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Abstract

Anthropogenic environmental changes have dramatically impacted natural populations. Phe-

notypic responses represent a key set of mechanisms by which organisms cope with these

environmental changes. Some species have responded well and proliferated, while most have

responded poorly and declined. Success depends both on the evolutionary pressures that shape

a population’s phenotypic strategies, as well as contingent events as population responds to

a particular change. This dissertation develops theory to better understand the role of both

past evolution and contingency on the ability of populations to cope with rapid environmental

change. My first chapter models the influence of variability in seed fall on the evolution of caching

behavior in scatterhoarding rodents, with parameters derived from the European beech (Fagus

sylvatica) and yellow-necked mice (Apodemus flavicollis). We find that caching behavior is more

prevalent when seed fall is more variable, illustrating the importance of environmental variability

in driving phenotypic evolution. My second chapter models the evolution of within-generational

plasticity, transgenerational plasticity, and bet-hedging as part of a unified “cue integration system”

under a range of historical environmental conditions. We examine how different cue integration

systems affect populations’ ability to cope with multiple types of environmental change, finding

that populations tend to cope poorly when environmental change makes previously reliable

cues unreliable. This chapter ties together the effect of historical conditions on the evolution of

phenotypic strategies and the ability of those evolved strategies to enable a population to respond

to a changing environment. My third chapter models how different kinds of contingency, in the

form of demographic stochasticity, sex-ratio stochasticity, and phenotypic stochasticity, affect the

likelihood of extinction for a population that must rapidly adapt to a changing environment in

order to persist. I find that phenotypic stochasticity contributes relatively more to the ability

to predict extinction or recovery than demographic stochasticity or sex ratio stochasticity early

during rescue but contributes less as time goes on. Taken together, these chapters tie together

the effects of evolutionary history and stochastic contingency on populations’ ability to respond
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to environmental change and make important progress in understanding the complex ways in

which anthropogenic change affects the natural world.
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Introduction

Human activity has had a profound impact on natural populations, leading to widespread

population declines and extinction (Ceballos et al. 2017; Román-Palacios and Wiens 2020), loss of

habitat (Brooks et al. 2002; Mantyka-pringle et al. 2012), changing environments due to climate

change (Bellard et al. 2012; Doney et al. 2012; Ummenhofer and Meehl 2017; Urban 2015), and the

spread of invasive species (Bellard et al. 2012). Species many respond to these disturbances in

many ways, such as by shifting their ranges to track changing conditions (Bates et al. 2014; Tingley

et al. 2012) or altering their behavior, physiology, or other phenotype through either phenotypic

plasticity (Charmantier et al. 2008; Wong and Candolin 2015) or rapid evolution (Hendry et al.

2017). There is substantial variation in the success of these responses: many species have coped

poorly with environmental change and declined, while others have proliferated and spread (Sih

2013). This dissertation develops mathematical theory to better understand the variation in

population responses to environmental change and its impact on population persistence.

The success or failure of a phenotypic response to changing conditions is a key factor in

determining how well populations respond to environmental change (Charmantier et al. 2008;

Merila and Hendry 2014; Nicotra et al. 2010). Whether organisms possess the capacity for such

phenotypic responses strategies depends on whether the population’s historical environment

promoted the evolution of such capacity. In particular, populations that experienced a history of

environment variability often have evolved strategies to deal with this variability (e.g. plasticity,

dispersal, behavior), which in turn allow them to better cope with rapid environmental change

(Candolin and Wong 2012; Donelan et al. 2020; Hendry et al. 2008; Sih 2013; Sih et al. 2011). Thus

past environments, though evolutionary pressure, shape population responses to contemporary
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changes.

My first chapter examines a case study in the effect of environmental conditions on the

evolution of behavioral strategies. Many granivores exhibit scatterhoarding behavior, which is to

say that they store seeds in numerous small caches over winter (Gómez et al. 2019; Lichti et al.

2017; Pesendorfer et al. 2016; Vander Wall 1990). These caches are undefended and at high risk of

pilferage by conspecifics, making the evolution of this behavior difficult to explain. In many forests,

seed production by trees is concentrated in what are referred to as mast years, creating patterns of

pulsed resources (Kelly 1994; Kelly and Sork 2002). Using parameters derived from the European

beech (Fagus sylvatica) and yellow-necked mice (Apodemus flavicollis), we model the evolution of

caching in scatterhoarders to determine the conditions under which environmental variability

(seed fall patterns) promotes seed caching. Our finding that caching behavior is more prevalent

when mast years are more intense and less frequent illustrates the importance of environmental

variability in driving phenotypic evolution.

My second chapter then examines the conditions under which the phenotypic strategies

selected for by historical environmental variability allow a population to cope well with different

changes to its historical environmental conditions. We consider the phenotypic strategies of within-

generational plasticity (where the environmental experienced by an organism during its own

lifetime affects its phenotypic expression), transgenerational plasticity (where the environments

experienced by an organism’s parents or grandparents affects its phenotypic expression), and

diversified bet-hedging (where an organism produces offspring with a variety of phenotypes in

order to hedge against uncertain future conditions) as part of unified “cue-integration system”

for utilizing environmental information to cope with environmental variability (Botero et al.

2015; Dall et al. 2015; English et al. 2015; Kuijper and Hoyle 2015; Leimar and McNamara 2015;

McNamara et al. 2016; Shea et al. 2011). This chapter links together the questions of how historical

environments affect the evolution of phenotypic strategies and which strategies allow a population

to best cope with different forms of environmental change. Using a linear reaction-norm model

of plasticity (following McNamara et al. 2016), we solve for the optimal mix of WPG, TGP, and
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bet-hedging for a given historical environment and then examine the change in long-term growth

rate when a population with this historically optimal strategy experiences a rapid environmental

change that causes the strategy to no longer be optimal. Our finding that populations tend to

suffer the most when previously reliable environmental cues become unreliable in a changed

environment illustrates the important role of historical environmental conditions in hindering or

facilitating a population’s ability to cope with rapid environmental change.

Populations do not only rely on pre-evolved phenotypic strategies to cope with environmental

change. Many populations are capable of rapidly adapting to new environmental conditions

that would otherwise cause extinction, a phenomenon known as evolutionary rescue (Bell 2017;

Carlson et al. 2014; Vander Wal et al. 2013). However, even when rapid, evolution can be slow

compared to phenotypic plasticity. Populations are predicted to experience a demographic decline

prior to successful adaptation and may reach low population sizes during this process, making

the population vulnerable to stochasticity in individual births and deaths (Bell and Gonzalez 2009;

Engen et al. 1998, 2001; Lande 1988, 1998). This stochasticity may affect both the rate of evolution,

through genetic drift, and the rate of demographic decline, through demographic stochasticity and

sex-ratio stochasticity (Lande 1988). All three forms of stochasticity may contribute to persistence

or extinction of populations undergoing evolutionary rescue, but they do so through different

pathways.

My third chapter develops a method for separating the contribution of different forms of

stochasticity, at different points in time, to ultimate population outcomes such as extinction or

persistence. I then use this method decompose the effects of phenotypic stochasticity, demographic

stochasticity, and sex-ratio stochasticity on persistence or extinction, time to extinction, and time to

recovery for populations undergoing evolutionary rescue in response to an abrupt environmental

change. My finding that phenotypic stochasticity contributes relatively more to the ability to

predict extinction or recovery than demographic stochasticity or sex ratio stochasticity early during

rescue, but not later, illustrates how the importance of different forms of stochasticity may change

over the course of evolutionary rescue.
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The three chapters give complementary insight into population responses to rapid environmen-

tal change. The focus in chapter 3 on rapid evolution and the timing of stochasticity complements

the previous two chapters, which focus on the long-term evolution of phenotypic strategies and

do not consider rapid evolution or how the time of specific stochastic events affects the population.

Further, both environmental stochasticity and demographic stochasticity are important sources

of variability for populations (Boettiger 2018; Engen et al. 1998). Chapters 1 and 2 focus on the

effect of external, environmental variability on evolution and population growth, while chapter

3 focuses on demographic stochasticity and other forms of variability that are intrinsic to the

population. Taken together, these chapters tie together the effects of evolutionary history and

stochastic contingency on populations’ ability to respond to environmental change and make

important progress in understanding the complex ways in which anthropogenic change affects

the natural world.
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Abstract 

Many plant species worldwide are dispersed by scatterhoarding granivores: animals that 

hide seeds in numerous, small caches for future consumption. Yet, the evolution of 

scatterhoarding is difficult to explain because undefended caches are at high risk of 

pilferage. Previous models have attempted to solve this problem by giving cache owners 

large advantages in cache recovery, by kin selection, or by introducing reciprocal pilferage 

of “shared” seed resources. However, the role of environmental variability has been so far 

overlooked in this context. One important form of such variability is masting, which is 

displayed by many plant species dispersed by scatterhoarders. We use a mathematical 

model to investigate the influence of masting on the evolution of scatter-hoarding. The 

model accounts for periodically varying annual seed fall, caching and pilfering behavior, 

and the demography of scatterhoarders. The parameter values are based mostly on research 

on European beech (Fagus sylvatica) and yellow-necked mice (Apodemus flavicollis). 

Starvation of scatterhoarders between mast years decreases the population density that 

enters masting events, which leads to reduced seed pilferage. Satiation of scatterhoarders 

during mast events lowers the reproductive cost of caching (i.e. the cost of caching for the 

future rather than using seeds for current reproduction). These reductions promote the 

evolution of scatter-hoarding behavior especially when interannual variation in seed fall and 

the period between masting events are large.  
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Introduction 

Masting, or periodic, synchronized production of abundant seed crops, is a common 

reproductive strategy of many plants (Kelly 1994, Kelly and Sork 2002) and a classic example 

of a pulsed resource (Ostfeld and Keesing 2000, Yang et al. 2010). Masting provides 

foundational, yet unstable resource levels, creating cycles of feast and famine in food webs 

(Clark et al. 2019). These cycles strongly influence behavior and life-history strategies of 

consumers. For example, animals migrate to track populations of masting plants (Jenni 

1987), enter diapause to survive lean periods between mast-events (Maeto and Ozaki 2003), 

and increase reproduction in anticipation of masting (Boutin et al. 2006, Bergeron et al. 

2011). However, despite decades of research, many impacts of masting on consumers remain 

poorly understood (Clark et al. 2019). Here we use a mathematical model to show that 

masting can play an important but overlooked role in the evolution of a widespread animal 

behavior: scatter-hoarding. 

Scatter-hoarding is defined as caching seeds for future consumption in many small, 

widely-dispersed caches (Vander Wall 1990). This caching strategy is used by numerous 

species of animals, most notably by rodents and corvids (Pesendorfer et al. 2016, Lichti et al. 

2017, Gómez et al. 2019). Scatterhoarders provide essential seed dispersal services in many 

ecosystems throughout the world. According to a recent review, there are 1279 species of 

plants known to rely on this mode of seed dispersal, although this number is certainly 

underestimated (Gómez et al. 2019). However, even though scatter-hoarding is so 

widespread, the evolutionary advantage of this behavior is not obvious because the caches 

are undefended and often suffer very high rates of pilferage (Schmidt and Ostfeld 2008; 

Jansen et al. 2012; Zwolak et al. 2016; Dittel et al. 2017). Thus, scatter-hoarding appears 

vulnerable to cheating by non-caching pilferers (Andersson and Krebs 1978; Smulders 1998; 

Vander Wall and Jenkins 2003). 

First attempts to solve this problem focused on the role of the owner’s advantage. 

According to a model by Andersson and Krebs (1978), scatter-hoarding can evolve when 

cache owners are substantially more likely to recover caches than are naive foragers. 

Empirical estimates of the owner advantage vary widely but appear relatively high in 
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scatter-hoarding birds (particularly those that rely on specialized spatial memory: e.g. 

Brodin 2010) and quite low in mammals. In most studies on rodents, cache owners are only 

2-4 times more likely to recover their caches when compared with naïve individuals (Jacobs 

and Liman 1991; Jacobs 1992; Briggs and Vander Wall 2004; Thayer and Vander Wall 2005; 

Vander Wall et al. 2006; 2008; Hirsch et al. 2013; Gu et al. 2017; see also Steele et al. 2011). In 

many systems, the owner’s advantage appears to be insufficient to prevent substantial cache 

loss to pilferage (2-30% lost per day, according to a review by Vander Wall and Jenkins 2003, 

though this rate might vary depending on environmental characteristics like soil moisture: 

Vander Wall 2000). 

A later model by Vander Wall and Jenkins (2003) suggested that caching can 

represent an adaptive, stable strategy when all caches are reciprocally pilfered by scatter-

hoarding animals with overlapping home ranges (see also Smulders 1998). Under this 

scenario, caches represent a collective resource used by selfish individuals (Vander Wall and 

Jenkins 2003). The reciprocal pilferage hypothesis predicts that animals are unlikely to avoid 

pilferage, but can compensate for it by pilfering caches of other individuals. As a corollary, 

individuals should invest in their pilfering tactics rather than in theft-reducing strategies 

(but see e.g. Dally et al. 2006, Steele et al. 2008, Galvez et al. 2009, Shaw and Clayton 2013, 

Hirsch et al. 2012, Muñoz and Bonal 2011 for examples of potentially costly behaviors aimed 

to reduce pilferage). 

Environmental variability represents an additional, potent mechanism for scatter-

hoarding that has been largely overlooked in the existing models. Such variability is 

pervasive in ecosystems dominated by plants that produce scatterhoarder-dispersed fruits 

because such plants usually show pronounced masting (Herrera et al. 1998; Vander Wall 

2001). Examples of scatterhoarder-dispersed masting plants can be found in the tropics 

(Norden et al. 2007; Mendoza et al. 2018), deserts (Meyer and Pendleton 2015; Auger et al. 

2016), and in temperate zones (Koenig and Knops 2000; Schauber et al. 2002; Shibata et al. 

2002). While studies of masting have often emphasized the benefit of masting to plants in 

terms of reduced per capita seed predation (“predator satiation”: Kelly 1994), masting also 

has important effects on consumer population dynamics that can feedback to affect the 
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evolution of caching. In particular, the cycles of satiation and starvation induce striking 

fluctuations in consumer population size (Ostfeld and Keesing 2000; Yang et al. 2010; 

Bogdziewicz et al. 2016). Typically, masting triggers a temporary increase in consumer 

population size followed by a pronounced crash. Thus, when the next mast year comes, seed 

to consumer ratios are particularly high (Kelly 1994; Ostfeld and Keesing 2000). 

We use a mathematical model to investigate the influence of mast-related 

fluctuations in scatterhoarder population size on the evolution of scatter-hoarding. The 

model mimics interactions between a masting tree and a scatterhoarding rodent. The 

scatterhoarders consume or cache harvested seeds and pilfer or recover their own caches 

over years that differ in both the magnitude of seed fall and the number of competing 

consumers. Previous models demonstrated that caching is influenced by the owner’s 

advantage in cache recovery and the probability that scatterhoarders survive long enough to 

use the caches (Andersson and Krebs 1978; Smulders 1998; Vander Wall and Jenkins 2003). 

However, both the proportion of recovered seeds and scatterhoarder survival depend on the 

magnitude of seed fall and the resulting fluctuations in population size (Pucek et al. 1993, 

Theimer 2005, Zwolak et al. 2016). Thus, we expand on previous models by including the 

effects of environmental variability resulting from mast seeding on caching behavior. We do 

this by treating the proportion of seeds that are cached, rather than immediately consumed, 

as an evolving trait and examining how the evolutionarily stable strategy of this caching 

behavior varies with (1) masting intensity, (2) the frequency of mast years, (3) the owner’s 

advantage in cache recovery, and (4) the survival of scatterhoarders. Our results 

demonstrate that mast-related fluctuations in scatterhoarder population size reduce both the 

risk of cache loss to pilferers and the reproductive cost of caching (i.e. the cost of caching 

seeds for future use rather than using seeds for current reproduction), thus promoting the 

evolution of scatter-hoarding. 

 

Methods 

Modeling approach 
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We consider a population of scatterhoarders that experience three distinct periods of seed 

availability in each year: fall, winter/spring, and summer. During the fall, seeds become 

available, and scatterhoarders gather  and either immediately consume or cache them. 

Energy from consumed seeds contributes to reproduction while cached seeds may be 

recovered for use during the subsequent winter/spring. During the winter/spring, 

scatterhoarders are sustained by seeds from their own caches or seeds they pilfer from the 

caches of other scatterhoarders. As caching behavior may not always be favored, we 

implicitly assume the availability of other winter resources that prevent population 

extirpation. During the summer, scatterhoarders survive and reproduce using resources 

other than seeds. Caching behavior for an individual is represented by the threshold T, such 

that the individual consumes up to T seeds during the fall and caches the rest. We determine 

the conditions under which caching behavior is favored by solving for the evolutionary 

stable strategy (ESS) of T. The central conundrum is that the strategy of scatter-hoarding 

appears vulnerable to cheating by non-caching pilferers, who may invade the population 

and outcompete caching individuals. If the population is monomorphic for a particular 

caching threshold, then this threshold value is an ESS if this population cannot be invaded 

(outcompeted) by individuals with any other threshold value. 

Model description 

During fall (period 1), there is seed fall of S(t) from the primary seed source. Seeds 

are gathered at a rate proportional to the density n1(t) of scatterhoarders during this period. 

The proportionality constant a1 corresponds to the per-capita (i.e., per scatterhoarder) seed 

harvest rate.  Seeds are also lost to other sources (e.g. competitors, germination, decay, etc.) 

at a per-capita rate of L1. If all seeds are gathered or lost to other sources by the end of the 

fall, then the amount of seed gathered per individual equals: 

 

!(#) =
&!'(#)

(! + &!*!(#)
 

All seeds above a threshold, T, are cached by individuals for later in the year. The seeds 

which are not cached, min{G(t),T}, are used for survival and reproduction. The number of 
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offspring produced by an individual, +!(#), at the end of the fall is a saturating function of 

min{G(t),T}, with a maximal number of offspring b and a half saturation constant h (i.e. h is 

the amount of resources required to produce b/2 offspring). The fraction of adults surviving 

from the first period (fall) to the second period of the year (winter/spring) equals s1. Thus, 

the total density n2(t) of individuals entering winter/spring equals  

*"(#) = [+!(#) + .!]*!(#)		where		+!(#) =
1	23*{!(#), 5}	
ℎ + 23*{!(#), 5}

 

The main resource available to individuals during winter/spring is the total size of seed 

caches  max{G(t)-T,0}n1(t). Owners of the cached seed who survived gather their cached seed 

at a rate proportional to the size of their seed caches. This proportionality constant a2 

corresponds to the per-capita rediscovery and use rate of their caches. All other individuals 

are assumed to pilfer seed from others' caches at a per-capita rate apil. Seeds are lost to other 

sources at a per-capita rate of L2. If all cached seeds are gathered or lost by the end of 

winter/spring, then the fraction of caches recovered by its owner given that the owner 

survived from fall to winter/spring is  

8(#) =
&"

(" + &" + &#$%(*"(#) − 1)
 

while the fraction of   caches that was pilfered by each non-owner is  

;(#) =
&#$%

(" + &" + &#$%(*"(#) − 1)
 

For seed caches whose owner died, the fraction that was recovered by a living non-owner is  

<(#) =
&#$%

(" + &#$%*"(#)
 

The total amount of cached seed gathered by a surviving individual from fall is the amount 

of seed recovered from its own caches plus the amount of seeds pilfered from the caches of 

other surviving individuals and the caches of deceased individuals: 

  =&'()$)*((#) = max{!(#) − 5, 0}[8(#) + ;(#)(.!*!(#) − 1) + <(#)(1 − .!)*!(#)] 

Since individuals that were born at the end of the fall had no opportunity to cache, the total 

amount of cached seed gathered by these individuals in the spring/winter is only the 

amount pilfered from the caches of either surviving or deceased individuals:  
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   =+,-(#) = max{!(#) − 5, 0}[;(#).!*!(#) + <(#)(1 − .!)*!(#)] 

If s2 is the fraction of individuals surviving to summer (period 3), then the density of 

individuals entering summer equals  

*.(#) = [+"(#) + ."]*"(#) 

where +"(#) is the population-level per-capita fecundity corresponding to the weighted 

combination of reproductive contributions of individuals surviving from fall and new 

individuals born at the end of fall (for simplicity, we assume the same value of h for 

surviving and new born individuals):  

+"(#) =
1	=&'()$)*((#)
ℎ + =&'()$)*((#)

.!
+!(#) + .!

+
1	=+,-(#)
ℎ + =+,-(#)

+!(#)
+!(#) + .!

 

During this final period of the year (summer), individuals rely on other resources with 

availability A to reproduce and survive with probability s3 (these resources represent 

alternative foods, such as fungi, invertebrates, or seeds of other plant species; adjusted to 

obtain population dynamics consistent with patterns observed in the field). Thus, the 

density of individuals entering the fall of the next year equals 

*!(# + 1) = [+.(#) + ..]*.(#)		 

where R3(t) is the per-capita reproduction. We model this per-capita reproduction using a 

Beverton-Holt function 

	+.(#) =
B

1 + C*.(#)
 

where B is the maximal summer fecundity and C determines the strength of intraspecific 

competition. By composing the equations across the three periods of the year, the yearly 

update rule for population densities at the beginning of fall is   

*!(# + 1) = [+.(#) + ..][+"(#) + ."][+!(#) + .!]*!(#)	 

We modeled seed fall S(t) in the fall as a periodic function of time where the period P 

corresponds to the time between masting years. In the masting years, S(t)=Shigh., next year 

S(t)=Smin  (typically, seed crops produced after mast years are particularly scant: Pearse et al. 

2016, Bogdziewicz et al. 2020), then S(t) = Slow until another mast year. Our analysis assumes 

that the average seed output, (S(1)+S(2)+…+S(P))/P, is fixed and what varies is the 
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proportion of total seed output in the masting year.  Higher intensity of masting means 

more seeds during the masting year, but concomitantly fewer seeds in other years (as 

opposed to just increasing seed output in masting years with no effect on seed production in 

other years). Similarly, when we vary the number of years between masting events, the 

average seed output remains the same (i.e., longer intermast interval corresponds to higher 

seed production in mast years). 

 Figure 1-1 illustrates typical dynamics of the model for the baseline parameters 

described below.  In this figure, seed masting occurs every four years (Fig. 1-1a) and leads to 

a stable, four-year population cycle (Fig. 1-1b). Population densities (Fig. 1-1b) exhibit 

seasonal as well as yearly variation.  Highest densities are reached at the end of the masting 

year (year 1) and crash to low densities the ensuring years (years 2-4). For lower caching 

thresholds, caching occurs in all years except the year after a masting event (green bars in 

Fig. 1-1a). Table A1 in Appendix A lists all parameters for the model and their meaning.  

 

 

 

 

Fig. 1-1. The annual dynamics of fall seeds (a) and seasonal population dynamics (b) when masting 

years occur every 4 years. Both (a) and (b) correspond to a stable, periodic solution of the model.  

In (a), the percent of seeds that fall each year from all of the seeds in 4 year masting interval year are 

plotted as black bars; the first year corresponds to the masting year that is followed by years of lower 

seed fall. The percent of fallen seed that are gathered each year correspond to the red bars, while the 
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percent of gathered seed that is cached are the green bars. In (b), the total population densities  vary 

intra- and inter-annually; the highest densities occur in the winter/spring period of the masting year 

after which the population densities crash to lower densities. Parameter values as described in the 

main text with a 6-fold owner’s advantage in cache recovery. 

 

Model Parameters 

The parameter values are based mostly on research on European beech (Fagus sylvatica) and 

yellow-necked mice (Apodemus flavicollis). Apodemus mice are among the most important 

seed predators and scatterhoarders in Eurasia (e.g. Muñoz and Bonal 2011, Shimada et al. 

2015, Yang et al. 2019, Wróbel and Zwolak 2019). While we found it useful to base our 

parameter estimates on a specific, reasonably well-studied system, we also performed a 

global sensitivity analysis for our main conclusions (Appendix B). Specifically, for each of 

main results, we reran the simulations 100 times with each parameter, call it x, chosen 

independently from a uniform distribution on the interval [x/1.5,1.5x].  

The parameters &! and (! (per-capita harvest rate and per-capita seed loss) may be 

reduced to the single parameter (!/&!. Rearranging the equation for the amount of seeds 

gathered ! yields (!/&! =
(!01/3!)+"

1/3!
.  The parameters *! and *" were taken to be the average 

species-wide density for Apodemus flavicollis: 17.7 individuals/ha (Jones et al. 2009). 

Estimates of the proportion of seeds removed from the forest floor (!/'5) tend to be variable 

with Zwolak et al. (2016) reporting 78% seed removal during mast years and 91% seed 

removal during non-mast years for A. flavicollis, and Le Louarn and Schmitt (1972) reporting 

61% and 74% seed removal by Apodemus sylvaticus during two different years. We selected 

the average value of 76% as our estimate of seed removal. Thus, (!/&! = 5.59. In all cases 

where (! and &! were treated as separate parameters, we used &! = 1 and set (! equal to our 

choice for (!/&!. 

The parameters &#$% and (" may similarly be reduced to ("/&#$%. Zwolak et al. (2016) 

estimated the recovery of seeds from artificial caches to be 54% during nonmast years and 
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5% during mast years, which we assumed to be roughly equivalent to the proportion of 

seeds recovered from an abandoned cache (</max{!(#) − 5, 0}). We then estimated ("/&#$% 

to be between 15.1 and 336.3. In our analysis, we set this value to the upper end of this range 

(300) as this leads to more conservative estimates of when caching evolves. In all cases 

where ("and &#$% 	were treated as separate parameters, we used &#$% = 1 and set (" equal to 

our choice for ("/&#$%. 

We let &" = 3 (when &#$% = 1). This value approximates the results of several studies 

on scatterhoarding rodents (Vander Wall et al. 2006, 2008; Thayer and Vander Wall 2005; 

Hirsch et al. 2013) that documented seed removal rates by cache owners and naïve foragers. 

However, we explored scenarios with both higher and lower cache owner’s advantage (see 

Results). 

We assumed a maximum litter size of 11 individuals (Macdonald and Tattersall 

2001), with one breeding event per period (2-3 litters per year: Pucek 1984).  Assuming that 

half the population are female and half of the individuals born are female, this yields 1 =

5.5.  

Half-saturation constant for mid-year reproduction (h) was set as 124 

seeds/offspring multiplied by half the maximum number of female offspring (b). This value 

was calculated on the basis of energy contents of beech seeds (Grodziński and Sawicka-

Kapusta 1970), energy requirements of yellow-necked mice (0.60 kcal/g/day: Jensen 1982; 

average body mass of yellow-necked mice is 28.3 g: AnAge), and typical costs of 

reproduction-related energy expenditure in small mammals (25% increase in energy 

expenditure during gestation and 200% increase during lactation: Millar 1978; 1979; 

Gittleman and Thompson 1988; Sikes 1995; Zhu et al. 2015), given the length of gestation and 

lactation in yellow-necked mice (26 and 22 days, respectively: AnAge). Note that the link 

between food availability and reproduction limits winter breeding to masting events (which 

are known to result in winter reproduction in our and related study systems: Jensen 1982, 

Pucek et al. 1993, Wolff 1996, Ostfeld et al. 1996). 
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We used 77.5% as the yearlong monthly survival rate (calculated from data on winter 

survival in Pucek et al. 1993: see also Jensen 1982 for similar values). We assumed that each 

period lasts four months, yielding 0.7754=36.1% as the survival rate for each period 

(.!, .", and	..). Winter survival rates in Pucek et al. (1993) are similar to monthly summer 

survival rates reported or calculated from other studies (e.g. Bujalska and Grüm 2008, Sozio 

and Mortelliti 2016), thus we assumed equal survival across all seasons in our initial 

scenario, but examined how relaxing this assumption affects caching rates (see Results).  

In principle, food availability affects both reproduction and survival in a manner that 

depends on life history allocation. That is, an organism can allocate most of its energy 

budget to enhanced survival or enhanced reproduction, or a blend of the two. Predicting 

this life history allocation is complex (Roff 2002), thus rather than attempt to predict the 

optimal allocation (which should depend on optimal caching and vice versa), we draw on 

the natural history of the system to argue that as a first pass, it is more important to examine 

how food consumption affects fecundity as opposed to survival. An increase in food 

consumption clearly increases fecundity.  In contrast, we assume that the consumer has 

alternative food sources (see above) that are sufficient to allow it to survive adequately even 

if it does not allocate any additional energy from the focal seed source towards survival.  We 

further assume that allocating extra energy to increased survival is not very effective (in our 

system) because survival also depends heavily on predation, disease, etc. (Jędrzejewska & 

Jędrzejewski 1998).  In this scenario, survival depends little on the amount of the focal seed 

source consumed. This is also in line with numerous empirical studies reporting that rodents 

allocate extra energy to increase reproductive output rather than survival (meta-analyzed by 

Prevedello et al. 2013). In addition, a critical point for relating food to demography is that in 

short-lived, fecund animals such as rodent scatterhoarders elasticity for survival is low 

whereas elasticity for reproduction is higher (Heppell et al. 2000), which means that even if 

survival does vary, this variation does not affect population growth as much as do changes 

in reproduction.  Accordingly, we focus on effects of food on reproduction, and simplify the 

analysis by assuming that survival is a parameter that is constant across years. However, we 

do vary survival across all years (see Results). 
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Numerical Methods 

To identify the evolutionary stable caching strategies, we examined whether a small mutant 

subpopulation using the caching threshold Tm can invade a resident population using the 

caching threshold T. When the mutant subpopulation densities mi(t) in each of the periods 

i=1,2,3 are sufficiently small, the effect of the mutant population on the resident population 

and itself is negligible. Hence, the dynamics of the mutant in the initial phase of invasion can 

be approximated by the mutant’s growth rate when the population is composed entirely of 

residents. We now describe these dynamics. 

As the mutant and resident individuals only differ in their caching strategy, the 

amount of seeds gathered in year t by a mutant individual equals the amount of seeds 

gathered G(t) by a resident individual. As for the resident dynamics, yearly update of the 

mutant's fall density is of the form  	

2!(# + 1) = [K.(#) + ..][K"(#) + ."][K!(#) + .!]2!(#)	 

 K!(#) corresponds to the number of offspring produced by a mutant individual during the 

fall and only differs from the resident in its threshold Tm 

K!(#) =
1	23*{!(#), 56}	
ℎ + 23*{!(#), 56}

 

K"(#) corresponds to the number of offspring produced by a mutant individual during the 

winter/spring given by a weighted combination due to the fraction of individuals that 

survived from the fall and individuals born in the fall: 

K"(#) =
1	=6,&'()$)*((#)
ℎ + =6,&'()$)*((#)

.!
K!(#) + .!

+
1	=+,-(#)
ℎ + =+,-(#)

K!(#)
K!(#) + .!

 

where K"(#)  differs from +"(#) only in its first term due to surviving individuals with the 

mutant caching strategy: =6,&'()$)*((#) = max{!(#) − 56, 0}8(#) + max{!(#) −

5, 0}[;(#)(.!*!(#) − 1) + <(#)(1 − .!)*!(#)]. Finally, the number of offspring produced by a 

mutant over the summer is the same as the resident i.e. K.(#) = +.(#). 

Whether the mutants playing strategy Tm are able to invade the residents playing the 

strategy T or not depends on their long-term per-capita growth rate  
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.(5, 56) = lim
8→:

"
# log[K.(#) + ..][K"(#) + ."][K!(#) + .!] 

provided the limit exists. Over the parameter space (see previous section) that we simulated, 

the population dynamics always converged to a periodic solution whose period kP is a 

multiple k of the seed masting period P. Typically, this multiple was 1 or 2 or 4, the latter 

two corresponding to period-doubling bifurcations. We developed R code to efficiently 

approximate these periodic solutions. For these periodic solutions of the resident dynamics, 

the long-term per-capita growth rate of mutant strategy Tm against resident strategy T equals 

.(5, 56) =
1
PQ

Rlog[K.(#) + ..][K"(#) + ."][K!(#) + .!]
;<

8=!
 

A strategy T is an evolutionarily stable strategy (ESS) for caching if s(T,Tm)<0 for all 

strategies 56 ≠T. To find ESSs for caching, we derive in Appendix C an explicit expression 

for the fitness gradient >&>?$
(5, 5) when the resident population is playing threshold strategy 

T. When the fitness gradient is positive, mutants with a higher threshold strategy than the 

residents can invade while mutants with a lower threshold strategy fail (Geritz et al. 1997). 

When the fitness gradient is negative, the opposite occurs. As mutants with larger or smaller 

thresholds fail when invading a resident population playing the ESS, the fitness gradient 

equals zero at an ESS.   Hence, we identified ESSs by iteratively solving for thresholds T at 

which the fitness gradient >&>?$
(5, 5) is zero (Fig. C1 in Appendix C).  

Our results focus on the fraction of seeds cached (F) rather than the caching threshold 

(T), as this quantity is easier to interpret. The relationship between these two measures of 

caching is given by T = max{0,
1(8)0?
1(8) }. As the amount of seeds gathered G(t) varies from 

year to year, the percentage of seeds cached when playing the ESS also varies from year to 

year. We also examine pilferage risk and the marginal reproductive cost of caching. Pilferage 

risk is the probability (expressed as a percent) that a seed is pilfered from a surviving 

individual’s cache during winter/spring and equals 100(*"(#) − 1);(#). If Fm denotes the 

percentage of seeds cached by mutant individuals, then the marginal reproductive cost of 

caching equals the infinitesimal reduction in reproductive output for a mutant individual 



   
 

23 
 

caching an infinitesimal amount of seeds rather than consuming them i.e.,  − @A"
@B$

U
B$=5

=

CD1(8)
(1ED)%.  

 

 

Fig. 1-2. Mast year fall population density in individuals/ha (a), pilferage risk, defined as the 

probability that cached seed would be pilfered (b), marginal reproductive costs of caching (c), and 

proportion of seeds cached rather than eaten (d) as a function of masting intensity (expressed as the 

percentage of total seed production that occurs during mast years), with mast occurring every 4th 

year. Dashed, solid, and dotted lines represent the magnitude of owner’s advantage in cache recovery 

(owners 6, 3, and 1.5 times more likely to discover their own caches relatively to naïve foragers). All 

dependent variables are given at the evolutionary stable caching strategy and its associated periodic 

population dynamics. 
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Results 

Increasing intensity of masting results in decreased fall scatterhoarder population density 

(i.e., the density that enters masting events; Fig. 1-2a). This occurs because reproduction is a 

saturating function of seeds gathered and the reproductive gains of higher seed availability 

during masting years are outweighed by the reproductive losses due to lower seed 

availability during non-mast years. 

Increasing masting intensity also reduces the risk that a cached seed would be 

pilfered (Fig. 1-2b), particularly when a high proportion of seeds are produced during mast 

years. The responses of pilferage risk and fall density are correlated (see, also, Figs. 1-3 and 

1-4) because lower population density means fewer pilferers.  

Furthermore, increasing masting intensity is associated with a decline in marginal 

reproductive costs of caching – the cost of caching seeds for future use rather than using 

seeds for current reproduction (Fig. 1-2c). Lower population densities and higher seed 

abundance during mast years mean more seeds per individual. Because reproduction is a 

saturating function of seeds consumed, the marginal reproductive cost of caching declines as 

seed abundance increases. 

As a result of reduced pilferage risk and marginal costs, increasing masting intensity 

causes an accelerating increase in the ESS proportion of seeds cached rather than eaten (Fig. 

1-2d). 

Higher recovery advantage by cache owners reduces pilferage risk (dashed vs. solid 

vs. dotted lines Fig. 1-2a), but has little effect on population densities and marginal 

reproductive costs in the fall of masting years. Consequently, higher owner advantage 

selects for greater caching. 
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Fig. 1-3. Mast year fall population density (a), pilferage risk (b), marginal reproductive costs of 

caching (c), and proportion of seeds cached rather than eaten (d) as a function of masting interval. 

Dashed, solid, and dotted lines represent masting intensity (60, 75 or 90% of total seed production 

occurring during mast years). All dependent variables are given at the evolutionary stable caching 

strategy and its associated periodic population dynamics. 

 

More years with poor seed crops between masting events lowers marginal reproductive 

costs  (because there are more seeds per individual) (Fig. 1-3c) but can increase or lower 

densities of individuals entering the fall of a masting year (Fig. 1-3a) which increases or 

lowers the risk of seed pilferage (because more or fewer individuals enter winter) (Fig. 1-3b). 

Collectively, the lower reproductive costs outweigh the effects of pilferage risk and select for 

more caching (Fig. 1-3d). Varying masting intensity (60, 75 or 90% of seeds produced during 

mast years: dotted, solid or dashed line on Fig. 1-3) affects the magnitude of these changes in 

the manner consistent with Fig. 1-1., with only minor effects on the shape of responses to the 

masting interval.  
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Fig. 1-4. Mast year fall population density (a), pilferage risk (b), marginal reproductive costs of 

caching (c), and proportion of seeds cached rather than eaten (d) as a function of scatterhoarder 

survival. Dashed, solid, and dotted lines denote responses to changes in fall, winter/spring, and 

summer survival, respectively. All dependent variables are given at the evolutionary stable caching 

strategy and its associated periodic population dynamics. 

 

Increasing the survival of scatterhoarders leads to increases in fall population density, 

pilferage risk, and marginal reproductive costs of caching (Fig. 1-4). These effects are the 

strongest due to increases in winter survival, intermediate due to summer survival, and the 

weakest due to fall survival. This is likely because after masting the greatest concentration of 

births occurs in the fall and winter, resulting in the winter population having a higher 

percentage of new individuals (who are not subject to mortality during the previous period) 

than the summer and fall populations. Thus, an increase in mortality in the fall affects a 

smaller proportion of the population than an increase in mortality in the winter or summer. 

Despite increasing marginal reproductive costs and pilferage risk, increasing fall survival, 
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unlike winter/spring or summer survival, selects for more caching. This occurs because, 

unlike summer or spring/winter survival, fall survival increases the likelihood that an 

individual caching in the fall will survive to the winter/spring to make use of their cache.  

 

Fig. 1-5. Relationships between input parameters (masting interval and intensity, expressed as the 

proportion of seeds produced during mast years, scatterhoarder survival, and cacher’s advantage in 

cache recovery) and emergent properties of the model (scatterhoarder population density, the proportion 

of cached seeds that are pilfered, reproductive costs of caching, and the quantity of interest: the 

proportion of seeds cached by scatterhoarders).  

 

Discussion 

The fact that masting causes strong fluctuations in populations of seed-eating animals has 

been well-known for a long time (Curran and Leighton 2000; Ostfeld and Keesing 2000; 

Bogdziewicz et al. 2016), yet the traditional research focus has been on how the satiation-

starvation cycle reduces seed losses to pre- and post-dispersal seed predators. More recently, 

researchers suggested that seed masting is one of the means by which plants manipulate 

behavior of their dispersers (Vander Wall 2010). According to this reasoning, satiation of 

current energy needs induces granivores to cache seeds for future use (Vander Wall 2010). 
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Here we show that the effects of masting on population dynamics and caching behavior are 

mutually dependent. By decreasing the degree of pilfering, the satiation-starvation cycle due 

to more extreme seed masting events may promote the evolution and maintenance of seed 

caching behavior. Thus, the decrease in seed predation, increase in per capita scatterhorder 

satiation, and reduction in pilfering pressure may each represent an important pathway by 

which the scatterhorder satiation-starvation cycle induced by masting may improve plant 

recruitment (Fig. 1-5). These nuanced interactions between plant and seed predator 

emphasize the importance of studying the feedbacks between population dynamics and 

behavioral evolution. 

Our results suggest that when seed production is highly variable, seed caching can 

evolve even when cache owners have little advantage over naive foragers in seed recovery 

(compare with Andersson and Krebs 1978). However, the mechanism that we describe is not 

mutually exclusive with other evolutionary explanations of scatter-hoarding. It can promote 

this behavior in synergy with the cache owner’s advantage (Andersson and Krebs 1978) and 

reciprocal pilferage (Vander Wall and Jenkins 2003).  

The costs of cache loss to pilferers are reduced in our model because periods of 

intense seed production coincide with low densities of scatterhoarders – and thus few 

potential pilferers (see Dittel and Vander Wall 2018 for experimental data demonstrating 

that the magnitude of cache pilferage is determined by the abundance of scatterhoarders). 

When there is pronounced masting with relatively long intervals between masting events, 

densities of scatterhoarders entering the start of the next large masting event are low (Figs. 

1-2 & 1-3). Consequently, individuals are able to collect enough seeds to satiate their 

reproductive needs. As the yearly fitness is determined by the geometric mean of their 

fitness across the seasons and this geometric mean decreases with variation (Lewontin & 

Cohen 1969; Gillespie 1977; Schreiber 2015), the benefits of reducing seasonal variation in 

fitness by increasing winter/spring reproduction (fueled by cached seeds) outweigh the 

diminishing returns of increasing reproduction in the fall (fueled by immediate seed 

consumption). 
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Our results make a prediction that plants dispersed by scatterhoarders should have 

high interannual variation of seed production (typically measured with coefficient of 

variation, CV) relatively to plants dispersed by other means. This appears to be the case, at 

least when plants dispersed by scatterhoarders (synzoochorously) are compared to plants 

dispersed by frugivores (endozoochorously) (Herrera et al. 1998, Kelly and Sork 2002, Pearse 

et al. 2020). When explaining this pattern, researchers emphasized contrasting selective 

pressures acting on these groups of plants. Avoiding the risk of satiating frugivores was 

suggested as a factor that stabilizes seed production in plants dispersed endozoochorously. 

On the other hand, variable seed production in synzoochorous plants was interpreted as an 

adaptation that enabled reducing seed mortality caused by animals that act as seed 

predators and only incidentally disperse seeds (Herrera et al. 1998). However, we suggest 

that the high CV of plants dispersed by scatterhoarders can also be linked to the caching 

behavior of scatterhoarders (see also Lichti et al. 2020 for a model exploring the connection 

between caching behavior and seed trait evolution).  

If, as our simulations suggest, masting intensity and mast interval are important for 

seed caching, then changes in plant masting patterns might affect the dynamics of seed 

caching, and therefore also the recruitment in plant populations. Our model is loosely based 

on the European beech – Apodemus mice system (Jensen 1982; Zwolak et al. 2016). Several 

studies have suggested that the European beech shows more frequent masting in recent 

years, probably due to global warming (Kantorowicz 2000; Schmidt 2006; Övergaard et al. 

2007; Bogdziewicz et al. 2020). This could shift the beech-rodent interactions towards 

antagonism, with higher rodent abundances (predicted also by Imholt et al. 2013), more seed 

consumed and fewer cached (recall that caching declines with more frequent masting: Fig. 1-

3). On the other hand, a recent meta-analysis of global data suggests that masting has 

become more pronounced (Pearse et al. 2017). Such a change could make seed caching more 

profitable for granivores (higher intensity of masting promotes caching: Fig. 1-2). However, 

extreme interannual variation in seed crops might lead to a decline and even extinction in 

granivore populations, due to the difficulty in tracking resource levels. 
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Moreover, any environmental change that affects scatterhoarder population 

dynamics could alter caching behavior and, thereby, impact seed mortality. For example, we 

found that increased scatterhoarder survivorship during the winter or summer may select 

against caching behavior by increasing population densities entering the masting years (Fig. 

1-4). Thus, changes in winter or summer conditions that are favorable for mice could harm 

seedling recruitment both directly by increasing seed predation and indirectly by 

discouraging seed caching. In contrast, autumn conditions that are favorable for mice are 

likely to improve seedling recruitment because increased fall survivorship of scatterhoarders 

selects for more caching. 

Just like every model, the one presented here simplifies reality. For example, in many 

ecosystems different masting species co-occur. Such species often mast synchronously due 

to shared climatic drivers (Curran et al. 1999; Kelly and Sork 2002; Schauber et al. 2002; 

Shibata et al. 2002; Bogdziewicz et al. 2018). If seed production is synchronous, the 

consequences for scatterhoarders will be similar to masting by one tree species. However, if 

masting is asynchronous, its outcome might be similar to reducing masting interval (Fig. 1-

3d), i.e. the selective pressure to cache seeds will be weaker. 

Furthermore, populations of scatterhoarders that have relatively high survival and 

low reproduction (e.g. corvids) might not fluctuate in response to masting as strongly as do 

populations of more productive scatterhoarders, such as chipmunks (Bergeron et al. 2011), 

squirrels (McShea 2000; Selonen et al. 2015), or mice (Pucek et al. 1993, Wolff 1996; Falls et al. 

2007). However, even in species such as corvids, masting can affect the benefits of caching 

through similar mechanisms, i.e. reduced risk of interspecific seed pilferage (due to 

decreased abundance of sympatric rodents: e.g. Thayer and Vander Wall 2005) and lower 

marginal reproductive costs of caching. 

Examining ultimate causes and ecological determinants of caching behavior will help 

to understand former selective pressures on synzoochorous plants, current dynamics of seed 

dispersal, and future alterations in seed dispersal patterns caused by global changes. Our 

study provides a step in this direction and suggests several promising avenues for 

prospective research. For example, future work should address the evolution of caching 
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reaction norms instead of the simple threshold for caching considered here. Additionally, 

evolution of caching strategies could be different when individual variation in personalities 

or, more generally, phenotypes of seed dispersing animals (Zwolak 2018, Zwolak and Sih 

2020) is taken into account. Finally, future studies could examine these interaction from the 

plant perspective, for example by determining masting patterns that maximize seedling 

recruitment. 
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Abstract

Rapid environmental change is affecting many organisms; some are coping well but many species

are in decline. A key mechanism for facilitating success following environmental change is

phenotypic plasticity. Organisms use cues to respond phenotypically to environmental conditions;

many incorporate recent information (within-generation plasticity) and information from previous

generations (transgenerational plasticity). We extend an existing evolutionary model where

organisms utilize within-generational plasticity, transgenerational plasticity, rapid evolution,

and bet-hedging. We show how, when rapid evolution of plasticity is not possible, the effect

of environmental change (altering the environment mean, variance, or autocorrelation, or cue

reliability) on population growth rate depends on selection for within-generation plasticity and

transgenerational plasticity under historical environmental conditions. We then evaluate the

predictions that populations adapted to highly variable environments, or with greater within-

generational plasticity, are more likely to successfully respond to environmental change. We

identify when these predictions fail, and show environmental change is most detrimental when

previously reliable cues become unreliable. When multiple cues become unreliable, environmental

change can cause deleterious effects regardless of the population’s evolutionary history. Overall,

this work provides a general framework for understanding the role of plasticity in population

responses to rapid environmental change.
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Introduction

Most populations are facing rapid environmental change (e.g., habitat loss/fragmentation, exotic

species, harvesting, pollutants, climate change; Wong and Candolin 2015). Some cope poorly

and decline, while others fare so well that they become invasive or urbanized pests (O’Brien and

Leichenko 2003; Sih 2013; Wilson et al. 2020). A major issue is understanding this variation in

ability to cope with environmental change. How well organisms respond often depends on how

well they adjust their phenotypes (e.g., behavioral type, morphology, physiology, and life history;

Charmantier et al. 2008; Merila and Hendry 2014; Nicotra et al. 2010) to novel environmental

situations. Because phenotypic strategies for living in historically variable environments may also

allow species to persist after rapid environmental change (Candolin and Wong 2012; Donelan et al.

2020; Hendry et al. 2008; Sih 2013; Sih et al. 2011), the environment in which a population evolves

will directly impact its response to change. Adaptive responses to variable environments include

adaptive tracking (rapid genetic evolution), phenotypic plasticity, and bet hedging (Botero et al.

2015; Crowley et al. 2016). These adaptations clearly differ in their speed of response to change.

Evolution, even when "rapid", is still substantially slower than pre-existing phenotypic plasticity.

Often, plasticity is necessary to provide a cushion against extinction, allowing populations time to

adapt to their new environment (Chevin et al. 2013; Chevin and Lande 2015).

Although phenotypic plasticity has traditionally been studied as the effect of an individual’s

own experiences on its phenotype (its within-generational plasticity, WGP), a recent area of high

interest is transgenerational plasticity (TGP) – the effects of previous generations’ experiences (in

particular, parents’) on the phenotypes expressed by focal individuals (offspring; Bonduriansky

and Day 2009; Salinas et al. 2013). While it has long been known that experiences can alter parental

behaviors that influence offspring phenotypes, such as parental investment (including parental

care; Trivers 1972) and parental effects on offspring environments (e.g., via oviposition or other

habitat choice, niche construction; Odling-Smee et al. 1996), more recent work has focused on

less "visible" genetic and physiological mechanisms (e.g., epigenetic carryovers, yolk hormone, or
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microbiota effects; Bale 2015; Bell and Hellmann 2019; Herman and Sultan 2016).

Transgenerational plasticity is particularly interesting in the context of adaptation to

environmental variability because it is a response of "intermediate" speed, occurring faster

than rapid evolution but more slowly than within-generational plasticity. While numerous

empirical studies have revealed substantial variation in the strength of WGP and TGP (Auge

et al. 2017; Luquet and Tariel 2016; Sultan et al. 2009; Wadgymar et al. 2018; Walsh et al. 2015),

few have explicitly tested predictions on why we might expect WGP or TGP to be strong or

weak in any given system, and those that have paint the role of TGP as weak or highly context

dependent (Donelson et al. 2018; Uller et al. 2013). Though some papers have quantified the

relative importance of adaptive tracking, plasticity and bet-hedging in specific systems (Colicchio

and Herman 2020; Furness et al. 2015; Simons 2014), a key relatively unmet need is for a conceptual

framework to more generally predict and explain when each of these mechanisms is expected to

contribute to a population’s response to rapid environmental change (Donelan et al. 2020).

We contend that this conceptual framework can be found at the intersection of two existing

bodies of theory. The first consists of approaches that predict the relative effects of environmental

change on individuals or species depending on the evolutionary mismatch between their previously

adaptive traits and the novel, post-change conditions (Sih 2013; Sih et al. 2011, 2016). Organisms

will perform poorly if the new conditions are mismatched with responses that were adaptive

in their evolutionary past. A key assumption is that the species’ initial plastic response to

environmental change, before they have time to evolve, is critically important. This line of

thinking predicts that organisms that evolved in variable, unpredictable conditions or generalists

that are more flexible (plastic) should respond better to environmental change (Blois et al. 2013;

Sol et al. 2016). Several recent models have explicitly applied this approach to explain variation in

responses to: novel environmental variation per se (Botero et al. 2015; Crowley et al. 2016), exotic

predators (Ehlman et al. 2019), novel stimuli that are safe but appear dangerous (e.g., ecotourists;

Trimmer et al. 2017), habitat fragmentation (Crowley et al. 2019), and to explain life history shifts

in phenology in response to climate change (McNamara et al. 2011).
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The second body of relevant theory explains rapid evolution, WGP, TGP and bet hedging

as components of an adaptive system for coping with environmental variability. This system

uses direct and indirect environmental information to predict the optimal phenotype as it varies

with the environment through time. Several recent models have addressed how patterns of

environmental variation shape which combinations of components yield the best predictions and

therefore represent evolutionary optima (Botero et al. 2015; Dall et al. 2015; English et al. 2015;

Kuijper and Hoyle 2015; Leimar and McNamara 2015; McNamara et al. 2016; Shea et al. 2011). In

particular, McNamara et al. (2016) examine the full range of components- rapid evolution, WGP,

multiple kinds of TGP, and bet hedging- within a single modeling framework.

Using an extension of the McNamara et al. (2016) model, we identify how environmental

changes can cause a previously adaptive strategy to become maladaptive and quantify how much

this maladaptation can reduce population growth rate. Because the McNamara et al. (2016) model

was not formulated with environmental change in mind, we extend it to allow for changes in the

mean environment (e.g., change in average temperature, or predation risk) and for systematic

biases in an organism’s perception of the environment (e.g., population-wide tendencies for

prey to misgauge predation risk), thereby accounting for two common types of environmental

change. We examine how key parameters before environmental change determine the evolution

of a population’s reliance on rapid evolution, TGP, WGP, or bet hedging. We then explore how

different forms of change affect population growth. The goal of these analyses is to generate

concrete predictions about how the environment in which a population evolved influences its

response to environmental change.

Conceptual Framework

The fundamental challenge of living in a variable environment is that an organism is uncertain

about future environmental conditions and therefore does not know which phenotypes will yield

the greatest reproductive success. Organisms can improve their success by utilizing cues that
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convey information about the current and past environments. The pathways by which the cues can

influence traits are numerous and include sensory and cognitive mechanisms (Dukas and Ratcliffe

2009; Shettleworth 2010), and biochemical, hormonal, and neurological mechanisms including

DNA methylation or demethylation and histone modifications (Bale 2015; Fusco and Minelli 2010;

Norouzitallab et al. 2019). We refer to these pathways, in aggregate, as the cue integration system

of an organism. Following McNamara et al. (2016) we divide the information pathways into two

broad classes: detection-based pathways and selection-based pathways. Detection-based pathways

convey information gathered by directly experiencing an environment. Selection-based pathways

convey environmental information through the transmission from generation to generation of

heritable elements (either genetic or non-genetic) that influence phenotype. Due to selection,

the relative frequency of an element in one generation contains information about the fitness of

individuals with that element in previous generations’ environments (Dall et al. 2015).

Environmental cues are not perfectly accurate; we consider three potential sources of error.

First, cues may have fixed biases (cue bias) when environmental indicators are unreliable or are

utilized incorrectly by the cue integration system. Prey that do not recognize a novel predator

would have a fixed bias in their perception of predation risk. Second, cues may experience

random error that affects the entire population (population-level cue error) when environmental

indicators vary from generation to generation in their ability to predict the actual environmental

conditions. Early snowmelt during one winter may predict a warm spring favorable to early

flowering while during another it may be followed by a lethal cold snap. Third, individuals may

randomly experience different cues in the same environment (individual-level cue error) due to

local differences in environment indicators, individual differences in perception, or inaccuracy in

the information pathways coordinating phenotypic development. McNamara et al. (2016) examine

only individual-level cue error. Because the selection-based cues are elements inherited from an

individual’s parents we assume only individual-level error in transmission, while detection-based

cues are subject to individual-level error, population-level error, and cue bias because they convey

information gathered directly from the environment.
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Following McNamara et al. (2016), we model an organism’s cue integration system as a set

of weights assigned to each of four information channels (figure 2-1), two detection-based and

two selection-based respectively: (i) a within-generational channel that transmits environmental

cues experienced by an organism during development or as a juvenile (juvenile cue), (ii) a

transgenerational channel that transmits environmental information experienced by a parent to

its offspring (maternal environment cue), (iii) a second transgenerational channel that transmits

the parent’s phenotype (including plastic trait expression) to the offspring through non-genetic

inheritance (maternal phenotype cue), and (iv) genetic inheritance, which transmits alleles of

fixed phenotypic effect from parent to offspring (genetic cue). Although an organism’s fitness is

determined by many traits, for simplicity, we assume that one trait (e.g., germination time) or

one correlated suite of traits (e.g., antipredator behavior) has a disproportionately large effect

on fitness. In addition to the four information channels, the cue integration system also places

weight on a randomization component (diversified bet-hedging) and a “reference phenotype”

representing the phenotype that would result if an individual ignored all cues. An effective cue

integration system is one that weights these components such that organisms, on average, can

match their phenotypes to a randomly fluctuating phenotypic optimum.

We assume that a population’s phenotypic distribution changes over three distinct time scales.

The shortest time scale occurs over one generation: the environment changes, adults reproduce,

cues are transmitted to or detected by the offspring, and the offspring determine their phenotype

based on these cues. Over the intermediate time scale, enough generations have passed that we

assume the environmental regime and the population’s phenotypic dynamics have reached a

stationary state. We then consider the long-run per-capita growth rate of the population over

that joint environmental-genotypic-phenotypic distribution. While the genetic cue exhibits rapid

evolution (provided the phenotype is not genetically canalized), we assume that the cue integration

system itself evolves sufficiently slowly that it can be considered fixed and monomorphic over

this timescale. The longest time scale is that over which the cue integration system evolves. We

do not model the evolutionary dynamics of the cue integration itself and merely assume that
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the cue weights and reference phenotype evolve to maximize long-run per-capita growth rate

within a stable environmental regime. We also assume that the cue integration system evolves to

compensate for persistent cue biases (i.e., these biases are set to zero).

The framework for studying environmental change assumes that before environmental change

occurs, the environmental regime is stationary and the population evolved the optimal cue

integration system for that regime (i.e., we look at the system over the longest timescale).

This environmental regime is characterized by its long-term mean, its long-term variance, its

autocorrelation between years, and the reliability of the information channels used to determine

phenotype. We consider an abrupt change in any combination of these parameters. We then

look at the new growth rate of the population over the intermediate time scale; the environment

and phenotypic distribution reaches its new stationary state, but the population’s dynamics are

still mediated by a cue integration system adapted to the old environment (Sih et al. 2016). The

separation of timescales between environmental change and the evolution of plasticity, along with

our focus on the intermediate timescale, separates our approach from models that assume rapid

evolution of plasticity and focus on the shortest timescale (e.g. Kuijper and Hoyle 2015; Lande

2009).

Examples to which our conceptual framework applies include responses of prey to shifts in

predation risk and plant germination to shifts in climate. First consider the illustrative scenario

where the environmental variable in question is predation risk and an organism’s morphology

(Agrawal et al. 1999; Donelan and Trussell 2018; Luquet and Tariel 2016; Walsh et al. 2015) or

personality (boldness/cautiousness; Reale et al. 2010; Sih et al. 2004; Sih and Del Giudice 2012) are

traits that influence the organism’s fitness (Moiron et al. 2020; Sih et al. 2003). The introduction

of a novel predator increases the mean predation risk and causes persistent inaccuracies in the

organism’s perception of predation risk (the new predator may not be perceived as dangerous;

e.g., lionfish Diller et al. 2014; Medina et al. 2014). The fate of the population will then be impacted

by the historical accuracy of detection-based cues and whether the historical environment was

safe or dangerous.
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A second illustrative scenario concerns seed germination, which often has within-generational

and transgenerational components associated with temperature or precipitation cues (Galloway

and Etterson 2007; Herman and Sultan 2016). These cues impact the timing of germination and,

consequently, can substantially impact fitness. Therefore, historical patterns of temperature and

rainfall, and the reliability of past climatic cues, should play substantial roles in a population’s

phenological response to climate change (Cuello et al. 2019; Herman and Sultan 2011; Whittle

et al. 2009). Optimal germination time may be affected by changes in the mean temperature or

rainfall (Milbau et al. 2009; Petru and Tielboerger 2008), increased climatic variation (Gremer

and Venable 2014), or a decoupling of environmental cues from future conditions (increasing the

population-level cue error; Donohue et al. 2010).

Model and Methods

The Model

Following McNamara et al. (2016), we consider a population of asexual organisms with discrete,

non-overlapping generations. We assume that in each environment there is a single phenotype

with the highest fitness, the optimal phenotype q. Environmental fluctuations from generation to

generation result in fluctuations in the optimal phenotype. Organisms use the environmental cues

to adjust their phenotypes toward the optimal phenotype.

Environmental Dynamics.

We model the dynamics of the environment q(t) as a first-order autoregressive process with

autocorrelation l = Corr(q(t), q(t + 1)) and mean µq . Fluctuations fq(t) in year t are normally

distributed with a zero mean and variance s2
q and are independent of the past. We call s2

q the year

to year environmental variance. The environment process is then written as:

q(t) = µq + l(q(t � 1)� µq) + jq(t). (2-1)
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Figure 2-1: An individual’s phenotype is determined by a combination of four environmental

cues, in red, and the weights assigned to them. The environment is constant within a given

generation, but can change between generations. Information about the environment perceived by

an individual early in life influences its own phenotype (juvenile cue); this is within-generation

plasticity (WGP). Information perceived later as an adult can be passed on through reproduction

to influence its offspring’s phenotype (maternal environment cue). An individual’s genes (genetic

cue) are passed on and influence offspring phenotypes. An individual’s phenotype may also

have a non-genetic direct influence on offspring phenotypes (maternal phenotype cue). Effects of

maternal environment and phenotype cues on offspring are forms of transgenerational plasticity

(TGP). Phenotypes and genotypes within the population are subject to selection each generation.
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At stationarity, the variance is Vq =
s2

q
1�l2 .

Detection-based Cues

The cue integration system makes use of two detection-based cues, the juvenile and maternal

environment cues, which occur through direct observations of the environment q. The juvenile

cue, cJ , represents information about the current environment, q(t), that an individual gathers

during early development. The maternal environment cue cME(t) (the adult cue in McNamara et

al. 2016) is derived from the environment q(t � 1) experienced by the mother as a mature adult.

It does not affect her phenotype m0, which is set during development. This maternal environment

may influence the mother’s reproductive choices that in turn affect offspring development. For

example, resource availability or predation risk during the mother’s adult life (regardless of her

early-life conditions) may influence brood size and location, resource provisioning, or parental

care (Creighton 2005; Gibbs and Van Dyck 2009; Westneat et al. 2015). This cue may not necessarily

interact with her genotype, z0 or phenotype m0 and could in theory vary between broods of

offspring as a form of contextual plasticity.

Detection-based cues are subject to individual-level errors, population-level errors, and fixed

cue bias. The individual-level errors, eind
J

and eind
ME

, vary between individuals within a given

generation and are normally distributed with zero mean and standard deviations sind
J

and sind
ME

,

respectively. McNamara et al. (2016) only accounted for this source of error. The population-level

errors, e
pop
J (t) and e

pop
ME (t), are shared by all individuals, but vary from generation to generation.

They are normally distributed with zero mean and standard deviations s
pop
J and s

pop
ME , respectively.

The cue biases (µJ and µME ) are shared by all individuals and fixed across generations. The

cue integration system is assumed to compensate for cue biases (i.e., they evolve to zero over

the longest timescale). Relaxing this assumption results in discontinuities in the fitness surface

(Supplement 2-1). The juvenile and maternal environment cues then equal

cJ = q(t) + µJ + epop
J

(t) + eind
J
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cME = q(t � 1) + µME + epop
ME

(t) + eind
ME

.

Selection-based cues and randomization

In addition to the detection-based cues, individuals can make use of maternal phenotype and

genetic cues. The maternal phenotype m0 may be thought of as a genotype by environment

interaction determined in early life based on the mother’s juvenile environment q(t � 1) (e.g.,

irreversible plasticity). Phenotypic information can be passed to offspring, with individual-level

transmission error eind
MP

, through epigenetic modifications, hormones in the womb or eggs, maternal

provisioning, etc. For example, predation risk or access to resources during a mother’s early life

may alter her gene expression that in turn affects her morphology (higher defenses, altered body

type) or her persistent behavioral response (personality) in ways that follow her throughout her

lifetime (Bourdeau and Johansson 2012; Chapman et al. 2010; Relyea 2001) and induces similar

phenotypic changes in her offspring (Agrawal et al. 1999; Donelan and Trussell 2015; Reddon 2012;

Sobral et al. 2021). This maternal phenotype cue is distinguished from the maternal environment

cue by its interaction with an individual’s genotype (selection vs. detection), its susceptibility to

only individual-level error, the life stage the mother experiences her inducing environment (early

life vs adult life), and the reversibility of this induction (irreversible vs reversible or contextual).

The genetic cue z represents the transmission of environmental information through heritable

genetic variation in the reaction norm elevation, with error due to mutation emut. If recent past

environments correctly ’predict’ the current environment (i.e., if autocorrelation is high), recent

selection-driven genetic change should produce phenotypes that are better matched to the current

environment than the long-term mean phenotype, while if environments fluctuate randomly (low

autocorrelation), the recent past is ’noise’ that does not predict the current environment. If z0 is

the mother’s genetic trait value and m0 is the mother’s phenotype, then the maternal phenotype

cue cMP (the maternal cue in McNamara et al. 2016) and the genetic cue z of an individual are

cMP = m0 + eind
MP

and z = z0 + emut
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where eind
MP

and emut are normally distributed with zero mean and standard deviations of sind
MP

and

smut respectively.

The reaction norm elevation is modeled by a fixed component µ representing the population’s

long-term mean phenotype plus a variable component consisting of the genetic cue z scaled

by the weight wZ . wZ z represents the deviation of individual genotypes from the long-term

mean µ. A large value of wZ allows allelic variation to strongly influence phenotype (i.e., relying

heavily on genetic cues) thereby increasing the genetic heritability of the trait and promoting

strong genetic responses to selection. A small value of wZ decouples genetic evolution from

phenotypic determination by making the phenotype robust to variation in genetic background, a

process known as genetic canalization (Waddington 1957; Wagner et al. 1997). Thus, wZ represents

the degree to which the phenotype is genetically canalized or decanalized and the reference

phenotype µ represents the phenotype that results if the trait is both environmentally canalized

(i.e., no plasticity) and genetically canalized.

In population genetic terms, genetic canalization is the evolution of reduced mutational effects

(mutations result in smaller deviations from the ancestral phenotypic state; Flatt 2005; Hansen

2006). Genetic canalization occurs through mechanisms such as modifier alleles or other epistatic

interactions, functional redundancy among genes, or dominance (De Visser et al. 2003; Flatt 2005;

Takahashi 2019). Differences in genetic canalization can be empirically quantified by comparing

the mutational variances among different experimental lines or by measuring the change in the

among-genotype component of phenotypic variance in response to a genetic perturbation (e.g.,

mutation introgression, or gene knockout or inhibition; Flatt 2005; Takahashi 2019; Takahashi 2017).

Many populations exhibit genetic variation in fitness-related traits, so it is natural to question

how often developmental processes allow complete genetic canalization. In Supplement 2-6 we

examine our model under the assumption that complete genetic canalization is not possible.

The final factor governing an individual’s phenotype is not a cue, but a normally-distributed

randomization term eR with mean 0 and standard deviation sR . When individuals use

randomization to determine their phenotype, the population exhibits diversified bet-hedging (Bull
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1987).

The cue integration system

The phenotype x of an individual is given by a linear combination of the cues with the cue

integration system consisting of the reference phenotype µ (the phenotype which would result if

the individual ignored all cues) and a set of weights wZ , wJ , wME , wMP , wR on the cues:

x = µ + wZ z + wJ (cJ � µ) + wME(cME � µ) + wMP(cMP � µ) + wR eR . (2-2)

A larger value of wJ means that organisms exhibit stronger within-generational plasticity,

and larger values of wME and wMP result in stronger transgenerational plasticity. µ + wZ z is the

elevation of the reaction norm when measured in the reference environment with the optimal

phenotype µ. Over the longest timescale, µ is assumed to evolve so that it is equal to the µq .

Individual Fitness and Population Growth Rate

Following McNamara et al. (2016), we assume that the optimal phenotype has a maximal log

fitness rmax and that log fitness decreases quadratically with the distance of the phenotype x from

the optimal phenotype q:

R(x, q) = exp
✓

rmax �
1

2w
(x � q)2

◆

where w, the width of the fitness function, is always set to 1 (following McNamara et al. (2016)).

For a given cue integration system, the distribution of phenotypes, genotypes, and environment

approaches a stationary distribution. For a population and environment following this stationary

distribution, let X be the phenotype of a randomly chosen individual and Q a randomly chosen

environmental state. Then the long-term per-capita population growth rate equals

r = E[log R(X, Q)].

Given sufficient time, the cue integration system (µ, wZ , wJ , wME , wMP , wR) evolves to maximize r.
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Methods

We explore evolution of cue weights prior to environmental change and the impacts of change on

population growth rates using both analytical and numerical methods. We analytically derived

the expression for per-capita population growth rate (Equations 2-3, 2-4, 2-6, and 2-7; derivation

included in Supplement 2-1), which was used both for the pre- and post-change scenarios. We

computed the pre-change cue weights that maximized population growth rate at stationarity by

using the L-BFGS-B algorithm for bounded optimization, as implemented in the optim function

of the base package of the R statistical programming language (Version 4.1.0; R Core Team

2021). We chose bounded optimization because convergence of the phenotypic variance to a

unique equilibrium value is not guaranteed when wZ < 0 or wMP < -1 (Supplement 2-1). wZ was

constrained to values between 0 and 10, wJ and wME between �10 and 10, wMP between �1 and

10, and wR between 0 and 10. In practice, optimal cue weights very rarely exceeded one and, with

the exception of wMP , were always positive. Ten randomly-chosen initial conditions were tested

to ensure the absence of multiple local maxima; when different initial conditions led to different

maxima, the global maximum was taken (this only occurred in a narrow range of parameter space

where wR transitioned from zero to positive).

We examined optimal cue weights across a range of pre-change environmental parameters.

Environmental variance and population-level cue error are in the same units as the width of the

fitness function (w), which was set to one, so their ranges were selected to span from four-fold

less than the w (0.25) to four-fold more than w (4). Because the optimal phenotypic variance is

equal to the variance of the mismatch between the mean phenotype and the optimal phenotype

minus w2 (Tufto 2015), this parameter range should be sufficient for bet-hedging to be observed.

Autocorrelation was allowed to vary between 0 and 0.9. In order to keep the parameters in

a range that allows for juvenile, maternal environment, and maternal phenotype cues, when

otherwise unspecified l = 0.7 and s2
q = 1. When varying autocorrelation, we also allowed

the environmental variance to vary in order to hold constant the stationary variance of the

54



environmental process (Var(q)). This is equivalent to parameterizing the environmental process

in terms of autocorrelation and stationary variance. The default values for individual-level cue

error, population-level cue error, and mutation were chosen to be small (with respect to w = 1):

µq = 0, s2
mut = 0.25, (sind

J
)2 = 0.25, (sind

ME
)2 = 0.25, (sind

MP
)2 = 0.25, (spop

J )2 = 0.25, (spop
ME )2 = 0.25.

For post-change results, we examined the effects of four environmental changes on the

population’s long-run per-capita growth rate. The changes were (i) the mean environment

increases by 1 (i.e., a change in the mean environment results in 1 unit change in the optimal

phenotype, not to be confused with an increase in environment quality), (ii) the juvenile cue bias

increases by 1 (i.e., juveniles get worse at evaluating the environment), (iii) the environmental

variance increases by 0.4, and (iv) the autocorrelation decreases by 0.1. The changes in the mean

environment and juvenile cue bias were chosen to equal the width of the fitness function w.

For environmental variance and autocorrelation, these changes are 10% of the total parameter

range we examined. The directions of the environmental changes were chosen to make the

environment less predictable. When a change (such as an increase in autocorrelation) makes the

environment more predictable, per-capita growth rate always increases. We chose to represent the

environmental changes as absolute changes rather than proportional changes because the growth

rate is a linear function of many of the environmental parameters.

In order to determine the robustness of our main results to parameter choice, we conducted

global sensitivity analyses using Latin hypercube sampling to randomly sample parameter values

in the ranges l 2 (0, 1), s2 2 (0, 4), s2
mut 2 (0, 4), (sind

J
)2 2 (0, 4), (sind

ME
)2 2 (0, 4), (sind

MP
)2 2 (0, 4),

(spop
J )2 2 (0, 4), and (spop

ME )2 2 (0, 4). For each parameter combination, we calculated the set of

optimal cue weights, as well as the reduction in population growth rate (fitness loss) associated

with the environmental changes discussed in the main paper. The specifics of these analyses, as

well as their results, are contained in Supplements 2-4 and 2-5.
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Results

Long-term population growth

In Supplement 2-1, we show that the long-term per-capita growth rate, r, of the population can be

decomposed into five terms

E[r(wZ , wJ , wME , wMP , wR)] = rmax � P �F � E � S . (2-3)

The first of these terms is the maximum per-capita growth rate, and the remaining four we

call the phenotypic variance load P (sensu Lynch and Lande 1993; Burger and Lynch 1995), the

environmental fluctuation load F (sensu Ezard et al. 2014), the population-level error load E , and

the environmental shift load S , respectively. The maximum growth rate rmax is the per-capita

growth rate attained if all individuals perfectly match the optimal phenotype. The remaining terms

(referred to as fitness loads) represent factors that reduce the growth rate below its maximal value.

F , E , and S constitute a decomposition of the evolutionary lag load, which results when the mean

phenotype of the population differs from the changing phenotypic optimum (Maynard Smith

1976). P and F were described for this model in McNamara et al. (2016), while E and S are new.

We summarize the first-order (linear) relationships between environment, cue weights, and fitness

loads in figure 2-2, which provides a useful conceptual framework for interpreting our results.

The phenotypic variance load P is the reduction in growth rate (fitness loss) due to deviation

of individuals from the mean phenotype and is given by 1
2 ln(1 + s2

X). In general, the phenotypic

variance s2
X must be solved numerically, but when wZ = 0, the phenotypic variance is given

by s2
X = 1

2 (h
2 + w2

MP
� 1 +

q
(h2 + w2

MP
+ 1)2 � 4w2

MP
), where h2 = w2

J
(sind

J
)2 + w2

ME
(sind

ME
)2 +

w2
MP
(sind

MP
)2 + w2

R
(see Supplements 2-1 and 2-3). Phenotypic variance increases with all cue

weights, with the magnitude of the increase for each cue scaled by its individual-level error. This

load, therefore, selects for lower weights of cues with high individual-level error and for lower

values of randomization.

The environmental fluctuation load F (or the environmental stochasticity load sensu Lynch and
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Lande 1993) represents the reduction in growth rate due to imperfect tracking of environmental

variation at the population level, discounting the effect of cue error. This term is given by

F = Vq
(1 + Gl)(1 � wJ )

2 + (1 + Gl)(wME + wMP)
2 � (l + G(1 + l2)1 � lB)(1 � wJ )(wME + wMP)

2(1 � L
2 (1 � B)� B2)(1 + s2

X)
(2-4)

where G = �L+2B(1�l)
(1�l)(1�lB)+lL , B =

wMP
1+s2

X
, and L =

wZ smutp
1+s2

X
. The parameters determining the

magnitude of this load are the environmental variance and autocorrelation, with the load

increasing linearly with environmental variance.

This term equals zero when wJ equals 1 and all other cue weights are 0, reflecting the fact that

in the absence of cue error the juvenile cue allows perfect prediction of the environment, and that

relying on other cues is a compromise strategy to account for imperfect information. McNamara

et al. (2016) prove that when wZ = wMP = 0, the optimal values of wME and wJ obey the inequality

wME < l(1 � wJ ). Indeed, when wZ and wMP are small, we can write

F ⇡ Vq
(1 � wJ )

2 + [(wME + wMP)� l(1 � wJ )](wME + wMP)

2(1 + s2
X)

. (2-5)

Thus, if s2
X is approximately constant, the environmental fluctuation load selects for higher

maternal cue weights when autocorrelation is high and the juvenile cue weight is low. Note,

however, that the maternal phenotype cue affects the fitness function through B while the maternal

environment cue does not. We examine the additional complexities induced by the genetic cue,

the maternal phenotype cue, and phenotypic variance in Supplement 2-3.

The population-level error load, E , is the fitness cost of utilizing cues with high population-level

errors, (spop
J )2 and (spop

ME )2, and equals

E =
w2

J
(spop

J )2 + w2
ME
(spop

ME )2

2(1 � L
2 (1 � B)� B2)(1 + s2

X)
. (2-6)

Equation 2-6 shows that unlike individual-level cue error, which affects growth rate through

phenotypic variance, population-level cue error has a clear linear effect on growth rate. This load

selects for lower weights of detection-based cues with high population-level error.

The environmental shift load, S , is the fitness load due to the average mismatch between the

mean and optimal phenotype (as opposed to F and E , which are due to the mismatch variance).
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This mismatch may arise due to biased cues or a shift in the mean environment. When the genetic

cue is present (wz > 0), rapid evolution in the elevation of the reaction norm (the genetic cue z)

can compensate for this mismatch so long as the mismatch does not change over time. The load

term equals

S =
(1 � wJ � wME � wMP)(µq � µ)� wJ µJ � wME µME

2(1 � B)2(1 + s2
X)

(2-7)

when wZ = 0 and S = 0 otherwise. This term selects for decreased cue bias and for concordance

between the reference phenotype µ and the average optimal phenotype µq . This term does not

affect selection on the cue weights per se because it is equal to zero, independent of the cue

weights, when µ, µJ , or µA evolve to their optimal values of µ = µq and µJ = µA = 0. We treat µ,

µJ , or µA as under control of the cue integration system because when they are treated as fixed

parameters the long-term growth rate becomes discontinuous and may lack a global maximum

(Supplement 2-1). F , E , and S are all decreasing functions of phenotypic variance and therefore

select for greater randomization.

Effects of Past Conditions on the Cue Integration System

The equations 2-3, 2-2, 2-4, and 2-6 show that the juvenile cue weight will depend on the balance

between the phenotypic variance load P and the error load E , which select for reduced cue weight,

and the environmental stochasticity load F , which selects for increased cue weight (up to wJ = 1).

Biologically, this means that relying on the juvenile cue allows organisms to track environmental

variation more closely, but makes them more vulnerable to cue error. This balance depends, in part,

on the juvenile cue errors and the environmental variance, respectively. When the juvenile cue has

been historically less accurate (e.g., higher population-level cue errors) our model predicts that

organisms will rely less upon this cue (figures 2-3A,2-4A). When the environment has historically

had high variance, there is a higher signal to noise ratio for the juvenile cue and organisms rely

more heavily upon it (figures 2-3B,2-3D).

As with the juvenile cue, the phenotypic variance load P and the error load E select for lower
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Figure 2-2: A qualitative schematic of interactions between environmental conditions, optimal cue

weights, and fitness loads. The blue boxes at the top of the figure are environmental parameters.

The red boxes to the left are the optimal cue weights. The black boxes to the right are the

fitness loads. Solid arrows depict positive effects, dashed arrows depict negative effects, and the

dotted arrows depict context-dependent effects. Blue arrows denote the effect of environmental

parameters on cue weights, red arrows denote the effect of cue weights on fitness loads, and

black arrows denote the effect of environmental parameters on fitness loads. The schematic

does not show second order interactions, such as how the environmental shift load changes with

simultaneous changes in mean environment and cue bias. The genetic cue is not shown because it

is not utilized over the parameter range examined in our main results.
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maternal environment cue weights while only the phenotypic variance load selects for lower

maternal phenotype cue weights. If wZ and wMP are small, the environmental stochasticity load F

selects for higher transgenerational cue weights only when autocorrelation is high and juvenile

cue weight is low, and selects against the transgenerational cues otherwise (see equation 2-5). Our

results support this approximation, showing that the transgenerational cue weights are higher

when the juvenile cue is unreliable and the environment is stable (high autocorrelation, low

environmental variance; compare 2-3D to 2-3B and 2-4D to 2-4B). The conditional relationship

between the transgenerational cue weights and the environmental stochasticity load creates a

negative association between within-generational and transgenerational plasticity (figure S2-6).

Biologically, this implies that the transgenerational cues act as substitutes for the juvenile cue

when they are reliable but the juvenile cue is not.

When both WGP and TGP are ineffective (population-level cue error is high and environment

variance is high or autocorrelation is low), the population error E , environment shift S , and

environmental stochasticity loads F are all high. Because greater phenotypic variation reduces

these loads, greater weight on randomization (i.e., diversified bet hedging) is then evolutionarily

favored (figures 2-3B, 2-4B; See Tufto 2015 for the formal mathematical conditions under which

bet hedging is favored when plasticity is present).

Strikingly, the genetic cue is not utilized (wZ = 0) over the entire parameter range considered

in the main text. We show in Supplement 2-3 that the genetic cue and the maternal phenotype cue

have opposing effects on the environmental fluctuation load (e.g., G tends to increase with wMP ,

but decreases with wZ ), making it sub-optimal to simultaneously utilize both cues. We further

show that utilizing the genetic cue decreases the optimal values of TGP via the fluctuation load F .

We also find that genotype-environment covariance decreases with plastic cue weights (McNamara

et al. 2016), extending the results of Tufto (2015) to include transgenerational plasticity (though

the results for genotype-environment correlation are more complicated). As a result, the genetic

cue is only utilized when autocorrelation is high, environmental variance is low, and both WGP

and TGP are inaccurate (figure S2-5B; McNamara et al. 2016). See figure S2-4 for optimal cue
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weights patterns under these conditions.

Total plasticity (i.e., the sum of the juvenile, maternal environment, and maternal phenotype

cue weights) decreases slightly with increased juvenile cue error (compare figure 2-3B to 2-4D),

but increases substantially with autocorrelation (figure 2-4B,D). This is likely because when

autocorrelation is low, TGP and rapid evolution are not favored, leaving WGP as the only response

to environmental variation. When environmental variance is low, the sum of cue weights decreases

dramatically because the environmental stochasticity load is small relative to the error loads;

plasticity is less necessary because the environment is less variable. Thus, the total plasticity can

be low either when individuals do not need to respond to their environment or when both past

and current environmental cues are unreliable.

As expected, the long-term per capita growth rate is lowest when none of the cues are reliable

(figures 2-3C, 2-4C) because all of the fitness loads are high. However, when only one cue is

reliable (e.g., either TGP when population-level juvenile cue error is high and environmental

variation is low, or WGP in the opposite conditions), growth rates remain relatively high because

individuals evolve to rely primarily on the reliable cue. The optimal growth rate for a given

historical environment also serves as the maximal attainable growth rate for a population that

finds itself in that environment post-change.

61



Figure 2-3: The effect of environmental variance and population-level juvenile cue error on

optimal cue weights and per-capita growth rate. A) The optimal weight for the juvenile cue.

The two horizontal lines denote cross-sections of parameter space corresponding to panels B

and D. B) Optimal cue weights as a function of environmental variance when the population-

level juvenile cue error (spop
J )2 is equal to 3. C) Per-capita growth rate of a population with

optimized cue weights as a function of environmental variance and population-level juvenile cue

error. D) Optimal cue weights as a function of environmental variance when the population-

level juvenile cue error is equal to 1. Remaining parameters: r = 1, l = 0.7, s2
mut = 0.25,

(sind
ME

)2 = (sind
MP

)2 = (sind
J

)2 = (spop
ME )2 = 0.25.
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Figure 2-4: The effect of autocorrelation and population-level juvenile cue error on optimal cue

weights and per-capita growth rate. A) The optimal weight for the juvenile cue. The two horizontal

lines denote cross-sections of parameter space corresponding to panels B and D. B) Optimal cue

weights as a function of autocorrelation when the population-level juvenile cue error (spop
J )2 is

equal to 3. C) Per-capita growth rate of a population with optimized cue weights as a function of

autocorrelation and population-level juvenile cue error. D) Optimal cue weights as a function of

autocorrelation when the population-level juvenile cue error is equal to 1. Remaining parameters:

r = 1, s2
q = 1�l2

1�0.72 , s2
mut = 0.25, (sind

ME
)2 = (sind

M )2 = (sind
J

)2 = (spop
ME )2 = 0.25.
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Effects of the Cue Integration System on Responses to Environmental Change

A main advantage of our partition of the growth rate is that most environmental parameters are

found in only one fitness load and so the effect of many environmental changes can be determined

by examining the relevant load term. We first consider a change in the mean environment

(e.g., mean temperature or rainfall), which is located in the shift load S . Equation 2-7 shows

that maintaining a positive per-capita growth rate even after a change in mean environment

depends not just on WGP, but on the population’s total plasticity (i.e., the sum of the juvenile and

maternal cue weights). The reduction in growth rate (fitness loss) is greatest when the pre-change

environment favors low levels of plasticity. This occurs when both the environmental variance

is low and population-level juvenile cue error is high (compare the left-most portions of figure

2-3B,D to that of figure 2-5A). Similarly, when the environmental autocorrelation is low (making

TGP unreliable) and juvenile cue error is high (making WGP unreliable), total plasticity is low and

the fitness loss due to a change in mean environment is high (compare the upper-left quadrant

of figure 2-6A to the left-hand side of figure 2-4B). Note, however, that when population-level

juvenile cue error and environmental variance are both large, total plasticity remains relatively

high (figure 2-3B), and the reduction in growth rate from a change in mean environment remains

low (figure 2-5A).

For changes in environmental variance, autocorrelation or cue error, figures 2-5B,C,D and

2-6B,C,D show that these changes are generally most harmful when they cause previously reliable

cues to become unreliable. For increases in juvenile cue bias, the fitness loss is largest when, in the

past, the juvenile cues were reliable and environmental variation was high or autocorrelation was

low (i.e., when past conditions favored greater reliance on WGP; compare figures 2-5B and 2-6B

with figures 2-3A and 2-4A). Under the opposite conditions that favor higher reliance on TGP and

reduced WGP, changes that increase in juvenile cue bias are less costly. Equation 2-6 and figure

S2-2 show that the results are qualitatively similar if environmental change results in an increase

in the population-level juvenile cue error.
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The environmental fluctuation load F increases linearly with environmental variance, so

changes that increase environmental variation are most harmful when F
Vq

is large. This occurs

when both past environmental variation was low and population-level juvenile cue error was high

(figure 2-5C). These past conditions favored weak WGP and relatively strong TGP (figure 2-3B, D),

which becomes less reliable when greater environmental variation increases the average difference

between adult and offspring environments. In contrast, if organisms evolved to rely heavily on

WGP, then F
Vq

is small and even if the organisms evolved with low to moderate environmental

variation they continue matching well with their environment when the environmental variance

increases.

When environmental autocorrelation decreases, the parent’s environment is less predictive, so

TGP is less effective. If the maternal phenotype and genetic cue weights (wMP and wZ ) are small,

then we can approximate the fitness loss from this reduction as � ∂F
∂l ⇡ Vq

(1�wJ)(wME+wMP )

(1+s2
X)

. Thus,

fitness loss from reduced autocorrelation is higher when TGP is relied on more heavily, which tends

to be when past environmental variance was lower (figure 2-3B,D) or past autocorrelation was

higher (figure 2-4B,D). Figure 2-6D shows the fitness loss associated with reduced autocorrelation

is greater when past autocorrelation is higher. Figure 2-5D shows the fitness loss associated with

reduced autocorrelation is lower under high environment variance than moderate environmental

variance, particularly when population-level juvenile cue error is high and TGP is favored. In

contrast, even though TGP is greater when past environmental variation is low, the fitness

loss from reduced autocorrelation is actually higher under moderate environmental variation.

This is because when environmental variation is low, the difference between past and current

environments is small even when autocorrelation is reduced, leading to a smaller increase in

environmental fluctuation load.
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Figure 2-5: The effect of historical environmental variance and population-level cue error on

the reduction in long-term per-capita growth rate (fitness loss) due to A) a change in the mean

environment, B) a change in juvenile cue bias, C) a change in environmental variance, and D)

a change in autocorrelation. For A and B the change is given by a 1 unit increase in mean

environment and a 1 unit increase in juvenile cue bias. For C the change was an increase in

environmental variance by 0.4, while for D the change was decrease in autocorrelation by 0.1. The

other parameters were given as r = 1, l = 0.7, µq = 0, s2
mut = 0.25, (sind

ME
)2 = (sind

M )2 = (sind
J

)2 =

(spop
ME )2 = 0.25.
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Figure 2-6: The effect of historical autocorrelation and population-level cue error on the reduction

in long-term per-capita growth rate (fitness loss) due to A) a change in the mean environment,

B) a change in juvenile cue bias, C) a change in environmental variance, and D) a change in

autocorrelation. For A and B the change is given by a 1 unit increase in mean environment and

juvenile cue bias, respectively. For C the change was an increase in environmental variance by 0.4,

while for D the change was decrease in autocorrelation by 0.1. The other parameters were given

as rmax = 1, s2
q = 1�l2

1�0.72 , µq = 0, s2
mut = 0.25, (sind

ME
)2 = (sind

M )2 = (sind
J

)2 = (spop
ME )2 = 0.25.

Because the loads terms are additive, when changes in two environmental parameters affect

different components of the per-capita growth, the total reduction in the growth rate is simply the

sum of the reductions in growth rate caused by each change occurring in isolation (see equations
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2-3, 2-4, 2-6, and 2-7). This means that aside from changes in individual-level cue errors, which

influence the equilibrium phenotypic variance and therefore contribute to all four load terms,

the only parameter combinations with non-linear interactions are environmental variance and

autocorrelation (both found in the environmental fluctuation term F ), and the environmental

mean and two cue biases (which are found in the environmental shift term S).

There are some combinations of changes that result in large reductions in population growth

regardless of the population’s evolutionary history. For example, environmental variance affects

the environmental fluctuation load F and the juvenile cue bias affects the environmental shift

load S , so if both environmental variance and juvenile cue bias increase, the effect on population

growth can be visualized simply by superimposing figures 2-5B and 2-5C (as well as figures

2-6B and 2-6C). The fact that these figures are almost reflections of each other across a diagonal

means that if the organism evolved in past conditions where one environmental change has low

costs, the other has high costs. Therefore, these two changes produce complementary effects

on population growth that tend to produce substantial reductions in growth rate regardless of

pre-change conditions (but see Supplement 2-6 for when the genetic cue is present). The only

exception is for populations that evolved in environments in which all cues were already unreliable

(the upper right corner of figures 2-5B and 2-5C). These are, however, precisely the environments

in which populations have low growth rates to begin with and therefore might be particularly

vulnerable to even minor reductions in population growth rate. Thus, a simultaneous increase in

environmental variation and juvenile cue bias represents a "no-win" scenario.

Discussion

Almost all species are facing one or more aspects of rapid environmental change including climate

change, habitat loss or fragmentation, exotic enemies, increased human exploitation, and novel

chemical stressors (Candolin and Wong 2012). Strategies that allow populations to persist in

variable environments differ in the speed of their response to rapid environmental change, with
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within-generational plasticity (WGP) being the fastest, transgenerational plasticity (TGP) slower,

and rapid evolution slower still. Thus whether a population is able to adjust rapidly and persist

after environmental change depends, in part, on which of these mechanisms was evolutionarily

favored in the past. Building on recent work (Kuijper and Hoyle 2015; Leimar and McNamara

2015; McNamara et al. 2016; Rivoire and Leibler 2014; Uller et al. 2015) that used an informational

framework to predict how environmental conditions should influence the relative importance

of WGP and TGP in governing an individual’s phenotype (Harney et al. 2017; McIntyre and

Strauss 2014; Sultan et al. 2009; Walsh et al. 2016, 2015), we showed that the ability to cope with

environmental change depends critically on the degree of mismatch between new environmental

conditions and the strategies which evolved in pre-change environmental conditions.

Patterns of plasticity before environmental change

We found that selection for WGP and TGP tends to be negatively correlated across a wide range

of environmental histories. This is because TGP was stronger when environments are more

autocorrelated and when juvenile cues were less reliable, while WGP predominates when juvenile

cues are accurate and previous environmental conditions are poor predictors of the current

environment. These results are in line with previous theory (Colicchio and Herman 2020; English

et al. 2015; McNamara et al. 2016).

We also found selection for bet-hedging when environmental cues are consistently unreliable

(i.e., high environmental variance, low autocorrelation, and high population-level cue error). This

is consistent with previous studies that predict bet-hedging when the environmental fluctuation

load is high relative to the width of the fitness function (Bull 1987; Scheiner 2014; Tufto 2015).

These results also highlight how the effects of cue error differ when shared by the entire

population versus experienced independently by each individual. While McNamara et al. (2016)

found that high individual-level error mimics randomization by increasing phenotypic variation

(Donaldson-Matasci et al. 2013), we found that population-level error can increase the favorability

of randomization as the only mechanism to achieve bet-hedging (figure S2-1). Population-level
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errors also have a stronger effect on optimal levels of WGP and TGP, as well as on population

growth rate, than do individual-level errors (figures S2-1 and S2-2).

Strikingly, we find that the genetic cue was not utilized for any of our main results (i.e., rapid

evolution in the reaction norm elevation was not favored and the phenotype was always genetically

canalized). This is consistent with McNamara’s et al. (2016) observation that utilizing the genetic

cue is only optimal when the environment is stable and the other cues are inaccurate (see also

figure S2-5C). To explain this result we show analytically, in Supplement 2-3, that populations

relying on both TGP and rapid evolution tend to be worse at tracking the environment than

populations that rely on either one or the other and that plasticity reduces genotype-environment

covariance.

Our prediction that complete genetic canalization is often evolutionarily favored is belied by

the presence of heritable fitness-related traits in many natural populations. One explanation is

that complete genetic canalization is indeed favored, but prevented by genetic or developmental

constraints on the cue integration system. In Supplement 2-6, we replicate our results under the

assumption that the cue integration system does not control the genetic cue weight. While we see

mostly similar results, changes in mean environment and cue bias do not have long-term fitness

effects because the population rapidly evolves in response to these changes. Additionally, the

maternal phenotype cue is significantly lower and may even be negative. This is consistent with

previous work showing that, in the presence of heritable variation, negative maternal cue weights

cause maternal effects to become negatively correlated with offspring genotype, thereby reducing

phenotype variance and the variance load on fitness (Hoyle and Ezard 2012; Kuijper and Hoyle

2015). Overall, these results suggest that the degree of developmental control exercised by the cue

integration system may have significant impacts on the evolution of plasticity.

Determining the historical environment in terms of variance, autocorrelation, and cue reliability

is challenging in an empirical setting, but can be accomplished, for example, by using a blend of

long-term studies and paleoecological records (Barnosky et al. 2017; Colicchio and Herman 2020;

Merilä and Hoffmann 2016), by comparing plasticity patterns across populations with differing
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and documented long-term environmental regimes (Walsh et al. 2016) or by measuring the genetic

variation in the cue integration system in response to environmental variance (Harney et al. 2017).

Determining the patterns of adaptive plasticity, their interactions, and their evolution are ripe

areas for future empirical work.

Evolutionary history and the response to environmental change

Our model results clarify, and in some cases differ from, previous theoretical predictions of how

past evolutionary history pre-adapts organisms to cope with environmental change. Two common

ideas are: 1) Organisms that have evolved greater plasticity (e.g., generalists) should be able to

adjust well to environmental change (Sih et al. 2011; Snell-Rood 2013), and 2) organisms that

have evolved with high environmental variation should, all else being equal, cope better with

environmental change. Reviews of organismal responses to specific changes suggest that these

trends often hold, but with exceptions (Beever et al. 2017; Kuparinen and Festa-Bianchet 2017;

Langkilde et al. 2017; Legrand et al. 2017; Saaristo et al. 2018).

When does greater plasticity help organisms respond well to environmental change?

The idea that generalists or flexible (plastic) organisms might do well with environmental change

depends on the assumption that they exhibit adaptive plasticity. If environmental change does not

reduce the reliability of WGP or TGP, our results concur with this prediction (figure 2-3A). Indeed,

numerous empirical examples show that many organisms exhibit adaptive plasticity in response

to environmental change (Bonamour et al. 2019; Charmantier et al. 2008; Nicotra et al. 2010). If,

however, change reduces cue reliability (i.e., causes a previously adaptive cue-response system to

become maladaptive), organisms can suffer substantial fitness losses associated with falling into

evolutionary traps (figure 2-3B; Ashander et al. 2016; Reed et al. 2010). Empirically, these include

settlement in low quality habitat (Crowley et al. 2019; Delibes et al. 2001; Robertson et al. 2013)

and lack of avoidance of novel predators (Ehlman et al. 2019) or novel toxic resources (Savoca et al.

2017; Shine 2010). Our model corroborates recent models (Crowley et al. 2019; Ehlman et al. 2019)
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and conceptual reviews in suggesting that organisms that had highly reliable cues in the past and

that thus exhibit strong WGP might be particularly likely to exhibit costly, maladaptive responses

to habitat change, exotic predators or novel toxic ‘foods’ (Pollack et al. 2021).

In contrast, organisms that evolved with low cue reliability should exhibit little WGP, and thus

weak responses to environmental change. For example, while some organisms have exhibited an

adaptive phenological response to climate warming (e.g., by germinating, reproducing, migrating

or changing color earlier in the season), others have not (reviewed in Chmura et al. 2019). Our

model predicts that organisms that evolved with unreliable environmental cues (e.g., late winter

temperature has not reliably indicated the best time to breed or germinate in the spring) should

not exhibit WGP in response to warmer late winter temperatures, even if those temperatures

signal a consistently earlier spring (McNamara et al. 2011). For another example, if the conditions

in the wintering grounds of migrating organisms are poor indicators of conditions in their spring

breeding grounds (e.g., birds migrating from the tropics to temperate regions), we predict that

migrant organisms exhibit smaller shifts in breeding time with global warming than resident

populations (Moller et al. 2003).

Our results also suggest that when environmental cues during development are unreliable,

TGP may play an important role in facilitating responses to environmental change (Donelan

et al. 2020). Organisms that evolved to ignore juvenile environmental cues may still respond

adaptively to exotic predators or warming conditions (albeit with a one generation delay) if they

have evolved to utilize cues passed down from their parents (Burgess and Marshall 2011; Shama

et al. 2014; Sobral et al. 2021; Walsh et al. 2015). TGP is expected to be strong when WGP is

ineffective (juvenile cue reliability is low) and the environment is relatively stable (low to moderate

environmental variation and moderate to high autocorrelation) so that parental environments are

good predictors of offspring environments. Organisms that have evolved strong TGP and weaker

WGP can cope with reduced juvenile cue reliability (figure 2-5B); i.e., parents can keep offspring

from falling into evolutionary traps. However, organisms that exhibit strong TGP and weaker

WGP should be susceptible to reduced environmental stability (i.e., increased environmental
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variation, or reduced autocorrelation; figures 2-5C,2-5D; Donelan et al. 2020).

On the other hand, if organisms evolved in conditions that favor neither WGP nor TGP, then

they will likely exhibit non-plastic phenotypic strategies, such as consistently breeding at the same

time each year or bet hedging (e.g., have offspring that vary in when they germinate; Cuello et al.

2019; Simons 2014). In either case, such populations would not show adaptive shifts to climate

change and could experience reduced growth rate.

When does past environmental variation prepare organisms for future change?

For organisms that evolved in very stable environments, our model confirms there is selection

for low WGP and low TGP, and a single, generally successful phenotype. Since these organisms

are relatively inflexible, they are vulnerable to large fitness losses with either an increase in

environmental variation or a change in the environmental mean (figures 2-6A,2-6C), but aren’t

as affected by changes in cue reliability. When organisms evolved with a wide range of possible

conditions (high environmental variance), then our results show that they respond well to a shift

in environmental mean so long as cues have been reliable and autocorrelation was sufficiently

high. In that case, organisms should exhibit strong WGP and high overall plasticity, resulting

in adaptive responses to the shift if cue reliability remains high (figures 2-5A,2-5C). Because

these organisms exhibit strong WGP, they do not necessarily cope with decreases in juvenile cue

reliability (reviewed in Bonamour et al. 2019). For example, plants that evolved in conditions

where the timing of snowmelt was a good indicator of each year’s best time to germinate would

suffer fitness loss if the environment changed so historically early snowmelts were often followed

by a later lethal freeze (Gezon et al. 2016).

If environmental variation is high, but juvenile cue reliability was historically low, then as long

as environmental autocorrelation is high, organisms should exhibit strong TGP. For example, for

shifts in seasonal phenology in the absence of good reliable cues, we and others (e.g., Burgess

and Marshall 2011; Salinas et al. 2013) predict that TGP should be important in areas with strong

interannual correlation (and low interannual variation) in temperature and precipitation. Colicchio

73



and Herman’s (2020) geographic analysis of predicted TGP levels in the United States indicates

substantial regional differences in the favorability of TGP. Taken with our results, this suggests that

regional variation in response to climate change could in part be explained by whether regional

conditions favor WGP, TGP, or bet-hedging.

If, on the other hand, conditions are unpredictable due low autocorrelation, then contrary to

previous predictions, organisms that evolved in these environments do not necessarily cope well

with rapid change. Populations that evolved with low autocorrelation should exhibit far lower

levels of total plasticity than populations that evolved with high autocorrelation (especially if

WGP is somewhat unreliable), so they should be particularly vulnerable to changes in the mean

environment. At the extreme end, if organisms evolved in variable environments with relatively

little useful environmental information of any sort (e.g., with low juvenile cue reliability and

low autocorrelation), they should exhibit diversified bet hedging. In this situation, bet-hedging

reduces the fitness consequences of environmental change, but pre-change fitness is low enough

that even small reductions in growth rate could drive populations to extinction.

Comparison to rapid evolution of plasticity

By assuming that the cue integration system does not have time to adjust to rapid environmental

changes, our results complement previous studies that focus on rapid evolutionary response to

environmental change (e.g., Botero et al. 2015; Kuijper and Hoyle 2015; Lande 2009). When the

evolution of plasticity is possible, populations respond to abrupt changes in the mean environment

by rapidly evolving high WGP (or utilizing existing plasticity) and then slowly reducing plasticity

as the reaction norm elevation gradually evolves to match the new environment (Chevin and

Lande 2010; Lande 2009). When maternal effects are present, they show a similar transient increase

with smaller peak levels of WGP (Hoyle and Ezard 2012; Kuijper and Hoyle 2015). This aligns

with our observation that in the absence of rapid evolution (no genetic cue), populations that

already possess high levels of total plasticity (WGP + TGP) cope the best with changes in mean

environment.
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Botero et al. (2015) model how historical environments affect population responses to

environmental changes by selecting for different evolutionary strategies (reversible and irreversible

plasticity, conservative and diversified bet-hedging, and adaptive tracking). They find abrupt

shifts in strategies between different environmental conditions. Extinction risk is greatest for

environment change across one of these evolutionary tipping points. Broadly, this agrees with our

finding that populations suffer most when previously adaptive strategies become maladaptive,

but contrasts with our observation that cue weight and fitness loss change continuously with the

environment. This discrepancy is likely due to differences in model assumptions; their model’s

genetic architecture and fixed costs of plasticity lead Botero et al. (2015) to find that evolution is

faster within than between strategy types (except for transitions between reversible and irreversible

plasticity). We do not consider the genetics or costs of the cue integration system, leading to a

gradient of strategies rather than discrete regimes.

Future Directions

Our simplifying assumptions provide areas of possible future study. Like McNamara et al. (2016),

our model of the cue integration system was phenomenological. Future modeling could feature a

more mechanistic description of phenotypic determination and organism fitness, including a non-

linear cue integration system and more realistic interactions between the environment, cues, and

fitness (e.g., asymmetric fitness surfaces; Lof et al. 2012, or asymmetric cue error). In particular, our

model did not address the underlying genetics of the cue integration system. Genetic constraints

(e.g., genetic correlations or lack of genetic variation) might keep organisms from reaching the

optimal level of plasticity. Recent evidence has shown genetic correlations involving TGP (Townley

and Ezard 2013) and between TGP and WGP (Auge et al. 2017). Additional, we did not account

for the costs of plasticity and how they might differ for WGP versus TGP. We anticipate, for

example, that accounting for costs of plasticity will reduce plasticity and likely increase the range

of conditions favoring bet hedging or rapid evolution.

In addition, we assumed that organisms do not have repeated opportunities to adjust their
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traits. In reality, parents might often provide several pieces of information to offspring over time

(e.g., via epigenetic carryovers or yolk hormones before birth, and parental care after birth) and

offspring can exhibit both developmental plasticity based on early sensitive windows as well as

adjustments via reversible, contextual plasticity in response to later experiences throughout their

lifetime (English et al. 2016; Snell-Rood 2013; Stamps and Groothuis 2010). Future work could

begin to address these multi-step options by adding a second opportunity for information transfer

and adjustment associated with TGP and WGP.

Finally, we assumed that patterns of environmental variation remained stationary over

evolutionary time so that the evolved levels of plasticity represent evolutionary optimal; in

reality, environmental conditions may be subject to long-term trends and periodic disturbance.

This means that not only the nature and strength of rapid environmental change important, but

also its timing.

By accounting for these details, future work may examine evolution following environmental

change and, in particular, the role of previously adaptive cue integration systems in shaping

subsequent evolutionary rescue (Lande 2009). Though the effect of fluctuating environments

on the likelihood of rescue following a change in the mean environment has long been studied

(Burger and Lynch 1995; Chevin 2013; Chevin et al. 2017; Lande and Shannon 1996), to date there

has been little study of evolutionary rescue under environmental changes other than a change in

mean environment. This is a promising area for future research using our conceptual framework.
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Abstract

Predicting when and how populations go extinct is a critical task for ecologists. Because of

uncertainty in individual-level processes such as death or reproduction, populations with the

same initial state experiencing identical environments may have different fates. Individual-

level variability manifests as a variety of population-level processes – such as demographic

stochasticity, sex-ratio stochasticity, and phenotypic stochasticity – that are often studied separately.

Understanding how stochasticity drives divergence in population outcomes requires studying

these process under a unified framework. I present a general framework for quantifying and

partitioning the effects of stochasticity on future population states and apply it to the question of

evolutionary rescue: When can rapid evolution save a population from going extinct in a changing

environment? I decomposed the effects of demographic stochasticity, sex-ratio stochasticity, and

genetic drift on per-capita growth rate and then quantify how well the effects of each form of

stochasticity can predict time to extinction or time to rescue. I found that phenotypic stochasticity

contributed the most to the predictability of extinction early during rescue while the contributions

of demographic stochasticity and sex-ratio stochasticity increase in importance as time goes on. I

further found that phenotypic stochasticity was significantly more important for predicting time

to recovery than for predicting time to extinction, while the opposite is true for demographic

and sex-ratio stochasticity. The greater importance of phenotypic stochasticity to recovering

populations reflects the fact that rapid evolution is required for successful recovery and hence

faster-than-average evolution should lead to sooner than average recovery. Overall, these results

present a nuanced picture of how stochasticity results in divergent population outcomes and

illustrate how my framework for partitioning the effects of stochasticity may be used to derive

novel insights into the dynamics of small populations and extinction.
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Introduction

Anthropogenic environmental change has produced an unprecedented decline in natural popula-

tions and many species are at significant risk of extinction (Ceballos et al. 2017; Román-Palacios

and Wiens 2020). Many populations are exhibiting phenotypic change in response to these changes

(Hendry et al. 2017), raising the hope that rapid adaptation may blunt the effects of a changing

environment (but see Radchuk et al. 2019) and leading to greater focus on evolutionary potential

as part of species conservation (Ashley et al. 2003; Carroll et al. 2014; Kinnison and Hairston

2007; Lankau et al. 2011; Stockwell et al. 2003). At the same time, humans are attempting to

suppress a variety of species that are deemed harmful- including pathogens, agricultural pests,

and invasive species- and wish to prevent these species from evolving resistance to the measures

used to control them (reviewed in Bell 2017). These areas of interest are united by the potential

for rapid adaptation to enable populations to persist in the face of otherwise fatal environmental

changes, a phenomenon referred to as evolutionary rescue.

Evolutionary rescue has been studied extensively in both theoretical and laboratory settings

(reviewed in Bell 2017; Carlson et al. 2014; Vander Wal et al. 2013). One of the central conclusions

of this research is that the success of evolutionary rescue depends critically on the rate of evolution

and the rate of demographic decline. We know, for example, that both the likelihood of persistence

and the time to recovery are closely tied to the initial genetic variance of the population and the

rate of beneficial mutations (Agashe et al. 2011; Barrett and Schluter 2008; Burger and Lynch 1995;

Orr and Unckless 2008; reviewed in Bell 2017). Similarly, populations with low initial size or those

experiencing stronger or more rapid environmental changes are more likely to go extinct (Bell

2017; Bell and Gonzalez 2009; Gomulkiewicz and Holt 1995; Lynch and Lande 1993).

Because the likelihood of evolutionary rescue depends on the relative rates of population

decline and phenotypic evolution, the interaction between ecological and evolutionary dynamics

is particularly important. Populations undergoing rescue may become quite small and vulnerable

to stochastic extinction due to the intrinsic variability in the births and deaths of individuals in
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the population (Bell and Gonzalez 2009; Engen et al. 1998, 2001; Lande 1988, 1998). This intrinsic

variability may induce variation in population size (demographic stochasticity), variation in allele

frequency (genetic drift), and in dioecious populations, variation in sex ratio (sex stochasticity,

sensu Melbourne and Hastings 2008), which all contribute to extinction in their own ways.

The impacts of different forms of stochasticity on extinction have individually been extensively

studied: There is a substantial body of work on the effect of demographic stochasticity (Engen et al.

2001; Gabriel and Bürger 1992; Jeppsson and Forslund 2012; Lande 1993, 1998) and the effect of

sex-ratio stochasticity (Gabriel and Bürger 1992; Melbourne and Hastings 2008) on a population’s

time to extinction, and it is well known that genetic drift may contribute to extinction through

mutational meltdown (in which deleterious alleles rise in frequency in small populations, reducing

population size and resulting in stronger drift; Coron et al. 2013; Lande 1994; Lynch et al. 1995a,b;

Zeyl et al. 2001), by reducing the efficacy of natural selection, and by eroding genetic variation

(Lande 1988; Luque et al. 2016; Whitlock 2000; Willi et al. 2006). Because the interplay between

ecology and evolution drives the success or failure of evolutionary rescue, the interaction between

these forms of stochasticity is critical to understanding the process of extinction in evolving

populations and remains an important and understudied (but see Melbourne and Hastings 2008)

avenue of inquiry.

This paper presents a general theoretical framework for quantifying the effects of stochasticity

on the outcomes (such as extinction) of individual populations, and partitioning these effects by

the form of stochasticity (e.g. demographic stochasticity and genetic drift), and measuring how

the effects of stochasticity change over time. I then apply this method to examine the relative

importance of demographic stochasticity, sex-ratio stochasticity, and phenotypic stochasticity on

the persistence or extinction, time to extinction, and time to recovery of populations undergoing

evolutionary rescue. I focus on populations that rely on standing quantitative genetic variation to

adapt an abrupt environmental change. This leads to a sharp initial decline in the population,

followed by rapid evolution and either recovery or extinction, leading to a characteristic U-shaped

curve in population abundance (Gomulkiewicz and Holt 1995). I chose this mode of environmental
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change (as opposed to slower, but sustained environmental changes; e.g. Chevin et al. 2010; Lande

and Shannon 1996; Lynch and Lande 1993; Osmond and Klausmeier 2017) because populations

either recover or go extinct within a relatively short window of time, allowing for a more fine

grained analysis of the effect of stochasticity in each generation.

This framework represents a novel approach to thinking about uncertainty during evolutionary

rescue. Previous models of evolutionary rescue from standing quantitative genetic variation have

focused on how the initial conditions of the population affect the likelihood of rescue (e.g. Barfield

and Holt 2016; Orive et al. 2019). The present paper focuses instead on how stochastic events over

the course of evolutionary rescue itself change the likelihood of rescue. This approach allows me

to quantify which forms of stochasticity, at which points in time, are most critical in determining

the persistence or extinction of a population in which the outcome of evolutionary rescue is

initially uncertain.

Methods

Model Methods

Consider a sexually reproducing, dioecious population of semelparous individuals with syn-

chronized reproduction. Each generation consists of two demographic periods: survival to

reproduction and reproduction. Natural selection acts during reproduction and the population is

censused prior to reproduction. At census in generation t, there are Nt individuals characterized

by their sex ( fi = 1 for females and 0 for males), a continuous trait (zi 2 R), and the breeding

value, underlying that trait (gi 2 R), with i 2 {1, 2, ..., Nt} where Nt is the population size at time

t.

Mating is female limited. During reproduction, females experience fecundity selection while

males experience mate choice or gamete selection. The offspring produced by each female are

sired independently by males in proportion to each male’s fitness. This mating system describes

broadcast spawners, animal species with widespread promiscuity, and dioecious plants. Individual
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i produces a Poisson distributed number of offspring with mean fil(zi) (i.e. l(zi) offspring if

individual i is female and 0 otherwise), where l(zi) is a Gaussian function of zi with center µw,

width s2
w, and maximum mean fecundity lmax:

l(zi) = lmax exp [� (zi � µw)2

2s2
w

]. (3-1)

The probability that a given individual i sires a given offspring, pm(zi), is weighted by a

Gaussian function of phenotype (with the same center µw and width s2
w) that is transformed into

a probability by dividing by total male fitness in the population:

pm(zi) =
(1 � fi) exp [� (zi�µw)2

2s2
w

]

SNt
j=1(1 � f j) exp [� (zj�µw)2

2s2
w

]
. (3-2)

If we assume that the genetic basis for z is purely additive with no dominance or epistasis,

zi may be given as the sum of an individual’s breeding value gi (henceforth “genotype”) and

a normally distributed random deviation due to environmental effects (ei with mean zero and

variance s2
e ). For the breeding value, I assume the Gaussian descendants approximation (sensu

Turelli 2017) of the infinitesimal model of quantitative genetics (Fisher 1918; Walsh and Lynch

2018). Then, an individual’s breeding value is the average of its parents’ breeding values (denoted

g f
i for its mother and gm

i for its father) plus a normally distributed random deviation from the

midparent breeding value due to recombination (si with mean zero and segregation variance s2
s ):

gi =
1
2
(g f

i + gm
i ) + si (3-3)

zi = gi + ei. (3-4)

Finally, offspring survive to reproduce with probability ps, which is independent of phenotype.

Decomposition of Stochasticity

In this section I present a theoretical framework for decomposing the effects of different forms

on stochasticity on a particular population outcome, such as extinction or persistence. We

may represent an individual mathematically as the collection of characteristics (in this case sex,
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phenotype, and genotype) that most influence its fate, which is to say the likelihood of the

individual giving birth, dying, or changing state. These characteristics are "i-state variables" and

their values constitute the "i-state" of an individual (Diekmann et al. 2010; Metz and Diekmann

1986). The "p-state" of the population is the density of i-states across i-state-space (Diekmann

et al. 2010; Metz and Diekmann 1986). The p-state variables are then the frequency distributions

of each i-state variable, plus the population size N, which scales these frequency distributions

into densities. For the model above, the p-state variables are population size N and the vectors

of individual sexes F, phenotypes P, and genotypes G (because the phenotypes are continuous,

the frequency distributions of genotypes and phenotypes are collections of point masses and can

therefore be represented as vectors).

Stochasticity at the population level (i.e. in the p-state) is driven by demographic changes at

the individual level. If an individual dies, gives birth, or changes state, this event changes the

distribution of i-states in the population. The effect of this individual event on future population

states is mediated by each p-state variable. The death of a male individual with a low fitness

phenotype necessarily reduces population size, but will also affect the population’s sex ratio

and phenotypic distribution. Each of these changes may have different knock-on effects on the

population state at a future time. We may therefore think of each p-state variable as a distinct

pathway by which individual events affect future states of the population. To partition the effects

of different forms of stochasticity on future population dynamics, we must partition variability in

the total p-state into variability in particular p-state variables.

One can use the law of total probability to partition the probability distribution of the p-state

into the marginal and conditional distributions of the p-state variables. I begin with the marginal

distribution of N, fN(n). I condition the distribution of F on population size, fF|N(f|n). Then, I

condition the joint distribution of phenotypes and genotypes on population size and the sex of

individuals, fP,G|N,F(p, g|n, f). This gives

fN,F,Z,G(n, f, g, p) = fN(n) fF|N(f|n) fP,G|N,F(g, p|n, f)
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This assumes that i-state variables are discrete, but an analogous expression exists for continuous

states; Kallenberg 2017. Decomposing the joint state distribution in this way requires explicitly

ordering the p-state variables based on their conditional dependence. This ordering is an important

choice that defines the pathways through which individual stochasticity affects future population

states, as well as the dependency of these pathways on one another. In this formulation, individual

stochasticity is partitioned into three population-level pathways: demographic stochasticity, sex

ratio stochasticity, and phenotypic stochasticity.

In general there is no single correct answer, but some orderings are more natural than others.

This choice will depend on the state variables of interest and the underlying demography of

the population. For the present model, writing the distribution of N as marginal is a natural

choice because the remaining variables depend on the number of individuals in the population.

For example, in a single-locus bi-allelic model the distribution of allele frequencies in the next

generation, conditional on population size, matches the usual definition of genetic drift while

the distribution of N conditional on an allele frequency of, say, 0.5 has the bizarre property that

only even values of N have positive probability. The decision to condition the phenotypic and

genotypic distributions on sex is more situational. If phenotypes are sexually dimorphic or the

genotype of interest is sex-linked, then it makes sense to condition the phenotypic distribution on

the sex ratio. If the genotype of interest is located at a locus associated with sex-determination,

then the reverse ordering is more logical. Similarly, writing genotype and phenotype as a the

joint distribution implies that stochasticity in these p-state variables constitute a single pathway of

interest. In the presence of phenotypic plasticity, for example, phenotypic stochasticity within a

given genotype might be sufficiently important to be considered as a separate pathway.

I now consider the effect of stochasticity over the time period from t to t + 1 on the probability

of persistence to time horizon Tmax. Let Ipst equal 1 if NTmax > 0 and zero otherwise. At time t, the

probability of persisting to Tmax is P[NTmax > 0|S(t)] = E[Ipst|S(t)], where S(t) = (N, F, G, P) is

the p-state of the population at time t. As we gain information about the events of from time t

to t + 1, probability of persistence changes to reflect this new information: E[Ipst|S(t + 1)]. The
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realized effect of stochasticity from (t, t + 1] on persistence probability may then be defined as

Dt Ipst := E[Ipst|St+1]� E[Ipst|St]. (3-5)

If we partition time into unit intervals, we can decompose the outcome of persistence or extinction

(Ipst) at time Tmax into the effect of stochasticity in each generation on persistence probability:

E[Ipst|STmax ] = E[Ipst|S0] + STmax�1
t=0 Dt Ipst. (3-6)

The realized stochasticity from t to t + 1 may be partitioned into components corresponding

to phenotypic stochasticity DP
t Ipst, sex ratio stochasticity DF

t Ipst, and demographic stochasticity

DN
t Ipst between (t, t + 1]:

Dt Ipst = DP
t Ipst + DF

t Ipst + DN
t Ipst :=

(E[Ipst|St+1]� E[Ipst|St, Nt+1, Ft+1])+

(E[Ipst|St, Nt+1, Ft+1]� E[Ipst|St, Nt+1])+

(E[Ipst|St, Nt+1]� E[Ipst|St])

(3-7)

We then may define the cumulative effects of phenotypic stochasticity, sex ratio stochastic-

ity, and demographic stochasticity on persistence probability by summing the effects across

generations: CP
Tmax

(Ipst) := STmax
t=1 DP

t Ipst, CF
Tmax

(Ipst) := STmax
t=1 DF

t Ipst, and CN
Tmax

(Ipst) := STmax
t=1 DN

t Ipst,

respectively. This method of partitioning stochasticity may be applied the additional popu-

lation outcomes of time to recovery (Trec = min {t � 0 : NT � N0}) and time to extinction

(Text = min {t � 0 : NT = 0}) to yield CP
Tmax

(Trec), CF
Tmax

(Trec), CN
Tmax

(Trec), CP
Tmax

(Text), CF
Tmax

(Text),

and CN
Tmax

(Text).

Numerical Methods

I consider a single, abrupt environmental change to which the population must rapidly adapt in

order to avoid extinction. Prior to the environmental change, the optimal trait value is µw = 0 and
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at t = 0, the optimal trait value shifts to µw = µ0
w where it remains indefinitely. All populations

are assumed to start with 1000 individuals at t = 0. These initial individuals are drawn from

the population’s equilibrium phenotypic distribution in the limit of infinite population size, with

µz = 0 and genetic variance satisfying the equation s2
g = 1

2 (
s2

w+s2
g

s2
w+s2

g
)s2

g + s2
s (derived in supplement

3-1; Bulmer 1971; Walsh and Lynch 2018). Simulations are run until the population goes extinct,

recovers to its initial size, or until time Tmax = 100 (though in practice all populations either

recover or go extinct by generation 70).

At each time step t, the probability of persistence E[Ipst|St], expected time to extinction

E[Text|St], and expected time to recovery E[Trec|St] are computed by running 1000 sub-simulations,

initialized at the current population state, and recording whether these population recovered or

went extinct and how long it took to achieve this outcome. The expected outcomes conditional

on N(t + 1) are computed similarly except that each sub-simulation is initialized by drawing

from the distribution of possible population states at time t conditional on N(t + 1) in the

primary simulation. The computation of the expected outcomes conditional on both N(t + 1)

and F(t + 1) follows the same method, but with the distribution of possible initial conditions in

the secondary simulations being conditioned on both N and F in the primary simulation. The

conditional expectations are then used to compute the effects of demographic stochasticity, sex

ratio stochasticity, and phenotypic stochasticity on persistence probability, extinction time, and

recovery time in generation t following equation 3-7 and its equivalents for Text and Trec.

Because the number of simulations are finite (1000), the computed expected recovery time is

not accurate when the persistence probability is close to zero and the expected extinction time is

not accurate when the probability of recovery is close to one. For this reason, extinction time or

recovery time are only analyzed for parameters where at least 25% of populations go extinction or

recover, respectively.

Eight parameter values were selected in a full factorial combination of low and high environ-

mental shift (µw = 5.2 and 5.5), initial heritability (h2 = 0.25 and 0.75), and initial phenotypic

variance (s2
z = 1 and 3). The width of the fitness function was held constant at s2

w = 10, represent-
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ing weak to moderate stabilizing selection, and the maximum per-capita growth rate was fixed at

lmax = 1.5.

For each parameter set, h2 and s2
z are converted into the genetic and environmental variances

(s2
g and s2

e ). Genetic variance was assumed to initially be at its equilibrium in the limit of infinite

population, and the segregation variance s2
s was chosen to produce the appropriate equilibrium

genetic variance (by satisfying the equation s2
s = s2

g � 1
2 (

s2
w+s2

g
s2

w+s2
g
)s2

g , see supplement 3-1). In general,

segregation variance and initial genetic variance correspond closely enough that treating one or

the other as the manipulated parameter does not significantly alter the chosen parameters values.

To measure how well population outcomes can be predicted prior to their occurrence, I use the

covariance across simulations between the predicted outcome at time t and the actual outcome,

scaled by the variance in the actual outcome. This is equivalent to the linear regression coefficient

of the predicted outcome on the actual outcome. If we let S k
t denote the state at time t of simulated

population k and let Ik
pst denote Ipst for simulation k, then this standardized covariance (SCV) is

given by

SCVIpst(t) :=
Cov[E[Ik

pst|S k
t ], Ik

pst]

Var[Ik
pst]

. (3-8)

where Ik
pst is used as shorthand for the final outcome of persistence or extinction for simulation

k (E[Ik
pst|S k

Tmax
]). As time approaches Tmax, this standardized covariance increases to 1.

Using equations 3-6 and 3-7, SCV(t) may be decomposed into the contributions of demo-

graphic stochasticity, sex ratio stochasticity, phenotypic stochasticity:

SCVIpst(t) = SCVIpst(0) +
Cov[CN

k,t(Ipst), Ik]

Var[Ik
pst]

+
Cov[CF

k,t(Ipst), Ik]

Var[Ik
pst]

+
Cov[CP

k,t(Ipst), Ik]

Var[Ik
pst]

. (3-9)

Equivalents of equations 3-8 and 3-9 may be used to decompose the contributions of stochasticity

to extinction time Text and recovery time Trec.

To ensure that these metrics are robust, I also use an alternative method of measuring how

well population outcomes can be predicted prior to their occurrence. The variance in expected

outcomes at time t is divided by the variance in actual outcomes at time Tmax. This variance ratio
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(VR) for persistence is given by

VRIpst(t) :=
Var[E[Ik

pst|Sk,t]]

Var[Ik
pst]

. (3-10)

Using equations 3-6 and 3-7, the variance in the numerator may then be decomposed into

components of variance due to each form of stochasticitiy and covariances between forms of

stochasticity:

VRIpst(t) = VRIpst(0) +
Var[CN

k,t(Ipst)]

Var[Ik
pst]

+
Var[CF

k,t(Ipst)]

Var[Ik
pst]

+
Var[CP

k,t(Ipst)]

Var[Ik
pst]

+

Cov[CN
k,t(Ipst), CF

k,t(Ipst)]

Var[Ik
pst]

+
Cov[CN

k,t(Ipst), CP
k,t(Ipst)]

Var[Ik
pst]

+
Cov[CF

k,t(Ipst), CP
k,t(Ipst)]

Var[Ik
pst]

. (3-11)

The standardized covariance decomposition is used in the main results while supplement 3-2

recapitulates the main results using the variance ratio decomposition (figures S3-1 to S3-6).

Results

Figure 3-1 illustrates the core dynamics of evolutionary rescue. After the environmental change,

populations decline towards extinction while simultaneously evolving toward the new phenotypic

optimum. Some populations (black lines) evolve sufficiently fast that they are able to recover

while the remainder (red lines) decline to extinction while exhibiting increasingly erratic changes

in mean phenotype.

The chosen parameters result in four parameter values where the persistence probability is

non-trivial (two with persistence probability above 50% and two with persistence probability

below 50%), two where the persistence probability is close to zero, and two where the persistence

probability is 100% (table 3-1). This allows for six parameter sets in which time to extinction can

be examined and six parameter sets in which time to recovery can be examined. As expected,

greater heritability, greater phenotypic variance, and less severe environmental change improve

population outcomes across the board: increasing persistence probability, increasing the time to
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extinction, and decreasing the time to recovery (table 3-1). Increasing phenotypic variance while

lowering heritability had the effect of increasing the variance in the environmental component of

phenotype (s2
e ), which lowered the persistence probability.

Figure 3-2 shows the standardized covariances between persistence or extinction at time Tmax

and the predicted probability of extinction at time t (or "total stochasticity", dashed grey lines),

the effect of demographic stochasticity on this prediction (black lines), the effect of sex-ratio

stochasticity (blue lines), and the effect phenotypic stochasticity (red lines). Figure 3-3 shows

the covariances between predicted time to extinction and actual extinction times and Figure 3-4

shows the covariances between predicted times to recovery and actual recovery times. Figures 3-2

and 3-3 are accompanied by histograms of extinction times, while figure 3-4 is accompanied by a

histogram of recovery times.

There are several general observations that hold across the parameter choices. The covariance

between the predicted probability of persistence and actual persistence is low at the time of first

extinction (between 0.2 and 0.3) and only approaches 1 when most of the populations that will go

extinct have already gone extinct. This implies that the ability to predict which populations will go

extinction and which will persist, even given perfect information, is limited unless the populations

are very close to extinction. This is confirmed by figure S3-8, which shows (for µw = 5.2, s2
z = 3,

and h2 = 0.25) that while most population’s predicted probabilities of persistence are near zero in

the one or two generations before extinction, this predictability rapidly evaporates as one looks

further back in time, to such a degree that 14% of populations that eventually go extinct actually

have a higher predicted probability of persistence a mere four generations before extinction than

they did at time 0. The predictability of extinction time exhibits a similar pattern to persistence,

with low predictability at the time of first extinction and high predictability only when many

populations have already gone extinct. On the other hand, there is a high covariance between

predicted recovery times and actual recovery times prior to the time of first recovery. This indicates

that the time to recovery for most recovering populations becomes largely deterministic before

they reach their initial population size.
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The effect of phenotypic stochasticity on persistence probability early during rescue has a larger

covariance with persistence or extinction at Tmax than does the effect of demographic and sex-ratio

stochasticity on persistence probability (figure 3-2). Later during rescue, the covariance between

the effect of demographic and sex-ratio stochasticity on persistence probability and Ipst increases at

a faster rate than for the effect of phenotypic stochasticity. This is particularly apparent in figures

3-2a and 3-2b, where the cumulative effects of phenotypic stochasticity, demographic stochasticity,

and sex ratio stochasticity on population persistence ultimately have similar covariance with Ipst

to the cumulative effect of phenotypic stochasticity despite the cumulative effect of phenotypic

stochasticity having a higher covariance prior to generation 15. The covariance between cumulative

effect of phenotypic stochasticity and Ipst is also greater when phenotypic variance is larger. This

is consistent with the fact that phenotypic stochasticity includes both stochasticity due to random

mating and recombination (which scales with genetic variance s2
g) and stochasticity due to

developmental noise (which scales with s2
e ).

The most apparent difference between figures 3-2 and 3-3 is that the covariance between

final extinction times and the effect of phenotypic stochasticity on mean extinction times is

substantially less than the covariance between Ipst and the effect of phenotypic stochasticity on

extinction probability. The relative covariances of demographic stochasticity and extinction time

versus sex-ratio stochasticity and extinction time vary substantially across parameter values, with

the effect of sex-ratio stochasticity exhibiting the largest covariance with extinction time when

persistence probability is highest and the effect of demographic stochasticity exhibiting the largest

covariance with extinction time when persistence probability is lowest (figure 3-3 a and e). It is

not immediately clear why this is the case, but the pattern appears to be related to the proportion

of populations that go extinct due to mating failure (when their are either no males or no females)

versus reproductive failure. In the case of figure 3-3a, a full 86.8% of populations go extinct due to

mating failure while for figures 3-3e and 3-3f, only 73.0% and 71.6% of populations go extinct

due to mating failure. Panels b, c, and d all have intermediate values (83.2%, 78.2%, and 78.2%

respectively).
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The effect of phenotypic stochasticity on recovery time has a higher covariance with final

recovery time than the effects of demographic or sex-ratio stochasticity when either phenotypic

variance or heritability are low, but not when both are high (in which case the effects are

comparable; compare figures 3-4a,b,c, and d to figures 3-4e and f). Figure S3-7 demonstrates

that this is not because, all else being equal, the magnitude of phenotypic stochasticity is small

when phenotypic variance and heritability are high, but rather because the effect of phenotypic

stochasticity on recovery time is greatest when populations have yet to fully adapt to the changed

environment. When heritability or phenotypic variance are low, adaptation occurs more slowly,

increasing the period of time in which phenotypic stochasticity may significantly affect the speed

of recovery.

Figure 3-1: The change in log population size (a) and mean phenotype (b) over the course of

evolutionary rescue for 1000 simulated populations. Black lines denote populations that recover

to their initial size (N0 = 1000) while red lines denote populations that go extinct. Simulations are

truncated at extinction and recovery. The parameter values are µw = 5.5, h2 = 0.25, s2
z = 3, and

lmax = 1.5
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Parameters Outcomes

s2
z h2 µw Īpst T̄ext T̄rec

1 0.25 5.2 0.3% 9.7 NA

1 0.25 5.5 0.0% 8.1 NA

1 0.75 5.2 76.6% 14.9 27.3

1 0.75 5.5 41.7% 12.2 29.0

3 0.25 5.2 52.7% 15.4 34.0

3 0.25 5.5 27.2% 13.0 34.8

3 0.75 5.2 100% NA 13.1

3 0.75 5.5 100% NA 14.9

Table 3-1: The persistence probabilities ( Īpst), mean extinction times (T̄ext) and mean recovery

times (T̄rec) over 1000 simulations for factorial combinations of high and low phenotypic variance

(s2
z ), heritability (h2), and change in optimal phenotype (µw).
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Figure 3-2: The covariances between the cumulative effects of demographic stochasticity (black

line), sex-ratio stochasticity (blue line), and phenotypic stochasticity (red line) on persistence

probability and the binary indicators Ik
pst of extinction or persistence at time Tmax, scaled by

the variance across Ik
pst’s. Covariances in each panel are computed over 1000 simulations. The

histogram in each panel represents the simulated extinction times for that parameter value.
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Figure 3-3: The covariances in the cumulative effects of demographic stochasticity (black line),

sex-ratio stochasticity (blue line), and phenotypic stochasticity (red line) on mean extinction time

and realized extinction times Tk
ext, scaled by the variance across Tk

ext’s. Covariances are computed

over 234 (a), 583 (b), 473 (c), 728 (d), 997 (e), and 1000 (f) extinction-bound populations. The

histogram in each panel represents the simulated extinction times for that parameter value.
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Figure 3-4: The covariances in the cumulative effects of demographic stochasticity (black line),

sex-ratio stochasticity (blue line), and phenotypic stochasticity (red line) on mean recovery time

and realized recovery times Tk
rec, scaled by the variance across Tk

rec’s. Covariances are computed

over 766 (a), 417 (b), 527 (c), 272 (d), 1000 (e), and 1000(f) recovery-bound populations. The

histogram in each panel represents the simulated recovery times for that parameter value.
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Discussion

Evolutionary rescue, the ability of evolution to prevent species extinction, is a topic of great interest

for conservation, medicine, and pest management (reviewed in Bell 2017). The success or failure

of evolutionary rescue depends on the relative rates of evolution and population decline, and at

small population sizes variation in individual births and deaths generates stochasticity that affects

both of these rates. I developed a general method for quantifying how the timing and form of

stochasticity affects future population outcomes. I then applied this method to examine the relative

importance of demographic stochasticity, sex ratio stochasticity, and phenotypic stochasticity on

probability of persistence, time to extinction, and time to recovery for populations undergoing

evolutionary rescue in response to an abrupt environmental change. This work elucidates how

the effect of stochasticity on population outcomes changes over the course of evolutionary rescue

and depends on subtly on type of outcome under consideration.

I observed low predictability (defined as the regression coefficient of predicted outcomes at

time t on the actual outcomes) of persistence and extinction time prior to the time of first extinction

(figures 3-2 and 3-3). This suggests limited ability to forecast when and how populations will go

extinct rather than just compute the probability of extinction. Indeed, many extinction-bound

populations had a substantial persistence probability as few as three generations prior to their

extinction (figure S3-8). In the case of time to extinction, part of this low predictability is due

to the fact that a population’s expected time to extinction increases the longer the population

survives. Even for a very small population, unless extinction is guaranteed in the next generation,

the distribution of extinction times will always be skewed towards persisting longer, inflating

the expected extinction time. This, in turn, means that the final stochastic event that results

in extinction has a disproportionately large influence on the regression coefficient of predicted

extinction times on actual extinction times.

However, recovery time was highly predictable prior to the time of first recovery (figure 3-4).

This is likely because the magnitude of stochasticity is inversely proportional to population size.
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The initial population size (N0 = 1000) was large enough that by the time the first population

recovered to its initial size, the remaining recovery-bound populations had recovered to a point

where subsequent stochasticity had a negligible effect on the time at which they recovered to their

initial size.

I further found that early during evolutionary rescue, phenotypic stochasticity had a greater

covariance with population persistence than did demographic stochasticity or sex ratio stochas-

ticity, while later on the covariances of the three forms of stochasticity with persistence were

comparable (figure 3-2). This indicates that phenotypic stochasticity was the most important form

of stochasticity for persistence early during evolutionary rescue, but that demographic stochasticity

and sex-ratio stochasticity increase in relative importance as time goes on. The importance of

phenotypic stochasticity also scales with developmental error, which is unsurprising given that

it represents an increase in the stochasticity of phenotypic determination. This suggests that

during the declining phase (see figure 3-1), when the populations had not yet adapted to the new

environment, the effect of stochasticity on the rate of adaptation is more important than the effect

of stochasticity on population declines. When populations have declined to low size, demographic

stochasticity and sex ratio stochasticity increase in importance as chance extinction events become

more likely.

Phenotypic stochasticity is substantially less important in determining extinction time than

it is in determining persistence (compare figures 3-2 and 3-3). This difference may be explained

by the fact that extinction or persistence ultimately depends on the success of rapid evolution,

while populations on extinction-bound trajectories are necessarily those that fail to evolved

rapidly enough to be rescued. Extinction is ultimately a demographic phenomenon, so while

phenotypic stochasticity may be an important component of variation in extinction times early on,

demographic stochasticity and sex-ratio stochasticity are ultimately the deciding factors of when

a population goes extinction. This observation is further supported by the fact that the relative

importance of demographic stochasticity and sex-ratio stochasticity is associated with the odds of

a population going extinct due to reproductive failure relative to mating failure.

111



Conversely, phenotypic stochasticity is more important for recovery time than for persistence

(compare figures 3-2 and 3-4). Time to recovery is ultimately dependent on how quickly rescue

occurs, which in turn is dependent on the rate of evolution. When genetic variance is high, the

average rate of evolution is high and variation in that rate due to phenotypic stochasticity is small,

in part due to the fact that the population spends less time at low population size (figures S7e and

f). When genetic variance is low, the average rate of evolution is lower and variation in the rate

due to phenotypic stochasticity is larger (figures S3-7a, b, c, and d). This leads to the conclusion

that relative importance of phenotypic stochasticity in determining time to recovery depends

heavily on the rate of evolution, all else being equal.

Many other results align with previous work: Greater heritability and phenotypic variance

promote greater likelihood of persistence and faster recovery, while larger environmental shifts

have the opposite effect (Agashe et al. 2011; Barrett and Schluter 2008; Bell 2017; Burger and

Lynch 1995; Gomulkiewicz and Holt 1995; Lynch and Lande 1993; Orr and Unckless 2008). Most

extinction occurs within a short window of time (Barfield and Holt 2016) and the distribution of

both extinction times and recovery times is skewed towards longer times (e.g. Barfield and Holt

2016; Orr and Unckless 2014).

To the author’s knowledge, the approach used here has no direct comparison within the

existing evolutionary rescue literature. The closest analogs are previous studies, examining

evolutionary rescue at a single locus, that have derived analytical expressions for the probability

of rescue in order to measure how the likelihood of rescue through de novo mutation changes

over time (Orr and Unckless 2008), to calculate the relative likelihood of rescue through standing

variation versus de novo mutation (Orr and Unckless 2014), and to classify scenarios of rescue

based on the number and effect size of de novo mutations (Osmond et al. 2020). These approaches

assume asexual reproduction to allow for analytic tractability. For a sexually reproducing pop-

ulation whose fitness is determined by a quantitative trait, the focus of the present study, this

analytic tractability is lost as distinct allelic combinations can no longer be represented by inde-

pendent lineages. By directly calculating the probability of rescue using simulations, the approach
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presented here allows for evolutionary rescue in populations with more complex demographies to

be classified into qualitatively different scenarios based on how stochastic events during rescue

impact population trajectories.

In an effort to isolate the effects of stochasticity during evolutionary rescue, the present study

intentionally minimized the effect of variation in the initial population state due to stochasticity

prior to the environmental change on the likelihood of persistence or extinction. As noted by

Barfield and Holt (2016), variation in the genotypic distribution due to pre-change genetic drift

may induce substantial variability in the probability of evolutionary rescue (though not in the

time to extinction for a population experiencing gradual environmental change; Orive et al. 2019).

The effect of this variability may easily be measured within the general framework presented here

by comparing the probability of extinction given the distribution of possible initial states to the

probability of extinction when the exact initial state is known. This comparison would also allow

for the effect of measurement error on extinction probability to be quantified (at least within a

modelling framework where the true parameters and true initial state are known).

I have assumed throughout that fitness is determined solely by an individual’s phenotype

and is not affected by population size. This was done to focus solely on the relationship between

different forms of stochasticity and extinction. However, deterministic Allee effects, such as mate

limitation or the accumulation of deleterious alleles, also play an important role in driving the

extinction of small populations (Lande 1988). It is well know that stochasticity may contribute

to extinction by driving populations below Allee thresholds (Dennis 1989, 2002) and there has

been recent interest in characterizing the interactions between different forms of genetic Allee

effects, such as inbreeding depression, mutation accumulation, and the loss of variation at loci

under balancing selection, that may generate "eco-evolutionary extinction vortices" (Luque et al.

2016; Nabutanyi and Wittmann 2021a,b; Wittmann et al. 2018). An important future direction

is to utilize the method presented here for partitioning the effect of stochasticity on extinction

risk to examine how different forms of stochasticity influence time to extinction in these complex

extinction scenarios.
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This study has provided a detailed examination of how stochasticity affects the likelihood of

persistence, the time to extinction, and the time to recovery of populations undergoing evolutionary

rescue. I found that while the ability to predict in advance whether a population will persist or

go extinct is low, the best early predictor is whether the population has evolved more quickly or

slowly than expected (i.e. the effect of phenotypic stochasticity). This study has also presented a

general framework for partitioning the effects of different forms of stochasticity on population

outcomes that can be used as a template for understanding the process of extinction beyond

evolutionary rescue. It therefore represents an important step in better understanding when, how,

and why populations go extinction.
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