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ABSTRACT OF THE DISSERTATION

Increasing Adoption of Deep Learning Models in Medicine and Circadian Omic Analyses
through Interpretability and Data Availability

By

Muntaha Samad

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Professor Pierre Baldi, Chair

There are numerous applications for deep learning in a healthcare setting including: provid-

ing more accurate diagnoses, recommending treatment plans, predicting patient outcomes,

tracking patient engagement and adherence, and reducing the burden of administrative tasks.

This plethora of applications has resulted in the widespread publication of deep learning al-

gorithms applied to healthcare data. Despite numerous publications showing deep learning

to be very successful in retrospective healthcare studies, very few of these algorithms are

then actually incorporated into clinical practice. While there are many factors influencing

the lack of algorithm deployment, one of the major reasons is a lack of trust in deep learning.

This lack of trust stems in part from a lack of model interpretability and an inability to inde-

pendently verify published results due to a lack of data availability. In this work, we explore

generalized additive models with neural networks (GAM-NNs) as a method of improving

model interpretability and we propose MOVER: Medical Informatics Operating Room Vi-

tals and Events Repository a publically available repository of medical data designed to

improve visibility into deep learning algorithms in healthcare.

Similarly, deep learning can be used to analyze circadian omic (e.g. transcriptomic, metabolomic,

proteomic) time series data. Several studies have shown that a disruption to circadian

xii



rhythms have been linked to health problems such as cancer, diabetes, obesity, and prema-

ture aging. In order to gain clinician trust in the conclusions drawn from circadian omic

analyses we propose CircadiOmics: the largest annotated repository of circadian omic time

series data analyzed using deep learning. Clinicians and researchers can use CircadiOmics

to not only validate the findings of their circadian omic experiments, but also to analyze

multiple circadian omic experiments in aggregate.
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Chapter 1

Introduction

Deep learning models have tremendous potential to greatly improve patient care and out-

comes and improve our understanding of circadian rhythms. Despite numerous publications

showing deep learning to be very successful in retrospective healthcare studies, very few

of these algorithms are then actually incorporated into clinical practice. Similarly, clinical

adoption of the findings from circadian omic experiments analyzed using BIO-CYCLE can

be an arduous process due to a lack of clinician trust in findings. Two factors contributing

to a lack of trust in the output of deep learning models are: a lack of interpretability and a

lack of publicly available data.

1.1 Increasing Adoption of Deep Learning Models in

Medicine

In healthcare, deep neural networks (DNNs) and other machine learning models often have

higher accuracy than simpler models like logistic regression (LR) however, they are often

considered to be “black box” models and this lack of interpretability and transparency is

1



considered a challenge for clinical adoption. Additionally, the lack of trust in deep learning

models stems in part from an inability to independently verify published results. Although

the publication of AI algorithms in the healthcare space has become pervasive, the data

used to develop these algorithms is often not published alongside the algorithm. This lack

of visibility into the analyzed dataset prevents independent researchers not only from repro-

ducing published results but also from improving upon existing algorithms and developing

novel algorithms. In this work, we will demonstrate that our proposed generalized additive

neural network (GAM-NN) architecture is able to (1) leverage a neural network’s ability to

learn nonlinear patterns in the data, which is more clinically intuitive, (2) be interpreted

easily, making it more clinically useful, and (3) maintain model performance as compared to

previously published DNNs. We also demonstrate the necessity for publicly available medical

data using MOVER: Medical Informatics Operating Room Vitals and Events Repository.

1.2 Increasing Adoption of Deep Learning Models in

Circadian Omic Analyses

The advance of modern high-throughput technologies has made it possible to investigate

circadian rhythms on the molecular level. This increase in available circadian omic (e.g.

transcriptomic, metabolomic, proteomic) time series data has made it possible to analyze

circadian rhythms using deep learning. BIO-CYCLE is a deep-learning-based program that

can analyze omic time series and statistically assess their periodic nature and, when peri-

odic, accurately infer the corresponding period, amplitude, and phase. To increase the clin-

ical adoption of the findings from circadian omic experiments analyzed using BIO-CYCLE,

we propose CircadiOmics: the largest annotated repository of circadian omic time series

processed using BIO-CYCLE. CircadiOmics contains over 290 experiments and 100 mil-

lion individual measurements, across 20 unique tissues, and across 11 di↵erent species. Via

2



CircadiOmics, users can process their circadian omic data using BIO-CYCLE, verify their

experimental results by comparing their results to other datasets found in the repository,

and analyze all of the datasets in aggregate. CircadiOmics makes the BIO-CYCLE output

easily interpretable and enables powerful bioinformatics and systems biology analyses.
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Chapter 2

Development and Validation of an

Interpretable Neural Network for

Prediction of Postoperative

in-hospital Mortality

2.1 Introduction

We and others have recently shown that deep neural networks (DNNs) and random forest

algorithms, using only readily available information extracted from the electronic health

record before or at the end of surgery, can successfully predict postoperative in-hospital

mortality with area under the curve (AUC) ranging from 0.87 to 0.93 [1, 2, 3]. While DNNs

and other machine learning models often have higher accuracy than simpler models like

logistic regression (LR), they are often considered to be “black box” models and this lack

of interpretability and transparency is considered a challenge for clinical adoption [4]. In

4



healthcare, intelligible models not only help clinicians to understand the problem and create

more targeted action plans, but also help to gain the clinicians’ trust. Thus, LR models

remain popular in the healthcare space, as they are easily interpretable, robust, easy to

implement, and usually have good performance, as previously observed in our work com-

paring DNNs to LR3 . However, LR can be limited by the fact that it is a shallow model

with no ability to create new feature representations, such as with DNNs. An LR model

can only combine the input features linearly before passing that combination through a

logistic function, and this linear combination of features may not reflect clinical intuition.

For example, both hypervolemia and hypovolemia have been shown to increase the risk of

postoperative complications, reflecting a nonlinear relationship between a patient’s volume

status and the risk for complications [5]. Nonlinear relationships can be captured by LR,

but only through extra featurization and analyses, which may result in an infinite number

of possible relationships and combinations of features. While DNNs are capable of learning

nonlinear relationships between features on their own, they lack the interpretability of LR.

One method of overcoming the limited interpretability of more complex models is to use

Generalized Additive Models (GAMs). Standard GAMs simply model the target response

as a sum of univariate models. Caruana et al. demonstrated that GAMs which also in-

cluded pairwise interactions of features could be applied to real healthcare problems such as

pneumonia risk with interpretability and high accuracy [6]. Through a graphical represen-

tation of each model feature’s learned contribution to the predicted risk, the interpretable

GAMs help to visualize learned patterns and identify new patterns in the data or confirm

what clinicians already know. Inspired by GAMs, the same idea can be applied to neural

networks through an architecture referred to as Generalized Additive Models with Neural

Networks (GAM-NNs) [7]. In GAMNNs, a network is built on top of each input feature

(or each group of input features) and the output of these networks are linearly combined

to produce the final regression or classification output. To incorporate a modest number

of pairwise interactions, additional networks processing the corresponding pairs can also be

5



included. Pairing of features was not assessed in this study to avoid cluttering the final

interpretation. Bras-Geraldes et al. showed GAM-NNs could be used to predict mortality in

the ICU with an AUC of 0.83, using 19 features from vital signs, lab values, demographics,

admission information, and comorbidities [8]. In short, models like DNNs allow for learning

the more complex relationship between the input and class label. However, they are not as

easily interpretable as LR. In this manuscript, we present the development and validation

of a model applying the concept of GAM-NNs to allow for interpretability by visualizing

the learned feature patterns related to risk of in-hospital mortality for patients undergoing

surgery under general anesthesia.

2.2 Results

2.2.1 Patient Characteristics

The data consisted of 59,985 surgical records, and the percent of occurrence of in-hospital

mortality was 0.81% (n = 389) in the training set and 0.72% (n = 87) in the testing set.

Patient demographics and characteristics of the training and testing datasets are summarized

in Table 2.1.

2.2.2 Development of the Model

The final hyperparameters for the GAM-NN model with Healthcare Cost and Utilization

Project (HCUP) features consist of one hidden layer with 50 neurons hyperbolic tangent

(tanh) activations (Table 2.2). The model was trained with dropout probability of 0.5 and

L2 weight decay of 0.0001. The final hyperparameters for the GAMNN model without HCUP

features were the same except for an L2 weight decay of 0.001.

6



Table 2.1: Training and testing dataset patient characteristics reported as number of patients
(%) or mean ± standard deviation. HCUP code description and distribution is shown for
those representing >1% of the training dataset

7



Table 2.2: Final model parameters for each Generalized Additive Models with Neural Net-
works (GAM-NNs) model with and without HCUP category description features

Table 2.3: Area under the receiver operating characteristic curve (AUC ROC) and average
precision (AP) with 95% CIs for the Generalized Additive Models with Neural Networks
(GAM-NNs) and logistic regression (LR) models, with and without HCUP category descrip-
tion features.

Table 2.4: Top 10 neural network contributions learned from the best-performing Generalized
Additive Models with Neural Networks (GAM-NNs) model with HCUP features, for two in-
hospital mortality patient examples from the test set

8



Figure 2.1: Receiver Operator characteristic curves and precision-recall curves for LR models
and GAM-NN for prediction of mortality with and without HCUP features. GAM-NN:
Generalized Additive Models with Neural Networks; HCUP: Healthcare cost and Utilization
Project; LR: Logistic Regression

9



2.2.3 Performance Metrics

All performance metrics reported below refer to the testing set (n = 11,997). Area un-

der the receiver operating characteristic curve (AUC ROC) and average precision (AP) are

summarized in Table 2.3. The GAM-NN model with HCUP features had the highest AUC

0.921 (0.895–0.95). Overall, both GAM-NN models had higher AUCs than LR models,

however had lower APs. The LR model without HCUP features had the highest AP 0.217

(0.136–0.31).

2.2.4 Interpretability: Visualizing Feature Contributions.

To assess the interpretability of the GAM-NNs, we visualized the learned contributions of

the GAM-NNs and compared against the learned contributions of the LRs for the models

with HCUP features. In Fig. 2.1, we visualize these contributions for a select sample of the

top nine contributing features in the GAM-NN model. The top nine were chosen by selecting

the features with the highest mean GAM-NN contribution. We did not include any binary

features in this example, such as presence of arterial line, as their visualization would not be

as interesting, since there would only be two values to plot. We see that, overall, the direction

of the learned contributions from both the GAM-NN and LR models were similar, i.e., as

MAX DES increases, the contributions for both models decreased. However, while the LR

model will always have a linear relationship, the GAM-NN learned nonlinear relationships

that were unique to each feature. For example, for the feature AVG MAP 10 MIN we see a

nonlinear function where GAM-NN contributions increase for mean arterial pressure (MAP)

< 60 mmHg and MAP > 60 mmHg. One odd relationship is the one observed between

ANES CASE HOURS and mortality risk, where, with less hours spent under anesthesia

there was more contribution to mortality risk. This could be a reflection of the infrequency

of extremely high anesthesia case hours (>10 h), and that in-hospital mortality patients may

10



not spend significantly longer amounts of time under anesthesia compared to non-mortality

patients. In addition, while risk contribution increased with lower MIN DBP, there was

the opposite relationship for AVG DBP 10 MIN and AVG DBP, which could indicate that

not all summary measures of vital signs are the same, and that these should be taken into

consideration when selecting features. Both of these examples demonstrate that the e↵ect of

a particular feature may not always represent an underlying physiological phenomena, and

that modification of a particular feature for a particular patient may not necessarily produce

a reduction in risk. For an up-close comparison of interpretability at the patient specific level,

we can also look at the top GAM-NN contributors to the risk of mortality (Table 2.4). If we

look at the top 10 GAM-NN contributions from the best-performing GAM-NN with HCUP

features for two unique in-hospital mortality patients from the testing set, we can see that

the features that contributed most were di↵erent. ASA was a top contributor for Patient

Example 1 but not for Patient Example 2. Surgery-related features like presence of HCUP

category 1 (HCUP cat 1 YN) (Incision and excision of CNS), minimum case hemoglobin

(MIN HB), and time of anesthesia (ANES CASE HOURS) were top contributors for Patient

Example 2, not found in Patient Example 1. While five of the shared top contributing

features between Patient Examples 1 and 2 were blood pressure and phenylephrine-related

features, Patient Example 1’s top contributing features also included an additional blood

pressure and heart rate related feature. These di↵erences could indicate that while vital

signs were top contributors for both patients, the surgery type contributed more to risk for

Patient Example 2 than for 1.

2.3 Discussion

Despite their popularity and success in many applications such as speech recognition and

computer vision, DNNs still face challenges to being fully accepted in the healthcare data
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space. There has been growing interest and success in the application of DNNs for healthcare

tasks due to the availability of large and complex electronic biomedical data, such as genomic

data, biomedical images, and electronic medical records (EMRs) [1, 2, 3, 9, 10, 11]. In

addition, in many cases, DNNs have shown better predictive performance than traditional

models such as LR, however, a significant perceived problem with DNNs has been their

“black box” reputation [4]. Clinicians are interested in not only the probability of an adverse

event, such as in-hospital mortality, occurring but also need to understand what variables

contributed to the increased risk so that they can change and target their therapies to

potentially avoid an adverse event altogether. The inability of a model to allow for this

level of transparency and interpretability is a potential barrier to positive clinical perception

and can decrease trust and subsequently usability [12, 13, 14]. A small survey of ICU and

ED clinicians found that clinicians viewed interpretability of a machine learning model as

justification for clinical decision making following a model’s prediction, and so models should

be built with enough transparency around the clinical features driving the model’s decision

that clinicians could validate model outputs with their clinical knowledge and judgment [13].

Ginestra et al. found that when evaluating the real-time hospital implementation of their

ML-based sepsis prediction alert, only 16% of providers found the alert helpful 6 h after

an initial alert and only 9% reported that the alert changed management [14]. In addition,

the most frequent suggestion by clinicians was transparency regarding factors leading to

a sepsis alert. LR is often preferred in the medical field due to its easy implementation

and interpretability. The learned coe�cients can easily be extracted and interpreted as

relative significance, and odds ratios calculated from those coe�cients are routinely used in

the medical research community to interpret a feature’s contribution to increased odds of

an adverse event. However, LR is a shallow model with no ability to create new feature

representations and can only combine the features linearly before passing through a logistic

function to represent the probability of response labels, such as in-hospital mortality. Neural

networks have the ability to self-learn new and significant linear and nonlinear features that
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are combinations of the original input features. However, these features can be thought of

as “hidden” in the network layers. In this study, we were able to demonstrate that our

proposed generalized additive neural network (GAM-NN) architecture is able to (1) leverage

a neural network’s ability to learn nonlinear patterns in the data, which is more clinically

intuitive, (2) be interpreted easily, making it more clinically useful, and (3) maintain model

performance as compared to our first study [3]. It should be noted that LR models can

still incorporate nonlinear feature representations, but this requires extra featurization. For

example, hypotension and hypertension are both of concern during surgery. If we use the

average MAP as a feature, an LR model would only learn a coe�cient that indicates either

risk increases with increased MAP or risk decreases with increased MAP, as we see in Fig.

2.2. To incorporate the domain knowledge that risk should increase with both high MAP

and with low MAP, the MAP feature would have to be transformed into new features, i.e.,

binning the MAP values and creating multiple binary features. However, neural networks

minimize the need for this type of tedious feature engineering and preprocessing, and they can

e↵ectively learn this clinically intuitive relationship without the domain knowledge or extra

featurization. Two limitations to our current study are that we were only able to develop and

validate our model on (1) a single institution and (2) from the years 2013 to 2016, potentially

limiting the generalizability of our results. Clinical practice not only varies from institution

to institution, but also can change year to year with the emergence of new clinical evidence.

While the di�culty in having large enough retrospective medical datasets to e↵ectively train

very complex models such as DNNs is no longer a limitation, developing the infrastructure

to be able to not only gain access to the data, but to also obtain the data and process it for

research use is a tremendous task. Obtaining past and new data from the same institution

can itself be limiting, and the ability to access and integrate other institutions’ data for

validation can also be di�cult. One benefit of this model is that the features needed from

other institutions to validate our model are not only common across all institutions, but are

also commonly used. For example, MAP is a commonly observed vital sign, however, features

13



like central venous pressure (CVP) and pulmonary arterial pressure (PAP) require invasive

catheters and are only standard of care in more critical patients. Features like the bispectral

index (BIS) do not require invasive catheters, however, it is not standard of care practice to

monitor it. Thus, we expect the features in our model to be applicable to all patients across

all institutions. However, it should also be noted that standard-of-care practice also varies

from institution to institution, and so patterns discovered in this single-institution dataset

may not be generalizable to other institutions and may require re-training of the model

to individual institutions or more variety of institutions. As mentioned before, developing

the infrastructure for such data extraction is a di�cult process. The Perioperative Data

Warehouse at UCLA used in the data extraction for this study exemplifies how this can

be done successfully, however, replicating the process at another institution with a di↵erent

electronic health record system and standardizing the disparate medical dataset to be able

to merge it with our current one is a well-known issue in the medical data community

[15]. Despite the di�culties mentioned above in obtaining new data for validation, we are

currently working to address the limitations of our current validation results by collaborating

with other institutions to replicate the data extraction used in this study as well as working

within our own institution to access more recent data to validate the generalizability of our

model. In addition, while the models in this study were made to be interpretable, it should

be emphasized that the interpretation is not necessarily causation, and the modification

of a highly contributing specific feature would not necessarily decrease the patient’s risk of

mortality. For example, in Table 2.4, both patient examples have high contribution related to

arterial line placement, but deciding to not place an arterial line would not necessarily result

in avoiding mortality. This is also true of other models such as LR. Although our model

is transparent and the extraction of feature contributions described here explains how the

model made the predictions, the relationship between the features and the risk of in-hospital

mortality should still be thought of as correlation. These relationships would likely change

with the removal of various features or addition of new features. However, the relationships

14



learned in this model appear to be clinically intuitive and they are still important in that they

provide new or confirm known insight that is not usually available with DNNs. While we are

no longer limited to using more traditional methods such as LR due to availability of data

when developing more complex models, we should consider the needs for clinical adoption

and impact. DNNs, such as ours, can be automated and incorporated with real-time EMR

data. For example, with our model, all the model input features described can easily be

automatically extracted or calculated at the end of surgery and our model would then be

used to provide a probability for in-hospital mortality. If the probability is high, a summary

of which features contributed the most to an increased risk of mortality (Table 2.4) and where

the patient lies relative to other patients (Fig. 2.2) can also be displayed for the clinician.

Thus, our model can serve as clinical decision support tool helping to identify patients in

need of more postoperative resources and potentially informing therapeutic actions. For

example, if a patient’s minimum DBP being very low contributed the most to that patient’s

high risk of in-hospital mortality, the clinician may consider hypotension and associated risks

such as acute kidney injury. A very di↵erent application of our model would be to re-train

and apply it to a single institution to understand what areas of a patient’s care during

surgery clinicians could be paying more attention to moving forward, if they are not already.

For example, in Fig. 2.2, low average MAP below 50 and high average MAP above 80 are

both associated with increased risk of in-hospital mortality. Clinicians at this institution

could then target therapies during surgery to never leave that range of MAP. However, at

a di↵erent institution, the learned relationship could be di↵erent and the targeted range of

MAP may change based on the current practices of that institution. In either application,

our model could be used to quickly assess a large amount of data and provide actionable

insight, a task that may otherwise be time-consuming for clinicians. In summary, this study

shows that DNNs can be made to be not only accurate, but also interpretable. Any complex

predictive model needs both to build enough trust that a clinician can interpret and act on a

model’s decision over or complementary to their own clinical intuition. Future work includes
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not only validating the performance and generalizability of this model on other hospitals’

datasets, but also assessing how clinicians interact with the interpretability of the model.

2.4 Methods

This manuscript follows the “Guidelines for Developing and Reporting Machine Learning

Predictive Models in Biomedical Research: A Multidisciplinary View” [16].

2.4.1 Electronic Medical Record Data Extraction and Descrip-

tion.

All data used in this study came from the UCLA Medical Center’s Perioperative Data

Warehouse, a custom data warehouse built on top of the EMR (EPIC Systems, USA) and

has been described in a previous paper [15]. All data used for this study were obtained from

this data warehouse and IRB approval (UCLA-A IRB#15-000518) has been obtained for

this retrospective review. Patients’ written approval was waived because of the retrospective

nature of this study. Data included all surgical procedures performed between March 1, 2013

and July 16, 2016, and excluded cases not performed under general anesthesia, ambulatory

cases, and patients older than 89 or less than 18 years of age.

2.4.2 Model Endpoint Definition

The definition for in-hospital mortality was defined in the same way as described in our

previous work [3]. The occurrence of an in-hospital mortality was extracted as a binary event

[0, 1] based upon either the presence of a “mortality date” in the EMR between surgery time

and discharge, or a discharge disposition of expired combined with a note associated with
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Figure 2.2: Sample of nine continuous features that had the highest mean mortality
risk GAM-NN contributions across all patients, in order of highest to lowest. These
features in order are maximum desflurane (MAX DES), total anesthesia case hours
(ANES CASE MINUTES), average diastolic blood pressure (AVG DBP), maximum sevoflu-
rane (MAX SEVO), minimum diastolic blood pressure (MIN DBP), total crystalloid admin-
istered (CRYSTALLOID ML), urine output (UOP), average diastolic blood pressure of the
last 10 min of the case (AVG DBP 10 min), and average mean blood pressure of the last
10 min of the case (AVG MAP 10 min). The feature’s values for all patients are plotted on
the x-axis and the respective GAM-NN contribution (blue) on the primary y-axis and LR
contribution (green) on the secondary y-axis. The more negative the risk contribution, the
less contribution the respective value has to the risk of mortality
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Figure 2.3: Proposed generalized additive models with neural networks architecture. This
figure describes feature contributions calculation, for n individual continuous features
(X1,. . . ,Xn) vs binary features (Xbinary).

the death (i.e., death summary, death note). The definition of in-hospital mortality was

independent of length of stay in the hospital.

2.4.3 Model Input Features

The data and features used in this study are from our previous work modeling in-hospital

mortality [3]. The data consists of 59,985 patients with an original feature set of 87 features

extracted at the end of surgery. These features included demographics, labs, ASA score,

intraoperative vital signs, total case time, medication administration, and anesthesia events.

These original 87 features were reduced to 45 features in our previous work, and ASA was

added as a feature in the final model (46 features) that improved model performance [3]. In

this study, we used the same 46 features, and also added previously not included features:

total anesthesia case time (1 feature); the time in minutes spent with MAP below 40, 45,

50, 55, 60, and 65 mmHg (6 features); and HCUP Code Descriptions of the Primary current
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procedure terminology (CPT) codes (33 features) (Table 2.5). There were 183 unique HCUP

Code Descriptions in our dataset, and we selected 33 HCUP Code Descriptions that were

present in at least 1% of the total data. These HCUP Code Descriptions were then encoded

as 33 binary features.

2.4.4 Data Processing

Before model development, missing values for ASA scores were filled with the most common

value (ASA 3); missing values for medications administration features indicated that no

medication was actually administered and so were filled with 0; and all other missing values

were filled with the means for that feature. Values that were greater than a clinically normal

maximum were set to a maximum possible, as described in previous work [3]. Finally, all

training data were rescaled to have mean 0 and standard deviation 1 per feature. Testing

data were rescaled with the training data mean and standard deviation.

2.4.5 Development of Model and Feature Contribution Extraction

In this work, we were interested in classifying patients at risk of in-hospital mortality utilizing

a proposed generalized additive neural network (GAMNN) architecture (Fig. 2.3). All data

were randomly split into 80% for training (n = 47,988) and 20% for testing (n = 11,997)

prior to model development. The loss function used in training was cross-entropy and to

deal with the highly unbalanced classes, we applied class weights to the loss function by

assigning the positive class 100x weight compared to the negative class to reflect the <1%

occurrence of in-hospital mortality in our dataset. To optimize hyperparameters, a grid

search across varying hyperparameter combinations was performed, where each model was

trained on 80% of the data with 5-fold cross validation. The model with the highest mean

5-fold validation AUC was chosen as the one with the best hyperparameter combination, and
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Table 2.5: Description of model input features

20



retrained on all of the training data prior to being tested. All hyperparameter values that

were assessed are shown in parentheses. All models were trained with a batch size of 256

and Adam optimization with default parameters and reduced the learning rate by a factor

of 10 when the validation loss stopped improving for five consecutive epochs, a batch size

of 256 and a maximum of 100 epochs [17]. Dropout (0.25, 0.5, 0.9) and L2 regularization

(0.001, 0.0001) were also used to prevent overfitting [18,19]. In our GAM-NN architecture,

each feature had its set of hidden layers (1–4) with layer sizes of 10, 40–50, 90, 100 neurons

with all activations being either rectified linear unit (ReLu) or hyperbolic tangent (tanh)

(Fig. 2.3). These hidden layers are followed by a last layer with just one neuron with a tanh

activation. This last tanh layer transforms the previous layer’s output into one value and

forces the feature’s neural network final output to be between 1 and 1. The outputs of all the

features’ tanh layers are then concatenated prior to being input into the final logistic layer

(Fig. 2.3). The feature contributions are calculated as their tanh layer outputs multiplied

by their respective logistic weights. Binary features only had a direct connection from the

input layer to the final logistic layer, and so their feature contributions are calculated as the

input value multiplied by their respective logistic weights.

2.4.6 HCUP Feature Experiment

HCUP codes provide informative groupings in regard to a patient’s surgery and are also uni-

formly coded, making them easy to use as model inputs. However, they are not immediately

available at the end of surgery, and so their inclusion could limit our model’s practical use.

Thus, we also assessed developing a model without HCUP features to assess the impact on

performance.
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2.5 Model Performance

All model performances were assessed on the 20% of the data held out from training as a

testing set. The same training and testing sets were used in this work as our previous work

on in-hospital mortality for comparison [3]. Model performance was compared to a standard

LR model using the same features as the GAM-NN.

Performance Metrics

Model performance was assessed using area under the receiver operating characteristic curve

(AUC ROC) and average precision (AP), and 95% confidence intervals were calculated using

bootstrapping with 1000 samples.

Interpretability: Visualizing Feature Contributions

As previously described, the learned contribution of the GAM-NNs for each feature is its

last tanh layer’s output multiplied by its respective weight from the logistic layer. Since the

binary features have a direct connection from input to the logistic layer, the binary features’

learned contributions would be their input values multiplied by their respective weight from

the logistic layer. For every data sample, each individual feature’s value was plotted on the

x-axis vs its respective contribution on the y-axis. Individual feature contributions in the LR

model were calculated as the individual feature’s value multiplied by its learned coe�cient.

For both models, the more negative the risk contribution, the less contribution the respective

value has to the risk of mortality. All neural network models were developed using Keras

[20]. LR models and performance metrics were calculated with scikit-learn [21].
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2.6 Data Availability

The datasets generated during and/or analyzed during the current study are not publicly

available due to institutional restrictions on data sharing and privacy concerns. However,

the data are available from the corresponding author on reasonable request.

2.7 Code Availability

Code is available from the corresponding author on reasonable request. All neural network

models were developed using Keras. LR models and performance metrics were calculated

with scikit-learn.
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Chapter 3

MOVER: Medical Informatics

Operating Room Vitals and Events

Repository

3.1 Introduction

In 2009, the Health Information Technology for Economic and Clinical Health (HITECH)

Act was enacted to promote the adoption of healthcare information technology in hospitals.

This act includes incentives for using electronic health record (EHR) systems [22]. The pas-

sage of the HITECH Act has resulted in widespread hospital EHR adoption with 80.5% of

hospitals in the US using an EHR system, as of 2015 [23]. The increased adoption of EHR

systems and subsequent rise in digitally available healthcare data has resulted in a new-

found ability to perform predictive modeling on healthcare data using artificial intelligence

(AI). Applications of AI in a healthcare setting include: providing more accurate diagnoses,

recommending treatment plans, predicting patient outcomes, tracking patient engagement
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and adherence, and reducing the burden of administrative tasks [24]. The increase in data

availability and numerous applications for AI have resulted in the widespread publication of

AI algorithms applied to healthcare data [25, 26, 27, 28, 29, 30, 31, 32]. Despite numerous

publications showing AI algorithms to be very successful in retrospective healthcare stud-

ies, very few of these algorithms are then actually incorporated into clinical practice [33].

While there are many factors influencing the lack of algorithm deployment, one of the major

reasons is a lack of trust in AI models. This lack of trust stems in part from an inability

to independently verify published results. Although the publication of AI algorithms in the

healthcare space has become pervasive, the data used to develop these algorithms is often

not published alongside the algorithm. This lack of visibility into the analyzed dataset pre-

vents independent researchers not only from reproducing published results but also from

improving upon existing algorithms and developing novel algorithms [34, 35]. To address

this issue, several repositories hosting medical data have been created including: MIMIC-IV,

the UCI Machine Learning Repository, and n2c2: National NLP Clinical Challenges [36, 37,

38]. While the publication of these repositories has helped address some of these problems,

the repositories themselves are extremely specialized and therefore only improve visibility

for very specific AI algorithms.

To address the overarching issue of lack of visibility and the issue of excessively specific data,

we propose MOVER: Medical Informatics Operating Room Vitals and Events Repository.

This repository contains real hospital visits for patients undergoing surgery at a prestigious

medical center in Orange County, California. The data included in MOVER was collected

over seven years and contains comprehensive EHR records and waveforms for patients who

underwent surgery. These records include general information about each patient and their

medical history, and specific information regarding the surgical procedure being performed

including: medicines used, lines or drains used, and post-operative complications. The

repository includes 58,799 unique patients with data from 83,468 surgeries. MOVER is

freely available for download for all researchers who sign a data usage agreement and is
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intended to advance a wide variety of healthcare research.

3.2 Materials and Methods

3.2.1 Patient Population

This first release of MOVER database includes all adult patients who underwent surgery

at the University of California, Irvine Medical Center from 2015–2022. The University of

California, Irvine Medical Center is a level I trauma center, a burn treatment center, and

a National Cancer Institute-designated comprehensive cancer center. In addition, the UCI

Douglas Hospital has some of the most technologically advanced surgical suites including

state-of-the-art endovascular hybrid suites and intraoperative computed tomography (CT)

and magnetic resonance imaging (MRI) suites.

3.2.2 Database Development

The data acquisition process did not interfere with the clinical care of patients or methods

of monitoring. Data for patients who underwent surgery were captured from two di↵erent

sources. First, waveforms (EKG, pulse oximetry, and arterial line if present) from all of

the operating rooms were captured in real-time using Bernoulli Health’s hardware software

platform. All of the waveforms were saved to a server on the medical center’s network

organized by source location (operating room) and datetime. Subsequently, the medical

center’s IT team delivered a data extract from the hospital EHR system from 2015-2022.

For the years 2015-2017 the EHR system used was Surgical Information Systems (SIS) and

from 2017-2022 the EPIC EHR system was used. For this reason MOVER is separated into

two datasets: the first contains two years of data from the SIS EHR system (SIS dataset)
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and the second contains five years of data from the EPIC EHR system (EPIC dataset).

Although the data captured by these EHR systems is similar, there are enough significant

di↵erences that keeping the data separate was necessary in order to preserve as much data

as possible.

3.2.3 Clinical and Physiological Data

The SIS dataset includes 19,114 patients and is separated into 9 tables: patient information,

patient I/O, patient vitals, patient observations, patient medications, patient labs, patient

procedure events, patient ventilator, and patient a-line. These tables contain patient de-

mographics, information regarding the surgical procedure and anesthesia, laboratory data,

and administered medications. This dataset is unique because in addition to waveforms, it

contains high temporal resolution vital signs including: cardiac output, blood pressure, and

stroke volume variation.

The EPIC dataset is the larger of the two datasets, containing 39,685 patients, and is sepa-

rated into 10 tables: patient information, patient history, patient visit, patient medications,

patient LDA (lines, drains, and airway devices), patient labs, patient measurements, patient

postoperative complications, patient procedure events, and patient coding. Similar to the

SIS dataset, the EPIC dataset includes patient demographics and specific information re-

garding the surgical procedure being performed including: medicines used, surgical events,

and laboratory data. Although similar, a major di↵erence between these two datasets is that

the EPIC dataset contains outcome information in the form of postoperative complications,

mortality, and if the patient was admitted to the ICU. Additionally the EPIC dataset in-

cludes information about a patient’s medical history prior to surgery and their ASA status,

while the SIS dataset does not. The final major di↵erence is that the EPIC dataset includes

billing codes. Table 3.1 outlines the contents of each of the EPIC dataset tables.
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Table 3.1: Description of the 10 tables included in the EPIC dataset
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3.2.4 Database Merger and Postprocessing

The second stage in developing MOVER involved significant data post processing and

database organization. Following delivery of the data extract, the start and end time of

each case was used to extract the appropriate waveform data for that case (based on lo-

cation and date/time) and link it to the case. The EHR data for both datasets was then

restructured and organized into logical tables for simplicity and to help facilitate data anal-

ysis. The raw EHR data for the EPIC dataset contained several redundant identifiers for

patients and patient visits that di↵ered between tables. To simplify this, the number of

patient/event identifiers in the data were reduced to just two: the patient identifier and the

patient visit identifier. This identification system allows patients to be tracked over time if

they have multiple surgeries. The SIS dataset only has a single identifier representing each

surgery, it is not possible to track patients temporally using this dataset. Due to the count-

less number of ways this data can be analyzed, we chose not to clean it to ensure that all

elements of the clinical dataset were preserved. We do however provide explanations for the

meaning of each column included in the data as well as the column’s unit of measurement

to assist researchers in properly cleaning that data for themselves.

3.2.5 Data Deidentification and HIPAA Compliance

Under HIPAA Privacy Rule, all patient identifiers were removed or deidentified. For dei-

dentification, all patient identifiers and patient visit identifiers were encoded via one-way

hash functions. Additionally, PHI was removed from free-text using regular expressions and

manually reviewed to ensure that all PHI was removed. Patient ages were capped at 90, so

any patient with a recorded age of more than 90 years old was set to 90 years old. Ages

were capped to protect patient anonymity because extreme ages are considered identifying.

Finally, dates were shifted by a random number of days. The number of days by which to
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shift the data is linked to each patient to ensure that the data for a single patient is internally

consistent. For example, if a patient had two surgeries two months apart in the raw data

then the deidentified data would also reflect the surgeries as being two months apart. It is

important to note, that this temporal consistency can only be observed for a single patient

and not across distinct patients. For example in the deidentified data two patients who are

listed as having surgery on the same day in reality did not necessarily have surgery on the

same day or even in the same year.

3.2.6 Database Distribution and Documentation

MOVER is available for download at https://mover.ics.edu and can be downloaded by anyone

who signs a data usage agreement, to restrict tra�c to legitimate researchers. The website

outlines the content of each downloadable table including: the meaning of each column,

an explanation of the possible values of each column (where applicable), and the unit of

measurement for each column (where applicable).

3.2.7 Database Characterization

We outline the characteristics of version 1.0 of MOVER so that investigators can under-

stand possible applications of the data and see if the data fits their needs. Summarized data

includes: demographics, ASA status, and most frequently performed procedures. Addition-

ally, to illustrate some of the analyses possible with the database we summarize outcomes

including: post-operative complications, admission to ICU, and mortality. In addition to

using clinical data, investigators can utilize the time-series physiological data to develop

real-time predictors to assist anesthesiologists. For example, using MOVER investigators

could attempt to predict post-induction hypotension (mean arterial pressure < 60mmHG)

which is a well-known risk factor for adverse postoperative outcomes [39].
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3.3 Results and Discussion

MOVER includes 58,799 unique patients with data from 83,468 surgeries. The EPIC dataset

makes up the majority of the repository, with 39,685 patients and 64,354 surgeries. Table 3.2

shows summary statistics and patient demographics for all surgeries in the EPIC dataset. Of

the 64,354 surgeries we can see that the average age of patients was 55 and that the average

length of stay was 7 days. Additionally, looking at the ASA scores we can see that the mode

is an ASA score of 3 but the dataset has a diverse distribution of scores. The ASA score is

a system used to represent a patient’s pre-anesthesia medical comorbidities, with a higher

score representing a patient in worse health. Having a diverse distribution of ASA scores in

this dataset shows that patients undergoing surgery are in varying degrees of health, which

makes this dataset more generalizable than datasets exclusively containing patients in critical

condition. Table 3.3. characterizes the outcomes available in the EPIC dataset in MOVER.

This characterization is useful to investigators to get an idea of what predictions they can

make using MOVER. In the EPIC dataset, 45.3% of patients are transferred to the ICU

after surgery and there is a 1.6% mortality rate. Table 3.3 also shows the percentages of the

11 classes of post-operative complications. Each postoperative complication is assigned to a

class and more specific details surrounding the complication can be found in the associated

free-text. Investigators would be able to use these outcomes individually for specific outcome

prediction, or use them in combination to understand what factors contribute to a bad

outcome of any kind. While the SIS dataset does not contain outcome information, it does

include high temporal resolution vital signs which would be invaluable for making real-time

predictions to assist anesthesiologists.
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Table 3.2: Characterization of the EPIC Dataset reported as number of records (%) or Mean
± SD
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Table 3.3: Characterization of the EPIC Dataset Outcomes reported as number of records
(%)

33



3.3.1 Comparison With Other Databases

To the best of our knowledge MOVER is the only freely available public database that

contains EHR and waveforms data for patients undergoing surgery. The only other simi-

lar database we could find is The Veterans A↵airs Surgical Quality Improvement Program

(VASQIP) database but this database is not publicly available. There are several other

kinds of medical datasets that have been made publically available including: MIMIC-IV,

the UCI Machine Learning Repository, and n2c2: National NLP Clinical Challenges [36, 37,

38]. While the publication of these repositories has helped address some of the problems sur-

rounding a lack of trust in AI models, the repositories themselves are extremely specialized

and therefore only improve visibility for very specific AI algorithms. The patient population

included in MIMIC-IV are patients who were admitted to the ICU or emergency department,

limiting algorithms using this data to focus on patients in critical condition. Similarly, the

UCI Machine Learning Repository has datasets focusing on very specific health issues, such

as diabetes, and does not include complete EMR data. Finally, n2c2 exclusively contains

unstructured text and is used for natural language processing applications.

3.4 Conclusion

AI has innumerable possible applications in the healthcare field and has tremendous poten-

tial to greatly improve patient care and outcomes. Our hope in publishing this data is to

forward the development of novel AI algorithms, allow for the improvement of previously

published AI algorithms, and to help validate AI algorithms in the healthcare space. This

improved visibility should in turn help reduce the gap between research and deployment of

AI algorithms in a clinical setting.
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Chapter 4

CircadiOmics: Circadian Omic Web

Portal

4.1 Introduction

Circadian rhythms are found in plants, animals, fungi, and cyanobacteria and are funda-

mental to biology [40, 41, 42, 43]. They date back to the first cyanobacteria and the origin

of life on earth and, since then, through approximately 2 trillion revolutions of the earth

on its axis, they have been deeply etched in the molecular machinery of all cells. Disrup-

tions of circadian rhythms have been linked to health problems such as cancer, diabetes,

obesity, and premature aging [41, 44, 45, 46, 47, 48, 49, 50, 51]. The advance of modern

high-throughput technologies has made it possible to investigate circadian rhythms at the

molecular level. Measuring the concentrations of molecular species across time has shown

that circadian oscillations are pervasive in all living cells [43, 52, 53]. Circadian oscillations

are generated by feedback loops which are regulated in part by the ‘core clock’ [54]. The

core clock is a classical inhibitory transcription-translation feedback loop which is highly
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conserved from animals to plants. While the core clock comprises a dozen genes including

CLOCK, BMAL1, PER1, PER2, CRY1, and CRY2, in any given experiment 10% of all

transcripts and metabolites display circadian oscillations [55, 56, 57, 58, 59, 60, 61]. How-

ever the complement of molecular species exhibiting circadian oscillations greatly varies with

genetic, epigenetic, tissue/organ, health, age, and environmental conditions. This circadian

reprogramming is a major target of active investigations aimed at understanding how en-

vironmental conditions, such as drug treatments or diets, a↵ect circadian oscillations, and

how oscillations in di↵erent cells/tissues are coordinated and interact with each other [58,

62, 63, 64, 65, 66, 67, 68, 69]. The large repository of omic data available via CircadiOmics,

serves as an invaluable resource to analyze the complexity of circadian mechanisms and

their downstream implications. The CircadiOmics interface is especially advantageous and

unique because it allows users to easily perform comparative analyses and aggregated in-

ferences about circadian rhythms at the molecular level across species, tissues/organs, and

genetic, epigenetic, and environmental conditions.

4.2 Materials and Methods

4.2.1 Datasets

CircadiOmics currently contains over 290 omic datasets with over 100 million individual mea-

surements, across more than 20 unique tissues/organs, and 11 di↵erent species. For simplicity

we group the unique tissue/organ types into 13 categories: liver, brain, digestive, skin, serum,

muscle, adipose, glands, cells, kidney, heart, eye, and other. Figure 4.1b shows a breakdown

of the number of datasets contained within the repository for each tissue/organ category. The

species currently represented in CircadiOmics include: Aedes aegypti, Anopheles gambiae,

Arabidopsis thaliana, Danio rerio, Drosophila melanogaster, Homo sapiens, Mus musculus,
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Table 4.1: Comparison of CircadiOmics with other circadian web servers

Neurospora crassa, Papio anubis, Rattus norvegicus, and Rhesus macaques. Figure 4.1a

shows a breakdown of the number of datasets per species. As such, CircadiOmics is the

most extensive, comprehensive, and current repository for circadian data. For comparison

purposes, Table 4.1 shows a breakdown of the number and types of datasets currently avail-

able in the most prominent circadian data repositories [70, 71, 72, 73]. The majority of

datasets in CircadiOmics are collected from the species Mus musculus (mouse) and Papio

anubis (baboon) and from liver and brain tissues. In addition to a wide variety of species and

tissues, CircadiOmics also has a diverse set of experimental conditions represented. Some

of the experimental conditions represented include: knock-downs, knock-outs, diet changes,

exercise, and drug treatments. In addition, CircadiOmics uniquely contains data from dif-

ferent omic experiments, including transcriptome, metabolome, proteome, and acetylome

experiments. Figure 4.1 summarizes the number of available datasets by detailed categories.

The full table summarizing all of the datasets is available on the CircadiOmics web portal

with a short explanation of the dataset, a brief description of the experimental protocol, the

citation, the GEO accession number, and other summary information.
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Figure 4.1: Breakdown of datasets by species, tissue, experimental conditions, and omic
categories
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4.2.2 Dataset Collection

The datasets in CircadiOmics are collected from research collaborations, automated discov-

ery, and manual discovery. The two main automated approaches used to identify newly

available circadian dataset are a web crawler developed in-house and the publicly available

web service PubCrawler [74]. The web crawler developed in-house uses the Python packages

scholarly and geotools to search the literature to discover new circadian omic studies and

their a�liated datasets. To find new datasets, the crawler performs keyword searches on pub-

lished abstracts, extracts various features from the published articles, and then uses logistic

regression on the extracted features to classify whether or not a dataset is a good candidate

for inclusion in CircadiOmics. The datasets discovered by the crawler are then manually

vetted and processed to be included into CircadiOmics. Using this crawler in tandem with

PubCrawler, which sends a daily email containing a list of possible publications of interest,

we are able to keep CircadiOmics current by continuously adding the latest cutting-edge

research in circadian rhythms to the repository. Additionally, the CircadiOmics team and

collaborating biologists include datasets from collaborative research projects and perform

periodic manual searches on recent publications to further complement the data obtained

through the automated discovery tools.

4.3 Results

4.3.1 Features

The main focus of CircadiOmics is the search function, which allows users to compare and

visualize the oscillation trends of molecular species. The user can select a single dataset, or

multiple datasets, from within the repository and search for any molecular species. Circa-
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diOmics allows for the overlay of multiple searches together to enable comparative studies

and normalizes the output for easy visual comparison. For each query, a table of peri-

odicity statistics including: period, amplitude, phase, p-value, and q-value is displayed.

These statistics are calculated using BIO CYCLE and JTK CYCLE [75, 76]. Molecular

species are determined to have circadian oscillations by using p-values and accompanying

q-values at a user selected threshold. In addition to selecting whether to view statistics

from BIO CYCLE or JTK CYCLE, users can also filter datasets based on species, tis-

sue/organ, and experimental conditions. In addition to the search functionality, to assist

with the analysis of circadian experiments we have created the BIO CYCLE web server:

http://circadiomics.igb.uci.edu/biocycle. The web server runs the latest version of the

BIO CYCLE software on user-uploaded omic time-series datasets and provides the user

with easy-to-use analysis tools which include: histograms of periods, phases, amplitudes,

and o↵sets, querying of molecular species based on a user-selected p-value or q-value cuto↵,

visualization of molecular concentrations across time, and analysis at 24, 12, and 8 hour pe-

riods. To use the web server, users must upload a file containing the measurements related

to the concentrations of molecular species across time points (e.g. transcript levels measured

every 4 hours). Each row must contain the ID of the molecular species, followed by the

concentration measurement at each time point. Each column corresponds to a di↵erent time

point or replicate. After the file is uploaded, the server will run BIO CYCLE on the up-

loaded file for three separate period ranges: 20 through 28 hours, 10 through 14 hours, and 7

through 9 hours. A separate deep neural network (DNN) is trained for each set of timepoints

and for each period range. If the DNNs are already trained, then the results should be ready

within about 1 minute. If the DNNs are not trained, BIO CYCLE will automatically train

them and the results will be ready within about 2 minutes. The user can then visualize the

results using various drop-down menus to select the period of interest and p-value and q-

value cuto↵s. As shown in Figure 4.2, given the selected period to investigate, and a p-value

or q-value threshold, the web server will produce histograms of periods, lags, amplitudes,
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and o↵sets. Another feature provided by CircadiOmics is the The Metabolic Atlas web por-

tal. The Metabolic Atlas web portal (http://circadiomics.ics.uci.edu/metabolicatlas), allows

researchers to generate and visualize interactive metabolic networks. These networks are de-

rived from the KEGG database and can be filtered using BIO CYCLE statistics [77]. To

create a metabolic network, users start by selecting a dataset and a particular metabolite.

From there, the user can select options to create a network. For example, one option is to

display a network of all metabolites that are oscillating in-phase with the selected metabo-

lite. Another possible option is to display a network of all metabolites that are involved in

the same pathways as the selected metabolite. There are six possible options for the user to

select from for the network creation. Once the network is displayed, the user can choose to

filter out edges based on BIO CYCLE statistics.

4.3.2 Improvements

Since its last publication, CircadiOmics has undergone substantial improvements including

a significant increase in the number of datasets and the diversity of datasets available to its

users. The number of available queryable datasets has increased from 227 to over 290, and the

number of species and experimental conditions included in the web server has also increased.

In addition to the significant increase in available data, the latest version of CircadiOmics and

the corresponding automated data discovery pipeline have received several improvements.

To optimize the automated dataset discovery process, we have started utilizing open source

web-crawlers in addition to our web crawler developed in-house to make sure we are capturing

as many relevant datasets as possible, and we have improved our in-house web crawler by

broadening the keyword searches performed on published abstracts to allow us to discover

more species and tissue types that had not previously been represented in CircadiOmics.

This improvement to the web crawler is what allowed us to find circadian experiments

performed on Drosophila melanogaster, Danio rerio, and Neurospora crassa, species not
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Figure 4.2: The BIO CYCLE web server interface
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previously included in CircadiOmics. In addition, the latest version of BIO CYCLE, which

has undergone significant improvement, has been made available via the CircadiOmics web

portal. The improvements to BIO CYCLE include: implementation in Python to take

advantage of state-of-the-art deep learning software, ability to handle missing timepoints,

improved amplitude estimation, the addition of o↵set estimation, and modeling real-world

replicated experimental data to produce more realistic p-values. The previous version of

BIO CYCLE was implemented in R, which does not have convenient access to deep learning

libraries that allow users to utilize Graphics Processing Units (GPUs) to increase the speed of

training and testing DNNs. In the previous version, we were restricted to training on slower

Central Processing Units (CPUs). As a result, we only trained a small 3 layer network

with 100 hidden units per layer. Since the new version of BIO CYCLE is implemented in

Python, we take advantage of the PyTorch deep learning library to train significantly larger

DNNs on GPUs [78]. The increased size of the DNNs substantially helps in handling missing

data (e.g. missing replicates). The latest BIO CYCLE also utilizes real-world experimental

data available via CircadiOmics not only to evaluate performance and fairly compare the

new BIO CYCLE algorithm to other available algorithms, but also to better fine tune the

algorithm and make p-value estimations more accurate. In combination, these new features

allow researchers to perform end-to-end circadian analyses of their data and to compare and

combine their data with other available datasets.

4.3.3 Applications

CircadiOmics has numerous and diverse applications. To name just a few: users can analyze

a single dataset, analyze multiple datasets of the same omic type across di↵erent tissues or

species,and analyze relationships between datasets of di↵erent omic types. This flexibility

to perform comparative analyses has proven to be highly e↵ective for biological discovery

and hypothesis generation and as such has contributed to numerous studies that have been
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Figure 4.3: Frequency analysis rediscovers core clock as well as a few novel circadian regula-
tory TFs and RBPs. Highlighted genes are those validated in the in vivo experiments found
in Figure 4.4.
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published in high impact journals [79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,

93, 94]. For example, in Koronowski et al. CircadiOmics was used to better understand

the independence of the liver circadian clock. Using high-throughput transcriptomic and

metabolomic data, they showed that the liver has independent circadian functions specific

for metabolic processes, however full circadian function in the liver depends on signals from

other clocks [95]. In Tognini et al. CircadiOmics was used to analyze metabolomic data

in the suprachiasmatic nucleus (SCN) under various experimental conditions to discover a

sensitivity of brain clocks to nutrition [96]. Finally, in Masri et al. CircadiOmics contributed

to showing that lung cancer has no e↵ect on the core clock but rather specifically reprograms

hepatic metabolism, proving that a pathological condition in a given tissue can influence the

circadian homeostasis in other tissues [97].

Additionally, we performed our own analysis using the data available via CircadiOmics in

aggregate to better understand the overall hierarchical architecture of transcriptomic circa-

dian regulation. To perform this analysis we looked at the frequency at which important

regulators, such as transcription factors (TFs) or RNA-binding proteins (RBPs) are found

to oscillate across all mouse and baboon datasets to quantify their importance in circadian

regulation. The top oscillating TFs and RBPs in mice and baboons can be seen in Fig-

ure 4.3. We found that the circadian core clock appears with the highest frequency, and is

closely followed by TFs and RBPs with known interactions to the core clock. Aside from

the core clock, this analysis identified multiple TFs and RBPs important to circadian reg-

ulation, some of which are corroborated by evidence in the literature and others which are

novel. We were able to validate some of the novel findings with animal experiments. For

example, the TFs FUS and EIF4B were identified in our analyses as having the potential

for being strong circadian regulators. Consistent with this result, Figure 4.4 shows that the

reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses showed that

mRNA and protein levels of both of these genes have diurnal rhythm in the liver in certain

experiments and FUS was also shown to have a diurnal rhythmicity in the SCN. In addi-

45



tion, the TF MXI1 was identified in our analysis as a novel circadian factor and RT-qPCR

analyses were able to detect rhythmic gene expressions of MXI1 in mice livers (Figure 4.4).

This analysis was repeated on a few other TFs to validate the computational experimental

findings. In short, in vivo experiments confirmed the circadian expression of important genes

predicted in computo by analyzing the data in CircadiOmics. Together, these findings show

that CircadiOmics provides a strong foundation for understanding the organization of the

circadian transcriptome on a large scale.

4.4 Conclusion

CircadiOmics allows users to seamlessly compare and analyze multiple omic time-series data

sets simultaneously. For example, a user can compare transcripts across species or tissues, or

map out relationships between metabolites, proteins, and transcripts to identify underlying

oscillatory trends. CircadiOmics has proven to be highly e↵ective for performing end-to-end

circadian analyses from hypothesis generation to publication-ready figures creation. This web

server has contributed to numerous studies that have been published in high impact journals

and in aggregate has been cited in over 190 publications. The server receives approximately

1,000 queries per week from around the world and to the best of our knowledge is the

largest single repository of circadian omic data available. With the quantity and breadth of

its growing, high-quality, circadian omic data, CircadiOmics continues to be an invaluable

resource for understanding the fundamental landscape of circadian rhythms and how these

rhythms are programmed, and can be re-programmed, in cells, tissues, organs, and organisms

with significant implications for medicine and therapeutic interventions.
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Figure 4.4: Validation of computational analysis results by in vivo experiments. Wild type
(WT) mice samples were obtained under ad lib conditions. (A) RT-qPCR were used to
determine expression of novel circadian factors detected by computational analysis in the
mouse liver. The results are displayed as percent increase/decrease, from the level of mRNA
expressed in the mice at ZT 0. (B) Daily rhythms in protein expression of EIF4B in the
whole cell lysate from the liver (n=2). Representative image of immunoblot analysis of
EIF4B are shown. Line graph shows quantification from EIF4B normalized to ↵-tubulin.
Values are expressed as a percentage of the value for ZT 0. (C) Chromatin recruitment of
BMAL1 at the E-box motif contained in the EIF4B promoter. ChIP-qPCR assays were done
utilizing dual cross-linked livers at ZT 8 and 20 with antibodies against BMAL1 (n=3 at
ZT 8, n=2 at ZT 20). ⇤p < 0.05 in Student’s t test. (D) RT-qPCR was used to determine
mRNA expression of the novel circadian factors detected by computational analysis in the
liver (n=5). The results are displayed as percent increase/decrease, from the level of mRNA
expressed in the mice at ZT 0. (E) RT-qPCR was used to determine mRNA expression of
novel circadian factors detected by computational analysis in the SCN (n=2 at ZT 0, n=3
at ZT 4, 8, 12, 16, 20). The results are displayed as percent increase/decrease, from the level
of mRNA expressed in the mice at ZT 0.
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Chapter 5

Conclusion

Deep learning has tremendous potential to greatly improve patient care and outcomes and

improve our understanding of circadian rhythms. Despite numerous publications showing

deep learning to be very successful in retrospective healthcare studies and molecular studies,

there is a lack of clinical adoption due in part to a lack of trust in deep learning models. Our

hope in developing an interpretable deep learning model, publishing MOVER, and publishing

CircadiOmics is to help close the gap between development and deployment of deep learning

models in healthcare and circadian omic analyses.
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