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The successful implementation of algorithms on quantum processors relies on the accurate control of
quantum bits (qubits) to perform logic gate operations. In this era of noisy intermediate-scale quantum
(NISQ) computing, systematic miscalibrations, drift, and crosstalk in the control of qubits can lead to a
coherent form of error that has no classical analog. Coherent errors severely limit the performance of
quantum algorithms in an unpredictable manner, and mitigating their impact is necessary for realizing
reliable quantum computations. Moreover, the average error rates measured by randomized benchmarking
and related protocols are not sensitive to the full impact of coherent errors and therefore do not reliably
predict the global performance of quantum algorithms, leaving us unprepared to validate the accuracy of
future large-scale quantum computations. Randomized compiling is a protocol designed to overcome these
performance limitations by converting coherent errors into stochastic noise, dramatically reducing
unpredictable errors in quantum algorithms and enabling accurate predictions of algorithmic performance
from error rates measured via cycle benchmarking. In this work, we demonstrate significant performance
gains under randomized compiling for the four-qubit quantum Fourier transform algorithm and for random
circuits of variable depth on a superconducting quantum processor. Additionally, we accurately predict
algorithm performance using experimentally measured error rates. Our results demonstrate that randomized
compiling can be utilized to leverage and predict the capabilities of modern-day noisy quantum processors,

paving the way forward for scalable quantum computing.
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I. INTRODUCTION

The accuracy of quantum algorithms is limited by dif-
ferent types of errors. Interactions between qubits and the
surrounding environment result in incoherent (i.e., nonuni-
tary or irreversible) errors, leading to purity-decreasing
processes such as the decoherence of a quantum state. In
contrast, systematic imperfections in qubit control (e.g.,
detuning and calibration errors) and crosstalk on multi-
qubit processors result in coherent (i.e., unitary or revers-
ible) errors, which are purity-preserving and thus do not
result in decoherence. For single qubits, coherent errors
manifest as an unwanted unitary rotation by an angle e,

Published by the American Physical Society
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U(f,€) = e~™1/2 where fi is the axis of rotation and ¢  average error rates and the potential for interference over
the Pauli vector. Common methods for measuring the  the course of an algorithm.

average error rate r(€) of quantum gates, such as random- In recent years, there has been growing theoretical
ized benchmarking [1-4] (RB), define r(£) as the average interest in randomization methods to mitigate the problem
gate infidelity, of coherent errors in quantum computations [17-24].

Experimentally, it has been shown that methods such as

r()=1-F=1- / dy(w|E(ly)yw|)lw), (1)  Pauli-frame randomization [17,18] (PFR) and Pauli twirl-

ing can reduce coherent errors in Clifford circuits [25] and

where the fidelity F gives the average success probability  the two-qubit CPHASE gate [26], respectively, as measured
that preparing an arbitrary pure state p = |y)(w| and then by gate-set tomography [27-30]. Randomized compiling
evolving the state through a noisy channel £(|w)(y|) will  [20] (RC) is a protocol for reducing coherent error rates in
return the system to the original state. While r(€) captures ~ quantum algorithms in situ, which is more scalable and
the average gate infidelity, if coherent errors account for  generalizable than PFR and simple Pauli twirling, and does
even a small fraction (e.g., ~10%) of the average  not require a priori knowledge of the specific error model.
total error rate [e.g., r(€) ~107*], the worst-case gate  In this work, we demonstrate the experimental implemen-
infidelity (defined via the diamond norm; see Supple-  tation of RC on a superconducting quantum processor [see
mental Material [5]) can scale as \/r(€) (e.g., ~1072)  Fig. 1(a)]. We show that RC effectively reduces and
[11-14]. Thus, the average-case and worst-case infidelities stabilizes the otherwise unpredictable impact of actual
of a single computational gate can differ by orders of  performance-limiting coherent errors in the quantum
magnitude in the presence of coherent errors, as has been ~ Fourier transform [31] (QFT) algorithm and in random
explicitly demonstrated for the quantum processor used in  circuits of variable depth sampled from a universal gate
this work using simultaneous gate-set tomography [15].  set. Furthermore, we accurately predict algorithm perfor-
Therefore, the global impact of coherent errors is hard to ~ mance under RC from error rates measured in a scalable
predict for structured circuits [16] because of both their =~ manner via cycle benchmarking [32] and show how RC
quadratically worse impact on gate infidelities relative to ~ performance gains are expected to improve as error rates in
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FIG. 1. Experimental realization of noise tailoring via randomized compiling on a superconducting quantum processor. (a) False-
colored micrograph of our eight-qubit superconducting quantum processor. In this work, we use four transmon qubits [33] (green) with
independent microwave control lines (blue). Two-qubit cross-resonance [34—37] gates are mediated by coupling resonators (CR, purple)
between nearest neighbors. The qubits are simultaneously measured via dispersive coupling [38] to independent readout resonators (RO,
red) coupled to a multiplexed readout bus (MRB, cyan). (b) Randomization of a quantum circuit. The bare circuit (top), split into K
interleaved cycles of easy and hard gates (separated by dashed lines), (middle) is converted into a logically equivalent circuit by inserting
random single-qubit twirling gates between each easy and hard cycle, inverting them in the following cycle, and (bottom) then compiling
the twirling gates into a new easy-gate cycle. (c) Experimental single-qubit state-tomography results demonstrating noise tailoring. The
black vector is the ideal (noiseless) final state of the qubit, but coherent errors cause an over-rotation in the measured state (blue vector).
The orange vector represents the final state of the combined distribution of N = 12 randomizations (orange data points), which has a
lower purity because of the tailored stochastic noise. RC significantly mitigates the impact of coherent errors, as indicated by a reduction
in the TVD from dry pye = 0.170(8) to dry rc = 0.029(2) in the {|+), |—)} basis, from dry pye = 0.069(4) to dyy rc = 0.060(1) in
the {|+i),|—i)} basis, and from dry pae = 0.073(8) to dryrc = 0.008(2) in the {|0), |1)} (computational) basis. This improvement is
not captured by the bare (F = 0.862) and RC (F = 0.879) state fidelities, which are approximately equal.
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quantum processors continue to decrease, paving the way
for more robust large-scale quantum computation.

II. RANDOMIZED COMPILING PROTOCOL

RC tailors coherent errors into a stochastic noise channel
by combining the results of many logically equivalent
circuits. By inserting and compiling random single-qubit
(virtual) twirling gates into a circuit in a way that preserves
the overall unitary operation, RC creates a set of “random-
ized” circuits that are logically equivalent to the original
“bare” circuit, without increasing circuit depth. Any bare
circuit composed of K cycles of interleaved single-qubit
“easy” gates and two-qubit “hard” gates can be randomized
using the following method, shown in Fig. 1(b):

(1) Conjugate each round of easy gates C by a twirling
gate T, randomly sampled from a set 7 and an
inverting operator T9{_;: C, — T;C,T;_,, where
T%_, is chosen to undo the twirling gate that was
inserted in the previous cycle when commuted
through the hard-gate cycle G;: T§ = GkT}:G,T(.

(2) Compile the original single-qubit gates and twirling
gates into new easy-gate cycles: C; = T, C, T%_,;.

In step 1, itis necessary to consider how the tensor product of
inverting gates is commuted through two-qubit gates in hard-
gate cycles. Typically, 7 is chosen to be the set of tensor
products of single-qubit Paulis, with the edge terms T and T'g
set to the identity gate; thus, if the two-qubit gates are all
Clifford gates (or locally equivalent to Cliffords), then the
correction gates will also lie in 7, and we need place no
restriction on the types of allowed easy gates. Therefore, RCis
efficiently compatible with universal quantum computation.
However, if the two-qubit gates in hard-gate cycles are not
locally equivalent to Clifford gates, then refocusing pulses
will be needed, which can result in additional arbitrary two-
qubit correction gates at the end of the circuit. No such
restrictions are placed on single-qubit gates in hard-gate
cycles, which can be arbitrary. In step 2, the new randomized
circuit is logically equivalent to the original bare circuit and
has the same number of elementary gates. Because the
correction gates are computed locally for each cycle, the
classical resource requirements for each randomization scale
linearly in the number of qubits and circuit depth. Therefore,
generating many (V) logically equivalent randomizations of a
bare circuit requires very low classical overhead and can be
efficiently done before runtime. While certain hardware
platforms (e.g., superconducting circuits) may be better
equipped to measure large N than others (e.g., trapped ions)
because of faster gate times, quantum hardware capable of
modifying pulse phases on the fly will enable the utilization of
anew randomization per shot [25] on platforms whose single-
qubit gates only differ by a change in virtual phases [39].

By measuring each randomization m/N times and
computing the union of all N results, we obtain an
equivalent statistical distribution for a circuit measured

m times in which coherent errors in each computational
cycle (except the last) have been averaged into Pauli
channels (e.g., random phase and bit flips),

E(p)= > cpPpP", (2)

Pepe”

where p is an n-qubit density matrix, P®" = {I,X, Y, Z}®"
the set of 4" generalized Pauli operators, and cp the relative
probability of an error due to P. Tailoring coherent errors
into stochastic Pauli noise has several major advantages:
(1) The tailored noise completely suppresses off-diagonal
terms in the error process resulting from coherent errors (in
the limit of perfectly implemented Pauli twirling; see
Supplemental Material [5]), reducing the overall error rate
per computational gate cycle. (2) Stochastic Pauli errors
have a finite probability of occurring in each gate cycle and
only grow linearly with circuit depth (in the small error
limit), in contrast to coherent errors which can accumulate
up to quadratically with circuit depth in the rare instances in
which there is complete constructive interference; thus, RC
stabilizes the error rate during algorithms by breaking up
the coherent accumulation of unitary errors. (3) Stochastic
noise has dramatically lower worst-case error rates than
coherent errors occurring at the same average rate, as
defined via the diamond norm (see Supplemental
Material [5]), and can be directly estimated via randomized
benchmarks in order to compare experimental error rates to
fault-tolerant error rate thresholds based on Pauli noise.
And (4), known fault-tolerant thresholds for stochastic
noise [40,41] are orders of magnitude higher than the
threshold for generic local errors [42] (for example, those
due to coherent errors), potentially enabling fault-tolerant
error correction with error rates comparable to those
already achieved in modern-day experiments.

To demonstrate noise tailoring via RC, we perform state
tomography on a single qubit (Q7) after 50 random gates (see
Appendix A), as shown in Fig. 1(c). We find that coherent
errors cause a net over-rotation in the measured state
compared to the ideal (noiseless) final state. When RC is
applied, each randomization results in a different net coher-
ent error; however, the combined result is more aligned with
the ideal vector. The state fidelity 7 = 0.862 and purity y =
0.938 for the bare result, and 7 = 0.879 and y = 0.881 for
the RC result. While the fidelities are comparable, the
rotation error in the bare result has been tailored into
stochastic noise under RC, as the fidelity and purity of the
RC result are approximately equal in magnitude.

To evaluate the efficacy of RC, we assess algorithmic
performance by the total variation distance (TVD), a
standard metric for the statistical distance between two
probability distributions and a relevant measure in quantum
supremacy experiments [43]:

1
dry (P, Pigea) = B Z|P(x) = Pideal (¥)

xeX

. (3
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where Pjgeqi(x) is the ideal probability of measuring a
bit string x in a set of possible bit strings X, and P(x) is
the experimentally measured probability. The TVD is a
basis-dependent metric that determines the probability of
obtaining an incorrect solution, with 0 (1) indicating that
the correct distribution of bit strings is always (never)
measured. Thus, improvements in algorithmic perfor-
mance equate to lower TVDs, as exemplified by the
observed reduction from dry pae = 0.073(8) to dryrc =
0.008(2) for the single-qubit results in Fig. 1(c), as
measured in the computational basis.

As a norm-based error metric, the TVD is generally
sensitive to the off-diagonal terms in an error process
resulting from coherent errors, in contrast to fidelity-based
measures, which are only sensitive to the diagonal terms
(see Supplemental Material [5]). Therefore, in the presence
of coherent errors, the TVD can be as large as

dry(P, Pigea) < V/1(€)V/d(d + 1), (4)

but under RC, it is instead upper-bounded directly by the
average error rate r(&),

d+1
dv(Pres Pidea) < r(é')T, (5)

which is quadratically lower in (£) and does not scale with
the dimension d = 2" (n qubits). Thus, RC provides a

general error reduction from /r(€) — r(€). While many
NISQ applications [e.g., variational quantum algorithms
(VQAs)] depend on measured expectation values as
opposed to the TVD, the TVD upper bounds the absolute
error of all expectation values measured in the same basis
(see Supplemental Material [5]); therefore, a small TVD
under RC guarantees a small error in any expectation value
estimated from the same probability distribution. Because
the TVD depends on simulating the ideal results of a
quantum circuit, it is not a scalable error metric. Therefore,
it is important to benchmark the TVD performance under
RC while quantum circuits can still be efficiently classi-
cally simulated, which will inform what TVD improve-
ments can be expected under RC in the post-NISQ era.

III. CYCLE ERROR RECONSTRUCTION

Because RC tailors noise within a quantum circuit, it is
useful to benchmark the tailored noise within our multi-
qubit system. To do so, we use cycle benchmarking [32]
(CB), a scalable protocol that measures errors affecting all
qubits during parallel gate cycles. Much like interleaved
RB [44], CB interleaves the target cycle of interest between
cycles of (tensor products of) random single-qubit Pauli
gates and measures an exponential decay as a function of
sequence length. A different exponential decay is produced
for each state in which the qubit is prepared and measured
(i.e., Pauli decay channel). Therefore, the total process

fidelity under CB is the weighted average over all M < 4"
measured Pauli decay channels (out of a total of 4" possible
channels for n qubits). The number of Pauli channels that
need to be sampled to estimate the process fidelity is
constant in the number of qubits and only sets the desired
precision in the fidelity estimate [32]. Furthermore, the
complexity of fully characterizing an n-qubit system via
CB is only polynomially expensive because it depends only
on the number of distinct hard-gate cycles one wishes to
characterize for any given application.

CB has several advantages over common RB protocols:
First, CB enables one to benchmark composite gate cycles,
giving more accurate estimates of cycle performance in the
context of parallel operations within a quantum circuit; this
includes capturing the impact of coherent errors on idling
spectator qubits, such as those not explicitly involved in an
entangling gate [45]. Second, in contrast to common RB
protocols, which perform Clifford twirling, CB performs
Pauli twirling, thus producing a stochastic Pauli channel
[Eq. (2)], much like RC. Therefore, the effective noise of
any cycle under CB is equal to the tailored noise under RC,
enabling accurate predictions of algorithmic performance
under RC via CB process infidelities.

In this work, we leveraged a cycle error reconstruction
(CER) protocol [32,46] based on targeted CB measure-
ments to produce an error map of the Pauli error rates in our
four-qubit system. Figure 2(a) outlines the process by
which CB can be used to reconstruct k-body gate errors
that occur during any hard-gate cycle. The error rates in
CER are the coefficients cp of a Pauli channel in the Kraus
representation [Eq. (2)], which can be reconstructed from
the Pauli eigenvalues [in the Pauli transfer matrix (PTM)
superoperator representation] measured by CB via linear
inversion using an inverse Walsh-Hadamard transform
[46]. Using CER, we identify the major sources of errors
in our system and compensate the most harmful effects with
targeted decoupling pulses or virtual phase gates (see
Supplemental Material [5] for more details). In Fig. 2(b),
we plot one- and two-body Pauli (Kraus) errors recon-
structed via CER for the hard-gate cycles in our system
after a targeted gate tuneup, showing that the residual error
syndromes are broadly distributed, collectively contribut-
ing to the process infidelity of each cycle and making
further targeted error mitigation less fruitful. By limiting
measurements to only one- and two-body errors and
making use of marginalized probability distributions, it
is not necessary to measure all M = 4" Pauli decay
channels under CER. More generally, it is possible to
reconstruct all one-body marginals with O(1) Pauli decays
and all two-body marginals with O[log(n)] Pauli decays for
n qubits. However, while some k-body errors can effi-
ciently be estimated for k > 2, it becomes exponentially
expensive to estimate all n-body errors. The results in
Fig. 2(b) show that the dominant residual errors in our
system are one-body errors. Therefore, even though only
one- and two-body errors were measured, the fact that
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(@) Pauli eigenvalues in the PTM Pauli coefficients in the (b) Cycle of interest
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Location of Error within Cycle

Targeted gate tuneup

A

FIG. 2. Cycle error reconstruction of the tailored noise under cycle benchmarking. (a) Schematic of the process by which one- and
two-body gate errors can be reconstructed using targeted CB measurements of a parallel gate cycle (e.g., CNOT between Q5 and Q6,
with Q4 and Q7 idling), providing detailed information about the Pauli (Kraus) errors occurring during the cycle, as shown in panel (b).
(b) Cycle error reconstruction results of four-qubit cycles containing a single CNOT gate and identity gates on the spectator qubits. The y
axis (x axis) labels the type of error (where the error occurs in the cycle), and the color (gradient) indicates the marginal error rate from all
Pauli contributions (95% confidence interval). The first (third) row of subplots shows one-body errors acting in idling (CNOT) qubits,
the second row of subplots shows correlated one- and two-body errors between idling qubits, and the last row of subplots shows
correlated one- and two-body errors between an idling spectator qubit and qubits participating in the CNOT. Here, a k-body error is
labeled by k nonidentity gates acting on n qubits (e.g., k = 1 for CNOT qubits, because these errors occur within a single gate body
acting on two qubits). Curly brackets indicate error types that cannot be distinguished due to degeneracies since any local error acting on
either qubit in the entangling operation will be transformed by the CNOT. All rows in which all errors are below 30% of the maximum
value have been omitted for clarity. This detailed information can be used to perform targeted gate tuneup to address the most harmful
errors. The residual errors in our system are broadly distributed among many pathways, so any further targeted tuneup will come with
diminishing returns.

two-body errors are negligible shows that three- or more
body errors are also negligible. These error rates can be
further utilized to simulate and predict algorithm perfor-
mance under RC, as shown in Fig. 3(c).

IV. QUANTUM FOURIER TRANSFORM

RC can be applied to any gate-based quantum algorithm,
including those at the heart of many quantum applications,
like the QFT. Here, we utilize a synthesis algorithm [47]
to numerically approximate the four-qubit QFT circuit
unitary in order to reduce the CNOT count to K =13
for our linear connectivity (see circuit diagram in Supple-
mental Material [5]). Much like the classical discrete
Fourier transform, the QFT maps singular inputs (e.g.,
|0000)) into uniform distributions, and it maps super-
position states (e.g., |+ + ++)) into singular distributions.
To measure the performance of RC for different resultant
probability distributions, we apply the QFT to various
single-qubit product states involving permutations of Pauli
basis states {|0), |1), |+)}, as well as random separable
input states [SU(2)®%,[0000)]; see Fig. 3(a) for several
examples of the measured distributions.

In Figs. 3(a) and 3(b), we show that the relative
RC performance is best (equivalent) when the algorithm
generates a uniform (singular) distribution across all

measurement basis states. This is due to the basis depend-
ence of the TVD: Given a small angle error of 0 relative
to the ideal final state of a system, the TVD scales as
dry (P, Pigea) = 0% =~ r(E) if the target state is in an
eigenstate of the measurement basis (i.e., deterministic
algorithms), whereas the TVD scales as dry (P, Pigea) = 6
[i.e., the \/r(E) dependence in Eq. (4)] if the target state is
coherently spread across the measurement basis (i.e., non-
deterministic algorithms; see Supplemental Material [5]).
Therefore, if the (ideal) target state is in an eigenstate of the
measurement basis, the raw probabilities will not be
sensitive to off-diagonal terms in the error process resulting

from coherent errors [which scale as 6~ /r(€)], so the

TVD will not benefit from the general \/r(&) — r(€)
improvement provided by RC. As such, distribution uni-
formity is a good proxy for the susceptibility of the target
state to coherent errors with respect to the measurement
basis, and it is thus correlated with improvement under RC.
More generally, error assessments that are only sensitive to
the diagonal terms in the error process (e.g., process
or average gate infidelity, or the TVD of deterministic
algorithms) cannot benefit from the suppression of the off-
diagonal terms via RC when averaging over many random-
izations. In contrast, norm-based error metrics, such as the
TVD of nondeterministic algorithms and the diamond
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FIG. 3. Improving the quantum Fourier transform with randomized compiling (a) Measured probability distributions for the QFT
applied to |0000), |000+), [+ + +-), and a random input state [SU(2)&?,]0000)]. (b) Bare and RC TVDs for all four-qubit QFT results,
as a function of distribution uniformity of the ideal results. RC provides more improvement as the resultant distribution spans more basis
states [dry (Pigeals Punitorm) — 01. Circles indicate the QFT applied to Pauli basis states ({|0), |1), |+)}), and triangles indicate random
inputs states [SU(2 )md|0000>] we use the same distinction in panels (c) and (d), but omit the description in the legend for clarity.
Pearson r values listed in the legend quantify the correlation strength of each data set, justifying linear fits for the RC data (transparent
bands indicate the 95% confidence intervals). (c) Experimental vs simulated TVDs from two models based on the Pauli error rates in
Fig. 2(b). The blue (orange) markers denote the bare (RC) circuits simulated with the coherent error model, and the cyan markers denote
the bare circuits simulated with the Pauli model. (d) Accuracy of the two models compared to experimental results. The bare circuits
simulated with the Pauli model are plotted against the experimental RC results in panel (c), which are also used to compute the model
accuracy in panel (d). (e) Summary of the improvement under RC for all two-, three-, and four-qubit random input QFT results, showing
good agreement between experiment (blue) and theory (gray). Simulations in which single-qubit (green) and two-qubit (pink) error rates
have been scaled down by a factor of 10 suggest that RC performance increases as error rates decrease. (Error bars on the TVD
[O(1073)] for panels (b)—(d) are smaller than the markers.)

distance, will generally be sensitive to the off-diagonal  for all four-qubit QFT results. For singular input states
terms in the error process and will thus generally benefit  (|0000) or |1111)), RC significantly reduces the TVD, but

from RC. for a superposition input state (|+ + ++)), the bare and RC
We quantify the “distance from a uniform distribution”  TVDs are approximately equal. We compute the Pearson
by computing the TVD of each ideal probability distribu-  correlation coefficient 7 to quantify the correlation strength

tion with the uniform distribution in d = 2" dimensions  between the experiment TVD and dyv(Pideal> Puniform)
for n qubits, dry(Pigeals Puniform)» Which is 0 (maximized)  where +1 (—1) indicates exact positive (negative) correla-
when Py, 18 uniform (singular). In Fig. 3(b), the bare and  tion and 0 implies no linear correlation. The RC results are
RC TVDs are plotted as a function of dyy(Pigear> Puniform) ~ Strongly correlated [r = 0.95(0.80) for basis (random)
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inputs] compared to the bare results [r = 0.66(0.32)
for basis (random) inputs], underscoring the stability and
predictability of RC compared to nonrandomized circuits.

In Fig. 3(c), we predict the TVD performance of the QFT
using two models: (1) a Pauli model of our system
consisting of the Pauli error rates extracted from the
CER results in Fig. 2(b); (2) a coherent error model that,
under simulated CER, produces approximately equal error
rates as the experimental results in Fig. 2(b). The coherent
error model is generated by finding a desired completely
positive and trace-preserving (CPTP) map for a fixed
unitarity [13] (i.e., fixed fraction of the total error rate
due to coherent errors), which has been minimized with
respect to the experimental CER results (see Supplemental
Material [5] for more details). Even though such a model is
based on experimental error rates, it does not accurately
capture detailed information about coherent errors in our
system (e.g., context-dependent rotation axes and angles
[15]). Therefore, we do not expect the coherent error model
to accurately simulate the performance of any individual
bare circuit; rather, we expect it to only capture the average
performance of the bare circuits, which is possible as long
as the magnitude of the unitarity in the model is correct. We
note that, in general, measuring an accurate coherent error
model for multiqubit systems with a continuous single-
qubit gate set is not experimentally tractable.

Using these models, we simulate the QFT circuits and
compare the results to the experimental TVDs in three
different ways:

(1) Coherent error model applied to the bare circuits vs

experimental bare results.

(2) Coherent error model applied to the RC circuits vs

experimental RC results.

(3) Pauli model applied to the bare circuits vs experi-

mental RC results.

For (3), it is unnecessary to simulate the RC circuits with
the Pauli model since the Pauli model already contains the
tailored error rates. In Fig. 3(c), we see excellent agreement
between experiment and simulation for (2) and (3), but
unreliable predictability for (1). This indicates that we can
accurately predict the results of an algorithm a priori with
CER error rates using (a) a Pauli model, as long as the
experimental circuit is performed using RC, and (b) a
coherent error model, as long as both the simulated and
experimental circuits are performed using RC. In Fig. 3(d),
we validate the model accuracy by computing the TVD of
the experimental results with the simulated results. Almost
all of the simulated results for (2) and (3) are accurate to
within 10% with respect to the experimental RC results, but
the accuracy of the simulated results for (1) are much
worse. By utilizing RC in conjunction with CB/CER, we
avoid the difficulty in capturing and modeling the complex
interplay of coherent errors, and thus close the gap between
the circuit performance predicted from benchmarking
diagnostics and experimental results.

In practice, the input states to quantum algorithms will
not be known a priori, such as when the QFT is used in

Shor’s algorithm [48]. While unknown inputs are not
guaranteed to be random, we use random inputs as a proxy
for when the QFT is used as a subroutine in other
algorithms. Figure 3(b) shows that when the QFT is applied
to random input states, most of the results are improved
under RC. A histogram of the TVD improvement for two-,
three-, and four-qubit random input QFT results can be seen
in Fig. 3(e) (two- and three-qubit QFT results are provided
in the Supplemental Material [5]), showing that the vast
majority of circuits (more than 81%) are improved under
RC by an average of dtypae/drvre & 1.9. Here, we
include two- and three-qubit results in order to summarize
the RC QFT performance using a larger sample size drawn
from systems that include differing error rates. In the rare
instances in which coherent errors in a circuit benignly
cancel, RC can hurt performance (dtv pae/drvre < 1);
however, in general, this becomes vanishingly unlikely for
longer depth circuits.

While the coherent error model may not accurately
predict the individual result of any given bare circuit, it
does predict the average performance relative to RC. To
demonstrate this, we compute the TVD improvement under
RC (dtv pare/drv rc) for all of the two-, three-, and four-
qubit random input QFT circuits simulated using the
coherent error model. As seen in Fig. 3(e), the distribution
of improvement under RC predicted by simulation agrees
well with experiment, with an overlapping index of 0.94
(out of a maximum of 1), which quantifies the percentage
that one normal distribution overlaps with another. The
good agreement between experiment and theory in Fig. 3(e)
suggests that we can predict the average improvement
under RC as error rates decrease. Included in Fig. 3(e) are
simulated results in which single-qubit error rates are
reduced by a factor of 10, resulting in a modest improve-
ment, and when both single- and two-qubit error rates are
reduced by a factor of 10, in which case RC improves more
than 94% of the simulated circuits by an average of
dry pare/drvre = 3.4. In agreement with the predictions
made in Ref. [20], these results demonstrate that RC is
expected to provide a larger relative improvement as gate
infidelities decrease (for a fixed fraction of the total error
rate due to coherent errors). Therefore, as quantum pro-
cessors improve and error rates decrease, we can expect RC
to outperform nonrandomized circuits as long as coherent
errors persist.

V. RANDOM CIRCUITS OF VARIABLE DEPTH

To illustrate the broad applicability and generic benefits
of RC for universal circuits, we demonstrate achievable
performance gains for RC applied to four-qubit circuits
of variable depth composed of K interleaved cycles of
easy and hard gates randomly sampled from a universal
(Clifford + T') gate set (see Appendix C). As shown in
Fig. 4(a), RC reduces the average TVD at all circuit depths
tested (with N = 20 randomizations for each bare circuit),
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FIG. 4. Randomized compiling extends the computational reach with respect to circuit depth. (a) Bare and RC TVDs as a function of
circuit depth K. RC reduces the TVD on average for all circuit depths tested, allowing one to perform longer gate sequences under a
fixed TVD error budget. The semitransparent blue (orange) points indicate the TVDs of the individual random circuits (the unioned data
over all N = 20 randomizations of the corresponding bare circuits). Violin plots depict the distribution of results. The TVD error grows
approximately linearly with K for both bare and RC results, suggesting that the dominant reason for an improvement under RC is an
overall reduction in the error for each gate cycle K, rather than a suppression of the adversarial accumulation of coherent errors (although
RC can additionally provide this benefit). (b) RC TVD improvement factor for the random circuits in panel (a) as a function of
distribution uniformity. The average improvement is drv pye/drvre & 1.7. (¢) TVD as a function of number of randomizations, with
K = 10 fixed. The average TVD under RC converges to a value close to the 10% quantile level (dashed line) of the nonrandomized
circuits for N = 20. However, only N = 10 randomizations are needed to converge to within 2.7% of the N = 20 level. (d) For a fixed
total error rate, RC provides a larger TVD improvement for systems with a higher fraction of coherent errors. The colored subsets listed
in the legend highlight random single-qubit circuits that were performed in isolation (purple) or in parallel (blue and red). The average
fraction of the total error rate due to coherent errors was quantified using measurements of RB and unitary RB under isolated or
simultaneous operation.

demonstrating how longer-depth quantum circuits can be
performed under RC given a fixed error budget in the TVD.
These results highlight an important distinction in how RC
can improve algorithm performance: Because random
circuits are already robust to the coherent accumulation
of unitary errors, we observe a linear (not quadratic) growth
in the average TVD as a function of circuit depth for both
the bare and RC circuits. Therefore, the reduction in the
TVD under RC is not due to the suppression of the
adversarial accumulation of coherent errors (although each

randomization under RC can additionally provide this
benefit for structured circuits that are susceptible to such
errors). Rather, it is due to a reduction in the off-diagonal
terms in the error process due to coherent errors per
computational gate cycle K when averaging over many
randomizations (see Supplemental Material [S]). As pre-
viously noted, this improvement is not observed for
fidelity-based error metrics [see, for example, the state
fidelity results in Fig. 1(c)], which under-represent the
global impact of coherent errors on quantum algorithms, as
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they are only sensitive to the diagonal terms in the error
process. The relative improvement under RC is reduced at
longer circuit depths since both the bare and RC results will
converge to a uniform distribution (i.e., statistical mixture)
due to decoherence in the limit of large K.

The TVD improvement under RC for all of the random
circuits in Fig. 4(a) is plotted in Fig. 4(b) as a function
of dry(Pigeals Puniform)» With an average improvement of
dry pare/ drv re ~ 1.7. Because randomly sampled circuits
approach an approximate unitary-2 design as a function of
circuit depth [49], we observe that the results are not uni-
formly spread across dry (Pigeals Puniform) for small K; rather,
they are highly concentrated at several uniformities and only
begin spreading out for larger K. Given the concentration of
results in the range between dv (Pigeat> Puniform) € [0-2, 0.8]
in both Figs. 3(b) and 4(b), we would expect typical
algorithms to fall within this range.

Additionally, we show that a small number of random-
izations is sufficient to saturate the lowest-possible TVD
under RC for a fixed circuit depth (K = 10), plotted in
Fig. 4(c). After N = 20 randomizations, the average TVD
under RC converges to a value that is better than approx-
imately 90% of the nonrandomized circuits. However, after
only N = 10 randomizations, the average RC TVD is
already within 2.7% of the N =20 level, highlighting
the resource efficiency of this protocol.

Finally, in Fig. 4(d), we plot the average TVD improve-
ment factor for random single-qubit circuits (at a fixed
circuit depth K = 5; see Supplemental Material [5]) per-
formed in isolation or in parallel as a function of the
average fraction of the total error rate due to coherent
errors. From these data, we see that RC provides a larger
relative TVD improvement as the fraction of the total error
rate due to coherent errors increases (for a fixed total error
rate). We measure the average total error rate r(£) using RB
and the average error rate due to coherent errors ry (&)
using unitary RB [13,50] (see Supplemental Material [5]).
Even though the average total error rates of any two results
are not exactly equal, we group the data by the number
of qubits performed in parallel (differentiated by color)
since ry(E)/r(€) can be more directly compared across
these subsets independently. While RC performance
decreases as ry(€)/r(€) - 0, we note that even for
single-qubit systems that are close to coherence limited
[ry(E)/r(€) < 0.1], RC still provides an average improve-
ment. Therefore, while the trade-off between decreased RC
improvementas ry; (€)/r(E) — 0[for r(€) fixed] and increa-
sed RC improvement as r(E) — 0 [for ry(E)/r(E) fixed]
will depend on each system individually, our results suggests
that any system with coherent errors can benefit from RC on
average, even those which are nearly coherence limited.

VI. OUTLOOK

In this work, we have demonstrated the promising
capabilities of randomized compiling, a universal protocol

in gate-based quantum computing for suppressing coherent
errors that is agnostic to specific error models and hardware
platforms. RC provides a strategy for mitigating complex
and intractable crosstalk dynamics, extending the com-
putational reach of noisy quantum processors. Additionally,
novel error reconstruction methods using CB are well
suited to characterize the new and emergent forms of
crosstalk errors seen on multiqubit processors, and they
offer a method for accurately predicting error rates under
RC. This improved predictability is essential for scalable
quantum computing and is necessary for comparing exper-
imental error rates to fault-tolerance thresholds.

We believe that our methods and results have broad
relevance across many experimental and theoretical efforts
exploring gate-based quantum computing applications,
including NISQ algorithms such as VQAs, which depend
on the accurate measurement of expectation values.
Additionally, while VQAs aimed at finding ground-state
energies of quantum systems can converge even in the
presence of coherent errors, the true parametrization of the
ground-state wave function may be incorrect; we suspect
that RC can facilitate faster convergence to the ground-state
energy in the presence of coherent errors while also finding
the best estimate of the true ground-state wave function of
the system. Finally, RC may continue to be useful in the
fault-tolerant era since it is expected that, under certain
conditions, coherent errors will continue to persist and
remain a problem even with quantum error correction
[51,52]; utilizing RC will ensure that fault-tolerant error
thresholds are set by stochastic errors, not coherent errors.
To this end, we expect that RC is not just a stopgap measure
in the NISQ era, but will continue to be a powerful
technique beyond NISQ.

Supplemental Material [5] is available for this paper. All
data are available in the manuscript, supplemental materi-
als, or from the corresponding author upon reasonable
request.
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APPENDIX A: SINGLE-QUBIT STATE
TOMOGRAPHY

The random circuit used for the single-qubit state
tomography results in Fig. 1(c) was generated by randomly
sampling K = 25 interleaved cycles of easy and hard
single-qubit gates, as defined by the following gatesets:
the single-qubit Clifford set, Ceosy = {Cy}, and common
non-Clifford gates, Gy.q = {X45,Y45,T = Z45}. State
tomography results are reconstructed by performing
ensemble measurements of the same final state in the X,
Y, and Z bases. For the experimental results presented in
Fig. 1(c), 6000 shots were taken in each measurement basis
for the bare circuit. Since 12 randomizations of the bare
circuit were utilized in the RC result, in order to normalize
shot statistics between the bare and RC results, 500 shots
were taken for each randomization in each basis.

APPENDIX B: QUANTUM FOURIER
TRANSFORM

Each bare QFT circuit was measured 10 000 times. Note
that N = 50 randomizations were generated for each bare
circuit, and each randomization was measured 200 times.
All “random” input states were generated by applying
random SU(2) unitaries to each qubit independently before
applying the QFT algorithm. For the data presented in
Fig. 3(b), 100 random inputs were generated.

APPENDIX C: RANDOM CIRCUITS OF
VARIABLE DEPTH

Random bare circuits were generated by randomly
sampling K interleaved cycles of easy and hard gates
from the following gatesets: For the four-qubit circuits
in Figs. 4(a)-4(c), Cepey = {C1.X45,Y45, T} and Gpyq =
{CX = CNOT,CY,CZ}, where C; is the single-qubit
Clifford set. For the single-qubit circuits in Fig. 4(d),
Ceasy = 1{C1} and Gyyq = {X45, Y45, T}. For each circuit
depth K, which we define in terms of the number of two-
qubit (non-Clifford) gates for the multiqubit (single-qubit)
circuits, 100 random bare circuits were generated, and each
was measured 4000 times. Note that N = 20 randomiza-
tions were generated for each random bare circuit, and each
randomization was measured 200 times. All N =20

randomizations of the corresponding bare circuits were
combined to obtain an equivalent statistical distribution for
a circuit measured 4000 times. The circuit depth was fixed
at K =5 for the single-qubit results in Fig. 4(d).

For the results presented in Fig. 4(c), a total of N/ = 20
randomizations were generated for each bare circuit, and
each was measured 4000 times. For each N along the x
axis, the union over only N € N/ randomizations was
computed for each bare circuit, and then m = 4000 shots
were randomly chosen from a total of m, = >N m; shots
(with the exception of N =1). This is equivalent to
throwing out m, — 4000 shots at random from the
unioned RC result in order to sample a smaller distribution
from the full distribution.
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