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Abstract

We present a unified approach to visual representation, ad-
dressing both the needs of superordinate and basic-level cate-
gorization and of identification of specific instances of famil-
iar categories. According to the proposed theory, a shape is
represented by its similarity to a number of reference shapes,
measured in a high-dimensional space of elementary features.
This amounts to embedding the stimulus in a low-dimensional
proximal shape space. That space turns out to support repre-
sentation of distal shape similarities which is veridical in the
sense of Shepard’s (1968) notion of second-order isomorphism
(i.e., correspondence between distal and proximal similarities
among shapes, rather than between distal shapes and their prox-
imal representations). Furthermore, a general expression for
similarity between two stimuli, based on comparisons to ref-
erence shapes, can be used to derive models of perceived sim-
ilarity ranging from continuous, symmeltric, and hierarchical,
as in the multidimensional scaling models (Shepard, 1980), to
discrete and non-hierarchical, as in the general contrast models
(Tversky, 1977, Shepard and Arabie, 1979).

Introduction

All but a few current theoretical treatments of visual represen-
tation still adhere to the Aristotelian doctrine of representation
by similarity, according to which an internal entity represents
an external object by virtue of resemblance between the two.!
Simply put, the original version of that doctrine holds that the
representation of a tomato has something of the redness and
of the roundness of the real thing. The predominant theories
of visual shape representation still speak about isomorphism:
typically, it is assumed that structural (Biederman, 1987) or
metric (Ullman, 1989) information stored in the brain reflects
corresponding properties of shapes in the world. In compar-
ison, no student of color vision seriously believes that rep-
resentations of tomatoes are red, or even that the reflectance
spectra of tomatoes are explicitly stored; this has been sup-
planted by the feature detector theory, according to which the
response of internal mechanisms tuned to particular sensory
stimuli constitute the basic representation for those stimuli.
A major goal of the present paper is to show that shape too,
over and above color or local orientation, can be encoded in a
low-dimensional feature space.

An important step towards that goal has been made by
Roger N. Shepard, who pointed out that instead of a first-order
isomorphism between the shapes and their representations, it

!“Representation of something is an image, model, or reproduc-
tion of that thing,” (Suppes, Pavel, and Falmagne, 1994).

makes more sense to expect a second-order isomorphism be-
tween similarities of shapes and similarities of the internal
representations they induce (Shepard, 1968). Essentially, this
is a call for representation of similarity instead of representa-
tion by similarity.

A representation of a collection of shapes is veridical in
Shepard’s sense, if the mapping it implies between (some
parameterization of) the distal shape space and the internal,
or proximal, representation space preserves similarity ranks,
Elsewhere, we show that a distal to proximal mapping realized
by a bank of typical connectionist classifiers, each tuned to a
particular shape, is likely to satisfy the requirements for simi-
larity rank preservation generically, over appropriately limited
regions of the distal space (Edelman, 1995b; Duvdevani-Bar
and Edelman, 1995).

Here, we extend this theory of representation in two direc-
tions. First, we outline acommon framework for treating cate-
gorization, recognition and identification as measurements of
similarities to subspaces of the image space. Second, we show
how similarity can be defined in such a manner as to form a
bridge between theories of representation based on continuous
feature spaces, and those based on lists of discrete-valued fea-
tures. We conclude with a brief mention of some of the results
supporting the theory, in areas ranging from psychophysics
and physiology to computation and philosophy.

Representation = measurement +
dimensionality reduction

In any cognitive system, the internal representations are con-
structed by subjecting the input to a set of measurements,
whose aim is to provide an efficient description of the stim-
uli, e.g., as points in some low-dimensional parameter space.
Because such a space is neither directly accessible nor known
a priori, and because different tasks may call for different
aspects of the stimuli to be represented, it is a good strategy to
carry out as many measurements as possible, to increase the
likelihood of correspondence between some subspace of the
measurement space M and the relevant part of the parame-
ter space. This makes M high-dimensional, and necessitates
subsequent dimensionality reduction, whose aim is to recover
the relevant subspace of M. Likewise, the input to an object
recognition system — an n X n image — can be considered as

a point in a n?-dimensional image or raster space R = R"!,
which we identify with the measurement space M (in biolog-
ical vision, one may think of the space of patterns transmitted
by the optic nerve to the brain). The task of recognition is,
given X € R, to determine whether X is an image of an
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Figure 1: The image space, R (depicted here as 3-dimensional, to facilitate visualization), and some of its subspaces. The V),
(shown as dashed lines) are the view spaces for the three exemplars E;, (marked by filled circles), all of which belong to the
same class C (the class of 4-legged animal shapes). Some of the different views of E|; are shown (marked by open circles).
The surface patch represents a part of the shape space S, and the vector n — a normal to it. Movement along this direction in
R corresponds to a reduction in the resemblance between the resulting image and the images of coherently looking objects.
Image X should be classified as belonging to exemplar E,, class C;, and, of course, to the shape space S.

object (a coherent entity, which, in intuitive terms, looks like
something, rather than like random pixel noise), and, if it is,
to establish the category to which the object belongs, and, if
possible, the object’s identity. It is convenient to cast this
problem in terms of attributing to X a proper location, re-
spectively, in the shape space S, the class space C, and the
exemplar space €, where R 2 & D C, and £ = £(C) (see
Figure 1). A complete characterization of an input calls for
determining i, j,k, suchthat X € E;,and S, C 5, C; CC,
E,;: C £ (£; =E(C,)),

Basic level. Consider first the basic-level categorization
problem: given X, find j such that X € C,. The major
obstacle to be overcome here is the dependence of the appear-
ance of X € C, on factors such as illumination and viewpoint,
in addition to the category identity j. If C; is taken to cor-
respond to the image of a member of 7 in some canonical
orientation, the viewing conditions can be seen to span a view
space V;, which is, to a first approximation, orthogonal to
the class space C, and pierces it at C = C,. By training a
general-purpose function approximation module to perform
the mapping T'(5) : V; — C;, one can largely eliminate the
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dependence of categorization on viewing conditions (Poggio
and Edelman, 1990). The normalizing transformation T'(5)
can work even for inputs not previously encountered by the
system (thatis, for different instances E ), provided that they
belong to the class j (Lando and Edelman, 1995).

Subordinate levels. The central problem in determining
the identity k lies in the fine resolution that must be attained
within the instance space £,, in the face of the residual mis-
alignment left over from the action of the normalizing transfor-
mation 7. This problem can be approached by learning hyper-
acuity in the instance space, as it is done in other hyperacuity-
related tasks (Poggio, Fahle, and Edelman, 1992); experience
shows that hyperacuity can be attained despite considerable
misalignment of the stimulus as a whole, relative to its “home”
or training pose.

Superordinate levels. The most challenging problem
arises when the system encounters an unfamilar shape, be-
longing to none of the classes for which specially trained cat-
egorization modules are available. The key to a solution here
lies in considering the population response at the basic cat-
egorization level (Edelman, 1995b). If the existing modules



have sufficiently wide response profiles in the shape space S,
a number of modules will respond, effectively representing
the similarities between the input and the preferred shape of
each module. This highly informative pattern of similarities is
lost if the classification decision is made in a winner-take-all
manner among the responding modules, rather than based on
the ensemble response of several modules (Edelman, Reisfeld,
and Yeshurun, 1992).

A Chorus of Prototypes

A collection of modules {p;}, each trained to recognize a
basic shape category, provides a representational substrate
that is suitable for each of the three levels of categoriza-
tion listed above. We refer to the categories for which such
modules are available as prototypes; these are defined as
C, = argmaxg . p:(C). Because a number of modules
respond for any given input, the resulting scheme is called
a Chorus of Prototypes (Edelman, 1995b). The pattern of
responses of the modules to a stimulus X is the ordered list
p(X) = {p:(X)}, 2 = 1...k. Note that p,(X) depends not
on the point-to-point distance between X and some X;, but
rather on the distance between X and that member C, of the
class space C to which p; is tuned. In the remainder of this
paper, we concentrate on two aspects of the Chorus scheme:
(1) the characterization of the shape space &S in terms of the
prototype response vector p, and (2) the use of p in tasks that
involve judgment of similarity.

Similarities to prototypes and the shape space S

The nature of dimensionality reduction performed by Chorus
can be characterized by describing the relationship between
the shape space S and the vector of responses of the prototype
modules, p. One way to do that is by viewing the action
of Chorus as interpolation: intuitively, one would expect the
shape space to be a (hyper)surface that passes through the
reference classes {C;} and behaves reasonably in between
(see Figure 1). Now, different tasks carry with them different
notions of reasonable behavior. Consider first the least specific
level in a hierarchy of recognition tasks: deciding whether X
is the image of some (familiar) object. For this purpose, it
would suffice to represent S as a scalar field over the image
space S(X) : R — R, which would express for each X its
degree of membership in §. For example, we may set S =
max, {p;} (the activity of the strongest-responding prototype
module), or shape = Z.‘ p; (the total activity; cf. Nosofsky,
1988). We remark that it should be possible to characterize
a superordinate-level category of the input image, and not
merely decide whether it is likely to be the image of a familiar
object, by determining the identities of the prototype modules
that respond above some threshold (i.e., if, say, the cat, the
sheep and the cow modules are the only ones that respond,
the stimulus is probably a four-legged animal).

At the basic and the subordinate category levels, we are in-
terested in the location of the input wirhin S, which, therefore,
can no longer be considered a scalar. Note that parametric
interpolation is not possible in this case, as the intrinsic di-
mensionality of S is not given a priori.> Now, the prototype

This is unlike the case of the three-dimensional view space, pa-
rameterized by the Euler angles. However, it may still be possible to
estimate the dimensionality of S by examining the neighbor structure
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response field p induced by the reference classes {C, } con-
stitutes a nonparametrically interpolated vector-valued repre-
sentation of &, in the following sense: (1) changing the shape
(“morphing”) C, into C;, corresponding to a movement of
the point in S, makes the vector p rotate smoothly between
p(C;) and p(C;); the representational value of this prop-
erty of the Chorus transform is discussed in (Duvdevani-Bar
and Edelman, 1995); (2) the interior of the convex hull of
the reference classes {C;} is mapped onto the interior of the
convex hull of {p(C;)}; moreover, the mapping is one-to-
one if a minimum-norm (i.e., minimum summed distance to
the prototypes) requirement is imposed on its inverse; (3) the
Voronoi tessellation induced over C by {C,} is preserved by
the mapping p.

Similarities to prototypes and similarities between
stimuli

In Chorus, each p; is, in a sense, a feature, whose value
for A € R is signified by the activation p,(A). Consider
the similarity structure induced by this feature space over
the universe of stimuli. A natural way to measure similar-
ity between two stimuli, A and B, is by the Euclidean dis-
tance between the corresponding feature vectors, p(A) and
p(B): s£(A,B)”' ~ TL, [ni(A) - p.(B)]". However,
a uniform scaling in the responses of all prototype detectors
p — c p (as in seeing through fog) should not be interpreted
as a change in the shape of the stimulus object. To make the
similarity insensitive to such scaling, we define similarity by
the cosine of the angle between p(A) and p(B), in the space
spanned by the prototype responses:

k
sa(A,B) ~ Y pi(A)pi(B) = (p(A),p(B)) (1)

=1

This definition of similarity must, however, be further mod-
ified, for two reasons. First, s, is independent of context,
whereas perceived similarity depends on the “contrast set”
against which it is to be judged. Second, s, is symmet-
ric, whereas human perception of similarity appears to be
asymmetric in many cases (Tversky, 1977). To make s, de-
pend on the context, we introduce a vector of weights, one
per prototype, such that w; = w; ({A,B,C,.. }§ Thus,
comparing A and B in two contexts, {A,B | C,D,E} and
{A,B | F,G, H}, may result in different values of similarity
between A and B. To model the asymmetry which frequently
arises when subjects are required to estimate the similarity of
some stimulus A to another stimulus B, we observe, follow-
ing Mumford, that subjects in this case behave as if they take
“A is similar to B” to mean “B is some kind of prototype in a
category which includes A. Thus, the stimulus input A being
analyzed is treated differently from the memory benchmark
B” (Mumford, 1991). To give B the required distinction,
each feature p;(B) can be weighted in proportion to its long-
term saliency sal(p;, B) in distinguishing between B and the
other stimuli. The resulting expression for similarity, which
provides for the effects of context and for asymmetry, is

of the reference points; see, e.g., (Tversky and Hutchinson, 1986).
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Figure 2: The response of a radial basis function module, trained on 10 random views of a parametrically defined object, to
stimuli differing from a reference view of that object (marked by the big circle), in three ways: (1) by progressive view change,
marked by o’s; (2) by progressive shape change, marked by x’s; (3) by combined shape and view change, marked by *’s.
The points along each curve have been sorted by pixel-space distance between the test and the reference stimuli (shown along
the abscissa). Points are means over 10 repetitions with different random view-space and shape-space directions of change;
a typical error bar (+ standard error of the mean) is shown for each curve. Note the insensitivity of the module’s output to

view-space changes, relative to shape-space changes. Thus,
stimulus to the view space of the reference object.

2EY g

k
s(A,B) ~ ;‘Wipl(A) (sal(pn B)

Note that this definition has the same form as the additive clus-
tering (ADCLUS) similarity measure of (Shepard and Arabie,
1979), which, in turn, instantiates Tversky’s (1977) discrete
contrast model of feature-based similarity. At the same time,
it is built on top of a continuous metric representational sub-
strate — the shape space spanned by proximities to prototypes.
The degree of compromise between these two approaches to
similarity may depend on the demands of the task at hand, via
the parameters of equation 2. At the one extreme, a Chorus-
based system may behave as if it maps the stimuli pertaining
to a task into a metric space, with the ensuing symmetric sim-
ilarity and possible interaction among different dimensions;
the other extreme may involve discrete all-or-none features,
as in the examples surveyed by Tversky (1977).

the output can be interpreted as signalling the proximity of the

Similarities to prototypes as a basis for veridical
perception

The veridicality of representation of parametrically defined
shapes in human subjects has been tested in two recent stud-
ies (Edelman, 1995a; Cutzu and Edelman, 1995). In each
of a series of experiments, which involved pairwise simi-
larity judgment and delayed matching to sample, subjects
were confronted with several classes of computer-rendered
3D animal-like shapes, arranged in a complex pattern in a
common parameter space. Response time and error rate data
were combined into a measure of subjective shape similarity,
and the resulting proximity matrix was submitted to non-
metric multidimensional scaling (MDS; Shepard, 1980). In
the resulting solution, the relative geometrical arrangement
of the points corresponding to the different objects invariably
reflected the complex low-dimensional structure in parame-
ter space that defined the relationships between the stimuli
classes (see Figure 3).

Computer simulations showed that the recovery of the low-
dimensional structure from image-space distances between
the stimuli was impossible, as expected. In comparison, the
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Figure 3: Left: the parameter-space configuration used for generating the stimuli in one of the experiments described in (Cutzu
and Edelman, 1995). Middle: the 2D MDS solution for all subjects. Symbols: o — true configuration; X — configuration
derived by MDS from the subject data, then Procrustes-transformed (Borg and Lingoes, 1987) to fit the true one. Lines connect
corresponding points. The coefficient of congruence between the MDS-derived configuration and the true one was 0.99. In
comparison, the expected random value, estimated by bootstrap (Efron and Tibshirani, 1993) from the data, was 0.86 £ 0.03
(mean and standard deviation); 100 permutations of the point order were used in the bootstrap computation. The Procrustes
distance between the MDS-derived configuration and the true one was 0.66 (expected random value: 3.14 & 0.15). Right:
the 2D MDS solution for the RBF model; coefficient of congruence: 0.98 (expected random value: 0.86 £ 0.03); Procrustes

distance: 1.11 (expected random value: 3.14 £ 0.17).

psychophysical results were fully replicated by a model pat-
terned after a higher stage of object processing, in which
nearly viewpoint-invariant representations of individual ob-
Jjects are available; a rough analogy is to the inferotemporal
visual area IT; see, e.g., (Tanaka, 1993; Logothetis, Pauls,
and Poggio, 1995). Such a representation of a 3D object can
be easily formed, if several views of the object are available,
by training a radial basis function (RBF) network to interpo-
late a characteristic function for the object in the space of all
views of all objects (Poggio and Edelman, 1990). Following
the Chorus approach, we chose a number of reference objects
(in Figure 3, the corners of the parameter-space CROSS), and
trained an RBF network to recognize each such object (i.e., to
output a constant value for any of its views, encoded by the
activities of the underlying receptive field layer). At the RBF
level, the similarity between two stimuli was defined as the
cosine of the angle between the vectors of outputs they evoked
in the RBF modules trained on the reference objects (equa-
tion 1). The MDS-derived configurations obtained with this
model showed significant resemblance to the true parameter-
space configurations (see Figure 3, right).

Conclusion

Because the reference shapes can be considered complex fea-
tures, Chorus effectively extends the notion of representation
by feature detection from simple “primary” perceptual qual-
ities such as color to all visual dimensions, including shape.
This makes it possible to use multidimensional feature spaces
in which different dimensions correspond to radically differ-
ent qualities, not all of which need even be visual. Moreover,
the system can maintain a high degree of plasticity, as new
complex features can be learned by memorization, without
paying for versatility by the need for dynamic binding, as in
structural representation involving generic features.

264

The ensemble of feature detectors responds (J. J. Gibson
would say, resonates) to the environment (while extracting
task-specific information), without reconstructing it inter-
nally. By merely mirroring proximally the similarity structure
of a distal shape space, Chorus embodies the ideas of those
philosophers who argued that “meaning ain’t in the head”
(Putnam, 198B) and that “cognitive systems are largely in the
world” (Millikan, 1995), circumvents the severe difficulties
encountered by the reconstructionist approaches in computer
vision, and may explain the impressive performance of bio-
logical visual systems, which, in any case, appear to be too
sloppy to do a good job of reconstructing the world (O’Regan,
1992). Thus, in an important sense, Chorus lets the world be
its own representation.
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