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ABSTRACT 

 

Cosmogenic 35S as an Intrinsic Hydrologic Tracer for Young Groundwater in Mountain 

Basins and Managed Aquifer Recharge Facilities 

 

by 

 

Stephanie Haydeé Urióstegui 

 

The current drought crisis in California highlights the vulnerability of freshwater 

resources, particularly groundwater reservoirs, which supply up to 60% of California’s water 

during drought years. Understanding the potential impacts of climate change on 

groundwater recharge and storage is critical as drought periods become more frequent in the 

state. Groundwater residence times provide insight into groundwater recharge and transport 

mechanisms and storage capacities. This study developed and evaluated a new intrinsic 

tracer method to quantify groundwater recharge and transport using the occurrence of the 

naturally-produced radioisotope sulfur-35 (35S, half-life 87.5 days) in water as dissolved 

sulfate (35SO4). Improvements made to established analytical techniques expand the 

analytical range of 35SO4, which broadens the utility of 35SO4 as a hydrologic tracer. The 

35SO4 tracer method was applied to two distinct hydrologic settings: 1) high-elevation Sierra 

Nevada basins, and 2) low-elevations basins containing managed aquifer recharge (MAR) 

facilities.  
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In the Sierra Nevada study, the new 35SO4
 method was used to empirically constrain 

annual groundwater recharge in Sagehen Creek Basin (SCB) and Martis Valley 

Groundwater Basin (MVGB). Compared to relatively high 5SO4 activity in seasonal 

snowmelt (5.5 ± 0.3 to 52.9 ± 3.4 mBq/L), groundwater and surface water consistently 

yielded low 35SO4 activities resulting in a calculated percent new snowmelt (PNS) of <30%. 

The consistently low PNS suggests that recent (<1 year old) snowmelt represents only a 

small fraction of the larger aquifer system. As snowpack continues to decline due to climate 

change, streamflow and springs may respond in a two phase manner: rapid response in 

discharge followed by more gradual decreases over decades due to declines in groundwater 

recharge.  

The MAR study used 35SO4 to quantify groundwater travel times near MAR operations. 

MAR sites divert excess surface water, imported water, and reclaimed wastewater into 

surface-spreading ponds or direct injection wells to replenish groundwater in heavy-usage 

areas. Identifying groundwater travel times near MAR facilities is critical for determining 

the fate and transport of potential contaminants, especially for facilities that incorporate a 

significant portion of reclaimed wastewater. Successful application of the 35SO4 tracer 

method near MAR sites is dependent on careful characterization of the 35SO4 activity in 

source waters. Relative to established deliberate tracer experiments, which require extensive 

field and laboratory effort, the less intensive 35SO4 technique showed comparable 

groundwater travel times at two MAR facilities located in southern California. Both the 

Sierra Nevada and MAR studies demonstrate that 35SO4 is a valuable, yet underutilized 

tracer in hydrologic studies.  
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I. Introduction 

Physical and geochemical techniques are commonly used to investigate groundwater 

processes such as recharge rate and residence times, which is important for effectively 

managing groundwater basins. Physical approaches rely on direct measurements of 

hydrologic parameters and use mathematical representations of concepts and processes. 

Geochemical techniques use chemical or isotopic substances to obtain information such as 

groundwater flow, reactive processes, and groundwater age for various timescales (Clark 

and Fritz, 1997; Cook and Herczeg, 2000). Advances in geochemical techniques, in 

particular hydrologic tracers, have expanded our understanding of groundwater processes. 

A. Background of Hydrologic Tracers used for Investigating Groundwater Recharge, 

Storage, and Transport 

Geochemical age tracers have been utilized for decades to investigate groundwater 

recharge, storage, and transport in both high-elevation basins and lowland aquifers (Davis et 

al., 1980; Clark and Fritz, 1997; Cook and Herczeg, 2000; Glynn and Plummer, 2005). Ideal 

tracers are soluble, mobile, and behave conservatively (i.e., are non-reactive and do not sorb 

readily to aquifer material). Two main categories of groundwater age tracers are 1) 

deliberate tracers (e.g., Davis et al., 1980) and 2) intrinsic tracers (e.g. Phillips and Castro, 

2003; Glynn and Plummer, 2005). Deliberate tracers are constituents that are added to water 

bodies at the surface or subsurface. Intrinsic tracers are present in the environment such as 

atmospherically-derived radionuclides or stable constituents present in the recharged water 

with known patterns of age with time.  
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Deliberate tracer experiments require the physical injection of a tracer. Noble gas 

isotopes of helium, neon, and xenon, and the nonreactive synthetic gas sulfur hexafluoride 

(SF6), have frequently been used to resolve groundwater ages on timescales of less than one 

year in low elevation basins dominated by Managed Aquifer Recharge (MAR) operations 

(e.g., Clark et al., 2004; Moran and Halliwell, 2003; Massman et al., 2008; McDermott et 

al., 2008). MAR is the practice of artificially storing water in groundwater basins that have 

been depleted by local production. Deliberate tracers have also been used in high elevation 

streams to quantify oxygen reaeration rates in rivers (e.g., Wanninkhof et al., 1993; Reid et 

al., 2007; Clark et al., 2014). Significant disadvantages to deliberate tracer studies include 1) 

high analysis costs and 2) extensive fieldwork and laboratory effort. Moreover, while SF6 

has been extensively used in previous deliberate tracer studies, its emission is regulated in 

California because it is a strong greenhouse gas. 

Intrinsic groundwater tracers, such as dissolved gases and isotopic tracers, are useful for 

characterizing young (<50 year old) groundwater and investigating the vulnerability of 

aquifers to climate change. Dissolved noble gas concentrations (Ne, Ar, Kr, and Xe) 

combined with tritium-helium (3H/3He), chlorofluorocarbons (CFCs), and passive SF6 age 

dating have been useful in determining apparent ages of young groundwater in several high-

elevation basins including the Central Sierra Nevada (e.g. Rademacher et al., 2001; Segal et 

al. 2014; Singleton and Moran, 2010; Manning et al., 2012) and Rocky Mountain Range 

(Manning and Caine, 2007). These approaches have also been used in a variety of low 

elevation groundwater basins (e.g., Schlosser et al., 1988; Busenberg and Plummer, 1992, 

2000; Ekwurzel et al., 1994; Stute et al., 2007) including a few studies near MAR operations 

(e.g., Clark et al., 2004; Massmann et al., 2008). Due to analytical uncertainties being 

greater than or equal to one year for these commonly utilized intrinsic tracers (Clark et al., 
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2004; Singleton and Moran, 2010; Manning et al., 2012), groundwater ages of less than one 

year cannot be resolved by current methods. 

New tracer methods are needed to resolve groundwater recharge and transport on annual 

timescales due to the high cost of current deliberate tracer methods and analytical limitations 

of current intrinsic tracer techniques. This study developed and evaluated a new intrinsic 

tracer method using the cosmogenic radionuclide sulfur-35 (35S) in water as dissolved 

sulfate (35SO4) to investigate groundwater recharge and transport in two distinct hydrologic 

settings: 1) high-elevation Sierra Nevada basins, and 2) low-elevations basins containing 

MAR facilities. In Chapter II, existing analytical techniques are refined to expand the 

analytical range of 35SO4. The new 35SO4
 method was used to empirically determine annual 

groundwater recharge in snow-dominated Sierra Nevada basins (Chapter III). In Chapter IV, 

35SO4 was used to quantify groundwater residence times in low-elevation basins dominated 

by MAR operations. 

B.  35S as a Hydrologic Tracer  

Cosmic ray spallation of atmospheric argon continually produces 35S in the upper 

atmosphere. 35S eventually enters the hydrologic cycle as dissolved 35SO4 through 

precipitation (Tanaka and Turekian, 1991), and 35SO4 activities in precipitation range from 

<0.7 to 63 mBq/L (Cooper et al., 1991; Michel et al., 2000, 2002; Plummer et al., 2001; 

Novak et al., 2004; Shanely et al., 2005; Böhlke and Michel 2009; Singleton et al., 2014). 

Previous hydrologic studies have demonstrated that naturally-occurring 35SO4 is a useful 

intrinsic tracer for measuring shallow groundwater residence times of both water and SO4 

(e.g. Cooper et al., 1991; Michel et al., 2000, 2002; Plummer et al., 2001; Novak et al., 

2004; Shanely et al., 2005). The 87.5-day half-life of 35S makes it useful for investigating 
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residence times of SO4 and shallow groundwater on timescales of up to 1.2 years (5 half-

lives).   

To date, hydrologic studies using 35SO4
 as an intrinsic tracer have focused on low-sulfate 

waters from alpine and subalpine basins where biogeochemical cycling and water/rock 

interactions are minimal and the hydrologic sulfate budget is dominated by atmospheric 

inputs (e.g. Cooper et al., 1991; Sueker et al., 1999; Michel et al., 2000, 2002; Plummer et 

al., 2001; Singleton et al., 2014). 

C. New Analytical Method for Measuring 35S 

The application of 35SO4 as an intrinsic tracer has been limited to environmental waters 

containing low SO4
 concentrations because only small amounts of SO4 can be analyzed 

using current liquid scintillation counting (LSC) techniques. Chapter II describes a new 

analytical method for measuring 35SO4 activities in natural waters. Compared to previous 

published methods (Hong and Kim, 2005; Brothers et al., 2010), the significant advances to 

the method include larger sample loading capacity for LSC analysis while maintaining high 

counting efficiency, sample purification, mitigation of counting interferences from reagent 

impurities, and optimization of LSC counting parameters. The new technique expands the 

analytical range of 35SO4 in environmental waters containing a wide range of SO4 

concentrations, which broadens the capabilities of 35SO4 as a hydrologic tracer. 

D. Quantifying Annual Groundwater Recharge from Snowmelt in the Central Sierra 

Nevada using 35S 

Groundwater is critical to water supply in snow-dominated regions of the western U.S. 

because it serves as a buffer against the impacts of drought by storing and releasing 
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snowmelt to streams as baseflow. Snowmelt is an important component of groundwater 

recharge and storage in high-elevation basins (e.g. Earman et al., 2006), therefore spatial 

and temporal changes in snow dynamics due to a climate warming will likely change the 

amount and timing of water availability.  

Uncertainties in the impact of climate change to groundwater recharge in snow-

dominated Sierra Nevada basins is of particular concern in California where the majority of 

surface waters and groundwater are derived from Sierra Nevada snowpack. Groundwater 

supplies about 40% of California’s total water supply during an average year, and as much 

as 60% during dry years when groundwater pumping increases to make up for the lack of 

surface runoff (California Department of Water Resources, 2014, 2015). With groundwater 

playing an ever-increasing role in meeting the State's water demands under a warming 

climate, understanding the storage and transport of groundwater becomes critically 

important.  

Quantifying groundwater recharge and storage on annual timescales provides unique 

information for examining basin vulnerability to changing recharge conditions resulting 

from short-term fluctuations in climate. Integrated hydrologic modeling that simulates both 

groundwater and surface water flow and age has shown that changes in recharge have the 

largest effect on short (<1 year) timescale components (Engdahl and Maxwell, 2015). As 

snowpack continues to decline due to a warming climate, identifying the annual 

groundwater recharge derived from snowmelt is useful for evaluating the storage capacity of 

groundwater systems.  

In the Sierra Nevada study (Chapter III), 35SO4 was used to quantify the percentage of 

annual snowmelt in groundwater and surface waters in two Central Sierra Nevada basins. 
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Minimal contribution of snowmelt to surface waters during primary snowmelt period in both 

study basins indicates significant annual groundwater recharge and a relatively large aquifer 

system, which may be critical for mitigating the impacts of climate change to streamflow in 

these snow-dominated basins. 

E. Quantifying Groundwater Travel Time near Managed Aquifer Recharge 

Operations using 35S 

Growing demands on groundwater resources have made the MAR operations 

increasingly important for supplementing public water supplies. MAR sites divert excess 

surface water, imported water, and reclaimed wastewater into surface-spreading ponds or 

direct injection wells to replenish groundwater in heavy-usage areas. Direct injection wells 

are also used to minimize the effects of seawater intrusion in many coastal groundwater 

basins in Southern California. In populated semi-arid regions such as southern California 

where groundwater and imported water are in short supply, the use of reclaimed water to 

replenish groundwater basins provides a safe, reliable, and drought resistant source for MAR 

operations; however, water quality concerns are raised when recycled wastewater is a 

portion MAR source waters. Understanding flow characteristics of recharged water is 

critical for protecting public and environmental health. 

Quantifying groundwater travel times near MAR facilities is important for determining 

the fate and transport of potential contaminants, especially for facilities that incorporate a 

significant portion of reclaimed wastewater. In California, regulations for Groundwater 

Replenishment Reuse Projects (GRRP) require specific subsurface residence times prior to 

extraction for potable reuse (Johnson, 2009; California Division of Drinking Water, 2015). 

Depending on the degree of above ground treatment technologies before recharge, minimum 
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time for tertiary-treated recycled water can be as little as 2 months if the minimum pathogen 

removal is achieved above ground via above ground treatment processes, or could exceed 6 

months if tertiary recycled water is surface spread. The travel time is also based on the 

method used for its determination with added or deliberate tracers being considered the most 

reliable and Darcy’s Law calculations the least (California Division of Drinking Water, 

2015). 

The MAR study described in Chapter IV used 35SO4 to quantify groundwater travel 

times near two MAR facilities in southern California. Due to seasonal variability of 35SO4 

activity in MAR source waters, careful characterization of 35SO4 in source waters is 

important for the successful application of the 35SO4 tracer method near MAR sites. Relative 

to established deliberate tracer experiments, comparable groundwater travel times for the 

less intensive 35SO4 technique at two southern California MAR facilities demonstrates the 

usefulness of 35SO4 in these shallow aquifer systems. 
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II. Analytical Method for Measuring Cosmogenic 35S in Natural Waters 

A. Abstract 

Cosmogenic sulfur-35 in water as dissolved sulfate (35SO4) has successfully been used as 

an intrinsic hydrologic tracer in low-SO4, high-elevation basins. Its application in 

environmental waters containing high SO4
 concentrations has been limited because only 

small amounts of SO4 can be analyzed using current liquid scintillation counting (LSC) 

techniques. This chapter presents a new analytical method for analyzing large amounts of 

BaSO4 for 35S. Efficiency gains when suspending BaSO4 precipitate in Inta-Gel Plus 

cocktail were quantified, BaSO4 precipitate was purified to remove dissolved organic matter, 

interference of radium-226 and its daughter products was mitigated by selection of high 

purity barium chloride, and LSC counting parameters were optimized for 35S determination 

in larger masses of BaSO4. Using this improved procedure, counting efficiencies are 

comparable to published LSC techniques despite a 10-fold increase in the SO4 sample load. 

35SO4 was successfully measured in high SO4 surface waters and groundwaters containing 

low ratios of 35S activity to SO4 mass demonstrating that this new analytical method expands 

the analytical range of 35SO4 and broadens the utility of 35SO4 as an intrinsic tracer in 

hydrologic settings. 

B. Introduction 

Hydrologic tracer applications using sulfur-35 in water as dissolved sulfate (35SO4) have 

been limited due to high minimal detectable activity (MDA) values and low SO4 loading 

capabilities of established methods. Previous methods include preconcentration of 

approximately 100 mg SO4 followed by low-level liquid scintillation counting (LSC). Based 
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on the 100 mg limit of SO4, low-SO4 waters have typically been concentrated by passing 20 

L of water through a column packed with an ion-exchange resin (Amberlite-400) using 

gravity filtration or a peristaltic pump (Sueker et al., 1999; Michel et al., 2000; 2002; 

Shanley et al., 2005; Böhlke and Michel, 2009; Priyadarshi et al., 2014). After eluting SO4 

off the resin, samples have been prepared for LSC by precipitating SO4 as BaSO4 collected 

onto glass fiber filters (Hong and Kim, 2005) or converting SO4 to Na2SO4 crystals that are 

dissolved and the solution counted in a scintillation cocktail (Brothers et al., 2010). While 

these methods have been successful for low-SO4 waters (<5 mg/L), high-SO4 waters (5-150 

mg/L) contain low 35S relative to the mass of SO4 which necessitates analyzing a larger mass 

of BaSO4 to achieve accurate measurements of 35SO4. The LSC technique using glass fiber 

filters is inherently limited because of the difficulty in mounting SO4 masses >100 mg onto 

the filters. 

A secondary technique of counting dissolved Na2SO4
 is problematic because the charge 

and large size of the SO4 anion impedes formation of a stable microemulsion in liquid 

scintillation cocktail and can cause phase instability (PerkinElmer, 2014). Concentrations as 

low as 0.1M Na2SO4 (96 mg of SO4 in 10 ml of water) are not recommended due to no or 

very little sample capacity for the common cocktails ULTIMA Gold AB, ULTIMA Gold 

LLT, and Insta-Gel Plus (PerkinElmer, 2014). Currently there are no cocktails available that 

could handle counting dissolved Na2SO4 for a sample load ≥1000 mg of SO4.
 

In order to expand the analytical range of 35SO4 in high-SO4 systems, a new analytical 

method was developed for 35SO4 by improving preconcentration of the SO4, selecting high 

purity BaCl2 reagents to mitigate counting interferences, purifying the BaSO4 precipitate, 

and optimizing LSC counting parameters. 
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C. Experimental Section 

1. Preconcentration of Sulfate 

Environmental waters contain a wide range of SO4
 concentrations, therefore a batch 

method was used to preconcentrate 35SO4
 (Figure 1), with the goal of processing between 

100 and 2000 mg of SO4
 per sample. The batch method was selected rather than the 

published column methods because samples collected in the field can be brought to the 

laboratory where multiple samples can be processed at the same time.  

 

 

 

Figure 1. Schematic diagram of 35SO4 preconcentration, purification, and mounting for 

LSC. 

 

 

A laboratory sample matrix was created by dissolving anhydrous Na2SO4 containing no 

35S in 20 L of deionized water (DI) to obtain SO4 concentrations of 5, 50, and 100 mg/L. 

The samples were transferred to buckets lined with plastic bags. During the method 
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development work, anion exchange resin (Amberlite, IRA-400) efficiency was found to be 

independent of pH for natural waters with relatively neutral pH; however, samples were 

acidified to pH 3-4 with 5M HCl prior to adding 20 g of resin to ensure that SO4
 is in 

solution. An industrial spinner was used to suspend 20 g of an anion exchange resin 

(Amberlite, IRA-400) in the sample for 2 hours, binding the SO4 to the resin. To establish 

the spin time for SO4 sorption, sample aliquots were collected every 15 min for 2 hours and 

the percent recovery was determined based on the SO4 concentrations measured by ion 

chromatography (IC). After 2 hours of resin suspension, laboratory samples with 5, 50, and 

100 mg/L of SO4 had SO4 recoveries of 90%, 88%, and 70%, respectively (Figure 2). Using 

five industrial spinners and a 2 hour-spin time per sample allows for the analysis of at least 

10 samples in an average work day. 

 The resin was then transferred to a column and SO4 was eluted off the resin with 250 

ml of 5% NaCl solution. For 20 g of resin loaded with up to 1000 mg of SO4, greater than 

96% recovery of SO4 was achieved with 250 ml of 5% NaCl (aq). The samples were then 

acidified to pH 3-4 with 5M HCl, heated, and Ba was added in excess (as dissolved 

BaCl2•2H2O) to form a BaSO4 precipitate. The BaSO4 precipitate was allowed to settle 

overnight, then decanted and transferred to a 50 ml centrifuge tube. The BaSO4 was triple 

rinsed with DI water. 

 

. 
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Figure 2. Percent recovery of SO4 over 120 min for laboratory solutions containing 100, 

1000, and 2000 mg of dissolved SO4. 

 

 

2. Sample Mounting for LSC 

Samples containing 100 mg or less of SO4 were transferred to 20 ml plastic scintillation 

vials (PerkinElmer) using 5 ml of DI water. Since more than 5 ml of water is needed to 

transfer larger masses of SO4 to scintillation vials, samples containing 100 to 2000 mg of 

SO4 were transferred to glass scintillation vials, dried overnight in a 100°F drying oven, and 

the dry weight of the BaSO4 precipitate was recorded. 

3. LSC Analysis 

For this study, 35S was analyzed as BaSO4 in Insta-Gel Plus (PerkinElmer) scintillation 

cocktail. Insta-Gel Pus forms a stable gel that suspends particulates for counting. The 

stability of the gel phase is dependent on temperatures being between 5 and 27ºC and the 

percentage sample load of water to cocktail being ≥20% (PerkinElmer, 2014). In this 

method, 5 ml of DI water was added to the dried BaSO4 precipitate and the vial was shaken 

to completely suspend the precipitate in the DI water. Two 6.5 ml aliquots of Insta-Gel Plus 

were added and shaken in between to ensure even distribution of the precipitate and to create 
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a 28% sample load in the vial. Samples were refrigerated for 30 min prior to loading onto a 

Quantulus 1220 Ultra-Low Level Liquid Scintillation Spectrometer (LSS) equipped with a 

chiller. 

4. Optimization of Counting Windows 

The optimal counting region for LSC on a Quantulus 1220 was determined by counting 

a sample containing 100 mg of SO4 precipitated as BaSO4 that was spiked with a NIST-

traceable 35S standard. For both glass and plastic scintillation vials, the optimal window 

setting was determined by the figure of merit (FOM), a ratio of signal to noise that is the 

square of the counting efficiency divided by the background, E2/B. Backgrounds and 

counting efficiencies were determined using various window settings and the high-energy 

beta default setting on the Quantulus 1220. The theoretical maximum energy of 35S is 167 

keV with the average being 53 keV, however, the 35S counting region for the Quantulus 

1220 has a maximum energy of 39 keV. 

Based on the FOM, the ideal counting region is window setting 148 to 415 (4 to 31 keV) 

for both the glass and plastic scintillation vials. Backgrounds in this narrower window 

setting are 0.83 and 1.33 counts per minute (CPM) for plastic and glass vials, respectively. 

Counting efficiencies for window 148 to 415 are 53.0±0.1% for the plastic vial and 

56.5±0.1% for the glass vial, which are approximately double the detection efficiencies 

reported by the Hong and Kim (2005) (Table 1). To ensure the efficiency gain is due to the 

suspension of BaSO4 in Insta-Gel Plus rather than differences between a Quantulus LSS and 

the more frequently used TriCarb LSS, 100 mg of SO4 spiked with 35S standard was counted 

on both instruments. For glass vials, the counting efficiencies for window setting 4 to 167 

keV was 58.1% on the Quantulus 1220 and 60.3% on the TriCarb 3100 (Table 1), which 
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suggests that the efficiency gain using this method is primarily due to the suspension of  

BaSO4 in Insta-Gel Plus. 

 

 

Table 1. Summary of counting conditions for 100 mg of SO4 in plastic and glass 

scintillation vials using various window settings. 

Vial 

type 

Window 

setting 

(keV) 

Window 

setting 

(channel) 

Bkg 

(CPM) 

Efficiency 

(%)a 

FOM 

(E2/B)a 

Quantulus 1220     

Plastic 4-167 148-658 2.94 53.9±0.1 989±5 

Plastic 4-39 148-450 0.98 53.9±0.1 2960±14 

Plastic 4-31 148-415 0.83 53.0±0.1 3379±12 

Glass 4-167 148-658 4.71 58.1±0.1 716±4 

Glass 4-39 148-450 1.63 57.9±0.1 2058±10 

Glass 4-31 148-415 1.33 56.5±0.1 2396±10 

TriCarb 3100    

Plastic 4-167 148-658 1.65 57.0±0.1 1969±5 

Glass 4-167 148-658 1.62 60.3±0.2 2245±13 

Hong and Kim (2005)b    

Plastic 4-167 148-658 1.87 25.2±1.2 340±24 

Glass 4-167 148-658 2.18 21.9±1.2 221±17 
 

a Uncertainties are standard deviations. 
b Hong and Kim (2005) backgrounds were prepared using GF/B filters and Ultima Gold LLT cocktail and 

counted on a Packard Tri-Carb 3170 TR/SL.   
 

 

5. Reagent Purity 

Expanding the analysis beyond the l00 mg of SO4 established in previous studies 

necessitates counting a larger mass of SO4 for environmental waters which contain high SO4 

concentrations (5-150 mg/L) with low 35S activity The additional BaCl2 reagent 

(BaCl2•2H2O) needed to precipitate SO4 requires identifying reagent impurities that result in 

higher background count rates. Chemical separation of the SO4 from other anions by 
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precipitation in an acidic environment with Ba highly purifies the sample prior to counting. 

One concern is the isotope 133Ba, a radionuclide that emits gamma radiation with an energy 

that overlaps with the 35S counting region. 133Ba is a fission product with a 10.7 year half-

life and is not found in nature so its presence should be low in the reagent; to verify this, the 

amount of 133Ba in various BaCl2 lots obtained from different manufacturers was 

experimentally determined. Approximately 20 g of BaCl2•2H2O from the five lots were 

counted by gamma spectroscopy. For each lot, the 133Ba activity per gram of Ba was below 

the MDA (Table 2) indicating that 133Ba is not present in amounts that would significantly 

contribute to background count rates in the 35S region of interest. 

During the method development work, however, 226Ra was found in every BaCl2 lot. 

226Ra is a long-lived radionuclide (1600 year half-life) in the 238U decay series and is the 

predominant species of radium isotope. The daughter products of 226Ra include short-lived 

alpha-emitting (222Rn, 218Po, 214Po, 210Po) and beta-emitting (214Pb, 210Pb, 214Bi, 210Bi) 

radionuclides, most of which have half-lives on the order of minutes to days. Because of the 

very similar chemistry between barium and radium, separation of the two elements is 

difficult and, given the amount of barium needed per sample to form the BaSO4 

precipitation, it was not feasible to perform large scale separation chemistry. 

226Ra activity in the BaCl2 lots was experimentally determined by dissolving 3.8 g of 

BaCl2•2H2O from each lot in 10 ml of DI water in glass scintillation vials, and 10 ml of 

High Efficiency Mineral Oil (PerkinElmer) was added to each vial. The samples were sealed 

and stored for 19 days prior to analysis on the Quantulus 1220 LSS to allow for 226Ra and its 

daughter products to reach equilibrium. The 226Ra activity varied between 21 and 1,145 mBq 
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mBq with the lowest activity observed for the high-purity ≥99.999% trace metal basis 

reagent (Table 2). The 226Ra activity per gram of Ba ranged from 9.85 to 533.28 mBq/g. 

Of secondary concern would be the presence of 228Ra (5.75 year half-life), which could 

also contribute to higher background count rates. The maximum beta emission for 228Ra is 

below the counting region for 35S; however, its daughter product 228Ac (6.15 hour half-life), 

does emit a gamma ray energy which could affect the 35S counting region. Since 228Ac also 

emits a gamma ray at 911.1 keV, gamma spectroscopy was used to determine the amount of 

228Ra in 20 g of BaCl2•2H2O from the five BaCl2 lots. Similar to the results for 133Ba, 228Ra 

was below the MDA (Table 2) indicating that very little 228Ra is present in the BaCl2 lots. 

 

 

Table 2. Summary of 226Ra and 133Ba activity in BaCl2 reagent batches obtained from 

different manufacturers. 

Batch ID Vendor Grade Lot Number 

226Ra/ 
BaCl2•2H2O  

(mBq/g) 

226Ra/Ba 

(mBq/g) 

228Ra/Ba 

(mBq/g) 

133Ba/Ba 

(mBq/g) 

Batch 1 BDH ACS 129517 80.40 143.01 <15.11 <3.67 

Batch 2 BDH ACS 3174C512 27.44 48.81 <15.93 <4.38 

Batch 3 BDH ACS 3174C512 26.38 46.93 <16.57 <5.32 

Batch 4 Aldrich 
≥99.999% trace 

metal basis 
MKBK5701V 5.54 9.85 <11.84 <3.26 

Batch 5 Aldrich NA 05519PF 299.81 533.28 <17.23 <8.29 
 

NA= Not available 

 

 

6. Background Reduction from Optimization of Instrument Parameters 

Unless the Quantulus 1220 is calibrated correctly, 226Ra and its daughter products lead to 

higher backgrounds in the 35S counting region. Specifically, alpha emissions of 226Ra, 222Rn, 

218Po, 214Po, 210Po  can be interpreted as beta events, particularly for reagent lots containing 
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higher amounts of 226Ra. Additionally, the background contribution would increase over 

time as the 226Ra daughter products reach equilibrium. Finally, larger masses of BaSO4 have 

higher quench resulting in a shift of alpha emissions into the 35S counting region that also 

lead to higher backgrounds. 

To mitigate the increased background count rate from the ingrowth of 226Ra, two 

software selectable parameters were optimized on the Quantulus 1220 LSS: the Pulse Shape 

Analyzer (PSA) and the Pulse Amplitude Comparator (PAC). The PSA discriminator setting 

provides a means to separate pure beta emissions from pure alpha emissions. Unless the 

PSA setting is on, alpha events will be interpreted as beta events. 

The optimal PSA setting was determined using a NIST-traceable 241Am standard, which 

is a pure alpha emitter. The solution was prepared with PerkinElmer Ultima Gold LLT 

cocktail and counted under various PSA setting ranging from 40 to 65. PSA 40 was the 

optimum setting because it was the lowest PSA that achieved 100%  alpha counting 

efficiency in the alpha counting region (channel 500-900), minimizing spillover of alpha 

counts into the 35S beta counting region (channel 148-415) and thus reducing the 

background count rate in the 35S region. 

Optimization of the PAC further reduced the background. The PAC rejects optical cross 

talk between photomultiplier tubes (PMTs) by comparing the amplitude of the pulses from 

each PMT and determining the amount of pulse amplitude variation that may be tolerated. 

Because higher PAC settings lower both background count rates and counting efficiency, the 

optimum PAC setting was determined by the FOM so as to lower the background without 

significantly reducing counting efficiency. Approximately 1000 mg of SO4 as BaSO4 was 

suspended in Insta-Gel Plus and counted under the following PAC settings: 1 (Default), 50, 
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100, 150, 175, 200, and 225. The largest FOM occurred at PAC 150 followed by PAC 100 

(Table 3), indicating that a PAC setting between 100 and 150 is the optimal setting for 

measuring low-level beta emission from 35S. A PAC setting of 120 was used for sample 

analyses in this study. 

 

 

Table 3. Background count rate and counting efficiencies for 1000 mg of SO4 under 

various Pulse Amplitude Comparator (PAC) settings. 

PAC 

Setting 
Bkg 

(CPM) 
Efficiency 

(%) 
FOM 

1 1.50 66 1901 
50 1.47 67 2481 
100 1.42 63 2781 
150 1.28 61 2907 
175 1.29 59 2709 
200 1.33 54 2432 
225 1.21 49 2389 

 

 

 

After both the PAC and PSA settings were optimized, background count rates were 

quantified by precipitating 1500 mg of SO4 with each of the five BaCl2 lots. Samples were 

counted after seven days under PAC 1 and PSA OFF (Default); PAC 1 and PAC 40; and 

PAC 120 and PAC 40 settings. As expected, the highest background was observed for 

samples precipitated with the Batch 5 reagent which contained the highest amount of 226Ra 

activity (Table 4). Using the optimized PAC 120 and PSA 40 settings reduced the 

background count rate by at least 30% for all five BaCl2 lots. 
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Table 4. 35SO4 background count rates for 1500 mg of SO4 precipitated with different 

BaCl2 reagent batches under various PAC and PSA settings. 

Batch ID 
Bkg (CPM) 

Default  PAC 1, PSA 40 PAC 120, PSA 40 

Batch 1 7.54 5.80 3.69 

Batch 2 3.12 2.63 1.85 

Batch 3 3.25 2.53 1.75 

Batch 4 1.72 1.38 0.98 

Batch 5 32.30 26.05 18.22 
 

 

 

Optimization of PSA and PAC settings and use of higher-purity BaCl2 reagent 

significantly reduces but does not eliminate background count rates in the 35S region of 

interest. Background count rates are positively correlated with the amount of SO4 

precipitated as BaSO4; however, the optimal PAC 120 and PSA 40 settings lower the slope 

of background to SO4 relative to the Default setting (Figure 3). 

Ingrowth of 226Ra daughter products results in a time dependent background, particularly 

under the Default setting where alpha emissions are interpreted as 35S beta events. Once 

Insta-Gel Plus is added and the sample vials are sealed, 226Ra decays to the short-lived 

radionuclide 222Rn (half-life 3.8 days), which is a gas that becomes trapped in the cocktail 

and potentially in the vial headspace. Over the course of several weeks, ingrowth of 222Rn 

and its daughters occurs until 226Ra reaches secular equilibrium with its daughters. For 

illustration, 1500 mg of SO4 was precipitated with the low purity Batch 5 BaCl2 reagent 

(533.28 mBq of 226Ra per gram of Ba) and counted repeatedly over an eight-day period. The 

background count rate at approximately one week (170 hours) after vials were sealed was 

37.38 cpm under the Default setting, which was reduced to 25.10 cpm under the optimized 

PAC 120 and PSA settings. The lower rate of increase under the optimized setting indicates 
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that potential ingrowth of 226Ra daughter products into the 35S counting region was 

mitigated. 

 

 

 

Figure 3. Background count rate for varying masses of SO4 precipitated with Batch 2 

BaCl2 reagent containing 48.81 mBq of 226Ra per gram of Ba under the following settings: 

PAC 1 and PSA OFF (Default); PAC 1 and PSA 40; PAC 120 and PSA 40. Count rate 

generally increases with increasing mass of SO4 for all settings, however, PAC 120 and 

PSA 40 setting resulted in lower background count rates, particularly for SO4 masses 

≥1000 mg. 
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Figure 4. Background count rates for 1500 mg of SO4 precipitated with Batch 5 BaCl2 

reagent containing 533.28 mBq of 226Ra per gram of Ba. After the vial was sealed, the 

sample was counted under various PAC and PSA settings over approximately 170 hours. 

 

 

Based on the time-dependent ingrowth of 226Ra daughter products, the samples were 

counted as quickly as possible to minimize the background count rate in the 35S region of 

interest. Waiting 20 days to count the sample allows for full ingrowth of 226Ra daughters; 

however, the background count rate will necessarily be higher due to 226Ra spilling into the 

35S counting region. Additionally, there will be significant decay of 35S over the 20-day 

period (~14%) due to its 87.5-day half-life. This limits the effectiveness of the decay 

analysis and, it should be noted, 226Ra ingrowth would affect any procedure that counts 

BaSO4 directly. 

7. Counting Configurations for Sample Analysis 

Given that 226Ra impurities exist in all BaCl2 lots, which affect the background count 

rates in the 35S counting region, care should to be taken with respect to the activity of 226Ra, 

mass of SO4 counted as BaSO4, and time that elapses between when sample vials are sealed 
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and counted. For this study, the BaCl2 reagent used for BaSO4 precipitation was limited to 

those lots containing 226Ra concentrations of <50 mBq per mg of BaSO4. Samples were 

counted within 36 hours of being sealed to minimize the increased background count rate 

due to ingrowth of 226Ra in the 35S region of interest and to minimize the decay of 35S. Using 

high purity BaCl2 reagent and counting samples within 36 hours of being sealed, the 

optimized PAC and PSA instrument parameters reduced the background from 1.65 cpm to 

1.04 cpm for 1000 mg of SO4 (Figure 5).  

 

 

 

Figure 5. 35SO4 energy spectra and background counts for 1000 mg of 35S-free SO4 

precipitated with Batch 2 BaCl2 reagent containing 48.81 mBq of 226Ra per gram of Ba. 

Relative to the Default setting background count rate of 1.65 cpm, the optimized PAC 120 

and PSA 40 settings reduced the background to 1.04 cpm. 
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For environmental samples, a BaSO4 mass-dependent background subtraction was 

created based on the generally observed linear relationship between increasing SO4 mass 

and increasing background count rate (Figure 3), and this subtraction was used to calculate 

net count rate and sample activity. Using 35S-dead BaSO4 in the same matrix as the sample 

itself (e.g. same BaSO4 mass, same cocktail, same vial type, and same count time) for the 

mass-dependent background subtraction accounts for any potential counting interferences 

due to radionuclides such as 133Ba or Ra isotopes from the BaCl2 reagent, or 40K that may be 

present in the glass vial. 

Using optimized instrument settings, the effect of BaSO4
 mass on counting efficiency 

was determined. A series of 35S standards were prepared in glass scintillation vials by 

spiking varying masses of SO4 with a NIST-traceable 35S standard prior to precipitation with 

Ba. An attenuation curve of the counting efficiency versus the mass of SO4 demonstrates 

that counting efficiency decreases linearly as SO4 mass increases (Figure 6). For 1000 mg of 

SO4, the 19.0±0.1% counting efficiency is similar to the 21.4±1.2 % efficiency for 100 mg 

of SO4 reported by Hong and Kim (2005) despite an order of magnitude increase in the mass 

of SO4. 

With the correct ratio of water to Insta-Gel Plus cocktail and maintaining the samples at 

the recommended Insta-Gel temperature range (5-27 ºC; PerkinElmer, 2014), counting 

efficiency is expected to remain stable due to minimal gravimetric settling of BaSO4 in the 

vial. Gravimetric settling of BaSO4 would lead to a decrease in counting efficiency over 

time. To examine how efficiency changed over time, 1000 mg of SO4 was spiked with 35S 

standard, suspended in Insta-Gel Plus, and counted at day 1 and again 12 days later. The 

counting efficiency at day 1 was 19.0±0.1% and at day 12 was 19.5±0.1%, indicating that 
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gravimetric settling of BaSO4 is minimal due to a uniform and stable mixture of sample and 

Insta-Gel Plus. 

 

 

 

Figure 6. Counting efficiency for various masses of SO4 precipitated as BaSO4. Efficiency 

decreased as the SO4 mass increased. 

 

 

D. Method Application to Natural Waters 

1. Sample Purification 

In analysis of natural waters, dissolved organic materials result in colored impurities that 

lead to color quenching and higher background count rates during LSC. Two techniques 

were tested to remove organics and mitigate sample quenching; an activated carbon 

treatment prior to BaSO4 precipitation and a wet ashing treatment post BaSO4 precipitation. 

For the activated carbon treatment, after eluting the resin with NaCl, samples were passed 

through a column containing 4.0 g of 20-40 mesh activated carbon. The samples were then 

acidified to pH 3-4 with 5M HCl, heated, and precipitated as BaSO4. For the wet ashing 
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treatment, the BaSO4 is transferred to a centrifuge tube with 25 ml of DI water, heated in a 

hot water bath, and treated with concentrated HCl and H2O2. 

To evaluate the effectiveness of activated carbon and wet ashing at mitigating color 

quenching in environmental waters using surface waters collected from Del Valle Reservoir 

in Alameda County, CA that contained 6.1 mg/L of dissolved organic carbon. Five-liter 

sample volumes of Del Valle water were filtered through a 0.45 micron high-capacity filter, 

acidified to pH 3-4 with 5M HCl, then gravity feed through 20 g of anion exchange resin. 

After elution of the sample with 250 ml of 5% NaCl (aq), samples were either passed 

through a column containing 2.0 g of activated carbon, wet ashed following BaSO4 

precipitation, or both treated with activated carbon and wet ashed. Table 5 summarizes the 

experimental conditions for the Del Valle waters. 

The 1220 Quantulus used in this study has a standard quench parameter (SQP) that 

quantifies quenching of a sample by subtracting the spectrum of the sample alone from that 

of an external standard with the sample in the counting chamber. The SQP value is 

analogous to the transform Spectral Index of the External Standard (tSIE) parameter on the 

Tri-Carb LSS. SQP values decrease depending on the amount of quenching; higher 

quenching correlates with lower SQP values. Compared to laboratory background, 

progressively cleaning up the Del Valle sample resulted in a SQP closer to the background 

reference value of 726.98 (Table 5). Environmental samples are treated uniformly with 

activated carbon. If any color is present after the activated carbon treatment, wet ashing is 

performed. 
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Table 5. Summary of standard quench parameters (SQP) for Del Valle surface water treated 

with activated carbon and/or wet ashing. 

Treatment SQP 

Backgrounda 726.98 

No treatment 701.27 

Activated carbon treatment 717.39 

Wet ashing 717.40 

Activated carbon and wet ashing 722.81 
 

a Background contained 120 mg of 35S-free SO4, which is similar to the mass recovered for Del Valle samples.  

 

 

2. Sample Analysis and Measurement Precision 

A subset of environmental waters from Orange County, California, was used to evaluate 

the method. The surface waters and groundwater ranged in SO4 concentration from 0.8 to 

215 mg/L. Samples were collected by filtering up to 20 L of water through a 0.45 µm high-

capacity filter into polypropylene containers. All samples were processed and analyzed 

following the method outlined in this study.  

35SO4 activity and one sigma counting errors for Orange County surface waters and 

groundwater are provided in Table 6. In the case of field duplicates, samples were not 

homogenized prior to sample processing. The results were yield-corrected by determining 

the total amount of SO4 in the samples (concentration determined by IC multiplied by the 

volume of water analyzed) relative to the gravimetric recovery of SO4 as BaSO4 prior to the 

addition of Insta-Gel Plus. Samples were decay-corrected to the collection date. Total 

recovery of SO4 typically ranged between 30 and 98%, with samples containing SO4 

concentrations of >100 mg/L resulting in SO4 recovery of <40%. Reproducibility of the 
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measurements was evaluated through comparison of field duplicates using the relative error 

ratio (RER): 

 

𝑅𝐸𝑅 = |
𝑆−𝐷

√𝜎𝑆2+𝜎𝐷2
| (1) 

 

where S is the sample 35SO4 activity (mBq/L); D is the field duplicate 35SO4 activity 

(mBq/L); and σS2 and σD2 are one sigma counting errors for the sample and field duplicate 

(mBq/L), respectively.  

Field replicates with RER ratios at or below 3.0 are considered reproducible. All but two 

the 19 total RER ratios were below 3.0, with the two outliers having RER ratios of 3.5 and 

5.4. For duplicates with RER ratios below 3.0, the mean RER value was 1.3, indicating that 

good precision was achieved for the majority of the environmental samples. 
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Table 6. 35SO4 activities and one sigma counting errors for Orange County groundwater 

and surface water samples. 

Site ID 
Collection 

Date 

SO4 

(mg/L) 

35SO4±1σ 

(mBq/L) 

Field Duplicate 
35SO4±1σ 

(mBq/L) 

RER 

Surface water     

SAR 05-Feb-2013 137 8.3±1.9 19.0±2.4 3.5 

SAR 02-Apr-2013 133 16.2±1.7 NA  

WB 04-Feb-2013 110 14.9±1.7 20.6±2.0 2.2 

WB 01-Apr-2013 125 22.0±1.8 NA  

LJ 04-Feb-2013 117 13.6±1.8 16.0±2.0 0.9 

LJ 01-Apr-2013 215 16.0±2.3 15.0±2.3 0.3 

AL 05-Feb-2013 119 8.6±1.6 18.5±2.1 2.7 

MB 02-Apr-2013 0.8 1.5±0.2 1.2±0.2 0.9 

KB 05-Feb-2013 109 17.1±1.7 19.4±1.9 0.9 

KB 01-Apr-2013 188 28.4±2.5 11.1±2.0 5.4 

Groundwater      

KBS-3/1 05-Feb-2013 112 15.9±1.8 11.3±1.8 1.8 

KBS-3/1 02-Apr-2013 177 5.4±1.8 NA  

AM-7/1 05-Feb-2013 17.3 4.5±0.4 3.4±0.5 1.7 

AM-7/1 16-Apr-2013 46.3 3.1±0.4 2.4±0.5 0.6 

AM-8/1 05-Feb-2013 15.7 3.0±0.4 2.8±0.3 0.5 

AM-8/1 16-Apr-2013 20.7 2.4±0.3 2.1±0.3 0.9 

AM-48/1 05-Feb-2013 25.2 3.9±0.5 4.2±0.6 0.2 

AM-48/1 04-Apr-2013 44.3 2.7±0.4 4.3±0.6 2.3 

AMD-12/1 05-Feb-2013 17.9 2.9±0.3 3.8±0.5 1.5 

AMD-12/1 16-Apr-2013 9.1 1.7±0.2 2.6±0.3 2.8 

AMD-12/2 05-Feb-2013 136 4.8±1.6 10.3±1.8 2.3 

AMD-12/2 16-Apr-2013 142 0.8±1.2 NA  

PW1 05-Feb-2013 27.8 4.3±0.5 4.4±0.6 0.1 
 

NA= Field duplicate was not available 

 

 

E. Conclusions 

This study developed a robust analytical technique for measuring 35SO4 in environmental 

waters that contain a wide range of SO4 concentrations. Compared to previous published 

methods (Hong and Kim, 2005; Brothers et al., 2010), the advances include (1) significant 

improvements to loading large masses of BaSO4 precipitate in Insta-Gel Plus cocktail for 

counting while maintaining high counting efficiency comparable to published techniques 



 

29 

despite a 10-fold increase in the SO4 sample load; (2) purification of BaSO4 by the removal 

of dissolved organic matter which eliminates color quenching in liquid scintillation 

counting; (3) identification of 226Ra impurity in BaCl2 reagents which affect 35S 

determination; (4) mitigation of the ingrowth from 226Ra daughter products by optimization 

of instrument parameters; (5) utilizing a batch method to decrease sample analysis time and 

increase throughput. These improvements allowed for successful analysis high SO4 surface 

waters and groundwater, which has not been previously attempted. Additionally, compared 

to published techniques, these advancements significantly improve 35S determination in low-

SO4 waters as well.
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III. Quantifying Annual Groundwater Recharge from Snowmelt in the 

Central Sierra Nevada using Naturally-Occurring 35S 

A. Abstract 

Identifying basin vulnerability to climate change is of vital importance in the Sierra 

Nevada and other snow-dominated basins where groundwater systems are essential to water 

supply. Quantifying the component of new (current year's) snowmelt in groundwater and 

surface water is useful in evaluating basin vulnerability because significant annual recharge 

may indicate that streamflow will respond rapidly to annual variability in precipitation, 

followed by more gradual decreases in recharge as recharge declines over decades. 

Hydrologic models have shown that changes in recharge affect short (<1 year) timescale 

components; however, field studies that identify this young component are rare. The goal of 

this study was to utilize the short-lived, naturally-occurring cosmogenic isotope sulfur-35 

(35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen 

Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the 

Tertiary volcanics of the central Sierra Nevada, California. Activities of 35S were measured 

in dissolved sulfate (35SO4) in SCB and MVGB snowpack, groundwater, springs, and 

streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 

6.6% during baseflow conditions to 14.0 ± 3.4% during high flow periods of snowmelt. 

Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with 

the largest fractions occurring in late spring or early summer following peak streamflow. 

The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB 
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and MVGB recharges groundwater, and groundwater contributions to streamflow in these 

systems has the potential to mitigate climate change impacts on runoff. 

B. Introduction 

Groundwater vulnerability to climate change in high-elevation basins has widespread 

implications for ecosystem health and water supply (Earman and Dettinger, 2011; Earman et 

al., 2015). In the mountains of the western United States, groundwater is a major component 

of streamflow, even during peak snowmelt conditions (Genereux and Hooper, 1998; Liu et 

al., 2004). Spatial and temporal changes in snow dynamics, such as declines in snowpack 

accumulation (Mote 2003; Mote et al., 2005) and earlier onset of snowmelt (Hamlet et al., 

2005; Mote et al., 2005; Knowles et al., 2006), is of particular concern for Sierra Nevada 

basins because groundwater recharge is mainly derived from snowpack for most of the 

southwest (Winograd et al., 1998; Earman et al., 2006). Groundwater in the Sierra Nevada 

and other high-elevation basins is critical for water supply (Frisbee et al., 2011) and 

ecosystem health, yet the impact of climate change on groundwater recharge is poorly 

understood (Earman and Dettinger, 2011; Viviroli et al., 2011; Earman et al., 2015). 

Understanding climate change impacts on groundwater resources in the Sierra Nevada 

and other high-elevation basins is difficult due to a weak understanding of direct and 

indirect effects of climate change on mountain recharge processes (Earman and Dettinger 

2011; Earman et al., 2015). Current forecasts of the effects of climate change vary widely. 

In snow-dominated basins that are predicted to experience a shift in precipitation from snow 

to rain, groundwater recharge may decrease because snow is a more efficient recharging 

agent than rain (Winograd et al., 1998; Earman et al., 2006; Meixner et al., submitted). 

However, reductions in snowpack or shifts from snow to rain may have little effect on 
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groundwater recharge in fractured-rock aquifers that are permeability limited (Manning et 

al. 2012). Under either condition, investigating groundwater response times would reduce 

the uncertainty of how mountain basins respond to changing precipitation patterns.  

Groundwater residence time is useful in evaluating groundwater sensitivity to climate 

change because it provides insight into recharge processes, storage capacity, and flow 

characteristics of groundwater reservoirs. Shallow groundwater basins are likely to have 

lower buffering capacity and greater sensitivity to climate change (Singleton and Moran, 

2010). Short residence times indicate shallow groundwater reservoirs and relatively small 

storage capacities. Because groundwater storage capacity and residence time in high-

elevation basins like the Sierra Nevada can elucidate groundwater vulnerability to climate 

change, an accurate basin study typically requires the use of groundwater tracer techniques. 

Intrinsic groundwater tracers, such as dissolved gases and isotopic tracers, are useful for 

characterizing groundwater residence times in high-elevation basins (e.g. Manning and 

Solomon, 2005; Plummer et al., 2001; Manning et al., 2012; Segal et al., 2014). In the 

Sierra Nevada, dissolved noble gas concentrations (Ne, Ar, Kr, and Xe) combined with 

tritium-helium (3H/3He) age dating have been useful in determining groundwater ages of 

<50 years in various basins such as Martis Valley Groundwater Basin (MVGB) and 

Olympic Valley Basin (Segal et al. 2014; Singleton and Moran, 2010). For the nearby 

Sagehen Creek Basin (SCB), Manning et al. (2012) used time series measurements of 

chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium (3H) to determine 

apparent groundwater ages of springs and found that most springs are best characterized by 

a bimodal mixture of <1 year old water and water recharged after 1950. Recharge studies 

using CFCs, SF6, and 3H/3He tracer methods have determined groundwater ages of <1 year; 
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however, the uncertainties of these methods are typically greater than or equal to 1 year 

(Singleton and Moran, 2010; Manning et al., 2012). 

Integrated hydrologic modeling has shown that changes in recharge have the largest 

effect on short (<1 year) timescale components, which in turn drive changes in the 

composite ages of the hydrologic system (Engdahl and Maxwell, 2015); however, field-

based studies that identify this young component are rare. The development and application 

of groundwater tracer methods which can resolve seasonal fluxes of precipitation on <1 year 

timescales would improve our understanding of groundwater residence times and storage 

capacities in mountain basins. 

An infrequently utilized intrinsic tracer that captures the timescale of <1 year is the 

radioisotope sulfur-35 (35S). The half-life of 87.5 days (Lal and Peters, 1967) is ideal for 

investigating groundwater recharge and cycling of 35SO4 on timescales of <1.2 years (5 half-

lives). Hydrologic studies in high-elevation basins such as the Rocky Mountain Range have 

successfully used 35SO4 to determine mean residence times of SO4 and groundwater in 

basins where the hydrologic SO4 budget is dominated by atmospheric inputs, and 

biogeochemical cycling and water/rock interactions are minimal (Cooper et al., 1991; 

Michel et al., 2000; Shanley et al., 2005; Sueker et al., 1999). Because of its short half-life, 

the 35SO4 tracer can be used to characterize basins that have a significant component of total 

streamflow derived from the current year's snowmelt (hereon referred to as “new” 

snowmelt), which would be an important tool in evaluating the vulnerability of water 

resources to changing precipitation patterns. 

This study utilized intrinsic 35SO4 to determine the annual flux of new snowmelt being 

stored or discharged from two central Sierra Nevada Basins: SCB and MVGB. The 35SO4 



 

34 

tracer method is used to quantify the fraction of surface water and groundwater derived from 

new snowmelt to constrain the new snowmelt contribution to groundwater recharge. 

C. Study Site Description 

SCB and MVGB are located on the eastern slope of the central Sierra Nevada, CA, near 

the crest of the Sierran divide, northwest of Lake Tahoe (Figure 7). MVGB has an area of 

approximately 148 km2, which is over five times the 27 km2 area for SCB. Both SCB and 

MVGB cover a similar elevation range; 1940-2600 m and 1740-2700 m for SCB and 

MVGB, respectively. The large difference in surface area allows for the investigation of 

how groundwater recharge from new snowmelt is affected by larger surface area and storage 

volume. 

Both basins have a mean annual precipitation of approximately 80 cm per year, 80% of 

which falls as snow during the winter months (Snowpack Telemetry (SNOTEL) Site #834 in 

MVGB and Site #539 located within 2.0 km of SCB; http://www.wcc.nrcs.usda.gov/snow/). 

Peak snowmelt typically occurs in early April, and surface flows are controlled by melting 

snowpack with peak stream discharge occurring in the late spring to early summer. SCB is 

drained by Sagehen Creek, which flows from west to east as a tributary to the Truckee River 

(Figure 7). Several surface water bodies within MVGB also eventually flow into the 

Truckee River including Martis Lake and Donner Creek (Figure 8B). Daily mean 

streamflow values for Sagehen Creek were obtained from a U.S. Geological Survey (USGS) 

gauging station located near the outlet of SCB. 

SCB and MVGB basins are underlain by Cretaceous granites and granodiorites typical 

of the Sierra Nevada batholith. However, Miocene to Pleistocene volcanics comprised 

mainly of andesitic flows, breccias, and basalts are the predominant rock type in both basins 
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(Sylvester, 2008; California Department of Water Resources, 2006). Surficial Quaternary 

alluvium, colluvium, and glacial deposits derived from the Tertiary aged volcanic rocks 

overlie and interfinger with the volcanic sequences. The alluvial and glacial deposits have 

higher specific storage than the volcanic and basement rocks and likely support surficial 

aquifers in this region. 

35SO4 is useful for studying groundwater recharge and transport in basins where 

biogeochemical or sorption processes are minimal. Sorption of newly recharged 35SO4 anion 

in a groundwater basin, accompanied by exchange with older SO4
 in which 35S has decayed 

away, could complicate the interpretation of new snowmelt contribution to groundwater 

recharge. Sorption of 35SO4 typically occurs in soils with low pH and an abundance of 

minerals containing iron and aluminum oxyhydroxides (Chao et al., 1964; Parfitt, 1978), 

conditions that are rarely found in the Sierra Nevada. Based on the limited SO4 adsorption 

capacities found in other high-elevation Sierra Nevada catchments (Williams et al., 2001), 

sorption of 35SO4 in SCB and MVGB soils is not expected to affect the transport of 35SO4 in 

these groundwater basins. 

Groundwater residence times and recharge processes in SCB and MVGB have been 

studied extensively using noble gas and environmental tracer techniques. Based on CFCs 

and 3H/3He data, Rademacher et al. (2001) found that the apparent groundwater ages of 

springs in SCB ranged from <2 to 36 years using the simplified piston-flow model. In 

MVGB, Segal et al. (2014) used 3H/3He and dissolved noble gases to determine 

groundwater ages and recharge temperatures at various wells throughout MVGB. They 

found that groundwater recharge generally occurred at lower elevations, and that long 

screened wells were a mixture of groundwater with ages of 50 to over 1000 years. These 
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studies have characterized the residence time of water on the scale of greater than 2 years, 

but the uncertainty inherent in the analytical techniques limit its application on the <1 year 

timescale making them unsuitable for investigating the transport and storage of new 

snowmelt. Application of the 35SO4 tracer technique will improve our understanding of 

groundwater residence times and storage capacities in mountain basins on seasonal 

timescales. 

 

 

 

Figure 7. Location of Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin 

(MVGB) in California. Source: USGS National Hydrography Data Set and California 

Department of Water Resources.  
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Figure 8. 35SO4 sampling locations in (A) SCB and (B) MVGB. Source: USGS National 

Hydrography Data Set and California Department of Water Resources. 

 

 

D. Methods 

1. Snow Sampling 

SCB snowpacks were collected in winter 2009/2010 and 2010/2011 by shoveling full-

depth vertical snow pits until an impermeable layer (i.e. ice layer or ground surface) was 
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reached. Snow was allowed to melt in plastic containers, yielding between 13 and 20 L of 

melt water per sample. A total of 15 snowpack composite samples were collected on three 

sampling dates (one in winter 2009/2010 and two in winter 2010/2011) from eight sites 

within SCB (Figure 8A). The sites range in elevation from 1844 m near the basin floor to 

2373 m on the western slope of SCB. 

Snow collection techniques were modified for MVGB to better characterize temporal 

and spatial difference of 35SO4 snow activity within a season. In November 2011, prior to 

the first major water year (WY) 2012 winter precipitation event, 210 L containers were 

placed at four MVGB sampling locations (Figure 8B), which cover the MVGB range in 

elevation. The contents of each container were transferred into 20 L buckets on four sample 

collection dates in winter 2011/2012 with the goal of obtaining 20 L of melt water per 

sampling event. If less than 20 L was obtained over a collection period, the uppermost layers 

of the surrounding snow, which is representative of the most recent snowfall, was added to 

the sample container to achieve approximately 20 L of melt water. The May 2, 2012 

sampling event yielded between 2.0 and 13.5 L of melt water at each of the four sampling 

sites because no additional snow was available to augment the melt water. Although both 

rain and snow were allowed to accumulate in the MVGB containers, approximately 77% of 

the precipitation over the entire sampling period occurred as snow, therefore each sample is 

assumed to represent a composite of snow that was deposited between collection periods. 

2. Surface Water Sampling 

Surface water was sampled in SCB and MVGB to determine the contribution of new 

snowmelt being discharged from the basins. In SCB, Sagehen Creek was sampled 

approximately every other month from February 2010 to August 2011. On August 28, 2010, 
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six locations along a 5 km reach of lower Sagehen Creek (Figure 8A) were sampled to 

determine spatial changes in groundwater inflow. For each SCB surface water sampling 

event, a submersible pump was used to field filter approximately 20 L of water through a 

0.45 micron high-capacity filter. For the MVGB study, surface water from 11 locations 

including Martis Lake (ML), Donner Creek (DC), Truckee River (TR), and eight locations 

along several tributaries that discharge into Martis Lake (MC01, MC05-MC08, WMC02, 

MMC03, MMC04) (Figure 8B) were collected periodically in 2012 by submerging and 

filling 5 gallon polyethylene containers. Approximately 20 L of water was collected for each 

event, and samples were field filtered through a 0.45 micron high-capacity filter. Surface 

water was sampled in SCB and MVGB to determine the contribution of new snowmelt 

being discharged from the basins. In SCB, Sagehen Creek was sampled approximately every 

other month from February 2010 to August 2011. On August 28, 2010, six locations along a 

5 km reach of lower Sagehen Creek (Figure 8A) were sampled to determine spatial changes 

in groundwater inflow. For each SCB surface water sampling event, a submersible pump 

was used to field filter approximately 20 L of water through a 0.45 micron high-capacity 

filter. For the MVGB study, surface water from 11 locations including Martis Lake (ML), 

Donner Creek (DC), Truckee River (TR), and eight locations along several tributaries that 

discharge into Martis Lake (MC01, MC05-MC08, WMC02, MMC03, MMC04) (Figure 8B) 

were collected periodically in 2012 by submerging and filling 5 gallon polyethylene 

containers. Approximately 20 L of water was collected for each event, and samples were 

field filtered through a 0.45 micron high-capacity filter. 
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3. Groundwater Sampling 

A perennial spring in SCB (Figure 8A) was sampled four times from 2010 to 2011 to 

provide a snapshot of 35SO4
 activity in SCB groundwater. The spring was sampled at less 

frequent intervals compared to Sagehen Creek due to limited access and the difficulty of 

sampling. In MVGB, 12 production and irrigation wells (wells A to I, K, N, O) and one 

cistern (J) (Figure 8B) were periodically sampled from January to September 2012. 

Production and irrigation wells were equipped with a sampling spigot while a submersible 

pump was used to collect groundwater from the cistern. Three perennial springs in MVGB 

(springs X, Y, and Z) were sampled on October 29, 2012 using a submersible pump.  

Similar to surface water sampling, 20 L of water was collected for each spring and 

groundwater sample. Prior to analysis, all samples were filtered through a 0.45 micron high-

capacity filter. 

4. Laboratory Analysis 

Recovery of 35SO4
 was achieved using a batch method technique summarized in 

Urióstegui et al. (2015) and Chapter II. Since natural concentrations of SO4
 are low in 

Sierran surface waters and groundwater, a carrier (100 mg of 35S-free SO4
 added as 

dissolved Na2SO4) was added to ensure effective recovery of sulfate in the sample. Samples 

were analyzed on an ultra-low level liquid scintillation spectrometer at the Lawrence 

Livermore National Laboratory in Livermore, California. 35SO4
 activities are reported in 

mBq/L. The minimal detectable activity (MDA) ranged from 0.3 to 2.8 mBq/L due to 

variations in counting efficiencies, background count rates, sample volumes, and time that 

elapsed between sample collection and analysis. One sigma counting errors were typically 

less than 0.3 mBq/L. Reproducibility of the measurements were evaluated through 
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comparison of field duplicates using the relative error ratio (RER), with RER values at or 

below 3.0 being considered reproducible. 

Concentrations of SO4, as well other anions, were determined in the samples collected 

from February 2010 to July 2012 by ion chromatograph on a Dionex model DX500 at BC 

Laboratories, Inc. in Bakersfield, California. Surface water and groundwater samples 

collected from September 2012 to October 2012 were analyzed at the Lawrence Livermore 

National Laboratory in Livermore, California, using a Metrohm Model 881 ion 

chromatograph. 

5. Quantification of New Snowmelt Contribution 

In snow dominated Sierra Nevada mid-elevation basins such as SCB and MVGB, the 

majority of precipitation falls as snow during the winter and completely melts by mid-

summer. Snowmelt in Western mountains is a more efficient recharging agent than rain, 

even when snow constitutes a relatively small portion of the total precipitation (Earman et 

al., 2006). When groundwater is mainly derived from annual snowmelt, new snowmelt 

containing 35SO4 can be treated as an annual pulse input to the groundwater basin. 

Determining the activity of 35S in this pulse is not straight forward. The half-life of 35S (87.5 

days) is sufficiently short that significant decay will occur over the course of a snow season. 

Melting and recharging snow (as well as samples of accumulated snow) will contain both 

recent snow with high 35S activity and old snow with lower 35S activity. Furthermore, 35SO4 

activity of fresh snow changes from one snowfall event to another over the season as 

demonstrated by the MVGB snow composites (see below). 

The bulk input of snow 35SO4 activity to the SCB groundwater and surface water was 

assumed to initiate at the onset of snowmelt (t0), which was define as the day after peak 
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snow water equivalence (SWE; April 7, 2010 for winter 2009/2010, and April 2, 2011 for 

winter 2010/2011). Due to data gaps at the SCB weather station during the study period, 

complementary meteorological data was obtained from SNOTEL #539 located in an 

adjacent basin to the north of SCB (Figure 8A). This SNOTEL station is located at 2135 m, 

which is approximately the mean elevation of SCB. 

The percent of new snowmelt (PNS) in SCB groundwater and surface water was 

determined by: 

                                                                                                     (2) 

where PNSt is the percent of new snowmelt (PNS in %) in groundwater (GW) or surface 

water (SW) on collection date t; AGW,SW = groundwater or surface water 35SO4
  activity 

(mBq/L) on collection date t, with the mean activity reported for field duplicates; ASNOW = 

mean snow 35SO4 activity (mBq/L) on t0, decay corrected to date t. For SCB, ASNOW on t0 

(April 7, 2010) for winter 2009/2010 was assumed to be the average 35SO4 activity for the 

February 13, 2010 full depth snow composites; in winter 2010/2011, ASNOW  on t0  (April 2, 

2011) was the average 35SO4 activity for the March 5, 2011 full depth snow composites. 

Although groundwater and surface waters in SCB is primarily derived from winter 

snowpack, runoff and shallow subsurface flow from precipitation or melt events that occur 

outside of the primary snowmelt period of spring to early summer may increase the 35SO4 

activity in surface water, particularly during baseflow conditions. The PNS for surface 

waters and groundwater collected from t0 through September 31st (water year day 365) 

assumes an ASNOW 
35SO4 activity of t0 decay corrected to the collection date t; however, 

waters collected from October 1st (water year day 1) to t0 of the following winter are not 

PNSt =
AGW,SW

ASNOW
  100*
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decay corrected because precipitation and short melt events during this low-flow period 

could increase the 35SO4 activity leading to an overestimation of the PNS in surface waters 

and shallow groundwater. 

This study was expanded to MVGB in 2012 with higher-frequency snow sampling in 

winter 2011/2012 allowing for greater confidence in the snow end member 35SO4 activity. 

Mean 35SO4 activity was determined using a volume-weighted approach in which snow 

35SO4 activity at four snow sampling locations is expressed as: 

                                                                                                    (3) 

where St is the volume-weighted mean snow 35SO4 activity (mBq/L) for a given site decay 

corrected to groundwater or surface water collection date t; a = snow 35SO4 activity (mBq/L) 

for the snow sampling event i =1 to 4 decay corrected to date t; P = precipitation amount (m) 

deposited between snow sampling events (Table 7). For example, Pi=2 represents the total 

precipitation that fell between time i=1 (January 25, 2012) and i=2 (February 24, 2012). 

MVGB daily precipitation data was available from SNOTEL #834 near MVGB site S11 

(Figure 8B) and was used for all four snow sampling locations. 

 

 

Table 7. MVGB precipitation from SNOTEL #834. The precipitation amount that fell 

during the sampling period represents 77% of the total precipitation during water year 

2012. 

Sample 
Collection 

Date 
Sampling 

Period 
Precipitation 

(m) 
Amount of Total 

Precipitation (%)* 
P1 25-Jan-2012 05-Nov - 25-Jan 0.16 33 
P2 24-Feb-2012 26-Jan - 24-Feb 0.02 4 
P3 04-Apr-2012 25-Feb - 04-Apr 0.25 51 
P4 02-May-2012 05-Apr - 02-May 0.06 13 

P Total   0.49  

*Amount of total precipitation that fell during sampling period (05-Nov-2012 to 02-May-2012). 

St =
Σ ai Pi

PTotal

4
i=1
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The volume-weighted mean snow activity for the entire basin was determined by: 

 

(4) 

where ASNOW = decay corrected mean snow 35SO4 activity (mBq/L) for snow sampling sites 

n=1 to i. Similar to SCB, the PNS in MVGB groundwater or surface water the was 

calculated using Equation (2). 

E. Results and Discussion 

1. Snowpack End Member 

Concentrations of SO4 in SCB snowpack were consistently ≤0.5 mg/L, which is typical 

of precipitation measurements in the Sierra Nevada (e.g. Williams and Melack, 1991, 1997; 

Williams et al., 1993; Chorover et al., 1994; Meixner et al., 1998). MVGB snow composites 

also had generally low SO4 concentrations of <0.3 mg/L in January and February 2012; 

higher concentrations in May 2012 may be due to less solute dilution resulting from a 

decrease in storm size (Williams and Melack, 1997). 

The 35SO4 activity of SCB snowpack ranged from 5.5±0.3 to 12.4±0.3 mBq/L (Table 8), 

with an average activity of 8.3±0.1 and 7.4±0.2 mBq/L for winters 2009/2010 and 

2010/2011, respectively. The SCB snowpack 35SO4 activity are similar to values reported for 

snowpack in high-elevation basins in the Rocky Mountains 13.1±0.5 to 25.0±1.7 mBq/L 

(Sueker et al., 1999, Michel et al., 2000, Michel et al., 2002). The 35SO4 activity for the 

higher-frequency MVGB snow composites varied between 1.1±0.5 and 52.9±3.4 mBq/L, 

with the May 2, 2012 sampling event having the highest activity. Increasing MVGB snow 

35SO4 activity from the winter to the late spring (Figure 9) may be due to stratosphere-to-

troposphere exchange during the spring and summer, which increases the depositional flux 

ASNOW =
Σ Si

STotal

4
i=1
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of cosmogenic 35S. Warming of air masses during the spring and summer months results in 

convective heating and downward transfer of aerosols into the troposphere, with peak 

stratosphere-to-troposphere exchange of cosmogenic radionuclides such as beryllium-7 

occurring in the spring and summer at middle-latitudes, especially at high elevations (Brost 

et al., 1991; Feely et al., 1989). 

 

 

Table 8. Sulfate concentrations and average 35SO4 activity with 1σ counting 

uncertainties for SCB (Sites S01-S08) and MVGB (Sites S09-S12) winter snowpack. 

SCB 

Site ID 

Collection 

Date 

SO4 

(mg/L) 

35SO4±1σ 

(mBq/L) 
 

MVGB 

Site ID 

Collection 

Date 

SO4 

(mg/L) 

35SO4±1σ 

(mBq/L) 

S01 13-Feb-2010 0.5 9.0±0.3  S09 25-Jan-2012 0.2 10.2±0.3 

S02 13-Feb-2010 0.3 9.3±0.3  S10 25-Jan-2012 0.3 12.6±0.3 

S02 13-Feb-2010 0.3 12.4±0.3  S11 25-Jan-2012 0.2 10.5±0.3 

S03 13-Feb-2010 0.3 5.9±0.3      

S03 13-Feb-2010 0.3 7.8±0.3  S09 24-Feb-2012 <0.1 11.0±0.7 

S04 13-Feb-2010 0.3 5.5±0.3  S10 24-Feb-2012 <0.1 1.1±0.5 

     S11 24-Feb-2012 <0.1 2.8±0.5 

S05 09-Jan-2011 <0.1 8.2±0.6  S12 24-Feb-2012 3.3 15.1±0.6 

S05 09-Jan-2011 <0.1 6.8±0.6      

     S09 04-Apr-2012 3.1 17.7±0.6 

S06 05-Mar-2011 0.2 5.9±0.4  S10 04-Apr-2012 <0.1 26.9±0.7 

S06 05-Mar-2011 0.2 10.0±0.5  S11 04-Apr-2012 <0.1 11.9±0.5 

S07 05-Mar-2011 0.2 10.4±0.5  S12 04-Apr-2012 4.1 25.4±0.6 

S04 05-Mar-2011 0.2 5.9±0.4      

S04 05-Mar-2011 0.2 6.5±0.4  S09 02-May-2012 9.2 34.0±0.8 

S08 05-Mar-2011 0.2 6.7±0.4  S10 02-May-2012 3.2 41.9±1.2 

S08 05-Mar-2011 0.2 6.1±0.4  S11 02-May-2012 1.4 30.9±1.2 

     S12 02-May-2012 5.1 52.9±3.4 
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Figure 9. 35SO4 activities for MVGB snow collected during winter 2011/2012 (January 

25, February 24, April 4, and May 5). Error bars represent 1σ counting uncertainties. 

 

 

2. Conservative Behavior of Sulfate in Surface Water and Groundwater 

The model calculation of PNS from 35SO4 activity assumes the sulfate is not reduced or 

exchanged during recharge and transport. Biogeochemical processes such as mineral 

weathering and ion exchange control the mobility of solutes in mountain basins. In SCB and 

MVGB, the majority of the groundwater and surface water samples had SO4 concentrations 

that were within the range of <0.1 to 5.0 mg/L detected for most snowmelt samples. Mean 

groundwater ages plotted versus SO4 concentrations for springs and wells in both SCB and 

MVGB reveal a minimal trend between groundwater apparent age and SO4 concentrations 

(Figure 10). Rademacher et al. (2001) did note a trend between major cations and residence 

time in SCB spring water indicating that water rock interactions are occurring in the 

subsurface, however, this evidence supports the assumption that chemical weathering in 

these basins has little influence on stream SO4 hydrochemistry at these sites. Based on the 

minimal trend between groundwater age and SO4 concentrations and the limited SO4 
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adsorption capacities found in other high-elevation Sierra Nevada catchments (Williams et 

al., 2001), sorption of 35SO4 in SCB and MVGB soils is not expected to affect the transport 

of 35SO4 in these groundwater basins. 

 

 

 

Figure 10. Groundwater apparent age versus SO4 concentration for SCB and MVGB 

springs and wells. MVGB groundwater ages plotted at 50 years with an arrow to the 

right represent ages of >50 years and are not included in the calculation of the 

correlation coefficient. The low correlation coefficient observed for both SCB (R2= 

0.26) and MVGB (R2= 0.12) suggests a minimal trend between groundwater apparent 

age and SO4 concentrations. Groundwater apparent age data were obtained from 

Manning et al. (2012) and Segal et al. (2014). 

 

 

Due to the capacity of vegetation and soils have the capacity to retain anions such as 

SO4
2-, a decoupling of 35SO4

2- from the hydrologic flow path would complicate the 

interpretation of the new snowmelt fraction in surface water and groundwater determined by 

the 35S tracer method. For example, SO4
2- exchange in the soil zone is expected to have little 

effect on the total concentration of SO4
2-; however, the SO4

2- reaching the groundwater 

system or surface water would have a lower ratio of 35S activity to SO4
2- concentration, 

resulting in a smaller calculated percent new snow relative to the actual percent new snow. 
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A simplified SO4 mass balance provided in Appendix A revealed a net export of SO4 

from SCB, which may be due to higher atmospheric SO4 loading from previous decades or 

organic matter mineralization in the soil zone. While SO4 may be immobilized in the soil 

zone or vegetation, accurate constraints to the biogeochemical cycling of SO4 requires 

additional data such as stable isotopic analysis of SO4 (
34SO4/

32SO4) to quantify the extent of 

biogeochemical cycling in the basin. 

3. Sagehen Creek Basin: New Snowmelt Contribution to Surface Water and 

Groundwater 

 

Time series measurements of 35SO4 activities in Sagehen Creek collected from SCB site 

SC02 were between 0.0±0.1 and 1.5±0.9 mBq/L, with the exception of one sample collected 

August 24, 2010 and one collected August 7, 2011 that did not have detectable 35SO4 

activity (Tables 9 and 10). RER values of 0.0 to 2.2 indicate good reproducibility between 

sample duplicates. Calculated PNS values ranged from 0.2±6.6 to 14.0±3.4%. For WY2010, 

the highest PNS was observed soon after the onset of snowmelt, with PNS increasing from 

4.1±1.6 to 14.0±3.4% from February to April 2010 in response to snowmelt recession (Table 

9, Figure 11). While stream discharge continued to increase in May 2010, PNS decreased to 

4.8±2.7%. As streamflow receded in late spring and early summer, PNS in streamflow was 

consistently <15%, with no significant difference observed between the high-flow 

conditions of May 2010 (4.8±2.7%) and baseflow conditions in August 2010 (8.4±4.0%). 

These results suggest that while new meltwater is discharging into the stream via overland 

flow and/or shallow subsurface flowpaths during both high-flow and baseflow conditions, 

streamflow is primarily derived from groundwater recharged during previous winters. 
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Table 9. Sulfate concentrations, 35SO4 activity, and the percent of new snowmelt 

(PNS) for SCB surface water from site SC02 and groundwater from Spring #11. For 

field duplicates, mean activity of the two measurements is reported and used to 

calculate PNS. Uncertainties are propagated ±1σ counting errors. 

Date 

Collected 

SO4 

(mg/L) 

35SO4 

(mBq/L) 

Duplicate 

35SO4 

(mBq/L) 

RER 

Reported 
35SO4 

(mBq/L) 

Snow 
35SO4 

(mBq/L)a 

PNS 

(%) 

Surface water WY2010       

13-Feb-2010 1.2  0.4±0.2  0.3±0.2 0.3 0.3±0.1 8.3±0.1 4.1±1.6 

25-Apr-2010 0.3 0.5±0.2 1.5±0.4 0.7 1.0±0.2 7.2±0.1 14.0±3.4 

23-May-2010 0.3 0.3±0.2 NA -- 0.3±0.2 5.8±0.1 4.8±2.7 

27-May-2010 0.3 0.3±0.1 NA -- 0.3±0.1 5.6±0.1 5.1±2.5 

27-Jun-2010 NA 0.3±0.2 NA -- 0.3±0.2 4.4±0.1 7.5±3.9 

30-Jul-2010 NA 0.4±0.1 NA -- 0.4±0.1 3.4±0.1 10.9±4.1 

24-Aug-2010 0.2 NDb 0.2±0.1 -- 0.2±0.1 2.8±0.0 8.4±4.0 

Surface water WY2011       

06-Nov-2010 <0.1 0.6±0.1 0.9±0.1 2.1 0.8±0.1 8.3±0.1 9.1±1.1 

12-Dec-2010 <0.1 0.6±0.1 0.6±0.1 0.0 0.6±0.1 8.3±0.1 6.9±0.9 

05-Mar-2011 0.2 0.8±0.3 1.4±0.3 1.4 1.1±0.2 8.3±0.1 12.9±3.0 

22-Apr-2011 0.3 1.2±0.3 0.4±0.2 2.2 0.8±0.3 6.3±0.1 12.3±4.2 

08-Jun-2011 0.3 0.2±0.2 0.8±0.2 2.1 0.5±0.2 4.3±0.1 10.8±5.5 

22-Jul-2011 0.2 0.0±0.1 0.2±0.1 1.4 0.1±0.2 3.1±0.1 3.5±5.3 

07-Aug-2011 <0.1 NDb 0.0±0.2 -- 0.0±0.2 2.7±0.1 0.2±6.6 

Spring #11       

24-Aug-2010 <0.1 0.3±0.1 0.0±0.1 2.1 0.2±0.3 2.8±0.0 6.2±9.9 

06-Mar-2011 0.2 0.1±0.3 NDb -- 0.1±0.3 8.3±0.1 0.8±3.5 

08-Jun-2011 0.3 NDb 0.2±0.2 -- 0.2±0.2 4.3±0.1 5.7±3.9 

a Average decay corrected snow 35SO4 activity for the given sample collection date 
b Sample not incorporated into the reported 35SO4 activity or calculated PNS 

NA= Not Available 

ND= Not Detectable 
 

 



 

50 

 

Figure 11. Sagehen Creek stream discharge and time series measurements of percent 

new snowmelt (PNS) in Sagehen Creek and SCB groundwater measured from Spring 

#11. Error bars represent propagated ±1σ counting errors. Stream discharge data from 

USGS National Water Information System. 

 

 

To determine spatial variability of new snowmelt contribution to streamflow along 

Sagehen Creek, six sites were sampled along a 5 km reach on August 28, 2010 (Figure 8A). 

The average 35SO4 activity for the six sites (0.1±0.1 mBq/L to 0.3±0.1 mBq/L) was not 

significantly different during this baseflow period, with PNS being <15% (Table 10).  The 

low PNS throughout the reach is consistent with estimated groundwater input to streamflow 

using a numerical model based on δ18O and CFC-12 concentrations for samples collected on 

August 28, 2010 at the same six sites (Earman et al., 2015; Gleeson et al., unpublished 

data). The lowest PNS calculated in this study observed at Site SC04, which is located about 

2 km downstream in the transect and is the site with the highest modeled groundwater input 

based on δ18O and CFC-12 concentrations (Gleeson et al., unpublished data). While the 

calculated groundwater inflows varied significantly through the reach, total groundwater 
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input was 76% of the total flow, with the remaining 24% being derived from recent 

precipitation (Earman et al., 2015). 

 

 

Table 10. Sulfate concentrations, 35SO4 activity, and the PNS for surface water 

collected on August 28, 2010 from six sites along a 5 km reach Sagehen Creek. Site 

SC01 is located furthest downstream while site SC06 is furthest upstream. The average 

decay corrected snow endmember activity on August 28, 2010 was 2.8±0.0 mBq/L. 

Uncertainties represent propagated ±1σ counting errors. 
 

Site 

ID 

Distance 

Downstream 

(km) 

SO4 

(mg/L) 

35SO4
 

(mBq/L) 

Duplicate 

35SO4
 

(mBq/L) 

RER 

Reported 
35SO4 

(mBq/L) 

PNS 

(%) 

SC01 4.8 0.2 0.4±0.2 0.0±0.1 1.8 0.2±0.3 7.3±11.5 

SC02 3.8 0.2 0.2±0.1 0.4±0.1 1.4 0.3±0.1 12.4±4.1 

SC03  3.0 0.2 0.1±0.2 0.1±0.1 0.0 0.1±0.1 4.9±3.9 

SC04 2.1 0.4 0.1±0.1 NA -- 0.1±0.1 4.0±4.8 

SC05 1.2 <0.1 0.2±0.1 0.0±0.1 1.4 0.1±0.3 4.8±12.4 

SC06 0 <0.1 0.3±0.2 0.2±0.1 0.4 0.2±0.1 8.3±4.4 

NA= Not Available 

RER= Relative Error Ratio 

 

 

Similar trends of consistently low PNS in Sagehen Creek was observed throughout 

WY2011, despite total precipitation increasing from 0.67 to 1.22 m (82% increase) and peak 

SWE increasing from 0.47 to 0.89 m (53% increase) from WY2010 to WY2011. Prior to the 

onset of snowmelt in WY2011, the average 35SO4 activity for streamflow in March 2011 

was 1.1±0.2 mBq/L resulting in 12.9±3.0% PNS (Table 9, Figure 11). The June 8, 2011 

sampling event during the peak flow period was collected within one week of the peak 

discharge for WY2011 (3.23 m3/s on June 15, 2011), and PNS for this sampling event was 

10.8±5.5%. During streamflow recession in July and August 2011, 35SO4 activities declined 

and PNS values were 3.5±5.3 and 0.2±6.6%, respectively (Table 9). Minimal inter-annual 

variability of PNS in stream discharge suggests that even during a year with significantly 
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above average precipitation, such as the 50% above average precipitation in WY2011, 

Sagehen Creek stream discharge is dominated by deeper groundwater flowpaths that were 

recharged in previous winters. 

In contrast to hydrologic models predicting that groundwater discharge to streams is 

inversely correlated to streamflow due to snowmelt runoff, interflow filling stream channels, 

and elevating stream head (Huntington and Niswonger, 2012), the trend of decreasing PNS 

during high flow suggests that groundwater discharge was not suppressed during the high-

flow period of WY2010 or WY2011, and that overland flow and shallow subsurface flow 

was minimal relative to significant melt water storage and displacement of groundwater 

derived from previous winters. 

Using the times series measurements of 35SO4 activity and calculated PNS during the 

high-flow period, a hydrograph separation provides an estimate of the volumetric 

contribution of new snowmelt to stream discharge and groundwater recharge. The high-flow 

period of April to July (AMJJ) represents 79% of the total annual discharge from Sagehen 

Creek for WY2010 and 84% of the total discharge for WY2011, with the larger snowpack in 

WY2011 resulting in approximately three times the AMJJ discharge (16.5×106 m3) 

compared to WY2010 (5.4×106 m3) (Figure 12, Table 11). During AMJJ, new snowmelt (as 

defined by PNS calculated from 35SO4
 activities) contributes 8.0±0.3% of total stream 

discharge in WY2010 and 9.9±0.5% in WY2011. The difference between total annual 

precipitation and total stream discharge during AMJJ represents groundwater recharge, 

evapotranspiration (ET), and runoff outside of AMJJ season.  

Based on the 27 km2 area of SCB, SNOTEL #539 precipitation data, average daily ET of 

1.4 to 1.8 mm/day (Markstrom et al., 2008; Tague and Peng, 2013), and the calculated new 
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snowmelt discharged in streamflow during AMJJ, the annual precipitation recharged to the 

groundwater system was between 0 and 21% in WY2010 and 41% in WY2011. These 

recharge values should be interpreted as maximum values since new snowmelt was observed 

in stream discharge outside of the AMJJ period. Assuming a specific yield of 0.08 to 0.15 

and ET rate of 1.8 mm/day for SCB (Markstrom et al., 2008), the equivalent change in 

groundwater storage would be between 0 m for WY2010 and 3.4 to 6.3 m for WY2011 

(Table 11). Based on the linear relationship between actual evapotranspiration and 

precipitation in SCB reported in Tague and Peng (2013), ET rates were estimated to be 1.4 

mm/day for WY2010 and 1.8 mm/day for WY2011, resulting in a change in groundwater 

storage of 1.0 to 1.8 m for WY2010 and 3.4 to 6.3 m for WY2011 (Table 11).  

 

  

 

Figure 12. Hydrograph separation of Sagehen Creek discharge derived from new 

snowmelt during the primary discharge period of April, May, June, and July. The 

orange line is the contribution of new snowmelt to the total stream discharge based on 

the calculated PNS. 
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Table 11. Summary of Sagehen Creek discharge derived from new snowmelt for the 

primary snowmelt period of April, May, June, and July (AMJJ) and estimated change in 

groundwater storage. 

Water Year 

Total Annual 

Precipitation AMJJ Total 

Discharge (m3) 

AMJJ New Snowmelt 

(m) (m3)a 
Discharge 

(m3) 

% of Total 

Discharge 

2010 0.7 1.8×107 5.4×106 4.3×105±0.2×105 8.0±0.3 

2011 1.2 3.3×107 16.5×106 16.3×105±0.9×105 9.9±0.5 
 

Water Year 

Markstrom et al. (2008) Tague and Peng (2013) 

Groundwater 

Recharge (m3)b 

Change in 

Storage (m)c 

Groundwater 

Recharge (m3)b 

Change in 

Storage (m)c 

2010 1.2×105 0 3.9×106 1.0 - 1.8 

2011 1.4×107 3.4 - 6.3 1.4×107 3.4 - 6.3 

a Based on SCB drainage area of 27 km2 
b Groundwater recharge is determined by R= Tp-SAMJJ- ET ; where R is groundwater recharge, Tp is total 

annual precipitation, SAMJJ is the new snowmelt discharged from the basin in AMJJ, and ET is the annual 

evapotranspiration. Markstrom et al. (2008) report an average daily ET for SCB of 1.8 mm/day, while 

Tague and Peng (2013) estimate ET to be 1.4 mm/day for WY2010 and 1.8 mm/day for WY2011. 
c Change in storage is the equivalent change in groundwater head based on the calculated annual 

groundwater recharge assuming an specific yield of 0.08 to 0.15 (Markstrom et al., 2008). 
 

 

Groundwater discharge collected from Spring #11 provides further insight into storage 

of new snowmelt in the aquifer. The 35SO4 activity did not vary significantly between the 

three sampling events, which covered both baseflow and high-flow conditions.  Based on 

35SO4 activity of 0.1±0.3 to 0.2±0.3 mBq/L during low-flow and 0.2±0.2 mBq/L during 

high-flow, the PNS in groundwater was between 0.8±3.5 and 6.2±9.9% (Table 9, Figure 11). 

The presence of new snowmelt in SCB groundwater is supported by a recent integrated 

groundwater tracer and modeling study which concluded that groundwater discharge from 

springs is best characterized by a bimodal mixture of <1 year old water and water recharged 

after 1950 (Manning et al., 2012). 
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The minimal PNS in both surface waters and groundwater throughout this study period 

indicate that there is substantial recharge of new snowmelt is occurring in SCB on a seasonal 

basis, and SCB has a relatively large groundwater storage capacity. 

4. Martis Valley Groundwater Basin: New Snowmelt Contribution to Surface Water and 

Groundwater 

 

In MVGB, tritium concentrations measured during WY2012 from the same wells 

sampled in this study suggests a pervasive component of young recharge (<50 years old) in 

most groundwater samples collected in multiple seasons (Segal et al., 2014). 35SO4 activity 

in groundwater collected from 12 wells screened at a wide range of flow depths (Figure 8B, 

Table 12), one cistern, and three springs provides a more complete understanding of new 

snowmelt contribution to groundwater recharge in MVBG basin. 

 

 

Table 12. Summary of well elevation and screen depth for MVGB wells. 
 

Well ID Well Type 
Elevation 

(m asl) 

Top 

(m bgs) 

Bottom 

(m bgs) 

A Production 1753 82 274 

B Irrigation 1796 76 274 

C Production 1820 140 415 

D Production 1783 85 338 

E Production 1823 38 183 

F Production 1791 27 122 

G Production 1770 87 283 

H Production 1796 30 313 

I Irrigation 1797 15 61 

J Cistern 2073 - - 

K Production 1783 66 244 

N Production 1832 46 274 

O Production 1830 43 274 

m bgs= meters below ground surface 
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For the December 2011/January 2012 and June 2012 sampling events, all groundwater 

samples had measureable 35SO4 between 1.0±0.2 mBq/L (well E, June 2012) and 3.2±0.3 

mBq/L (well N, June 2012) resulting in PNS estimates of 8.4±2.2% and 28.1±5.2%, 

respectively (Table 13, Figure 13). These results indicate that there is a component of new 

snowmelt contributing to the groundwater system throughout the winter and spring seasons, 

which was also observed for groundwater sampled in SCB. The generally low PNS in both 

shallow and deep wells in June 2012 suggests that immediately following the primary 

snowmelt period of April to May the majority of the groundwater (>60%) is derived from 

snowmelt recharged during previous winters. 
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Table 13. Sulfate concentrations, 35SO4 activity, and calculated PNS for MVGB 

groundwater and surface water. Errors are propagated ±1σ counting errors. 

Site ID 
Date 

Collected 

SO4 

(mg/L) 

35SO4 

(mBq/L) 

PNS  

(%) 

Wells     

A 19-Jun-2012 6.6 1.2±0.2 10.2±2.2 

B 19-Jun-2012 15 1.2±0.2 10.7±2.6 

C 19-Jan-2012 0.5 1.3±0.2 12.1±2.7d 

C 19-Jun-2012 2.3 1.8±0.2 15.2±3.1 

C 05-Sep-2012 2.8a ND <9b 

D 19-Jan-2012 0.4 1.3±0.2 11.4±2.5d 

D 19-Jun-2012 1.5 1.7±0.3 14.9±3.2 

D 05-Sep-2012 1.4a ND <11b 

E 19-Jan-2012 14 1.8±0.2 16.6±3.4d 

E 19-Jun-2012 14 1.0±0.2 8.4±2.2 

F 19-Jun-2012 0.9 2.0±0.3 17.3±3.5 

F 05-Sep-2012 1a ND <11b 

G 19-Jan-2012 4 1.2±0.2 11.0±2.5d 

G 19-Jun-2012 3.9 1.7±0.2 14.2±2.7 

G 05-Sep-2012 3.2a ND <8b 

H 20-Dec-2011 3 1.5±0.2 13.8±3.1d 

H 19-Jun-2012 3.4 1.9±0.2 16.3±3.0 

H 05-Sep-2012 5a ND <11b 

I 20-Jun-2012 2.7 1.9±0.2 16.3±3.2 

I 05-Sep-2012 2.4a 0.7±0.2 10.8±3.7 

J 20-Dec-2011 0.4 1.7±0.3 15.1±3.4d 

J 20-Jun-2012 <1 2.2±0.3 19.2±3.6 

J 06-Sep-2012 0.6a ND <8b 

K 20-Dec-2011 19 1.8±0.3 15.9±3.5d 

K 20-Jun-2012 15 1.5±0.3 13.2±3.4 

N 19-Dec-2011 0.6 2.5±0.3 22.5±4.4d 

N 20-Jun-2012 0.9 3.2±0.3 28.1±5.2 

N 06-Sep-2012 1.0a 0.3±0.3 5.0±4.1 

O 19-Dec-2011 0.6 1.9±0.3 17.2±3.7d 

O 20-Jun-2012 1.1 2.2±0.2 19.4±3.5 

O 06-Sep-2012 1.2a ND <8b 

Springs     

X 29-Oct-2012 0.5 0.4±0.2 2.8±1.3c 

Y 29-Oct-2012 1.3 0.6±0.3 3.7±2.0c 

Z 29-Oct-2012 0.5 0.4±0.2 2.5±1.2c 

Surface water    

MC01 25-Jan-2012 6.6 2.4±0.2 21.5±4.1 

MC01 24-Feb-2012 5.3 ND <14b 

MC01 04-Apr-2012 3.5 1.6±0.4 9.8±3.3 

MC01 02-May-2012 1.3 0.5±0.3 2.8±1.9 

MC01 21-Jun-2012 1.0 1.8±0.2 15.3±3.1 

WMC02 19-Jan-2012 1.2 1.6±0.2 14.3±2.9d 

MMC03 24-Feb-2012 6.8 0.6±0.6 5.5±6.1 

MMC03 02-May-2012 5.3 0.5±0.3 3.2±2.0 

MMC03 09-Jul-2012 5.1 2.7±0.4 27.6±5.5 
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Site ID 
Date 

Collected 

SO4 

(mg/L) 

35SO4 

(mBq/L) 

PNS  

(%) 

MMC04 09-Jul-2012 <1.0 0.9±0.2 8.7±2.7 

MC05 16-Aug-2012 0.8a 1.2±0.2 16.7±3.4 

MC06 21-Jun-2012 0.8 2.0±0.2 17.6±3.3 

Surface water    

MC07 09-Jul-2012 <1.0 0.9±0.2 8.9±2.5 

MC08 16-Aug-2012 0.7a 0.8±0.2 10.3±3.2 

ML 16-Aug-2012 1.2a 1.2±0.3 16.5±3.8 

DC 21-Jun-2012 <1.0 2.5±0.2 22.0±3.9 

DC 09-Jul-2012 1.2 0.9±0.3 8.6±2.9 

TR 20-Dec-2011 1.4 2.2±0.3 19.9±4.3d 

TR 21-Jun-2012 1.2 2.4±0.2 20.9±3.7 

TR 09-Jul-2012 1.8 0.9±0.2 9.2±2.8 

TR 16-Aug-2012 1.5a 1.1±0.2 15.4±2.9 
 

a 
Sulfate concentration measured on LLNL ion chromatograph. 

b Reported PNS value is based on the minimal detectable activity (MDA) for samples that had 35SO4 activities 

at or below background. MDA values varied between 0.5 to 0.6 mBq/L due to variations in counting 

efficiencies. 
c Calculated PNS is based on the volume-weighted mean activity for MVGB snowpack decay corrected to 

the onset of snowmelt for WY2012, April 8, 2012 (15.7±3.2 mBq/L). 
d Calculated PNS is based on the average snowpack activity for January 25, 2012.  

ND= Not Detectable 
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Figure 13. (A) 35SO4 activities for 12 MVGB wells and one cistern (well J) sampled in 

December 2011/January 2012, June 2012, and September 2012. Open bars for September 

2012 represent minimal detectable activities for samples that are at or below detection 

limits. (B) PNS for groundwater sampled in December 2011/January 2012, June 2012, 

and September 2012. Error bars are propagated 1σ counting errors. 

 

 

In September 2012, only wells I and N had detectable 35SO4 activities (Table 13), with 

wells C, D, F, G, H, J, and O having 35SO4 activities at or below background levels. The 

largest activity of 0.7±0.2 mBq/L was observed for well I, which is the shallowest well that 

is likely receiving a component of water from nearby Donner Creek. Segal et al. (2014) 

reported an anomalously high noble gas recharge temperature calculated for well I in 

(B) 

(A) 
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September 2012, which the authors concluded was the result of mixing of local groundwater 

with water from Donner Creek during this period. Groundwater sampled from springs in 

October 2012 also had measurable 35SO4 activities, indicating that groundwater derived from 

new snowmelt is a component of the shallow aquifer system in the fall. 

For the nine wells sampled in both June and September 2012, groundwater 35SO4 activity 

and subsequent PNS was significantly lower in September compared to June (Figure 13B). 

The apparent depletion of the new snowmelt fraction from spring to summer could be due to 

pumping from an age-stratified aquifer, natural discharge of new snowmelt via shallow 

flowpaths to streams and rivers, or mixing within the aquifer with groundwater derived from 

previous winters. Younger 3H/3He groundwater ages in June 2012 relative to September 

2012 provide additional evidence for the depletion of a young groundwater component from 

spring to summer (Segal et al., 2014). Seasonal variability in the young (<50 year old) 

groundwater source (Segal et al., 2014) and a general shift to older 3H/3He groundwater ages 

from June to September may be due to a decrease in the component of new snowmelt 

component that was identified in this study. The unique data set of 35SO4 activity from 

various depths in the groundwater aquifer and MVGB surface waters provides insight into 

recharge and transport of new snowmelt in the basin. 

Time series measurements of 35SO4 activity along Martis Creek, Middle Martis Creek, 

and West Martis Creek reveal a similar trend as that observed in SCB with an inverse 

correlation between PNS and stream discharge. Daily stream discharge is not available for 

these streams; however, a USGS stream gauge at nearby Donner Creek indicates that for 

WY2012, peak flows in the basin occurred from April to May 2012, and baseflow 

conditions were established by early August 2012. For the most frequently sampled sites 
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MC01 and MMC03, the 35SO4 activity in the stream was <6% during the high-flow period 

of May 2012 (Table 13; Figure 14A). PNS increased significantly as stream discharge 

declined in late June and August; however, PNS was consistently <30% for the multiple 

sampling events. Surface water samples collected from June to August 2012 from ML, DC, 

and TR also indicate minimal contribution of new snowmelt in surface water (PNS <26%; 

Figure 14B). 
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Figure 14. (A) PNS versus distance upstream from Martis Lake for surface water 

collected in WY2012 from along Middle Martis Creek (MMC03 and MMC04) and 

Martis Creek (MC01 and MC05-MC08). (B) PNS for surface water sampled from 

Martis Lake (ML), Donner Creek (DC), and Truckee River (TR). Error bars represent 

propagated ±1σ counting errors. 

 

 

To investigate spatial variability of new snowmelt being discharged to the stream, PNS 

values are plotted versus the distance upstream from Martis Lake in Figure 14A. In July 

2012, the PNS for site MMC03 was 27.6±5.5%, which was significantly higher than the 

PNS at site MMC04 (8.7±2.7%) and MC07 (8.9±2.5%) (Figure 14A). In August 2012, the 

(A) 

(B) 
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PNS determined for the furthest upstream site, MC08, was 10.3±3.2%, which is similar to 

the PNS measured in July at sites MMC04 and MC07. A study using radon-222 (222Rn) 

activity to identify groundwater influx into streams in MVGB found minimal groundwater 

contribution to streamflow for downstream sites MC01, WMC02, MMC03, and MMC04 in 

July 2012 (DeRubeis, 2013), with a secondary survey in August 2012 showing higher 

groundwater contribution at the MC08 upstream sampling site. Significantly higher PNS 

observed at site MMC03 also indicates that groundwater influx at this site is lower 

compared to site MC08. Although spatial variability in PNS is generally minimal along the 4 

km reach, the significant increase over relatively short (<0.5 km) distances is useful in 

constraining groundwater discharge derived from old and new meltwater over a short study 

reach. 

F. Conclusions 

35SO4 is a useful intrinsic tracer that can answer questions regarding the recharge, 

storage, and transport of precipitation on <1 year timescales. In snow-dominated basins, the 

amount of snowmelt rapidly discharged from the basin during the primary snowmelt period 

provides insight into groundwater recharge and storage from seasonal snowmelt, which is 

useful for evaluating groundwater vulnerability to climate change and may lead to better 

surface/ground water numerical models. 

This study successfully utilized 35SO4 to quantify the percent new snowmelt in 

groundwater and surface waters. A key finding was that despite large inter-annual variations 

in snowpack volume in SCB, new snowmelt had minimal direct contribution (PNS <15%) to 

Sagehen Creek stream discharge. In both basins, the low PNS in surface flows (PNS <30%) 

during the high-discharge period indicates that the majority of the seasonal snowmelt is 
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either recharging the groundwater aquifer or being stored in the soil and lost via 

evapotranspiration. Minimal PNS in groundwater sampled from springs or wells in both 

basins suggest that the groundwater reservoirs are relatively large in order to accommodate 

significant storage of annual snowmelt. While significant annual recharge in MVGB is 

consistent with a large storage capacity that would be expected for a basin of this size, the 

significant annual recharge from snowmelt in the smaller SCB was not expected. The 

implications of these findings are that the hydrogeologic system in SCB and MVGB could 

respond to climate change in a two-phase manner; 1) rapid responses in stream and spring 

discharge due to annual variability in precipitation, and 2) more gradual declines in 

discharge over decades due to reduced groundwater recharge resulting from declining 

snowpack. A test of this idea could be made now as a result of the prolonged drought these 

basins are currently experiencing. 

As precipitation patterns continue to shift in the Sierra Nevada, the underutilized 35SO4 

tracer method will be a valuable tool for identifying how groundwater recharge processes 

may change under a changing climate by identifying the storage and transport of new 

snowmelt on short (<1 year) timescales. In addition to providing information on the relative 

size and storage capacity of the groundwater reservoir of a given basin, 35SO4 may be a 

valuable scoping tool to identify which basins may be more vulnerable to the changing 

climate. Basins with shallow groundwater reservoirs are expected to have high contributions 

of new snowmelt in surface flows due to their limited storage capacities, and therefore 

would likely be the most affected by climate change. 
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IV. Quantifying Groundwater Travel Time near Managed Aquifer 

Recharge Operations using 35S as an Intrinsic Tracer 

A. Abstract 

Identifying groundwater retention times near managed aquifer recharge (MAR) facilities 

is a high priority for managing water quality, especially for operations that incorporate 

recycled wastewater. To protect public health, California guidelines for Groundwater 

Replenishment Reuse Projects require a minimum 2 to 6 month subsurface retention time for 

recycled water depending on the level of disinfection, which highlights the importance of 

quantifying groundwater travel times on short time scales. This study developed and 

evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 

(35S). The 87.5 day half-life of 35S is ideal for investigating groundwater travel times on the 

<1 year timescale of interest to MAR managers. Natural concentrations of 35S in water as 

dissolved sulfate (35SO4) were measured in source waters and groundwater at the Rio Hondo 

Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge 

Facilities in Orange County, CA. 35SO4 travel times are comparable to travel times 

determined by well-established deliberate tracer studies. The study also revealed that 35SO4 

in MAR source water can vary with season and therefore careful characterization of 35SO4 is 

needed to accurately quantify groundwater travel time. 

B. Introduction 

Growing demands on groundwater resources makes the practice of artificially recharging 

underground aquifers increasingly important for supplementing water supply. In populated, 

semi-arid regions such as Southern California, replenishing groundwater basins using 
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reclaimed water provides a safe and drought resistant source for managed aquifer recharge 

(MAR). Water quality concerns are raised when recycled wastewater is a portion of MAR 

source waters. Understanding flow characteristics of recharged water near MAR operations 

is critical for protecting public and environmental health.  

Water quality and numerical modeling studies near MAR operations have demonstrated 

that subsurface retention time is an important hydrologic parameter for natural removal of 

potential contaminants (e.g., Fox and Makam, 2009; Laws et al., 2011). Based on the time 

dependent degradation and inactivation of many contaminants in the subsurface by natural 

attenuation processes (e.g. Yates and Yates, 1987; Fox et al., 2001; Drewes et al., 2003; 

Hiscock and Grischeck, 2002; Laws et al., 2011), collectively known as soil aquifer 

treatment (SAT), current California regulations for Groundwater Replenishment Reuse 

Projects (GRRP) require minimum subsurface retention times for recharge water prior to 

extraction for potable use (California Division of Drinking Water, 2015). For MAR facilities 

that apply recycled municipal wastewater, the California Division of Drinking Water 

(DDW) recommends tracer experiments to quantify minimum retention times of no less than 

2 months if the minimum pathogen removal is achieved in an above ground advanced 

treatment process. If tertiary treated recycled water is surface spread, the minimum retention 

time is 6 months. 

Many common deliberate (intentionally introduced) and intrinsic (existing in the 

environment) hydrologic tracers utilized to investigate subsurface flow characteristics are 

either unable to resolve subsurface travel times on <1 year timescales or require significant 

field and laboratory effort. For example, shallow groundwater dating techniques using well 

established intrinsic tracers such as tritium/helium-3 (T/3He), krypton-85 (85K) and 
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chlorofluorocarbon (CFC) dating methods typically have uncertainties of ±2 years, which is 

too large to effectively determine travel time on the <1 year timescale of interest to MAR 

managers and regulators. Deliberate (or intentionally introduced) tracer methods such as the 

non-reactive, synthetic sulfur hexafluoride (SF6) gas and noble gas isotopes of xenon (124Xe 

and 136Xe) have been used near MAR facilities (Moran and Halliwell, 2003; Clark et al., 

2004; McDermott et al., 2008). A major disadvantage to the application of deliberate tracers 

is the significant field and laboratory effort necessary to develop sufficient data for robust 

breakthrough curves and to ensure that the tracer patch does not pass nearby monitoring 

wells without detection. Another significant limitation of deliberate hydrologic tracer 

experiments is that results are specific to hydrogeologic conditions and pumping regime at 

the time of the experiment. Furthermore, SF6, which has been the principal deliberate tracer 

for determining groundwater retention times near MAR facilities in California (e.g., Gamlin 

et al., 2001; Clark et al., 2004, 2005; Avisar and Clark, 2005; McDormett et al., 2008) is 

now regulated because it is a strong greenhouse gas (IPPC, 1996). Current alternatives to 

SF6, such as noble gas tracer studies are impractical due to high analytical costs and long 

analysis times despite progress being made on a new noble gas membrane inlet mass 

spectrometry (NG-MIMS) system (Visser et al., 2013). Due to the effort and timescale 

limitations of current tracer techniques, the development of new tracer methods that require 

minimal field and laboratory work, and that can resolve subsurface retention times on 

timescales of <1 year, will improve MAR management and safe use of recycled water for 

augmenting local water supplies. 

This study developed and evaluated a new groundwater tracer technique to quantify 

subsurface travel times near MAR facilities using the naturally-occurring radionuclide 
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sulfur-35 (35S), which is found in water as dissolved sulfate (35SO4). The new method was 

evaluated by comparing 35SO4 travel times to those determined with deliberate tracer 

experiments at two southern California field sites: the Rio Hondo Spreading Grounds 

(RHSG) in Los Angeles County (McDermott et al., 2008; Clark, 2011), and the Orange 

County Water District (OCWD) Groundwater Recharge Facility in Orange County (e.g., 

Gamlin et al., 2001; Clark et al., 2004; 2014). 

C. 35S as a tracer for groundwater travel time 

The 87.5-day half-life of 35S is ideal for investigating groundwater travel time up to 1.2 

years (5 half-lives), which is the short timescale of interest to MAR managers and 

regulators. 35SO4 has been employed in hydrologic studies as an intrinsic tracer for SO4 and 

groundwater for over two decades in high-elevation (mountain) basins (Cooper et al., 1991; 

Sueker et al., 1999; Michel et al., 2000; Shanley et al., 2005; Urióstegui et al., submitted); 

however, dilution of atmospherically-derived 35SO4 with anthropogenic SO4 (i.e. that is SO4 

containing no detectable 35S) in low-elevation regions of large river basins is expected to 

lower the specific activity of 35SO4 in SO4. The ratio of 35S to SO4 may also decrease due to 

radioactive decay during transport downstream, or from input of 35S-dead SO4 from different 

reservoirs (soil zone, minerals, and biota). Since water in MAR facilities using recycled 

water is likely to have high SO4 concentrations and low 35S activity, a new analytical 

method (Urióstegui et al., 2015; Chapter II) was used in order to achieve accurate 

measurements of 35SO4 in these waters. 
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D. Travel time calculation 

Under a simplified piston flow model at an MAR surface spreading facility, a deliberate 

or intrinsic tracer is incorporated into the source water above ground prior to recharge. 

Based on ideal tracers being non-reactive and not sorbing readily to the aquifer material, 

they are recharged and transported through the aquifer at the mean groundwater velocity. 

Tracer input functions in this study were empirically defined using the 35SO4 activity of 

MAR surface water in spreading ponds. The subsurface travel time of water was calculated 

using the following decay equation: 

 
(5) 

 

where t is the subsurface travel time in years, λ is the decay constant for 35S (2.894 yr-1), and 

No/N is the activity ratio of the 35SO4 activity in the source water (No) and in the well (N) in 

mBq/L. Equation 5 does not account for subsurface dilution of young water (<1.2 year 

subsurface travel time) with older water (>1.2 year subsurface travel time), therefore the 

calculated subsurface travel time represents a maximum travel time because dilution of 

young recharge water with older groundwater would mimic radioactive decay and lower the 

35SO4 activity, resulting in an artificially long calculated subsurface travel time. The 

assumption made in Equation 5 of negligible dilution of young with old water is more 

appropriate for narrow screened shallow wells located near the infiltration basins then for 

longer screened productions wells located further down gradient, which likely mix 

groundwater of different ages (Manning et al., 2005; McDermott et al., 2008). Equation 5 

also assumes conservative transport of 35SO4 with no sorption or sulfate reduction. When 

considering 35SO4 activity alone (i.e. not normalized to sulfate concentration), the effect of 
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sorption or sulfate reduction would be the same as mixing with older water in that the 

calculated subsurface travel time would be longer than the true subsurface travel time. 35SO4 

should behave as a conservative anionic complex and not experience significant sorption or 

reduction in oxic, near-neutral groundwaters. 

E. Study sites 

The RHSG and OCWD MAR sites are located in the same groundwater basin in 

southern California; however, due to a political divide along the Los Angeles County-

Orange County line, the RHSG are situated in the Central Basin and the OCWD MAR 

facilities are in the Orange County Coastal Plain (Figure 15). In the northern regions of the 

basin, the RHSG are located in the Montebello Forebay and the OCWD MAR facilities are 

located within the Santa Ana Forebay. The Montebello Forebay is operated by the Los 

Angeles County Department of Public Works (LACDPW) and managed by the Water 

Replenishment District of Southern California (WRD). The facility is composed of the 

RHSG and San Gabriel Spreading Grounds (SGSG), with the RHSG consisting of 20 

shallow (<4 m deep) infiltration basins that cover 3.1 km2 (Figure 15). Additional basins are 

created in the San Gabriel River by inflating rubber dams; however, river recharge does not 

occur in the concrete-lined Rio Hondo River.  

Artificial recharge at the Montebello Forebay began in 1938. In 1962, the Los Angeles 

County Sanitation Districts (LACSD) began providing tertiary-treated recycled wastewater 

for artificial recharge via gravity flow through river channels or pipes to the spreading 

basins. The 30-year average annual recharge at Montebello Forebay Spreading Grounds is 

1.5 × 108 m3 or 1.2 × 105 AF, which includes local water, imported water, and recycled 

water (WRD, 2015). As a drought relief measure, the regulatory limit of recycled water to 
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be recharged at Montebello Forebay Spreading Grounds was increased from 35% to 45% 

over a 10-year running average (WRD, 2015). 

In the Santa Ana Forebay, natural recharge occurs primarily by direct percolation of 

Santa Ana River (SAR) water through highly permeable sands and gravels along the river. 

Since 1936, the OCWD has been artificially recharging various source waters along the 

SAR Channel in Anaheim, CA, including imported water from the Colorado River 

Aqueduct and State Water Project, SAR base flow, and SAR storm flow. In addition to the 

SAR channel, OCWD operates two dozen surface spreading basins at the OCWD MAR 

facilities that cover 6 km2 of wetted area and range in depth from 2 m to 50 m (Figure 15). In 

2008, OCWD began recharging recycled wastewater supplied by the OCWD Groundwater 

Replenishment System (GWRS) via a 21-km pipeline to Miller and Kraemer Basins. GWRS 

water is purified using a three-step advanced treatment process consisting of microfiltration, 

reverse osmosis and ultraviolet light with hydrogen peroxide disinfection. Annual recharge 

at the OCWD MAR facilities is 3.5 × 108 m3 (2.8 × 105 AF) (Hutchinson, 2013), with 

GWRS supplying 15% of the total source water recharged by OCWD.  
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Figure 15. Location of RHSG and OCWD MAR Facilities in southern California and 

maps showing spreading basins and wells sampled in this study 

 

F. Methods 

1. Field Sampling 

Surface water and groundwater from RHSG and OCWD MAR facilities were collected 

from 2010 to 2012 as part of routine monitoring at these sites. For each 35SO4 sample, 20 L 

of water were field or laboratory filtered into polyethylene containers using a 0.45 micron 

high-capacity filter. At RHSG, six monitoring wells (100830, 100834, and 100904 to 

100907) and two production wells (200061 and 200065) were sampled from January 2010 to 

February 2012 (Figure 15). Four of the six monitoring wells in Figure 15 occur in pairs; 

wells 10094 and 100906 are deep relative to 100905 and 100907 (Table 14). Surface water 
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from the RHSG was collected from an infiltration basin on the northern end of the spreading 

grounds on two sampling events: January 31, 2010 and June 2, 2010.  

At the OCWD MAR study area, six monitoring wells, one production well, five 

infiltration basins, and SAR surface flows were sampled from December 2010 through 

December 2012 (Figure 15). Multiple depths were sampled at well AMD-12, with well 

AMD-12/1 screened at a shallower depth relative to AMD 12/2 (Table 14). On April 6, 

2012, GWRS water was collected from two points along the transmission pipeline: 

immediately post-treatment at the Fountain Valley treatment facility and the discharge into 

Miller Basin. A rainwater sample collected on February 25, 2011 in Orange, CA, 

approximately 6 km south of the OCWD MAR facilities, provides a measure of the 35SO4 

activity of locally-derived precipitation. 

 

 

Table 14. Screen depths for monitoring and production wells sampled in this study 

Well ID Well Type 

Distance 

from Pond 

(m) 

Depth to Top 

of Screen 

(m bgs) 

Depth to Bottom 

of Screen 

(m bgs) 

RHSG 
    

100830 Monitoring 43 16 28 

100834 Monitoring 31 18 35 

100904 Monitoring 3 24 27 

100905 Monitoring 3 8 18 

100906 Monitoring 5 23 26 

100907 Monitoring 5 7 15 

200061 Production 18 67 122 

200065 Production 77 73 107 

OCWD  
    

AM-7/1 Monitoring 130 64 69 

AM-8/1 Monitoring 1250 82 87 

AM-48/1 Monitoring 1250 82 91 

AMD-12/1 Monitoring 525 101 107 

AMD-12/2 Monitoring 525 149 158 

KBS-3/1 Monitoring <100 24 27 

PW1 Production 1670 123 150 
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2. Laboratory Analysis 

Recovery of 35SO4
 was achieved using the batch method technique described in 

Urióstegui et al. (2015) and Chapter II. Between 3 and 20 L were processed for each sample 

to obtain a desired 500 to 1500 mg of SO4. For low-SO4 samples containing ≤5 mg/L, a 

carrier (100 mg of 35S-dead SO4
 as dissolved Na2SO4) was added to ensure effective 

recovery of sulfate in the sample. Results are yield-corrected based on the gravimetric 

recovery of BaSO4 and decay-corrected to the sample collection date. One sigma counting 

errors were typically <2.0 mBq/L. The uncertainty reported for the calculated 35SO4 travel 

times are the propagated one sigma counting errors based on the decay of 35S. 

Sufate concentrations for groundwater and surface waters at both study sites were 

determined by ion chromatography following EPA 300.0 method (Plaff, 1993). RHSG 

samples were analyzed on a Dionex model DX500 instrument at BC Laboratories, Inc. in 

Bakersfield, California. The OCWD MAR samples were analyzed on a Dionex ICS 3000 

instrument at the OCWD Water Quality Laboratory in Fountain Valley, California. 

G. Results and Discussion 

1. Rio Hondo Spreading Grounds 

RHSG surface water had 35SO4 activities of 26.9±1.8 mBq/L on January 31, 2010 and 

7.5±1.4 mBq/L on June 02, 2010. The higher activity in January is likely due to an increase 

in the contribution of recent storm water runoff to the spreading basin following a series of 

precipitation events during winter 2009/2010. Since 35S is atmospherically produced, recent 

storm water runoff is expected to have higher concentrations of 35S relative to other source 

components (e.g. recycled or imported water). Furthermore, because the majority of the 



 

75 

recharge at the RHSG typically occurs from late fall to early spring (Figure 16), the January 

2010 35SO4 activity (26.9±1.8 mBq/L) was assumed to be the input end-member. This end-

member value was used to calculate the subsurface travel time using Equation 5. 

 

 

 

Figure 16. Average monthly water recharged at the RHSG from water year 2008-2009 to 

2012-2013. The majority (79%) of the recharge occurs from late fall to early spring 

(November to April) (LACDPW, 2013). 

 

 

Time series measurements of 35SO4 activities in groundwater ranged from 0.7±0.5 

mBq/L to 21.1±1.7 mBq/L with the exception of the sample collected from 100905 on 

February 23, 2012, which had non detectable 35SO4 activity that resulted in a calculated 

travel time of >41 weeks (Table 15). For the samples having measurable 35SO4 activity, 

calculated subsurface travel times were between 4±2 and 66+24/-10 weeks (Table 15, Figure 

17). The calculated travel times represent maximum travel times because no correction was 

made for mixing of young (<1.2 year old) recharge water with old (>1.2 year old) 
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groundwater within the wells. Actual travel times could be shorter if mixing occurs between 

these two components because dilution of young with old groundwater would appear as 

radioactive decay, resulting in an overestimation of groundwater travel time. Negligible 

mixing was assumed for the monitoring wells, which were all located at shallow depths near 

the infiltration basins; however, dilution at production wells should be considered because 

longer screened wells located further down gradient of the infiltration basins are likely to be 

a mixture of groundwater of different ages (McDermott et al., 2008). For example, assuming 

no dilution at production well 200061, 35SO4 activities resulted in travel times of 36+11/-7 

weeks on March 29, 2011 and 47+16/-8 weeks on February 23, 2012. Under a mixing 

scenario containing a 1:5 dilution of young with old groundwater, travel times to well 

200061 are 7+11/-7 and 18+17/-9 weeks for March 29, 2011 and February 23, 2012, 

respectively. However, both interpretations indicate that a component of recently recharged 

water (<1.2 yr) is produced at this well. 

Assuming an end member 35SO4 activity of 26.9±1.8 mBq/L for water recharged at the 

RHSG, seasonal differences in 35SO4 travel times were observed for the monitoring wells, 

particularly for the two monitoring wells with the most robust data set: 100830 and 100834. 

For example, the three shortest 35SO4 travel times for well 100834 occurred during the main 

recharge period of late fall to early spring for each water year: 20+4/-3 weeks on January 31, 

2010; 10±2 weeks on March 28, 2011; and 4±2 weeks on February 23, 2012 (Figure 17). 

The steeper gradient due to enhanced recharge during periods of high recharge are likely 

driving shorter travel times to this well during the late fall to early spring period. For water 

year 2010 and 2011, well 100834 had longer travel times in the late spring to early summer 

(e.g., 43+10/-6 weeks on May 23, 2010 and 25±3 weeks on July 13, 2011). The groundwater 
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at well 100834 is approximately several months older in the late spring to early summer than 

groundwater sampled in the winter to early spring, which is expected under a simplified 

piston flow model. 

Fewer measurements were made at the other RHSG wells; however, a similar trend of 

shorter travel times during the main recharge period followed by longer travel times several 

months later was observed for wells where multiple measurements were made within the 

same water year (100830, 100906, 100907: Figure 17). For example, the 35SO4 travel time to 

well 100830 was 14+3/-2 and 17±3 weeks on March 24, 2011, which increased to 25+3/-2 

weeks on July 13, 2011. Well 100907 had travels times of approximately 22+4/-3 weeks and 

34+3/-2 weeks on the March 24, 2011 and May 23, 2011, respectively. 
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Table 15. Sulfate concentration, 35SO4 activity, and subsurface travel time for 

groundwater collected at RHSG. 

Well ID and 

Collection Date 

SO4 

(mg/L) 

35SO4±1σ 

(mBq/L)a 

35SO4 

Travel 

Time±1σ 

(weeks)b  

Well ID and 

Collection Date 

SO4 

(mg/L) 

35SO4±1σ 

(mBq/L)a 

35SO4 

Travel 

Time±1σ 

(weeks)b 

100830     100905    

24-Mar-2011 30 12.6±1.4 14+3/-2  13-July-2011 36 7.1±1.1 24±3 

24-Mar-2011c 30 10.7±1.6 17±3  23-Feb-2012 67 ND >41 

13-Jul-2011 21 6.9±0.8 25+3/-2  100906    

15-Sep-2011 30 1.7±0.6 50+8/-5  23-May-2011 NA 4.0±0.9d 34+5/-4 

04-Jan-2012 30 2.8±0.6 40±4  13-Jul-2011 25 3.8±0.8 35±4 

23-Feb-2012 34 6.0±0.8 27±3  07-Jan-2012 21 1.6±0.5 51+7/-5 

100834     23-Feb-2012 44 2.4±1.0 44+9/-6 

31-Jan-2010 21 8.9±1.6d 20+4/-3  100907    

22-Apr-2010 106 3.3±1.1d 38+8/-5  24-Mar-2011 32 7.9±1.5 22+4/-3 

23-May-2010 146 2.5±1.0d 43+10/-6  24-Mar-2011c 32 8.3±1.8 21+5/-4 

28-Mar-2011 28 15.0±1.0 10±2  23-May-2011 22 4.1±0.5 34+3/-2 

13-Jul-2011 32 6.5±1.0 25±3  07-Jan-2012 23 0.7±0.5 66+24/-10 

04-Jan-2012 25 5.4±0.6 29±2  200061    

23-Feb-2012 70 21.1±1.7 4±2  29-Mar-2011 77 3.7±1.7 36+11/-7 

100904     23-Feb-2012 56 2.0±1.2 47+16/-8 

28-Mar-2011 29 12.0±1.3 15±2  200065    

28-Mar-2011 29 13.0±1.7 13+3/-2  24-Mar-2011 83 ND >32 

24-May-2011 22 10.3±0.6 17±2      

23-Feb-2012 66 2.5±1.5 42+16/-8      

a Reported error is 1σ counting error. 
b Travel times calculated using 26.9±1.8 mBq/L end-member value. Reported error is the propagated 1σ 

counting error based on the decay of 35S. 
c Field duplicate 
dAssumed 100% chemical yield 
e Travel time for sample with non detectable 35SO4 activity is calculated using the 2σ counting error.  

NA= Not available 
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Figure 17. Time series of 35SO4 travel times for monitoring wells and monthly recharge 

at RHSG. The February 23, 2012 sample collected from well 100905 had 35SO4 activity 

below detection limit, therefore the open symbol represents a minimum travel time. 
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A deliberate tracer study using SF6 gas that was initiated at the RHSG in January 2010 

(Clark et al., 2011) provides a valuable opportunity to evaluate the 35SO4 method. From a 

DDW perspective, deliberate tracers like SF6 are more conservative compared to intrinsic 

tracer methods like 35SO4.  Given the less conservative nature of intrinsic tracers, DDW 

requires a multiplier of 1.5 to estimate travel time; a travel time of 6 months using deliberate 

tracer methods would be 9 months using intrinsic tracers. 

It is important to consider that deliberate and intrinsic tracer experiments may measure 

different hydrologic conditions and give different travel times. With deliberate tracer 

experiments, a conservative tracer is applied during a discrete wetting event, thus the mean 

groundwater travel times (defined as passage of 50% of the tracer patch) are dependent on 

the hydrologic conditions during the pulse release. In contrast, the naturally occurring 35SO4 

tracer is applied intermittently during recharge events when the source water contains a 

fraction of recent (<1.2 year old) runoff. Although these different source functions likely 

result in different groundwater travel times, the SF6 experiment provides a useful 

comparison to identify trends in the subsurface travel times of recharged water to nearby 

wells. 

The shortest 35SO4 subsurface travel time for a given well was selected for comparison 

with the mean SF6 travel for that well because it represents the most conservative estimate 

that would be of interest to MAR managers. 35SO4 travel times were within six weeks (1.5 

months) of SF6 travel times at three of the six monitoring wells: 100830, 100904, and 

100906 (Table 16). Production wells 200061 and 200065 travel times were also in 

agreement for each tracer experiment indicating travel times of ≥36 weeks, suggesting that 
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dilution of recent recharge with older groundwater is not a significant factor in the 

calculation of 35SO4 travel time. 

Compared to the SF6 deliberate tracer method, 35SO4 as an intrinsic tracer provided 

reasonable estimates of subsurface travel times for the majority of the wells, but 

underestimated travel time to well 100834 while overestimating travel time to wells 100905 

and 100907. Based on the seasonal trends observed for wells that were sampled frequently 

throughout the water year, monthly sampling of 35SO4 in groundwater is recommended for 

future studies. 

 

 

Table 16. Comparison of 35SO4 and SF6 subsurface travel times at RHSG. 

Well ID 

Collection Month-Year  Travel time (weeks)  

35SO4 SF6  35SO4
a SF6

b 
 

100830 Mar-2011 Jun-2010  14±2 19  

100834 Feb-2012 Jun-2010  4±2 18  

100904 May-2011 May-2010  13±3 16  

100905 July-2011 Apr-2010  24±3 13  

100906 May-2011 Aug-2010  34±4 28  

100907 Mar-2011 Mar-2010  21±4 6  

200061 Mar-2011 Oct-2010  36±8 38  

200065 Mar-2011 Jan-2012  47±22 >104  

a 35SO4 travel times are the shortest travel times measured for each well. Reported errors are propagated 1σ 

counting error. 
b SF6 travel times are the mean travel times derived from the center of mass (COM) arrivals to wells 

reported by Clark et al. (2011). 
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2. Orange County Groundwater Recharge Facilities 

At the OCWD MAR site, 35SO4 activity of surface waters from five infiltration basins 

and the SAR channel was 0.2±0.7 to 28.4±2.5 mBq/L, with the exception of four of the total 

50 samples that had no detectable 35SO4 activity (Table 17, Figure 18). Despite low 35SO4 

activity in post-treatment GWRS water (0.6±0.1 and 0.7±0.1 mBq/L), measurable 35SO4 in 

the majority of samples collected from Miller and Kraemer Basins indicates a larger fraction 

of recent (<1.2 year old) water in the spreading ponds relative to GWRS water. Dry 

deposition of 35S in SO4 aerosols may also contribute to the higher activity in spreading 

ponds relative to GWRS water. 

Compared to the 35SO4 activity in local precipitation (20.7±0.8 mBq/L), the lower 35SO4 

activity in the majority of OCWD MAR surface waters implies dilution of locally derived 

storm runoff with 35S-dead water (e.g. imported water), and/or storage of recent runoff in 

surface reservoirs for >1.2 years prior to its delivery to the spreading basins. In fiscal year 

(FY) 2011-12 (July 2011 to June 2012), storm flow and local water made up less than 12% 

of the total source water to the groundwater basin (Hutchinson, 2013). Moreover, local 

average rainfall was 8.2 in for FY 2011-12 and 5.8 in in FY 2012-2013, which was more 

than 40% below the 50-yr average of 14.4 inches (Hutchinson, 2013; Hutchinson, pers. 

comm.). During these relatively dry water years, low inputs of storm flow/local water 

combined with high inputs of imported water and SAR base flow resulted in lower 35SO4 

activity in OCWD surface waters relative to local precipitation. 

35SO4 activity in OCWD MAR surface water varies significantly by season (Figure 18) 

due to seasonal differences in recharge source water, with the exception of La Jolla Basin 

which had the lowest volume recharged during the study period (Figure 19). Higher35SO4 
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activity was generally observed in the early spring, likely due to a larger component or 

recent storm runoff in the spring months. For example, average 35SO4 activity in Warner 

Basin increased from 4.1±0.9 on December 10, 2012 to more than 15 mBq/L in February 

and April 2013 (Table 17, Figure 18).



 

 

 

 

 

Table 17. Sulfate concentrations and 35SO4
 activity for OCWD MAR surface water and precipitation. 

Sample ID and 

Collection Date 

SO4 

(mg/L) 

35SO4±1σ (mBq/L)a 
 

Sample ID and 

Collection Date 

SO4 

(mg/L) 

35SO4±1σ (mBq/L)a 

Sample Field Duplicate  Reportedc  
Sample Field Duplicate  Reportedc 

SAR      Miller Basin     

06-Mar-2012 154 18.9±4.0 11.0±3.9 15.0±2.8  20-Mar-2012 130 ND NA ND 

05-Jun-2012 168 ND NA ND  06-Apr-2012 1.3 2.0±0.7b 0.8±0.6b 1.4±0.5 

04-Dec-2012 89.8 5.3±1.1 3.2±1.0 4.3±0.7  05-Jun-2012 1.3 0.4±0.7 0.2±0.7 0.3±0.5 

05-Feb-2013 137 8.3±1.9 19.0±2.4 13.7±1.5  25-Sep-2012 0.5 1.9±0.3b 1.7±0.3b 1.8±0.2 

02-Apr-2013 133 16.2±1.7 NA 16.2±1.7  04-Dec-2012 0.6 0.6±0.2b 1.0±0.3b 0.8±0.2 

Warner Basin      02-Apr-2013 0.8 1.5±0.2 1.2±0.2 1.4±0.1 

20-Mar-2012 122 15.4±2.1 NA 15.4±2.1  04-Jun-2013 4 1.7±0.6 2.2±0.6 2.0±0.4 

10-Dec-2012 117 1.5±1.2 6.6±1.3 4.1±0.9  Kraemer Basin    

04-Feb-2013 110 14.9±1.7 20.6±2.0 17.8±1.3  20-Mar-2012 2.3 ND NA ND 

01-Apr-2013 125 22.0±1.8 NA 22.0±1.8  05-Jun-2012 <0.5 0.3±0.6b 0.5±0.6b 0.4±0.4 

18-Jun-2013 142 6.9±3.6 5.0±4.1 6.0±2.7  10-Dec-2012 72.7 ND NA ND 

La Jolla Basin      05-Feb-2013 109 17.1±1.7 19.4±1.9 18.3±1.3 

10-Dec-2012 73.4 ND 0.3±0.8 0.3±0.8  01-Apr-2013 188 28.4±2.5 11.1±2.0 19.8±1.6 

04-Feb-2013 117 13.6±1.8 16.0±2.0 14.8±1.3  Raind     

01-Apr-2013 215 16.0±2.3 15.0±2.3 15.5±1.6  25-Feb-2011 NA 19.9±1.1 21.4±1.2 20.7±0.8 

Anaheim Lake      GWRS TFe     

06-Mar-2012 132 22.7±3.5 2.5±3.2 12.6±2.4  06-Apr-2012 1.1 0.6±0.1b NA 0.6±0.1b 

01-Oct-2012 27.1 6.0±0.6 5.9±0.6 6.0±0.4  GWRS MBe     

05-Feb-2013 119 8.6±1.6 18.5±2.1 13.6±1.3  06-Apr-2012 0.6 0.7±0.1b NA 0.7±0.1b 

04-Jun-2013 160 3.9±4.1 8.3±4.5 6.1±3.0       

a Reported error is 1σ counting error.   
bAssumed 100% chemical yield. 
c For field duplicates, the reported 35SO4 activity is the average activity for the two samples. 
d Rain sample was collected in the city of Orange, CA, from a location 6 km south of the OCWD MAR sites. 
e GWRS water was sampled from two locations along the transmission pipeline: (1) water immediately post-treatment at the treatment 

facility in Fountain Valley (GWRS TF), and (2) GWRS discharge into Miller Basin (GWRS MB).  

NA=Not Available 

ND=Not Detectable 
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Figure 18. 35SO4 activities in surface water collected from OCWD MAR sites. Samples with 

non detectable activity are plotted as 0 mBq/L. Error bars represent 1σ counting errors. 

 

 

 

 

Figure 19. Total monthly recharge from October 2011 to June 2013 for the OCWD MAR 

spreading basins (Hutchinson, 2013). For Warner Basin, monthly recharge was available 

from October 2011 to June 2012. 
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Groundwater contours indicate that the general groundwater flow direction for the study 

area is in the west to southwest direction (Clark et al., 2004; 2014).  Kraemer Basin is the 

nearest up-gradient spreading basin for monitoring wells AM-7/1, AM-12/1, AM-12/2, and 

KBS-3/1, and La Jolla Basin is the nearest up-gradient basin for wells AM-8/1, AM-48/1, 

and PW1. A deliberate tracer experiment conducted by Clark et al. (2004) demonstrated that 

all of the wells sampled in this study were hydraulically connected to Kraemer Basin. La 

Jolla Basin was put into operation in December 2007, and a second tracer study by Clark et 

al. (2014) in January 2008 demonstrated a similar trend in hydraulic gradients. 

Since the average annual recharge at La Jolla Basin is less than 25% of the volume 

recharged at Kraemer Basin (Figure 20: 6.4 x 103 AF for La Jolla Basin and 2.9 x 104 AF for 

Kraemer Basin; Hutchinson, 2013), Kraemer Basin was assumed to be the main input source 

for all OCWD wells sampled in this study. Due to the highly variable monthly recharge at 

OCWD spreading basins during the study period (Figure 19), the input end-member was 

defined as the average 35SO4 activity for Kraemer Basin for surface water samples that were 

above detection: 12.8±0.7 mBq/L. 
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Figure 20. Average annual recharge for OCWD MAR spreading ponds. Reported values for 

SAR Channel, Anaheim Lake, Kraemer, and Miller are the 5-year average for July to June, 

2007-2008 to 2011-2012. Since service to La Jolla Basin began in December 2007, the 

reported value for this basin is the 4-year average for July to June, 2008-2009 to 2011-2012 

(Hutchinson, 2013). Miller Basin and Kraemer Basin receive GWRS water. 

 

 

Based on the end-member value of 12.8±0.7 mBq/L, 35SO4 groundwater travel times at 

OCWD were between 9±3 and >51 weeks (Table 18, Figure 21). A travel time could not be 

calculated for KBS-3/1 on February 05, 2013 because the groundwater 35SO4 activity was 

larger than the input end-member. Time series measurements of groundwater travel times 

were seasonally variable, which may due to high variability in the source water end-

member. For example, the 35SO4 travel times for well AM-8/1 were between 11±2 and >51 

weeks based on the input end-member of 12.8±0.7 mBq/L; however, assuming an end-

member value of 19.8±1.6 mBq/L, which was the highest 35SO4 activity observed for 

Kraemer Basin, the range of 35SO4 travel times for well AM-8/1 increases to between 19±2 

and >59 weeks. The increase in travel time of approximately 8 weeks (2 months) may 

explain some of the variability observed for the time series measurements of groundwater 
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travel times at the OCWD MAR site. These results highlight the need for careful 

characterization of the input endmember at MAR sites where 35SO4 activity in recharge 

source water varies significantly by season. 

 

 

Table 18. Summary of sulfate concentrations, 35SO4
 activities, and subsurface travel times 

for OCWD MAR groundwater. 

Well ID and 

Collection Date 

SO4 

(mg/L) 

35SO4±1σ (mBq/L)a 35SO4 Travel 

Time±1σ (weeks)d 
Sample Field Duplicate Reportedc 

KBS-3/1      

13-Sep-2012 2.3 7.3±0.7b NA 7.3±0.7b 10±2 

10-Dec-2012 99.5 ND NA ND >47e 

05-Feb-2013 112 15.9±1.8 11.3±1.8 13.6±1.3 * 

02-Apr-2013 177 5.4±1.8 NA 5.4±1.8 16+7/-5 

AM-7/1      

21-Mar-2012 6.4 4.2±0.6 NA 4.2±0.6 20±3 

22-May-2012 3.1 2.0±0.2b 2.2±0.6 2.1±0.3 33±3 

25-Sep-2012 4.3 2.5±0.3 2.3±0.3 2.4±0.2 30±2 

19-Nov-2012 2.4 1.4±0.2b 1.6±0.2b 1.5±0.1 39+2/-1 

27-Feb-2013 17.3 4.5±0.4 3.4±0.5 4.0±0.3 21±2 

16-Apr-2013 46.3 3.1±0.4 2.4±0.5 2.8±0.3 27±2 

11-Jun-2013 53 1.7±1.4 1.5±1.4 1.6±1.0 38+18/-9 

AM-8/1      

22-May-2012 58.9 1.7±0.6 1.0±0.6 1.4±0.4 40+6/-5 

13-Sep-2012 34.2 7.0±0.7 NA 7.0±0.7 11±2 

19-Nov-2012 26.1 ND ND ND >51e 

27-Feb-2013 15.7 3.0±0.4 2.8±0.3 2.9±0.3 27±2 

16-Apr-2013 20.7 2.4±0.3 2.1±0.3 2.3±0.2 31±2 

11-Jun-2013 21 2.6±0.8 2.5±0.8 2.6±0.6 29+5/-4 

AM-48/1      

21-Mar-2012 86.3 ND NA ND >24e 

03-Oct-2012 36.8 ND ND ND >42e 

05-Feb-2013 25.2 3.9±0.5 4.2±0.6 4.1±0.4 21±2 

04-Apr-2013 44.3 2.7±0.4 4.3±0.6 3.5±0.4 23±2 

AMD-12/1      

21-Mar-2012 36.7 ND ND ND >36e 

22-May-2012 51.4 2.6±0.6 NA 2.6±0.6 29+5/-4 

19-Nov-2012 52.5 ND ND ND >43e 

05-Feb-2013 17.9 2.9±0.3 3.8±0.5 3.4±0.3 24±2 

16-Apr-2013 9.1 1.7±0.2 2.6±0.3 2.2±0.2 32±2 

11-Jun-2013 4 1.6±0.5 1.9±0.6 1.8±0.4 35+5/-4 
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Well ID and 

Collection Date 

SO4 

(mg/L) 

35SO4±1σ (mBq/L)a 35SO4 Travel 

Time±1σ (weeks)d Sample Field Duplicate Reportedc 

AMD-12/2      

21-Mar-2012 74 2.5±2.1 1.2±1.6 1.9±1.3 34+21/-9 

26-Feb-2013 136 4.8±1.6 10.3±1.8 7.6±1.2 9±3 

16-Apr-2013 142 ND NA ND >30e 

11-June-2013 108 3.2±2.7 10.1±3.2 6.7±2.1 12+7/-5 

PW1      

04-Jun-2012 83.7 ND NA ND >33e 

10-Dec-2012 29.9 ND ND ND >51e 

04-Feb-2013 27.8 4.3±0.5 4.4±0.6 4.4±0.4 19±2 

03-Jun-2013 26 2.7±0.9 2.8±0.8b 2.8±0.6 27+5/-4 

 

 

 

 

Figure 21. 35SO4 groundwater travel times from Kraemer Basin to down gradient wells. 

Open symbols represent sampling events that were below detection, therefore these values 

are interpreted as a minimum travel time. 

 

a Reported error is 1σ counting error.  
bAssumed 100% chemical yield. 
c For field duplicates, the reported 35SO4 activity is the average activity for the two samples. 
d Travel times calculated assuming 12.8±0.7 mBq/L as the 35SO4 input end-member. Reported error is 1σ 

counting error based on the decay of 35S. 
e Travel times for samples with non detectable activity are calculated using the 2σ counting error.  

* Travel time undetermined due to a higher 35SO4 activity for groundwater relative to the source water 

end-member. 

NA=Not Available 

ND=Not Detectable 
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Similar to the RHSG study, 35SO4 groundwater travel times at OCWD are reasonable 

compared to those determined by a previous deliberate tracer study (Table 19). The shortest 

35SO4 travel times are within six weeks of mean SF6 travel times for wells AM-7/1, AMD-

12/1, and AM-48/1 (Table 19). The shorter 35SO4 travel time to well AM-8/1 (11±2 weeks) 

relative to SF6 travel time (37 weeks) indicates that recharge to La Jolla Basin had a 

significant effect on travel time to this nearby, down gradient well. 

 

 

Table 19. Comparison of groundwater travel times at OCWD MAR sites determined by 
35SO4 and SF6 tracers. 

Well ID 
Collection Month-Year  Travel Time (weeks) 

35SO4
 SF6 

 35SO4
a SF6

b
 

AM-7/1 Feb-2013 Jul-2008  21±2 24 

AM-8/1 Sep-2012 Sep-2008  11±2 37 

AMD-12/1 Feb-2013 Aug-2008  24±2 31 

AMD-12/2 Feb-2013 >Jan-2009  9±3 >50 

AM-48/1 Feb-2013 Jul-2008  21±2 26 

KBS-3/1 Sep-2012 -  10±2 * 

PW1 Mar-2012 -  19±2 * 

a 35SO4 travel times are the shortest travel times measured for each well assuming an input end-member of 

12.8±0.7 mBq/L. Reported error is the propagated 1σ counting error. 
b SF6 travel times are the mean travel times to wells reported by Clark (2014).  

*Incomplete breakthrough: center mass travel time is a minimum or could not be calculated. 
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H. Conclusions 

This study successfully used the new analytical technique of Urióstegui et al. (2015) for 

measuring naturally-occurring 35SO4 in the high SO4 waters typical of MAR facilities. 35SO4 

activities in MAR groundwater and source waters collected from RHSG and OCWD MAR 

sites were successfully measured, and calculated travel times were reasonable compared to 

those determined by the well-established SF6 and Xe-isotope deliberate tracer method at 

these sites. However, in some cases travel times were different. 

35SO4 should be considered as new intrinsic groundwater dating tool with some 

considerations. Successful application of the 35SO4 method at MAR sites is dependent on 

characterization of the 35SO4 activities in MAR source waters and evaluation of mixing 

scenarios. MAR facilities using recycled water are likely to have high SO4 concentrations 

and low 35S activity. The lack of recent (<1.2 year old) water in MAR source waters limits 

the application of the 35SO4 method due to consistently low 35SO4 activity in recharge 

surface waters. For example, in order to quantify 35SO4 subsurface travel times up to 9 

months (3 half-lives) for piston flow transport of recharge water to nearby wells, 35SO4 

activity in source waters should ideally be 8 times above background count rates. Another 

factor affecting the application of the 35SO4 method is potential dilution of recharge water 

with older groundwater. While considered at these study sites, the travel time comparisons 

between deliberate tracer experiments and 35SO4 support the assumption that mixing of 

recharge water with older groundwater was not a significant factor; however, mixing 

scenarios should be investigated at other MAR sites as it will affect calculated travel times. 

Careful characterization of the input function is important when determining the 

feasibility of using 35SO4 as a natural tracer, especially for sites that incorporate significant 
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fractions of recycled water. Because 35SO4 activity in MAR waters can vary significantly by 

season due to seasonal differences in recharge and well production, time series with a 

frequency of at least 1 month are recommended for the source water. 

Unlike deliberate tracer studies that are dependent on the hydrologic conditions during 

the injection period (typically a few days to a few weeks), the 35SO4 intrinsic tracer method 

is applied over a longer time period during each recharge season. If the 35SO4 end-member is 

constrained for each season, the effect of varying recharge and pumping conditions on 

subsurface travel time can be quantified more easily by the 35SO4 method than by 

conducting multiple deliberate tracer experiments. 

35SO4 is underutilized as an intrinsic tracer technique in groundwater studies, and it can 

be a valuable tool in investigating the subsurface travel times on less than one year 

timescales at MAR sites where 35SO4 activity is significantly above the detection limit. 
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V. Summary 

Quantifying groundwater recharge and transport on short timescales of less than two 

years advances our knowledge of groundwater recharge mechanisms and storage capacities. 

This work demonstrates that 35SO4 is a useful but underutilized tracer that can provide 

valuable insights into groundwater recharge mechanisms by resolving one-year timescales 

that cannot be achieved by common intrinsic tracer methods such as tritium/helium3 or 

dissolved noble gases.  

Due to the inability of established techniques to analyze waters with moderate to high 

concentrations of SO4, previous hydrologic studies utilizing 35SO4 were limited to high-

elevation basins and low-SO4 waters. The new analytical method presented in Chapter II 

significantly advances measurement of naturally-occurring 35SO4 in natural waters. The 

35SO4 method developed in Chapter II improved detection limits for low-SO4 waters and 

expanded the analytical range of 35S to high-SO4 waters, allowing the technique to be 

applied to a wider range of environmental samples.  

In the Sierra Nevada study (Chapter III), 35SO4 in Sagehen Creek Basin and Martis 

Valley Groundwater Basin indicated significant annual groundwater recharge from 

snowmelt, and that recent (<1 year old) snowmelt represents only a small fraction of the 

larger aquifer system. The study suggests that as snowpack in the western U.S. continues to 

decline due to climate change, impacts to streamflow and springs may occur over two 

phases: 1) rapid responses in discharge due to annual variability in precipitation, and 2) 

more gradual, long-term declines in discharge in response to declining groundwater 

recharge. Using 35SO4 in evaluating the vulnerability of water resources under a changing 
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climate shows the value of the technique. The data provided by 35SO4 studies may be useful 

for advancing surface/ground water numerical models in watersheds. 

In the MAR study (Chapter IV), 35SO4 was successfully measured in high-SO4 source 

waters and groundwater at two southern California MAR facilities, and calculated 35SO4 

groundwater travel times were reasonable at both study sites compared to earlier deliberate 

tracer experiments, which are considered by regulators as the preferred method for 

establishing compliance with the GRRP rules. The successful application of 35SO4 method in 

high-SO4 MAR systems was possible due to increased sample loading capacity and 

improved detection limits for 35S; however, careful characterization of the 35SO4 activity in 

source waters is recommended, especially if a significant component of source water is 

reclaimed water or imported water that has aged for than one year. The results highlight the 

value of 35S in quantifying groundwater residence times on one-year timescales, and 

therefore it is a powerful new technique available to hydrologists, modelers, and water 

resource managers. 

Future 35SO4 studies in low-SO4 systems, such as the Sierra Nevada, would benefit from 

the development of an in-situ sampler capable of processing large volumes of water in the 

field to increase 35SO4 recovery and processing efficiency. Collecting and analyzing more 

35SO4 would improve 35S counting statistics by reducing the minimal detectable activity and 

counting error, leading to a significant improvement in the capability to detect recent 

recharge in groundwater systems. 
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Appendix A. Sulfate Mass Balance for Sagehen Creek Basin 

Previous studies in the southern Sierra Nevada reported terrestrial neutralization of 

acidity present in precipitation, with solute mass balances indicating that terrestrial 

processes uptake atmospherically derived N and S (Williams and Melack, 1997). To 

determine the potential extent of biogeochemical cycling of SO4
2- in this region, a simplified 

quantitative mass balance of SO4
2- was performed for Sagehen Creek Basin (SCB). 

Monthly SO4
2- concentrations in wet deposition were available beginning in Water Year 

(WY) 2002 from a National Atmospheric Deposition Program (NADP) collection site CA-

50 located near snow site S02 (see Figure 8A). Precipitation-weighted mean SO4
2- 

concentrations for wet deposition varied between 0.01 and 1.59 mg/L, with a logarithmic 

curve being the best fit for the data (Figure 22). While no correlation was observed between 

SO4
2- concentration and total precipitation (Figure 23), the higher SO4

2- concentrations (≥ 

0.25 mg/L) occurred during months having monthly precipitation totals of < 20 cm, 

indicating a general dilution of SO4
2- concentrations with increasing storm size.  

Dry deposition has been identified as an important component of total S deposition in 

the Sierra Nevada and other high-elevation basins, supplying about 37% of the total S input 

(Williams and Melack, 1997; Likens et al., 1990). The average annual input of SO4
2- derived 

from wet deposition was 1.86 x 102 kg, with the estimated bulk annual input of SO4
2- being 

2.55 x 102 kg when corrected for the contribution of dry deposition (Figure 24). 

Sagehen Creek is the main tributary in SCB. Sulfate concentrations in Sagehen Creek 

water were measured by the USGS once or twice a month over a nine-year period (WY2006 

to WY2014) from a sampling location near the USGS stream gauge at the base of the basin 

(see Figure 8A). Stream SO4
2- concentrations were between 0.03 and 0.30 mg/L (Figure 25), 
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which is similar to the range of SO4
2- concentrations for the majority of precipitation 

samples collected during WY2002 to WY2014. These results provide further evidence that 

minimum attenuation of SO4
2- by adsorption-desorption is occurring in the basin, and that 

weathering of SO4
2- minerals is minimal. Monthly SO4

2- concentrations were stable 

throughout the water year; however, small pulses of higher-concentration SO4
2- water in the 

stream (≥0.2 mg/L) were observed during the early winter for WY2009 and WY2010, which 

may be due to solutes in snowpack becoming more concentrated during the melt season.  

Average annual SO4
2- output from the basin via Sagehen Creek was 5.80 x 102 kg 

(Figure 24), which suggests that more SO4
2- is leaving SCB than is deposited on year to year 

basis. A possible explanation for the net export observed for WY2006 to WY2014 is an 

increase in SO4
2- deposition in previous decades that is not captured in the short, twelve-year 

record examined in this simplified mass balance. For example, Heard et al. (2014) reported 

declining SO4
2- concentrations in Sierra Nevada Lakes beginning in the early 1980s, which 

the authors attributed to emission reductions and lower SO4
2- loading resulting from air 

quality regulations. A record of SO4
2- deposition from 1982 to 2015 at the central Sierra 

Nevada NADP site CA-99 located in Yosemite Valley also revealed generally higher SO4
2- 

concentrations from 1982 to 2006 compared to 2007 to 2015 (Figure 26). In SCB, apparent 

groundwater ages of springs ranged from <2 to 36 years (Rademacher et al., 2001; Manning 

et al., 2012), and the 35SO4
2- study described in Chapter III found that stream water is mainly 

derived from groundwater older than one year, indicating that groundwater flowpaths 

contributing to stream discharge may be derived from groundwater recharged prior to 2007. 

This older water with higher SO4
2- loads could contribute to the overall net export of SO4

2- 

from SCB. 
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In addition to net SO4
2- export being potentially derived from SO4

2- deposited in 

previous decades, organic matter mineralization may also contribute to the overall net export 

of SO4
2-. Even after correcting for dry deposition, the mean input due to deposition is less 

than 45% of the export by the creek indicating that there must be another source of SO4
2- 

within SCB. 

While a net export of SO4
2- may indicate minimal retention and immobilization of SO4

2-, 

constraining the biogeochemical cycling SO4
2- requires additional data such as stable 

isotopic analysis of SO4 (
34SO4/

32SO4). To accurately quantify the extent of SO4
2- 

immobilization by microbial processes and vegetation, stable isotopic composition of S in 

snowpack, groundwater, stream water, and vegetation would be valuable in future studies.  

 

 

 

Figure 22. Monthly precipitation totals and volume-weighted mean SO4
2- concentration in 

precipitation for SCB from WY2002 to WY2014. Data source: NADP 

(http://nadp.isws.illinois.edu/data/sites/siteDetails.aspx?net=NTN&id=CA50). 
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Figure 23. Precipitation-weighted mean SO4
2- concentration versus precipitation totals. 

 

 

 

 

Figure 24. Annual input and export of SO4
2- for WY 2006 to 2014. Input values are based 

on the bulk (wet + dry) deposition of SO4
2-. 



 

 

 
105 

 

Figure 25. Time series of Sagehen Creek stream discharge and SO4
2- concentration. Data 

source: US Geological Survey National Water Information System 

(http://waterdata.usgs.gov/ca/nwis/inventory/?site_no=10343500&agency_cd=USGS). 

 

 

 

 

Figure 26. Monthly precipitation-weighted mean SO4
2- concentration for NAPD site CA-99 

in Yosemite Valley. The sample plotted with a vertical arrow is 14.1 mg/L. Data source: 

NADP (http://nadp.sws.uiuc.edu/data/sites/siteDetails.aspx?net=NTN&id=CA99). 

 




