotemporal variation in extracellular potential and its gradient electric
field feed back into the same network, inducing ephaptic coupling [2]. This electric
ephatic coupling can be contrasted with ionic ephaptic coupling, where local changes
in extracellular ion concentrations can alter Nernst potentials [8].

Although ephaptic coupling between neurons can be considered a weak effect
compared to chemical or electrical synapses (measurements of endogenous electric
fields are on the order of a few 𝑚𝑉/𝑚𝑚, see [22] for a summary of experimental
data), it can still have network-level implications in healthy and pathological nervous
tissue [1]. For instance, weak electric fields can entrain slow neocortical oscillations
[10]. Additionally, mathematical models of ephaptic coupling in axon bundles show
induced synchronization of firing activity [4] and modulation of transmission delays
[24].

In pathological scenarios, ephatic entrainment has been implicated in neurode-
generative disease models considering damaged neurons [7]. Ephaptic coupling is
also hypothesized to play a role in pathologies resulting from demyelination of cra-
nial nerves under compression, such as trigeminal neuralgia (facial pain) through
the fifth cranial nerve [11] and vestibular paroxysmia (short episodic vertigo) from
the eighth cranial nerve ([6], [18]).

Thus, studying ephaptic coupling can improve our understanding of network-level
feedback under healthy and pathological conditions. Modeling studies of ephaptic
coupling also offer the translational benefit of providing an evaluation framework in
the design of exogenous (transcranial) stimulation protocols [22]. Given the key role
of extracellular potentials in ephaptic coupling, here we extend previous work on
modeling axon bundles using the EMI framework [8] by contrasting unmyelinated
and myelinated axons in a bundle.



4

0.2 Methods

0.2.1 The EMI model

The EMI model is a PDE framework that has recently been developed to simulate
excitable cells, such as neurons and cardiac cells, from the first principles [26].
It divides the extracellular space, the cell membrane, and the intracellular space
into distinct components. When both spatial and temporal dynamics are taken into
account, it is suitable for modeling the effects of myelination and ephaptic coupling.

For a single cell, denoted Ω𝑖 , surrounded by an extracellular domain, Ω𝑒, the EMI
model is given by the following coupled PDE-ODE,

∇ · 𝜎𝑖∇𝑢𝑖 = 𝑓 , in Ω𝑖 ,

∇ · 𝜎𝑒∇𝑢𝑒 = 𝑔, in Ω𝑒,

𝜎𝑒∇𝑢𝑒 · n𝑒 = −𝜎𝑖∇𝑢𝑖 · n𝑖 ≡ 𝐼𝑚, at Γ, (0.1)
𝑣 = 𝑢𝑖 − 𝑢𝑒, at Γ,

𝜕𝑣

𝜕𝑡
=

1
𝐶𝑚

(𝐼𝑚 − 𝐼𝑖𝑜𝑛), at Γ,

where 𝑢𝑖 , 𝑢𝑒, and 𝑣 are intracellular, extracellular, and membrane potentials, respec-
tively, which are commonly given in 𝑚𝑉 . Furthermore, 𝜎𝑖 and 𝜎𝑒 are intracellular
and extracellular conductances, respectively (typically in 𝑚𝑆/𝑐𝑚), 𝐶𝑚 is the mem-
brane capacitance (typically in 𝜇𝐹/𝑐𝑚2), and Γ denotes the cell membrane. ni and ne
represent the outward-pointing normal vectors. The ionic currents through channels,
pumps, and exchangers at the membrane are denoted by 𝐼𝑖𝑜𝑛 and are typically given
in 𝜇𝐴/𝑐𝑚2. A schematic representation of the model domain is given in Fig. 0.1.
We assumed that the external boundary 𝜕Ω𝑒 is insulated, which leads to the following
Neumann boundary condition

𝜎𝑒∇𝑢𝑒 · n𝑒 = 0, at 𝜕Ω𝑒 . (0.2)

0.2.2 Numerical methods

0.2.2.1 Multi-dimensional primal formulation of the EMI model

In order to numerically integrate the EMI model, we derive a weak formulation [26].
In particular, we use the multi-dimensional primal formulation which is expressed
as follows: find 𝑢𝑖 ∈ 𝑉𝑖 = 𝐻1 (Ω𝑖), 𝑢𝑒 ∈ 𝑉𝑒 = 𝐻1 (Ω𝑒), 𝐼𝑚 ∈ 𝑄∗ = 𝐻−1/2 (Γ) such
that
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Fig. 0.1: Illustration of an EMI model domain consisting of an extracellular domain,
Ω𝑒, a cell membrane, Γ, and an intracellular domain, Ω𝑖 . ne, ni represent normal
vectors and 𝜕Ω𝑒 represents the boundary of the extracellular space.

∫
Ω𝑖

𝜎𝑖∇𝑢𝑖 · ∇𝑣𝑖𝑑𝑥 −
∫
Γ

𝐼𝑚𝑣𝑖𝑑𝑠 =

∫
Ω𝑖

𝑓 𝑣𝑖𝑑𝑥,∫
Ω𝑒

𝜎𝑒∇𝑢𝑒 · ∇𝑣𝑒𝑑𝑥 −
∫
Γ

𝐼𝑚𝑣𝑒𝑑𝑠 =

∫
Ω𝑖

𝑔𝑣𝑒𝑑𝑥, (0.3)∫
Γ

−𝑢𝑒 𝑗𝑚𝑑𝑠 +
∫
Γ

𝑢𝑖 𝑗𝑚𝑑𝑠 −
∫
Γ

Δ𝑡𝐶−1
𝑚 𝐼𝑚 𝑗𝑚𝑑𝑠 =

∫
Γ

ℎ 𝑗𝑚𝑑𝑠,

for all the test functions 𝑣𝑖 ∈ 𝑉𝑖 , 𝑣𝑒 ∈ 𝑉𝑒 and 𝑗𝑚 ∈ 𝑄∗ [26]. In this formulation, the
time-dependent equations are discretized according to an implicit Euler scheme. The
known right-hand side ℎ combines the previous transmembrane potential solution,
𝑣0, and the evaluation of the ionic current, 𝐼𝑖𝑜𝑛, into ℎ ≡ 𝑣0 − 𝐶−1

𝑚 Δ𝑡 𝐼𝑖𝑜𝑛. However,
as discussed in the following section, this final equation can be modified according
to any time discretization.

0.2.2.2 Runge-Kutta time-stepping in the EMI model

As discussed above, the derivation of the weak formulation requires a choice of
time discretization. Depending on the choice of the time-stepping algorithm, the
final equation will differ. We consider the well-studied Runge-Kutta (RK) methods,
a family of classical ODE integrators [12]. For a homogeneous differential equation
of the form

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑦(𝑡)), (0.4)

an 𝑠-order RK scheme is a one-step method of the following form,



6

𝑦𝑛+1 = 𝑦𝑛 + ℎ

𝑠∑︁
𝑖=1

𝑏𝑖𝑘𝑖 , (0.5)

where,

𝑘1 = 𝑓 (𝑦𝑛), (0.6)
...

𝑘𝑠 = 𝑓 (𝑦𝑛 + ℎ

𝑠∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 ). (0.7)

Thus, the method is uniquely defined by the matrix vector pairA, b, whereA = (𝑎𝑖 𝑗 )
and b = (𝑏1, ..., 𝑏𝑠). We can also define the vector k = (𝑘1, ..., 𝑘2). To make this
method consistent with the order 𝑠, certain conditions on A, b must be satisfied,
limiting the number of RK methods for each given order. When A is lower triangular
with zero diagonal, the method is explicit; otherwise, it is implicit. We investigate
the form of final EMI equation for a generalized RK scheme for both the passive and
Hodgkin-Huxley conductance dynamics.

0.2.2.3 The passive conductance EMI model

We consider the time-dependent equation from the EMI model with passive conduc-
tance, corresponding to 𝐼𝑖𝑜𝑛 (𝑣) = 𝑣 [26],

𝑑𝑣

𝑑𝑡
=

1
𝐶𝑚

(𝐼𝑚 − 𝑣(𝑡)) . (0.8)

Considering an RK method of order 𝑠, we discretise this equation as,

𝑣𝑡+1 = 𝑣𝑡 + ℎ

𝑠∑︁
𝑖=1

𝑏𝑖𝑘𝑖 , (0.9)

= 𝑣𝑡 + ℎb⊤k. (0.10)

We further notice that

𝑘𝑖 =
1
𝐶𝑚

(𝐼𝑚 − 𝑣𝑡 − ℎ

𝑠∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 ), (0.11)

which we write in vector notation as,

k =
1
𝐶𝑚

(𝐼𝑚 − 𝑣𝑡 )u − ℎAk, (0.12)
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where u is a 𝑠-vector of 1s. Defining 𝛽 = ℎ
𝐶𝑚

and I to be the 𝑠-dimensional identity
matrix, we assume I + 𝛽A to be invertible and write k explicitly as

k =
1
𝐶𝑚

(𝐼𝑚 − 𝑣𝑡 ) (I + 𝛽A)−1u. (0.13)

As such, our RK scheme can be written as

𝑣𝑡+1 = (1 − 𝛽b⊤ (I + 𝛽A)−1u)𝑣𝑡 + 𝛽b⊤ (I + 𝛽A)−1u𝐼𝑚. (0.14)

According to the weak formulation of the EMI model, this yields conservation law,∫
Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 − 𝛽b⊤ (I + 𝛽A)−1u

∫
Γ

𝐼𝑚 𝑑𝑠

= (1 − 𝛽b⊤ (I + 𝛽A)−1u)
∫
Γ

𝑣𝑡 𝑑𝑠. (0.15)

Given the Butcher tableau, (A, b), one can use this formulation to calculate the
function,

𝑔RK (𝛽) = 𝛽b⊤ (I + 𝛽A)−1u, (0.16)

which can then be used to implement any RK scheme on the EMI model. Further-
more, we notice that 𝑔RK (𝛽) is related to the well-studied stability function of the
RK family, which is defined [12],

𝑅(𝑧) = 1 + 𝑧b⊤ (I − 𝑧A)−1u, (0.17)

namely, the relation is,

𝑔RK (𝛽) = 1 − 𝑅(−𝛽), (0.18)

yielding conservation law,∫
Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 + (𝑅(−𝛽) + 1)
∫
Γ

𝐼𝑚 𝑑𝑠 = 𝑅(−𝛽)
∫
Γ

𝑣𝑡 𝑑𝑠. (0.19)

The stability function can be written as

𝑅(𝑧) = det(I − 𝑧A + 𝑧ub⊤)
det(I − 𝑧A) , (0.20)

where for explicit scheme, due to their lower triangularity, the denominator is 1.
Therefore, for explicit schemes, the stability function 𝑅 and therefore 𝑔RK is a
polynomial of degree 𝑠, which we denote 𝑝𝑠 (𝛽) that has form,

𝑝𝑠 (𝛽) =
𝑠∑︁

𝑛=1
(−1)𝑛+1𝛽𝑛Θ(A, b, 𝑛), (0.21)
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with,

Θ(A, b, 𝑛) =
𝑠∑︁

𝑖0=𝑛

𝑏𝑖0

𝑖0−1∑︁
𝑖1=𝑛−1

𝑎𝑖0 ,𝑖1 . . .

𝑖𝑘−1−1∑︁
𝑖𝑘=𝑛−𝑘

𝑎𝑖𝑘−1 ,𝑖𝑘 . . .

𝑖𝑛−2−1∑︁
𝑖𝑛−1=𝑛−1

𝑎𝑖𝑛−2 ,𝑖𝑛−1 , (0.22)

for 𝑛 = 2, ..., 𝑠 and extended to 𝑛 = 1 by,

Θ(A, b, 1) =
𝑠∑︁

𝑖0=1
𝑏𝑖0 (0.23)

This yields conservation law,∫
Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 − 𝑝𝑠 (𝛽)
∫
Γ

𝐼𝑚 𝑑𝑠 = (1 − 𝑝𝑠 (𝛽))
∫
Γ

𝑣𝑡 𝑑𝑠. (0.24)

Following this process, we can derive the functions 𝑔RK associated with a range of
explicit and implicit RK schemes. In addition, we note that for explicit RK schemes

Table 0.1: Common Runge-Kutta schemes and the associated functions 𝑔RK (𝛽).

Scheme Abbreviation Order Implicit/Explicit 𝑔RK (𝛽)

Explicit Euler EE 1 E 𝛽

Explicit Mid-
point

EMP 2 E 𝛽 − 𝛽2

2

Runge-Kutta 4 RK4 4 E 𝛽 − 𝛽2

2 + 1
6 𝛽

3 − 1
24 𝛽

4

Implicit Euler IE 1 I 𝛽

1+𝛽
Trapezoidal
Rule

TPR 2 I 𝛽

2 + 𝛽−𝛽2

2+𝛽

Exponential
function

EF 𝑝 ∈ N E 1 − 𝑒−𝛽

of order 𝑝, we have the following approximation,

𝑅(𝑧) = 1 + 𝑧 + 𝑧2

2!
+ 𝑧3

3!
+ ... + 𝑧𝑝

𝑝!
+𝑂 (𝑧𝑝+1), (0.25)

therefore 𝑅(𝑧) = 𝑒𝑧 + 𝑂 (𝑧𝑝+1). Using this property, we can define the following
scheme that approximates any explicit, 𝑝-order RK scheme to order 𝑝,∫

Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 + (𝑒−𝛽 + 1)
∫
Γ

𝐼𝑚 𝑑𝑠 = 𝑒−𝛽
∫
Γ

𝑣𝑡 𝑑𝑠, (0.26)

which is referred to in Table 0.1 as “Exponential function” (EF). This scheme rep-
resents the exact solution of the linear time-dependent equation.
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As shown above, using both higher-order and implicit schemes in the passive con-
ductance model can be done via direct calculation, and therefore at no additional
computational cost.

0.2.2.4 Numerical convergence of RK schemes

In order to compare the convergence and stability of the different RK schemes, we
consider the simple square unit domain shown in Fig. 0.2.

(0, 0) (1, 0)

(1, 1)
Ω𝑒

(0, 1)

(0.25, 0.25) (0.75, 0.25)

(0.75, 0.75)
Ω𝑖

(0.25, 0.75)
Γ →

Fig. 0.2: Domain of integration. Ω𝑒,Ω𝑖 , Γ represent the extracellular space, the
intracellular space and the membrane, respectively.

Using the manufactured solution method [25], we define the source functions

𝑓 = 𝑓 (𝑥, 𝑦, 𝑡) = −8𝜋2 sin(2𝜋𝑥) sin(2𝜋𝑦) (1 + 𝑒−𝑡 ), (0.27)

𝑔 = 𝑔(𝑥, 𝑦, 𝑡) = −8𝜋2 sin(2𝜋𝑥) sin(2𝜋𝑦). (0.28)

In this case, the exact solution is given by,

𝑢𝑖 (𝑥, 𝑦, 𝑡) = (1 + 𝑒−𝑡 ) sin(2𝜋𝑥) sin(2𝜋𝑦), (0.29)
𝑢𝑒 (𝑥, 𝑦, 𝑡) = sin(2𝜋𝑥) sin(2𝜋𝑦), (0.30)
𝑣(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(2𝜋𝑥) sin(2𝜋𝑦). (0.31)

We calculate the 𝐿2 error between the numerical solutions, 𝑢̃𝑁,Δ𝑡
𝑖

, 𝑢̃
𝑁,Δ𝑡
𝑒 , 𝑣̃𝑁,Δ𝑡 , using

the finite element method (FEM) and the exact solutions above. We present the two
error terms,
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𝑒𝑁,Δ𝑡
𝑢 =

√︃
| |𝑢𝑖 − 𝑢̃

𝑁,Δ𝑡
𝑖

| |2 + ||𝑢𝑒 − 𝑢̃
𝑁,Δ𝑡
𝑒 | |2, (0.32)

𝑒𝑁,Δ𝑡
𝑣 =

√︁
| |𝑣 − 𝑣̃𝑁,Δ𝑡 | |2. (0.33)

We assess the convergence with respect to both temporal and spatial resolution.
For the spatial convergence test, we fix Δ𝑡 = 0.01/64 and vary the mesh resolution
parameter, 𝑁 = 16, 32, ..., 256, which equals the number of intervals in each direction
of spatial discretisation of the domain, as shown in Fig. 0.5. For the temporal
resolution, we fix 𝑁 = 512 and perform two experiments. Firstly, we use Δ𝑡 = 0.01/𝑛
for 𝑛 = 0.1, 0.5, 1, 2, 4, 8, 16, 32, as shown in Fig. 0.6.

0.2.2.5 The active conductance model

For the EMI model with active conductance, the time-dependent equation becomes
[26],

𝑑𝑣

𝑑𝑡
=

1
𝐶𝑚

(𝐼𝑚 − 𝐼ion (𝑣(𝑡))) , (0.34)

where 𝐼ion (𝑣(𝑡)) is a non-linear function, for example of Hodgkin-Huxley type. In
this case, explicit expressions cannot be derived when applying RK schemes. Given
an implicit RK scheme with Butcher tableau, (A, b), the scheme is again,

𝑣𝑡+1 = 𝑣𝑡 + ℎ

𝑠∑︁
𝑖=1

𝑏𝑖𝑘𝑖 , (0.35)

= 𝑣𝑡 + ℎb⊤k. (0.36)

However, the equations for 𝑘𝑖 yield a non-linear system of equations to be solved at
each time-step,

𝑘𝑖 =
1
𝐶𝑚

(𝐼𝑚 − 𝐼ion (𝑣𝑡 − ℎ

𝑠∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 )), (0.37)

which we write in vector notation as,

k =
1
𝐶𝑚

(𝐼𝑚 − 𝐹ion (𝑣𝑡 ,A,k)), (0.38)

where,

𝐹ion (𝑣𝑡 ,A,k) =
©­­«
𝐼ion (𝑣𝑡 + e⊤1 Ak)

...

𝐼ion (𝑣𝑡 + e⊤𝑠 Ak)

ª®®¬ , (0.39)
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where {e𝑖}𝑠𝑖=1 are the standard basis vectors in R𝑠 .

Most frequently, one considers an active conductance of Hodgkin-Huxley type [16],

𝐼ion (𝑣) = 𝑔Na (𝑣) (𝑣 − 𝐸Na) + 𝑔K (𝑣) (𝑣 − 𝐸K) + 𝑔L (𝑣) (𝑣 − 𝐸L) + 𝑔(𝑣) (𝑣 − 𝐸Na),
(0.40)

where the gating variables, 𝑔ion, for each ion, are non-linear functions of 𝑣 given by
the solution to an ODE. This form allows us to define semi-implicit schemes for this
model. At each time step, the gating variables are updated according to a numerical
method, typically the Rush-Larsen method [23]. To define a semi-implicit scheme,
we update the gating variables with membrane potential 𝑣𝑡 rather than the value
𝑣𝑡 + ℎ

∑𝑠
𝑗=1 𝑎𝑖 𝑗 𝑘 𝑗 . This now yields a simplified system of equations for 𝑘𝑖 ,

𝑘𝑖 =
1
𝐶𝑚

[𝐼𝑚 − 𝑔Na (𝑣𝑡 ) (𝑣𝑡 + ℎ

𝑠∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 − 𝐸Na) − 𝑔K (𝑣𝑡 ) (𝑣𝑡 + ℎ

𝑠∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 − 𝐸K)

− 𝑔L (𝑣𝑡 ) (𝑣𝑡 + ℎ

𝑠∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 − 𝐸L) − 𝑔(𝑣𝑡 ) (𝑣𝑡 + ℎ

𝑠∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 − 𝐸Na)], (0.41)

which is linear. In vector notation, the system becomes

k =
1
𝐶𝑚

[𝐼𝑚 − 𝐼ion (𝑣𝑡 )]u − 𝛽𝐺Ak, (0.42)

where 𝐺 = 𝑔Na (𝑣𝑡 ) + 𝑔K (𝑣𝑡 ) + 𝑔L (𝑣𝑡 ) + 𝑔(𝑣𝑡 ). This has solution,

k =
1
𝐶𝑚

[𝐼𝑚 − 𝐼ion (𝑣𝑡 )] (I + 𝛽𝐺A)−1u. (0.43)

Thus, the scheme becomes as follows:

𝑣𝑡+1 = 𝑣𝑡 + 𝛽b⊤ [𝐼𝑚 − 𝐼ion (𝑣𝑡 )] (I + 𝛽𝐺A)−1u. (0.44)

Under the weak formulation this gives us conservation law,∫
Γ

𝑢𝑖 𝑑𝑠 −
∫
Γ

𝑢𝑒 𝑑𝑠 − 𝛽b⊤ (I + 𝛽𝐺A)−1u

∫
Γ

𝐼𝑚 𝑑𝑠

=

∫
Γ

𝑣𝑡 − 𝐼ion (𝑣𝑡 )b⊤ (I + 𝛽𝐺A)−1u 𝑑𝑠. (0.45)

However, this inverse matrix that must be calculated equates to solving a linear
system at each time step.
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0.2.3 Model setup and geometries

We employ the multi-dimensional EMI formulation (eq. 0.1) with an implicit Euler
scheme (eq. 0.4). We use a Hodgkin-Huxley active conductance model [16] inte-
grated with a Rush-Larsen scheme [23]. The source terms 𝑓 and 𝑔 in eq. 0.1 are set
to 0 [26].

The model parameters were chosen as shown in Table 0.2. The conductance
values for the unmyelinated axons correspond to the giant squid axon [16]. For the
myelinated axons, we scaled the corresponding unmyelinated conductances such
that the total number of ion channels would match for the two axon types. The axon
length, radii, and node lengths were chosen to make the geometry and results easier
to visualize. The synaptic conductance 𝑔(𝑣𝑡 ) in 𝐼𝑖𝑜𝑛 represents a stimulation current
applied to a synapse of length 𝑙𝑛𝑜𝑑𝑒 on one edge of unmyelinated and myelinated
axons.

0.2.3.1 Single axon with and without myelination

Fig. 0.3 illustrates the geometries we employed in our simulation to compare the ve-
locity of the action potential in a single axon for the unmyelinated (𝑎) and myelinated
(𝑏) scenarios. Table 0.2 contains the parameters used for the axons.

Table 0.2: Parameters used for single axon simulations with and without myelin.

Parameter Value
Unmyelinated Myelinated

Axon length 𝐿 (𝑚𝑚) 10 10
Intracellular radius 𝑟𝑖𝑛 (𝑚𝑚) 0.2 0.2
Extracellular radius 𝑟𝑒𝑥 (𝑚𝑚) 1 1
Myelin thickness 𝑡𝑚𝑦𝑒𝑙 (𝑚𝑚) – 0.2
Number of nodes of Ranvier – 10
Length of node 𝑙𝑛𝑜𝑑𝑒 (𝑚𝑚) – 0.1
Internodal distance 𝑙𝑚𝑦𝑒𝑙 (𝑚𝑚) – 1
𝑔̄𝐿 (𝑚𝑆/𝑐𝑚2 ) 0.3 3
𝑔̄𝑁𝑎 (𝑚𝑆/𝑐𝑚2 ) 120 1200
𝑔̄𝐾 (𝑚𝑆/𝑐𝑚2 ) 36 360
𝐸𝐿 (𝑚𝑉 ) -54.38 -54.38
𝐸𝑁𝑎 (𝑚𝑉 ) 54.8 54.8
𝐸𝐾 (𝑚𝑉 ) -88.98 -88.98

0.2.3.2 Axon bundle

For our simulations considering bundles of unmyelinated axons, we arranged nine
axons in a 3 × 3 grid. A cross-section showing this spatial arrangement is depicted
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(a) Unmyelinated axon

(b) Myelinated axon

(c) Longitudinal sections of unmyelinated (top) and myelinated (bot-
tom) axons. Membrane boundaries shown as thick lines.

Fig. 0.3: ParaView renders of the gmsh geometries for (a) unmyelinated, and (b)
myelinated single axons, where (c) shows a schematic representation of both axon
types using parameters from Table 0.2.

in Fig. 0.4. Each axon in the bundle was matched to use the same parameters and
geometries as the single axon simulations described previously. The same arrange-
ment and parameter matching to single axon simulations was also applied to a 3 × 3
bundle of myelinated axons.

For both the unmyelinated and myelinated axon bundles, the eight axons on the
periphery were stimulated using synapses of length 𝑙𝑛𝑜𝑑𝑒 (as in the single axon
simulations), while the central axon in the bundle was not stimulated externally.
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Membrane voltage changes in this central axon were examined to look for evidence
of ephatic coupling.

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑖

Ω𝑒 Γ

Fig. 0.4: Arrangement of nine axons forming a bundle. Ω𝑖 denotes the intracellular
space of each axon,Ω𝑒 denotes the extracellular space, and Γ denotes the membranes.

0.3 Results

0.3.1 Convergence

Fig. 0.5: Convergence with respect to mesh size with fixed time-step. Left: 𝑒𝑢 Right:
𝑒𝑣 .

Firstly, we consider the convergence results for the square-in-square, passive conduc-
tance, manufactured solution discussed previously. We integrate the system using
FeNICS and the RK schemes listed in Table 0.1. In Fig. 0.5, we display the error for a
sequence of increasing spatial (mesh) resolutions for both the intra-extracellular po-
tential and the membrane potential. As shown, all the methods converge comparably
with respect to mesh resolution, as they only modulate the time-stepping error. Next,
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Fig. 0.6: Convergence with respect to temporal resolution for small time-steps and
fixed mesh size. Left: 𝑒𝑢 Right: 𝑒𝑣 .

we consider a series of decreasing time steps. As can be seen in Fig. 0.6, higher-order
methods are limited by spatial discretisation, but all methods appear to converge to
the exact solution. It is clear that the higher-order methods, EMP, RK4 and TPR have
lower errors than the first-order methods EE and IE. For these higher-order methods,
in order to assess their convergence and their stability, we find the time steps at
which they obtain similar error values. By increasing the time-steps so dramatically,
we can limit the effect of the spatial discretisation error and compare the methods
more effectively. As shown in Table 0.3, the least stable of the higher order methods

Table 0.3: Errors for large time-steps for higher order RK schemes.

Δ𝑡 RK4 Δ𝑡 EMP Δ𝑡 TPR
𝑒𝑢 𝑒𝑣 𝑒𝑢 𝑒𝑣 𝑒𝑢 𝑒𝑣

2.5 1.03×10−5 5.62×10−6 1.6 1.03×10−5 2.15×10−4 3.0 1.60×10−5 2.50×10−4

2.6 2.99×10−5 4.70×10−4 1.8 1.64×10−5 2.15×10−4 3.2 1.30×10−4 2.17×10−3

2.7 1.74×10−3 2.90×10−2 2.0 1.65×10−1 2.78 3.4 1.12×10−3 1.87×10−2

is EMP, followed by RK4 and finally TPR, the implicit scheme. Importantly, the
higher order explicit schemes had much lower error yet are less stable. This means
that, depending on the constraints of the particular problem, one should opt for an
implicit scheme for greater stability or an explicit scheme for greater accuracy.

0.3.2 Speed of action potential propagation in single axons

We conducted a simulation to compare the propagation speed of an action potential
in a myelinated axon with that of an unmyelinated one. Fig. 0.7 shows the membrane
potential in both cases recorded at a single point on the membrane and at the end of
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the axon. The action potential profile is similar in both cases. The key difference is
that the potential propagates faster in the myelinated axon; therefore, it arrives at the
end of the axon earlier, as shown in Fig. 0.7.

Fig. 0.7: Potential of myelinated and unmyelinated axons over time measured at the
node located at the end of the axon membrane.

Our simulation supports the biological theory that argues that myelination causes
faster propagation of action potential [21]. This further validates this approach to
modeling myelination by modulating the conductance values in the nodes of Ranvier.

0.3.3 Ephaptic coupling in unmyelinated and myelinated axon bundles

Next, we simulate the 9-cylinder axonal bundle with myelinated and unmyelinated
axons, while stimulating only the 8 peripheral axons. We then measured the induced
activity in the unstimulated central axon.
In Fig. 0.8 (a), we show that in the unmyelinated case, ephaptic coupling did occur
as an action potential was induced in the central axon. There is a noticeable time-lag
between the spike in the peripheral and central axons. In the myelinated case, shown
in Fig. 0.8 (b), ephaptic coupling also occurred with an induced potential in the
central axon. There is no such time-lag in the case of the myelinated axons. The
different profiles of the induced action potentials in each case are highlighted in Fig.
0.8 (c), which shows the unmyelinated and myelinated central axons side by side.
Interestingly, in our simulations we have observed a backpropagation phenomenon
in the central unmyelinated axon as one can see from Fig. 0.9.

Our simulations show that ephaptic coupling is possible in the EMI model, for both
myelinated and unmyelinated axons. Furthermore, we have shown that myelination
severely increases the speed of the propagation of action potentials under direct
stimulation and indirect induction.
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(a) Comparison between the action potential
of the central and peripheral axon in the
unmyelinated case.

(b) Comparison between the action potential
of the central and peripheral axon in the
myelinated case.

(c) Comparison between the action potential of
central axons in the unmyelinated and myelinated
cases.

Fig. 0.8: Plot showing the action potentials induced in the central axon alongside (a
chosen) peripheral axon in both the myelinated and unmyelinated cases.

0.4 Discussion

In this report, we presented a computational approach to modeling myelination and
ephaptic coupling of axons using the EMI framework [26]. As part of this anal-
ysis, we studied a range of time-stepping algorithms for both the passive and the
Hodgkin-Huxley conductance models, obtaining an analytical expression for the
weak formulation for generalized RK schemes. As a result, we can integrate the EMI
model with any RK scheme. We concluded that higher-order schemes are advan-
tageous in terms of both stability and accuracy, with explicit methods being more
accurate and implicit methods being more stable. Our computational simulations
also validated the hypothesis that myelination speeds up the propagation of action
potentials. Finally, we showed that ephaptic coupling was possible in the EMI model
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(a) T=4.76ms (b) T=5.34ms

(c) T=5.82ms (d) T=6.53ms

Fig. 0.9: Action potentials induced in the central axon of the unmyelinated bundle
for different time-stamps (sub-figures (a) through (d)). Arrows depict the splitting of
the induced potential into forward and backward propagating impulses.

for both myelinated and unmyelinated axons, where myelination accelerated the
propagation of the induced action potential.

Our work further supports the notion that biophysical models of excitable cells
should take into account spatial geometry and dynamics to model more specialized
biological phenomena. Both myelination and ephaptic coupling are important fea-
tures of neuronal function and show pathology in disease, such as myelin loss in
multiple sclerosis [20] or reduced ephpatic entrainment in neurodegenerative condi-
tions [7]. For this reason, our report represents an important step towards complete
models of excitable cells and the phenomena that can arise.

Although the EMI framework is a detailed and biophysically realistic model, further
work using the more detailed KNP-EMI model [8], would allow for a more complete
analysis of the parameters that modulate the emergence of induced action potentials,
such as the distance between the axons in the bundle. Parameter values as measured
in demyelinated axons could also be considered for modeling ephaptic coupling un-
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der pathological conditions [15].

Furthermore, this report is a proof-of-concept showing that modeling ephaptic cou-
pling and myelination is possible within this model, yet does not claim to replicate
the exact dynamics seen in biological experiments. Further studies could confirm
that the model outputs are consistent with theoretical predictions, that is, from the
cable equation [5], or from experimental results.
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