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SUMMARY

Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic

physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine

mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population

genomic modeling and show that the species diverged only 479–343 thousand years BP. We find

that genes on the polar bear lineage have been under stronger positive selection than in brown

bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy

and vascular disease, implying important reorganization of the cardio-vascular system. One of the

genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein

component of low-density lipoprotein (LDL); functional mutations in APOB may explain how

polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of

heart disease in humans.

INTRODUCTION

The polar bear (Ursus maritimus) is uniquely adapted to the extreme conditions of life in the

High Arctic and spends most of its life out on the sea ice. In cold Arctic climates, energy is

in high demand. Lipids are the predominant energy source and the polar bear has a lipid-rich

diet throughout life. Young nurse on milk containing c. 27% fat (Hedberg et al., 2011) and

adults feed on a marine mammal diet, primarily consisting of seals and their blubber

(Thiemann et al., 2008). Polar bears have substantial adipose deposits under the skin and

around organs, which can comprise up to 50% of the body weight of an individual,

depending on its nutritional state (Atkinson and Ramsay, 1995; Atkinson et al., 1996).

The polar bear is most closely related to the brown bear (Ursus arctos), a widely distributed

omnivore found in a variety of habitats across the Holarctic (Fig. 1). The two species differ

fundamentally in their ecology, behavior and morphology, reflecting adaptations to different

ecological niches. Despite ample data there is still no consensus regarding when the two

species diverged. Inferences based on the fossil record suggest polar bears diverged from

brown bears some 800–150 thousand years ago (kya) (Kurtén, 1964). Estimates based on

genomic data span an order of magnitude from 5–4 million years ago (Mya) (Miller et al.,
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2012) to c. 600 kya (Hailer et al., 2012), depending on assumptions about effective

population size and migration in the period when the two populations were drifting apart.

Establishing a reliable time frame for when the polar bear emerged as a species is essential

for our understanding of what evolutionary processes drove speciation, and how fast novel

adaptations to extreme environments can arise in a large mammal.

Here, we apply a population genomic framework to analyze complete nuclear genomes of

polar bear and brown bear populations (Fig. 1, Tables S1, S2) to (i) estimate when polar

bears and brown bears diverged; (ii) infer the joint demographic history of the two species to

elucidate what happened after they diverged; and (iii) detect genes under positive selection

in polar bears to gain insight into polar bear evolution and the genetic background of its

unique adaptations to life in the High Arctic.

To address these issues, we deep-sequenced and de novo assembled a polar bear reference

genome at a depth of 101X (Extended Experimental Procedures Section Polar Bear

Reference Genome and de novo Assembly) and re-sequenced at 3.5X to 22X coverage 79

Greenlandic polar bears and ten brown bears from Fennoscandia, mainland US and the

Admiralty, Baranof, and Chichagof (ABC) Islands off the coast of Alaska (Fig. 1) (Extended

Experimental Procedures Section Samples, Tables S1, S2, Fig. S1).

RESULTS AND DISCUSSION

Joint demographic history of polar bears and brown bears

To infer the joint demographic history of polar bears and brown bears, we used a novel

method based on identity by state (IBS) tracts of DNA shared within and between

populations (Harris and Nielsen, 2013) and ∂a∂i (diffusion approximation for demographic

inference (Gutenkunst et al., 2009)), which infers demographic parameters based on a

diffusion approximation to the site frequency spectrum. The two models differed in their

individual parameter estimates (Table S3); in part reflecting the fact that the IBS tract

method uses both recombination rate and mutation rate, and ∂a∂i uses only the latter.

However, despite the inherent uncertainty in the genome-wide mutation rate estimate, which

we calibrated using deep fossil divergence dates (Fig. S2A), the estimates from the two

models are in fact quite similar with regards to divergence time, relative effective population

sizes and direction of gene flow.

We find evidence of smaller long-term effective population sizes in polar bears than in

brown bears (Fig. 2A). Genetic diversity is a function of effective population size, and the

number of private SNPs in polar bears (2.6 million, Fig. S1B) is about one third of that in

brown bears (7.7 million, Fig. S1C). Similarly, patterns of linkage disequilibrium (LD) can

be informative about demographic history (Reich et al., 2001) and we find a slower rate of

LD decay in polar bears (Fig. S3A).

Prior to divergence, we find a 10-fold decline in the global joint ancestral population (Table

S3). Polar bears declined in population size after the split from brown bears, although we

were unable to confidently estimate the timing of the bottleneck. However, both the IBS

tract method and ∂a∂i indicate that the population size decrease in polar bears was either of a
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greater magnitude or of a longer duration than in brown bears, in agreement with our other

indicators of relative population sizes.

The age of the polar bear as a species

To reliably estimate when polar bears and brown bears diverged, we used the IBS tract

method (Harris and Nielsen, 2013) and ∂a∂i (Gutenkunst et al., 2009), which both take past

population size changes into account. Both approaches indicated that the two species

diverged only c. 479–343 kya (Fig. 2A, Table S3). Because genotyping errors appear as

singletons and given that in both methods singletons lead to increasing divergence times

estimates, we can conclude that the polar bear likely emerged closer to the lower bound of

our estimate. Our date greatly decreases the age of polar bear origin, and agrees with fossil

evidence (Kurtén, 1964; Miller et al., 2012).

We assessed the effect of using our more complex demographic models versus simpler

models by analyzing our data using a simple isolation-with-migration model similar to that

used by (Hailer et al., 2012; Miller et al., 2012). The procedure yielded an older divergence

date in the range of 1.6–0.8 Mya (Table S3). However, we found that our complex model

with a more recent divergence time estimate was a better fit to our empirical data (Fig. 2B,

C). Discrepancies between our divergence date and previous genomic estimates highlight

the impact of accounting for past population size changes on divergence time estimates,

suggesting that models that do not account for past population size changes have the

potential to overestimate divergence times (e.g. Hailer et al., 2012; Miller et al., 2012).

The timing of polar bear origin coincides with Marine Isotope Stage (MIS) 11. MIS 11 was

a warm period, which spanned c. 424–374 kya. It was the longest interglacial in half a

million years (Dickson et al., 2009) and lasted almost 50 kyr (de Vernal and Hillaire-Marcel,

2008). The period was associated with a substantial decrease in Greenland ice-sheet volume;

DNA from the basal part of the Dye 3 ice core from southern central Greenland (Willerslev

et al., 2007) and abundant spruce pollen from the shore off southwest Greenland (de Vernal

and Hillaire-Marcel, 2008) both suggest that boreal coniferous forest developed at least over

southern Greenland. Such a prolonged interglacial could have enabled brown bears to

colonize northern latitudes that were previously uninhabitable for the species, setting the

stage for future allopatric speciation, as subsequent climatic and environmental change

caused population isolation (Stewart et al., 2010).

Gene flow between polar bears and brown bears after divergence

Based on morphology and a phylogenetic analysis of their nuclear genomes, polar bears and

brown bears are monophyletic sister species (Fig. S2B; Pagès et al., 2008). Nevertheless, the

mitochondrial genomes of brown bear are paraphyletic and extant polar bear sequences are

recovered as a monophyletic sister clade to the brown bear population from Alaska’s ABC

Islands, within the diversity of brown bear (Fig. S2C). The consensus has been that this

pattern reflects female-mediated gene flow from brown bears into polar bears c. 150 kya,

with subsequent fixation of the brown bear mitochondrial lineage in polar bears (Lindqvist

et al., 2010). However, this was not supported by a recent genomic study, which presented
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evidence that gene flow historically took place from polar bears into ABC brown bears, and

not the other way around (Cahill et al., 2013).

Based on the IBS tract method, we find strong evidence of continuous gene flow from polar

bears into North American brown bears after the species diverged (Fig. 2A, Table S3). We

used the IBS tract method to compare likelihoods of two scenarios with parsimonious one-

way gene flow, finding that gene flow from polar bears to North American brown bears

explained the data better than the reverse scenario (Figs 2B, S4B, Table S3). In the former

scenario, we estimate a migration rate of 0.0018% genetic replacement per generation. As a

complementary approach, we used ∂a∂i to infer the parameters of a model with asymmetric

two-way gene flow between polar bears and North American brown bears. With this

approach, we observe non-zero migration in both directions, but infer a substantially higher

migration rate in the polar-to-brown bear direction (Table S3). These results suggest that the

major direction of introgression has historically been from polar bears into North American

brown bears, in agreement with (Cahill et al., 2013).

We were unable to confidently infer when admixture took place. With the IBS tract method,

we estimate gene flow from the timing of the polar bear bottleneck 319 kya to 148 kya (Fig.

2A), but the method has limited power to detect migration that occurred very close to the

initial divergence time. With ∂a∂i, we infer continuous gene flow until the present. We see

no admixture using classical structure analyses (Tang et al., 2005) (Fig. S4A), suggesting

admixture is not a recent or current phenomenon. However, we note that the number of

analyzed brown bear samples is limited, and none of our brown bear samples originate from

regions where polar and brown bears are currently sympatric (i.e. where recently admixed

individuals are most likely to be found).

To further investigate the question of admixture, we split the genomic data into 100 kbp

regions (Table S4) and calculated the length distribution of regions that were introgressed

between species, we find that the longest blocks were a maximum of 1.1 Mbp length. If

admixture between species had taken place within the last hundreds of generations, we

would expect longer tracts of shared DNA (Gravel, 2012; Pool and Nielsen, 2009). Hence

the limited length of admixture blocks supports the hypothesis that admixture was an old

event, and that enough time has passed for recombination to break up the long stretches of

introgressed DNA.

In order to determine whether gene flow happened before or after the divergence of brown

bear populations from different parts of the Holarctic, we used the D statistic (Durand et al.,

2011; Green et al., 2010). We find evidence of gene flow between polar bears and all brown

bear populations, suggesting that some gene flow took place prior to the divergence of the

brown bear populations (Table S5). The strongest evidence is found with brown bears from

the ABC Islands and the weakest with brown bear populations from North America and

Fennoscandia, suggesting gene flow continued between polar bears and ABC brown bears

also after the brown bear populations diverged. In addition, we find evidence of recent

migration between brown bear populations. Our data included six brown bear samples from

the ABC Islands (Fig. 1, Table S2). One of these individuals (ABC06) was from Admiralty,

the island located closest to the US mainland. The mitochondrial genome of ABC06
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clustered with the other five ABC individuals from Baranof and Chichagof Islands, as a

sister group to the polar bear (Fig. S2C). We observe substantial levels of gene flow between

polar bears and the Baranof and Chichagof individuals using the D statistic, as expected

(Table S5). However, we find no signal of polar bear admixture in ABC06, which clustered

with the Glacier National Park individual from Montana in the principal component analysis

(Fig. S3D). We do not find evidence of polar bear admixture in the Glacier NP individual

either, the mitochondrial genome of which clustered with European brown bears (Fig. S2C).

The patterns in ABC06 reflect migration between the Admiralty Island and mainland US, in

agreement with previous inferences based on nuclear microsatellites (Paetkau et al., 1999).

Genes under positive selection in polar bears

Despite being closely related species, the polar bear differs from the brown bear in ecology,

behavior and morphology, and is a prime example of what happens when a species evolves

through selection and adaptation to a novel environment/lifestyle. Our remarkably recent

divergence time estimate of only c. 479–343 kya, coupled with stable isotope analysis of an

ancient jawbone from Svalbard that indicates that polar bears were adapted to a marine diet

and life in the high Arctic by at least 110 kya (Lindqvist et al., 2010), provides us with an

unprecedented timeframe for rapid evolution. Assuming an average generation time of 11.35

years (Cronin et al., 2009; De Barba et al., 2010), the distinct adaptations of polar bears may

have evolved in less than 20,500 generations; this is truly exceptional for a large mammal.

In this limited amount of time, polar bears became uniquely adapted to the extremities of life

out on the Arctic sea ice, enabling them to inhabit some of the world’s harshest climates and

most inhospitable conditions.

The observation of rapid evolutionary changes in the polar bear genome raises the question

of what signatures of selection are to be found in the extant genomes. We find that the

enrichment categories of the top candidate genes under positive selection (i.e. the genes that

showed greater values for all of our three test statistics homogeneity test, Hudson-Aguade-

Kreitman test and Fst estimation in the polar bear, Table S6) are associated with sarcomere

organization, blood coagulation, heart development and adipose tissue development (Fig. 3,

Extended Experimental Procedures Section Positive Selection). In brown bears, we do not

find significant enrichment categories for the top 20 candidate genes under selection.

In general, we also find evidence of more positive selection acting on the polar bear lineage

than on the brown bear lineage. Polar bears had markedly higher values in the distribution of

our primary test score, the homogeneity test, compared to brown bears (Fig. 4A). These

patterns may only in part be explained by variation in sample size and effective population

size (Fig. 4B). Overall, our data support a scenario of polar bears evolving rapidly and being

under strong positive selection following the divergence from brown bears.

Genes associated with adipose tissue development and fatty acid metabolism

The enrichment of genes associated with adipose tissue development (Fig. 3) reflects the

crucial role lipids play in the ecology and life history of polar bears; the species is adapted to

cope with a diet rich in fatty acids (e.g. (Smith, 1980; Stirling and Archibald, 1977)) and has

substantial adipose deposits (Atkinson and Ramsay, 1995; Atkinson et al., 1996).
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Cholesterol levels in blood plasma of polar bears are extreme (e.g. Ormbostad, 2012); in

humans, elevated cholesterol levels are a major risk factor for the development of

cardiovascular disease (Cannon et al., 2010). It remains an enigma how polar bears are able

to deal with such lifelong elevated levels of cholesterol.

The enriched categories may highlight the genes that have been important in polar bear

adaptation to a lipid-rich diet. A top gene in our selection scan was APOB (Table 1), which

produces apolipoprotein B (apoB), the primary lipid-binding protein of chylomicrons and

low-density lipoproteins (LDL) (Whitfield et al., 2004). LDL cholesterol is a major risk

factor for heart disease and is also known as “bad cholesterol”. ApoB enables the transport

of fat molecules in blood plasma and lymph and acts as a ligand for LDL receptors,

facilitating the movement of molecules such as cholesterol into cells (Benn, 2009). The

extreme signal of APOB selection implies an important role for this protein in the

physiological adaptations of the polar bear. The gene is ranked second using our

homogeneity test score, has an Fst ranking in the top 3% of the empirical distribution, and

the ratio of fixed-to-polymorphic mutations in the polar bear lineage is 1:2, compared with

1:162 in the brown bear lineage—an 80-fold reduction.

Due to a lack of appropriate functional studies of polar bears, we were unable to directly

identify causal variants. Nevertheless, we assessed the impact of polar bear–specific

substitutions on human proteins for top-20 genes under positive selection by computational

predictions: a large proportion (c. 50%) of mutations were predicted to be functionally

damaging (Fig. 4C, D, Table S7). Substantial work has been done on the functional

significance of APOB mutations in other mammals. In humans and mice, genetic APOB

variants associated with increased levels of apoB are also associated with unusually high

plasma concentrations of cholesterol and LDL, which in turn contribute to

hypercholesterolemia and heart disease in humans (Benn, 2009; Hegele, 2009). In contrast

with brown bear, which has no fixed APOB mutations compared to the giant panda genome,

we find nine fixed missense mutations in the polar bear (Fig. 5A). Five of the nine cluster

within the N-terminal βα1 domain of the APOB gene, although the region comprises only

22% of the protein (binomial test p-value = 0.029). This domain encodes the surface region

and contains the majority of functional domains for lipid transport. We suggest that the shift

to a diet consisting predominantly of fatty acids in polar bears induced adaptive changes in

APOB, which enabled the species to cope with high fatty acid intake by contributing to the

effective clearance of cholesterol from the blood.

Genes associated with cardiovascular function

We find that nine out of the top 16 genes showing the strongest evidence of positive

selection in polar bears are directly related to heart function in humans (Table 1). Mutations

in all nine genes, including APOB, are associated with either atherosclerosis or

cardiomyopathy in humans and other mammalian model organisms. TTN encodes Titin, an

abundant protein of striated muscle, which includes cardiac muscle tissue; mutations in TTN

are associated with familial dilated cardiomyopathy (Herman et al., 2012). XIRP1, also

known as Cardiomyopathy-associated protein 1, is associated with the development of

cardiac muscle cells (van der Ven et al., 2006). ALPK3 encodes a kinase and plays a role in
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cardiomyocyte differentiation; knockout genes in mice show both hypertrophic and dilated

forms of cardiomyopathy (Van Sligtenhorst et al., 2012). VCL encodes vinculin, a

cytoskeletal protein associated with cell-cell and cell-matrix junctions, which is also the

major talin-binding protein in platelets. Defects in VCL are associated with dilated

cardiomyopathy in humans (Olson et al., 2002). EHD3 encodes a class of cardiac trafficking

proteins and plays a role in endocytic transport (Galperin et al., 2002). Regulation of EHD3

plays a role in a molecular pathway related to heart failure (Gudmundsson et al., 2012).

ARID5B is involved in pathogenesis of atherosclerosis and adipogenesis (Wang et al., 2012).

ABCC6 is associated with transport of molecules across membranes and is associated with

premature atherosclerosis (Trip et al., 2002), and CUL7 plays a role in vascular

morphogenesis (Arai et al., 2003).

Based on this evidence, we argue that potentially important re-organization of the

cardiovascular system has taken place in polar bears since their divergence from brown

bears, which may be related to polar bear ecology. Chronically elevated serum cholesterol,

particularly LDL, contribute to the degenerative accumulation of plaques in the arteries,

which can lead to progressive narrowing or blocking of blood vessels (Klop et al., 2013).

Alternatively, smaller plaques may rupture and cause a clot to form and obstruct blood flow,

leading to reduced blood supply of the heart muscle and eventually heart attack. Changes in

behavior, including long distance swimming (Pagano et al., 2012), may also have imposed

selection on other aspects of the cardio-vascular system, including cardiac morphology.

Genes associated with white fur

A white phenotype is usually selected against in natural environments, but is common in the

Arctic (e.g. beluga whale, arctic hare and arctic fox), where it likely confers a selective

advantage. A key question in the evolution of polar bears is which gene(s) cause the white

coat color phenotype. The white fur is one of the most distinctive features of the species and

is caused by a lack of pigment in the hair. We find evidence of strong positive selection in

two candidate genes associated with pigmentation, LYST and AIM1 (Table 1). LYST encodes

the lysosomal trafficking regulator Lyst. Melanosomes, where melanin production occurs,

are lysosome-related organelles and have been implicated in the progression of disease

associated with Lyst mutation in mice (Trantow et al., 2010). The types and positions of

mutations identified in LYST vary widely, but Lyst-mutant phenotypes in cattle, mice, rats

and mink are characterized by hypopigmentation, a melanosome defect characterized by

light coat colour (Kunieda et al., 1999; Runkel et al., 2006; Gutiérrez-Gil et al., 2007). LYST

contains seven polar bear-specific missense substitutions, in contrast to only one in brown

bear. One of these, a glutamine to histidine change within a conserved WD40-repeat

containing domain, is predicted to significantly affect protein function (Fig. 5B, Table S7).

Three polar bear changes in LYST are located in proximity to the N-terminal structural

domain, and map close to human mutations associated with Chediak-Higashi syndrome, a

hair and eyes depigmentation disease (Fig. 5C). We predict that all these protein-coding

changes, possibly aided by regulatory mutations or interactions with other genes,

dramatically suppress melanin production and transport, causing the lack of pigment in polar

bear fur. Variation in expression of the other colour-associated gene, AIM1 (absent in
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melanoma 1), has been associated with tumor suppression in human melanoma (Trent et al.,

1990), a malignant tumor of melanocytes that affects melanin pigment production.

Conclusions

Our study reveals the strength of using a population genomic approach to resolve the

evolutionary history of a non-model organism in terms of divergence time, demographic

history, selection and adaptation. We find it remarkable that a majority of the top genes

under positive selection in polar bears have functions related to the cardiovascular system

and most of them to cardiomyopathy, in particular when considering their divergence from

brown bears no more than c. 479–343 kya. Such a drastic genetic response to chronically

elevated levels of fat and cholesterol in the diet has not previously been reported. It certainly

encourages a move beyond the standard model organisms in our search for the underlying

genetic causes of human cardiovascular diseases.

EXTENDED EXPERIMENTAL PROCEDURES

Detailed Extended Experimental Procedures can be found in the Extended Extended

Experimental Procedures in the Supplementary Information (SI).

Samples and data

We deep-sequenced and de novo assembled a polar bear reference genome at a depth of

101X using the Illumina HiSeq 2000 sequencing platform (Table S1; Extended

Experimental Procedures Section Polar Bear Reference Genome and de novo Assembly).

The scaffold N50 size of the genome was c. 16 Mb (http://dx.doi.org/10.5524/100008). In

addition, we generated complete genomes of multiple polar bears from three management

areas around Greenland (Kane Basin and Baffin Bay in Northwest Greenland, and

Scoresbysound/Ittoqqortoormiit in Central East Greenland) and several brown bears from

Fennoscandia, mainland US and the Admiralty, Baranof, and Chichagof (ABC) Islands off

the coast of Alaska (Fig. 1, Table S2; Extended Experimental Procedures Section Samples).

We resequenced 18 polar bear and 10 brown bear genomes at high coverage (an average

sequencing depth of ~22X), and an additional 61 polar bear genomes at low coverage (an

average sequencing depth of 3.5X) (Extended Experimental Procedures Section Data

Generation and QC Measures). We filtered data with a dedicated pipeline and removed low

quality reads as well as sites showing unusual coverage compared to the empirical

distribution, base quality score bias (p < 1e-5), strand bias (p < 1e-5), and deviation from

Hardy-Weinberg Equilibrium (p < 1e-3) (Extended Experimental Procedures Section Data

Generation and QC Measures). We analyzed the data within a population genomic

framework (SI).

Divergence time and joint demographic history of polar bears and brown bears

We applied two approaches to estimate reliably when polar bears and brown bears diverged.

Importantly, both methods incorporate past population size changes. We used a novel

method based on identity by state (IBS) tracts of DNA shared within and between

populations (Harris and Nielsen, 2013) and ∂a∂i (diffusion approximation for demographic

inference (Gutenkunst et al., 2009)), which infers demographic parameters based on a
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diffusion approximation to the site frequency spectrum (Extended Experimental Procedures

Section Demographic History).

Gene flow between polar bears and brown bears after divergence

To fully elucidate patterns of gene flow between polar and brown bear populations since

their divergence, we used several methods: (i) the IBS tract method; (ii) ∂a∂i; and (iii) D

statistics, also known as the ABBA-BABA test (Durand et al., 2011; Green et al., 2010)

(Extended Experimental Procedures Section Gene Flow and Introgression).

Genes under positive selection in polar bears

We used several complementary approaches to investigate evolutionary changes in protein

sequences and analyzed the coding regions of 19,822 genes annotated across the polar bear

and brown bear samples, using the giant panda genome sequence (Li et al., 2009) as an

outgroup (Extended Experimental Procedures Section Positive Selection). We (i) computed

a homogeneity test statistic to identify genes with a low polymorphism-to-divergence ratio

in polar bears relative to brown bears; (ii) used the Hudson-Aguade-Kreitman (HKA) test to

verify that selection had acted specifically on the polar bear lineage and not on the brown

bear lineage; (iii) estimated Fst to identify genes that were highly differentiated between

polar bears and brown bears; and (iv) used a novel approach to estimate nucleotide diversity

within species and divergence between species from low- to medium-quality sequencing

data by taking genotype call uncertainty into account (Nielsen et al., 2012; Fumagalli et al.,

2014). Because we were interested primarily in identifying completed sweeps unique to the

polar bear, we did not apply haplotype-based tests aimed at identifying ongoing selective

sweeps. We did not assign simulation-based p-values based on specific demographic models

to the test statistics. Rather, we used the computed statistics to generate ranked lists of

candidate genes, and then further subjected them to statistical enrichment analyses, an

approach often referred to as outlier analyses (e.g. Voight et al., 2006).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

1. Polar bears and brown bears diverged < 500,000 years ago

2. Genes on the polar bear lineage have been under stronger selection than brown

bears

3. Strong selection in polar bears restructured metabolic and cardiovascular

function

4. Dietary changes to fatty acids shaped variation in the APOB gene in polar bears
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Fig. 1. Sampling localities
Polar and brown bear distributions are shown in blue and brown shading, respectively. See

also Table S2.
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Fig. 2. Demographic inference
Joint demographic model for polar bear and North American brown bear populations

inferred using the identity by state (IBS) tract method (A). Joint past population is in grey,

polar bear in blue and brown bear in brown. Estimated effective population sizes are

indicated and the migration rate is in genetic replacements per generation. The recent brown

bear population size has been downscaled by a factor of 20, the recent polar bear population

size is to scale. (B, C) Distribution of IBS tract length from our observed data (solid line)

and from model prediction (dotted line) inferring gene flow from polar bear into brown bear

(B) or using a simple isolation-with-migration (IM) model (C), which does not account for

past population size changes. There are only two black dotted curves in (C) because the IM

model constrains the within-polar bear and within-brown bear tract lengths to be the same.

See also Fig. S4B and Table S3.
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Fig. 3. Enrichment analysis
Gene Ontology enrichment analysis for putative genes under positive selection in the polar

bear lineage. We ranked genes based on their homogeneity test score by first considering

genes where the ratio between polymorphisms and divergence was lower in the polar bear

than in the brown bear samples. We used the web application GOrilla (http://cbl-

gorilla.cs.technion.ac.il) to detect biological process terms enriched with top genes in the

ranked list. Blue shading indicates biological categories significantly enriched with genes

under positive selection in the polar bear lineage, after correction for multiple tests.
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Fig. 4. Positive selection analysis
(A, B) Distribution of the homogeneity test scores for the top-50 genes in polar bear (blue)

and brown bear (brown). We compared the observed distribution versus the expected

distribution under neutrality, using the demographic model presented in Table S3; (C, D)

Predicted functional impact of polar bear-specific protein substitutions. We reported the

functional classification and probability of being damaging for polar bear-specific missense

mutations located in the top 20 genes under positive selection, according to the two metrics

HumanDiv and HumanVar computed by PolyPhen-2. See also Table S7.
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Fig. 5. The apoB and LYST protein sequences
The distribution of fixed non-synonymous polar bear mutations (blue arrows) compared to

the brown bear, using the giant panda sequence as an outgroup. (A) Mutations predicted to

affect protein structure based on apoB alignments across 20 vertebrate species, using the

SIFT algorithm (Sim et al., 2012), are indicated with hollow circles on arrows. The grey

curve shows the cubic smoothing spline of the amino acid conservation scores; higher scores

indicate higher conservation across 20 vertebrate species. The x-axis shows the amino acid

position from the N-terminal, the five domains are based on the human apoB sequence

(Prassl and Laggner, 2009). (B) The same representation as in panel A, but for the LYST

protein sequence. The domains are based on [http://www.ebi.ac.uk/interpro/protein/

LYST_HUMAN]. (C) Mapping of polar bear-specific substitutions and Chediak-Higashi

syndrome causing variants on the protein structure of LYST N-terminal domain.
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Table 1
Top-20 genes under positive selection in polar bears

We used several statistics to analyse the coding regions of 19,822 genes annotated across the polar and brown

bear population samples, using the giant panda (Ailuropoda melanoleuca) genome sequence as an outgroup.

Genes were ordered based on their homogeneity test score; we only considered genes with (i) a significant

nominal p-value for the HKA test for selection in the polar bear lineage only, and (ii) a ranked Fst over the

90th percentile. See also Tables S6, S7.

Gene Length (bp) Homogeneity test score HKA test p-value Fst

TTN 99,416 16.76 2.47E-03 0.93

APOB 13,264 13.16 1.54E-05 0.89

OR5D13 871 8.08 4.93E-10 0.82

FCGBP 5,216 6.36 8.20E-04 0.85

XIRP1 3,848 6.05 1.50E-05 0.88

COL5A3 4,402 5.89 1.38E-02 0.81

LYST 11,172 5.58 1.08E-03 0.89

ALPK3 3,007 5.34 1.32E-05 0.91

VCL 3,106 4.87 7.51E-03 0.82

SH3PXD2B 2,458 4.34 2.81E-05 0.88

EHD3 1,230 4.28 1.62E-03 0.90

IPO4 1,260 4.18 1.81E-04 0.86

ARID5B 3,109 4.14 1.31E-02 0.84

ABCC6 3,346 4.02 9.26E-03 0.85

LAMC3 1,885 3.93 9.25E-03 0.85

CUL7 2,701 3.86 4.43E-03 0.83

C15orf55 3,001 3.86 1.71E-02 0.89

POLR1A 4,499 3.85 1.89E-02 0.82

AIM1 4,344 3.8 2.03E-02 0.92

OR8B8 965 3.71 7.37E-06 0.87
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