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ABSTRACT OF THE DISSERTATION

Using Machine Learning to Construct and Categorize Density Functionals

By

Bhupalee Kalita

Doctor of Philosophy in Chemistry
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Professor Kieron Burke, Chair

Density functional theory (DFT), combined with standard exchange-correlation approximations,

is a usefully accurate and efficient tool to generate computational predictions in chemistry and

material sciences. In the past decade, machine learning has been used extensively to build density

functional approximations that concur with human-defined standards. This thesis details the effort

to construct and characterize exchange-correlation approximations in DFT with physics-informed

machine learning.

The Kohn-Sham regularizer (KSR) is a differentiable approach for making machine-learned den-

sity functionals. It allows approximating the exchange-correlation functional while self-consistently

solving the Kohn-Sham equations. It was initially formulated to generate accurate predictions for

strongly-correlated molecules. Here I discuss a spin-adapted extension of the KSR that machine-

learns the exchange-correlation energy densities as a functional of the spin densities and substan-

tially improves generalizability for weakly correlated molecules. With a neural network approx-

imation that accounts for nonlocal interactions, a training set of just five atoms and ions in 1D

can predict the ground-state properties of several molecules with near chemical accuracy. The

differentiability of spin-adapted KSR ensures a fast convergence during training and yields accu-

rate predictions of the exchange-correlation potentials and other properties, often complying with

known exact behaviors.
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While this serves as a proof of concept for what machine learning can achieve, such methods, in

principle, can add to the complexity of the existing diverse approaches for designing exchange-

correlation approximations, further deluding the existence of a unified scheme for systematic im-

provement of density functionals. On the other hand, machine learning, especially unsupervised

learning algorithms, can help categorize different exchange-correlation approximations without in-

troducing human bias or considering any absolute errors. To answer the question of how several

exchange-correlation functionals are similar or different from each other, we propose a novel ap-

proach to group these functionals based on statistical learning tools. This approach does not use

any exact information, accounts for density-driven differences in approximations based on the the-

ory of density-corrected DFT, and avoids any form of bias between empirical, partially-empirical,

and non-empirical approximations. It sorts exchange-correlation functionals based on similari-

ties predicted using a novel, parameter-free unsupervised clustering algorithm. For 33 popular

exchange-correlation functionals and the MGAE109 dataset, this scheme generates categories of

functionals that somewhat mimic the popular Jacob’s ladder categorization while depicting that

Minnesota functionals of recent vintage might have strayed far from the path of typical functional

development.
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Introduction
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Chapter 1

Motivation and Section Summaries

Part of this chapter is written with Ryan Pederson and Kieron Burke. Published in Nature Reviews

Physics, 4(6):357-358, 2022.

1.1 Density Functional Theory Everywhere

In physical sciences, density functional theory (DFT) is often the go-to computational method for

solving electronic structure problems. DFT provides fully quantum solutions at a fraction of the

cost of solving the Schrödinger equation directly by mapping the coupled many-body problem

to a single-particle problem. The electronic energy is considered as a functional (a function of a

function) of the electron (probability) density, with only a small portion, the exchange-correlation

energy, being approximated.

It is staggering to see just how important DFT calculations have become. Each year, tens of

thousands of papers report useful predictions from DFT calculations, and today about one-third

of the National Energy Research Scientific Computing Center supercomputing resources use DFT

[40]. John Perdew, who developed many of the formulas in current use, is one of the most cited
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physicists of all time.

1.2 The GIGO Principle in DFT

The GIGO principle is an adage in computing, standing for garbage in, garbage out. In DFT, this

means that a calculation is only as good as the approximate functional used. Humans have worked

at this for almost a century, and hundreds of different approximations are in use nowadays. Some

build in well-studied limits, such as the uniform electron gas, and satisfy many known physical

constraints of the exact functional, while others are tuned and fitted to reference datasets. Regard-

less, general failures have been identified over the years. A decade-old review [24] focused on

the struggle to describe strongly correlated systems. This most grievous failure can be understood

from the perspective of fractional charges (systems with noninteger total charge) and fractional

spins (systems with noninteger spin magnetization). The exact energy is a linear interpolation of

the energy of the adjacent integer systems, but approximations miss this, producing embarrassingly

large systematic errors in strongly correlated systems as simple as stretched H2. Overcoming such

fundamental DFT challenges is essential to expanding its applicability and reliability in condensed

matter physics.

1.3 Machine Learning DFT

A proof of principle for ML-DFT appeared ten years ago. For a simple problem, the kinetic

energy of non-interacting fermions in a 1D box, an ML method (kernel ridge regression) could be

used to find an approximation of the functional by training on examples from accurate numerical

calculations [153]. The resulting functional was far more accurate than anything ever designed by

humans but only useful for simple model systems such as those it was trained on. The associated

learning efficiency was also low, as hundreds of training examples were needed to reach high
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accuracy for rather compact chemical space.

Later, the density was machine-learned directly from the external potential [11]. This demon-

strated the practical usefulness of ML in DFT through realistic examples, such as proton transfer

in an ML molecular dynamics simulation of malonaldehyde. However, unlike traditional DFT

approximations, such ML models rarely generalize across elements.

Since then, there have been many attempts to bring the promise of ML to practical, generalizable

functional construction. These efforts can be divided into two categories: those starting from

traditional approximate forms suggested by humans (which are biased toward local and semilocal

approximations) and those that use the entire density (that is, a nonlocal approximation) in some

hard-to-understand way. Such nonlocal functionals can have poor generalizability, as the input

feature space becomes vastly more complicated than local and semilocal forms, which depend

only on the density and its gradient at each point.

As described in Ref. [109], a neural network (NN) functional was trained on accurate densities

as well as energies of just three molecules, producing semilocal ML approximations that worked

as well as human-designed functionals for 150 test molecules, generalizing very well. A similar

approach was used in Ref. [93], but nonlocal forms based on convolution NNs were also used

to learn an entire dissociation curve within chemical accuracy, including the strongly correlated

region, with only two training examples. The model also generalized well for other new (but

similar) strongly correlated molecules that were not encountered in training. During training, an

end-to-end differentiable DFT code (where all components are differentiable) was used to obtain

gradient information by backpropagation through the entire self-consistent calculation. Such ro-

bust gradient-based training results in impressive generalization of functional approximations.

However, the most recent exciting development comes once again from DeepMind [85]. Using

vast computational resources, a bevy of 17 researchers revived an old human-designed sugges-

tion, a local hybrid functional [27], that had been difficult to control. Their new NN-based func-
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tional, DM21, was trained by evaluating the energy non-self-consistently using approximate den-

sities. The regression loss consisted of an energy loss plus an explicit gradient regularization term,

thereby making this training approach substantially cheaper than Ref. [93]. DM21 was trained

on thousands of molecular systems, orders of magnitude more than previous ML training sets,

and outperforms most other hybrid functionals on standard molecular benchmarks with impressive

generalization. This ML functional can be used for main-group chemistry calculations, like most

human-designed functionals. By including training on simple systems with fractional charges and

spins, DM21 appears to perform significantly better than earlier approaches for strongly correlated

systems. For instance, DM21 correctly dissociates systems such as H2, H+
2 , and N2, meeting the

long-standing DFT challenge of strong correlation in molecular systems.

Researchers all over the world are currently trying out DM21, testing many different aspects to see

if it lives up to its promise. The world of DFT applications is far too vast for DM21 developers to

run even a fraction of useful tests in their original paper. Many promising approximations run into

unexpected difficulties when tried in practice. The community will examine computational cost,

accuracy, and transferability when testing DM21.

1.4 Overview of the Dissertation

This thesis details efforts to make new density functional approximations and categorize existing

human-designed exchange-correlation approximations using machine learning. First, in Chapter 2,

the development of a few of the machine learning applications for the kinetic energy and exchange-

correlation energy functionals and their performances are reviewed. Then, Chapter 3 and Chapter 4

cover two approaches for constructing machine-learned density functionals. Finally, Chapters 5

and Chapter 6 explain the concept of unsupervised learning and how we can use it to categorize

different exchange-correlation approximations. An overview of these chapters is given below.
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1.4.1 Chapter 2: Learning to Approximate Density Functionals

This chapter introduces the preliminary works in machine learning DFT. The first attempt in

making an orbital-free machine learned kinetic energy functional approximation was for several

fermions in a box [153]. This study used a simple kernel ridge regression technique but could

only produce accurate densities with principal component analysis. Next, the chapter discusses the

extension of this work for describing bond-breaking [152] and improving accuracy with exact con-

ditions [67]. Instead of learning the kinetic energy functional from the density, it is also possible

to learn the density from the potential and the total energy from the learned density in a different

mapping. This approach is also discussed for real molecules for molecular dynamics simulations

of malonaldehyde [11]. By training on ab-initio examples instead of Kohn-Sham DFT results, this

orbital-free approach can yield accurate molecular dynamics trajectories for molecules [9]. Then

with a change of direction, the discussion shifts to modeling the universal part of the functional

with kernel ridge regression, especially for strongly correlated molecules [91]. However, all these

studies do not address one primary drawback of machine learning approximations - their limited

generalizability for data that are too different from the training set. Finally, the chapter briefly de-

scribes the differentiable DFT approach for neural network exchange-correlation functionals [93]

which tries to address the generalizability issue for strongly correlated molecules. This approach

is later covered in detail in Chapter 4.

1.4.2 Chapter 3: Machine Learned Density Functionals with Legendre Trans-

formation

Here, the idea of a novel approach is presented that proposes using DFT theoretical construction

as the machine learning model. This chapter describes the construction of the machine-learned

density functional as an approximation to the Lieb functional [90] in an orbital-free manner. This

method utilizes a finite set of potentials and the property of the concavity of the ground-state en-
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ergy to generate an approximation. Results have been discussed for a one-dimensional two-site

Hubbard model at different interaction strengths and one-dimensional non-interacting harmonic

oscillator, exponential, and delta-function potentials. A modification of the crude approximation

has also been proposed for the two-site Hubbard model, which by incorporating Hermite interpo-

lated ground-state energy, accurately reproduces the exact density. The chapter ends with a discus-

sion of the possibility of constructing a more generalized machine-learned density functional that

is transferable across different systems.

1.4.3 Chapter 4: Howe Well Does Kohn-Sham Regularizer Work for Weakly

Correlated Systems?

Kohn-Sham regularizer (KSR) is an end-to-end differentiable machine learning approach for op-

timizing a physics-informed exchange-correlation functional within a differentiable Kohn-Sham

DFT framework. In a proof of principle for 1D systems, KSR was shown to generalize well from

weakly correlated molecules to stretched molecules of the same type [93]. This chapter covers the

modified KSR approach with the incorporation of spin and discusses its generalizability for train-

ing on atomic systems and testing on molecules at equilibrium. Physics-informed neural networks

were designed to use as local, semilocal or nonlocal approximations for exchange-correlation.

While the atoms-to-molecules generalization error for the semilocal approximation was compara-

ble to the original KSR, the modified nonlocal approximation with spin-adapted KSR could predict

the ground state energy of several 1D molecules with near-chemical accuracy. This chapter also

briefly discusses the finite generalization of the nonlocal approximation for strong correlation.

Finally, it was shown that the KSR approach could, in principle, learn any human-designed ap-

proximation and, due to the differentiability of the program, can also yield qualitatively correct

exchange-correlation potentials and other derivative quantities without explicitly training on them.
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1.4.4 Chapter 5: Unsupervised Learning

This chapter serves as an introduction for the next chapter, where categorizing density functional

approximations is discussed. Most often, machine learning tasks refer to the supervised learning

task where we have some observational pairs in the training set and try to learn the relationship

between them. The machine learning or the neural network techniques discussed in the previous

chapters are all supervised learning examples. Hence, a thorough introduction to unsupervised

learning is necessary. Chapter 5 describes what unsupervised learning is and what are some ex-

amples of unsupervised learning tasks. Then, it covers the concepts of dimensionality reduction,

density estimation, and clustering and briefly describes several algorithms available to solve these

problems. Special attention is paid to clustering while analyzing what clustering method may be

suitable for dealing with small datasets with non-globular clusters. Since clustering is a relative

evaluation of the relationship between data points, the chapter also briefly discusses methods for

evaluating clustering quality which can help determine undetermined parameters associated with

clustering.

1.4.5 Chapter 6: Categorizing Density Functionals with Unsupervised Learn-

ing

Chapter 6 details our effort towards answering whether recent density functionals are straying

from the path towards the exact functionals or whether we can classify density functionals into a

few simple categories. The tool of choice was unsupervised learning. However, finding the best

descriptors to describe the functionals is essential to cluster a dataset meaningfully. We define

descriptors that can account for both functional-driven and density-driven differences (unlike most

other approaches) based on the theory of density-corrected DFT [150]. This chapter also describes

a novel parameter-free clustering algorithm that can categorize the density-based functional finger-

prints without human-introduced bias. For 33 different exchange-correlation functionals, including
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DM21, we calculate the descriptors based on the MGAE109 dataset and perform parameter-free

clustering. The generated functional groups somewhat mimic the well-known Jacob’s ladder[121]

categorization. However, most Minnesota functionals deviate from Jacob’s ladder and form a sep-

arate cluster. Two other clustering methods suitable for small datasets are also explored in detail.

The chapter ends with the discussion of suitable dimensionality reduction methods for visualizing

the functional clusters.

A few chapters are direct copies of papers published for diverse audiences. Hence, there are in-

consistencies in notations, definitions, and acronyms between chapters. Therefore, readers should

refer to the definitions given within each chapter to prevent confusion.
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Part II

Machine Learning Density Functional

Theory
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Chapter 2

Learning to Approximate Density

Functionals

written with Li Li, Ryan J. McCarty, and Kieron Burke. Published in Accounts of Chemical Re-

search, 54(4):818-826, 2021.

Abstract: Density functional theory (DFT) calculations are used in over 40,000 scientific papers

each year in chemistry, materials science, and far beyond. DFT is beneficial because it is compu-

tationally much less expensive than ab-initio electronic structure methods and allows systems of

considerably larger size to be treated. However, the accuracy of any Kohn-Sham DFT calculation

is limited by the approximation chosen for the exchange-correlation (XC) energy. For more than

half a century, humans have developed the art of such approximations, using general principles,

empirical data, or a combination of both, typically yielding useful results but with errors well

above the chemical accuracy limit (1 kcal/mol). Over the last 15 years, machine learning (ML)

has made significant breakthroughs in many applications and is now applied to electronic struc-

ture calculations. This recent rise of ML begs the question: Can ML propose or improve density

functional approximations? Success could significantly enhance the accuracy and usefulness of
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DFT calculations without increasing the cost.

In this work, we detail efforts in this direction, beginning with an elementary proof of principle from

2012, namely finding the kinetic energy of several fermions in a box using kernel ridge regression.

This is an example of orbital-free DFT, for which a successful general-purpose scheme could

make even DFT calculations run much faster. We trace the development of that work to state-

of-the-art molecular dynamics simulations of resorcinol with chemical accuracy. By training on

ab-initio examples, one bypasses the need to find the XC functional explicitly. We also discuss

how the exchange-correlation energy can be modeled with such methods, especially for strongly

correlated materials. Finally, we show how deep neural networks with differentiable programming

can be used to construct accurate density functionals from very few data points by using the Kohn-

Sham equations as a regularizer. All these cases show that ML can create approximations of

greater accuracy than humans and can find approximations that can deal with complex cases

such as strong correlation. However, such ML-designed functionals have not been implemented in

standard codes because of one last great challenge: generalization. We discuss how effortlessly

human-designed functionals can be applied to a wide range of situations and how difficult that is

for ML.
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2.1 Introduction

Direct solution of the Schrödinger equation for electrons (traditionally designated as ab initio in

quantum chemistry) yields chemically accurate energies (errors below 1 kcal/mol). However,

computational costs scale poorly with system size, limiting its routine applicability to smaller

molecules. On the other hand, density functional theory (DFT) calculations typically scale much

more favorably, allowing routine calculation of molecules with hundreds of atoms. This increased

applicability comes at a cost: The effective noninteracting Kohn-Sham equations that, in principle,

yield exact ground-state energies and densities, in practice, require a small fraction of the total

energy (called the exchange-correlation (XC) energy) to be approximated in an uncontrolled way.

Presently, there are hundreds of distinct approximations to the XC energy [13], all of which are

available in common electronic-structure codes. Some have been designed from general physics

principles, without reference to any specific molecular or material system [115]. Others have

been fitted and tested on an ever-growing population of databases of distinct molecular systems

and properties, and these yield higher accuracies on those systems [53]. However, almost all use

essential ingredients, such as the density, gradient, and a fraction of Hartree-Fock (HF) exchange,

and are inspired by physical or chemical insight.

In the past decade, machine learning (ML) has seen some remarkable successes in various appli-

cations, including image recognition, language translation [62], and even playing curling [179].

ML is also increasingly being applied to problems in physical sciences, where it can help with, for

example, extraction of salient features from microscopy images [107] or climate modelling [70].

It can also be used to speed up purely computational tasks. In electronic structure theory, there has

been much success in designing new force fields using ML, creating far more accurate force fields

than previous human-designed attempts [169]. ML force-fields can reproduce results from DFT

or any ab-initio methods at a fraction of the computational cost, simply by training on carefully

chosen examples, and are already available in useful codes [73].
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A different and arguably more difficult task is to use ML to design new density functional approx-

imations or to improve existing ones. This is simply a regression problem, i.e., fitting a function

of many variables. But regression in DFT involves fitting a functional, which can be considered a

function of infinitely many variables, and that complicates the task.

There are several distinct approaches to using ML to make functionals. If the goal is to make

DFT calculations run faster, one such problem is approximating the KS kinetic energy functional,

i.e., the kinetic energy of the noninteracting KS orbitals (TS[n]), thereby bypassing the need to

solve the KS equations, the most expensive step in most DFT implementations. If TS could be

computed rapidly, it could revolutionize all DFT calculations by making them run much faster [36].

This is called orbital-free DFT (OF-DFT) [153, 152, 94, 11]. Moreover, training data is abundant

as every self-consistent cycle of every DFT calculation ever performed yields a set of orbitals

(and hence density) and their TS. However, the path to success is not smooth. To determine

the density in OF-DFT, one must solve an Euler equation [15] requiring an accurate and well-

behaved functional derivative of TS. Due to limited information in direct training, ML-designed

interpolating functionals that are extremely accurate for the energy almost necessarily yield poor

functional derivatives.

The more traditional problem is to improve the accuracy of DFT, either by modifying existing XC

approximations or creating completely new forms [109, 34, 93]. Usually (but not always [83]), the

functional derivative of the XC energy is somewhat unimportant to the energy. However, unlike

the orbital-free approach, the amount of accessible, accurate training data from higher levels of

theories is limited and is primarily available for relatively small systems. Nonetheless, promising

ML ideas developed for OF-DFT can also be applied to the XC case. Combining both can improve

accuracy and computational cost simultaneously [91].

Another essential objective is to find new forms that overcome the drawbacks of traditional human-

designed XC approximations. For instance, most molecules and many materials in their equilib-

rium state are considered weakly correlated where ingredients used in the past work reasonably
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well and can be borrowed to design ML functionals. However, most XC approximations fail to

break bonds correctly because they fail when a bond is stretched, and electrons localize on specific

sites. Thus the complete binding energy curves of even H+
2 and H2 represent paradigm difficult

problems for standard DFT [23]. A stretched bond is an example of a strong correlation that pro-

vides a good test for ML-designed functionals. Fig. 2.1 shows an ML-functional reproducing an

entire binding energy curve from training on only two bond lengths [93]. Such bonds are even

more difficult for OF-DFT if semi-local approximations (terms that depend on only the density

and its gradient) [115, 7] are used, as the same considerations apply even more strongly to TS[n].

In principle, ML-designed functionals need not be limited by human imagination and intuition

as ML can use the density everywhere to find the energy contribution at a point (a fully non-

local functional) [94]. This is an ambitious goal. Humans have an almost 100-year head-start on

this task [13], and it may be a while before an ML functional becomes as useful and practical

as B3LYP [7] in chemistry. In current studies, many simplifications are made for efficient data

generation and more straightforward implementation, simply to see if a new ML approach can

work before building more realistic or general applications.

Thus, several of the examples discussed here are for one-dimensional analogs of true electronic

structure problems [153, 152, 94, 91, 93]. For the noninteracting problem, a practical code can be

written in a few minutes for solving the Schrödinger equation and training data generated within

hours on a single core. For interacting systems, highly accurate solutions can be obtained very

efficiently in one dimension, using a method called the density matrix renormalization group

(DMRG) [178]. DMRG is a very powerful quantum solver, using matrix product states, with

many applications to strongly correlated model systems relevant to condensed matter physics [57]

and also in quantum chemistry [180]. Recently, considerable effort was made to create a one-

dimensional analog of molecular systems using DMRG to handle strongly correlated effects [160],

making data generation much more manageable. Such simplicity ensures maximum flexibility and

ease in interfacing with existing ML codes, which often come in prepackaged routines.
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Figure 2.1: The dissociation curve of a one-dimensional H2 molecule, created using the ML XC
approximation of Ref. [93] by training with DMRG data at just two configurations. Darkening
shades of grey show predictions from underfitting to overfitting but distributed around the exact
curve due to the physics prior knowledge built into the model. The optimal green curve, found
by validating the model at a single configuration produces chemically accurate results. Enn is the
nucleus-nucleus repulsion energy. See Fig. 2.11 for details.

A helpful introduction to ML for chemical scientists can be found in Ref. [135] with a glossary

of terms. Here, we simply distinguish between kernel methods and deep neural networks, the two

methods used in the key references. The fundamental problem is that of regression with many

parameters, where some regularization method is required to avoid overfitting. Regularization is

any procedure that allows one to control how smooth the fit is. Ridge regularization penalizes

overfitting with the sum of the squares of the fitting coefficients. The kernel trick maps a low-

dimensional space to a higher one to create a function that is more straightforward to fit [61],

which is especially relevant in our case. Kernel ridge regression (KRR) remains a standard tool in

ML today.

However, many of the most impressive gains in ML have recently come from neural networks

(NN). These are characterized by the graph of differentiable operations, architectures with various

inductive biases, and scalability on hardware accelerators [69]. Their performance can usually be

continuously improved by increasing the model capacity, with copious addition of data, whereas
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more traditional methods can saturate or become too expensive to train [156]. The first application

of ML to density functional design was using NN [168]. This pioneering work used exact energies

and XC potentials to fit an XC functional that remains relevant. In this article, we discuss the

chronological developments of ML density functionals focusing only on the work of our research

group, but comprehensive reviews are available elsewhere [101].

2.2 Prototype

Here we review the most elementary application of ML to create an approximate OF-DFT func-

tional [153]. The simplest problem imaginable is considering the energy levels of a 1D potential

between infinite walls. It is trivial to solve such box problems numerically, filling the levels with

same-spin fermions so that there is one particle per level. For N fermions in the box, the KRR

kinetic energy functional is:

T ML[n] =
NT

∑
j=1

α jk(n,n j), (2.1)

where NT is the number of training densities, α j are the weights and k is a Gaussian kernel of the

form

k(n,n j) = exp(−
∫

d3r(n(r)−n j(r))2/2σ
2). (2.2)

The weights α j are found by minimizing the mean squared error of T ML[n] for all training data

plus a regularization penalty, while σ can be determined by cross-validation. Each data point adds

an integral over the entire density inside the Gaussian kernel; hence, the resulting functional is

completely non-local.

Three Gaussian potential dips were placed randomly inside the box to generate data. For N = 1,

with as few as 80 training densities, chemically accurate (error less than 1 kcal/mol) predictions
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Figure 2.2: The range of variation within the data set of 1000 training densities for N = 1 for the
box problem (green). These densities can be accurately reproduced using the projection method
discussed in Ref. [153]. Adapted with permission from Ref. [153]. Copyright 2012 American
Physical Society.

were made for the kinetic energies of a test set drawn from the same distribution, and shown in

Fig. 2.2. This was a huge improvement compared to semi-local XC approximations (error = 160

kcal/mol). However, to be useful, an approximate TS must also have an accurate derivative, so that

the Euler equation yields an accurate density [15]. The functional derivative of KRR T ML[n] has

the form,

δT ML

δn(x)
= σ

−2
NT

∑
j=1

α j
(
n j(x)−n(x)k(n,n j)

)
. (2.3)

This derivative is shown in Fig. 2.3. It oscillates wildly relative to the exact curve. This is expected

as the exact functional derivative describes the change in the functional in every direction in the

infinite-dimensional space of densities, but with KRR, one could only expect it to be accurate in

the very few directions in which it has training data.

To overcome this problem, a constraint was added to the minimization, δ (E[n]−ζ g[n]) = 0, where

the functional g[n] = 0 defines the manifold of training densities. The specific g[n] can be deter-

mined using principal component analysis (PCA) [135]. The cartoon in Fig. 2.4 illustrates this

19



Figure 2.3: Functional derivative of −T ML[n], the exact derivative, v(x), and their projections on
the data-manifold for NT = 100. Adapted with permission from Ref. [94]. Copyright 2015 John
Wiley and Sons.

process. One first calculates the usual functional derivative and then projects it onto the local

principal components with the greatest variations among the nearby training densities. This leads

downhill on the training manifold, and since the optimal density should be within that manifold, it

finds a density very close to the exact minimizer. Although the projected derivative is very accu-

rate, as in Fig. 2.3, the error of the functional evaluated on this projected ML density, T ML[nML], is

substantially larger than that of T ML on the exact density, chemical accuracy is still achieved with

150 training samples for one particle.

Six alternative kernels were tried, of which three had comparable performance, including the Gaus-

sian used here. A detailed account of all the KRR implementations is given in Li et al. [94]. The

details of how the projection method works are also explained, discussing the relative contributions

of the energy and density to the error. An analysis of the functional found, and the hyperparameter

landscape, is available in Ref. [173].
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Figure 2.4: The training densities and the exact density are on the density manifold defined by
g[n] = 0. The solution of the Euler equation via simple gradient descent becomes unstable (red
dashed curve) and leaves the shaded region.

2.3 Orbital-Free DFT

Inspired by the proof of principle from Ref. [153], many questions arise as one works toward

chemical realism.

2.3.1 Bond breaking

Orbital-free semi-local approximations to TS[n] fail worse than those for XC when a chemical bond

is stretched. An implementation of KRR to correctly describe the stretched bond limit can be found

in Snyder et al. [152]. They trained T ML
S [n] with data from KS-DFT along the bond distance of

several prototype 1D diatomic molecules and tested if the non-local ML approximation, similar

to the one in the box problem, could remain accurate all along the dissociation curve. To tackle

the highly curved density manifold, a technique called nonlinear gradient denoising (NLGD) was

also proposed. By utilizing kernel principal component analysis (kPCA) [141] to capture the low-

dimensionality, this method improves the accuracy of the projected gradient descent with even

fewer training densities compared to standard PCA in Ref. [153].

For both H2 and LiH, the relative error in T ML
S [n] evaluated on the projected density with NLGD
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Figure 2.5: The molecular binding energy curve obtained with constrained optimal densities (KRR-
NLGD) for 1D model of H2. Adapted with permission from Ref. [152]. Copyright 2013 AIP
Publishing.

was less than 1 kcal/mol with just NT = 10. By increasing the training set size to 20, the bond

dissociation energy, equilibrium bond length, and the zero-point vibrational frequency could be

determined to be within 1%. Fig. 2.5 depicts how accurately the ML algorithm reproduces the

exact binding energy curve of H2 obtained from a DFT calculation.

The NLGD algorithm is further illustrated in Ref. [154] for the 1D box problem. A 3D expansion

of a similar OF-DFT mapping can be found in Ref. [183] where a convolutional neural network

predicts the potential energy surface for hydrocarbon chains with accuracy comparable to those

of human-designed functionals. Examples of improvements made in human-designed functionals

for the same problem can be found in Seino et al. [147] and Golub et al. [54], who trained neural

networks for T ML[n] that included up to third-order and fourth-order gradients of the density.
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2.3.2 Exact conditions

In DFT, known theoretical properties (exact conditions) are used to constrain the form of approxi-

mate functionals [7, 115, 161]. However, the ML models above cannot be analyzed by checking for

such conditions. The weights in the KRR functional are large and alternate in sign, suggesting the

possibility of predicting unphysical negative kinetic energy. However, all test densities considered

had accurate positive ML kinetic energies, i.e., throughout the training density manifold.

In order to make these KRR functionals less system-specific and to enable easier training, a later

study [67] incorporated one of the elementary exact conditions of DFT, the coordinate scaling,

within the KRR optimization,

TS[nγ ] = γ
2TS[n], nγ(r) = γ

3n(γr), γ > 0. (2.4)

Two 1D systems were studied separately- the exactly solvable Hooke’s atom, and the H2 molecule

with accurate DMRG energies and densities. After training the KRR model on scaled density nγ ,

it was evaluated on a test set of 50 densities for the two systems. Fig. 2.6 shows that in Hooke’s

atom, the scaled kinetic energy functional was much more accurate than its unscaled counterpart,

but not for H2.

Scaling makes the densities of different configurations of Hooke’s atom look similar to one another.

However, that is not so for H2. Hence no improvement is seen in its kinetic energy. This results

from the enormous changes in density as you move within the training manifold. Would scaling

improve learning if several molecules at different bond distances were simultaneously trained?
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Figure 2.6: The error in the kinetic energy functional trained on scaled and unscaled densities for
both 1D Hooke’s atom and 1D H2 molecule. Adapted with permission from Ref. [67]. Copyright
2018 AIP Publishing.

2.3.3 Molecular dynamics of single molecules

New complications arise when ML is applied to chemically realistic problems. Brockherde et

al. [11] tried incorporating these methods in realistic 3D electronic structure codes, but as the

number of degrees of freedom increased, the cost of the projection method to determine the density

became prohibitive. A relatively simple workaround is to learn the density directly as a functional

of the potential and bypass the need to solve either the KS equations or the Euler equation. The

KRR density and energy models in Ref. [11] were capable of running molecular dynamics (MD)

with a standard XC approximation (PBE) for a small organic molecule, malonaldehyde. Training

sets were generated by running classical MD simulations at higher temperatures, e.g., 500 K (to

ensure sampling of higher energy regions of the potential energy surface), and then performing

DFT calculations at snapshots of such simulations. With sufficient training, the errors in the density

map became much smaller than density differences due to different XC approximations.

The performance of this ML density functional along the MD trajectory is shown in Fig. 2.7. The

error is most prominent in the region where the proton transfer occurs because these configurations

are not included in the training set. One could quickly run a KS calculation for this particular
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Figure 2.7: Predicted ML energy along a 0.15 ps MD trajectory of malonaldehyde showing the
transfer of a proton between oxygen atoms. Adapted from Fig. 5 of Ref. [11]. Copyright 2017
Nature Research, licensed under Creative Commons Attribution 4.0 International.

configuration and retrain including that data point to reduce this error. Standard KS-MD does not

yield accurate proton transfer rates, as nuclear tunneling plays an important role and requires more

sophisticated approaches [103].

2.3.4 ∆-DFT and chemical accuracy

Although the training data used for malonaldehyde were generated from approximate DFT, in

principle, the ML functional could also be trained on energies and densities from higher-level ab-

initio theories, such as coupled-cluster, i.e. to bypass the KS equations as if they had been solved

with chemical accuracy.

In practice, it is difficult to extract accurate densities for training from a CCSD(T) calculation [130],

but one can simply learn accurate energies as a functional of the density of a standard DFT cal-

culation. This leads to several different energy functionals that ML can produce: the ab-initio

energy, the DFT energy, and the difference in the two (∆-DFT), which is much easier to learn (i.e.,

converges much more rapidly with training data) because the error in a DFT calculation is a very

smooth function of the nuclear coordinates. All this was done in a recent work by Bogojeski, Vogt-

Maranto, et al. [9]. Of many different situations studied, the highlight is ML-MD simulations, in

which a rotation barrier in resorcinol was probed. A semi-local XC functional makes a substantial
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error in the rotation barrier, and Fig. 2.8 shows how the DFT trajectory bifurcates from the accurate

trajectory. The KRR-DFT energy on the ML density yields almost perfect agreement with a full

DFT MD simulation. Self-consistent DFT corrected with ∆-DFT calculated on the ML density

yields trajectories with errors less than 0.2 kcal/mol. Using the ML density with the CCSD(T)

energy without performing DFT calculations at each step usually gives a good trajectory but with

substantial energy errors. Moreover, directions can appear in a wholly unphysical trajectory taking

the molecule outside the manifold on which the density functional works.

Figure 2.8: Positions and energy of the resorcinol conformer switch predicted using standard DFT
alone (blue), and after correction with ∆−DFT trained on CCSD(T) energies (purple). Adapted
from Fig. 3 of Ref. [9]. Copyright 2020 Nature Research, licensed under Creative Commons
Attribution 4.0 International.

Unfortunately, it is difficult to generalize these methods to other systems or to strong correlation. A

similar machine-learned correcting functional was also defined in Dick et al. [33] for liquid water,

which used an NN to predict accurate ground-state properties by approximating the difference in

energies and forces from the DFT densities. Later, an approximation for XC was also constructed

with this method [34].
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2.4 Exchange-Correlation:

We turn now to models for XC. Much work in the literature applies to weakly correlated systems.

We focus on creating fully non-local ML approximations to handle strong correlation. Because

highly accurate densities and energies are cumbersome and expensive to generate for training, we

return to the simpler 1D world for testing these ideas.

2.4.1 Strong correlation and thermodynamic limit

For materials applications, the actual strong correlation is even worse than in stretched H2. For

example, for stretched H4, semi-local XC approximations create four broken spin-symmetry so-

lutions, not two. Ultimately, for solid-state applications, one should be able to handle the infinite

chain, or in other words, the thermodynamic limit [160].

In Li et al. [91], the task was to learn both TS and XC and their derivatives for 1D H-atom chains of

fixed separation varying from equilibrium to very stretched and chains varying from two to twenty

atoms to extrapolate to the thermodynamic limit accurately. Contrary to Ref. [152], the KRR ma-

chinery was applied to DMRG energies and densities to approximate both TS[n] and EXC[n] in one

shot. This was an extremely ambitious goal given the requirement of accurate functional deriva-

tives and the enormous size of the kinetic and Hartree energies. The NLGD method described in

the previous sections [152] yields an extremely accurate 1D H2 dissociation curve. However, this

method becomes too costly for longer chains as the number of grid points in the density increases.

Without accurate derivatives, one can still easily learn energies but not calculate accurate densities.

The key was the representation of the density. There is too much freedom when it is simply a

function of the large grids needed to represent the system. Many alternative representations were

tried, but the ultimate winner was the simple atoms-in-molecules partitioning of Hirshfeld [65]. A

molecular density of an N-atom chain was decomposed into a weighted sum of distorted atomic
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Figure 2.9: Individual Hydrogen partition densities for every interatomic separation R within the
training set for a chain of length N and the base density found using PCA. Note similarity to
Fig.2.2. Adapted with permission from Ref. [91]. Copyright 2016 American Physical Society.

densities. After collecting and centering all these atomic densities, PCA was used to create a data-

driven basis for the allowed density variations shown in Fig. 2.9. This reduced the time needed to

calculate the optimizing densities by several orders of magnitude while retaining chemical accu-

racy. The infinite-chain limit of 1D H-atoms could then be found with chemical accuracy, treating

all aspects of the DFT calculation with KRR on a PCA basis, learned from atoms-in-molecules.

DMRG results for both extrapolation of finite chains and periodic systems agreed with each other

and with the ML result to within 1 kcal/mol (Fig. 2.10).

On reflection, it would have been much easier to approximate the XC energy alone with ML

methods in this calculation and use the KS procedure to produce accurate densities. This seems a

worthwhile test for future work and might also have been helpful in Ref. [152].

Other studies have also tried to address strong correlation with ML-DFT on model systems [29,

111, 140]. However, developments are more prominent for weakly correlated systems [89, 99, 46].
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Figure 2.10: Energy of the infinite H-chain with a uniform interatomic spacing of 2.08 Bohr trained
using extrapolated DMRG chain densities and energies. Adapted with permission from Ref. [91].
Copyright 2016 American Physical Society.

2.4.2 Kohn-Sham regularizer (KSR)

Here, we look again at full binding energy curves obtained with DMRG to find XC approximations

that correctly break bonds, but now within the KS framework. A pioneering study [109] showed

that by including density errors in the loss function of a feed-forward NN, one could achieve

performance comparable to human-designed functionals for an actual molecule by training on just

three or four molecules. This is because density is the functional derivative of the energy with

respect to external potential. By training with densities, one simultaneously improves the energy

and all possible linear responses to changes in the potential. This greatly enhances the possibilities

of generalization.

There are several other efforts to build a transferable ML-DFT model with different approaches [137,

136, 72, 140]. The most recent work by Li et al. [93] pushes the inspiration from Ref. [109] for-

ward in two significant respects. The first is to see if an entire dissociation curve can be found

with minimal training on a few examples. The second is a theme of deep learning in general,

namely the importance of differentiable programming (DP). DP keeps rigorous components where

we have essential physics prior knowledge and well-established numerical methods. By using DP,

one can automatically apply gradient-based approaches to optimization, unlike earlier work.
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NNs often have many more parameters than training examples and must be regularized. Prior

knowledge is usually included via constraints on the network, physics-informed loss functions, or

feature preprocessing [67, 142]. Ref. [93] treats the procedure of solving the KS equations as a

differentiable program and trains an XC functional using a loss function of density and energy.

By backpropagating, the KS equations work as an implicit regularizer for the model. It learns

to sample and generate a trajectory from the initial guess density to the exact density during the

self-consistent cycle. This improves generalization compared to direct ML models without the KS

scheme, such as the KRR models described above, as these models use only the final step results

for training and have little information about initial densities.

Figure 2.11: One-dimensional H2 dissociation curve, similar to Fig. 2.5 but with DMRG data
instead of KS-DFT. The colored curves are the optimal models trained on two configurations (red
diamonds) and validated on R = 3 (black triangle). An ML model directly predicting E from
geometries overfits the training data. However, the global KSR functional improves with each
iteration of the KS equations (grey lines). The lower panel shows that the KSR predictions are
within the chemical accuracy limit (light blue region). Adapted from Fig. 1 of Ref. [93]. Copyright
2021 American Physical Society, licensed under Creative Commons Attribution 4.0 International.

The success of the KSR model is apparent from the high accuracy achieved for stretched systems.

In Fig. 2.11, the entire dissociation curve of the H2 molecule is reproduced with chemical accuracy

by training at just two separations. A similar performance was reported for H4. Inclusion of the

density loss term generates a much better prediction for the density and the XC potential compared
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to energy loss alone. The KSR is transferrable in the sense that it could also predict energies for H+
2

or two H2 molecules, even though the model was never exposed to those molecules. A successful

extrapolation of this method for 3D real molecules may hold the key for a generalizable practical

ML density functional, which can surpass the accuracy of any human-designed functional.

2.5 Outlook

In the arena of OF-DFT, a natural question has arisen. If we can find sufficiently accurate force

fields by training on DFT (or better) data, why do we need orbital-free DFT? Won’t a force field

always be much faster (even if slower than simpler force fields)? The current answer is: maybe.

For some specific but significant limited cases, ML force fields are both faster and do not run

into difficulties. However, there are problematic configurations that current force fields cannot

resolve [128]. Moreover, a DFT calculation can be performed for any combination of any atoms in

any configuration, whereas most force fields are designed to explore materials configuration space

with one or two elements or chemical compound space with about a dozen elements relevant to

medicinal chemistry. A few DFT runs on new combinations of elements and configurations would

be cheaper than the cost of new training. Between these two extremes, there is likely room for

orbital-free ML-DFT.

However, the main focus is to improve XC approximations. Here, there are two distinct areas. For

the weakly correlated systems most often encountered in chemistry and many materials, substantial

improvements in accuracy would be incredibly useful and might be achievable by finding better

combinations of the many approximate functionals already suggested. For strongly correlated

systems (including complete dissociation curves of molecules), going beyond the usual semi-local

starting points is likely a requirement, and here, the advantage of ML to create entirely non-local

functionals is clear.
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Possibly the greatest challenge to creating fully non-local functionals is that of generalizability.

We need approximations that can be applied to systems of effectively arbitrary size and boundary

conditions (open or periodic). A functional that uses the entire density throughout the system is

so sophisticated that training on densities of one molecule is unlikely to yield great accuracy on

another and must be retrained for every case. Nevertheless, the simplest and oldest XC approxima-

tion, local exchange [35], generalizes perfectly by using only the density at each point to determine

its contribution to the XC energy. An ML functional that uses the density within a given radius of

the point might improve accuracies for weakly correlated systems but is unlikely to avoid catas-

trophic failures for strong correlation. The search for the elusive XC functional will continue but

now includes machine learning alternatives to human designs.

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant No.

DGE 1633631 (B.K.) and CHE 1856165 (R.J.M, K.B.).

32



Part III

Using Machine Learning to Construct

Density Functionals
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Chapter 3

Machine Learned Density Functionals with

Legendre Transformation

3.1 Introduction

Data-intensive machine learning (ML) algorithms have recently gained attention in quantum and

classical computation. ML methods have been successfully utilized in predicting properties of

molecules and materials from large databases of Kohn-Sham (KS) density functional theory (DFT)

calculations [129, 104, 43], finding potential energy surfaces within molecular dynamics (MD)

simulations [81, 112, 145], and in the construction of density functional approximations [153, 152,

94, 91, 183, 177]. To develop a data-driven approach, we must have an underlying pattern in the

data. In DFT, such a pattern is confirmed by the Hohenberg-Kohn (HK) theorem [66] which states

that the density uniquely determines all ground-state properties of a system. For a non-relativistic

many-body problem, it is possible to determine the ground-state energy by splitting the variational

principle into two steps via Levy-Lieb constrained search approach [90, 97]. First, the universal

part of the functional, F [n], is determined, and a second minimization yields the ground-state
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energy:

F [n] = min
Ψ→n

⟨Ψ|T̂ +V̂ee|Ψ⟩

E = min
n

{
F [n]+

∫
n(r)v(r)d3r

}
,

(3.1)

where n(r) is the one-particle density, normalized over N particles and v(r) is the external potential.

By definition, the kinetic energy, T̂ , and the electron-electron repulsion energy, V̂ee, are evaluated

over all normalized antisymmetric wavefunctions, Ψ. Almost all practical DFT calculations use

the KS scheme to estimate the unknown F [n] [86]. It defines an auxiliary system of noninteracting

electrons that has the same n(r) as the interacting system and calculates F in terms of three different

contributions,

F [n] = TS[n]+U [n]+EXC[n]. (3.2)

The Hartree electrostatic self-repulsion energy, U [n], is exact, and the noninteracting kinetic en-

ergy, TS[n], is given by the self-consistent solution of a one-body Schrödinger equation of the KS

system. Hence only a tiny fraction of F [n], the exchange-correlation (XC) energy, EXC[n], needs to

be approximated as a functional of the electron-spin densities [15].

KS-DFT can produce usefully accurate results, with the calculation cost from the diagonalization

of the KS eigenvalue equation scaling as O(N3), for an N-electron system [77]. On the other

hand, in the orbital-free counterpart (OF-DFT), the noninteracting kinetic energy is approximated

directly as a functional of n(r). The ground-state n(r) is determined self-consistently via Euler-

Lagrange constrained minimization,

δTS[n]
δn(r)

= µ − vS(r), (3.3)

where µ is the chemical potential, and vS is the KS potential. Suppose we can accurately formulate

the kinetic energy of the KS electrons. In that case, TS[n], as a functional of the ground-state density
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n(r), OF-DFT can produce results as accurate as KS-DFT with only linearly scaled computational

cost [77]. However, since TS[n] is typically comparable to the system’s total energy [36], the

relative accuracy of the kinetic energy functional must be much higher than that of XC functionals.

Also, the functional derivative needs to be sufficiently accurate to solve the Euler equation to find

the self-consistent ground-state density.

The current efforts concerning the construction of machine-learned density functionals (MLDF)

aim to provide a computational advantage over KS-DFT through this orbital-free scheme for large-

scale molecular calculations. We can define MLDFs as functionals obtained by fitting on a bunch

of input data (training set) that can predict the value of the functional on new data (test set). It is

relatively easy to obtain data for training since every iteration of every solution of the KS equation

yields an exact TS[n].

The kernelized and regularized form of linear regression, KRR, has been used extensively in the

previous ML-DFT studies due to its effectiveness in high-dimensional spaces. It is a method of

interpolation constructed by piecing together weighted non-linear kernel functions. There exist

several approaches to constructing MLDF:

3.1.1 Orbital-free map (ML-OF)

The non-interacting kinetic energy functional machine-learned with KRR as a functional of n,

T ML[n], has the form given in Eq. 2.1 [153, 152, 94],

T ML[n] =
NT

∑
j=1

α jk(n,n j).
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Here NT is the number of training densities, α j are the weights, and k is the kernel. For T ML[n],

the measurement of similarities between densities is often approximated using a Gaussian kernel,

k[n,n j] = exp
(
−
∫

d3r(n(r)−n′(r))2/2σ
2
)
. (3.4)

The weights α j are found by minimization of the cost function,

C(α) =
NT

∑
j=1

(
T ML[n j]−T [n j]

)2
+λα

TKα, (3.5)

where, K is the kernel matrix, Ki j = k[ni,n j]. The regularization strength, λ , and scale of the

Gaussian, σ , can be determined from cross-validation.

The performance of KRR-based ML functionals is driven by the chosen hyperparameters and train-

ing set size [61]. One of the main difficulties associated with these approaches is extracting a suffi-

ciently accurate functional derivative of the noninteracting kinetic energy to find the self-consistent

density. The functional derivative is expected to be accurate only in directions staying within the

manifold spanned by the training set. We can overcome this difficulty with a locally linear projec-

tion using principal component analysis (PCA). When an optional density for a system is found

in one of these ways, the errors are typically an order of magnitude larger than those evaluated on

the exact densities. So the number of training data must be increased to achieve the same level of

accuracy as T ML[n].

3.1.2 Hohenberg-Kohn map (ML-HK)

This alternative approach involves direct learning of the KS density from the potential using KRR

as a linear combination of Fourier basis functions, φl(x), with coefficients u(l)[v] [11],

nML[v](x) =
L

∑
l=1

u(l)[v]φl(x). (3.6)
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We can successfully implement this method for molecular energy calculations in 3D with a stan-

dard quantum-chemical code. However, although this method can yield exact densities, learning

kinetic or total energy requires a second KRR mapping.

3.1.3 Extension to many-body problem

While both ML-OF and ML-HK maps can be much faster than traditional KS-DFT, the accu-

racy of these ML functionals depends on the exchange-correlation functional used to generate the

training set. In an attempt to approximate the universal part of the functional, F [n], a ∆-learning

approach based on the ML-HK map has been applied to learn the correction to standard PBE

energies with respect to coupled-cluster calculations based on PBE exchange-correlation densi-

ties [9]. It was found that machine learning the difference between the coupled-cluster energy

and the energy obtained with certain exchange-correlation functional is much more efficient than

learning either of them separately. While this is only applicable for weakly correlated systems, Li

et al. [91] constructed a more accurate DMRG-trained KRR-based MLDF for F [n] for a variety

of one-dimensional hydrogen atom chains that are strongly correlated. An MLDF which contains

TS[n] and EXC[n] in it does not suffer from any of the disadvantages of KS-DFT and can perform

well even in the strongly correlated regime.

3.1.4 MLDF with exact conditions

Traditional density functionals usually start from a local or semilocal form. They only include

some fraction of exact exchange, using no or just a few empirical parameters (e.g., PBE [115], or

B3LYP [7]). So far, machine-learned density functionals have been approximated in an entirely

nonlocal fashion requiring many thousands of non-unique parameters [153], and they are not ex-

pected to satisfy any of the exact conditions in DFT. These ML functionals are system-specific but

do not suffer from some drawbacks of standard functionals that start from a local approximation.
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What happens when one introduces exact conditions in constructing these MLDFs? Hollingsworth

et al. [67] partially addressed this question in their study involving 1D Hooke’s atom and 1D hy-

drogen molecule. They explored the effect of one of the most straightforward exact conditions in

KS-DFT- the uniform coordinate scaling relation. It was found that enforcing the exact condition

dramatically improves the learning curve for the 1D Hooke’s atom, but not for H2.

Taking these developments one step further, we have undertaken a different approach to construct

a new class of MLDF for the universal part of functional, F [n], which has DFT hard-wired within it

through Levy-Lieb constrained search approach [90, 97]. While this MLDF is more compliant with

the basic structure of DFT than the ML-HK and the ML-OF maps, it can still offer computational

efficiency similar to the orbital-free method. This effort combines the benefits of the traditional

DFT and the ML world while simultaneously addressing their drawbacks. Next, in the research

progress section, we will discuss the applicability of this approach for a few simple, precisely

solvable 1D systems.

3.2 Learning the Universal Part of the Functional with Legen-

dre Transformation

Lieb defines F [n] as a supremum over one-electron potentials [97], so that

T [n]+Vee[n]≡ F [n]≡ sup
v(r)

{
E[v(r);N]−

∫
n(r)v(r)d3r

}
, (3.7)

E[v(r);N] being the electronic energy which is a functional of the external potential v(r) and a

function of the number of electrons, N =
∫

n(r)d3r. This Lieb functional can be derived from

the variational principle for the energy and a Legendre transformation from the external potential

to the electron density. Since F [n] is convex (for 0 ≤ α ≤ 1, F [αn1 + (1−α)n2] ≤ αF [n1] +

(1−α)F [n2]) [97], the exact ground-state energy of the system with N-electrons is obtained by
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minimizing the energy functional,

Ev[n]≡ F [n]+
∫

n(r)v(r)d3r. (3.8)

Lieb maximization is exact in principle. However, if we consider only a finite set of potentials,

that is, if we evaluate the Lieb functional as a supremum over only a few v(r), how accurately

can we determine F [n(r)] at a different v(r)? Contrary to F [n], E[v(r)] is concave in v(r) [97].

For example, if we know the ground-state energy at two potentials v1 and v2, for another potential

v = αv1 +(1−α)v2,0 ≤ α ≤ 1, the continuous functional E[v] is given by the inequality

E[v]≥ αE[v1]+ (1−α)E[v2]. (3.9)

Substituting Eq. (3.9) into the Lieb functional gives,

F [n]≡ sup
v

(
E[v]−

∫
n(r)v(r)d3r

)
≥ sup

α

(
E[v]−

∫
n(r)(αv1 +(1−α)v2)d3r

)
≡ F̃ [n]

F̃ [n]≥ sup
α

(
αE[v1]+ (1−α)E[v2]−

∫
n(r)(αv1 +(1−α)v2)d3r

)
≡ FML[n]

FML[n] = sup
α

(
E[v2]−

∫
n(r)v2d3r+α

(
E[v1]−

∫
n(r)v1d3r−E[v2]+

∫
n(r)v2d3r

))
= sup

α

(Fv2 [n]+α(Fv1[n]−Fv2[n])) .

(3.10)

We expect to get the exact Fv1 [n] when α = 1 and Fv2[n] when α = 0. This scheme can be gener-

alized to any number of potentials, v(r), and it automatically satisfies the relation F [n] ≥ FML[n].

Thus, without external constraints, an in-built exact condition is defined in this MLDF. Character-

istics of this approximation were studied with the 1D Hubbard model first.
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3.2.1 The Hubbard dimer

The analytically solvable asymmetric two-site Hubbard model in 1D serves as a simple but excel-

lent test system to check the viability of our MLDF. It also presents the opportunity to explore the

adaptation of our model in a strongly correlated regime. For a two-site Hubbard model with open

boundaries, the Hubbard Hamiltonian is given by [18],

Ĥ =−t ∑
σ

(
ĉ†

1σ
ĉ2σ +h.c.

)
+U ∑

i
n̂i↑n̂i↓+∑

i
υin̂i, (3.11)

where t12 = t21∗ = t is the hopping integral, U is the Coulomb integral, υi is the on-site potential

and υ1+υ2 = 0. We can find the analytical solution of the model for an integer occupation N [18].

For the noninteracting case, we get the simple tight-binding result for the ground state energy and

density,

E =−
√

(2t)2 +∆υ2, ∆n =−2∆υ/
√
(2t)2 +∆υ2, (3.12)

where ∆υ is the difference in the onsite potential, and ∆n is the occupation difference. We initially

defined ∆υi =
yi√
1−y2

i
and selected random y-values, 0 ≤ y ≤ 1, to generate a sparse training set

and calculated FML[n] using Eq. (3.10). This was named Legendre transformed density functional

(LTDF). The self-consistent density can be calculated from the self-consistent ground-state energy

by numerical differentiation according to the Euler equation. The approximated kinetic energy and

the ground-state density for the tight-binding case are shown in Fig. 3.1.

The accuracy of our MLDF can be improved further with increasing training set size, but it approx-

imates the self-consistent density rather poorly. Thus, by implementing LTDF on one of the most

straightforward model systems, we inferred that our MLDF needs further modification to generate

accurate predictions for more complex problems.
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Figure 3.1: T ML(∆n) (LT-DF) and ∆nML of the Hubbard dimer for U = 0 and 2t = 1 with five
training potentials. T (∆n) corresponding to the training potentials are shown in red.

3.2.2 Legendre transformation with Hermite interpolation

In order to generate more accurate density predictions, we tried to modify this simple approxima-

tion without improving the training set size. The ground-state energy EML(∆υ) was approximated

with a polynomial interpolation method first and then EML(∆υ) was used to get FML(∆n) with Lieb

maximization and ∆nML by solving Euler equation. One way to secure a continuous derivative for

the Hubbard dimer is through Hermite interpolation (HI). In general, EML(∆υ) can be expressed

as a sum of localized Hermite approximations,

EML(∆υ) =
NT−1

∑
j=1

M

∑
i=1

(
E j

i φ
j

i +
dE j

i

d∆υ
j

i

ψ
j

i

)
, (3.13)

where M is the total number of nodes within each element, φ
j

i is the Hermite basis function asso-

ciated with energy Ei at ∆υi within element j and ψ
j

i is the Hermite basis function associated with

the corresponding first derivative, dE j
i

d∆υ
j

i
=−∆n j

i (for the two-site Hubbard model). We considered

M = 0, so the second sum vanishes, giving rise to the piecewise cubic Hermite interpolation.

Cubic Hermite interpolation approximates the ground-state energy of the tight-binding model quite

accurately, as shown in Fig.(3.2) with an absolute minimum error (MAE) of 0.0017 Hartree. When

this energy was used to calculate T ML(∆n) with Lieb maximization and ∆nML using the Euler
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Figure 3.2: EML(∆υ) of the non-interacting Hubbard dimer obtained using piecewise cubic Her-
mite interpolation (HI-LTDF) with NT = 5. The green line coincides with the blue line and corre-
sponds to the self-consistent energy calculated using ∆nML.

equation with only five training potentials and finite grid-points, the previously observed discon-

tinuity vanishes. The extrapolation error in kinetic energy becomes negligible, and the overall

MAE(T (∆n)) is close to 0.0006 Hartree, while the MAE in the predicted density is around 0.0004

Hartree.

Next, we checked the performance of Hermite interpolated LTDF in the weak and strong correla-

tion limit for U = 0.2,1,2,5 & 10. Fig. 3.3 shows the predicted density and the kinetic energy for

U = 1 and 10. As the correlation strength increases, the training set size has to be increased to gen-

erate a correct prediction for ∆n. However, FML(∆n) is transferable without any extrapolation error,

mostly due to U-dependent interpolation. To quantify these errors further, the functional-driven er-

ror, ∆EF = EML(∆n)−E(∆n) and the density-driven error, ∆ED = EML(∆nML)−EML(∆n) were

calculated. As shown in Fig. 3.4, the density-driven error starts to dominate over the functional-

driven error with increasing correlation strength. With NT = 20, we can still achieve chemical

accuracy (1kcal/mol) for U = 10. Thus, our MLDF could provide accurate descriptions of the

simplest strongly correlated model system, and predictions are systematically improvable with

enhanced training.
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Figure 3.3: FML(∆n) and ∆nML of the Hubbard dimer for U = 1 and U = 10 at 2t = 1 with five and
twenty training potentials. The training potentials were U-dependent (∆υ ′
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Figure 3.4: Functional-driven and density-driven errors averaged over 100 randomly selected test
sets with NT = 100 for the interacting Hubbard dimer at U = 0.2 and U = 10. Energy values are
calculated in Hartree.

3.2.3 Legendre transformation in the real space

Taking another step towards practical applications of our MLDF, we extended our observations

further to real simple systems. However, the situation is more complicated in real space even in

44



1D since F [n(x)] is a functional of the density n(x). We checked the validity of our model for

the exactly solvable noninteracting harmonic oscillator case first by defining our kinetic energy

functional as,

T ML[n(k′)] = sup
v(ki,x)

(
E[v(ki,x)]−

∫
n(k′,x)

1
2

kix2
)
, (3.14)

ki refers to the different training potentials, and the kinetic energy is evaluated on a test density,

n(k′,x). As shown in Fig. 3.5, by performing Lieb maximization over only 4 ki’s, for a test set of

densities, 0 ≤ k′ ≤ 3, we could get a qualitative agreement with the exact kinetic energy for one

electron within the interpolation region.
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Figure 3.5: Kinetic energy of the one-electron harmonic oscillator in 1D using Legendre transfor-
mation with four training potentials. The negative value of T ML[n] near k′ = 0 is associated with
the lack of training for ki < 0.1.

Other two test cases were the one-electron exponential potential, v(κ,x) = −exp(−κ|x|) and the

delta-function potential, v(x) = −αδ (x). For the exponential potential, the Schrödinger equation

can be converted to the Bessel equation, and the eigenvalues are obtained from spatial symme-

try [4]. In both these two cases, with only 4-5 training potentials, our MLDF was able to closely

approximate the exact kinetic energy (shown in Fig. 3.6). The reproducibility of the ground-state

45



density is another issue that has not been addressed yet.
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Figure 3.6: T ML[n] associated with the one-electron exponential and the δ−function potentials
obtained from Legendre transformation with NT = 5 and NT = 4 respectively. For the exponential
case, interpolation was performed within 0.4 ≤ κ ≤ 6.

Combining these three real space examples can provide further insights into the possibility of

constructing a more generalized density functional. However, for any machine-learning model, the

essential factors of criticism include lack of transferability and system-specificity. Furthermore,

ML generally only works for test cases similar to the training data, and each time we deal with a

different problem, we need to train the algorithm first. To address these issues, we extended our

observations further by training our MLDF on one type of potential, e.g., delta function potential,

and testing it with the density of another type of potential, e.g., harmonic oscillator or exponential

potential.

Fig. 3.7 shows that with our MLDF, the delta function or the harmonic oscillator eigenvalues can

produce a qualitative approximation to the exponential potential kinetic energy. However, each of

them individually underestimates the exact kinetic energy. This underestimation is more apparent

for the harmonic oscillator case when delta function potential or the exponential case was used

for the training. Nevertheless, regardless of the potential we use, we can reproduce the overall

trend of the exact noninteracting kinetic energy T [n(x)] for a given density n(x). This signifies that

the current MLDF complies with the fundamental theorem of DFT, and future works should be

directed towards overcoming the quantitative difference in such approximations.
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Figure 3.7: T [n] prediction generated with Legendre transformation for the exponential potential
kinetic energy using the harmonic oscillator or the δ−function potential with NT = 60. The second
figure depicts the same for the harmonic oscillator using exponential or the δ−function potential
with NT = 55.

The transferability of the proposed MLDF across different 1D model problems presents us with an

opportunity to construct a more generalized MLDF. Current attempts are directed toward improv-

ing the undervalued T [n] predictions. If we look at Fig. 3.7, the kinetic energy of the harmonic

oscillator is well-reproduced when we train with energies and potentials of the exponential prob-

lem for k < 3, and at larger k, the delta-function potential performs better. As first step, both the

harmonic and the delta function potentials were included at similar training locations and Leg-

endre transformation was performed as an approximation to the kinetic energy of the exponential

case, T ML[nexp(κ,x)] = supv(ki/αi,x) (E[v(ki/αi,x)−
∫

nexp(κ,x)v(ki/αi,x)dx). The same was done

for the simple harmonic oscillator using the exponential potential and the delta-function MLDFs.

These two cases are shown in Fig. 3.8. For the harmonic oscillator, the kinetic energy can be

reproduced accurately at lower k, but our approach has to be modified further to simulate the

correct behavior at large k. On the other hand, for the exponential case, the error is prominent for

0.5 ≤ κ ≤ 5. Both plots exhibit a discontinuity corresponding to the shift in the potential of choice.

In addition to generalizing the functional, we aim to improve the current approach for the real space

systems to determine the self-consistent density with limited training by incorporating the infor-

mation about the derivative of the energy. While traditional interpolation methods like Hermite
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Figure 3.8: Approximated T [n] of the exponential case with a combination of simple harmonic and
δ−function potential (NT = 60) and that of the harmonic oscillator obtained from combining the
exponential and δ−function potential (NT = 55) respectively.

interpolation can be explored further, introducing other state-of-the-art machine-learning methods

might be proven viable for complex 3D systems. However, to proceed to this step and decide which

method will be more workable, we need to build a solid foundation of the underlying theory for

constructing the MLDF in 1D. We plan on testing our theory for 1D molecules in weak and strong

correlation limits using DMRG-generated training sets. If this MLDF can be validated for several

1D model systems- both interacting and noninteracting, with few fixes, we can expand our work

to small molecules in 3D.

All the observations so far have been performed with precisely solvable models, and training data

was accessible. However, generating training data to learn the universal functional, F [n] using

highly accurate couple-cluster calculations or Monte-Carlo simulations will be computationally

expensive for actual molecules. Therefore, it is essential to check the validity of our scheme with

specific EXC[n] approximations within KS-DFT. We can also develop a Legendre transform interpo-

lated ∆−learning approach by creating an approximation to the correction to the KS-DFT energies

with respect to coupled-cluster calculations. We tried constructing LTDF for the LDA kinetic en-

ergy functional with a 1D noninteracting harmonic oscillator as a model system. Fig. 3.9 depicts

that although LTDF seems to be compatible with T LDA[n], |T LDA −T ML−LDA| oscillates between

positive and negative values, while in the exact case, our approximation consistently undermines
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the actual kinetic energy.

Figure 3.9: T ML[n] approximations generated from Legendre transformation for the exact and the
LDA kinetic energies of 1D one electron harmonic oscillator with four training potentials. T ML[n]
exhibits similar extrapolation errors near k′ = 0 for both LDA and the exact cases.

3.3 Conclusion

The current MLDF has been defined as an approximation for the Lieb’s functional, and hence

the fundamental theorem of DFT is incorporated within it. Thus, it should not suffer from the

drawbacks we encounter in KS-DFT calculations due to the local and semilocal approximations

of the exchange-correlation energy. Although determining if exact conditions are satisfied is less

evident in ML-DFT, we can say that our MLDF is also different from all the previous MLDFs,

which were approximated in an entirely nonlocal fashion. Thus, as we aimed, the current approach

paves a road towards a successful combination of the merits of both the traditional DFT and the

ML field, and future works in this direction can potentially give rise to a functional that would be

able to produce accurate energies and densities with higher computational efficiency compared to

other concurrent KS-DFT methods.
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Chapter 4

How Well Does Kohn–Sham Regularizer

Work for Weakly Correlated Systems?

written with Ryan Pederson, Jielun Chen, Li Li, and Kieron Burke. Published in The Journal of

Physical Chemistry Letters, 13(11):2540-2547, 2022.

Abstract: Kohn-Sham regularizer (KSR) is a differentiable machine learning approach to finding

the exchange-correlation functional in Kohn-Sham density functional theory (DFT) that works for

strongly correlated systems. Here we test KSR for weak correlation. We propose spin-adapted

KSR (sKSR) with trainable local, semilocal, and nonlocal approximations found by minimizing

density and total energy loss. We assess the atoms-to-molecules generalizability by training on

one-dimensional (1D) H, He, Li, Be, Be++ and testing on 1D hydrogen chains, LiH, BeH2, and he-

lium hydride complexes. The generalization error from our semilocal approximation is comparable

to other differentiable approaches, but our nonlocal functional outperforms any existing machine

learning functionals, predicting ground-state energies of test systems with a mean absolute error

of 2.7 milli-Hartrees.
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4.1 Introduction

Determining the ground-state properties of many-electron systems is fundamental to molecular

modeling problems in chemical and material sciences. However, solving the Schrödinger equation

explicitly for more than a few hundred electrons is computationally intractable. Among several

methods of approximation, Kohn-Sham density functional theory (KS-DFT or simply DFT) [66,

86], a method based on the electron density distribution rather than the many-electron wave func-

tion, provides chemically useful results with O(N3) scaling for an N-electron system [36]. DFT is

formally exact, but the exchange-correlation (XC) energy, resulting from the quantum-mechanical

interaction between electrons, must be approximated in practice. Hundreds of XC energy func-

tional approximations have been formulated in the past few decades [102]. Functionals can be

designed non-empirically, for example using physics and chemical-based intuition and satisfying

known exact constraints [115], or can involve some fitting to reference data [190]. However, in

any approach, these functional approximations do not yield chemical accuracy in general, that is,
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with errors less than 1.6 milli-Hartrees (mH) in atomic units (or 1 kcal/mol). Improving the accu-

racy of XC functional approximations often incurs additional computational cost in the practical

DFT calculation [14]. However, there is no systematic way in general to develop and improve XC

functional approximations.

In recent years, machine learning (ML) has been used to find better DFT approximations. Attempts

have been made to enhance either the speed or accuracy of DFT. Some used ML techniques to boost

computational efficiency by approximating the non-interacting kinetic energy without solving the

KS equations [153, 95, 11, 76]. In an effort to improve the accuracy of ML-DFT, a significant leap

was achieved by Nagai et al. [109], who used a neural network (NN) model to approximate the

XC functional and trained it with high accuracy coupled cluster (CCSD(T)) energies and densities

of just three small molecules, while self-consistently solving the KS equations. This functional

impressively generalized to 148 small molecules [28] to predict their energies and densities with

accuracies comparable to human-designed functionals. However, the test set atomization energies

were not chemically accurate. Also, they didn’t have access to gradient information and were

therefore limited to a gradient-free optimization scheme, which is inherently slow, often suffers

poor convergence issues, and is difficult to scale to more complex NN models.

In DFT, many useful properties are extracted from the density, although an XC functional approx-

imation need not produce accurate densities along with accurate energies [82]. In KS-DFT, we

calculate the density self-consistently, and there is a nonlinear dependence of the XC functional on

the density. Learning this relationship requires not only the ground truth mapping of the functional

inputs to outputs but also how the functional performs in the underlying process. Hence the use

of differentiable programming [5] becomes more intuitive [71]. With differentiable programming,

conditioning the networks with physical insights becomes much simpler, and it can further help to

ease the process of training.

Recently, Li et al. [93] made a valuable step in this direction by considering the entire DFT self-

consistent calculation as a differentiable program. They implemented an end-to-end differentiable
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DFT code for 1-dimensional (1D) systems using JAX [10], a library that provides differentia-

tion, vectorization, just-in-time compilation, and other composable transformations of Python

and NumPy programs [58]. They parameterized the XC functional with an NN which incorpo-

rated non-local information about the density, along with known physical constraints. The self-

consistent KS calculations were embedded into the training process by backpropagating the gra-

dients through the KS iterations. It was dubbed the Kohn-Sham regularizer (KSR). It could yield

chemically accurate energies for uniformly separated 1D hydrogen chains at any separation by

training on highly accurate energies and densities from only a few separations.

Following a similar approach, Kasim and Vinko [78] implemented an end-to-end differentiable

DFT code in 3D for Gaussian-type orbitals and trained local and semi-local NN-based XC func-

tional approximations, evaluating performance on small molecules. In another work, Dick et

al. [146] constructed a semilocal XC functional that was carefully curated to account for several

known exact conditions and pretrained to match SCAN, a popular meta-GGA functional [161].

While both of these works explore the generalizability of ML approximations for weakly corre-

lated molecules with differentiable DFT codes, they do not incorporate global information, and

their accuracy is limited to that of human-designed semilocal functionals. A slightly different ap-

proach involves introducing an ML correction term to a nonempirical or partially-empirical XC

functional within a KS-DFT self-consistent framework [34, 22]. In such an approach, only a por-

tion of the XC energy is approximated using ML and the functionals retain the characteristics of

the baseline XC functional used. The recently proposed ML local hybrid functional, DM21 [85],

addresses spin-symmetry breaking and delocalization error in DFT functionals. Consequently, it

performs well on several main-group benchmark datasets and also correctly dissociates molecules.

Unlike KSR, this functional is trained on large datasets of highly accurate reaction energies (not

densities) in the loss function without explicitly supervising the self-consistent iterations.

[C3] Li et al. [93] explored the generalizability of KSR for a few strongly correlated systems with

stretched bonds which is a completely different domain from most chemical applications of DFT.
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The aim there was to generate accurate binding energy curves (all the way to the dissociation limit)

using the entire density (for the nonlocal approximation called global-KSR), using inputs at only

two separations, for unpolarized hydrogen chains. The generalizability was in finding the entire

bond-dissociation energy curve of these chains. Moreover, only the total density was used and not

the spin densities.

In the present work, we propose spin-polarized versions of local, semilocal, and nonlocal XC

functional approximations within a differentiable spin-DFT implementation of KSR. We modify

these approximations to predict XC energy densities using spin-densities as feature vectors while

optimizing the NN parameters using total density and energy loss. Contrary to Ref. [93], we

test the KSR approach in the domain of routine DFT calculations in chemistry, namely in and

around equilibrium bond lengths. We find the remarkable result that training on energies and

densities of a few atoms (and ions) alone produces accurate ground-state energies for equilibrium

molecules (very reminiscent of the use of appropriate norms while avoiding using any covalent

bond energies). We train and test on a variety of different elements, to obtain the generalizability

relevant to chemistry. Almost all previous work in the chemical domain tests various approximate

functional forms employing the standard ingredients locally [109, 146, 78]. Our work achieves

high accuracy using the total density and is not limited to a specific set of human-chosen features.

4.2 The Spin-Adapted Kohn-Sham Regularizer

The practical implementation of DFT involves solving the Kohn-Sham (KS) equations to calculate

the ground-state electron density,

{
−1

2
∇

2 + vS[n](r)
}

φi(r) = εiφi(r). (4.1)
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The electron density, n(r), is the sum of the probability density over all occupied one-electron KS

orbitals, n(r) = ∑i |φi(r)|2. The KS potential, vS[n](r), contains the external one-body potential,

the Hartree potential, and the XC potentials,

vS[n](r) = v(r)+ vH[n](r)+ vXC[n](r). (4.2)

The XC potential is the functional derivative of the XC energy, EXC[n], with respect to the electron

density [86], vXC[n](r) = δEXC[n](r)/δn(r). We can express EXC[n] in terms of an XC energy

density per electron, εXC[n](r):

EXC[n] =
∫

d3r εXC[n](r)n(r). (4.3)

The ground-state energy is calculated from the self-consistent density by summing the non-interacting

kinetic energy, TS, the external potential energy, V , the Hartree energy, U , and the XC energy,

E0 = TS[n]+V [n]+U [n]+EXC[n]. (4.4)

The computational efficiency is also affected by the level of approximation used for the XC func-

tional [120].

Density matrix renormalization group (DMRG) [178] can be used to efficiently generate highly

accurate benchmark energies and densities for these 1D analog systems. We can address such sys-

tems using 1D KS-DFT calculations as well with suitable XC energy functional approximations,

such as the 1D local spin-density approximation (LSDA) which was constructed in Ref. [4] from

the 1D exponentially repelling uniform electron gas.

In essence, KSR is a ML-DFT regularization technique that utilizes a differentiable analog of the

standard self-consistent DFT computational flow during training to train a suitable parameterized

model for EXC[n] = EXC,θ [n], where θ are trainable parameters [93]. In this work, we consider
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NN-based (neural) XC models, but KSR as a regularization technique can apply more broadly to

any differentiable model choice. Knowledge of physical properties and constraints in the exact XC

functional can help guide the construction of a neural XC approximation. The NN that parameter-

izes the XC functional in KSR is carefully curated to account for a few of the expected behaviors of

the exact XC functional. Nonlocality is facilitated by adding a global convolution layer in εXC,θ [n]

to help capture long-range interactions. The sigmoid linear unit (SiLU or Swish) [38, 131] activa-

tion function is used throughout because of its infinite differentiability. The KSR network is also

complemented with a self-interaction gate (SIG) that partially cancels the self-interaction error by

mixing in a portion of Hartree energy density to εXC.

In Ref. [93] several neural XC functional models were proposed: a local functional which only

depends on the density at each point (KSR-LDA), a semi-local functional that uses local and gra-

dient information about each point (KSR-GGA), and a global functional which utilized the global

convolution layer and the SIG described above (KSR-global).

A main deficiency of the KSR technique in Ref. [93] is that it does not explicitly account for

spin, and so may not generalize well for spin-polarized systems. Extending this technique and

associated NN models to spin DFT requires a differentiable framework that can backpropagate

through resulting spin densities. Spin is often incorporated in the neural XC functional using

relative polarization, ζ , as a feature [109]. For up and down spin densities, {n↑, n↓}, ζ = (n↑−

n↓)/n. While ζ can be introduced as an additional input channel to KSR neural εXC, its scale can be

very different relative to n in general. Instead, we use up and down spin densities as input features,

which have similar scales. The usual models and concepts for KSR can be extended to obtain a

spin-adapted KSR (sKSR).

In sKSR-global, we have a global convolution layer that takes spin densities as inputs, and the

kernel takes the form:

G(nσ (x),ξp) =
1
2

ξp

∫
dx′nσ (x′)e−|x−x′|/ξp, (4.5)
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where σ ∈ {↑,↓} and ξp is a trainable parameter that represents an interaction scale. To keep the

number of parameters comparable with KSR-global, we input each spin density to a global con-

volution layer consisting of 8 channels. We then concatenate the output on the channel dimension

and input it to the latter convolution layers. For weakly correlated systems and greater generaliz-

ability, this approximation does not include any SIG. The rest of the network architecture is kept

unchanged. sKSR-LDA and sKSR-GGA approximations to XC are devoid of global information.

For sKSR-LDA, two convolution layers with filter size one and 8 channels map the spin-density to

εXC at the same spatial point x. In sKSR-GGA, we specify the total density gradient explicitly as

an additional input channel along with the spin-densities. Instead of using one convolution layer

with filter size three, we use three convolution layers with filter size one and 8 channels each. The

rest of the sKSR-LDA and sKSR-GGA architectures are also similar to KSR-LDA and KSR-GGA.

Fig. 4.1(a) shows the comparative network structures for all three types of approximations. In all

cases, the resulting εXC is symmetrized with respect to the input of the up and down densities:

ε
symm
XC [n↑,n↓] =

1
2

[
εXC[n↑,n↓]+ εXC[n↓,n↑]

]
. (4.6)

Our approximation replaces the εXC in a spin-polarized self-consistent KS-DFT framework. For

spin-polarized systems we perform the above spin-unrestricted KS-DFT procedure, however for

unpolarized systems we use spin-restricted KS-DFT to preserve spin-symmetry. Fig. 4.1(b) shows

the conventional computational flow and the flow of the gradients during the self-consistent opti-

mization. To train the neural XC functional, we use the following loss function:

L(θ) = Etrain

[
(EsKSR −EDMRG)2/Ne

]
︸ ︷︷ ︸

energylossLE

+Etrain

[∫
dx(nsKSR −nDMRG)2/Ne

]
︸ ︷︷ ︸

density lossLn

, (4.7)

57



(a)

(b)

Figure 4.1: (a) sKSR-global, sKSR-LDA and sKSR-GGA architectures to calculate εXC from spin-
densities. (b) sKSR – differentiable KS-DFT with spin-polarization. Black arrows refer to the
conventional computational flow. The gradients flow along red-dashed arrows to minimize the loss
during training.

where EsKSR and nsKSR are the converged total energy and total density obtained from the neural

XC functional approximations, and EDMRG and nDMRG are the exact ground-state electronic energy

and total density for each of the test systems. The total loss is evaluated as an expectation over

training examples, where Ne is the number of electrons for a given training example. All quantities
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are in atomic units. We only consider the converged energy in the energy loss term rather than

the energy trajectory throughout KS iterations, which was explored in Ref. [93]. In this work

we find that the self-consistent calculations converge quickly for the small atoms and ions used

in training, and incorporating energy loss from each KS iteration minimally affects the efficiency

of the optimization process. The gradients are calculated based on the total loss with respect to

the parameters, θ , through automatic differentiation. They are back-propagated across the self-

consistent cycles and the parameters of the neural XC functionals are updated until the total loss is

minimized.

4.3 Results

4.3.1 Learning a human-designed functional

As a simple consistency test, we pose the question: can KSR learn human-designed functionals

from their observable results? Here we specifically investigate whether sKSR-LDA can learn the

relatively simple but general human-designed 1D LSDA XC functional. Since our sKSR-LDA

model utilizes hundreds of parameters, it is unclear whether training on just a few LSDA generated

DFT results will yield a neural XC model that matches LSDA. We find that by training sKSR-

LDA on LSDA-generated He and Li++, we recover the LSDA XC functional almost exactly for

unpolarized and fully polarized systems, see Fig. 4.2. The sKSR-LDA model deviates at the high-

density limit (low rS limit) due to the limitation that our training densities only consist of rS > 0.5.
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Figure 4.2: sKSR-LDA trained on 1D LSDA-calculated Li++ and He energies and densities. Here
rS = 1/2n and εunif

XC corresponds to the XC energy density of the 1D uniform electron gas [4].

4.3.2 Generalizing from atoms to molecules

Next, we assess generalizability by training sKSR models using a few 1D atomic systems and

testing on unseen 1D molecular systems. We trained all three models on DMRG energies and

densities of H, He, Li, Be, and Be++ and validated on Be+. For training and validation details, see

Appendix. The trained model was later used to calculate the properties of several molecules in their

equilibrium ground-state or relaxed form (see Table 4.1). The errors in total energies, ionization,

and atomization energies, as well as the average density losses for all three neural XC functional

approximations, are reported in Table 4.2. Compared to LSDA, the mean absolute error (MAE) in

sKSR-LDA calculated energies is reduced by a factor of three. On the other hand, sKSR-global is

an order of magnitude higher in accuracy and yields total energies with an MAE of 2.7 mH, not so

far from the chemical accuracy limit of 1.6 mH. The cumulative MAEs for the training, validation

and test datasets are reported in Appendix.

The importance of spin in sKSR can be seen by comparing results with the original KSR-global

model from Ref. [93]. For a valid comparison, we consider KSR-global without the SIG and train

it with the sets from Table. 4.1, without adding the energy trajectory loss. The MAE in KSR-global
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Table 4.1: Training, validation and test sets for generalizability experiment. The molecules in the
test set refer to the relaxed structures.

Training Validation Testing
H, He, Li Be+ H2, H3, H4, H+

2 , H+
3

Be, Be++ LiH, BeH2, HeH+

H-He-He-H2+

He-H-H-He2+

Table 4.2: Total energy errors (in mH), density losses (in 10−4 Bohr−1), and errors in ionization
potentials for atoms and atomization energies in molecules (in mH) calculated using uniform gas
LSDA [4], sKSR-LDA, sKSR-GGA, and sKSR-global respectively, for the training, validation,
and test sets in Table 4.1.

Dataset Symbol LSDA sKSR-LDA sKSR-GGA sKSR-global

∆E Ln ∆IP ∆E Ln ∆IP ∆E Ln ∆IP ∆E Ln ∆IP
Training H 26.6 5.35 -26.6 4.51 0.55 -4.50 4.49 0.31 -4.49 0.85 0.33 -0.85

He 41.4 2.89 -8.46 20.2 0.63 -21.3 7.49 0.24 -10.2 -0.69 0.03 0.62
Li 33.7 5.02 16.6 -11.5 0.40 37.4 -12.0 1.37 20.2 -2.37 0.12 2.79
Be 24.5 1.18 21.4 -23.5 1.03 12.1 -2.70 0.65 -5.29 1.16 0.07 -1.23
Be++ 55.3 0.75 -18.1 29.2 0.16 -46.1 6.55 0.49 -34.1 0.41 0.02 -1.43

MAE 36.3 3.04 18.3 17.8 0.56 24.3 6.65 0.16 14.8 1.10 0.12 1.38
Validation Be+ 46.0 1.95 9.37 -11.3 0.12 40.5 -7.99 0.61 14.5 -0.07 0.03 0.49

∆AE ∆AE ∆AE ∆AE
Test H2 34.04 1.82 19.2 19.5 0.35 -10.5 6.83 1.99 2.14 -0.73 0.07 2.43

H3 35.6 1.93 44.3 0.45 0.21 13.1 -3.07 5.57 16.5 -3.56 3.22 6.11
H4 32.3 3.82 74.3 7.66 1.59 10.4 -9.34 4.18 27.3 2.87 1.46 0.53
H+

2 19.6 6.68 7.09 2.78 0.71 1.73 1.68 1.71 2.81 -1.94 1.04 2.79
H+

3 31.2 0.78 22.1 20.6 1.87 -11.6 15.4 11.5 -6.44 -0.40 0.47 2.09
LiH 30.9 3.72 29.5 -8.55 2.47 1.53 -16.6 3.86 9.14 -4.38 0.66 2.86
BeH2 32.8 7.49 45.0 -27.8 5.5 13.4 -34.6 3.09 40.9 -5.07 1.29 7.93
HeH+ 37.3 1.71 4.18 18.8 0.17 1.40 5.18 0.59 2.31 -1.60 0.13 0.91
H-He-He-H2+ 36.7 14.7 46.1 5.00 6.00 35.5 -9.04 2.50 24.0 5.39 4.52 -6.77
He-H-H-He2+ 46.1 7.40 36.7 19.9 6.48 20.6 4.35 4.75 10.6 0.79 5.47 -2.18

MAE 33.6 5.00 32.9 13.1 2.53 12.0 10.6 3.98 14.2 2.67 1.83 3.46

predictions for total energies of the test molecules is 10.02 mH, comparable to sKSR-GGA, but

much worse than sKSR-global (see Table. A2 in Appendix). sKSR-global also converges more

quickly than KSR-global, reaching lower training losses with fewer training steps (see Fig. A7 in

Appendix).

The size of our dataset is practically limited by the chemical space provided by 1D and the associ-

ated exponential interaction. Even though we are dealing with a much smaller dataset, we trained

the sKSR models on the ground-state energies and densities of 5 atomic systems only and did

not include any molecules, contrary to results in Ref. [109] and Ref. [78] which train on derived

quantities, such as atomization and ionization energies, and include molecules in training.
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Using sKSR-global, the predicted densities of each molecule have little noticeable error, see

Fig. 4.3(a). The corresponding XC potentials are shown in Fig. 4.3(b). For all unpolarized systems,

we run restricted KS calculations, and the up and down XC potentials match, while for polarized

systems (Li, Be+, H+
2 , and H3 only) we run unrestricted KS calculations. The sKSR-LDA and

sKSR-GGA total densities and XC potentials for the test set are included in the Appendix. The

(a)

(b)

Figure 4.3: (a) The densities obtained using sKSR-global (orange dashes) and the exact ground-
state densities (gray), (b) average XC potentials calculated from sKSR-global approximation (red
dashes) to εXC and their exact counterparts calculated with DMRG (light blue) for the test molecules
in Table. 4.1 at equilibrium separations. The sKSR potentials are shifted by a constant for a better
comparison with the exact XC potentials. sKSR-global was trained on H, He, Li, Be, and Be++

and validated on Be+. Note that, in general, these 1D densities and XC potentials can differ even
qualitatively from their 3D analogs.
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comparison to exact XC potentials is not expected to be as precise as potentials are extremely sen-

sitive to densities. However, for each of these examples, we see that the sKSR-global XC potential

closely mimics the exact XC potential, even though we did not include XC potentials in the train-

ing. Furthermore, seemingly large deviations in the XC potentials can result in similar resulting

densities. For example, this can be seen in the case of BeH2 where the XC potentials are noticeably

different but the resulting densities are very similar. The KS potentials are reasonably accurate for

the test set (see Appendix). Note that similar to the exact XC potentials, the sKSR-global XC

potentials are smooth, due to the use of a smooth activation function.

We can use these potentials to validate the known theoretical properties of the exact XC potentials

for different test systems, compare with other XC approximations, and utilize them to introduce

corrections to existing local and semilocal approximations. Similarly, sKSR-global can also pro-

duce quite accurate spin-densities even though we did not incorporate spin-densities in the loss

function while training the XC functionals (see Fig. A2 in Appendix).

4.3.3 Generalizing to strong correlation

A very interesting question is: how does our weakly-correlated sKSR behave for strongly-correlated

systems? We answer this by studying the paradigm case of the H2 binding curve in Fig. 4.4, where

the sKSR-global curve remains highly accurate up to at least 3 Bohr. Just as with all single-particle

methods, the restricted calculation yields energy that is far too high in the dissociated limit. On the

other hand, an unrestricted calculation, which breaks spin-symmetry beyond about 4 Bohr, does

dissociate correctly, but at the price of poor spin densities and a kink in the binding energy curve.

Fig. A6 in Appendix shows analogous features for sKSR-LDA and sKSR-GGA, and also shows

the accuracy of the total density of the unrestricted solutions at large separations. Fig. 4.4 also

shows the result of a KSR-global calculation (i.e., total density only), but trained just on atoms.

While it naturally dissociates correctly, it is much less accurate. Of course, the sKSR-global of
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Ref. [93] is chemically accurate for the entire curve because its training included a stretched bond.

0 1 2 3 4 5 6
R

0.08

0.04

0.00

0.04

0.08

E

sKSR-global restricted
sKSR-global unrestricted
KSR-global
DMRG

Figure 4.4: The binding energy curve of H2 molecule calculated based on the total energy predic-
tion for H2 molecule and the energy of the individual H atoms. sKSR-global was evaluated using
restricted KS (blue) and unrestricted KS (red dashes) scheme. The DMRG (black) and KSR-global
(green) results are also shown. All the neural approximations, with and without spin, are trained
on the dataset given in Table. 4.1.

Figure 4.5: The complete dissociation energy curve of LiH molecule generated with sKSR-LDA
(orange), sKSR-GGA (green) and sKSR-global(red). The DMRG (black dashes) and the uniform
gas LSDA (blue dashes) results are also shown. The neural XC functional approximations were
trained and validated on atoms and ions given in Table. 4.1.

In many cases, the predictability of sKSR can extend well beyond the equilibrium bond distance.

Fig. 4.5 shows the complete dissociation energy curve of LiH obtained from restricted calculation.
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(a)

(b)

Figure 4.6: (a) The total density and (b) the average XC potentials of LiH at a bond-distance of
5.92 Bohr calculated with the three neural XC functionals as well as uniform-gas LSDA. The exact
(DMRG) average XC potentials are included for comparison.
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Near equilibrium, sKSR-LDA and sKSR-GGA underestimate the binding energy but perform bet-

ter than LSDA. As the bond is stretched, sKSR-GGA and sKSR-LDA quickly deviate from the

expected trajectory. However, sKSR-global performs well throughout, extending its predictive

accuracy well beyond the equilibrium bond distance. We show the total density and the XC poten-

tial of stretched LiH at 5.92 Bohr in Fig. 4.6. LSDA largely overestimates the total energy of the

stretched molecule, but its density remains reasonably accurate. The XC potentials calculated from

neural XC functional approximations are comparable, with sKSR-global closely approximating the

exact behavior. A comparison of the sKSR-global and the exact total density and XC potential of

stretched LiH with respect to the atomic contributions from Lithium and Hydrogen is included in

the Appendix.

The approximate total energy of a molecule can have two types of error contributions: the error

due to the approximate functional and the error arising from the self-consistent density [174].

For most XC functionals, the total density calculated from the self-consistent solution of the KS

equations works as an excellent approximation to the exact density for most systems. Hence,

the density-driven error is often negligible. However, some approximations can have significant

density-driven errors [84]. For our test molecules, the errors in the self-consistent densities were

trivial and consequently had minimal impacts on the atomization energy errors. The functional and

density-driven errors in our neural XC functional approximations are reported for the hydrogen

molecule in the supplementary information section.

4.4 Conclusion

We found that sKSR-global achieves remarkable accuracy and generalization for 1D systems in a

very data-efficient manner by including the self-consistent KS equations into the training. sKSR-

global predicts the ground-state energy of ten unseen 1D molecules in equilibrium with a mean

absolute error of 2.7 mH (∼1.7 kcal/mol) when trained with just five atomic and ionic systems.
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Hence, a nonlocal XC functional approximation trained on atomic energies and densities has the

potential to generate chemically-accurate predictions for most 1D weakly-correlated molecules.

An extension of the nonlocal approximation to real systems can lead to an ML functional that

is applicable across a broad chemical spectrum without using an exceedingly large training set.

The end-to-end differentiable implementation also ensures smooth and reasonable XC potentials.

In addition, sKSR-global trained on atoms can adequately describe a molecule with a stretched

bond. Combining differentiable programming with inherent physical intuition thus takes us one

step closer to a generalizable, chemically accurate ML XC functional.

The application of the current sKSR algorithm is limited to 1D systems and our test set does not

include real 3D molecules. However, the methods presented are transferable to 3D and we an-

ticipate that the characteristic performance is not unique to 1D systems, as these systems tend to

mimic their 3D analogs [176]. The low-dimensional examples are useful for quick and rigorous

assessment of the quality of an approximation. Besides, the predictions from the local and semilo-

cal approximation explored in our study are consistent with the 3D differentiable formulations in

Ref [78] and Ref. [146].
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4.5 Appendix

4.5.1 Calculation details

4.5.1.1 Data generation

All training data are generated from 1D DMRG calculations [178] with exponential approximation.

We choose the electron-electron interaction to be exponential,

vexp(x) = Aexp(−κ|x|), (A1)

where the parameters, A = 1.071295 and κ−1 = 2.385345 are adjusted to mimic soft-Coulomb

interaction [4]. Similarly, the external potentials for a 1D molecular system are expressed as

v(x) =−∑
j

Z jvexp(x− x j), (A2)

where Z j is the nuclear charge and x j is the position of the jth nucleus. This allows us to create

1D analogs of atomic systems and linear molecules, such as BeH2. The extended Hubbard-like

Hamiltonian [4] for 1D systems is solved in real space on a grid of 513 points within the range

x ∈ {−20.48, ...,20.48} with a separation distance of 0.08 Bohr and center at x = 0. Calculations

are done using the ITensor library [42] with an energy convergence threshold of 10−7 Hartree.

Exact KS potentials and XC potentials were generated for DMRG-calculated spin densities using

a modified version of the KS-inversion algorithm outlined in Ref. [41]. The code used to perform

KS-inversion is publicly available at [1].
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4.5.1.2 1D KS calculations

The 1D KS-DFT code is also implemented with the external potential given in Eq. A2. Same real

space grids are considered for solving the KS equations (Eq. 4.1). In the initial KS iteration, we

use initial spin-densities corresponding to those in KS potential, vS,σ (r) = v(r). The XC energy

densities are calculated for spin-densities and the spin-polarized XC potentials (vXC,↑,vXC,↓) are

extracted from the integrated XC energy. JAX [10] can be used in practice to obtain functional

derivatives using automatic differentiation,

vXC,σ(x) =
δEXC[n↑,n↓]

δnσ (x)
=

δ
∫

dx′ n(x′)εXC[n↑,n↓](x′)
δnσ (x)

, (A3)

where εXC is calculated from the density using one of the three functional approximations shown in

Fig. 4.1. The resulting KS potential is then used to solve the KS eigenvalue equation. We use the

solutions to calculate the output spin densities and the total density, n = n↑+n↓. By summing KS

kinetic energy, Hartree energy and XC energy, we get the total electronic energy. Before the next

KS cycle, the spin-densities are updated through linear spin-density mixing with an exponentially

decaying mixing factor α [93],

nin
σ ,k+1 = nout

σ ,k +α(nout
σ ,k −nin

σ ,k). (A4)

We repeat this process until the integrated absolute difference in the input and output densities

becomes negligibly small (of the order of 10−6). No symmetry conditions are enforced in our

calculations as our training and test set contain asymmetric examples.

The LSDA approximation is implemented in 1D with the uniform gas exchange energy for the

exponential interaction given in Ref. [4] and an accurate parameterized model for the correlation

energy.
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4.5.1.3 Training, validation and test

For the training set and validation set containing atoms and ions, we used a fixed number of it-

erations during the training process for all three XC functionals. Based on the convergence of

standard 1D KS-DFT calculations with local density approximation for these systems, the number

of KS iterations was fixed at 10.

We repeated the training process for sKSR-global, sKSR-LDA, and sKSR-GGA with 30 random

seeds. The model was trained with L-BFGS algorithm [98]. Parameters checkpoints were saved

at the interval of 10 steps until L-BFGS was converged. The optimal checkpoint for each seed

was determined as the checkpoint that predicted the total energy and density loss of the validation

set with the lowest mean absolute error (MAE). Then the analysis was repeated for all seeds to

determine the best set of parameters.

For the test system, the number of KS iterations required for convergence varies based on the

complexity of the system. While running the 1D KS code with the parameterized neural XC for

these systems, we fixed the number of KS iterations at 30, sufficient for the largest molecule in the

test set.

4.5.1.4 Computational resources

We generalized the codes available in the open-sourced JAX-DFT library [92] to build the spin-

adapted Kohn-Sham regularizer. Training and testing can be accomplished on NVidia GPUs or

conventional CPU nodes.
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4.5.2 Optimizing NN architectures

The number of convolution layers for each one of the three KSR networks at different levels of ap-

proximation is set according to the proposed architectures in Ref. [93]. All the results reported in

this paper used 8 channels in the global convolution layer of sKSR-global as well as the first con-

volution layer in the sKSR-LDA and sKSR-GGA architectures. Increasing the number of channels

from 8 to 16 for both up and down densities does not affect the final energy and density predictions,

but increases the cost of the calculation. Adding the self-interaction gate to sKSR-global also does

not improve generalization for weak correlation.

4.5.3 Experimental details

The MAE in energies for N examples in the test set was calculated as,

MAE =
N

∑
i=1

|EKSR −EDMRG|/N, (A5)

and for the density, the average density loss Ln was calculated from the test set density losses (see

Eq. 4.7).

The cumulative MAEs in total energies and density losses for the training, validation, and test

datasets with all the XC functional approximations examined in the main text are reported in Table

A1. The MAEs in the ionization potentials for the 6 atomic systems in the training and validation

sets and the MAEs in atomization energies for the molecules in the test set are also included.

Fig. A2 has the up and down spin-densities calculated with the sKSR-global approximation to the

XC energy density for the ten test molecules. Fig. A1 shows the corresponding KS potentials for

these molecules. Total densities and spin-up and spin-down XC potentials calculated with sKSR-

LDA and sKSR-GGA are shown in Fig. A3 and Fig. A4, respectively.
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We compare the atomic contributions of Li and H to the total density and the XC potentials of

stretched LiH at 5.92 Bohr bond distance in Fig. A5. The exact densities of Li and H visibly

add up to the stretched total density of LiH. The exact hydrogen XC potential is shifted vertically

by 0.27 Hartree to match the hydrogen peak in LiH. At the dissociation limit, this value should

approach the ionization potential difference of H and Li (0.35 Hartree).

Fig. A6 shows the binding energy curves of H2 molecule calculated using uniform gas LSDA,

sKSR-LDA, sKSR-GGA, and sKSR-global. Results from both restricted and unrestricted KS cal-

culations are shown. It also includes the calculated total densities at 4.96 Bohr from each of the

methods.

Table A1: MAE for total energies, ionization potentials (IP), and atomization energies (AE), and
average density losses (×10−4 Bohr−1) with each KSR XC functional approximations for all the
atoms, ions and molecules in all datasets in Table. 4.1. All energies are in mH. For all KSR models,
we used the same training and validation sets from Table. 4.1. LSDA corresponds to the reference
1D uniform gas XC functional [4].

Method ∆E Ln IP AE
LSDA 35.3 4.29 16.8 32.9
sKSR-LDA 14.5 1.76 27.0 11.9
sKSR-GGA 9.21 2.58 14.8 14.2
sKSR-global 2.02 1.18 1.24 3.46

Figure A1: The exact ground-state KS potentials (gray) and the KS potentials obtained using
sKSR-global (red dashes) for the test molecules in Table. 4.1 at equilibrium separations.
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(a)

(b)

Figure A2: (a)sKSR-global spin-up (blue dashes) and (b) spin-down (green dashes) densities com-
pared with the DMRG spin-up and spin-down (gray) densities for the test molecules in Table. 4.1
at equilibrium separations.
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(a)

(b)

Figure A3: The exact ground-state density (gray) and the densities obtained using sKSR-LDA (or-
ange dashes), (b) average XC potentials calculated from sKSR-LDA approximation (red dashes)
and their exact counterparts (light blue) for the test molecules in Table. 4.1 at equilibrium separa-
tions.
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(a)

(b)

Figure A4: The exact ground-state density (gray) and the densities obtained using sKSR-GGA (or-
ange dashes), (b) average XC potentials calculated from sKSR-GGA approximation (red dashes)
and their exact counterparts (light blue) for the test molecules in Table. 4.1 at equilibrium separa-
tions.
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(a) (b)

Figure A5: (a) DMRG and the sKSR-global densities of stretched LiH (5.92 Bohr) and the atomic
densities of Li (blue dashes) and hydrogen (green dashes). (b) The exact (black dashes) and the
sKSR-global (red) average xc potentials of LiH at the same bond distance. The exact average xc
potentials of Li (orange dashed) and H (green dashes) and the corresponding sKSR-global average
XC potentials of Li (blue) and H (green) are included here for comparison.

4.5.4 KSR-global results

The nonlocal approximation from Ref. [93] was considered without the self-interaction gate. The

model was trained without adding energy trajectory loss. The errors in the total energy, atomization

energy, and the density of the test molecules are given in Table. A2. The errors in the ionization

potentials of the training and validation set are also included.

The training efficiencies of the KSR-global and the sKSR-global XC functional approximations

are shown by plotting the training loss as a function of the number of training steps in Fig. A7. The

total number of parameters to be learned are comparable for both KSR-global and sKSR-global.

They are trained under identical conditions, with the same number of KS cycles in each training

step. Using a 2.20 GHz Intel Xeon CPU (2 cores), the average time per training step is slightly

higher for sKSR-global (19.13 seconds) compared to KSR-global (17.83 seconds). On a single

NVIDIA Tesla K80 GPU, the average time per training step is 6.78 seconds for sKSR-global and

5.18 seconds for KSR-global, roughly a 3x speedup over the CPU setup.
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Figure A6: (a) H2 binding energy curves calculated using uniform gas LSDA, sKSR-LDA, sKSR-
GGA and sKSR-global, using both restricted and unrestricted KS schemes and the corresponding
DMRG results. (b) Density predictions at 4.96 Bohr using each of the three neural XC approxima-
tions and LSDA.
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Table A2: Total energy errors (in mH), density losses (in 10−4 Bohr−1), and errors in ionization
potentials of atoms and atomization energies of molecules (in mH) calculated using KSR-global
for the training, validation, and test sets in Table. 4.1.

Dataset Symbol KSR-global

∆E Ln ∆IP
Training H 1.27 0.26 -1.27

He -0.93 0.83 1.57
Li 2.85 0.49 -2.55
Be -5.45 1.13 5.44
Be++ -0.02 0.26 0.26

MAE 2.11 0.59 2.22
Validation Be+ -0.01 0.38 -0.01

∆AE
Test H2 -5.51 0.73 8.05

H3 16.1 0.64 -12.3
H4 -0.99 3.62 6.07
H+

2 -1.22 2.35 2.49
H+

3 -10.6 2.77 13.1
LiH -19.8 0.45 23.9
BeH2 33.6 2.75 -36.5
HeH+ -5.02 1.12 4.09
H-He-He-H2+ 5.48 8.63 -7.34
He-H-H-He2+ 1.89 3.20 -3.76

MAE 10.02 2.63 11.8
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Training Steps
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10 2
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Figure A7: KSR-global (blue) and sKSR-global (red) training loss change with number of training
steps when the two XC functional approximations are trained on the dataset given in Table. 4.1
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4.5.5 Density-driven errors

For any approximate energy functional Ẽ and approximate density ñ, the total error ∆E is,

∆E = Ẽ[ñ]− Ẽ[nexact ]︸ ︷︷ ︸
∆ED

+ Ẽ[nexact ]−Eexact [nexact ]︸ ︷︷ ︸
∆EF

, (A6)

where ∆ED is the density-driven error, and ∆EF is the functional error. The total error is the sum

of the two, ∆E = Ẽ[ñ]−Eexact [nexact ]. We calculated ∆ED and ∆EF for the atomization energies of

equilibrium H2 molecule with our three neural XC functional approximations and compared the

values with uniform gas LSDA. These errors are reported in Table A3.

Table A3: The density driven errors and the functional driven errors in the atomization energy (in
mH) for the H2 molecule at equilibrium. For all KSR models, we use the same training set of 5
atomic systems: H, He, Li, Be, and Be++, and validated on Be+.

Method ∆AED ∆AEF ∆AE %|∆AED|
LSDA -0.10 19.4 19.3 0.51
sKSR-LDA -0.05 -10.5 -10.5 0.45
sKSR-GGA -0.07 2.21 2.14 3.18
sKSR-global -0.02 2.45 2.43 1.06

4.5.6 Dipole moments

Table A4: The molecular dipole moments (in atomic units) of the two one-dimensional test
molecules calculated from DMRG, sKSR-global, sKSR-LDA and sKSR-GGA

Test molecule DMRG sKSR-global sKSR-LDA sKSR-GGA
LiH -0.91 -0.84 -0.75 -0.87
HeH+ 0.363 0.357 0.362 0.346

The dipole moments for each molecule is calculated using the formula

D = ∑
i

Zi (xi − xc)−
∫

dxn(x)(x− xc), (A7)

where Zi and xi are the nuclear charge and positions of each atom in the molecule, and xc is the
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center of nuclear charge. Table A4 shows the dipole moments of the two polarized molecules in

the test set calculated from the exact DMRG densities as well as the densities of the three sKSR

approximations.
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Part IV

Using Machine Learning to Categorize

Density Functionals
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Chapter 5

Unsupervised Learning

5.1 What is Unsupervised Learning

The primary goal of unsupervised learning is to find hidden patterns and insights in the data. So

given a training dataset {xi}i=1,2,...,N ∈ X , without any specific labels, yi ∈ Y , an unsupervised

learning algorithm will learn the structure of the training dataset by itself. However, unsupervised

learning tasks are more challenging than supervised learning tasks since it is hard to assess the

meaningfulness and accuracy of the predictions as there are no answer labels.

Unsupervised learning tasks help with many of the modern-day machine learning applications,

such as decoding social media features [55], networking [170], sentiment analysis [21], prod-

uct recommendations [148], image recognition [96], health and behavioral analysis [12, 74], and

translation [110]. In the chemical and material sciences, (deep) unsupervised learning is exten-

sively used to create meaningful feature representations for molecules and materials or to simplify

the feature space [143, 52, 127]. These tasks are often combined with other supervised learning

tasks, which helps minimize the uncertainties associated with unsupervised learning.
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Based on types of applications, unsupervised learning tasks can be broadly classified into four

categories,

• Dimensionality reduction: Dimensionality reduction techniques are often used for data

visualization and data preparation before modeling. It projects high-dimensional data to

a lower dimensional space while preserving the essence of the underlying structure in the

data [108]. Having a large number of features implies that the volume of the feature space

is enormous. Compared to the dimensionality of the feature space, the training set could be

a tiny non-representative sample. Hence, machine learning algorithms trained on this small

dataset cannot capture the behavior of the high-dimensional feature space and suffer from

the curse of dimensionality [8].

• Density estimation: Unsupervised density estimation tasks determine the data distribution

in space. It determines the underlying probability distribution function (PDF) of the dataset.

Density estimation is a valuable task for the other two unsupervised learning techniques and

generative models.

• Clustering: Clustering is a task of grouping different data points based on their similarity.

A cluster is a collection of similar data points. Based on how similarity is defined, we have

several clustering schemes and algorithms. These schemes will be discussed in detail in

Section. 5.4.

• Association: Unlike clustering, which tries to find commonalities between data points, as-

sociation tasks try to find interesting relationships between the variables in the dataset. As-

sociation has its most prominent applications in marketing analysis. For example, people

who buy a specific item a may tend to purchase another item b if there is a more significant

association between a and b.

The first three tasks are often combined to achieve different unsupervised learning goals. For

example, density estimation is often used for data visualization, accompanied by dimensionality
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reduction. It is also a part of the pipeline of several clustering algorithms. Often, clustering could

be complementary to dimensionality reduction [52]. We will discuss these three tasks in detail in

the following three sections. On the other hand, Association finds its applications in recommenda-

tion algorithms and filtering methods, basket data analysis, data mining, and bioinformatics. The

details of the association rule and related unsupervised algorithms can be found elsewhere [49].

5.2 Dimensionality Reduction and Manifold Learning

Let us consider a data matrix X of size N × d, where N is the number of data points, and d is

the dimensionality. A dimensionality reduction technique will try to form a new data matrix Y , of

size N×d′, where d′ ≪ d in a way that most of the information contained in the original dataset is

preserved. With reduced dimensionality, training time and cost of machine learning algorithms also

decrease, and data visualization becomes easy. Unfortunately, the most widely used dimensionality

reduction method, the principal component analysis (PCA) [75] is a transformation into linear

space and hence may often fail to capture nonlinear structure in the data.

A manifold, in simple words, is a surface of any shape. Manifold learning is equivalent to nonlinear

dimensionality reduction. These techniques try to find a low-dimensional manifold for very high-

dimensional data. Manifold learning algorithms are based on the idea that the dimensionality of

many datasets is only artificially high, and it is possible to express the manifold of several features

as a function of only a few underlying parameters.

This section will briefly discuss the theory of different linear and nonlinear dimensionality reduc-

tion algorithms. Examples of applications of these algorithms are discussed in the next chapter.
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5.2.1 Linear dimensionality reduction methods

5.2.1.1 Principal component analysis

PCA [75] finds the set of orthogonal directions along which the data has maximum variance and

then performs a change of basis of the data. It does so in four steps: i) it calculates a zero-mean data

matrix by subtracting the average from each data point, ii) then it constructs a covariance matrix

( 1
N XT X), iii) then it calculates the eigenvalues and eigenvectors of the covariance matrix, the largest

eigenvalue identifies the first principal component, iv) then it projects the original datasets into the

first d′ principal components. The last step is accomplished by performing

X ′ = XV, (5.1)

where V is the matrix of dimension d × d′ containing the first d′ eigenvectors of the covariance

matrix. d′ is chosen such that it captures a good portion of the total variance of the dataset.

5.2.1.2 Multidimensional scaling

Multidimensional scaling (MDS) [166] finds the d′ dimensional space for a d-dimensional dataset

that best preserves the pairwise distance between data points. Let us suppose di j is the pairwise

distance between any two data points, i and j. We can use different distance measures to define

di j. These distances then constitute a dissimilarity or distance matrix for the input data matrix X ,

D =



d1,1 d1,2 . . . d1,N

d2,1 d2,2 d2,N

... . . .

dN,1 dN,2 . . . dN,N


. (5.2)
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Now given D matrix, MDS tries to find N vectors y1, ..., yN such that the vector norm, ∥yi − y j∥=

di, j for all i, j. Different forms of the loss function can be used to accomplish this task. One

important loss function is the stress,

stress =
√

∑
i ̸= j=1,...,N

(di j −∥yi − y j∥)2. (5.3)

This loss function is minimized using stress majorization. Numerical optimization techniques are

used to find a solution. In the particular case when di, j is expressed as vector norm, the solution

can be found from eigendecomposition [44]. MDS is somewhat related to PCA, and both can be

equivalent under certain conditions. In terms of computational efficiency, PCA is more efficient

when N ≫ d and MDS is more efficient for N ≪ d. However, MDS is also used when only the

distance matrix, D, is given instead of the data matrix X . Hence its usage can be extended to

nonlinear dimensionality reduction.

5.2.2 Nonlinear dimensionality reduction methods

5.2.2.1 Isometric feature mapping

Isometric feature mapping (Isomap) [165] is a nonlinear extension of the MDS method or kernel-

PCA. It seeks a low-dimensional embedding that maintains geodesic distances between all points

in the data manifold rather than Cartesian distances. It does so by initially constructing a graph

where each data point is linked with its kth nearest neighbor with edges weighted by the pairwise

Cartesian distances. An approximate geodesic distance is computed between all pairs of points

as the shortest path. Then an MDS is performed on the geodesic distance matrix. A loss function

similar to Eq. 5.3 can be used. Modified loss functions are also available for Isomap for specific ap-

plications [19], such as Sketch-Map. The hyperparameters involved in isomap, such as the number

of k connected neighbors or limiting distance to consider neighbors, should be chosen carefully.
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The usefulness of Isomap, compared to MDS, will depend on the degree of the nonlinearity of the

data manifold.

5.2.2.2 Kernel PCA

Kernel PCA [144] is very similar to PCA in its essence. Only the linear transformation is replaced

by a nonlinear transformation, φ(xi), where φ can be a high-dimensional vector function. The

transformation function is chosen such that the transformed dataset is approximately linear, and we

can perform linear PCA or MDS. The transformed matrix is not explicitly computed, but obtained

through a kernel function K(xi,x j), using the kernel trick,

K(xi,x j) = φ(xi)
T

φ(x j). (5.4)

The choice of the kernel is important. The most widely used kernel is the Gaussian kernel,

K(xi,x j) = e−∥xi−x j∥2/2σ2
. σ is a hyperparameter that decides the width of the Gaussian. Ker-

nel PCA can help to deal with the problem of choosing the largest pairwise distance between a pair

of data points that plagues MDS and Isomap by choosing an appropriate kernel.

Several modifications of Kernel PCA, such as diffusion map [25], are formulated for specific ap-

plications, and we will not review them further.

5.2.2.3 t-Distributed stochastic neighbor embedding

t-Distributed stochastic neighbor embedding (t-SNE) [30] is a probabilistic dimensionality reduc-

tion method. The affinities in the original data space are expressed by Gaussian joint probabilities,

Pi j =
K(xi,x j)

∑k ̸=i K(xi,xk)
(5.5)
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and the affinities in the embedded space are expressed using Student’s t-distribution,

Qi j =
(1+∥yi − yi∥2)−1

∑k ̸=i(1+∥yi − yi∥2)−1
(5.6)

The loss function is defined with the Kullback-Leibler (KL) divergence [87],

KL(P∥Q) = ∑
j ̸=i

Pi jlog
Pi j

Qi j
. (5.7)

This loss function is not convex and is optimized iteratively. t-SNE focuses on grouping data points

based on the local structure of the data and therefore is useful for visualizing datasets that comprise

several manifolds. However, due to stochasticity, the embeddings and the global structure of the

transformed dataset are not preserved.

5.2.2.4 Other nonlinear methods

There are several other, comparatively less used, nonlinear dimensionality reduction methods.

Similar to MDS, locally linear embedding looks for a lower-dimensional projection of the data

that preserves distances within local neighborhoods. We can think of it as a series of local PCA

compared globally to find the best embedding. The spectral embedding method attempts dimen-

sionality reduction through spectral decomposition of the graph Laplacian. The graph itself ap-

proximates the low-dimensional manifold, and a cost function is minimized based on the graph.

Deep learning architectures such as autoencoders, variational autoencoders (VAE), and generative

adversarial networks (GAN) can efficiently accomplish dimensionality reduction tasks. However,

for the scale of our problem discussed in the next chapter, these architectures are irrelevant and

hence not discussed here.
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5.3 Density Estimation

Density estimation is integral to several dimensionality reduction techniques and clustering algo-

rithms. Here we briefly go over parametric and nonparametric density estimation methods.

5.3.1 Parametric density estimation

In parametric density estimation, we assume that the training data belongs to a population of the

probability distribution characterized by a fixed set of parameters. For example, if we consider a

normal distribution of data points, the related probabilities are characterized by the mean and the

standard deviation. Since the underlying distribution of the datasets might not be a perfect normal

distribution, we can make this approach slightly flexible by modeling the probability distribution

function as a mixture of k distributions. In Gaussian mixture models (GMM) [32] a mixture of

Gaussian distribution function is used. The weights of each Gaussian in the mixture can be deter-

mined by maximum likelihood estimation. The number of distributions used in the mixture is a

hyperparameter that requires careful evaluation.

5.3.2 Nonparametric density estimation

Nonparametric learning algorithms do not require the model to make any assumptions regarding

the underlying distribution of the data points. Instead, these algorithms form clusters describing

the data’s categories and classes. These methods are preferable for small datasets. Most parametric

methods require choosing hyperparameters. An optimal balance of bias and variance is required

to make the best choices. Some popular nonparametric density estimation methods are discussed

below.

• Histograms: In this popular method, the dataset is divided into several bins, and the PDF
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is estimated based on the number of data points in each bin. Histograms are suitable for

low-dimensional problems, d ≤ 3, as it suffers from the curse of dimensionality.

• Kernel density estimation (KDE): KDE instead estimates the probability distribution func-

tion as a sum of kernel functions centered at each data point. Different kernel functions can

be used. Although, Gaussian seems to be the most popular choice. Kernel density estimation

is also differentiable. The choice of the hyperparameter σ in the Gaussian kernel requires

careful evaluation for high-dimensional problems.

• k-Nearest neighbor estimator: This is a particular form of KDE where the kernel is ex-

pressed in terms of the hyperparameter k-nearest neighbor (k-NN). This method, in princi-

ple, can work in any dimension. However, it suffers from the curse of dimensionality as

the distance between the closest neighbors becomes more and more similar to the distance

between the furthest neighbors in higher dimensions.

5.4 Clustering Methods

Most unsupervised learning tasks primarily refer to clustering. Dimensionality reduction and den-

sity estimation are often used as sub-task for clustering. While clustering finds patterns in data,

dimensionality reduction and density estimation help in visualization and analysis. We will dis-

cuss several clustering algorithms in this section. It is important to note that the evaluation and

appropriateness of a clustering algorithm for a particular dataset are debatable. A suitable measure

hardly exists to confirm the output from a particular algorithm. Hence, the algorithm should be

chosen carefully based on the dataset and the expected results. Also, the choice of hyperparameters

for each algorithm can have a sizable impact on the results.
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5.4.1 Clustering tendency evaluation

Before evaluating the clustering performance, it is crucial to ensure that the data set has a clustering

tendency and does not contain uniformly distributed points. If the data does not have a clustering

tendency, then clusters identified by state-of-the-art clustering algorithms may be irrelevant. We

can evaluate clustering tendency by calculating the Hopkins statistic [68]. The Hopkins statistic,

H, is a statistical hypothesis test where the null hypothesis assumes that the data is generated from

a Poisson point process and hence is uniformly randomly distributed.

Null Hypothesis: Data points are generated by uniform distribution (there are no meaningful clus-

ters).

Alternate Hypothesis: Data points are generated by random data points (clusters are present).

If we consider a random sample (without replacement) of m < N and generate a set Y of m uni-

formly randomly distributed data points, we can calculate the Hopkins statistic as,

H =
∑

m
i=1 ui

∑
m
i=1 ui +∑

m
i=1 wi

. (5.8)

Here, ui is the distance of yi ∈Y from its nearest neighbor in the original dataset, and wi is the dis-

tance of m number of randomly chosen data points in the original dataset from its nearest neighbor

in the same dataset. The Euclidean distance measure is the most common choice for calculating

the nearest neighbor distance. If H > 0.5, the null hypothesis can be rejected, and the data likely

contains clusters. If H is closer to 0, we can conclude that the data set has no clustering tendencies.

Since the Hopkins statistic can vary based on the set of randomly chosen points, it is a common

practice to take the average over several random distributions of points.
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5.4.2 Distance measures

Before we discuss different clustering algorithms, let us highlight the properties of a dissimilarity

matrix or the distance matrix. For a distance matrix D, there are four main axioms for di j, the

distances of the objects (A and B) in the feature space,

• d(A,B)≥ 0 , i.e. distances are non-negative

• d(A,B) = 0 if A = B

• d(A,B) = d(B,A), i.e. D is symmetric

• d(A,C)≤ d(A,B)+d(B,C), i.e., the triangular inequality holds.

Non-metric dissimilarities: We can have dissimilarities that do not obey the triangle inequality or

are not symmetric. Few clustering algorithms support non-symmetric dissimilarities.

The dissimilarity measure is also known as the kernel function. Distances are dissimilarities to the

properties discussed above. Cosine and correlation (Pearson’s correlation) functions are generally

considered a measure of similarity.

For any type of clustering, the results depend on the distance measures used to build the distance

matrix, D. Here are some standard dissimilarity measures:

Euclidean distance (L2-norm): If xi and yi are the coordinates of the data points in the feature

space, then the distance between the points,

D(x,y) =

√
N

∑
i=1

(xi − yi)2, (5.9)

Where N is the number of data points, x and y are the vectors representing the two points in the

feature space. However, Euclidean distance often suffers from the curse of dimensionality for

datasets with many features [50]. In such cases, other distance measures are preferable.
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Manhattan distance (L1-norm): Manhattan distance has the form:

D(x,y) =
N

∑
i=1

|xi − yi|, (5.10)

It was suggested in Ref. [50] that for Manhattan distance, the difference between the minimum and

maximum distances between points diverges with increasing number of dimensions. For the L2-

norm, this value approaches a constant. Hence, for high dimensional data, L1-norm is preferable

to L2-norm.

Cosine similarity: This is a similarity measure. It is a measure of orientation, and magnitude is

not of importance. The similarity is calculated for the vectors x and y as,

D(x,y) = cos(θ) =
x.y

||x||2||y||2
. (5.11)

Cosine distance is the related dissimilarity measure. It is equivalent to 1−cosine similarity. For

normalized data, cosine distance is virtually equivalent to Euclidean distance.

Correlation distance: This is again a similarity measure. Highly similar data points will have a

correlation distance close to 1.

D(x,y) = 1− (x− x̄)(y− ȳ)
||x− x̄||2||y− ȳ||2

(5.12)

The distance measures discussed here are also shown in Fig. 5.1. There are several other distance

measures, such as Hamming distance, Jaccard index, and Chebyshev distance. A suitable distance

measure can be found by trial and error, depending on the problem.
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Figure 5.1: Cartoons depicting the Euclidean, Manhattan, Cosine, and Minkowski distance mea-
sures.

5.4.3 Classification of clustering algorithms

Well-known clustering algorithms can be broadly classified into two categories: 1) partition-based

and 2) density-based algorithms.

1. Partition-based clustering methods: In these approaches, the datasets are roughly parti-

tioned based on their similarities. In other words, they do not find clusters but minimize

the intra-partition distance compared to inter-partition distance. Partitioning algorithms can

again be centroid-based, graph-based, or hierarchical.

• Centroid based partition methods: In these methods, a centroid for each cluster is

defined first. Then the data points are assigned to the cluster of the nearby centroid.

The number of desired clusters has to be specified by the user. These methods yield

convex, globular clusters. Most popular clustering algorithms k-means [100] as well as
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k-medoids [79] are centroid-based algorithms.

• Graph based partitioning methods: These algorithms convert the feature space to

the vertices and edges of a graph and perform clustering on the transformed space.

There are various ways to achieve space transformation. Algorithms like minimum

spanning trees shared the nearest neighbor, and between centrality-based algorithms,

cluster graphs. These are widely popular in community detection problems. Spectral

clustering [149], on the other hand, finds the structural properties of the graph us-

ing spectral decomposition. Graph-based methods can produce clusters of non-convex

shapes.

• Hierarchical partitioning methods: Hierarchical clustering seeks to build a hierar-

chy of clusters. This hierarchy is a tree structure called a dendrogram, representing an

ensemble of clustering models with every possible number of clusters. It can either be

agglomerative(bottom-up) or divisive (top-down). In agglomerative hierarchical clus-

tering [79], each data point constitutes an individual cluster initially, and then pairs of

clusters are merged as one moves up the hierarchy. In divisive clustering, we start with

a single cluster of all data points and split the cluster recursively while moving down

the hierarchy. Divisive clustering is a bit more complex, and the approach to the prob-

lem can be widely different. Girvan-Newman algorithm [51] is a sort of (graph-based)

divisive clustering approach, which we will not discuss in this chapter.

2. Density-based clustering: Algorithms such as DBSCAN [39] clusters data based on den-

sity. Data points that densely populate a region are grouped to form a cluster. Data in the

low-density regions are considered noise. The user can define the cut-off for the density.

Most density-based algorithms initially transform the feature space to another space defined

by the probability density. Consequently, clusters formed can have a non-convex shape in

the feature space.

Recently, several new clustering algorithms have been developed that use elements from more than
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one class of clustering methods. For example, HDBSCAN [17] is a density-based but hierarchical

clustering algorithm. The mean shift method [26] is somewhat old but is a density-based method

that yields convex clusters. Below we discuss a few of the popular clustering algorithms. Besides

these methods, we can also use probabilistic methods based on the expectation-maximization al-

gorithm and neural network-based techniques for complex clustering tasks. These techniques are

outside the scope of this chapter.

5.4.4 k-Means clustering

The goal of k-means [100] clustering is to minimize the sum of the square of the distances of

data points assigned to a cluster with respect to the respective cluster centers. This is an NP-hard

problem, and an approximate solution is found with an iterative procedure. In this procedure, k-

number data points (prespecified as the desired number of clusters) are randomly chosen as centers.

Then, after assigning data points to the cluster of the closest center, new centroids are created by

taking the mean value of all the data points assigned in the previous step. These two steps are

repeated until the centroids stop changing.

The outcome of the k-means algorithm is highly dependent on the initialization step. Modified

methods with improved initializations, such as mini-batch k-means, are also proposed. In fuzzy c−

means algorithms, each data point shares a variable degree of membership to all possible clusters.

k-means clustering is highly efficient, but its stability will depend on the dataset.

5.4.5 k-Medoids clustering

k-Medoids [79] partitions data into clusters by minimizing the sum of distances between each data

point and the medoid of the cluster. The medoid is the data point with the least total distance to

the other members in the partition. Since data points are defined as cluster centers, any form of
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distance metric can be used to form the clusters. It is slightly costlier than k-means and hence more

suitable for smaller datasets.

5.4.6 Affinity propagation

Affinity propagation [45] is a graph-based clustering method that utilizes the concept of ”message

passing” between data points. It is similar to k-medoids in one aspect that it finds examplars

that already belong to the dataset as representative of the clusters to be formed. The messages

sent between pairs of data points represent the suitability of one data point as the exemplar of the

other. The process is repeated iteratively until the exemplars stop changing. Finally, data points

are assigned to the cluster of the nearest examples. Unlike the k-means and k-medoids algorithms,

we do not need to specify the number of clusters beforehand. However, the user must specify

the preference for each data point and damping factor to avoid numerical oscillations. It supports

non-metric dissimilarities and could be costlier for large datasets.

5.4.7 Spectral clustering

Spectral clustering [149] is a graph-based clustering method that performs manifold learning to

transform the original high-dimensional data space into a meaningful low-dimensional data space

and clusters data on that space. It initially constructs a dataset graph based on distances between

points, then calculates the eigenvectors of the Laplacian to find a good embedding of the graph

in a low-dimensional Euclidean space. Any clustering algorithms such as k-means can be used to

perform clustering on the transformed space. However, if we use k-means, we have to specify the

number of clusters.

Variations of spectral clustering utilize different schemes for constructing the initial graph or in the

normalization of the Laplacian. In many cases, spectral clustering can be considered equivalent to
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kernel k-means.

5.4.8 Agglomerative hierarchical clustering

Agglomerative hierarchical clustering depends on two factors, the choice of an appropriate distance

measure (similarity function) and the linkage criteria that specify the dissimilarity of sets as a

function of the pairwise distances of observations in the sets.

We can choose the distance metric as specified in section 5.4.2.

Once the initial pairwise clusters are formed based on one of the distance measures (metric or

non-metric), the merging of two such clusters is performed based on the chosen linkage criterion.

Some commonly used linkage criteria are:

1. Single linkage clustering: The distance between two clusters is the minimum distance be-

tween the data points in each cluster. If A,B and C,D form two clusters, and d(A,C) <

d(B,C),d(A,D),d(B,D), then the distance between the two clusters is d(A,C).

d = mind(a,b) : a ∈ A,b ∈ B (5.13)

2. Complete linkage clustering: The distance between two clusters is the maximum distance be-

tween the data points in each cluster. If A,B and C,D form two clusters, and d(A,C),d(B,C),

d(A,D)< d(B,D), then the distance between the two clusters is d(B,D).

d = maxd(a,b) : a ∈ A,b ∈ B (5.14)

3. Average linkage clustering: Also known as unweighted pair group method with arithmetic

mean(UPGMA). The distance between two clusters is the average of all distances between

99



pairs of data points belonging to each cluster.

d =
1

|A|.|B| ∑
a∈A

∑
b∈B

d(a,b) (5.15)

4. Ward linkage clustering: Uses Ward’s variance minimization algorithm. The initial clusters

are determined based on squared Euclidean distances.

d(u,v) =

√
|v|+ |s|

T
d(v,s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T

d(s, t)2, (5.16)

where u is the newly joined cluster consisting of clusters s and t, v is a remaining cluster, and

T = |v|+ |s|+ |t|. | ∗ | signifies the number of elements in a cluster.

One must define a threshold distance to determine the number of clusters from hierarchical cluster-

ing. A horizontal line is drawn at this cut distance, and the number of tree branches it cuts through

gives the number of clusters. The algorithm is pretty fast, and formed clusters are not globular. It

is especially suitable for smaller datasets. The linkage criterion and distance threshold variations

in agglomerative clustering can yield significantly different clusters.

5.4.9 Mean-shift clustering

Mean shift [26] is a centroid-based algorithm that produces clusters instead of partitions. It also

does not require specifying the number of clusters. Instead, it assumes that the dataset is drawn

from some underlying probability density function and then tries to place the centers of the clusters

at the peak of that function. It uses the kernel density function to figure out the PDF and the

bandwidth of the kernel is the only hyperparameter that needs optimization. However, since the

mean shift is a centroid-based clustering method, it still aims for globular clusters and may not be

suitable for all datasets.
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5.4.10 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) [39] defines a threshold

density and produces clusters from connected regions with density above the threshold. It is not

a partitioning algorithm; it can form clusters with any shape and does not require input for the

number of expected clusters. In the first step, DBSCAN transforms the dataspace based on density.

Dense regions are left alone and sparse regions are made sparser. Next, the algorithm defines core

samples as those samples in the dataset that have a specific number of neighbors (defined by the

user) within a cut-off distance. This process can be repeated multiple times to find all the members

of a cluster. Data points that are not neighbors to any core samples are considered noise.

DBSCAN is in a spirit similar to performing a single-linkage clustering after a density-based trans-

formation. However, the cut-off distance for the neighbors and the number of neighbors that con-

trols the density are both hyperparameters that can significantly affect the output clusters.

5.4.11 HDBSCAN

Hierarchical DBSCAN (HDBSCAN) [17] is an improved form of DBSCAN. It can form clusters

for varying densities. It forms a dendrogram after performing a single linkage on the density-

transformed space. The tree can be cut at different heights, similar to hierarchical clustering, to

pick clusters of different densities. However, the cut distance is determined by the algorithm based

on another parameter, the minimum cluster size, which determines the size of the smallest cluster.

This parameter is often more intuitive than the cut-off distance for DBSCAN or hierarchical clus-

tering. HDBSCAN is very efficient and offers the benefits of both density-based clustering and

hierarchical partitioning methods.
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5.4.12 BIRCH

Balanced iterative reducing and clustering using hierarchies (BIRCH) [185] is a hierarchical clus-

tering method suitable for large datasets. First, the user has to specify the desired number of

clusters. In its initial step, BIRCH builds a clustering feature tree (CFT) for the dataset, similar

to a dendrogram for hierarchical clustering. The initial CFT is then divided into smaller CFTs,

and outliers are removed. Then one can use an agglomerative clustering algorithm to form the

subclusters from the smaller CFT.

BIRCH is a memory-efficient algorithm as it only stores necessary information for the clustering,

not the whole input dataset. It can be considered a data reduction method since it reduces the

dataset into subclusters. Clustering is performed on those subclusters. It may not scale well with

high-dimensional data, and alternatives such as minibatch k-means might be more desirable for

datasets with a large number of features.

5.5 Performance Evaluation of Clustering Algorithms

We have discussed several clustering algorithms in this chapter. The choice of the algorithm will

depend on the specific dataset under consideration. Since we do not have any labels to compare

the accuracy of these clustering algorithms, evaluating their performance is a nontrivial task. An

evaluation metric for clustering is generally defined as a similarity metric that compares the sim-

ilarity among data points belonging to the same cluster to the similarity of members belonging to

different clusters. There are mainly two types of measures to assess the clustering performance:

1. Intrinsic measures that do not require ground truth labels. Examples of intrinsic measures in-

clude Silhouette coefficient [134], Calinski-Harabasz index [16], Davies-Bouldin Index [31],

etc.
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2. Extrinsic measures that require ground truth labels. Examples include adjusted rand index,

Fowlkes-Mallows scores, mutual information-based scores, homogeneity, completeness, and

V-measure.

One can use extrinsic measures to compare different clustering algorithms, where we consider the

clusters formed by one algorithm as the ground truth. We can also use these measures to compare

clusters from different related datasets. Below we will discuss some of these evaluation metrics.

1. Silhouette coefficient: The Silhouette coefficient (S) [134] is calculated using the mean

intra-cluster distance (a) and the mean nearest-cluster distance (b) for each cluster,

S =
(b−a)

max(a,b)

.

Then we take the mean to produce the overall Silhouette coefficients. It can vary between -1

and 1. When the Silhouette coefficient is close to 0, it indicates overlapping clusters. This

measure often yields higher scores for convex, globular clusters.

2. Calinski-Harabasz (CH) index: The CH index [16] is defined as the ratio of the sum of

intra-cluster dispersion and inter-cluster dispersion for all clusters. Dispersion refers to the

sum of the squared distances. It is fast to compute but, again, generates higher scores for

centroid-based methods.

3. Davies Bouldin (DB) index: The DB index [31] is the average similarity measure of each

cluster with its most similar cluster, where similarity is the ratio of within-cluster distances

to between-cluster distances. Thus, clusters farther apart and less dispersed will result in a

better score. The similarity measure for two clusters i and j that is used to calculate the DB
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index is,

Ri j =
li + l j

di j
, (5.17)

where li is the average distance from the centroid to each data point in the cluster i and di j is

the distance between cluster centroids. The DB index is then,

DB =
1
k

k

∑
i=1

max
i ̸= j

Ri j, (5.18)

where k is the number of clusters. The minimum score is zero, with lower values indicating

better clustering. Similar to the Silhouette coefficient, this measure can overestimate the

performance of centroid-based algorithms. The choice of distance measure is also limited to

Euclidean distance.

4. Normalized Mutual Information (NMI): It is a concept from probability theory and in-

formation theory. The mutual information (MI) [171] measures the similarity between two

labels of the same data. If |Ui| is the number of the data points in cluster Ui and |Vj| is the

number of the data points in clusterVj, the MI between clusterings U and V is given by

MI(U,V ) =
|U |

∑
i=1

|V |

∑
j=1

|Ui ∩Vj|
N

log
N|Ui ∩Vj|
|Ui||Vj|

(5.19)

This metric does not depend on the absolute values of the labels. If one permutes the class

or cluster labels, it will not change the score value. This metric is also symmetric. It can be

useful to measure the agreement of two independent label assignments on the same dataset

when the ground truth is unknown.

Normalized MI (NMI) score normalizes the MI scores to scale between 0 (bad) and 1 (good).

5. Adjusted mutual information (AMI) Adjusted mutual information (AMI) [182] is an ad-

justment of the MI score to account for the chance. It considers that the MI is generally
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higher for two clustering algorithms with a larger number of clusters regardless of whether

more information is shared. For two clustering algorithms U and V , the AMI is given by

AMI(U,V ) =
MI(U,V )−E[MI(U,V )]

mean(H(U),H(V ))−E[MI(U,V )]
, (5.20)

where H(U) is the entropy of uncertainty for clustering U , and E[MI(U,V )] refers to the

expected value of MI. The AMI returns a value of 1 when the two partitions are identical.

Random partitions (independent labelings) have an expected AMI of around 0 on average

and can be negative.

6. Adjusted rand index. The Rand index (RI) [167] computes a similarity measure between

two clusterings by first considering all pairs of samples and then counting pairs assigned in

the same or different clusters in the predicted and true clusterings. The raw RI score is:

RI = (number of agreeing pairs) / (number of pairs)

. However, the RI score may not equal zero for random labeling. Hence, we can also

calculate adjusted RI [158] by using the expected RI (E[RI]) value,

ARI =
RI −E[RI]

max(RI)−E[RI]
(5.21)

Similarity scores between -1.0 and 1.0. Random labelings will yield an ARI close to 0.0.

7. Homogeneity and completeness scores Both of these are extrinsic measures based on con-

ditional entropy analysis. A clustering algorithm satisfies homogeneity if all of its clusters

contain only data points that are members of a single class,

h = 1− H(C|K)

H(C)
, (5.22)

where H(C|K) is the conditional entropy of the classes, Cs given the clustering assignments
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Ks, and H(C) is the entropy of the defined class labels. Completeness, on the other hand,

assumes that all members of a given class are assigned to the same cluster,

c = 1− H(K|C)

H(K)
. (5.23)

Both these scores are between 0 and 1; the higher is better. We can define another score

called the V-measure [133], using these two extrinsic measures,

v =
(1+β )×homogeneity× completeness
(β ×homogeneity + completeness)

, (5.24)

where the default β value is 1. V-measure is the same as NMI. These scores do not make

any assumption regarding the cluster structures and can produce meaningful scores for non-

globular clustering algorithms.

Intrinsic measures can also determine the optimal hyperparameters for a clustering algorithm. A

frequently employed method is the elbow method. For example, we can use the Silhouette coeffi-

cients or the sum of the intra-cluster variance of all the data points from the centroid. We get an

elbow plot if we plot either of these two quantities as a function of the clustering hyperparameter.

An elbow is the hyperparameter value where the error measure starts to flatten. Therefore, the

elbow should be considered the optimal choice for the hyperparameter. Gap statistics is another

method that we can utilize to calculate optimal hyperparameter.

5.6 Summary

Unsupervised learning is a powerful machine learning technique that is closer in spirit to actual

artificial intelligence compared to supervised learning. Applications of unsupervised learning for

dimensionality reduction, density estimation, or clustering tasks can help understand rules and pat-
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terns in data, leading to its widespread usage in the data-driven world. However, most of the current

unsupervised learning algorithms require domain knowledge about the dataset. Such knowledge

can induce bias in the choice of the algorithm and hyperparameters. Furthermore, optimizing

hyperparameters involved in the learning algorithms is a nontrivial task. Evaluation metrics are

ill-defined and often inherently favor one algorithm over the other. Hence parameter-free cluster-

ing methods are desirable, and there is work in progress in this direction. However, we still need

unbiased intrinsic measures to evaluate clustering quality better.
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Chapter 6

Categorizing Density Functionals with

Unsupervised Learning

written with Suhwan Song, Ryan J. McCarty, Stefan Vuckovic, Eunji Sim, John Kozlowski, and

Kieron Burke. This is a draft in preparation.

Abstract: Density functional calculations are routine in many fields, especially chemistry and

materials science. Debates abound over which of the hundreds of exchange-correlation approx-

imations are best or even on what basis to judge. We introduce a measure of distinction be-

tween approximate functionals, the density-driven fractional difference (DDF) based on density-

corrected DFT, and evaluate this functional fingerprint for the MGAE109 dataset from the Min-

nesota database for 33 popular approximations. We construct a metric space using these finger-

prints, yielding distances between approximations. To evaluate the similarities among the function-

als, we use three different unsupervised clustering algorithms suitable for small datasets, including

one of our parameter-free clustering algorithms. In the DDF descriptor space, these algorithms

create functional categories that largely (but not entirely) mimic those based on their ingredients,

analogous to the famous Jacob’s ladder categorization. Finally, we illustrate these functional
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clusters using various popular dimensionality reduction tools. Overall, our approach combines

density and energy differences in a meaningful way, is independent of the origins of the functional

approximation (e.g., how many empirical parameters it may have), and uses a parameter-free de-

terministic algorithm to cluster the approximations. Our scheme shows, in agreement with earlier

speculation, that specific construction techniques of approximate functionals yield approximations

that differ wildly from more established XC functionals.

6.1 Introduction

Kohn-Sham density functional theory (KS-DFT) [86] is used in tens of thousands of scientific pa-

pers each year, primarily within chemistry and materials science [14]. There are hundreds of useful

approximations to the unknown exchange-correlation (XC) energy, employing different ingredi-

ents, using various conditions to choose parameters, and fitting to an increasingly large plethora of

databases [102]. The over-arching goal of DFT approximation is to construct a single functional

that works for all systems and properties of interest. In practice, different approximations yield

higher accuracy for different problems, leading to the eternal question, Which functional should I

use?, especially if the problem falls between databases [132].

Almost all discussion of the quality of functionals has centered around their accuracy (usually

energetics compared to benchmarks in databases) or their intellectual purity (keeping the number of

empirical parameters to a minimum). Twenty years ago, these ideas were baked into Jacob’s ladder

metaphor [121], where each rung corresponded to an approximation using specific ingredients,

with the number of ingredients increasing as you climb the ladder. The aim is to find a best

approximation at each rung, thereby balancing cost with accuracy. While many functionals have

been constructed in the intervening decades that would now be difficult to assign to these old rungs,

one could imagine mildly generalizing the ladder (as has occasionally been done) without losing

its essence or utility.
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However, new tools have since been developed that allow us to update the metaphor, using different

construction principles and more sophisticated techniques. Here, we eschew the use of accuracy

as a criterion, as this is mainly subjective (whose database do I use?). Instead of posing a su-

pervised learning problem to determine which functional would be better under which condition,

we propose an unsupervised learning scheme to compare approximate functionals to one another

to determine how to categorize them. Moreover, by using machine learning techniques, we are

seeing if (a) evidence of functional categories can be extracted from numerical performance alone,

without knowledge of the ingredients used, and (b) the choice of categories (rungs on Jacob’s lad-

der) themselves can be extracted. The primary goal is not to introduce any human bias and let the

machine construct its functional ladder, stairs, or whatever it thinks is right.

There are three essential components in an unsupervised learning task. The first is to define a

meaningful feature space where we can find meaningful clusters. The next is the clustering task

itself. There are numerous clustering methods. In the absence of any measured property label (in

unsupervised learning), determining which clustering algorithm will be best is an almost impossi-

ble task. The third part is dimensionality reduction for adequate visualization of the clusters. Here

too, infinite techniques exist, but none might show the separation among the clusters. All these

three tasks are highly indeterminate. Hence, domain knowledge comes in handy, especially for

defining features and analyzing the clusters. In the sections below, we describe how we overcome

the hurdles for all three tasks and try to learn what the machine tries to teach us.

6.2 Unsupervised Learning Density Functionals

We make a series of commonsense choices to set up the methodology. These choices are far from

unique, but one can hope that reasonable alternatives will lead to similar results. Importantly, all

our choices obey several strict conditions that minimize human bias.
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6.2.1 Functional fingerprints from density-corrected DFT

Our first step is to avoid using exact results (usually energies) in constructing our scheme. There are

endless papers evaluating the performance of density functional approximations. Here, we wish to

categorize functionals based on their behavior for typical systems on which DFT calculations are

run. Thus we construct a measure that requires only approximate DFT calculations and no exact

results.

A second key feature is to include the behavior of densities and to compare different densities for

different approximations. A primary reason for this is that, for some given system, two different

approximations can easily yield negligibly different energies but typically have different densi-

ties. Such examples should contribute noticeably to any measure of the difference between two

approximations. Also, quite a few density functionals are parameterized on the energy error, not

the density error. The diverging trend for the maximal deviation of the densities for functional

approximations discussed in Ref. [106] does not necessarily imply a diverging trend for the energy

errors. This was pointed out in Ref. [80]. Hence, the best representative feature space for clus-

tering should reflect differences in densities and energies. However, we must then convert density

differences to energy differences in order to quantify such density differences meaningfully [150].

For example, Dick et al. [146] attempted to draw correlations among functionals by considering

an integral of the L1-norm for the density difference. This is not a good measure of the density

difference. Similarly, considering just the absolute errors in a specific type of energy quantity with

reference energy and trying to correlate them in that energy space will be highly data-dependent

and devoid of any density information [37]. If the density difference has little effect on energies,

such differences are irrelevant to chemical properties and should not count significantly in our

measure.

The theory of density-corrected DFT was developed for precisely this purpose [174]. Moreover, it

was recently generalized to analyze differences between approximate functionals instead of errors
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relative to the exact functional [150]. Finally, it has also been used to show the ambiguity in choices

of measures of density and which density differences are relevant to chemical energetics.

Our first step is, for any KS-DFT calculation of ground-state energy with approximate functional

A, to define:

DA[B] = EA[nB]−EA[nA], (6.1)

where EA[n] is the KS energy functional with XC approximation A and nC(r) is the self-consistent

density of functional C for this problem. Thus DA[B] is the energy cost of using the wrong self-

consistent density in the problem. This deceptively simple expression contains many essential

features. First, it is non-negative, thanks to the variational principle. Second, it creates an energetic

measure of the difference between nB(r) and nA(r), which can be compared to other relevant

energies. Third, suppose B and A are (in some sense) similar. In that case, we expect this difference

to be much smaller than relevant energy differences (indeed, to leading order in the difference

between two functionals, it vanishes). Finally, if somehow A were the exact functional, this is

a measure of the error in the density produced by B. In practice, one cares only about energy

differences, and differences in D’s are not non-negative, so we use absolute values. Moreover,

since DA[B] ̸= DB[A], we take the average of the two as a symmetric measure of the difference

between the functionals.

Finally, we must measure these differences on the only scale that matters: The energy differences

predicted by the functionals themselves [155]. As mentioned above, when the difference between

two functionals is small, we expect density-driven differences to be smaller than energy differ-

ences. A natural dimensionless choice is their ratio, which we expect to be about a few percent

for typical density-insensitive cases. However, as mentioned, the energies can accidentally coin-

cide, producing huge (and meaningless) ratios. Moreover, the more cases considered, the more

likely such an accident will occur. We, therefore, compare the average of these differences over a
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database to the root-mean-square average of energy differences in the database. Thus, for any pair

of approximations A and B and a database of chemical reaction energies, we calculate

η(A,B) =
∆D̄(A,B)

(∆E(A,B))rms
. (6.2)

We call this the density-driven fractional difference (DDF) of the two approximations. It is a

general measure of how much they differ on the energy scale on which such differences matter. If

η << 1, two functionals behave very similarly. It does not mean that they have similar accuracy,

and often they will not. However, their treatment of systems and the densities they produce are

markedly similar, and one should prefer the more accurate of the two (unless the cost difference is

also substantial). On the other hand, if η ∼ 1, the two functionals are very different and use very

different features in the density.

Finally, we calculate the DDF matrix for 30 different functionals listed in Table. 6.1, using the

Main Group Atomization Energies (MGAE109) dataset [187, 122]. The DDF is plotted with a

color parametric plot in Fig. 6.1. Each row is a fingerprint for that given functional.

6.2.2 A metric space of approximate functionals

While the fingerprints of functionals provide an excellent measure of functional similarity, the

DDF does not provide a metric on the space of functionals. The triangular inequality is violated, as

the sum of the distances between PBE and MN11 and MN11 and BLYP are less than the distance

between PBE and BLYP.

However, there is a convenient way to create a metric for this problem. We simply consider each

functional as defining a new orthogonal direction in a P-dimensional space and the η-values are

coordinates in that space. By construction, this is a vector space, and we choose the Manhattan
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Table 6.1: A listing of the functionals used in this study. The name is the acronym or name of the
functional. The year is the publication year. Type refers to which construction scheme was used.
GH refers to global hybrid, RSH refers to range-separated hybrids, and NGA is nonseparable
gradient approximation

Name Year Type Short Range Exact Exchange Long Range Exact Exchange Reference
Hartree 1928 Hartree [59]
HF 1935 HF [60]
LSDA 1965 Local [86]
PW91 1992 GGA [116, 117]
PBE 1996 GGA [115]
B3P86 1986 GH-GGA 0.2 0.2 [114]
LSDA-X 1965 Local [86]
mPW91 1998 GGA [2]
TPSSh 2003 GH-mGGA [157]
BLYP 1988 GGA [6, 88]
TPSS 2003 mGGA [164]
B3LYP 1994 GH-GGA 0.2 0.2 [159]
revTPSS 2009 mGGA [118, 119]
HSE06 2006 RSH-GGA [63, 64]
PBE0 1999 GH-GGA 0.25 0.25 [3]
ωB97 2008 RSH-GGA 0 1 [20]
ωB97X 2008 RSH-GGA 0.1577 1 [20]
CAM-B3LYP 2004 RSH-GGA [181]
LC-ωPBE 2006 RSH-GGA [175]
M05 2005 GH-mGGA 0.28 0.28 [186]
M06 2006 GH-mGGA 0.27 0.27 [192]
M05-2X 2005 GH-mGGA 0.56 0.56 [188]
MO8-HX 2008 GH-mGGA 0.5223 0.5223 [191]
M06L 2006 mGGA [189]
MN12-L 2012 mNGA [124]
M11 2011 RSH-mGGA 0.428 1 [123]
MN15 2016 GH-mNGA 0.44 0.44 [184]
MN12-SX 2012 RSH-mNGA 0.25 0 [126]
M11-L 2011 mGGA [125]
MN15L 2015 mNGA [184]

(L1) norm,

d(A,B) =
P

∑
i=1

|η(A, i)−η(B, i)|. (6.3)

Note that with P different functionals, there will be 2 entries (i = A and i = B) equal to η(A,B)

and P− 2 is the difference between the η values of each functional on the other functionals. By

construction, the distance or dissimilarity matrix, d, is real, symmetric, positive, and satisfies the

triangular inequality. Therefore, we can use d to categorize our functionals, finding those clustered
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Figure 6.1: The DDF matrix of the MGAE109 dataset reaction energies for 30 functionals, plotted
as a heatmap. Darker color corresponds to larger values.

in this P-dimensional space.

6.2.3 Clustering in d-space

Our second task is to choose an algorithm to perform unsupervised clustering of the approxi-

mate functionals in d-space. Again, many criteria were imposed on what might be an acceptable

algorithm. We are looking for a clustering method suitable for small datasets with negligible

dependence on user-defined parameters. First, all stochasticity should be eliminated. Most clus-

tering algorithms (discussed in the previous chapter) require the specification of hyperparameters,

including the possible number of clusters, cut-off radius, linkage criterion, or the number of neigh-
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bors. The choice of these parameters can introduce a bias towards expectations based on domain

knowledge. Since clustering is an unsupervised learning method and we do not have absolute la-

bels, quantifying clustering error is another hurdle. Performance evaluation using Silhouette score

analysis [134], Davies-Bouldin Index [31], or Calinski-Harabasz Index [16] tend to favor convex,

centroid-based clusters. Since we only have very few functionals, and hence a small dataset to

calculate the fingerprints, expecting the clusters to have convex globular structures (as most algo-

rithms like k-means will produce) and evaluating clustering quality to optimize hyperparameters

are equally impractical.

The agglomerative hierarchical partitioning method is often preferred for small datasets with non-

convex clusters. We can easily construct a dendrogram for our problem, but deciding the cut-off

distance for the dendrogram is a crucial parameter-optimization task. The linkage criterion decides

how the clusters are combined once the initial clusters form. It is also a vital hyperparameter.

However, there is a better way to look at hierarchical clusters. We can look at the dendrogram and

quickly evaluate which functional is closer to PBE or M11.

HDBSCAN [17], a hierarchical density-based clustering method, is an attractive alternative to

single-linkage agglomerative clustering, as it requires choosing a minimum cluster size that can be

more intuitive. However, HDBSCAN declares data points as noise based on another less intuitive

user-defined parameter. As a result, HDBSCAN can have difficulty deciding between noise and

actual data for a tiny dataset, such as ours.

We developed a parameter-free clustering technique based on motivation from hierarchical clus-

tering and HDBSCAN. For any given functional A, we find

dmin(A) = min
B ̸=A

d(A,B), Bmin(A) = argmin
B ̸=A

d(A,B) (6.4)

Next, we order all dmin in order of increasing value. For each value, consider the pair of functionals

(A, B) it connects. If neither are already clustered, we begin a new cluster. We call such functionals
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seeds. If either already appears in a cluster, the other is added to that cluster. In other words, we

calculate an adjacency matrix based on the distance matrix. Functionals adjacent to each other are

part of the same cluster. Thus, this is a chain-like clustering, depending only on connections with

nearest neighbors. We call this one-step nearest-neighbor clustering (ONN).

Our algorithm is the first half of an algorithm created a few years ago, called the first integer neigh-

bor clustering hierarchy (FINCH) [139]. Our algorithm is not hierarchical. While our algorithm

and FINCH can use different distance measures to create the distance matrix from the DDF, we

prefer using the L1 norm, and FINCH recommends cosine similarity. Cosine similarity or cosine

distance (1-cosine similarity) is a trendy choice for making the distance matrix in data-intensive

unsupervised learning tasks in natural language or image processing. For us, all the functional fin-

gerprints are positive values and are located in the first quadrant of the P−dimenisonal space. The

sense of direction is less important to us than magnitude; hence, we consider the L1 norm a better

choice. Also, bot L2 norm or the Euclidean distance and cosine distance(or normalized Euclidean

distance) suffer from the curse of dimensionality [50] to a more considerable extent compared to

the L1-norm.

Our algorithm has many desirable features: It is speedy to run (although not very relevant for

our problem), it decides how many clusters to make without any hyperparameter, and can easily

be rerun when more data becomes available. It naturally uses the distance scale built into the

data set and accounts for variations between different clusters. The clusters calculated from the

ONN algorithm are shown in Fig. 6.2. We also introduce a second step by looking at the initially

formed clusters. We define a distance cut-off to divide the clusters formed in the first step without

reconstructing the distance matrix for each cluster. We define average cluster distance for cluster k

as:

dk =
∑

Nk
i=1 di

Nk
, (6.5)
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Figure 6.2: Visual representation of clusters found by unsupervised learning algorithm using func-
tional fingerprints. Distances to neighbors are to scale.

where Nk is the total number of functionals in cluster k and di is the distance between neighboring

functionals. The cut-off distance is defined as dcut−o f f = 2× dk. This measure is arbitrary. Any

functional falling outside the cut-off radius can be considered noise (in the spirit of HDBSCAN).

Hence we get clusters and not a simple partition of data. Since ONN yields chain-like clusters,

this approximate extension is relevant. However, this is an additional step; if we do not want to

disregard any functionals, we can avoid it. Including this step results in more meaningful clusters,

as shown in Table. 6.2.
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Fig. 6.2 reflects the actual distances between each pair of functionals. We cluster just 30 popular

approximate functionals, using only DFT calculations on an atomization energy database and a

clustering algorithm. The machine has found a cluster dominated by the local density approxima-

tion (saddle brown), a cluster of generalized gradient approximations (green), a cluster of meta-

GGA’s (yellow), a cluster of hybrids (pink), a cluster dominated by highly fitted functionals, such

as ω-B97 and its variants (blue), and finally a cluster dominated by Minnesota functionals of later

vintage (orange). B3P86 and BLYP, followed by a few Minnesota functionals, often deviate from

the expected norms. The positions of these functionals in the P−dimensional spaces can be highly

data-dependent. We may see them hopping to another cluster if we change the dataset.

Table 6.2: The clusters calculated using ONN with a distance cut-off, the identified nearest neigh-
bor for each functional and the distance between them, the average cluster distance for distance
cut-off, and the cluster numbers for the functionals calculated from agglomerative hierarchical
clustering with complete linkage and HDBSCAN. L1-distance measure is used in all cases. The
number of clusters = 6 for agglomerative clustering, minimum cluster size = 2, and the minimum
number of samples = 1 for HDBSCAN. A cluster assignment -1 refers to outliers/noise

Functionals Nearest Neighbor Distance to Nearest Neighbor Average Cluster Distance Complete Linkage HDBSCAN
PW91 PBE 0.1788 0.48 1 1
PBE PW91 0.1788 1 1
B3P86 PBE 0.7271 1 1
mPW91 PW91 0.8379 1 1
HSE06 PBE0 0.3396 1.45 2 3
PBE0 HSE06 0.3396 2 3
TPSSh HSE06 0.8499 2 3
CAM-B3LYP HSE06 0.9603 2 -1
B3LYP TPSSh 1.2137 2 -1
LC-ωPBE PBE0 1.6039 2 -1

M05-2X LC-ωPBE 3.081 3 -1
MN15 M05-2X 3.1823 3 -1
LSDA LDAX 0.3893 0.55 1 2
LDAX LSDA 0.3893 1 2
HF LSDA 0.8867 1 2
TPSS revTPSS 0.4038 1.19 2 4
revTPSS TPSS 0.4038 2 4
BLYP TPSS 1.591 2 -1

MO5 revTPSS 2.3844 2 -1
ωB97 ωB97X 0.9255 1.45 2 5
ωB97X ωB97 0.9255 2 5
M06 ωB97 2.4975 2 -1
M08-HX MN12-L 3.4659 4.1859 4 6
MN12-L M08-HX 3.4659 4 6
M06-L M08-HX 4.1795 5 -1
Hartree MN12-L 4.1858 4 -1
MN15-L MN12-L 4.3563 3 -1
M11-L M06-L 4.3889 5 -1
M11 M08-HX 4.5122 6 -1
MN12-SX M11-L 4.9329 6 -1
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What do we learn from the ONN clusters? First, it somewhat generalizes Jacob’s ladder (not

necessarily in the given order), which categorizes functionals based on their ingredients rather

than their results for realistic calculations. For example, a new functional might use ingredients

from a higher rung of that ladder ineffectively However, it would be classified here on the lower-

rung, as it would behave like its lower-rung analogs. Given some new functional approximation,

any developer or user can find which category it belongs to and immediately draw insight from

comparison with well-established members of that category, i.e., it should perform in some way

better (or even best) against other members of its cluster, but need not be better than members

of other clusters. Third, since ONN uses no information about where a functional comes from

in the definition of the feature space, counting empirical parameters (or even exact conditions

satisfied) is not used to determine its cluster (directly). (Of course, the judicious use of either

parameters or conditions can still improve its accuracy). We also show the clusters calculated

using hierarchical agglomerative clustering with complete linkage and HDBSCAN in Table. 6.2.

The hyperparameters for these two algorithms are optimized to yield 6 clusters based on ONN

clustering. We can quickly spot the similarities between ONN and HDBSCAN clusters. The

only issue is that HDBSCAN identifies more than half of the functionals as outliers or noise. In

a clustering space of 30 data points, constructing and separating high-density regions from low-

density regions become meaningless.

Agglomerative hierarchical clustering with complete linkage, on the other hand, does produce

linked clusters. It tends to combine clusters with the smallest distance (ONN cluster 1 with cluster

3, ONN cluster 2 with cluster 4, and cluster 5). However, these clusters are slightly misleading.

Why does combining the clusters become more apparent if we look at the dendrogram? The

heatmap of the distance matrix in Fig. 6.3 is representative of the clusters formed from the complete

linkage. The orange and the green-colored functionals in the dendrogram represent two significant

clusters. As we specified 6 clusters, all it does is cut the dendrogram at a distance that will dissect

six vertical lines. The green-colored cluster of the Minnesota functionals will account for at least

3 of the 6 clusters. The dendrogram, however, reflects what will happen if we could cut it at
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Figure 6.3: A comparison of the dendrogram for complete linkage hierarchical agglomerative
clustering with optimal ordering and the colormap of the distance matrix constructed by calculating
the Manhattan distance measures from the DDF matrix of the MGAE109 dataset

variable distances (like HDBSCAN), and we see a stair almost equivalent to Jacob’s ladder for the

functionals in orange. Most Minnesota functionals end up together, forming their own clusters.

The situation is not so different if we perform single-linkage hierarchical clustering, as shown

in Fig. 6.4. The only significant difference is that GGAs come before local functionals and HF.

However, the relative ordering of the leaves in the dendrogram is not meaningful; only their height

reflects the actual distances between them.

Now let us look at the connectivity of the pairs with the three clustering methods. We do not

need to be experts to say that TPSS and revTPSS are similar to each other compared to other

functionals. The same goes for ωB97 and ωB97X. Sometimes, it is helpful to look at the den-
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Figure 6.4: A comparison of the dendrogram for single linkage hierarchical agglomerative cluster-
ing with optimal ordering and the colormap of the distance matrix constructed by calculating the
Manhattan distance measures from the functional fingerprints of the MGAE109 dataset.

drograms from agglomerative clustering as ONN, not being hierarchical, misses things like TPSS

and revTPSS being closer to TPSSh by definition. While with ONN, B3LYP, CAM-B3LYP, and

LC-ωPBE are happily in the hybrid cluster, these three, together with BLYP, form separate orders

with complete and single linkage clustering (all are outliers with HDBSCAN). Why, with ONN,

do BLYP and B3P86 end up in the wrong place? Why is a functional like B3LYP considered an

outlier by HDBSCAN? Our list of functional approximations is highly dominated by nonempirical

approximations that subscribe to Jacob’s ladder. Our machine learning algorithm shows something

similar. However, can we say that the BLYP and the post BLYP functionals abide by this ladder?

Is there a connection with parameterization? We will undoubtedly need a larger functional space

to provide a conclusive answer.
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With all three clustering algorithms, we see something amiss with recent speculation of Ref. [106].

Minnesota functionals are confirmed by the appearance of the separate Minnesota clusters. In most

cases, only M05 and M06 often cluster with the other functionals, and even they are often joined

in last, just after ωB97 and ωB97X. The rest of the Minnesota functionals are more different from

other functionals than any others, except for Hartree, which means setting XC to zero! These ob-

servations are consistent across all three clustering algorithms we discussed. It shows that their

densities are more discernibly different from most other approximations suggested (but avoiding

any other metric than the energy, in line with principles of DC-DFT [150, 151]). Both ONN

and complete linkage dendrograms also provide some insights into the similarity and dissimilarity

among different Minnesota functionals. One crucial insight from the Minnesota functional cluster

is that the machine does not necessarily discern the effect of the number of parameters. We do not

find any correlation between the number of parameters in each Minnesota functional and whom

it chooses to be its neighbor. Hence, unsupervised learning inherently characterizes parameteriza-

tion, and it is not just a function of the number of parameters; it also takes into consideration the

datasets used, the relative importance of the parameters, and several other factors.

So what question does this clustering answer? Indeed, it does not directly tell you ’which func-

tional to use.’ Instead, it tells you which type of functional it is and how you can hope it will behave

on problems of interest. For example, we have included about 30 functionals, possibly less than

5% of those in use. All others, and any new ones, can be run on the same database to see which

cluster they fall within. In addition, a new functional using novel ingredients can be immediately

compared with existing ones to see if those novel ingredients lead to new behavior.

We have also analyzed only a tiny database of standard chemical energies. One can also run on

many others, such as non-covalent interactions, to see if the clustering changes. Based on our

experiments, we can say that a dataset has to be density-sensitive. That is, the density difference

should vary from functional to functional for our analysis to be valid. We automatically inherit this

requirement from DC-DFT. In general, non-covalent interactions are less density-sensitive.
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To demonstrate the usefulness of our approach, we discuss the clustering results with ONN for

three state-of-the-art functionals, SCAN [162], r2SCAN [47, 48], and DM21 [85]. However, we

propose a semi-supervised learning technique instead of remaking a DDF including these three

functionals and then recalculating the distance matrix. We will now only determine the functional

fingerprints for the three functionals and determine their distance from the rest of the thirty func-

tionals. Then we will determine the nearest neighbor for the three functionals, and the cluster

number associated with that nearest neighbor will also be the cluster number for the new func-

tional. The results are presented in Table. 6.3. The results confer human expectations. Both SCAN

Table 6.3: Semi-supervised cluster assignments for SCAN, r2SCAN, and DM21 based on the ONN
clustering.

Functional Nearest Neighbor Distance to Nearest Neighbor Cluster assignments
SCAN revTPSS 1.2589 4
r2SCAN revTPSS 1.4081 4
DM21 CAM-B3LYP 1.6139 2

and r2SCAN end up with meta-GGA functionals, and DM21, being a global hybrid, ends up with

the hybrid functionals. DM21 is a particular member of the BLYP family, as it was trained based

on B3LYP densities. Despite having different parameter-dependencies compared to B3LYP, and

self-consistent evaluation of the functional (hence the density should be different from B3LYP),

DM21 remains a close ally to B3LYP.

6.2.4 Dimensionality reduction

As we discussed, observations we made from the three clustering methods, Fig. 6.2, and the den-

drograms in Fig. 6.3, and Fig. 6.4, raise questions that may not have any right answers. What could

be another way to discern the complex layouts of these clusters? Of course, the best way would be

if we could visualize the 30-dimensional space and see how the functional fingerprints are arranged

in that space. However, unless we are superhumans, that is impossible. This is where dimensional-

ity reduction, another unsupervised learning technique, comes in handy. The principal component
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Figure 6.5: PCA plot of the DDF matrix. PCA was performed with five components based on
the percentage variance associated with the eigenvectors (see Fig. B3 in Appendix). Clusters are
marked based on the nearest-neighbor clustering results presented in Table. 6.2.

analysis is one of the most popular dimensionality reduction techniques. Fig. 6.5 show the relative

ordering of the ONN clusters in the space of the first two principal components of the DDF matrix.

While the first two clusters and the last cluster are somewhat apparent, we cannot exactly separate

the three intermediate clusters. Other linear and nonlinear manifold learning methods, such as

multidimensional scaling (MDS) [166] (Fig. 6.2 uses the same technique). The nonlinear exten-

sion of it, isometric feature mapping (Isomap) [165], can produce somewhat sensible plots (please
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Figure 6.6: Vizualization of the functional fingerprints with h-NNE. Clusters are identified based
on the nearest-neighbor clustering results presented in Table. 6.2. MDS and Isomap plots are
included in the Appendix.

see Fig. B5 in Appendix). However, the choice of hyperparameter involved in these methods can

influence the final results. On the other hand, probability distribution-based methods like t-SNE

yield less than optimal representations of the clusters (see Fig. B4 in Appendix).

Following FINCH-related development, in Fig. 6.6, we plot the hierarchical nearest neighbor em-

bedding or h-NNE [138]. h-NNE initially performs the FINCH clustering, then for each cluster,

does a PCA to order the functionals within the cluster, and then defines a centroid for the cluster.
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Then it performs another PCA with just the centroids to decide the relative ordering of the clus-

ters. We modified our approach to accommodate the L1-norm and one-step clustering. It certainly

separates the clusters, without one cluster overlapping with another cluster. However, clusters 3,4

and 5 are placed extremely close together, and almost all cluster 2 functionals reduce to a single

point. Due to the small data size, the centroid-based approach may not work well for us. How-

ever, the x-axis or the ordering of the clusters is representative of Jacob’s ladder, or more precisely,

our machine’s ladder. We need to define a different dimensionality reduction technique for ONN

clustering to visualize the formed clusters better.

6.3 Conclusion

We have shown a new scheme for comparing density and energies from density functionals. We

define a meaningful feature with information for the density-difference and energy difference of

a functional with respect to other functionals. Then, we perform clustering on the feature space

for 30 functionals using three different clustering methods, including one of our parameter-free

methods. Finally, we analyzed the functional groups that the machine produced and tried to visu-

alize them through dimensionality reduction. The relationship of functionals provides an effective

measure with deep insight into functional density-energy performance even without a reference

for accuracy. We have demonstrated its use on standard atomization energy datasets, highlighting

how this method can identify unique components and give new insight into density functionals.

Furthermore, our approach is easily extendable to larger datasets and other forms of energy.

Can we say some functionals stray from the path? While the initial work raising this question used

chemically irrelevant densities and arbitrary choices of density measures, a careful search using

DC-DFT (and therefore using the energy as the chemically meaningful measure of relevant den-

sity differences) found no examples where poor densities (even if rather odd looking) produced

poor energies. However, our analysis focuses on similarities between approximations rather than
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energetic accuracy, produces a clear picture of certain empirical functionals have very different

densities than almost all others, presumably related to overfitting, thus putting the misgivings im-

plied in Ref. [106] on a more systematic footing.
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6.4 Appendix

6.4.1 Density-corrected DFT

For a given external potential v and an exchange-correlation functional EA
XC
[n], the total energy

functional within the Kohn-Sham DFT (KS-DFT) framework reads as:

EA
v [n] = TS [n]+U [n]+EA

XC
[n]+

∫
d3r n(r)v(r), (B1)

where TS [n] is the KS non-interacting kinetic energy and U [n] is the classical Hartree energy. The

corresponding ground-state energy is obtained from the following minimization:

EA
v = min

n
EA

v [n], (B2)

where we refer to the minimizing density, nA
v , as the native density of functional A. We now

consider EB
XC
[n], a second exchange-correlation functional, which yields its native ground state

density nB
v and the ground state energy EB

v . We define the difference between ground-state energies

obtained from A and B,

∆EA/B
v = EA

v −EB
v , (B3)

and we will use the recently developed generalization of DC-DFT, density functional analysis [174],

to decompose ∆EA/B
v into functional- and density-driven terms. For any A, an energetic measure

for a distance between its native nA
v and any nB

v that is isoelectronic with nA
v , is given by:

dA/B
v = EA

v [n
B
v ]−EA

v [n
A
v ]≥ 0. (B4)
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We can use this measure to partition ∆EA/B
v as:

∆EA/B
v = ∆EA/B

XC
[nB

v ]−dA/B
v , (B5)

where,

∆EA/B
XC

[n] = EA
XC
[n]−EB

XC
[n]. (B6)

Reversing the order of A and B, we can also write ∆EA/B
v as:

∆EA/B
v = ∆EA/B

XC
[nA

v ]+dB/A
v . (B7)

The first term on the right-hand side of Eqs. B5 and B7 is the difference between the two functionals

evaluated on each of the two native densities and thus are functional-driven terms. The second term

on the r.h.s. of Eqs. B5 and B7 is the density-driven term as it is given by the difference between

the same energy functional evaluated on different densities.

Equations B5 and B7 are given for total energies for a given external potential v. For energy

differences (e.g. atomization energies, electron affinities, etc.), Eqs. B5 and B7 take the same form

and are formally derived in Section 5 of Ref. [174]. For example, the energy difference between

total energies from two external potentials: ∆EA = EA
1 [n

A
1 ]−EA

2 [n
A
2 ], the underlying ∆dA/B reads

as:

∆dA/B = EA
1 [n

B
1 ]−EA

1 [n
A
1 ]︸ ︷︷ ︸

dA/B
1

+EA
2 [n

A
2 ]−EA

2 [n
B
2 ]︸ ︷︷ ︸

−dA/B
2

. (B8)

More generally, for energy differences involving many external potentials indexed by i:

∆EA
i =

P

∑
p=1

EA
i,p[n

A
i,p]−

Q

∑
q=1

EA
i,q[n

A
i,q], (B9)
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∆dA/B
i is given by:

∆dA/B
i =

P

∑
p=1

dA/B
i,p −

Q

∑
q=1

dA/B
i,q . (B10)

While dA/B
v is always non-negative (Eq. B4), the sign of ∆dA/B

i is not definite. For this reason, we

define:

∆DA/B
i =

∣∣∣∆dA/B
i

∣∣∣ , (B11)

which, in general, is not equal to ∆DB/A
i . We can write ∆DA/B

i as:

∆DA/B
i = ∆DA+B

i +∆DA−B
i , (B12)

where ∆DA+B
i is symmetric, and ∆DA−B

i is an anti-symmetric contribution to ∆DA/B
i , which are

defined as:

∆DA±B
i =

1
2

(
∆DA/B

i ±∆DB/A
i .

)
(B13)

6.4.2 Functional fingerprints

We have now established key quantities that will be used to construct a fingerprint for a pair of

functionals A and B, which we define here as their density-driven difference (DDF) on a scale of a

full difference in their energies. Thus, for a given i energy of interest, one would naturally think of

the following DDF indices: DA/B
i /

∣∣∆EA−B
i

∣∣, or symmetric DA+B
i /

∣∣∆EA−B
i

∣∣, where:

∆EA−B
i = ∆EA

i −∆EB
i . (B14)

131



However, the two indices would be problematic when
∣∣∆EA−B

i

∣∣ is small, as they would diverge

when
∣∣∆EA−B

i

∣∣→ 0. To fix this problem, we introduce the functional fingerprint scale. For a cho-

sen property of interest (e.g., atomization energies of an organic molecule), we calculate the func-

tional fingerprint scale by using a dataset with similar systems/properties (e.g., a dataset containing

atomization energies of a few dozens of organic molecules). We set this scale as the root-mean-

square of J data points (i.e., ∆EA−B
i energies) that form the dataset:

KA+B =

√
1
J

J

∑
i=1

(
∆Ei

A−B)2
, (B15)

which is symmetric and non-negative by definition. We can now use KA+B in the denominator

of our functional fingerprint without worrying about its divergence. Thus, for a given i energy of

interest, we define the functional fingerprint of A and B as:

η
A/B
i =

∆DA/B
i

KA+B ≥ 0. (B16)

Plugging Eq. B12 into Eq. B16, we can partition η
A/B
i into symmetric and anti-symmetric contri-

butions:

η
A/B
i = η

A+B
i +η

A−B
i , (B17)

where,

η
A±B
i =

∆DA±B
i

KA+B =
1
2

(
η

A/B
i ±η

B/A
i

)
. (B18)

While η
A+B
i ≥ 0, η

A−B
i can also be negative. We can now obtain ηA/B averaged over the same

dataset used to calculate KA+B (Eq. B15):

η
A/B =

1
J

J

∑
i=1

η
A/B
i , (B19)
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Plugging Eq. B17 into Eq. B19, we obtain:

η
A/B = η

A+B +η
A−B. (B20)

where,

η
A±B =

1
J

J

∑
i=1

η
A±B
i =

1
2

(
η

A/B
i ±η

B/A
i

)
. (B21)

Our η index or its symmetrized part allows the comparison of dozens of approximate exchange-

correlation functionals without a need to have access to either exact energies or exact densities.

Using the methodology developed in this section, we can take a specific dataset and construct the

following matrix containing similarity indices for a selection of functionals:

M =



ηA/A ηA/B . . . ηA/Z

ηB/A ηB/B ηB/Z

... . . .

ηZ/A ηZ/B ηZ/Z


, (B22)

where A is the first and Z is the final tested functional.

6.4.3 Calculation details

All self-consistent and non-self-consistent calculations are performed with PYSCF 2.0 [163]. The

AUG-cc-pVQZ basis set has been used for all the functionals. The energy convergence thresholds

were set to 1e-8. Numerical quadrature grids of size seven are used for SCAN. For all other func-

tionals, grid size was reduced to 4. An unrestricted scheme is used for all open-shell calculations.

Construction of the DDF matrix, clustering, and dimensionality reduction tasks are performed

using different Python libraries. Both SciPy [172] and scikit-learn [113] libraries are used for the
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machine-learning tasks. The HDBSCAN library [105] is used for clustering with HDBSCAN.

The NetworkX package [56] was used to generate the network graph for Fig. 6.2, and PyGraphviz

1.7 was used for visualization of the graph (with the Neato layout). The hierarchical nearest neigh-

bor embedding plot in Fig. 6.6 was generated with the h-NNE [138] package.

6.4.4 Clustering tendency

We can ensure that the data set has a clustering tendency and does not contain uniformly distributed

points by calculating the Hopkins statistic (H) [68]. The Hopkins statistic, H, is a statistical hy-

pothesis test where the null hypothesis assumes that the data is generated from a Poisson point

process and hence is uniformly randomly distributed.

The Hopkins statistic for the functional fingerprints constructed for the MGAE109 dataset is H =

0.72. Furthermore, it was averaged over 100 random iterations. Hence, the functional fingerprints

have high clustering tendencies.

6.4.5 Clustering quality

The quality of the formed clusters (in the absence of absolute data labels) can be evaluated using

several internal measures. Here we calculate the Silhouette scores [134] and the DB indices [31]

for all four clustering algorithms reported in Table. 6.2. the calculated scores are reported in

Table. B1. Silhouette scores and the DB index tend to favor convex globular clusters based on their

definitions. Hence, these scores do not reflect the quality of the functional clusters for all methods

covered in this manuscript. Also, due to the small size of the dataset, the Silhouette coefficients

do not reach a value beyond 0.45 (for 2 clusters) even with k-means clustering. For 6 clusters,

k-means clusters for the functional fingerprints of the MGAE109 dataset is close to 0.30.
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Table B1: The Silhouette scores and the DB indices for the three clustering algorithms in Table. 6.2.
Manhattan distance measure is used in all three cases.

Internal Measures Nearest-neighbor based clustering Complete Linkage (6 clusters) HDBSCAN (6 clusters)
Silhouette scores 0.06 0.28 0.12

DB index 1.38 1.20 1.17
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Figure B1: The HDBSCAN dendrogram for the MGAE109 dataset functional fingerprint is cal-
culated with Manhattan distance measure. minimum cluster size = 2, the minimum number of
samples = 1.
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Figure B2: Hierarchical dendrogram for (a) complete linkage and (b) single linkage clustering with
optimal ordering for the functional fingerprints of the MGAE109 dataset
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matrix of the MGAE109 dataset.
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Figure B4: Dimensionality reduction of the MGAE109 dataset functional fingerprints with t-SNE
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Figure B5: The 2D representations of the DDF matrix for the MGAE109 dataset. Low-dimensional
projections are generated by (a) multidimensional scaling (MDS) and (b) isometric feature map-
ping (Isomap) manifold-learning methods, respectively.
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Part V

Conclusions
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Chapter 7

Summary and Future Work

In the past few years, the world has undergone significant changes in almost every field with the

abundance of computational resources and the power of big data. It has experienced an entirely

new dimension of data-oriented thinking and problem-solving that has helped with several exciting

discoveries. One such avenue is physics-informed machine learning, which provides a compromise

to combine human knowledge and the power of data, one complementing the other. This way,

we are not entirely data-dependent; we can design and understand most of the machine learning

components and solve a problem that would otherwise take decades.

There are several ways machine learning can be helpful in DFT. Chapter 2 briefly reviewed several

machine learning DFT approaches that laid the foundations for most recent developments. Ma-

chine learning can help construct kinetic energy functional for orbital-free DFT that matches the

accuracy of standard Kohn-Sham DFT calculations. Chapter 3 discussed a simple proof of concept

for learning the kinetic energy functional for the Hubbard dimer and simple 1D real potentials

using the Levy-Lieb constrained search approach [90, 97]. A careful extension of this concept to

real molecules can help make generalizable orbital-free machine-learned density functionals.

Using machine learning to approximate the exchange-correlation functional and improve the ac-
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curacy of Kohn-Sham DFT is another frequently explored research direction. In Chapter 4, I

presented a spin-adapted modification of the fully-differentiable Kohn-Sham regularizer [93] in

1D with neural network nonlocal exchange-correlation approximations. As the machine-learned

approximation was trained during a self-consistent solution of the Kohn-Sham equations, the neu-

ral network could learn the relation between the energy and the density at every step. Due to this

automatic data augmentation and the regularizing effects, the training set of five atoms and ions

suffice to accurately predict energies and densities for several weakly correlated molecules.

Other than the extension of the nonlocal approximation and the Kohn-Sham regularizer for real

systems, future work can be directed towards incorporating physical intuition in the loss func-

tion and the training set. The original Kohn-Sham regularizer was tested for strongly-correlated

molecules, but its generalizability was limited. Although it is still debatable, based on the obser-

vations from DM21 [85] which we briefly discussed in Chapter 1, one can incorporate fractional

charge and fractional spin systems in a training set to improve generalizability and predictability

for strongly-correlated molecules. On the other hand, the loss function can account for density-

driven and functional-driven errors separately, leading to a more accurate exchange-correlation

approximation.

Chapters 5 and 6 discuss the categorization of several established exchange-correlation functionals

with unsupervised learning. In Chapter 5, I have detailed the concepts and methods frequently

used in unsupervised learning tasks. The methods described here for dimensionality reduction,

clustering, and clustering quality evaluation, are later used in Chapter 6 for 33 exchange-correlation

approximations to understand their similarities and differences without human-induced bias. The

feature space is uniquely defined to account for functional-driven and density-driven differences

among functionals. The aim of this chapter was not to comment on which functional is best but to

group them based on a simple connectivity graph constructed from a distance matrix made from

functional fingerprints. Chapter 6 covers results for the MGAE109 dataset [187, 122]. Work is

currently in progress for several other datasets and improving the clustering quality.
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Machine learning DFT has come far in the last decade. Newly proposed, physics-informed machine-

learned functionals, such as DM21, have provided insights into the drawbacks of DFT and sug-

gestions for how one can cure them. While the applicability of machine-learned DFT functionals

has not reached their full potential yet, we can draw motivation from machine-learned interatomic

potentials for molecular dynamics calculations. Machine learned force fields have come a long

way in terms of improving the accuracy of classical force fields and may soon dominate all molec-

ular dynamics calculations. In DFT, I believe combining human intuition with the power of data

can lead us to universally applicable functional approximations that yield usefully accurate results

without incurring additional costs. With the recent developments, we have made some progress.

Figuring out the rest of the missing pieces will help us realize a shorter path towards the exact

functional.
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