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ABSTRACT 
 Increasing awareness of energy consumption and its 
environmental impacts has prompted a need to better predict the 
energy consumption of various industrial processes, including 
manufacturing. Modeling can allow manufacturers to optimize 
the efficiency of their manufacturing processes. Highly accurate, 
data-driven models of energy consumption of CNC milling have 
been developed but these models are generated from 
experimental data and are not generally applicable. If any 
conditions are varied beyond the experimental parameter ranges, 
a data-driven model faces challenges in maintaining its 
prediction accuracy. In this work, two models based on the non-
cutting power demand of the CNC machine and the specific 
cutting energy of the workpiece material are analyzed. These 
models are then used to predict milling energy consumption of 
several experimental parts. Both models predicted the total 
energy consumption of the experimental parts with an average 
relative total error of less than 3%, which is comparable to data-
driven models. Unlike most models, the proposed models 
presented here can be applied to most workpiece materials. 

NOMENCLATURE 
P Total power consumption [W] 
P0 Auxiliary power consumption [W] 
a Empirical chip thickness exponent 
h Average chip thickness [mm] 
hr Normalizing chip thickness factor [mm] 
k Specific cutting energy [J/mm3] 
v Volume of material removed [mm3] 
𝑣ሶ  Material removal rate [mm3/s] 

INTRODUCTION 
Manufacturing is responsible for 90% of total energy 

consumption and 84% of CO2 emissions in the industrial sector 
[1]. The high usage of energy in manufacturing presents 
challenges but also potential for high impact of improved 
efficiency of manufacturing processing and planning. Energy 
modeling of machining processes can offer many benefits to 
manufacturers. Accurate energy prediction and subsequent 
optimization of manufacturing processes can help manufacturers 
increase resource efficiency, lower costs, and reduce the 
associated emissions. Predicting energy demand enables better 
integration with smart grids which is of increasing importance. 
Improved energy prediction can also lead to cost estimation 
based on maximum power demand which will enable 
manufacturers to optimize not just at the process level, but at a 
systems level. The work described here focuses on improving 
energy predictions for CNC milling. 
 Equations to predict energy consumption of milling based 
on cutting forces have existed for decades but their application is 
typically limited to choosing appropriate cutting parameters for 
manual milling [2]. Recent efforts have developed highly 
accurate models for prediction of energy consumption of CNC 
milling processes but these models are generated from 
experimental data and are not generally applicable [3-5]. If the 
workpiece material is changed from that used in the experiment, 
such a model tends to lose accuracy. This work describes two 
different models used to predict energy consumption of CNC 
milling. Both models can be applied to a range of materials. The 
accuracy of both models is compared with that of published 
models. 



 

MATHMATICAL BASIS OF STUDIED MODELS 
Rather than presenting a data-driven, experimentally-

derived model, an attempt is made here to validate simple, 
material-general relationships that have been presented in 
literature before but not necessarily applied for the purpose of 
prediction. Both models presented here are based on the general 
equation for energy consumption in CNC machining as 
presented by Gutowksi [6]. The first model, which will be 
referred to as the Specific Cutting (SC) model, is an unmodified 
version of the equation Gutowski presented, where energy 
consumption is calculated from the material removal rate, 𝑣ሶ , 
specific cutting energy, 𝑘, and the non-cutting power demand of 
the CNC machine, 𝑃 [6]. By integrating this equation from 
time t1 to t2, assuming a constant 𝑣ሶ  over this interval, a model 
for the energy consumption can be obtained, as seen in Eq. (2).  
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 A challenge of the model presented in Eq. (1) and Eq. (2) is 
that specific cutting energy is not a true constant. In actuality, 
specific cutting energy has a significant dependence on chip 
thickness: thin chips tend to consume more energy to machine 
per unit volume compared to large chips [7]. The exact reason 
for the dependence of k on chip thickness is unclear. The shear 
strength of the material has a similar dependence on average 
chip thickness. DeVries discusses a number of possible 
explanations for the dependence of the shear strength on average 
chip thickness, including the effects of work hardening ahead of 
the tool and the influence of shear strain rate [2].  

To capture the dependence of k on average chip thickness, 
we proposed an additional term to modify k: a normalized chip 
thickness, h/hr, raised to the power a, where -1< a< 0. Here, h is 
the average chip thickness and hr is a normalizing chip thickness 
factor. As a first approximation, the values of a and hr were 
assumed to be constant and equal to -0.8 and 0.32 mm 
respectively for the experiments described in this study. These 
values were derived from empirical data as described by 
DeVries [2]. The model now contains three empirical 
parameters: k, a, and hr. This second model, referred to as the 
Modified Specific Cutting (MSC) model, is summarized in Eq. 
(3). 
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 To obtain the model parameter P0, the energy consumption 
of the machine tool was measured for an air-cut of the 
experimental toolpath. To implement both models, the predicted 
energy for each line of numerical control (NC) code was 
calculated following Eqn. (2) and (3). The volume removed and 
approximate cutting time can be calculated based on the NC 
code, machine parameters, and air-cut data. Energy consumption 
of non-cutting lines of code was calculated as the product of P0 
and the time elapsed for the line of code. 

DESCRIPTION OF VALIDATION EXPERIMENTS 
 Two experiments were undertaken to validate and compare 
the SC and MSC models. The first, Experiment I, was used to 
compare the accuracy of these two models to an existing 
published model, namely the Gaussian Process Regression 
(GPR) model developed by Bhinge et al. [8]. The second 
experiment was used to verify that the proposed models can be 
used for different types of materials with comparable accuracy.  

The total power of the machine tool was measured at a 
frequency of 100 Hz. The MTConnect standard [9] was used to 
collect and record machine operation information, such as feed 
rate, spindle speed, and tool position. This enables a richer data 
set because energy consumption data is contextualized with the 
corresponding machine parameters as dictated by the NC code. 
Each block of NC code in a given toolpath becomes an 
experiment in itself, allowing for better understanding of what 
effect each machine parameter has on energy usage. Although 
the experiments described here included machining only a few 
parts, the data from each part contained hundreds of 
measurements of machine parameters and energy usage. 

 
Experiment I 
 As part of the validation of the GPR model, four test parts 
were machined using four different milling strategies, namely 
zigzag in X, zigzag in Y, contour in, and contour out, to create 
the same geometry, as illustrated in Fig. 1. These parts were 
milled from a 2.5''x2.5''x1'' block of 1018 steel on a Mori Seiki 
NV1500 DCG milling machine tool. Spindle speed (ranging 
from 1500 to 3000 rpm) and feed rate (ranging from 75 to 300 
mm/min) were varied throughout the toolpath. As part of 
Experiment I, the SC, MSC, and GPR models were used to 
predict the energy consumption of the four parts, Parts A 
through D.  
a 

 

 
Figure 1: Toolpaths used in Experiment I 

Experiment II 
 A second experiment was performed to explore the ability 
of the SC and MSC models to predict energy consumption for 
different workpiece materials. This work was completed on a 
different Mori Seiki NV1500 DCG milling machine tool. The 
part geometry, called Part E, used a more complicated toolpath, 
including pocketing, slotting, and drilling operations, as shown 
in Fig. 2. This toolpath was used to machine 2.5''x2.5''x1'' blocks 
of several different materials.  
 

  Part A        Part B    Part C         Part D 



 

 
Figure 2: Final geometry of Part E 

 
 Workpiece materials for Experiment II were chosen with the 
goal of capturing a wide range of materials. This goal was 
limited by the fact that all materials were to be machined with 
the same set of feed rates (ranging from 150 to 900 mm/min) 
and spindle speeds (ranging from 1500 to 4500 rpm). Another 
limitation was the need to select materials with a published value 
of k. Although it is possible to obtain a rough estimate of k based 
on hardness, it was desired to eliminate uncertainty of k as a 
possible source of error so only materials with a published value 
of k were chosen. The materials chosen included 1018 steel 
(used for Experiment I), as well as 6061 aluminum, 2024 
aluminum, and C36000 brass. This is summarized in Table 1.  
 

Table 1. Summary of experimental parts 
Material Temper Part Types Model Parameters 

1018 
Steel 

As cold 
drawn 

Parts A, B, 
C, D, E* 

k=2.07; a= -0.8; hr=0.32 

C36000 
Brass 

H02 Part E* k=0.68; a= -0.8; hr=0.32 

Al 6061 T6511 Parts E* k= 0.76; a= -0.8; hr=0.32 
Al 2024 T351 Parts E* k=0.87; a= -0.8; hr=0.32 

*Part E was machined with three levels of depth of cut 
 

 The feed rate and spindle speed were varied throughout the 
toolpath to obtain a wide range of material removal rates. Part E 
was cut three times for reach material, using a constant depth of 
cut of 0.5 mm, 1.0 mm, and 1.5 mm for each part. 

RESULTS 
Experiment I 
 The GPR model was used to predict the energy 
consumption for Parts A through D. The SC and MSC models 
were used to predict the energy consumption for the same four 
parts and the accuracy of the predictions were compared with the 
predictions of the GPR model.  
 The predicted and measured energy consumption are 
compared using the normalized mean absolute error (NMAE) 
and relative total error (RTE). The NMAE is the average 
absolute error of all lines of NC code for a part, while the RTE is 
the absolute error between the total predicted energy (i.e. the 
sum of the predicted energy for all lines of NC code) and the 
actual total energy consumption. These errors are summarized in 
Table 2, along with the experimental energy consumption and 
predictions of each model. For Parts A through D, the average 
number of data, or NC blocks of code and the corresponding 
energy usage and machining parameters, was 94 per part. 
 

Table 2. Experimental results, model predictions, and 
model errors for Experiment I 

 
Exp. 

Energy 
(kJ) 

GPR SC MSC 

Part 

Pred. 
Energy 

(kJ) 

RTE 
[NMAE] 

(%) 

Pred. 
Energy 

(kJ) 

RTE 
[NMAE] 

(%) 

Pred. 
Energy 

(kJ) 

RTE 
[NMAE] 

(%) 

A 849.8 877.7 
3.3 

[11.0] 848.1 
0.2 

[17.5] 859.4 
1.1 

[16.9] 

B 943.3 997.4 
5.7 

[15.4] 983.5 
4.3 

[7.7] 998.1 
5.8 

[7.6] 

C 1018.2 1051.4 
3.3 

[11.7] 1010.0 
0.8 

[4.7] 1026.2 
0.8 

[4.6] 

D 938.3 969.2 
3.3 

[16.0] 896.7 
4.4 

[11.7] 911.4 
2.9 

[11.5] 
 

 The results from Experiment I indicate that the SC and MSC 
models can predict energy consumption with relative error 
similar to the GPR model. While the GPR model predicted an 
energy consumption higher than the actual value for all parts, the 
SC and MSC models under-predicted the consumption for some 
parts, and over-predicted for others. The NMAE error of MSC 
model is consistently lower than that of the SC model. Despite 
these differences, all three models accurately predict that the 
lowest energy toolpath is that of Part A, namely contour out.  
 
Experiment II 

 For Experiment II, the SC and MSC models were 
applied to the toolpath of Part E. Part E was machined using 
three different depths of cut. The average number of data, or NC 
blocks of code and the corresponding energy usage and 
machining parameters, was 269. The measured energy 
consumption, along with the SC and MSC model predictions are 
shown in Fig. 3 for a depth of cut of 1 mm.  

 
Figure 3: Measured and predicted energy 

consumption for Part E, depth of cut=1 mm 
 
 As seem in Fig. 3, although the majority of the energy is 
consumed by the non-cutting operation of the machine, 
represented by the 𝑃∆𝑡  term in Eq. (2) and (3), energy 
consumption is affected by the workpiece material. The cutting 
energy accounted for ~5% of the total energy consumption. The 
energy consumption for all three depths of cut are similar, with 
an average percent deviation of 5.8%. For ease of reference, the 
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results for the three depths of cut are averaged and summarized 
in Table 3.  
 

Table 3. Average model error for Experiment II 

 SC MSC 

 
RTE 
(%) 

NMAE 
(%) 

RTE 
(%) 

NMAE 
(%) 

Al 2024 1.80 4.31 1.78 3.81 

Al 6061 1.87 4.13 0.83 3.74 

C36000 Brass 0.76 8.90 1.11 8.74 

1018 Steel 2.44 8.52 0.33 8.55 
 

 The results show that the SC and MSC models can predict 
the total energy consumption with less than 3% RTE for several 
materials. As seen in Experiment I, the NMAE error for the 
MSC model is generally lower than that of the SC model.  

DISCUSSION 
 The results indicate that the SC and MSC models have a 
comparable accuracy to the GPR model as well as other similar 
models [10]. The SC and MSC models have varying accuracy 
for different parts and materials. For example, the results for 
Experiment II indicate the NMAE for the aluminum is 
considerably smaller than that of brass and steel for both the SC 
and MSC models. One possible explanation for this behavior is 
better accuracy of the value of k used for aluminum versus that 
of steel and brass, as the model accuracy is very sensitive to k.  
 Generally, the MSC model has a lower NMAE than the SC 
model, which implies that it is better at capturing the cutting 
physics. The MSC model also has a low RTE (an average of 
~1% for Experiment II). The MSC model may further be 
improved by experimentally determining the model's novel 
empirical parameters (a and hr) for each material, rather than 
using the same values for all materials.  

However, the increase in accuracy of the MSC model is 
accompanied by increased complexity, with three empirical 
parameters compared to one. Additionally, the fraction of total 
energy consumption used by the cutting process varies for 
different machine tools so the tradeoff between complexity and 
accuracy needs to be considered on a case-by-case basis.. 
Further experimentation on different machine tools would 
enable better understanding of this trade off. 
 Though data-driven models like the GPR model can be 
adapted to different machine tools and different conditions, they 
are data-intensive and require training data. The accuracy 
improves as more training data is collected. However, in many 
cases such as process planning and toolpath planning, where 
prior data may not be available, it is more feasible to use an 
empirical model such as the models described in this paper. The 
SC and MSC models can be used for accurate, efficient, and 
material-general energy prediction where no training data is 
available.  

CONCLUSION 
 The models described here, the SC and MSC models, 
provide similar accuracy to the data-driven models but are 
considerably simpler and can be applied to most materials. The 
SC and MSC models can be updated for any material for which 
a specific cutting value is known. Further, the SC and MSC 
models can be easily calibrated for a new machine tool by 
analyzing the power consumption of that machine tool during an 
air-cut. Future work could better determine the models' accuracy 
over a wider range of machine tools and machining parameters 
like depth of cut.   
 Because of their simplicity and flexibility, the models 
presented in this work provide a useful tool for making better 
informed decisions related to energy consumption in 
manufacturing. 
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