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ABSTRACT OF THE DISSERTATION 

 

 

Investigating the relationship between individual differences in the brain and social network 

structure 
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Professor Carolyn M. Parkinson, Chair 

  

Little is known about the individual differences in sociobehavioral tendencies that 

uniquely characterize individuals occupying social network positions (e.g., eigenvector 

centrality), which are associated with a disproportionate amount of influence, popularity, and 

leverage. Furthermore, although it has been well-established that people closer together in their 

social network often share similarities in demographic attributes, much less is known about the 

types of inter-individual similarities shared by friends that run deeper than such “surface-level” 

characteristics. This dissertation integrates tools from social network analysis, neuroimaging, and 

machine learning to address these gaps in the literature and advance our understanding of how 

the brain shapes and is shaped by real-world social networks. 
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General Introduction 

Human social structures - ranging from dyadic pairings, family units, small communities, 

to large-scale societies - have given rise to the civilizations and cultures that are uniquely 

characteristic of our species. Being embedded in large social structures can confer many 

advantages to humans. However, successful living in complex social networks requires that an 

individual has the capacity to employ a wide range of sociocognitive skills, such as remembering 

and individuating many conspecifics, tracking the reputations of others and of one’s self, 

managing a multitude of diverse relationships, and recognizing others’ traits and the 

relationships between others and using this knowledge to predict others’ behavior in order to 

avoid conflict (Dunbar, 1993, 2003). Consequently, humans’ exceptional sociocognitive skills 

may have been selected for over the course of human brain evolution, and this skillset may have 

facilitated the human capacity to not only forge affiliative ties with many others but also 

successfully survive in the resulting complex social structures. These relationships across 

individuals comprise a complex web of affiliative ties that can be characterized as a social 

network. Within a given social network, individuals systematically vary in their social network 

position characteristics, such as their number of social ties and the extent to which they may be 

connected to other well-connected individuals or to other groups that might otherwise be 

unconnected (Figure 1). This inter-individual variability in social network position 

characteristics is likely, in part, a consequence of the inter-individual variability in how people 

construct and manage their social environment. Yet, very little is known about the 

sociobehavioral tendencies that are associated with individual differences in social network 

position characteristics, much less how these tendencies may interact to yield the direct and 

indirect relationships that give rise to the broader structure of human social networks.  
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This introduction seeks to synthesize the emerging literature characterizing how 

individual differences in brain structure and function relate to individuals’ social network 

position characteristics. To this end, we first provide an overview of social network positions and 

their real-world consequences. We then discuss the literature that has characterized social 

network position characteristics as trait-like individual difference variables. We then review how 

neuroimaging has proven to be a promising tool to investigate the neurocognitive mechanisms 

underlying individual differences that are characteristics of particular social network position 

characteristics. We then review how one’s direct and indirect social relationships can shape one’s 

cognitive, emotional, and behavioral tendencies. We end the review by discussing the potential 

of future work to tease apart the causal relationship between an individual’s sociobehavioral 

tendencies and their real-world social network position and to investigate the extent to which 

neural homophily and social influence processes are involved in the relationship between inter-

individual neural similarity and social network proximity.  
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Figure 1. (A) In a social network, an individual’s popularity or status can be defined by their eigenvector centrality, 

which reflects how well-connected they are to well-connected others. (B, C) In-degree and out-degree centrality are 

also measures of connectedness that take into account an individual’s direct social ties. Whereas (B) in-degree 

centrality captures the number of directed edges toward an individual, (C) out-degree centrality captures the number 

of directed edges away from an individual. (D) Brokers connect otherwise unconnected individuals. If person A 

were removed, everyone else in the network would still be connected to each other. Thus, person A occupies a 

position that is low in brokerage. In contrast, if person B were removed, there would be two groups of people that 

would be unconnected. Thus, person B occupies a position that is high in brokerage. Two common methods of 

calculating brokerage are (E) betweenness centrality and (F) constraint (i.e., inverse brokerage). Whereas (F) 

betweenness centrality measures the extent to which an individual lies on the shortest path between two given 

people, (F) constraint is a relatively more local measure of brokerage that accounts for the extent to which an 

individual has access to non-redundant social partners. Figure adapted from Weaverdyck & Parkinson (2018). 

 

Social network position characteristics and their real-world consequences 

In a social network, individuals can be represented by nodes (i.e., “actors”), and 

connections between individuals that correspond to a relationship can be represented by edges 

(i.e., “ties”). A social network can be defined within a given boundary, such as geographic 

boundaries that physically constrain a community (an island community) or social boundaries 

that can make it difficult to socialize with out-of-network actors (e.g., academic programs, 

clubs). Edges between individuals can be weighted to represent the strength of a given 

relationship. For instance, an edge can be weighted by the number interactions in a given 

window of time in order to encode interaction frequency between two actors. On the other hand, 

edges can also be unweighted such that they simply encode the existence of a relationship or can 

be unweighted to characterize relationships that meet a certain threshold (e.g., if the number of 

interactions exceeds a given threshold). Furthermore, edges can represent any type of 

relationship, such as monetary exchanges, connections on social media, shared attributes, or 

friendship. The current review focuses on networks in which edges capture friendships given the 

centrality of friendship to human life (Dunbar, 2021) and due to the focus of past relevant work 

on this topic. The relative importance of an individual in the context of their social network can 



 4 

be characterized by their centrality (see Baek et al. (2021) for a review of social network 

analysis).  

The simplest variant of centrality, degree centrality, is the measure of the number of 

edges attached to an individual or the number of actors with whom the individual shares a social 

tie. In directed networks, both out-degree and in-degree centrality can be calculated. Out-degree 

centrality, which is the measure of an individual’s outgoing social ties, is calculated by summing 

the number of actors with whom an individual identifies having a social tie. On the other hand, 

in-degree centrality is the measure of an individual’s incoming social ties, calculated by 

summing the number of other actors that identify having a social tie with a given individual. 

Thus, whereas out-degree centrality captures an individual’s consideration of their own social 

ties (i.e., their perception of their social ties), in-degree centrality captures an individual’s 

popularity or the extent to which they are well-liked. Out-degree centrality, which is 

synonymous with social network size when calculated from ego-centric network data (Baek et 

al., 2021), has been linked to reduced psychological distress (A. Courtney et al., 2021) and is 

predictive of future well-being (Huxhold et al., 2013; Pinquart & Sörensen, 2000; Rafnsson et 

al., 2015; X. Wang, 2016). On the other hand, in-degree centrality has been linked to the capacity 

to influence social norms and shape the behavior of others (Osgood et al., 2013; Zingora et al., 

2020) and is also related to being perceived as kind and trustworthy (Parkhurst & Hopmeyer, 

2016). 

Eigenvector centrality is a prestige-based measure of centrality that takes into account 

how well-connected one is to other well-connected actors (Bonacich, 1972; Masuda et al., 2017). 

Consider a townsperson with few social ties, one of which is with the mayor of the town. 

Although this townsperson has a relatively low degree centrality, they would have relatively high 
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eigenvector centrality, given that they are connected to the mayor, a highly influential individual 

who themself presumably has high eigenvector centrality (assuming that the mayor would need 

to cultivate and maintain social relationships with many other people). By virtue of this 

connection with a well-connected individual, the townsperson may wield relatively more 

influence than other actors that have many social ties with relatively non-influential actors (Baek 

et al., 2021). Holding a position of high eigenvector centrality has been shown to have several 

social- and health-related benefits. Eigenvector centrality is associated with happiness (Fowler & 

Christakis, 2009), job retention (Ballinger et al., 2016), and reproductive success in animals 

(Brent, 2015). Furthermore, individuals with low eigenvector centrality may be more prone to 

bullying (Salmivalli et al., 1996) and negative gossip (Ellwardt et al., 2012), suggesting that an 

individual holding a position of high eigenvector centrality may be shielded from social 

mistreatment by virtue of being well-connected to other well-connected actors that may come to 

their defense.  

Another variant of centrality, betweenness centrality, measures the extent to which an 

individual lies on the shortest path between two given people and has been conceptualized as a 

measure of brokerage (Wasserman & Faust, 1994). In a social network, an individual has the 

capacity to act as a broker to the extent that they fill gaps or network holes in the social structure, 

thereby connecting otherwise unconnected individuals to one another (Burt, 1994). Thus, an 

individual in a position of high betweenness centrality may have the capacity to function as a 

broker if other people must interact with them in order to interact with each other. However, 

betweenness centrality may not always reflect an individual’s capacity for brokerage and can be 

impacted by other aspects of network structure. For example, an individual may be characterized 

by high betweenness centrality by virtue of lying on the shortest path between others due to 
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being close to a true broker but may not function as a true broker (Baek et al., 2021; Everett & 

Valente, 2016). Alternatively, constraint is a relatively more local measure of brokerage that 

accounts for the extent to which an individual has access to non-redundant social partners and 

thus may be less prone to influence from global network characteristics (Burt, 1994, 2004). 

Although betweenness centrality and constraint are two common methods to characterize 

brokerage, brokerage can also be formalized in different ways (Gould & Fernandez, 1989).  

Brokers have the capacity to control the flow of resources (e.g., information) and are in a 

privileged position to coordinate behavior across local ties (Burt, 2015; Burt et al., 2013; Hahl et 

al., 2016). Consequently, they reap immense personal benefits - brokers tend to receive high 

performance ratings in organizational contexts (Mehra et al., 2001), come up with useful ideas 

(Burt, 2004; Leonardi & Bailey, 2016), foster innovation (Obstfeld, 2005), attain faster 

promotions (Brass, 1984), and achieve more professional success (Burt, 1997). These benefits 

are likely due to the fact that brokers have access to, control over, and can integrate diverse 

information and resources that would otherwise be “stuck” within segregated groups (Burt et al., 

2013; Cvitanovic et al., 2017). Taken together, an individual’s social network position 

characteristics have widespread, substantial consequences with respect to their social status, 

health and well-being, and professional success. 

 

Social network position characteristics as individual differences 

A recent collection of neuroimaging studies have demonstrated that humans 

spontaneously track the social network position characteristics of familiar others when either 

passively viewing their faces or performing an unrelated task while undergoing functional 

magnetic resonance imaging (fMRI; Basyouni & Parkinson, 2022; Morelli et al., 2018; 
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Parkinson et al., 2017; Peer et al., 2021; Weaverdyck & Parkinson, 2018; Zerubavel et al., 2015), 

a phenomenon that bears resemblance to how people engage in “split-second social perception” 

whereby they spontaneously process information about the apparent intentions, traits, and 

emotions of others when merely viewing their faces (Freeman & Johnson, 2016; Todorov et al., 

2007). More recent work has demonstrated that people can relatively accurately infer aspects of 

strangers’ social network position characteristics from “thin slices” of their behavior or 

appearance, such as brief videos or facial photographs (Alt et al., 2021; Mobasseri et al., 2022). 

Thus, humans may perceive social network position characteristics as stable, trait-like individual 

differences, the knowledge of which can be used to inform a perceiver’s cognition and behavior 

and therefore promote favorable social interactions. Indeed, social network position 

characteristics have been shown to be partially heritable, stable across contexts, and resemble 

trait-level individual difference variables (Falk & Bassett, 2017; Fowler et al., 2009; Jackson, 

2009).  

The systematic variance in social network positions characteristics across individuals 

may be due to “passive characteristics” (Jackson, 2009) such as attractiveness, that can affect 

other actors’ behavior towards them. In support of this hypothesis, past work has shown that 

physical attractiveness is predictive of social status, popularity, and social acceptance (Kleck et 

al., 1974; Lerner & Lerner, 1977; Salvia et al., 1975; Webster & Driskell, 1983), and people are 

able to infer aspects of strangers’ social network position characteristics simply based on their 

appearance with relative accuracy (Alt et al., 2021; Mobasseri et al., 2022). On the other hand, 

individuals may come to occupy particular kinds of social network positions because they exhibit 

particular cognitive styles, personality traits, and/or sociobehavioral tendencies. For instance, an 

individual that tends to be attracted to and bonds with highly gregarious people that are prone to 
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forging and maintaining many social ties may come to occupy a position of high eigenvector 

centrality, or an individual that enjoys engaging with socially diverse groups of people may 

occupy a position of high brokerage. On the other hand, an individual that prefers to construct 

and maintain a particularly cohesive, tightly-knit social environment may occupy a position of 

low brokerage. Prior work has shown that brokers tend to be characteristically high in self-

monitoring (Feiler & Kleinbaum, 2015; Mehra et al., 2001; Sasovova et al., 2010), which is 

associated with an intuitive sensitivity to social cues, allowing an individual to engage in 

chameleon-like behavior, adapting their own behavior to their social circumstances (Lennox & 

Wolfe, 1984; Snyder, 1974). Self-monitoring has been shown to be associated with closely 

monitoring the thoughts, actions and feelings of others (Funder & Harris, 1986; Ickes et al., 

1990), and individuals high in self-monitoring also tend to exert a disproportionate amount of 

effort in providing emotional help (Toegel et al., 2007) and advice (Flynn et al., 2006) to their 

social ties. Self-monitoring may be advantageous for individuals characteristically high in 

brokerage, given that brokers may excel at adjusting their behavior to blend into different social 

groups and contexts, thereby enabling them to form social ties with individuals that would 

otherwise be unconnected.  

Despite past work linking measures of centrality to personality traits (e.g., self-

monitoring, extraversion), inter-individual variability in social network position characteristics is 

not well-explained by common measures of individual differences, such as personality measures 

that are typically collected in self-report surveys and questionnaires. Although a small handful of 

research has demonstrated modest relationships between personality traits and measures of social 

network centrality (Asendorpf & Wilpers, 1998; Casciaro, 1998; Feiler & Kleinbaum, 2015; 

Klein et al., 2004; Y. H. Lee et al., 2010; Y. Liu & Ipe, 2010; Pollet et al., 2011; Selfhout et al., 
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2009; Totterdell et al., 2008; Venkataramani et al., 2010), these are, at best, weakly correlated 

relationships. Furthermore, research has also yielded null results when testing if self-reported 

personality measures are linked to social network position characteristics, (Fang et al., 2015; 

Klein et al., 2004; Landis, 2016; Neubert & Taggar, 2004; Roberts et al., 2008), particularly 

when using a large, demographically representative sample that is not comprised solely of 

undergraduate students (Roberts et al., 2008). Taken together, researchers still lack a 

comprehensive understanding of the sociobehavioral tendencies that may determine individuals’ 

social network position characteristics.  

The traditional approach in psychology of using self-report surveys and questionnaires 

has yielded some success in characterizing latent constructs (e.g., personality traits) that are 

predictive of individual differences in traits and behaviors (Paunonen, 2003). However, 

introspection about one’s own mental processes is often inaccurate (Dijksterhuis, 2004; Wilson, 

2002; Wilson & Nisbett, 1978), and an individual’s self-representation can also be confounded in 

a laboratory context by their inclination to appear socially desirable to researchers (King & 

Bruner, 2000). These limitations of self-report surveys and questionnaires may, in part, explain 

why such measures do not reliably capture variance in social network position characteristics. 

However, neuroimaging can complement traditional survey-based approaches by elucidating 

individual differences in neurocognitive functioning that are linked to individual differences in 

social network position characteristics. Such inter-individual variability in neurocognitive 

function can shed light on, and shape testable hypotheses about, the sociobehavioral tendencies 

that are characteristic of individuals occupying certain social network positions.  

 



 10 

Using neuroimaging to study individual differences in social network position 

characteristics 

The study of individual differences has long been acknowledged as an important focus of 

psychology and neuroscience, as treating inter-individual variability as meaningful signal can 

help advance theory and improve prediction of individual cognition and behavior (Corr & 

Mobbs, 2018; Kosslyn et al., 2002; Underwood, 1975). Recent technological and methodological 

advances have facilitated the investigation of individual differences with neuroimaging (Dubois 

& Adolphs, 2016), an approach that can allow researchers to look “under the hood” to examine 

the neurocognitive functions underlying individual differences. 

This rapidly growing area of research has demonstrated that individual differences in 

brain structure and neural responding are predictive of individual differences in self-reported 

personality traits (DeYoung et al., 2010) and individual differences in a wide range of 

neurocognitive processes, such as low-level perception (Haberman et al., 2015; Reeder, 2017), 

metacognition (Rouault et al., 2018), memory and learning (Cetron et al., 2019; Hampson et al., 

2006; Miller & Van Horn, 2007; Tan et al., 2011), economic decision making (Kable & Levy, 

2015; Ma et al., 2011; Talukdar et al., 2018), emotion regulation (H. Lee et al., 2012; Paschke et 

al., 2016), and social cognition (Banissy et al., 2012; Bukowski et al., 2020; Chavez & 

Heatherton, 2015; Eres et al., 2015; Hildebrandt et al., 2021; Kliemann et al., 2018; Parkinson & 

Wheatley, 2014; Richardson et al., 2018; van Buuren et al., 2021; van den Brink et al., 2012). 

Importantly, individual differences in brain structure and neural responding are also predictive of 

individual differences in real-world outcomes, such as consumer choices (Tusche et al., 2010), 

sun-screen use (Falk et al., 2010), smoking behavior (Falk et al., 2011), substance abuse 

vulnerability (Rapuano, Rosenberg, et al., 2020), drinking behavior (A. L. Courtney et al., 2018), 
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and weight gain (Rapuano, Laurent, et al., 2020). Such research has found, for example, that 

neural responses to ads discouraging smoking behavior in the ventromedial prefrontal cortex 

later predicted reductions in smoking behavior (Falk et al., 2011). Given the role of ventromedial 

prefrontal cortex in self-related processing and implicit valuation, the researchers conclude that 

the resulting tendency to smoke less was driven by neural processing that integrated the message 

content and the self, thereby motivating future cessation of smoking behavior (Falk et al., 2011). 

Taken together, neuroimaging has proven to be a fruitful approach in elucidating the 

neurocognitive mechanisms that underlie individual differences in how individuals tend to think 

and behave.  

 

Individual differences in neuroanatomy linked to individual differences in social network 

position characteristics 

A growing body of work in the past decade has begun to use structural magnetic 

resonance imaging (sMRI) to examine the relationship between inter-individual variability in 

brain structure and individual differences in social network characteristics. A relatively early 

study investigating this relationship demonstrated that macaques that were pseudo-randomized 

into social groups of varying sizes exhibited individual differences in gray matter density in the 

mid superior temporal sulcus, inferior temporal gyrus, rostral superior temporal gyrus, and 

amygdala approximately one year later (Sallet et al., 2011). More specifically, living in a larger 

social group caused future increases in gray matter density in these brain regions, which are 

implicated in face and body processing, object recognition, vocalization encoding, and emotion 

processes, respectively. Thus, even in the span of only one year, macaques remarkably 

developed increases in gray matter density in brain regions implicated in social cognition in 
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response to increased cognitive demands of living in larger social groups. These findings 

provided striking evidence that characteristics of an individual’s social network can cause 

differences in neuroanatomy, which were likely a result of the sociocognitive demands of living 

in large social groups. On the other hand, individual differences in neurocognitive function may 

drive individual differences in how individuals build and maintain their social relationships, 

which may give rise to inter-individual variability in social network position characteristics.  

A subsequent collection of cross-sectional sMRI studies on humans have yielded 

convergent findings. Out-degree centrality (defined as social network size in the following 

studies) has been shown to be positively correlated with the volume of orbitofrontal cortex (P. A. 

Lewis et al., 2011; Powell et al., 2012), and this relationship was mediated by individual 

differences in mentalizing ability (Powell et al., 2012). Out-degree centrality has also been 

shown to be positively correlated with gray matter density in orbitofrontal cortex (Von der Heide 

et al., 2014) and with volume and gray matter density in the amygdala (Bickart et al., 2011, 

2012; Von der Heide et al., 2014). Furthermore, research using diffusion tensor imaging (DTI) 

demonstrated that the microstructural integrity of white matter tracts connecting the amygdala 

and orbitofrontal cortex was significantly associated with out-degree centrality (Hampton et al., 

2016). Separate work has shown that the orbitofrontal cortex is implicated in value-based 

decision making in social contexts (Báez-Mendoza et al., 2021; Padoa-Schioppa & Cai, 2011) 

and that the amygdala is involved in tracking social dominance of others (Watanabe & 

Yamamoto, 2015) and social hierarchies (Ligneul et al., 2016). Furthermore, structural 

connectivity between the amygdala and orbitofrontal cortex is crucial to support the orbitofrontal 

cortex in encoding value representations (Rushworth et al., 2013). This body of work suggests 

that having more social ties is associated with a heightened ability to engage in evaluating the 
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social value of others and integrating this information with decision-making processes. Degree 

centrality in an online social network has also been shown to be significantly associated with 

gray matter density in superior temporal sulcus and entorhinal cortex (Kanai et al., 2012), which 

have been implicated in social perception and associative memory processes, respectively.  

Overall, this collection of sMRI studies have identified several regions of the brain whose 

anatomical properties bear statistical dependencies with individuals’ real-world social network 

position characteristics. The localization of these relationships in the brain shed light on the 

neurocognitive mechanisms that may drive certain aspects of sociobehavioral tendencies 

associated with individual differences in social network position characteristics.  

 

Individual differences in neural responding linked to individual differences in social 

network position characteristics 

fMRI can complement sMRI in investigating the relationship between individual 

differences in sociobehavioral tendencies and social network position characteristics. More 

specifically, it can provide researchers an opportunity to examine neural responding in real-time, 

whether it is in response to constrained tasks probing particular facets of mental processing, or in 

response to rich, naturalistic stimuli that mimic everyday perceptual experiences. fMRI can also 

be used to characterize functional brain networks by assessing the extent to which different brain 

regions couple with one another at rest (resting-state functional connectivity). In so doing, fMRI 

can provide a window into the neurocognitive functions associated with localized neural 

responses, in which inter-individual variability may be linked to individual differences in social 

network position characteristics.  
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The aforementioned study in which macaques were pseudo-randomized into social 

groups of varying sizes also demonstrated that the macaques living in larger social groups later 

exhibited increased resting-state functional connectivity between the superior temporal sulcus 

and anterior cingulate cortex and between the superior temporal sulcus and rostral prefrontal 

cortex (Sallet et al., 2011). Given the established role of superior temporal cortex in social 

perception (Lahnakoski et al., 2012) and the role of anterior cingulate cortex in the tracking of 

motivation of others using social cues (e.g., emotional expressions) in both humans and monkeys 

(Apps et al., 2016), heightened functional connectivity between these two regions may be 

associated with an increased capacity to engage in social perceptual processes that are used to 

understand the motivations of others’ behavior. Furthermore, in humans, rostral prefrontal cortex 

and superior temporal cortex have been shown to be recruited when individuals make predictions 

about the intentions of others and when individuals are updated about the intentions of others 

(Behrens et al., 2008). Although it is unclear if macaques exhibit theory of mind capabilities, 

heightened functional connectivity between the rostral prefrontal cortex and superior temporal 

cortex may be indicative of an increased capacity to understand and infer the intentions of other 

individuals. Taken together, these longitudinal changes in functional connectivity may suggest 

that living in larger social groups necessitates an increased capacity to engage in socio-affective 

processing, particularly in tracking the social cues of others and using these social cues to inform 

internal representations of others’ intentions and mental states. A subsequent study on humans 

demonstrated that resting-state functional connectivity between the amygdala and brain regions 

supporting social perceptual processes, such as fusiform gyrus, temporal pole, rostral superior 

temporal sulcus, and orbitofrontal cortex, was positively correlated with individuals’ out-degree 

centrality (Bickart et al., 2012). A similar relationship was found between out-degree centrality 
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and functional connectivity between the amygdala and brain regions supporting social affiliative 

processes, such as the ventromedial prefrontal cortex, subgenual and rostral anterior cingulate 

cortex, and nucleus accumbens (Bickart et al., 2012). This body of resting-state fMRI work has 

produced results that are convergent with the aforementioned sMRI research, such that 

heightened structural and functional connectivity between brain regions implicated in socio-

affective processing are associated with occupying positions of relatively high centrality in the 

real-world.  

More recent work has also shown that individuals characterized by high in-degree 

centrality in their real-world social network exhibited more similar neural responses to each 

other (and to their peers in general) relative to individuals characterized by low in-degree 

centrality in response to watching naturalistic audiovisual stimuli (i.e., movie clips) in regions of 

the default mode network, such as the dorsomedial prefrontal cortex, precuneus, posterior 

cingulate cortex, and inferior parietal lobule (Baek et al., 2022). Neural similarity in these brain 

regions are associated with inter-individual similarities in the understanding and interpretation of 

narratives (Finn et al., 2018; Nguyen et al., 2019; Yeshurun et al., 2017). Furthermore, recent 

work has suggested that the default mode network integrates external contextual information 

with internal experiences and schemas to generate predictive models of situations as they unfold 

over time and thus neural similarity observed in the default mode network may reflect the 

generation of shared meaning across individuals (Yeshurun et al., 2021). Thus, individuals 

characterized by high in-degree centrality (i.e., highly popular individuals) may process and 

interpret the world around them in a fashion that is similar to that of their peers. This tendency to 

engage in normative processing may help them form social ties with many people and solidify 

their position of in-degree centrality, thereby granting them the capacity to influence the social 
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norms and shaping the behaviors of individuals in their social network (Osgood et al., 2013; 

Zingora et al., 2020). 

Research using task-based fMRI has shown that functional connectivity between left and 

right temporoparietal junctions in response to a social exclusion paradigm was negatively 

correlated with individual differences in the density of online social networks (Schmälzle et al., 

2017). Given that these brain regions are implicated in mentalizing, individuals with more sparse 

social networks may be more likely to engage in mentalizing when faced with social exclusion 

relative to individuals with more dense social networks. Thus, it is possible that individuals that 

lack the social safety of dense social networks (Hurlbert et al., 2000) may engage in more 

mentalizing when faced with social exclusion as a coping mechanism (Schmälzle et al., 2017). In 

other words, individuals in highly dense social networks may afford to conserve mentalizing 

resources when faced with social exclusion, as their relatively higher position of centrality 

affords them with a social safety net. Furthermore, individuals high in betweenness centrality in 

their online social networks recruited the dorsomedial prefrontal cortex, temporoparietal 

junction, medial prefrontal cortex, and posterior cingulate cortex more than did individuals low 

in betweenness centrality when receiving divergent peer feedback and providing their 

recommendation in an fMRI task that involved reviewing mobile game apps and sharing these 

reviews (O’Donnell & Falk, 2015). These brain regions have been implicated in inferring the 

mental states of others (Schurz et al., 2014), and preceding work demonstrated that individuals 

with heightened responses in the temporoparietal junction were more successful in convincing 

other people to adopt their viewpoints (Falk et al., 2013). Moreover, a separate study showed that 

salespeople with heightened responses in the temporoparietal junction and medial prefrontal 

cortex were more effective in communicating information to their clients (Dietvorst et al., 2009). 
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Thus, the heightened responses in mentalizing regions in the brains of individuals that are 

characteristically high in brokerage may suggest that brokers are particularly adept at inferring 

the mental states of others and communicating persuasively. This increased effectiveness in 

mentalizing and capacity to engage in theory of mind may comprise, in part, the neurocognitive 

mechanism underlying a broker’s ability to skillfully manage the flow of information between 

disparate individuals and coordinate behavior across neighboring social ties to their liking (Burt 

et al., 2013). 

Taken together, these findings demonstrate that neuroimaging can be leveraged to 

provide a window into the individual differences in neurocognitive processing that are 

characteristic of, and may lead to, certain social network position characteristics. Such an 

approach can shed light on the sociobehavioral tendencies that are linked to the occupation of 

particular social network positions. However, an individual’s neurocognitive processes and 

sociobehavioral tendencies may also be related to those of surrounding actors. Although it is 

important to investigate the individual differences associated with social network position 

characteristics, it is also critical to investigate how individual differences in neurocognitive 

processes and sociobehavioral tendencies are related to one’s immediate social ties and to 

broader social network structure.  

 

Interpersonal similarity and proximity in real-world social networks 

In a given social network, two individuals may share similarities in their number of social 

ties, the extent to which they are central, or the extent to which they bridge disparate groups, but 

the people to whom they are connected can be different, which can have meaningful 

consequences. The way with which an individual thinks, feels, and behaves is shaped by how 
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their friends think, feel, and behave. Crucially, an individual’s cognitive, emotional, and 

behavioral tendencies can also be shaped by those of individuals with whom they are indirectly 

connected (e.g., friends-of-friends, friends-of-friends-of-friends). Thus, despite never meeting or 

interacting with more distant people in one’s social network, an individual can nevertheless be 

meaningfully influenced by their cognitive, emotional, and behavioral tendencies. Indeed, a 

growing body of research has documented a phenomenon whereby various behaviors, emotions, 

attitudes, and health conditions appear to spread across individuals and their social ties in their 

social network over time. More specifically, research has demonstrated that obesity (Christakis 

& Fowler, 2007), smoking (Christakis & Fowler, 2008), alcohol consumption (J. Niels 

Rosenquist et al., 2010), loneliness (Cacioppo et al., 2009), depression (J. N. Rosenquist et al., 

2011), sleep behavior and drug use (Mednick et al., 2010), divorce (McDermott et al., 2009), 

food consumption (Pachucki et al., 2011), cooperative and altruistic behavior (Fowler & 

Christakis, 2010), sexual activity (Brakefield et al., 2014), tastes in entertainment (Christakis & 

Fowler, 2009), political mobilization (Bond et al., 2012), and even happiness (Fowler & 

Christakis, 2009) can spread across individuals.  

Whereas social influence can mediate the spread of such behaviors, emotions, attitudes, 

and health conditions across individuals, humans also tend to cluster in their social networks 

based on similarities in their age, gender, ethnicity, and in other demographic attributes and 

behaviors, such as drug use, religious beliefs, political orientations, and taste in music (Kandel, 

1978; Knoke, 1990; Mark, 1998; Marsden, 1988; McPherson et al., 2001). This tendency to be 

surrounded by familiar others, known as “homophily” or “assortativity,” appears to be a 

ubiquitous property of human social networks and has been observed across various contexts, 

such as modern industrialized societies, online communities, and hunter-gatherer communities 
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(Apicella et al., 2012; Fu et al., 2012; K. Lewis et al., 2012; McPherson et al., 2001). These inter-

individual similarities in demographic characteristics and behavior may reflect similarities in 

how people closer together in their social networks attend to, interpret, and react to the world 

around them. To probe the nature of these inter-individual similarities in cognitive and 

behavioral tendencies, traditional approaches have used personality surveys and questionnaires 

to measure inter-individual similarities in personality traits and dispositions. However, these 

investigations of assortativity based on self-reported personality traits have yielded negative or 

inconsistent results (Feiler & Kleinbaum, 2015; Selfhout et al., 2009, 2010). This is at odds with 

the widespread intuition that friends’ similarities transcend “surface-level” characteristics, such 

as demographic attributes. Empirical work supporting this intuition has shown that a sense of 

inter-individual similarity in thoughts, feelings, and beliefs (a “generalized shared reality”) is 

indeed predictive of social connection between individuals (Rossignac-Milon et al., 2020). 

Furthermore, recent work has shown that this intuition acts as a social prior, such that people 

expected that friends in a fictive online community would exhibit similar behavior in an 

economic decision-making game (Schwyck et al., 2022).  

It is possible that similarities in self-reported personality traits may not be sensitive to the 

types of psychologically meaningful similarities that are observed among friends. On the other 

hand, recent research has demonstrated that friends share exceptional similarities in their 

linguistic styles (Kovacs & Kleinbaum, 2020), suggesting that perhaps alternative approaches to 

measure inter-individual similarities in cognition and behavior may yield some success in 

uncovering the inter-individual similarities observed among people close together in their social 

networks.  
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Inter-individual neural similarity and proximity in real-world social networks 

A growing body of recent research using neuroimaging has shown that individuals’ 

proximity in their real-world social networks are associated with inter-individual similarities in 

neural responding. In one study, researchers characterized the full social network of a cohort of 

students in a graduate program, a subset of whom underwent fMRI while passively watching 

naturalistic audiovisual stimuli (i.e., movie clips; Parkinson et al., 2018). Individuals that were 

closer together in their social network, as measured by their geodesic distance (i.e., “degrees of 

separation”; see Baek et al. (2021) for a review of relevant social network analysis terminology), 

exhibited greater similarity in neural responding in several cortical regions, such as the superior 

parietal cortex, which has been implicated in attentional allocation (Kastner et al., 2000; 

Shomstein, 2012), and in the inferior parietal cortex, which has been implicated in bottom-up 

attentional control, mentalizing, and processing the narrative content of stories (Corbetta & 

Shulman, 2002; Mar, 2011; Yeshurun et al., 2017, 2021). Importantly, this relationship was 

statistically significant even when controlling for inter-individual similarities in demographic 

characteristics, suggesting that the observed neural similarities captured similarities in how 

individuals attended to, interpreted, and emotionally reacted to the stimuli above and beyond 

what could be explained by inter-individual similarities in age, gender, and ethnicity.  

Follow-up work also demonstrated that similarities in temporal trajectories of multivoxel 

pattern responses to naturalistic stimuli are also associated with individuals’ proximity in their 

real-world social network, suggesting that people closer together in their social network 

experience similar patterns of recurrence in brain activity over time when viewing movie clips 

(Hyon, Kleinbaum, et al., 2020), particularly in a dorsal aspect of the posterior parietal cortex, 

which is associated with the dorsal attention network. Given the role of this brain region in 
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endogenously-driven shifts in attention (Cabeza et al., 2008), people closer together in their 

social network may experience similar temporal fluctuations in their attention states that may be 

directed towards internal states and memories when watching movie clips. Strikingly, in both 

studies carried out by Parkinson et al. (2018) and Hyon et al. (2020), the relationship between 

neural similarity and social network proximity was strongest among pairs of individuals that 

shared a direct social tie (i.e., a social distance of 1) and grew weaker as social distance 

increased. The apparent decay in inter-individual similarity across greater social distances 

suggests that even individuals that are not directly connected (i.e., a social distance of 2) share 

more similar patterns in neural responding relative to individuals that are farther apart (i.e., a 

social distance of 3+). Overall, these studies suggest that task-based fMRI is a promising tool to 

identify inter-individual neural similarities among people closer together in their social network. 

Such neural similarities can help elucidate the similarities in how people tend to think, feel, and 

behave that characterize people closer together in real-world social networks. However, inter-

individual similarities that are associated with how close people are in their social network may 

vary across different social contexts and life stages. In line with this notion, one study yielded 

null results when assessing the relationship between inter-individual similarities in resting-state 

functional connectivity and how close schoolchildren were in the social network of their school 

(McNabb et al., 2020). Thus, further research is needed to investigate if the relationship between 

neural similarity and social network proximity generalizes to other communities, such as those 

that are characterized by different cultures, age groups, or organizational structures. Expanding 

this research to include different samples of individuals can also shed light on the extent to which 

inter-individual neural similarities associated with social network proximity may vary as a 

function of the social context.  
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One recent study demonstrated that inter-individual similarities in neuroanatomy are 

predictive of social network proximity. More specifically, schoolchildren closer together in their 

real-world social network exhibited greater inter-individual similarity in the gray matter volume 

of “social brain” regions associated with the default mode network, above and beyond the effects 

of inter-individual similarity in demographic characteristics (D’Onofrio et al., 2021). This effect 

was not found in other brain regions in this study. A handful of prior work has linked individual 

differences in gray matter volume and thickness within “social brain” regions to individual 

differences in social cognitive abilities, such as mentalizing (P. A. Lewis et al., 2011; Rice et al., 

2014; Rice & Redcay, 2015; Wiesmann et al., 2020) and empathic tendencies (Banissy et al., 

2012; Eres et al., 2015). Thus, inter-individual anatomical similarities in brain regions associated 

with social cognition may facilitate mutual understanding, predictability, and communication 

among people that are closer together in their social network, given that these factors are 

important for forming social ties (Cutting & Dunn, 1999; Erdley & Day, 2017).  

Taken together, the research discussed in this section points toward the utility of 

functional and structural neuroimaging in identifying the neural predictors of how close people 

are in their real-world social networks, and the localization of these neural predictors can shed 

light on the types of cognitive, emotional, and behavioral similarities exhibited by people closer 

together in their social networks.  

 

Does the brain shape social networks or do social networks shape the brain? 

Investigating the relationship between the brain and the social networks in which it is 

embedded is critical considering that real-world social network structure likely shapes an 

individual’s social interactions and that an individuals’ tendency to use their brain in certain 
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ways likely shapes their real-world social network structure. With few exceptions, the research 

discussed in the current article is unable to address these causal relationships. Although one 

study in particular found that macaques’ social group size was associated with future increases in 

gray matter density in brain regions associated with social cognition, there have been no 

comparable studies on humans that have leveraged longitudinal study designs. This may be due 

to the fact that ethical and practical considerations can preclude certain longitudinal designs, as it 

is not trivial to force individuals to form certain social ties, and random assignment to different 

social networks structures is not always possible or feasible. However, future work would benefit 

from using longitudinal study designs to test if pre-existing individual differences in the brain 

predict individuals’ future social network position characteristics. Such longitudinal research can 

also test if the occupation of certain social network positions predicts future individual 

differences in neuroanatomy or neural responding (e.g., the extent of recruitment of brain regions 

associated with mentalizing during a theory of mind task). Future work using longitudinal 

designs can also investigate the extent to which pre-existing neural similarities causally predict 

future friendship formation (i.e., homophily) and/or the extent to which social influence 

processes cause individuals to develop similarities in their neural characteristics over time. In the 

former case, pre-existing neural similarities may reflect similarities in how people attend to, 

interpret, and emotionally respond to the world around them, which can foster less effortful 

interpersonal communication, more interpersonal predictability, and affiliative tie formation 

(Berger & Calabrese, 1975; Clore & Byrne, 1974; Redcay & Schilbach, 2019). Moreover, 

individuals may have a pre-existing generalized shared reality, which reflects similarities in 

internal states (e.g., feelings, beliefs, concerns) about the world in general and has been shown to 

be predictive of the extent to which people feel connected with each other (Rossignac-Milon et 
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al., 2020). Alternatively, social influence processes may mediate relationships between inter-

individual similarities and social network proximity, whereby sustained and intensive 

interactions can lead individuals to become more similar to each other over time. In essence, 

individuals’ ways of thinking, feeling, or behaving may “rub off” on each other, such that they 

may develop similarities in their thoughts about the world (Rossignac-Milon et al., 2020), 

convergent emotional experiences (Anderson et al., 2003; Butler, 2015; Gonzaga et al., 2007), 

and alignments in attitudes (Davis & Rusbult, 2001). It is likely that both homophily and social 

influences processes at play, such that individuals that are connected via an indirect tie (i.e., 

characterized by a social distance of two) may be subjected to relatively local social influences, 

thereby becoming more similar over time. In turn, such convergence over time may facilitate 

affiliative tie formation between these individuals.  

 

Concluding remarks 

Humans are embedded in social networks, and an individual’s relative position in their 

social network can have substantial ramifications with respect to meaningful outcomes, such as 

their health, sociality, professional success, and happiness. Yet, little is known about the 

cognitive, affective, and behavioral traits that are linked to occupation of particular kinds of 

social network positions, such as those characterized by centrality and/or brokerage. Although 

traditional approaches of using self-report surveys and questionnaires to capture latent constructs 

have been relatively successful in identifying traits that are related to real-world behavior, such 

constructs have not been met with much success in characterizing individual differences in real-

world social network position characteristics. This lack of relative success may be due to the fact 

that social network position characteristics depend not only on an individual’s immediate 
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relationships but also on third-party relationships in their communities of which an individual 

may not always be aware. Furthermore, this approach has also yielded limited success in 

characterizing the similarities shared among individuals that are closer together in their social 

networks, beyond similarities in demographic attributes. However, the integration of 

neuroimaging and social network analysis in a growing body of recent work has demonstrated 

that individual differences in neuroanatomy and neurocognitive processes are linked to social 

network position characteristics and that people closer together in their social network also share 

similarities in neuroanatomy and neural responding. Thus, this research has begun to elucidate 

the sociobehavioral tendencies that characterize individuals occupying particular social network 

positions and the interpersonal similarities that are exhibited by people closer together in their 

social networks. However, many questions remain, particularly with respect to the extent to 

which the brain shapes social networks and the extent to which social networks shape the brain. 

Taken together, the research described here and future work building on such findings can 

advance our understanding of the organizational principles of real-world social network 

structures and of the neurocognitive mechanisms that give rise to them.  

 

The current research 

 The aforementioned research has provided preliminary evidence that neuroimaging can 

elucidate the neurocognitive mechanisms that are characteristic of individuals that occupy certain 

social network positions. A separate line of research has begun to demonstrate that individual 

differences in the microstructural integrity of white matter connectivity supporting social 

cognition are predictive of an array of socio-cognitive and behavioral traits (Baumgartner et al., 

2015; Chavez & Heatherton, 2015; S. S. Wang et al., 2014; Y. Wang et al., 2017; Y. Wang & 
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Olson, 2018; Xu & Potenza, 2012). The majority of this work has examined the relationship 

between microstructural integrity of single white matter tracts and individual differences in 

cognition and behavior. However, data-driven machine learning models have shown promise in 

robustly predicting individual differences based on distributed patterns of white matter 

microstructural integrity (Y. Wang et al., 2020). Study 1 in this dissertation aims use machine 

learning to predict individuals’ real-world social network position characteristics based on their 

patterns of white matter microstructural integrity distributed across brain networks that support 

social cognition.  

 As reviewed in the previous section, not only does an individual’s social network position 

characteristics have meaningful consequences but also the people to whom an individual is 

connected directly and indirectly can also influence how an individual thinks, feels, and behaves. 

Moreover, individuals that share similarities in demographic attributes and behaviors tend to 

cluster closely together in their social network. A handful of neuroimaging studies have 

demonstrated that people closer together in their social network exhibit similarities in neural 

responding when watching naturalistic stimuli (Hyon, Kleinbaum, et al., 2020; Parkinson et al., 

2018), suggesting that people closer together in their social network may think about and 

respond to the world around them in a similar fashion. A separate line of research has shown that 

patterns of resting-state functional connectivity (“functional connectomes”) are predictive of 

individual differences in a variety of socio-cognitive and behavioral traits and self-reported 

personality (Beaty et al., 2018; Christov-Moore et al., 2020; Dubois et al., 2018; Finn et al., 

2015; Meskaldji et al., 2016; Miranda-Dominguez et al., 2014; Rosenberg et al., 2015, 2018). 

Thus, inter-individual similarities in functional connectomes may capture inter-individual 

similarities in how individuals may think about and respond to the world around them. Study 2 in 
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this dissertation tests if inter-individual similarities in resting-state functional connectomes are 

predictive of how close people are in their real-world social network.  

 Prior work demonstrating a relationship between a relationship between neural similarity 

and social network proximity has been cross-sectional (D’Onofrio et al., 2021; Hyon, 

Kleinbaum, et al., 2020; Parkinson et al., 2018). Thus, this research is unable to address the 

extent to which pre-existing neural similarities may lead to friendship formation or the extent to 

which friends undergo a convergence in neural characteristics over time. Study 3 in this 

dissertation aims to test if pre-existing similarities in neural responses to naturalistic stimuli are 

predictive of friendship eight months later and if individuals with pre-existing neural similarities 

grow closer together in their social network over time.  

 Little is known about the individual differences in sociobehavioral tendencies that 

uniquely characterize individuals occupying social network positions (e.g., eigenvector 

centrality), which are associated with a disproportionate amount of influence, popularity, and 

leverage. Furthermore, although it has been well-established that people closer together in their 

social network often share similarities in demographic attributes, much less is known about the 

types of inter-individual similarities shared by friends that run deeper than such “surface-level” 

characteristics. This dissertation integrates tools from social network analysis, neuroimaging, and 

machine learning to address these gaps in the literature and advance our understanding of how 

the brain shapes and is shaped by real-world social networks.  
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Chapter 1: White matter connectivity in brain networks supporting 

social and affective processing predicts real-world social network 

characteristics 

[Note: This is a copy of the in press manuscript: Hyon, R., Chavez, R., Chwe, J.A., Wheatley, T., 

Kleinbaum, A.M., Parkinson, C. (in press). White matter connectivity in brain networks 

supporting social and affective processing predicts real-world social network characteristics. 

Communications Biology.] 

 

Introduction 

         All human cognition and behavior are embedded within the context of real-world social 

networks. In any social network, people vary systematically with respect to the number of friends 

that they have, the extent to which they are well-connected to well-connected others, and the 

extent to which they connect people who would otherwise be unconnected to each other. 

Although these social network position characteristics have meaningful consequences for 

individuals and their communities (Brass, 1984; Burt, 1994, 1997, 2004; Jackson & Matthew O. 

Jackson, 2008; Krackhardt, 1990; Morelli et al., 2017; Seibert et al., 2001; Smith et al., 2020), 

they are not well captured by measures typically used to assess individual differences in 

personality, such as self-report surveys administered to individuals in isolation (Feiler & 

Kleinbaum, 2015; Selfhout et al., 2009). However, recent work has shown that social network 

position characteristics constitute significantly heritable individual difference variables that are 

stable across contexts (Fowler et al., 2009; Jackson, 2009). The heritability of social network 

position characteristics may be driven, at least in part, by the heritability of social, affective, and 

behavioral tendencies, which may be reflected in individual differences in the networks of brain 

regions that support relevant aspects of social perception, cognition, and affective processing. 
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Here, we sought to investigate this possibility by integrating structural neuroimaging data with 

characterizations of participants’ positions in their real-world social networks. 

A growing body of research has begun to highlight the critical role of white matter 

connectivity in supporting social cognition (Y. Wang & Olson, 2018), and the structural integrity 

of white matter tracts has been linked to a variety of individual differences in social, cognitive, 

and behavioral traits (Baumgartner et al., 2015; Chavez & Heatherton, 2015; Metoki et al., 2017; 

S. S. Wang et al., 2014; Y. Wang et al., 2018; Xu & Potenza, 2012). Although past work has 

largely focused on how the structural integrity of single white matter tracts relate to 

sociobehavioral tendencies, using data-driven machine learning models to map relationships 

between distributed patterns of white matter microstructural integrity and sociobehavioral 

tendencies can provide an informative window into the complex web of connectivity between 

brain regions that supports social cognition (Y. Wang et al., 2020). 

Here, we used diffusion magnetic resonance imaging (dMRI) to test whether individual 

differences in distributed patterns of white matter microstructural integrity are predictive of 

individual differences in social network position characteristics. To this end, we characterized 

the complete social networks of three different bounded communities of individuals, a subset of 

whom underwent dMRI. We then used probabilistic tractography to delineate groups of white 

matter tracts associated with three key facets of social processing: face perception, mentalizing, 

and mirroring, as well as affective processing. Finally, we used a machine learning algorithm to 

predict characteristics of individuals’ social network positions based on patterns of white matter 

microstructural integrity across tracts in these brain networks. Rather than only examining 

univariate relationships between single tracts and social network position characteristics, 

leveraging a data-driven, multivariate approach can improve predictive performance by taking 
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into account distributed connectivity signatures (i.e., multi-tract patterns of white matter 

microstructural integrity). 

Patterns of microstructural integrity distributed across white matter tracts in the affective 

processing, mirroring, and face perception brain networks were predictive of structural 

characteristics of individuals’ positions in their real-world social networks, such as the extent to 

which they bridge between disparate people or groups (brokerage), and the extent to which they 

are well-connected to well-connected others (eigenvector centrality). However, we found no 

significant relationship between social network position characteristics and patterns of white 

matter microstructural integrity in the mentalizing brain network. In addition, while distributed 

patterns of white matter microstructural integrity were predictive of social network position 

characteristics, no single white matter tract appeared to be necessary or sufficient for predicting 

social network position characteristics. These findings suggest that individual differences in 

brain networks that support social perception, affective processing, and understanding others’ 

actions may be particularly important in determining the structural positions that individuals 

occupy in their real-world social networks. 
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Figure 1. Social network characterization. Three cohorts of first-year graduate students completed a survey in 

which they indicated their social ties with other students. These three social networks were reconstructed using this 

data. Nodes indicate students, and lines reflect mutually reported ties between students. Across all three cohorts, a 

subset of students (red nodes; N = 112 after exclusions; see Methods) participated in the dMRI study. The 

Fruchterman-Reingold layout algorithm, as implemented in the igraph package, was used to position the nodes.  

 

Results 

We first characterized the complete social networks of three cohorts of a graduate 

program. Members of each cohort (Ncohort-1 = 275; Ncohort-2 = 279; Ncohort-3 = 285) completed an 

online survey (see Methods); data from this survey was used to characterize each cohort’s social 

network (Fig. 1). A subset of the individuals who participated in the social network survey also 

participated in the dMRI study (Ncohort-1 = 46; Ncohort-2 = 32; Ncohort-3 = 34 after exclusions based 

on participant movement; see Methods), in which diffusion-weighted images were collected (see 

Methods for more details).  

For each dMRI participant, we characterized their position in the social network of their 

cohort in terms of five social network position characteristics: out-degree centrality (the number 

of people whom the participant names as a friend), in-degree centrality (the number of people 

who name the participant as a friend), eigenvector centrality (the extent to which the participant 

is well-connected to other well-connected individuals), betweenness centrality (a global measure 

of brokerage measuring the fraction of shortest paths between other members of the social 

network that pass through the participant), and constraint (a local measure of brokerage 

accounting for the extent to which someone has access to non-redundant social partners; see 

Methods for details on social network position characteristics). Thus, two measures of brokerage 

were considered: constraint and betweenness centrality. We examined betweenness centrality to 

be consistent with prior work that used betweenness centrality as a measure of brokerage in 

establishing the heritability of this aspect of social network position (Fowler et al., 2009). We 
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included constraint following our own prior work integrating neuroimaging and social network 

data (Parkinson et al., 2017), and given that constraint is a more local measure of brokerage that 

may be more impacted by individuals’ own sociobehavioral tendencies, rather than those of other 

nearby individuals in the network (Baek et al., 2021). In contrast, betweenness centrality 

captures how often an individual lies on the shortest path between other people in the social 

network, and thus can be dramatically impacted by factors beyond an individual’s own 

sociobehavioral tendencies (Baek et al., 2021). For example, individuals with high betweenness 

centrality may not function as true brokers, as they may lie on the shortest path between others 

because they are merely in close proximity to a true broker (Baek et al., 2021). Thus, relative to 

betweenness centrality, constraint may bear a stronger relationship to the sociobehavioral 

tendencies that are characteristic of brokers, which in turn are reflected in patterns of white 

matter microstructural integrity in the brain. 

Regions of interest (ROIs) in four a priori defined brain networks associated with 

different aspects of socio-affective processing (i.e., affective processing, face perception, 

mentalizing, and mirroring networks) were functionally defined using the meta-analysis tool 

Neurosynth (Yarkoni et al., 2011) (Fig. 2). This method provides an approximation of the 

location of a given ROI if it had been mapped with fMRI in each individual. The three social 

brain networks examined here were selected based on recent reviews on white matter and social 

cognition that have emphasized their role in social interactions and processing20: Successful 

social interactions require (1) recognizing and extracting information from others’ faces (via 

regions in the face perception network), (2) quickly understanding their actions, emotions, and 

intentions through brain regions involved in both producing and observing actions (via regions in 

the putative mirroring network), and (3) representing and reasoning about their mental states (via 
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regions of the mentalizing network). Probabilistic tractography was then conducted to trace the 

white matter tracts connecting every possible pair of ROIs in each brain network (see Methods). 

Ultimately, the affective processing network consisted of 33 white matter tracts, the face 

perception network consisted of 50 white matter tracts, the mentalizing network consisted of 41 

white matter tracts, and the mirroring network consisted of 49 white matter tracts. To 

characterize the microstructural integrity of each white matter tract, average fractional anisotropy 

(FA) values were extracted such that each white matter tract had a corresponding single FA 

value. FA captures the directional coherence of water in white matter tracts and has been shown 

to be highly sensitive to factors such as myelination, axonal packing density, and axonal 

diameter (Beaulieu, 2002). 

Using a leave-one-subject-out cross-validation scheme, we used a machine learning 

algorithm based on ridge regression (see Methods) to test whether patterns of microstructural 

integrity of white matter tracts within each of the four aforementioned brain networks were 

predictive of out-degree centrality, in-degree centrality, eigenvector centrality, betweenness 

centrality, and constraint (Fig. 3). Model performances were measured using the correlation 

between actual and predicted values of social network position characteristics, and p-values were 

corrected for multiple comparisons using false discovery rate (FDR) thresholding (see Methods). 
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Figure 2. Schematic illustrating the process of reconstructing white matter tracts between regions involved in 

particular facets of socio-affective processing. (a) Meta-analysis-based images of brain regions associated with a 

particular facet of socio-affective processing (e.g., mirroring) were generated by submitting sets of keywords (e.g., 

action observation, mirror neuron, mirror) to Neurosynth22. (b) These images were aggregated across terms in a set, 

and discrete regions of interest were identified. (c) For each subject, probabilistic tractography was then conducted 

to trace white matter tracts (colored lines in this schematic image) connecting each pair of brain regions (red nodes). 

This procedure was repeated to construct the affective processing, mentalizing, and face perception networks (see 

Methods for further details). 

 

Patterns of white matter microstructure within the affective, mirroring, and face perception 

networks are predictive of social network position characteristics 

Patterns of microstructural integrity across white matter tracts in the affective processing 

network significantly predicted individuals’ constraint (r = 0.263, p = 0.002, pFDR-corrected = 

0.010), betweenness centrality (r = 0.240, p = 0.006, pFDR-corrected = 0.015), and eigenvector 

centrality (r = 0.211, p = 0.013, pFDR-corrected = 0.026). Patterns of microstructural integrity across 
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white matter tracts in the mirroring network significantly predicted individuals’ constraint (r = 

0.210, p = 0.013, pFDR-corrected = 0.026), eigenvector centrality (r = 0.244, p = 0.005, pFDR-corrected = 

0.019), and out-degree centrality (r = 0.239, p = 0.006, pFDR-corrected = 0.022). Patterns of 

microstructural integrity across white matter tracts in the mentalizing network significantly 

predicted individuals’ eigenvector centrality (r = 0.186, p = 0.025, pFDR-corrected = 0.033) and 

betweenness centrality (r = 0.172, p = 0.034, pFDR-corrected = 0.046). Patterns of microstructural 

integrity across white matter tracts in the face perception network significantly predicted 

individuals’ betweenness centrality (r = 0.229, p = 0.008, pFDR-corrected = 0.015). 

We repeated the above analytic procedure in our primary analyses to test if patterns of 

microstructural integrity distributed across white matter tracts in each brain network were 

significantly predictive of social network position characteristics while controlling for 

demographic variables (i.e., age, gender), as well as handedness and academic cohort. We also 

controlled for self-reported extraversion, given that extraversion has been associated with social 

network position characteristics, such as eigenvector centrality10 (associations between control 

variables and social network characteristics are reported in Appendix - Note 1). Patterns of 

microstructural integrity across white matter tracts in the affective processing network were 

significantly predictive of constraint (r = 0.240, p = 0.005, pFDR-corrected = 0.014) while controlling 

for these variables. Furthermore, patterns of microstructural integrity across white matter tracts 

in the mirroring network were significantly predictive of eigenvector centrality (r = 0.265, p = 

0.002, pFDR-corrected = 0.010) and constraint (r = 0.232, p = 0.007, pFDR-corrected = 0.014) when 

controlling for these variables (Fig. 4). 
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Figure 3. Multivariate prediction of social network position characteristics based on patterns of white matter 

microstructural integrity. For each subject, average FA was extracted from each white matter tract in a given brain 

network, and the resulting set of FA values were used as predictors (as shown in different colors) in a ridge 

regression-based algorithm to predict individuals’ social network position characteristics (see Methods for further 

details). This procedure was performed for the mirroring, affective processing, mentalizing, and face perception 

brain networks. 

 

Patterns of white matter structure across major white matter tracts are predictive of social 

network position characteristics 

In an exploratory analysis, we used Freesurfer’s TRACULA (TRActs Constrained by 

UnderLying Anatomy) tool (Yendiki et al., 2011), an algorithm for automated global 
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probabilistic tractography, to reconstruct 18 major white matter tracts for each subject. We then 

used the same analytic procedure to test if patterns of microstructural integrity across these 

major, well-established white matter tracts can predict social network position characteristics. 

We observed results similar to those in the primary analysis (see Appendix - Note 2), such that 

patterns of microstructural integrity were predictive of eigenvector centrality and betweenness 

centrality, and were also predictive of in-degree centrality and eigenvector centrality when 

controlling for demographic characteristics (age, gender), extraversion, handedness, and cohort. 

These results corroborate our primary findings that distributed patterns of white matter 

microstructural integrity are predictive of social network position characteristics. They also 

demonstrate that these findings are robust to the use of markedly different data analytic 

procedures. 
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Figure 4. Multivariate patterns of white matter microstructural integrity predicted real-

world social network position characteristics. (a) Whereas patterns of white matter 

microstructural integrity in the affective processing network were predictive of constraint, (b) 

patterns of white matter microstructural integrity in the mirroring network were predictive of 

constraint and eigenvector centrality. (c) Patterns of white matter microstructural integrity in the 

face perception network were predictive of betweenness centrality. For each model, the 

predictive performance was measured using the Pearson correlation between the actual and 

predicted values of the social network variable of interest (N=112); p-values are FDR-corrected; 

shaded regions indicate 95% CIs. Social network position values were normalized within cohort 

and square-root transformed prior to analysis.  

 

No single white matter tracts are necessary to predict social network position characteristics 

         Our primary results suggest that patterns of microstructural integrity distributed across 

white matter tracts in the mirroring network are predictive of eigenvector centrality, and that 

patterns of microstructural integrity distributed across white matter tracts in the affective 
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processing and mirroring networks are predictive of constraint, when controlling for covariates. 

We then sought to conduct exploratory analyses to investigate whether certain white matter tracts 

were disproportionately contributing to the predictive performance of these models. To this end, 

we tested whether the exclusion of any single white matter tract would significantly diminish the 

predictive performance of each full model (i.e., using all P predictors, where P is the number of 

tracts in a given brain network). We first calculated the true difference in predictive performance 

between the full model and a model leaving one tract out (i.e., using P - 1 predictors). This true 

difference value was then compared against a null distribution of 1,000 difference values in 

predictive performance generated by permutation testing. This procedure was repeated P times 

(i.e., for each tract) for each of these three models, such that the relative contribution of each 

predictor to each model’s predictive performance was evaluated (see Methods). 

There were no single tracts that, when omitted, significantly compromised the models’ 

ability to predict eigenvector centrality or constraint from patterns of white matter 

microstructural integrity in the mirroring network. A similar pattern of null results was observed 

when testing if the omission of single tracts compromised the models’ ability to predict 

constraint from patterns of white matter microstructural integrity in the affective network. These 

results suggest that the exclusion of single white matter tracts from the set of predictors in the 

affective processing or mirroring networks does not significantly diminish the respective full 

models’ performance in predicting social network position characteristics. Thus, within the brain 

networks in which patterns of white matter microstructural integrity were significantly predictive 

of social network position characteristics, no single tract was necessary for making such 

predictions. This procedure was also repeated using the set of predictors derived from the 

TRACULA analysis, and this analysis also returned null results.  
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Single white matter tracts alone are not sufficient to predict social network position 

characteristics 

We next sought to test whether any single white matter tract in the affective processing, 

mirroring, face perception, or mentalizing networks would be sufficient to predict the social 

network position characteristics, while controlling for extraversion and our other control 

variables (e.g., demographic variables). For each of the 173 white matter tracts, we used ordinary 

least squares regression to test whether its microstructural integrity was predictive of any of the 

five social network position characteristics (out-degree centrality, in-degree centrality, 

eigenvector centrality, betweenness centrality, and constraint; see Methods). The microstructural 

integrity of single tracts was not predictive of any of the five social network position 

characteristics, even when a relaxed threshold for determining significance was used (see 

Methods). This procedure was also repeated using the set of predictors derived from the 

TRACULA analysis, and this analysis also returned null results.  

          The results of our primary analysis demonstrate that distributed patterns of white matter 

microstructural integrity across tracts in brain networks supporting social and affective processes 

are predictive of structural characteristics of people’s positions in their real-world social 

networks. Specifically, patterns of white matter microstructural integrity amongst white matter 

tracts between brain regions associated with affective processing and mirroring were predictive 

of the extent to which individuals connect otherwise unconnected people and the extent to which 

individuals are well-connected to other well-connected people in their real-world social 

networks, above and beyond the effects of demographic variables and extraversion (Fig. 4). 
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Discussion 

Patterns of white matter microstructure may shape sociobehavioral tendencies linked to social 

network position characteristics 

These findings expand on past work demonstrating that various social network position 

characteristics are heritable individual difference variables that are stable across contexts (Burt, 

2012; Fowler et al., 2009). The genetic basis of social network position characteristics may 

operate in part via individuals’ passive characteristics, which influence how others behave 

toward them (e.g., their appearance). Consistent with this possibility, physical attractiveness has 

been shown to be predictive of social status, popularity, and social acceptance (Kleck et al., 

1974; Lerner & Lerner, 1977; Salvia et al., 1975; Webster & Driskell, 1983), and people can 

somewhat accurately infer aspects of strangers’ social network position characteristics (i.e., in-

degree centrality and constraint) based on their physical appearance (Alt et al., 2021). On the 

other hand, the genetic basis of social network position characteristics may also manifest through 

active characteristics–e.g., sociobehavioral tendencies that facilitate the occupation of certain 

social network position characteristics (Jackson, 2009). For example, such active characteristics 

might include an individual’s sociability, their tendency to introduce their friends to one another, 

the extent to which they express empathy toward others, their propensity to engage in behavioral 

mimicry in social interactions, or some combination of these factors. Individual differences in 

such sociobehavioral tendencies are likely driven by individual differences in brain structure, but 

little is known about the relationship between neuroanatomy and social network position 

characteristics. 
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Past research has demonstrated that out-degree centrality is linked to individual 

differences in structural properties of brain regions and white matter connectivity (Bickart et al., 

2011; Hampton et al., 2016; Kanai et al., 2012; Noonan et al., 2018; Von der Heide et al., 2014). 

The studies referred to here linked individual differences in neural predictors to social network 

size, which was measured in a variety of ways. However, these different measures of social 

network size all correspond to out-degree centrality. Thus, we use the more precise term out-

degree centrality here (since the term network size would imply something different, for 

example, in sociocentric networks, such as those characterized here, than in egocentric 

networks). To characterize out-degree centrality, these studies used an egocentric network 

approach, in which participants enumerate their contacts via free recall or the number of friends 

that participants have in online communities. This work has yielded important insights into the 

relationship between brain structure and sociality. At the same time, such approaches have 

important limitations. For example, it is difficult to disentangle variability in out-degree 

centrality (self-reported network size) from individual differences in social perception or 

memory (when self-report is used) or from individual differences in engagement with a 

particular online platform (when number of friends on social media websites is used) (Baek et 

al., 2021; Beaulieu, 2002; Brewer, 2000; Brewer & Garrett, 2001; Burt, 1984; Marsden, 1990, 

2003). In contrast, the sociocentric network approach used here incorporates data on social ties 

provided by each individual in the network and can be used to calculate characteristics of 

individuals’ social network position that take into account broader patterns of social ties (e.g., 

third party relationships). Thus, the sociocentric network approach can complement the 

egocentric network approach by capturing a more complete picture of a social network, thereby 



 43 

expanding the types of inferences that can be drawn about people’s relative social network 

position characteristics. 

Research in sociology and ecology has demonstrated that social network position 

characteristics whose calculation often depends on sociocentric network data (e.g., in-degree 

centrality, eigenvector centrality, constraint, betweenness centrality) have particularly impactful 

consequences in real-world social networks. These include measures of evolutionary fitness and 

likelihood of survival across a variety of social species (Brent et al., 2013; Stanton & Mann, 

2012), as well as social influence (Brass, 1984), professional success (Brass, 1984; Burt, 1994, 

1997), others’ perceptions of one’s competence and leadership (Burt, 2004; Mehra et al., 2006), 

and the likelihood of becoming the target of negative gossip and scapegoating (Ellwardt et al., 

2012). Furthermore, whereas out-degree centrality has not been found to be heritable, other, 

often sociocentrically-derived, social network position characteristics have been shown to be 

heritable individual difference variables (Fowler et al., 2009). Thus, the latter may constitute 

stable traits that are relatively invariant across contexts (Burt, 2012). Indeed, a growing body of 

research has integrated sociocentric network analysis and neuroimaging to demonstrate that 

people spontaneously encode and track the extent to which others hold positions of in-degree 

centrality (Morelli et al., 2018; Zerubavel et al., 2015), eigenvector centrality, and brokerage 

(Parkinson et al., 2017) in real-world social networks. These findings suggest that individuals 

spontaneously retrieve complex knowledge about people’s relative social network position 

characteristics that may be crucial for informing cognition and behavior. However, the neural 

predictors and sociobehavioral tendencies associated with such social network position 

characteristics are not well understood in social neuroscience and psychology, given that the data 

necessary to calculate these characteristics (i.e., sociocentric network data) is seldom collected. 
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Patterns of white matter microstructural integrity in brain networks supporting socio-affective 

processing predict social network position characteristics 

The localization of the current results can shed light on the types of active characteristics, 

or sociobehavioral tendencies, that may be associated with particular social network position 

characteristics. In particular, patterns of microstructural integrity of white matter tracts in the 

affective processing and mirroring networks were predictive of constraint (an inverse measure of 

brokerage), beyond the effects of demographics (age, gender), handedness, cohort, and 

extraversion. Brokers connect people who would not otherwise be connected and thus wield 

leverage in controlling the flow of resources (e.g., information) and in coordinating behavior 

across local social ties (Burt et al., 2013). Given that occupying positions of brokerage involves 

interacting with different groups of people, brokers may be exceptionally skilled in adapting their 

thoughts and behavior to meet the variable demands of their diverse social environment. Indeed, 

past work has shown that across different contexts, people occupying positions of brokerage are 

characteristically high in self-monitoring (Kleinbaum et al., 2015; Mehra et al., 2001; Oh & 

Kilduff, 2008; Sasovova et al., 2010), which is associated with an intuitive sensitivity to subtle 

social cues and with the ability to modify one’s behavior to adapt to social circumstances 

(Lennox & Wolfe, 1984; Snyder, 1974). Individuals high in self-monitoring have been shown to 

closely monitor the thoughts, actions, and feelings of people around them (Funder & Harris, 

1986; Ickes et al., 1990) and also invest considerable effort in providing emotional help (Toegel 

et al., 2007) and advice (Flynn et al., 2006) to their contacts. Such sociobehavioral tendencies 

may be driven by individual differences in patterns of white matter microstructural integrity 

across the affective processing and mirroring networks. The affective processing network may 
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support the monitoring and interpretation of emotions and the regulation of one’s own emotions 

(Gross, 2015; Parkinson & Wheatley, 2014; Zaki et al., 2009), and the mirroring network may 

mediate the representation, understanding, and mimicry of the actions of others (Friston et al., 

2011; Iacoboni et al., 1999; Rizzolatti & Craighero, 2004). Given that brokers are highly attuned 

to cues of situational appropriateness, they are likely exceptionally skilled at accurately 

perceiving and interpreting the emotions and actions of others. Brokers may also be particularly 

likely to exhibit social chameleon-like behavior such that they engage in nonconscious mimicry 

and imitate the behaviors of their social contacts. Such behavior has been shown to be associated 

with increased mutual feelings of affiliation, rapport, and liking (Lakin et al., 2003) and would 

be conducive to bridging disparate groups of people that may behave in different ways. 

Additionally, patterns of microstructural integrity of white matter tracts in the mirroring 

network were predictive of eigenvector centrality, a prestige-based measure of centrality that 

takes into account not only an individual’s own centrality but also the centralities of their 

contacts (Bonacich, 1987). Given the relative dearth of previous research investigating cognitive 

and behavioral traits associated with eigenvector centrality, the link between eigenvector 

centrality and the cognitive and behavioral tendencies associated with the mirroring network is 

unclear. However, being highly attuned to social cues and having the ability to effectively 

understand and imitate the actions of others may be particularly characteristic of individuals 

occupying positions of high eigenvector centrality, as such tendencies are conducive to being 

well-liked (Lakin et al., 2003) and may also lead to the formation and maintenance of social ties 

with other well-connected individuals. 

Patterns of white matter microstructure were not significantly predictive of out-degree 

centrality, in-degree centrality, and betweenness centrality beyond the effects of covariates. 
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While it is difficult to interpret null findings, we note that this may be attributable to a variety of 

factors. For example, given that a sociocentric network approach was used here, participants only 

enumerated contacts within their bounded social network; thus, the measure of out-degree 

centrality used here was limited to capturing nominations of friends within the social network. 

While the bounded social networks characterized here were composed of people in a rural, 

isolated location who largely live, eat, socialize, and study with one another (see Methods), 

participants may have had friends outside of their academic cohorts that were not characterized. 

It is possible that patterns of white matter microstructure in social processing networks would be 

predictive of out-degree centrality if friendships with people outside of participants’ academic 

cohorts were taken into account. Alternatively, more targeted analyses in tracts defined a priori 

may yield significant predictions of out-degree centrality, whereas the current study corrected for 

multiple comparisons across multiple sets of analyses. 

Patterns of white matter microstructural integrity were also not predictive of in-degree 

centrality, but they were significantly predictive of eigenvector centrality. This suggests that 

individual differences in patterns of white matter microstructural integrity are related to 

individual differences in characteristics of the social network position that take into account 

indirect relationships and broader patterns of social ties (i.e., being well-connected to well-

connected others) that go beyond more local characteristics (i.e., the number of direct 

nominations one receives from others). 

At the same time, consistent with the possibility that constraint, as a more local measure 

of brokerage, is more strongly related to individuals’ sociobehavioral tendencies (in contrast to 

betweenness centrality, a measure of brokerage that can be impacted by more distal factors, such 

as lying on the shortest path between others due to being close to a true broker41), patterns of 
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white matter microstructural integrity were not predictive of betweenness centrality, but were 

predictive of constraint. 

  

Patterns of white matter microstructural integrity in the mentalizing network did not predict 

social network position characteristics 

While patterns of white matter microstructural integrity within the affective processing 

and mirroring networks were predictive of social network position characteristics when 

controlling for covariates, those in the mentalizing network were not. Thus, structural 

characteristics of individuals’ positions in their social networks appear to be linked to 

connectivity in brain networks involved in rapid, automatic processes involved in understanding 

and relating to others and their emotional states (e.g., mirroring and affective processing), but not 

in those supporting more cognitive facets of interpersonal understanding. Understanding cues to 

the internal states of others – i.e., the construct of empathy – may be broken down into emotional 

and cognitive empathy, which are distinct processes with distinct neural mechanisms (Barrett et 

al., 2016; Decety & Jackson, 2004; Shamay-Tsoory, 2011; Yu & Chou, 2018; Zaki & Ochsner, 

2012). On the one hand, regions in the putative human mirror neuron network support emotional 

empathy, which is an automatic, rapid process that mediates one’s emotional, sensorimotor, and 

visceral response to the affective state of another person. On the other hand, a different set of 

brain regions supports cognitive empathy, which is a comparatively slow, effortful process that 

mediates one’s conscious ability to understand or explicitly recognize the mental states (e.g., 

perspectives, intentions) of others (Barrett et al., 2016; Lin et al., 2010; Neumann & Strack, 

2000; Yu & Chou, 2018). 



 48 

Here, empathy was one of the terms used to define brain regions in the mentalizing 

network (see Methods). Whereas this term may have yielded brain regions associated with both 

cognitive and emotional empathy, terms such as mirror neuron and mirror that were used to 

define regions in the mirroring network are aligned with emotional, but not cognitive, empathy. 

Thus, it is possible that individual differences in patterns of white matter microstructural 

integrity in the mirroring network reflect individual differences in emotional empathy (and not 

cognitive empathy) and that these individual differences are linked to individuals’ social network 

position characteristics. Indeed, past work has shown that individual differences in the 

microstructural integrity of white matter tracts connecting perception and action-related regions 

(i.e., regions in the mirroring network) and regions involved in affective processing are 

predictive of emotional, but not cognitive, empathy62. In contrast, individual differences in 

patterns of white matter microstructural integrity in the mentalizing network likely at least 

partially reflect individual differences in cognitive empathy. It is possible that cognitive empathy 

is not linked to people’s social network position characteristics. It is also possible that cognitive 

empathy relies on more domain-general neural mechanisms (Decety & Lamm, 2007; Schneider 

et al., 2012), whereas emotional empathy relies on more domain-specific neural circuitry 

(Decety, 2011), which could make associations between cognitive empathy and its structural 

correlates less robust than those between emotional empathy and its structural correlates. 

Furthermore, a limitation of the current study is that a group-level meta-analytic map was used to 

define regions of interest associated with the mentalizing network. However, recent work has 

demonstrated that the spatial specificity of the mentalizing network is highly heterogeneous 

across individuals (Y. Wang et al., 2021). This finding may explain the current study’s null 

results when using patterns of white matter microstructural integrity within the mentalizing 
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network to predict social network position characteristics, and future work may benefit from 

using functional localizers to identify mentalizing regions of interest that would be used as seed 

regions in probabilistic tractography.  

  

Conclusions and future directions 

We suggest that future work build on the current findings by examining the extent to 

which individual differences in the processes supported by the aforementioned brain networks 

(e.g., emotional empathy, facets of affective processing, such as empathic accuracy) mediate the 

relationship between brain structure and social network position characteristics. Future work 

should also examine the extent to which individual differences in brain structure precede or 

result from individual differences in social network position characteristics. It is possible that 

brokers attain their advantageous social network position characteristics through distinctive 

capacities for interpersonal understanding, which are reflected in structural characteristics of 

brain networks involved in mirroring and affective processing. It is also possible that occupying 

a high-brokerage position in one’s social network places more demands on one’s capacity for 

social and affective information processing (e.g., due to the need to be sensitive to differing 

social and emotional cues in different social groups and to flexibly modulate one’s behavior to 

suit different contexts). Over time, this may lead to structural differences in the brain networks 

that support such processing.  

In addition, while the current study pooled data from three different bounded 

communities, all participants were graduate students at a university in the United States. Future 

work could extend these findings by examining the relationship between white matter 

microstructure and social network position characteristics in different cultural settings and at 
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different stages of development. Furthermore, given a large enough sample size, future work 

would also benefit from training and testing models on different samples of individuals, as this 

would shed light on whether relationships between white matter microstructural integrity and 

social network position characteristics are consistent across contexts and communities. 

Additionally, while the current study used FA as a measure of microstructural integrity, future 

work may benefit from testing if other measures of white matter microstructure, such as axial 

diffusivity, mean diffusivity, radial diffusivity, or the number of probabilistic tractography 

streamlines are predictive of social network position characteristics.  

Future work may also benefit from using functional localizers to identify seed regions of 

interest, as the location of functionally defined brain regions may vary from person to person 

(Fedorenko et al., 2010). In particular, aspects of the mentalizing network have recently been 

shown to vary substantially across individuals (Y. Wang et al., 2021). Thus, using functional 

localizers to define subject-specific seed regions of interest would likely confer greater 

sensitivity for detecting systematic links between patterns of white matter microstructural 

integrity and traits such as social network position characteristics. Furthermore, with functionally 

localized subject-specific ROIs, it is also possible to test if the size of ROIs may systematically 

affect FA-based prediction of social network position characteristics.  

Additionally, the current work focused on patterns of white matter microstructure across 

tracts within brain networks, as it was motivated by an interest in linking individuals’ social 

network position characteristics to anatomical connectivity among brain regions involved in 

particular mental functions (e.g., linking characteristics of tracts connecting brain regions 

involved in affective processing to measures of social network centrality). We did not test 

whether patterns of white matter microstructure across functionally defined tracts between brain 
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networks were predictive of social network position characteristics. It is conceivable that patterns 

of white matter microstructure across between-network tracts and, correspondingly, interactions 

between different mental functions (to the extent that tracts between such networks support 

interactions between the corresponding mental functions), also play an important role in shaping 

social behavioral tendencies and therefore an individual’s social network position characteristics. 

We did, however, find that patterns of white matter microstructure across TRACULA-defined 

major white matter tracts were predictive of social network position characteristics. Future work 

could benefit from specifically considering tracts between different functionally defined brain 

networks. 

Our exploratory analyses indicated that no single white matter tract in particular was 

necessary for predicting social network position characteristics. Furthermore, no single white 

matter tract was sufficient for predicting social network position characteristics on its own. 

Rather, our results suggest that patterns of microstructural integrity values derived from a 

multivariate set of white matter tracts were necessary for predicting social network position 

characteristics. These findings expand on recent neuroimaging research demonstrating the utility 

of data-driven machine learning models in mapping relationships between multivariate sets of 

neural predictors and person-level outcomes. Such data-driven predictive modeling frameworks 

have been adopted to link functional neuroimaging data to a wide range of social, cognitive, and 

behavioral traits (Beaty et al., 2018; Christov-Moore et al., 2020; Finn et al., 2015; Meskaldji et 

al., 2016; Miranda-Dominguez et al., 2014; Rosenberg et al., 2015). In particular, recent work 

has demonstrated that whole-brain patterns of resting-state functional connectivity are predictive 

of one’s location in a real-world social network (Hyon, Youm, et al., 2020). Taken together with 

the current results, these findings suggest that applying machine learning to high-dimensional 
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neuroimaging data is a fruitful approach for gaining insight into how brain structure and function 

relate to individuals’ positions in their real-world social networks. 

 

 

Methods 

Social network characterization 

Subjects in Part 1 of the study were from three different cohorts of first-year students in a 

graduate program at a private university in the United States who participated as part of their 

coursework on leadership. The total size of all three cohorts was 842 students, and 839 students 

participated in the social network survey, resulting in an overall response rate of 99.6% (NCohort-1 

= 275, 91 females, response rate = 99.3%; NCohort-2 = 279, 89 females, response rate = 100%; 

NCohort-3 = 285, 120 females, response rate = 99.7%). For each cohort, an online social network 

survey was administered 3-4 months after the subjects had arrived on campus. Subjects followed 

an e-mailed link to the study website where they responded to a survey designed to assess their 

position in the social network of students in their cohort of the academic program. The survey 

was adapted from prior work (Burt, 1994; Hyon, Kleinbaum, et al., 2020; Parkinson et al., 2017, 

2018). It read, “Consider the people with whom you like to spend your free time. Since you 

arrived at [institution name], who are the classmates you have been with most often for informal 

social activities, such as going out to lunch, dinner, drinks, films, visiting one another’s homes, 

and so on?” A roster-based name generator was used to avoid inadequate or biased recall. 

Subjects indicated the presence of a social tie with an individual by placing a checkmark next to 

their name. Subjects could indicate any number of social ties and were not constrained by a time 

limit. The bounded social networks characterized here were composed of people in a rural, 
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isolated location who predominantly lived, ate, socialized, and studied with one another. 

However, the social network survey used here inquired only about students’ interactions with 

other members of their academic cohort. Thus, the current approach does not capture the 

students’ social ties that exist outside of their cohort of classmates (e.g., relationships with family 

members, friends outside of the program). That being said, the current study was conducted at a 

relatively insular and remotely located institution where subjects’ contacts outside of campus 

likely play a smaller role in their daily lives relative to their everyday, in-person interactions with 

their classmates. All data collection procedures were performed in accordance with the standards 

of the Dartmouth College Institutional Review Board. 

Each cohort’s social network data was analyzed using igraph in R (Csárdi & Nepusz, 

2014). The social networks of the three cohorts are depicted in Fig. 1. Five social-network-

derived metrics were calculated for each subject who participated in the neuroimaging study (see 

Part 2: Neuroimaging study): out-degree centrality, in-degree centrality, eigenvector centrality, 

betweenness centrality, and constraint. An unweighted graph was used to calculate each of these 

social network position characteristics for each subject, as described in greater detail below. For 

descriptive purposes, for each cohort’s social network, we then calculated the mean and median 

numbers of social ties across individuals (i.e., average total degree centrality, summing incoming 

and outgoing ties for each individual) and the reciprocity of the graph, which refers to the 

probability that person i nominated person j as a friend if person j nominated person i as a friend 

(mean social tiesCohort-1 = 91, median social tiesCohort-1 = 77, reciprocityCohort-1 = 0.53; mean social 

tiesCohort-1 = 78, median social tiesCohort-1 = 70, reciprocityCohort-1 = 0.49; mean social tiesCohort-1 = 

55, median social tiesCohort-1 = 46, reciprocityCohort-1 = 0.48).  
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Social network position characteristics 

Out-degree centrality. The out-degree centrality of an individual was calculated as the 

sum of the individual’s outgoing social ties (i.e., the number of people whom the individual 

nominated). 

In-degree centrality. The in-degree centrality of individual was calculated as the sum of 

individual’s incoming social ties (i.e., the number of times the individual was nominated by 

others). 

Eigenvector centrality. A graph consisting of nodes connected by edges can be 

characterized by an adjacency matrix A, populated by elements such that aij = 1 if nodes i and j 

are directly connected, and aij = 0 if these nodes are not connected. The eigenvector centrality of 

each node is given by the eigenvector of A in which all elements are positive. The requirement 

that all elements of the eigenvector must be positive yields a unique eigenvector solution (that is, 

that corresponding to the greatest eigenvalue). Here, when computing eigenvector centrality, the 

directionality of the graph was preserved; in the event of asymmetric relationships, only 

incoming, rather than outgoing, ties were used to compute eigenvector centrality. 

Betweenness centrality. The betweenness centrality of an individual was calculated as the 

proportion of shortest paths between two given nodes that pass through the individual. An 

unweighted, undirected graph was used to estimate betweenness centrality. 

Constraint. The constraint of actor i is given by the following equation, where Pij 

corresponds to the proportion of i’s direct social ties accounted for by their tie to actor j. The 

inner summation approximates the indirect constraint imposed on i by other actors, q, who are 

socially connected to both i and j (mutual friends of i and j): 
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An unweighted, undirected graph was used to estimate constraint; that is, the presence of 

any social tie, irrespective of its direction or if it was reciprocated, was used to compute the 

constraint of each node. Constraint was then negated to yield a measure of network brokerage. 

All social network position characteristic data were normalized (z-scored) within-cohort. 

These data were then concatenated across all three cohorts. For each of the social network 

position characteristics, we then applied the square-root transformation, given that the 

distributions for each of the social network position characteristics were positively skewed. 

Correlations between social network characteristics are reported in Appendix - Table 1.  

  

Neuroimaging subjects 

A subset of 130 individuals who had completed Part 1 of the study completed a subsequent 

dMRI study (nCohort-1 = 54; nCohort-2 = 36; nCohort-3 = 40). Subjects in cohort 1 were scanned 6-7 

months after their arrival on campus, subjects in cohort 2 were scanned 7-8 months after their 

arrival on campus, and subjects in cohort 3 were scanned within the first month of their arrival 

on campus. Subjects provided informed consent in accordance with the policies of the 

institution’s ethical review board. Of the 130 subjects, data from 18 subjects were excluded from 

analysis due to excess movement. Data from the resulting 112 subjects (40 female) aged 24-35 

(M = 27.78, SD = 2.01) were used for analysis. The neuroimaging study was advertised to all 

students in each cohort via email. All students who were interested in participating and who 

passed a standard MRI safety screening participated in the DTI scan. 
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dMRI acquisition 

Magnetic resonance imaging was conducted with a Philips Achieva 3.0 Tesla scanner 

using a 32-channel phased array head coil. Diffusion-weighted images were collected using 70 

contiguous 2 mm thick axial slices with 32 diffusion directions (91 ms TE, 8845 TR, 1000 s/mm2 

b-value, 240 mm FOV, 90° flip angle, 1.875 mm x 1.875 mm x 2 mm voxel size). Thirty-three 

diffusion-weighted volumes were collected per subject. High-resolution anatomical images were 

also acquired using a T1-weighted MPRAGE protocol (8.2 s TR; 3.7 ms TE; 240 x 187 FOV; 

0.938 mm x 0.938 mm x 1.0 mm). 

  

Diffusion tensor imaging 

We performed standard preprocessing steps using the Diffusion toolbox in FSL 5.0.10 

(Behrens et al., 2003), which included brain extraction, eddy current correction, and motion 

correction. We then used FSL’s dtifit to fit a diffusion tensor model at each voxel to generate an 

FA map for each subject (FA serves as a general marker of white matter microstructural 

integrity) (Beaulieu, 2002). We also used FSL’s BEDPOSTX (Behrens et al., 2003, 2007) to 

model crossing fibers and white matter fiber orientations in each voxel. Both linear and non-

linear methods were used to align subjects' fractional anisotropy images in native space to 

MNI152 standard space. FSL FLIRT (12 degrees of freedom, corratio cost function) was used to 

generate an affine transformation matrix to align fractional anisotropy images to T1 anatomical 

images. FSL FLIRT was used to generate an affine transformation matrix to align T1 space to 

MNI152 standard space, and FSL FNIRT used this "affine guess" to generate a non-linear 

warpfield to align T1 space to MNI152 standard space. FSL FNIRT was then used to apply the 
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first affine FLIRT matrix (i.e., native space to T1 space transform) and the FNIRT warpfield in 

one step to transform fractional anisotropy images to MNI152 standard space.  

  

Defining social processing networks: ROI definition and probabilistic tractography 

Probabilistic tractography was conducted to reconstruct white matter tracts between ROIs 

associated with each of four facets of social processing: affective processing, mirroring, 

mentalizing, and face perception. This process was used to define the affective processing, 

mirroring, mentalizing, and face perception networks (i.e., each of the four sets of ROIs, and the 

tracts connecting its constituent regions). A schematic of this procedure is visualized in Fig. 2. 

Keywords were submitted to Neurosynth (Yarkoni et al., 2011) to generate whole-brain 

meta-analysis-based images of networks of brain regions involved in affective processing 

(emotion, valence, affective, mood, arousal), mirroring (action observation, mirror neuron, 

mirror), mentalizing (theory of mind, mentalizing, empathy), and face perception (faces, face 

recognition, face). For each brain network, the meta-analysis-based images associated with each 

keyword were aggregated, and the FSL cluster command was used to identify the discrete ROIs 

in each of the aggregated meta-analysis images. The FSL FLIRT and FNIRT commands were 

used to transform ROIs from standard space to each subject’s native diffusion space. This 

method provides an approximation of the location of a given ROI if it had been mapped with 

fMRI in each individual. Each ROI was then dilated by a single voxel and was masked using a 

brain mask in order to create more liberal ROI masks to ensure that ROIs would extend into 

neighboring white matter. Due to being exceptionally large and/or spanning multiple regions, a 

small subset of ROIs were then masked using subject-specific anatomical masks generated using 

the Freesurfer anatomical parcellation algorithm (Desikan et al., 2006; Fischl, 2012; Fischl et al., 
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2002) in order to split the ROI into smaller constituent ROIs, which were subsequently used for 

analysis. Details regarding the size of each ROI, the anatomical regions associated with each 

ROI, and whether the ROI was masked using subject-specific anatomical masks are provided in 

Appendix - Tables 2-5.  

For each brain network, the FSL probtrackx2 command was then used to perform 

probabilistic tractography between every possible pair of ROIs within each of the left and right 

hemispheres (i.e., tractography was not performed to trace inter-hemispheric tracts), with a 

contralateral hemisphere exclusion mask and a brainstem exclusion mask. Two-mask seeding 

was used, and 1,000 probabilistic tract streamlines were taken at each voxel within each mask, 

which allows resulting tractography maps to include streamlines originating from and 

terminating in each ROI. For each proposed white matter tract, if more than half of the subjects 

yielded zero fiber tracts (i.e., if more than half of the subjects did not have a valid tracing), the 

corresponding white matter tract was excluded from further analysis. The remaining output 

connectivity distribution maps were divided by the corresponding total number of existing 

streamlines to normalize and convert the images into probabilistic maps. These probabilistic 

maps were then thresholded such that all voxels with a probability below 1% were zeroed in 

order to reduce false-positive fiber tracts. The resulting probabilistic maps were then binarized 

within each subject and summed across all subjects in standard space to create group-level 

tractography images. The group-level tractography images were manually inspected to determine 

thresholds that minimized spurious connections. Tracts that were identified as spurious upon 

manual inspection were excluded from further analysis. The resulting group-level images were 

then transformed back into each subject’s native diffusion space. For each subject, we then 

masked the resulting images using subject-specific white matter tissue masks, which were 
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generated by FSL’s FMRIB, conservatively thresholded at 50% in order to eliminate spurious 

white matter, and binarized. For each subject, FA values were extracted from each voxel from 

each white matter tract image using subject-specific FA maps thresholded at 0.2, which is a 

standard practice to create conservative FA maps. The resulting FA values were averaged across 

voxels within each tract to yield a single FA value reflecting the microstructural integrity of a 

given white matter tract. 

  

Structural connectome-based predictive modeling of social network position characteristics 

We tested if inter-individual variability in patterns of white matter microstructural 

integrity would be predictive of individuals’ positions in their real-world social network (Fig. 3). 

That is, the independent variables consisted of a multivariate set of predictors measuring white 

matter microstructural integrity, and the outcome variable consisted of a given social network 

position characteristic. We used Scikit-learn (Pedregosa et al., 2011) to implement the predictive 

modeling analysis. Using Scikit-learn’s Pipeline function, we created an algorithm that 

performed two steps in sequence on the training data for each fold (models fit to each fold’s 

training data were used to predict social network position characteristics based on white matter 

microstructural integrity values in the corresponding testing data): (1) normalize the predictors 

using Scikit-learn’s StandardScaler function (which subtracts the mean and scales to unit 

variance) and (2) implement ridge regression. Given the multicollinearity among the predictors, 

regularized ridge regression was used. We used a nested cross-validation scheme to perform 

hyperparameter tuning using a grid search procedure (i.e., optimizing the lambda (λ) 

regularization hyperparameter from a grid/range of values logarithmically spaced between 10-5 

and 10), such that the training data of each of the 10 outer data folds was further subdivided into 
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10 inner folds consisting of sub-training and validation datasets. Within each of these inner folds, 

for each hyperparameter value provided in the hyperparameter grid, the algorithm was trained on 

the sub-training data and tested on the validation data. The hyperparameter value used in the 

model with the best performance across all validation sets was identified as the optimal 

hyperparameter for the corresponding outer training fold. Using this optimal hyperparameter, the 

algorithm was trained on the outer fold’s training data and tested on the outer fold’s testing data. 

This process was repeated independently for each of the ten outer data folds. This procedure 

yielded a predicted social network position characteristic value for each subject in the sample. 

Out-of-sample performance was evaluated by calculating the Pearson r-value between predicted 

and actual social network position characteristic values. All reported p-values reflect one-sided 

tests of if participants’ actual social network position characteristics were positively associated 

with the social network position characteristics predicted by the tra 

ined models, based on participants’ dMRI data (negative associations would not be 

interpreted in this context). Given that we tested if patterns of white matter microstructural 

integrity associated with brain networks were predictive of five different social network position 

characteristics, we corrected for multiple comparisons across these five sets of statistical tests 

using FDR thresholding. 

To test whether inter-individual variability in patterns of white matter microstructural 

integrity would be predictive of social network position characteristics above and beyond the 

effects of demographics and extraversion, we repeated the analysis described above while 

controlling for age, gender, handedness, cohort, and self-reported extraversion. Extraversion was 

assessed using the relevant items of the Big Five 44-item inventory (O. P. John et al., 2008b). 
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Testing whether any single white matter tracts were necessary for predicting social network 

position characteristics 

The primary results demonstrate that patterns of microstructural integrity distributed 

across white matter tracts in the affective processing network are predictive of constraint, and 

that patterns of microstructural integrity distributed across white matter tracts in the mirroring 

network are predictive of constraint and eigenvector centrality, even while controlling for 

variables including age, gender, handedness, cohort, and extraversion. Thus, in these three 

models (two models predicting constraint; one model predicting eigenvector centrality), we 

tested if any predictors (i.e., where a predictor corresponds to the microstructural integrity of a 

given white matter tract) in particular were disproportionately contributing to significant 

predictions of social network position characteristics. 

For each of the three models mentioned above, the following procedure was 

implemented. We created P additional ‘leave-one-tract-out’ models where P reflects the number 

of predictors (tracts) in the corresponding full model. Each of these additional models excluded 

one of the P predictors that had been included in the corresponding full model such that the 

number of predictors in the resulting leave-one-tract-out model was equal to P - 1. The 

permutation testing procedure used in the primary analysis was then used to calculate the 

performance of each of the P leave-one-tract-out models in predicting the relevant social 

network position characteristic. For each of the P leave-one-tract-out models, the difference in 

the model’s predictive performance (i.e., the r-value measuring the correlation between predicted 

and actual values) and that of the full model was calculated. We then tested the statistical 

significance of this difference in predictive performance (i.e., tested if excluding a given 

predictor significantly diminished the full model’s performance). To this end, we used a 
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permutation testing procedure where social network position characteristics were randomly 

shuffled across subjects in each of 1,000 permuted datasets. Here, in each permuted dataset, r-

values were obtained for the full model and for each of the P leave-one-tract-out models. For 

each of the leave-one-tract-out models, we then calculated the difference between its r-value and 

that of the full model within each permuted dataset; this produced a null distribution of 1,000 

difference values for each of the leave-one-tract-out models. We then calculated a p-value 

measuring the frequency with which the true difference value was greater than the permuted 

difference values in this null distribution. 

  

Testing whether any single white matter tracts alone were sufficient for predicting social 

network position characteristics 

We next tested if the microstructural integrity of any single white matter tract in the 

social processing brain networks defined above was alone sufficient to predict social network 

position characteristics while controlling for extraversion and demographics. To do so, we used 

Scikit-learn (Pedregosa et al., 2011) to implement ordinary least squares regression in a 

predictive modeling framework. There were 173 white matter tracts in total across the four 

examined brain networks. Thus, to test if microstructural integrity of each of these 173 white 

matter tracts were predictive of the five social network position characteristics (out-degree 

centrality, in-degree centrality, eigenvector centrality, betweenness centrality, and constraint), we 

conducted 865 statistical tests. 

For each statistical test, we used Scikit-learn’s Pipeline function to create an algorithm 

that performed two steps in sequence on the training data for each fold (models fit to each data 

fold’s training data were used to predict social network position characteristics based on the 
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white matter microstructural integrity value in the corresponding testing data; see “Structural 

connectome-based predictive modeling of social network position characteristics” for details of 

the data-folding procedure): (1) normalize the predictors using Scikit-learn’s StandardScaler 

function and (2) implement linear regression. Out-of-sample performance was evaluated by 

calculating the Pearson r-value between predicted and actual social network position 

characteristic values. All reported p-values reflect one-sided tests of if participants’ actual social 

network position characteristics were positively associated with those predicted by each trained 

single-tract model (negative associations would not be interpreted in this context). To correct for 

multiple comparisons across all 865 statistical tests, we used FDR thresholding. This procedure 

corrects for the total number of models tested and corresponding results indicated that data from 

single tracts could not predict social network position characteristics, unlike the data from 

distributed patterns of tracts used in our main analyses. At the same time, we note that the 

threshold used in these exploratory single-tract analyses (correcting for multiple comparisons 

across 865 statistical tests) was much more conservative than that used in our main analyses, 

where predictors from each brain network were combined into a single model to predict each 

examined social network position characteristic. Therefore, as an additional point of comparison, 

we also examined results of single-tract analyses using a less conservative threshold for 

determining statistical significance: Given that we tested if microstructural integrity associated 

with single tracts was predictive of five different social network position characteristics, we 

corrected for multiple comparisons across these five sets of statistical tests. This relaxed 

threshold yielded identical results to the results obtained using a more conservative threshold 

(see Results and Discussion sections). 
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Appendix 

 

Appendix - Note 1. Assessing relationships between covariates and social network position 

characteristics 

         Statistical tests were performed to investigate if covariates used in the current study were 

significantly associated with social network position characteristics. Associations between each 

social network position characteristic and continuous covariates were tested with Pearson 

correlations; associations between each social network position characteristic and categorical 

variables were assessed with t-tests. 

Age. Age was not significantly associated with out-degree centrality (r = -0.017, p = 

0.855), in-degree centrality (r = -0.106, p = 0.267), eigenvector centrality (r = -0.105, p = 0.271), 

betweenness centrality (r = 0.057, p = 0.551), or constraint (r = -0.089, p = 0.348). 

Gender. Male and female subjects did not significantly differ in their out-degree 

centrality (t(110) = 1.20, p = 0.232), in-degree centrality (t(110) = 1.45, p = 0.783), eigenvector 

centrality (t(110) = 1.45, p = 0.391), betweenness centrality (t(110) = 1.45, p = 0.160), or 

constraint (t(110) = 1.45, p = 0.151). 

Handedness. Left-handed and right-handed subjects did not significantly differ in their 

out-degree centrality (t(110) = 1.60, p = 0.874), in-degree centrality (t(110) = -0.216 p = 0.830), 

eigenvector centrality (t(110) = -0.226, p = 0.822), betweenness centrality (t(110) = 0.765, p = 

0.446), or constraint (t(110) = -0.371, p = 0.711). 

Cohort. Subjects in cohort 1 and subjects in cohort 2 did not significantly differ in their 

out-degree centrality (t(110) = -0.848, p = 0.400), in-degree centrality (t(110) = -0.994, p = 

0.323), eigenvector centrality (t(110) = -0.906, p = 0.368), betweenness centrality (t(110) = -

1.124, p = 0.265), or constraint (t(110) = -0.526, p = 0.600). Subjects in cohort 1 and subjects in 
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cohort 3 did not significantly differ in their out-degree centrality (t(110) = -0.316, p = 0.753), in-

degree centrality (t(110) = -0.282, p = 0.779), eigenvector centrality (t(110) = -0.055, p = 0.957), 

betweenness centrality (t(110) = -0.754, p = 0.454), or constraint (t(110) = -0.971, p = 0.335). 

Subjects in cohort 2 and subjects in cohort 3 did not significantly differ in their out-degree 

centrality (t(110) = 0.507, p = 0.614), in-degree centrality (t(110) =  0.691, p = 0.492), 

eigenvector centrality (t(110) =  0.895, p = 0.373), betweenness centrality (t(110) =  0.310, p = 

0.757), or constraint (t(110) = -0.604, p = 0.547). The lack of significant differences in social 

network position characteristics across cohorts is to be expected given, for example, that we 

normalized data within cohort prior to aggregating data across cohorts for subsequent analyses. 

Extraversion. Extraversion was significantly associated with out-degree centrality (r = 

0.264, p = 0.005), in-degree centrality (r = 0.481, p = 8.00 x 10-8), eigenvector centrality (r = 

0.373, p = 5.16 x 10-5), betweenness centrality (r = 0.330, p = 3.73 x 10-4), and constraint (r = 

0.316, p = 6.95 x 10-4). 

 

Appendix - Note 2. Testing if patterns of white matter microstructure across major white 

matter tracts are predictive of social network position characteristics 

We complemented our main analyses, which were specifically focused on tracts between 

regions implicated in social and affective processing, by conducting an exploratory analysis of 

major, well-established white matter tracts. To do so, we used Freesurfer’s TRActs Constrained 

by UnderLying Anatomy (TRACULA) tool (Yendiki et al., 2011), an algorithm for automated 

global probabilistic tractography, which reconstructs 18 major white matter tracts for each 

subject. We then performed the following procedure to characterize the predictors used in the 

predictive modeling analysis. Each subject’s FA map was thresholded at 0.20. For each subject, 
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each tract was thresholded at 20% of the maximum value, binarized, and used as a mask to 

extract the mean FA from the corresponding subject’s FA image. This procedure yielded 18 

predictors that captured a pattern of white matter microstructural integrity distributed across 

major white matter tracts in each subject’s brain. 

Similar to our main analyses, we first implemented a data-driven, machine learning 

approach to predict individuals’ social network position characteristics based on their patterns of 

microstructural integrity distributed across these 18 well-established white matter tracts using a 

ridge regression-based algorithm (see Methods in the main text). Using a leave-one-subject-out 

cross-validation scheme, the algorithm significantly predicted individuals’ eigenvector centrality 

(r = 0.215, p = 0.011) and betweenness centrality (r = 0.186, p = 0.025) based on patterns of 

white matter microstructural integrity distributed across all 18 white matter tracts (see Methods). 

Each reported correlation value reflects the relationship between the actual social network 

position characteristic values and the values predicted by a given model. This analytical 

procedure was then repeated while controlling for demographic characteristics (age, gender), 

extraversion, handedness, and cohort. Patterns of microstructural integrity across the 18 major 

white matter tracts were significantly predictive of in-degree centrality (r = 0.233, p = 0.007) and 

eigenvector centrality (r = 0.291, p = 0.001) when controlling for these variables. 
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Assessing relations between social network position characteristics 

 Statistical tests were performed to investigate the relationships between the social 

network characteristics. Associations between each social network position were tested with 

Pearson correlations (Appendix -Table 1).  

 

Appendix - Table 1. Correlations between social network characteristics.  

 

Out-degree 

centrality 

In-degree 

centrality 

Eigenvector 

centrality 

Betweenness 

centrality Constraint 

Out-degree 

centrality      

In-degree 

centrality 0.51***     

Eigenvector 

centrality 0.87*** 0.80***    

Betweenness 

centrality 0.89*** 0.59*** 0.76***   

Constraint 0.73*** 0.72*** 0.81*** 0.68***  

Note: Constraint was negated to yield a measure of brokerage.  ***p < .001 
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Appendix - Table 2. Functionally defined ROIs in the affective processing network.  

ROI Label Hemisphere Voxel count Region(s) Notes 

Aff-1 left 99 rostral anterior cingulate cortex  

Aff-2 left 273 ventromedial prefrontal cortex  

Aff-3 left 502 dorsomedial prefrontal cortex  

Aff-4 left 134 insula  

Aff-5 left 729 orbitofrontal cortex  

Aff-6 left 224 amygdala 

Masked using anatomical 

amygdala mask 

Aff-7 left 261 temporal pole 

Masked using anatomical 

temporal pole mask 

Aff-8 left 332 superior frontal gyrus  

Aff-9 left 209 

dorsal-rostral anterior cingulate 

cortex  

Aff-10 right 243 amygdala 

Masked using anatomical 

amygdala mask 

Aff-11 right 86 caudal anterior cingulate cortex  

Aff-12 right 304 dorsomedial prefrontal cortex  

Aff-13 right 147 

dorsal-rostral anterior cingulate 

cortex  

Aff-14 right 981 inferior frontal gyrus  

Aff-15 right 198 insula  

Aff-16 right 106 rostral anterior cingulate cortex  

Aff-17 right 498 temporal pole Masked using anatomical 
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temporal pole mask 

Aff-18 right 262 ventromedial prefrontal cortex  

Note: Where noted, cortical ROIs that were additionally masked using anatomical masks based on the Desikan-

Killiany atlas as implemented in FreeSurfer and subcortical ROIs that were additionally masked based on 

anatomical masks based on automatic subcortical segmentation in FreeSurfer (see Methods for more details) 

(Desikan et al., 2006; Fischl, 2012; Fischl et al., 2002). These masks were generated for each participant using 

FreeSurfer’s recon-all command.  
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Appendix - Table 3. Functionally defined ROIs in the face processing network.  

ROI Label Hemisphere Voxel count Region(s) Notes 

Face-1 left 224 amygdala 

Masked using anatomical amygdala 

mask 

Face-2 left 803 inferior temporal gyrus  

Face-3 left 386 

posterior superior temporal 

sulcus  

Face-4 left 459 occipital pole  

Face-5 left 90 lingual cortex 

Masked using anatomical lingual 

cortex mask 

Face-6 left 798 lateral occipital cortex 

Masked using anatomical lateral 

occipital cortex mask 

Face-7 left 892 fusiform cortex 

Masked using anatomical fusiform 

cortex mask 

Face-8 left 337 inferior temporal cortex 

Masked using anatomical inferior 

temporal cortex mask 

Face-9 right 243 amygdala 

Masked using anatomical amygdala 

mask 

Face-10 right 424 inferior frontal gyrus  

Face-11 right 104 lingual cortex 

Masked using anatomical lingual 

cortex mask 

Face-12 right 980 lateral occipital cortex 

Masked using anatomical lateral 

occipital cortex mask 

Face-13 right 808 fusiform cortex 

Masked using anatomical fusiform 

cortex mask 
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Face-14 right 282 middle temporal cortex 

Masked using anatomical middle 

temporal cortex mask 

Face-15 right 484 inferior temporal cortex 

Masked using anatomical inferior 

temporal cortex mask 

Face-16 right 230 

posterior superior temporal 

sulcus 

Masked using anatomical superior 

temporal sulcus mask 

Face-17 right 160 temporal pole 

Masked using anatomical temporal 

pole mask 

Face-18 right 354 

anterior inferior temporal 

cortex 

Masked using anatomical anterior 

inferior temporal cortex mask 

Note: Where noted, cortical ROIs that were additionally masked using anatomical masks based on the Desikan-

Killiany atlas as implemented in FreeSurfer and subcortical ROIs that were additionally masked based on 

anatomical masks based on automatic subcortical segmentation in FreeSurfer (see Methods for more details) 

(Desikan et al., 2006; Fischl, 2012; Fischl et al., 2002). These masks were generated for each participant using 

FreeSurfer’s recon-all command. 

 

Appendix - Table 4. Functionally defined ROIs in the mentalizing network. 

ROI Label Hemisphere Voxel count Region(s) Notes 

Ment-1 left 1013 precuneus  

Ment-2 left 586 

dorsomedial prefrontal 

cortex  

Ment-3 left 341 

ventromedial prefrontal 

cortex  

Ment-4 left 77 insula  

Ment-5 left 1661 angular gyrus  
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Ment-6 left 733 supramaginal gyrus  

Ment-7 left 459 

posterior superior 

temporal sulcus  

Ment-8 left 154 middle temporal gyrus  

Ment-9 left 676 temporal pole  

Ment-10 right 221 

ventromedial prefrontal 

cortex  

Ment-11 right 820 

dorsomedial prefrontal 

cortex  

Ment-12 right 1024 precuneus  

Ment-13 right 2127 

inferior frontal gyrus, 

dorsal prefrontal cortex  

Ment-14 right 1169 

temporal pole, anterior 

temporal cortex  

Ment-15 right 3374 occipitotemporal cortex  

Ment-16 right 1003 supramaginal gyrus  

Ment-17 right 282 

posterior superior 

temporal sulcus  

Ment-18 right 388 

supplementary motor 

cortex  

Note: Where noted, cortical ROIs that were additionally masked using anatomical masks based on the Desikan-

Killiany atlas as implemented in FreeSurfer and subcortical ROIs that were additionally masked based on 

anatomical masks based on automatic subcortical segmentation in FreeSurfer (see Methods for more details) 

(Desikan et al., 2006; Fischl, 2012; Fischl et al., 2002). These masks were generated for each participant using 

FreeSurfer’s recon-all command.  
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Appendix - Table 5. Functionally defined ROIs in the mirroring network.  

ROI Label Hemisphere Voxel count Region(s) Notes 

Mirr-1 left 1576 lateral occipital cortex  

Mirr-2 left 529 temporoparietal junction  

Mirr-3 left 1439 

precentral gyrus, inferior 

frontal gyrus  

Mirr-4 left 2608 superior parietal lobule  

Mirr-5 left 956 

supramarginal gyrus, 

postcentral gyrus  

Mirr-6 left 703 premotor cortex  

Mirr-7 right 291 

supplementary motor 

cortex  

Mirr-8 right 347 precuneus  

Mirr-9 right 743 premotor cortex  

Mirr-10 right 1123 supramarginal gyrus  

Mirr-11 right 378 temporoparietal junction  

Mirr-12 right 390 lateral occipital cortex  

Mirr-13 right 330 lingual cortex  

Mirr-14 right 1053 

precentral gyrus, inferior 

frontal gyrus  

Mirr-15 right 2766 occipitotemporal cortex  

Mirr-16 right 472 occipital pole  

Mirr-17 right 2872 superior parietal lobule  
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Mirr-18 right 36 posterior cingulate cortex  

Mirr-19 right 542 

supramarginal gyrus, 

postcentral gyrus  

Note: Where noted, cortical ROIs that were additionally masked using anatomical masks based on the Desikan-

Killiany atlas as implemented in FreeSurfer and subcortical ROIs that were additionally masked based on 

anatomical masks based on automatic subcortical segmentation in FreeSurfer (see Methods for more details) 

(Desikan et al., 2006; Fischl, 2012; Fischl et al., 2002). These masks were generated for each participant using 

FreeSurfer’s recon-all command. 
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Chapter 2: Similarity in functional brain connectivity at rest 

predicts interpersonal closeness in the social network of an entire 

village 
 

[Note: This is a copy of the published manuscript: Hyon, R., Youm, Y., Chey, J., Kwak, S., 

Parkinson, C. (2020). Similarity in functional brain connectivity at rest predicts interpersonal 

closeness in the social network of an entire village. Proceedings of the National Academy of 

Sciences of the United States of America. https://doi.org/10.1073/pnas.2013606117.] 

 

Introduction 

Human social networks exhibit a high degree of homophily, such that individuals who are 

close together in their social network (i.e., friends or friends-of-friends, rather than people further 

removed from one another in social ties) tend to be exceptionally similar to one another with 

respect to physical and demographic traits, such as age, gender, and ethnicity (McPherson et al., 

2001). Yet, a common intuition is that friends are similar to each other in ways that go beyond 

readily observable and relatively coarse characteristics, such as demographics. The most 

common method to assess such similarities is the administration of self-report surveys measuring 

how people tend to think and behave (i.e., personality). However, past research has found no 

evidence, or only relatively weak evidence, for a relationship between similarity in personality 

and social network proximity (Feiler & Kleinbaum, 2015; Selfhout et al., 2009). 

A separate body of research using functional magnetic resonance imaging (fMRI) has 

shown that patterns of functional brain connectivity at rest comprise person-specific 

“fingerprints” that capture inter-individual variability in a wide range of social, cognitive, and 

behavioral tendencies and capacities (Beaty et al., 2018; Christov-Moore et al., 2020; Finn et al., 

2015; Meskaldji et al., 2016; Miranda-Dominguez et al., 2014; Rosenberg et al., 2015, 2018). 

These resting-state “functional connectomes” have also been shown to be predictive of 

https://doi.org/10.1073/pnas.2013606117
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individual differences in self-reported personality (Dubois et al., 2018). Given that functional 

connectomes are predictive of an array of cognitive and behavioral phenotypes, inter-individual 

similarities in functional connectomes may reflect similarities in how friends, and more 

generally, people close to one another in their social network, think and behave. Such similarities 

may include those that are not sufficiently captured by widely used self-report surveys, such as 

measures of personality. Thus, fMRI can provide a window into the types of latent similarities 

that are associated with friendship. This approach is particularly promising given recent research 

integrating task-based fMRI and social network analysis, which has shown, for example, that 

when viewing videos, friends, and more generally, people closer together in their real-world 

social network, have exceptionally similar neural responses, which could be indicative of 

similarities in how friends attend to (Lahnakoski et al., 2014), understand (Cantlon & Li, 2013), 

and interpret (Yeshurun et al., 2017) the world (Hyon, Youm, et al., 2020; Parkinson et al., 

2018). Taken together with other recent work (Falk & Bassett, 2017), these findings highlight the 

promise of integrating social network analysis and tools from cognitive neuroscience to improve 

our understanding of how individuals shape and are shaped by the real-world social networks in 

which they are embedded. 

Here, we tested if patterns of neural responding at rest (e.g., individuals’ functional 

connectomes) are associated with proximity between individuals in the social network of an 

entire village (Fig. 1). Specifically, we tested the hypothesis that greater similarity in individuals’ 

functional connectomes would be associated with greater proximity between those individuals in 

the social network. Given the large body of research demonstrating that links between 

interpersonal similarity in a number of cognitive, affective, and behavioral outcomes and social 

network proximity disappear beyond three or four “degrees of separation” (Cacioppo et al., 
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2009; Christakis & Fowler, 2007, 2008; Cole et al., 2012; Fowler & Christakis, 2009, 2010; 

Moussaïd et al., 2015, 2017; J. N. Rosenquist et al., 2011), we focused our analyses on people 

four or fewer “degrees of separation” from one another in the village’s social network (see 

Methods). We also tested if such relationships would persist after controlling not only for 

similarities in demographic characteristics, but also for similarities in self-reported personality 

(i.e., the Big Five personality traits: extraversion, neuroticism, agreeableness, conscientiousness, 

and openness/intellect), which are thought to capture stable individual differences in people’s 

cognitive, affective, and behavioral tendencies (O. P. John et al., 2008a). Although self-report 

personality questionnaires capture much variation in how people tend to think and behave, there 

is considerable variance in such tendencies that is unaccounted for by such questionnaires 

(Paunonen, 2003) and that may be encoded in individuals' functional connectomes. Here, we 

tested if similarity in such latent traits is associated with proximity in a friendship network. 

Additionally, we examined which brain networks were particularly strongly associated with 

social network proximity to inform interpretations of the psychological significance of these 

results, as well as predictions for future research. Finally, given the well-established relationship 

between the physical distance between people and their distance from one another in social ties, 

we tested if geographic distance moderates the relationship between neural similarity and social 

network proximity.  
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Figure 1. Social network characterization. Residents of a rural village located on a small island completed a 

survey in which they indicated their social ties with other individuals in their community. The complete social 

network (N = 798) of the village was reconstructed using this data, and a subset of residents (red nodes; N = 64) 

participated in the fMRI study. Lines (“edges”) indicate the existence of a reciprocated or unreciprocated social tie 

between individuals. For visualization purposes, unweighted edges were used to depict social ties. However, in our 

analyses, edges were weighted by individuals’ ratings of emotional closeness with one another (see Methods). 

 

Results 

The complete social network of individuals living in a rural village community (J. J.-M. 

Lee et al., 2014; Youm et al., 2014) located on a South Korean island consisting primarily of 

older adults was characterized (Fig. 1). The relative homogeneity of this sample with respect to 

demographic characteristics, such as age and race (see Methods), facilitates testing hypotheses 

regarding relationships between neural similarity and social network proximity, above and 

beyond inter-individual similarity in demographic variables (which were further accounted for in 

all statistical analyses). A subset of individuals who participated in the social network survey 

also participated in the fMRI study, in which they underwent resting-state fMRI. Within each 

connected component of the social network, the social network proximity between every unique 
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pair of fMRI participants was calculated; data from pairs of participants within all connected 

components was combined for statistical analyses (Fig. 1; see Methods for further details). We 

then characterized each fMRI subject’s whole-brain resting-state functional connectome (Fig 2a; 

Methods). Inter-subject similarities in functional connectomes were then calculated, and the 

resulting dyadic connectome similarity vectors were subsequently used to predict individuals’ 

social network proximity (Fig 2b; Methods). We also tested for relationships between social 

network proximity and similarity in connectivity within and between functional brain networks 

(see Methods). 
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Figure 2. Functional connectome-based predictive modeling of social network proximity. (a) Subjects’ data 

were resampled to standard space, and the Power et al. (Power et al., 2011) atlas was used to define regions of 

interest (ROIs). Each ROI is associated with one of thirteen functionally defined brain networks, signified by 

different colors. For each fMRI subject, we then calculated pairwise Pearson correlations between neural time series 

extracted from a 15-mm-radius sphere centered on each ROI to form a functional connectivity matrix (i.e., a 

functional connectome). (b) The off-diagonal elements in the upper triangular half of each subject’s functional 

connectome were then flattened into a vector. For each unique pair of fMRI subjects, inter-subject similarity in their 

connectome vectors was measured by calculating pairwise Euclidean distances between corresponding functional 

connectivity values in subjects’ respective connectome vectors. (c) We used a partial least squares regression-based 

algorithm to predict individuals’ social network proximity based on the similarity in their functional connectomes 

(see Methods for further details). 

 

Inter-subject similarity in neural activity predicts social network proximity in the absence of a 

stimulus 
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We first implemented a data-driven, machine learning approach to predict social network 

proximity based on inter-subject similarities in multivariate patterns of resting-state functional 

connectivity distributed across the entire brain using a partial least squares regression (PLSR)-

based algorithm (see Methods for further details). Using a 10-fold cross-validation scheme, the 

algorithm significantly predicted individuals’ social network proximity based on the similarity in 

their functional connectomes, such that the actual proximity between individuals in the social 

network was significantly correlated with what was predicted by the model (r = 0.502, p = 1.322 

× 10-15), while controlling for their similarities in demographic variables, such as age and gender 

(Fig 3a). Given the dependency structure of the data (i.e., the same individual participates in 

multiple dyads), we conducted permutation testing to more conservatively estimate the 

significance of the correlation between real and predicted social network proximity values across 

dyads (see Methods for further details). As shown in Fig. 3b, the true r-value was significantly 

greater than the majority of the 5,000 permuted r-values (p = 0.036). 

Through the algorithm’s dimension reduction procedure (see Methods), 293 unique 

neural similarity predictors were consistently selected across all 10 cross-validation data folds to 

be used in predicting social network proximity (see Methods for further details). As shown in 

Fig. 3c, these predictors measured inter-subject similarity in functional connectivity within and 

between several networks, and predictors associated with the default-mode network (DMN) were 

most frequently selected by the algorithm. The consistently-selected predictors, as well as the 

locations of the most frequently-implicated nodes (e.g., in left ventrolateral prefrontal cortex, the 

left inferior parietal lobule, and left medial prefrontal cortex), are also visualized on “glass brain” 

models in Appendix – Fig. 1. However, given the large number of consistently-selected 

predictors, chord diagrams are provided to convey information about the implicated brain 
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networks (Fig. 3). Similar results were observed when repeating this analytic procedure 

excluding dyads that live in the same residences (ppermutation = .039; Appendix – Fig. 2), such that 

similarity in functional connectomes significantly predicted social network proximity, and 

predictors associated with the DMN were most frequently selected by the algorithm. Similar 

results were also observed when weighting edges by the frequency with which individuals 

communicate with each other (ppermutation = .013; Appendix – Fig. 3) or the frequency with which 

they meet with each other (ppermutation = .002; Appendix – Fig. 4), rather than weighting edges by 

emotional closeness ratings. Functional connectome similarity was not, however, predictive of 

social network proximity when computing social distance in the social network without 

incorporating edge weights that encode relative interpersonal closeness for directly connected 

dyads (i.e., emotional closeness, communication frequency, meeting frequency), as shown in 

Appendix – Fig. 5. 
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Figure 3. Inter-subject similarity in functional connectomes predicts social network proximity. (a) The PLSR-

based algorithm successfully predicted social network proximity from left-out data while controlling for inter-

subject similarities in demographic variables. The algorithm’s predicted social network proximity was significantly 

associated with actual social network proximity. (b) This relationship was significant after conducting permutation 

testing to account for the dependency structure of the data (see Methods for further details). (c) The algorithm 

consistently selected a multivariate pattern that included 293 neural similarity predictors across all ten cross-

validation data folds for predicting social network proximity. These predictors spanned all thirteen functional brain 

networks defined in the Power et al. atlas (Power et al., 2011). (d) A positive relationship between 261 of these 293 

predictors and social network proximity was observed. (e) In contrast, only 32 predictors were negatively associated 

with social network proximity. Note: Colors used for connections between two different brain networks were 

arbitrarily assigned to one of the two implicated networks. 
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Individuals who are close together in their social network share similar functional 

connectomes 

In an exploratory analysis, we assessed the direction of the linear relationship between 

social network proximity and each of the neural similarity predictors selected across all cross-

validation data folds to determine if social network proximity was positively associated with 

similarity in functional connectivity (see Methods for further details). Indeed, 261 of the 293 

predictors (89%) were positively associated with social network proximity (Fig. 3d); the 

remaining 32 predictors were negatively associated with social network proximity (Fig. 3e). 

 

Table 1. Results of linear mixed-effects models testing for associations between functional 

connectivity within and between brain networks and social network proximity.  

Brain network(s)  ß  SE  p  p (FDR-corrected)  

DMN-VAN  0.183  0.068  1.803 x 10-4  0.016  

DMN-CN  0.165  0.067  0.001  0.017  

SMHN-SMMN  0.165  0.066  4.807 x 10-4  0.017  

DMN-DAN  0.164  0.068  0.001  0.018  

COCN  0.160  0.068  0.001  0.018  

FPCN-SAN  0.164  0.071  0.001  0.018  

AN-SMHN  0.150  0.067  0.002  0.022  

DMN-FPCN  0.147  0.067  0.002  0.026  

COCN-AN  0.151  0.071  0.003  0.029  

Each model included crossed random effects for participants and a fixed effect for neural similarity, with social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). Only significant associations are shown. AN, Auditory network; CN, Cerebellar 

network; COCN, Cingulo-opercular task control network; DMN, Default mode network; DAN, Dorsal attention 
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network; FPCN, Fronto-parietal task control network; SAN, Salience network; SMHN, Somatosensory motor-hand 

network; SMMN, Somatosensory motor-hand network; VAN, Ventral attention network.  

  

 

Individuals who are close together in their social network share similar functional 

connectivity within and between brain networks 

To complement our data-driven predictive modeling analysis and better inform 

interpretation of the types of neural similarity associated with social network proximity, we 

tested if social network proximity was associated with inter-subject similarity in functional 

connectivity within and between each of the 13 functional brain networks defined in the Power et 

al. 2011 atlas. For each of the 91 statistical tests (13 tests based on within-network connectivity 

similarity; 78 tests based on between-network connectivity similarity), we adapted the method 

outlined by Chen et al. (G. Chen et al., 2017) to fit linear mixed-effects models with crossed 

random effects to account for the dependency structure of the data (see Methods).  

Similarity in functional connectivity was significantly associated with social network 

proximity when controlling for demographic similarities in nine of these models (Table 1). In all 

nine models, we observed a positive relationship between functional connectivity and social 

network proximity, indicating that in cases where the relationship between social network 

proximity and neural similarity was significant, greater neural similarity was associated with 

greater proximity in the social network. These effects remained statistically significant after 

correcting for multiple comparisons across 91 statistical tests using false discovery rate (FDR) 

thresholding, as shown in Table 1. Consistent with the results of the predictive modeling 

analyses, the connectivity of areas in the DMN was particularly frequently linked to social 

network proximity; three of the nine models in which social network proximity was significantly 
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linked to neural similarity involved the DMN (see Table 1). Similar results were observed when 

repeating this analytic procedure excluding cohabitating dyads (Appendix – Table 1) and when 

weighting social ties by inter-individual communication frequency (Appendix – Table 2) or by 

meeting frequency (Appendix – Table 3) rather than by interpersonal closeness, as well as when 

social ties were unweighted (Appendix – Table 4).  
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Figure 4. Geographic proximity moderates the relationship between connectome similarity and social 

network proximity. (a) We tested if geographic distance moderates the relationship between neural similarity and 

social network proximity. (b) A linear mixed-effects model was used to test for an interaction between the effects of 

connectome similarity and geographic distance on social network proximity (see Methods). We observed a 

significant interaction between geographic distance and connectome similarity, such that the relationship between 

neural similarity and social network proximity was especially pronounced among individuals who lived closest to 

one another in the village (see Results). Shaded areas represent 95% confidence intervals.  

 

Inter-subject similarity in functional connectomes was associated with social network 

proximity while controlling for personality similarity 

In additional exploratory analyses, the same data analytic procedures described above 

were repeated to test if social network proximity is associated with similarity in functional brain 

connectivity while controlling not only for demographic similarities, but also for similarities in 

self-reported personality traits.  

In the predictive modeling analysis, the algorithm successfully predicted individuals’ 

proximity to one another in the social network based on the similarity of their functional 

connectomes while controlling for similarities in the Big Five personality traits and demographic 

variables (r = 0.477, p = 6.795 x 10-15). This significant relationship between actual and 

predicted social network proximity remained significant after implementing permutation testing 

to account for the dependency structure of the data (p = 0.048). The algorithm’s dimension 

reduction procedure yielded a set of neural similarity predictors that were remarkably similar to 

those reported in the primary predictive modeling analysis, which controlled only for inter-

subject similarities in demographic variables. Similarly, there was an overwhelmingly positive 

relationship between these predictors and social network proximity (Appendix – Fig. 6).  

We also tested if, when controlling for inter-individual similarity in the Big Five 

personality traits, social network proximity would remain significantly positively related to 

neural similarity when using linear mixed-effects models to characterize similarity in functional 

connectivity within and between functional brain networks. As in our main analyses using this 
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approach, social network proximity was associated with similarity in functional connectivity 

between several pairs of brain networks after accounting for personality similarity. Again, all 

significant relationships were positive (i.e., greater social network proximity was associated with 

greater neural similarity in all cases). As in the main results, when accounting for both 

demographic and personality similarity, the DMN appeared most frequently in the models in 

which social network proximity was associated with similarity in functional connectivity within 

and between brain networks (Appendix – Table 5). 

For both sets of analyses (i.e., both for predictive modeling analyses and for analyses 

measuring relationships between social network proximity and similarity in functional 

connectivity within and between brain networks using linear mixed-effects models), when 

controlling for similarity in the Big Five personality traits, convergent results were obtained 

when defining the social network in different ways. For example, similar results were obtained 

when excluding dyads comprised of members who live in the same residences both when using 

predictive modeling (ppermutation = .026; Appendix – Fig. 7) and linear mixed-effects models 

(Appendix – Table 6), and when social ties were weighted by inter-individual communication 

frequency (see Appendix – Fig. 8 for predictive modeling results, ppermutation = .039; Appendix – 

Table 7 for results using linear mixed-effects models) or by meeting frequency (Appendix – Fig. 

9, ppermutation = .011, and Appendix – Table 8), rather than by emotional closeness. Using a social 

network in which edges were unweighted (i.e., in which emotional closeness and frequency of 

communication or meeting were not considered), neural similarity was not predictive of social 

network proximity using our predictive modeling approach (as in the main results; Appendix – 

Fig. 10); however, neural similarity remained positively associated with proximity in the social 

network using linear mixed-effects models based on similarity in connectivity within and 
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between functional brain networks (as in the main results; Appendix – Table 9). Taken together, 

these results suggest that inter-subject similarity in functional connectomes is associated with 

social network proximity, particularly when taking into account information about the relative 

interpersonal closeness of directly connected dyads (e.g., emotional closeness, communication 

frequency, meeting frequency). Furthermore, these relationships are not due to interpersonal 

similarity in terms of the personality traits measured here (i.e., the Big Five personality traits). 

  

Connectome similarity is most strongly related to social network proximity among individuals 

who live close to one another 

 The results of our primary analyses demonstrate that similarity in individuals’ functional 

connectomes is associated with proximity in their real-world social network. Prior work has also 

established a relationship between geographic proximity and social network proximity (Mossong 

et al., 2008; Nahemow & Lawton, 1975; Stopczynski et al., 2018). We explored if and how 

geographic proximity might impact the relationship between neural similarity and social network 

proximity.  

Very similar people who live far from one another may be less likely to become friends 

(compared to very similar people who live close to one another), as greater physical distance 

could lead to fewer encounters. Living closeby may provide opportunities for people to befriend 

those with whom they are especially compatible (including, for example, similar others). In the 

same vein, social network proximity may also be particularly pronounced among people who 

live close to one another if associations between neural similarity and social network proximity 

reflect social influence (i.e., social network proximity causing similarity), rather than, or in 

addition to, assortativity (i.e., similarity causing social network proximity). For example, there 
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may be more opportunities for interpersonal influence effects to unfold among people who are 

close to one another in both social ties and their physical location. Both of the possibilities 

described above would predict that the relationship between neural similarity and social network 

proximity would be strongest among people in close geographic proximity to one another. It is 

also possible that neural similarity would be most strongly related to social network proximity 

among people who live relatively far from one another–for example, people may only maintain 

friendships with those who live far from themselves if they are exceptionally compatible with 

one another.  

To begin to arbitrate between these possibilities, we conducted an additional exploratory 

analysis to test whether geographic distance moderates the relationship between connectome 

similarity and social network proximity. To calculate a single variable measuring inter-subject 

similarity in functional connectomes that approximated the neural similarity data used in the 

predictive modeling analysis, we used the aforementioned PLSR-based algorithm and extracted 

the primary PLS component (see Methods). A linear mixed-effects model with crossed random 

effects for both participants was used to test for an interaction between the effects of connectome 

similarity and geographic distance on social network proximity; the main effects of geographic 

distance and neural similarity were also included in the model (see Methods). We note that the 

results of the analyses reported in the preceding sections should be used to assess relationships 

between neural similarity and social network proximity; the purpose of this analysis was 

specifically to test if and how geographic distance moderates the relationships between 

connectome similarity and social network proximity reported above. 

 We observed a significant interaction between geographic distance and neural similarity 

(ß = -0.163, SE = 0.044, p < 0.0001); significant main effects of neural similarity (ß = 0.840, SE 
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= 0.071, p < 0.0001) and geographic distance (ß = -0.322, SE = 0.066, p < 0.0001) were also 

observed. The main effect of geographic distance suggests that people who lived closer to one 

another in the village tended to be closer to one another in the social network. To better 

understand the interaction between neural similarity and geographic distance, we conducted a 

simple slopes analysis. This revealed significant associations between neural similarity and 

social network proximity among people who lived close to one another in the village (i.e., for 

whom the walking distance between dyad members’ residences was approximately one standard 

deviation below the mean; see Methods), ß = 0.994, 95% CI [0.835, 1.154], SE = 0.081, t = 

17.280, p < 0.0001, as well as among people who lived an average distance from one another in 

the village, ß = 0.839, 95% CI [0.702, 0.976], SE = 0.070, t = 16.963, p < 0.0001, and among 

people who lived far from one another in the village (i.e., walking distance one standard 

deviation above the mean), ß = 0.677, 95% CI [0.513, 0.839], SE = 0.083, t = 11.480, p < 0.0001. 

Thus, the relationship between neural similarity and social network proximity appeared to be 

most pronounced among those who lived closest to one another in the village (Fig. 4).  

 We also observed a significant interaction between the effects of neural similarity and 

geographic distance on social network proximity in four of the nine models in which similarity in 

functional connectivity within and between brain networks was associated with social network 

proximity. This is consistent with the notion that the relationship between connectome similarity 

and social network proximity is contingent on geographic proximity (Appendix – Fig. 11). As in 

the moderation analysis using the primary PLS component described above, in three of these 

four models, the most positive relationship between neural similarity and social network 

proximity was observed among participants who lived closest to one another – specifically, this 

was the case in models characterizing similarity in connectivity (1) between the DMN and the 
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dorsal attention network, (2) between the DMN and the fronto-parietal task control network, and 

(3) within the cingulo-opercular task control network. That said, there was some heterogeneity in 

the nature of this interaction across models. For example, in the remaining model that evinced a 

significant interaction, the strongest relationship between neural similarity and social network 

proximity was observed among people whose homes were relatively far apart (Appendix – Fig. 

11). As such, we hesitate to draw strong conclusions from these exploratory moderation 

analyses. In order to move towards a more systematic understanding of these phenomena, we 

suggest that future work continue to investigate how interpersonal similarity and geographic 

proximity interact to predict social network proximity. 

 

Discussion 

The current results demonstrate that similarity in individuals’ patterns of neural 

connectivity at rest is related to closeness in their real-world social network, above and beyond 

effects of demographic variables or the Big Five personality traits. These findings are in line with 

past research showing that friends exhibit similar neural responses when perceiving naturalistic 

stimuli (e.g., movies), which have been attributed to similarities in how people close together in 

social ties interpret and respond to their environment (Hyon, Kleinbaum, et al., 2020; Parkinson 

et al., 2018). The current findings demonstrate that friendship and social network proximity are 

related not only to individuals’ neural responses to exogenous stimuli, but also to their 

intrinsically organized neural activity at rest. Prior work has demonstrated that an individual’s 

whole-brain resting-state functional connectome can function as a “fingerprint,” in that it is both 

uniquely identifying and stable across disparate points in time (Finn et al., 2015; Horien et al., 

2019). Here, we show that inter-subject similarity in a distributed pattern of functional 
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connectivity is associated with social network proximity. Similarity in individuals’ connectomes 

was overwhelmingly positively associated with their social closeness in the real world, 

suggesting that friends share similar resting-state activity. Moreover, we find that the relationship 

between connectome similarity and social network proximity is moderated by physical 

proximity, such that the link between neural similarity and social network proximity tends to be 

most pronounced among people who live close to one another. Integrating the current findings 

into the extant literature on resting-state functional connectivity can shed light on the types of 

individual difference variables that may be exceptionally similar among friends and inform 

hypotheses to test in future research, as described in more detail below. 

We found that similarity in functional connectivity at rest was associated with social 

network proximity while controlling for demographic similarities. We also observed remarkably 

similar results while controlling for inter-subject similarity not only in demographic variables, 

but also in the Big Five personality traits. Despite recent evidence demonstrating that similarity 

in functional connectomes is associated with similarity in the Big Five personality traits (W. Liu 

et al., 2019), personality data does not account for the current results, in which similarity in 

functional connectomes was associated with friendship above and beyond the effects of 

similarity in the Big Five personality traits. Rather, the aspects of functional connectome 

similarity that predicted friendship in the current study may be related to similarities in latent 

cognitive, emotional and/or behavioral traits that are exceptionally similar among friends but that 

are not sufficiently captured by the self-report personality measure used here. When considered 

in tandem with the current results, the large body of research linking cognitive, emotional, and 

behavioral variables to functional brain connectivity (Vaidya & Gordon, 2013) provides 

preliminary clues regarding what kinds of interpersonal similarities might underlie the observed 
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relationship between neural similarity and social network proximity. For example, patterns of 

resting-state connectivity associated with the fronto-parietal task control and somatomotor 

networks have recently been shown to be predictive of individual differences in trait empathic 

concern (Christov-Moore et al., 2020). Similarly, functional connectivity of the DMN is 

predictive of a component of empathy reflecting the extent to which an individual feels another’s 

pain (Otti et al., 2010). Variables that are not traditionally considered social may also underlie 

relationships between neural similarity and social network proximity. For example, past work 

demonstrates that people close together in a social network have particularly similar neural 

responses in regions associated with attentional allocation, such as the superior parietal lobule, 

while viewing movies (Hyon, Kleinbaum, et al., 2020; Parkinson et al., 2018). Inter-individual 

similarity in attentional allocation, and in other processes that are not inherently social, could 

facilitate the development of a sense of “generalized shared reality” (i.e., the sense of sharing 

similar thoughts, feelings or beliefs with someone else, including about the world outside of 

one’s social relationships or interactions), which has recently been shown to predict social 

connection between individuals (Rossignac-Milon et al., 2020). Thus, past work linking resting-

state connectivity within and between the brain networks implicated in the current study to 

individual difference variables that are not typically considered “social” may also be relevant. 

For example, functional connectivity of the DMN has been linked to individual differences in 

creativity (Beaty et al., 2018), memory (Meskaldji et al., 2016), fluid intelligence (Cole et al., 

2012), and attentional skills (Pagnoni, 2012). In the current study’s predictive modeling analysis, 

of the functional connectivity-based predictors that best predicted social network proximity, 45% 

were associated with the DMN; moreover, in the analyses linking connectivity within and 

between specific brain networks to social network proximity, the DMN was the most frequently 



 96 

implicated network. Thus, the current results point to testable hypotheses about the kinds of 

interpersonal similarities that may be particularly pronounced among people close to one another 

in social ties. These interpersonal similarities may include similarities in social characteristics 

(e.g., different facets of empathy) and in qualities that are typically not considered social but that 

might have implications for social connection to the extent that they are similar or dissimilar 

across individuals. 

While the current study was primarily concerned with testing if individuals’ social 

network proximity was linked to the similarity of their functional connectomes, we also 

conducted an exploratory analysis testing if geographic distance moderates this relationship, 

given the well-established link between individuals’ physical closeness and social closeness in 

the real-world (Apicella et al., 2012; Lambiotte et al., 2008; Liben-Nowell et al., 2005; Onnela et 

al., 2011). Associations between similarity in functional connectivity and social network 

proximity appeared to be strongest among people who lived close to each other in the village 

(Fig. 4). This could plausibly be caused by the constraints that geographic distance can impose 

on both assortativity and social influence processes. For example, assortativity may unfold more 

readily among people who live close to one another than among people who live far apart, given 

that similar people who live far from one another may be less likely to meet and befriend one 

another than similar people who live close to each other. On the other hand, social influence 

processes may unfold most readily among people who are close to one another in both social ties 

and physical space.  

 More generally, the current results alone are unable to inform claims about the causal 

relationship between functional connectome similarity and social network proximity. As noted 

above, the moderating role of geographic distance could plausibly stem from assortativity or 
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social influence processes. Future longitudinal studies should test if pre-existing similarities in 

resting-state activity causally predict social network proximity or if social network proximity 

facilitates the convergence of individuals’ functional connectomes over time. For example, pre-

existing similarities in functional connectomes that reflect latent trait similarities may foster 

friendship formation due to interpersonal similarities facilitating communication and affiliative 

tie formation (Berger & Calabrese, 1975; Clore & Byrne, 1974). This would be consistent with 

suggestions that misattunement between individuals disrupts the smoothness of social 

interactions (Redcay & Schilbach, 2019) and may account for some instances of social 

disconnection, including, but not limited to, the social disconnection that characterizes some 

forms of psychopathology–i.e., with the “social interaction mismatch hypothesis” (Bolis et al., 

2017; Redcay & Schilbach, 2019). Future work could test this possibility by combining the 

forms of data collected in the current study with unobtrusive behavioral measures of 

interpersonal coordination and orienting during social interactions (Lahnakoski et al., 2020).  

Alternatively, the current findings could stem from well-established social influence 

processes that unfold within dyads (Cialdini & Goldstein, 2004; de Waal, 2007) and percolate 

outward in social networks, causing people to influence and be influenced by others to whom 

they are connected only indirectly (Apicella et al., 2012). Future work could use unobtrusive 

methods to track interaction patterns between individuals (Cattuto et al., 2010) and how people 

approach and attend to one another during interactions (Lahnakoski et al., 2020) to enrich 

understanding of how social influence effects unfold over time in the real-world. The repeated, 

intensive, and sustained interactions that characterize friendships may lead friends to develop 

similarities in how they tend to think, feel, and behave, which become entrenched over time and 

reflected in patterns of brain connectivity. In other words, in the same way that sustained and 
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intensive practice on complex cognitive tasks involves particular patterns of engagement of 

specific brain networks that impact future characteristics of functional connectivity at rest 

(Mackey et al., 2013), sustained and intensive interactions between friends could lead to 

convergence in styles of thinking, feeling, and behaving that are reflected in similarity in 

functional brain connectivity at rest. Living near one's friends may make it easier to have 

intensive and frequent interactions with them, which in turn, could foster greater interpersonal 

similarity over time. This would be consistent with the findings that connectome similarity was 

most strongly associated with social network proximity among people who lived close to one 

another (Fig. 4) and that connectome similarity was particularly predictive of social network 

proximity when weighting edges in the social network by in-person meeting frequency 

(Appendix – Fig. 4). It is also possible that assortativity and social influence processes interact; 

for example, social network proximity may increase interpersonal similarity through social 

influence, and the resultant interpersonal similarities may further promote friendship formation 

(e.g., because interpersonal similarity increases the predictability of social interactions, leading 

to more fluid and enjoyable interactions, and thus increasing the likelihood of friendship 

formation (Berger & Calabrese, 1975)). Future work using longitudinal designs will be important 

to elucidate the relative contributions of these mechanisms to the correspondence between 

similarity in patterns of neural responding at rest and social network proximity. 

The unique characteristics of our sample should be taken into consideration when 

interpreting the current results. Given that our sample consists of older adults living in a remote, 

rural village on an island in South Korea, future work should test whether functional 

connectomes are predictive of social network proximity in additional samples. Similarly, future 

work should investigate whether the neural variables important for predicting social network 
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proximity in the current study are also important for predicting social network structure in other 

communities. The kinds of interpersonal similarities that engender or result from social network 

proximity likely vary across contexts, and thus, investigations involving different communities 

(e.g., communities in different cultural settings, different age groups) may yield different results 

(McNabb et al., 2020). In a similar vein, the magnitude of the relationship between geographic 

distance and social network proximity, as well as the interaction between geographic distance 

and interpersonal similarity in predicting social network proximity, likely differs across contexts 

(e.g., depending on an area’s population density and the extent to which geographic and 

functional distance are associated in a given community). Furthermore, given prior work 

demonstrating that similarity in neural responses to naturalistic stimuli is also predictive of social 

network proximity (Hyon, Kleinbaum, et al., 2020; Parkinson et al., 2018) and that tasks can 

emphasize individual differences in functional connectivity (Finn et al., 2017), future work 

should test if and how interpersonal similarity in functional connectivity during tasks, including 

naturalistic stimulation, is associated with social network proximity. Relatedly, future work 

could examine how social network proximity relates to similarity in neural responding in social 

contexts, given recent evidence that social network variables relate to differential patterns of 

neural responding in social contexts, such as when making recommendations to others 

(O’Donnell et al., 2017) or experiencing social exclusion (Schmälzle et al., 2017). Similarly, in 

light of past work demonstrating that neural synchrony is associated with successful 

communication (Stephens et al., 2010), future work could benefit from considering how 

functional connectivity during social interactions relates to the quality of those interactions, and 

more generally, from adopting a “second-person neuroscience” approach to examine neural 

processes during real-time social interactions (Schilbach, 2016). Additionally, given that some 
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forms of interpersonal misattunement (e.g., diverging prediction and interaction styles) may 

disrupt social interactions and the formation of social connections in several psychiatric 

conditions (Bolis et al., 2017; Redcay & Schilbach, 2019; Schilbach, 2016), future work could 

examine how idiosyncratic patterns of functional connectivity relate to social impairments that 

characterize many forms of psychopathology (Bolis et al., 2017) and social disconnection more 

generally (Green et al., 2018). 

Taken together, the current results suggest the possibility of homophily based on 

similarities in neural responding at rest. More specifically, we find that similar patterns of 

resting-state functional connectivity distributed across the brain are associated with friendship 

and social network proximity. Past research on homophily has often focused on relatively coarse 

variables, such as demographic characteristics; prior work testing the relationship between 

friendship and similarities in personality has tended to yield null or inconsistent patterns of 

findings. Thus, much remains unknown regarding how friendship and social network proximity 

relate to inter-individual similarities in psychologically meaningful variables. However, the 

current study suggests that similarities in functional connectomes may capture similarities in 

meaningful latent variables that are distinct from demographic characteristics and the Big Five 

personality traits, and that are associated with individuals’ social closeness in their real-world 

social network. Thus, functional connectomes could serve as neural signatures that identify 

individuals who are likely to form social ties, and more generally, as powerful tools for studying 

how individuals’ brains influence, and are influenced by, the organizational structure of real-

world social networks. 
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Methods 

Part 1: Social network characterization 

Subjects 

Individuals in Part 1 of the study were subjects from the third wave of the Korean Social 

Life, Health, and Aging Project (KSHAP (Joo et al., 2017; J. J.-M. Lee et al., 2014)). KSHAP is 

a study on the health and social networks of older adults in rural communities in South Korea. 

The current sample of subjects reside in Township K, Ganghwa-gun in Incheon, South Korea, 

and the size of the township is 26.43 km2. The total township population was 860 individuals, 

and 591 individuals (349 females, mean age = 72.79, SD = 7.18) participated in the social 

network survey, resulting in a response rate of 68.7%. The study was approved by and performed 

in accordance with the standards of the Institutional Review Board of Yonsei University, and all 

subjects provided written informed consent for the experiment. See J.-M. Lee et al. 2014 for a 

comprehensive overview of measures included in Wave 1 of KSHAP data collection. In addition 

to the measures listed in J.-M. Lee et al. 2014, the third wave of KSHAP data included resting 

state fMRI data on a subset of participants, as well as additional measures of general cognitive 

functioning (used for screening fMRI participants as described in the Subjects section of “Part 2: 

Neuroimaging methods”) and a measure of personality (the Big Five 44-item Inventory (Kim et 

al., 2016)).   

 

Social network characterization 

The social network survey was administered in the subjects’ homes and in community 

centers. Subjects responded to a survey asking them to enumerate their social network members 

(“alters”), including a spouse (if any) and up to five people with whom they most often discussed 
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important concerns in the past 12 months. This first prompt read, “People often discuss 

important things with others. For example, this could be something good or bad that happened 

to you, or it could be your usual worry. When you look back over the past year, how many people 

do you talk to often about important things, and who are those people?” In a second prompt, 

subjects were also asked to enumerate a “very important” seventh individual. This second 

prompt read, “Is there any person who seems very important to you, other than your spouse or 

the discussion partners whom you mentioned? This person would be someone with whom you 

have not been in frequent discussions over the past year, but with whom you are still feeling 

friendly.” These “very important” alters were not included in subsequent data analysis given that 

the nature of these alters are qualitatively different from those enumerated in response to the first 

prompt. Subjects provided information about each alter’s name, gender, and residence. Subjects 

were also asked to rate the extent to which they were emotionally close with each of their alters 

(1: Not very close; 2: Somewhat close; 3: Very close; 4: Extremely close). Alters who were not 

married to the subjects and living outside of Township K were excluded. Alters who were 

enumerated by more than one subject were identified based on the following criteria: (1) at least 

two out of three Korean characters in their names matched, (2) their gender matched, (3) their 

age difference was less than five years, and (4) their addresses belonged to the same village. 

Social network analysis was performed using the Python package igraph (Csárdi & 

Nepusz, 2014). We constructed a weighted, undirected graph, in which at least one social tie 

between two nodes (i.e., nomination) was sufficient to constitute an undirected edge. For 

example, an undirected edge would connect two nodes, personi and personj, if (1) personi 

nominated personj as an alter, (2) personi nominated personi as an alter, or (3) personi and personj 

each nominated the other as an alter. For reciprocated edges (n = 270), each edge was weighted 
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by the mean of emotional closeness ratings provided by each member of the dyad. For 

unreciprocated (i.e., not mutually reported) ties (n = 745), if both dyad members had completed 

the survey, the corresponding single emotional closeness rating was averaged with zero (i.e., 

divided by two) in order to account for the unreciprocated nature of non-mutual social ties. The 

resultant penalized emotional closeness value was used to weight the undirected edge. However, 

in cases where the nominated alter would have been incapable of reciprocating the nomination 

(i.e., in cases where the alter did not participate in the survey; n = 320 edges), the corresponding 

single emotional closeness rating was used to weight the undirected edge. The resulting social 

network graph consisted of a total of 799 nodes and 1,015 edges and was used to estimate social 

distances between individuals. 

Our main analyses involved weighting edges by ratings of emotional closeness. As 

mentioned in the Results section (see Appendix for further details), we repeated our main 

analyses using networks in which edges were (1) weighted by communication frequency, (2) 

weighted by meeting frequency, and (3) unweighted. While communication and meeting 

frequencies were highly correlated with one another (r = 0.90), correlations between emotional 

closeness ratings and meeting frequency (r = 0.28) and between emotional closeness ratings and 

communication frequency (r = 0.32) were comparatively modest. 

 Social distances were computed between fMRI participants within each connected 

component of the social network (Fig. 1); data from dyads within all connected components of 

the social network was concatenated for subsequent statistical analyses. For our main analyses, 

and for additional analyses using alternative edge weightings, Dijkstra’s algorithm (Dijkstra, 

1959) was used to calculate the social distance between members of dyads within each connected 

component. Dijkstra’s algorithm finds the path of “least resistance” between each pair of nodes, 
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where “resistance” is defined as the cost of traversing a path between those nodes; here, cost was 

defined as the inverse of an edge’s weight. Thus, weighted social distance was defined as the 

smallest sum of inverted edge weights across intermediary edges between two individuals. 

Alternatively, social distance can be operationalized as the smallest number of intermediary 

edges required to connect two individuals in the network (i.e., geodesic distance), where all 

edges are weighted equally. As noted above, social distances based on edges weighted by 

emotional closeness, which were highly correlated with unweighted social distances (r = 0.88), 

were used for our main analyses so that emotional closeness could be taken into account. We 

then negated the weighted social distance values to convert them into social network proximity 

values (i.e., higher values reflect greater closeness in the social network) in subsequent analyses. 

  

Part 2: Neuroimaging study 

Subjects 

Of the 591 individuals that participated in Part 1, 195 individuals underwent further 

screening for preclinical neurocognitive disorders in one year later. Individuals were excluded if 

they (1) scored 1.5 SD below the mean on the Mini-Mental State Examination for Dementia 

Screening (MMSE-DS (Han et al., 2010)), (2) were in the fifth percentile on the Long-term 

Memory Recall Index or Working Memory Index in the Elderly Memory Scale (Chey, 2007), or 

(3) had significant cognitive or behavioral changes in the preceding year, as assessed using the 

Clinical Dementia Rating (CDR (Morris, 1993)). Sixty-eight subjects passed the screening 

process and participated in the fMRI session, in which they were instructed to rest quietly with 

their eyes open and not to fall asleep. Three subjects were excluded due to excessive movement, 
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neurological abnormality, and diffuse signal confounds. One subject did not complete the social 

network survey and was also excluded.  

Of the remaining 64 fMRI subjects, there were 2,016 unique potential fMRI dyads. Of 

the 2,016 unique fMRI dyads, 737 dyads had undefined distances between them (i.e., nodes were 

in separate components of the network) and were excluded from analysis. Of the 1,279 

remaining dyads, 1,038 dyads were characterized by a geodesic distance greater than four and 

were excluded from analyses given prior work demonstrating that similarities in neural responses 

in people four or more “degrees of separation” apart are highly variable and not significantly 

different from that of social dyads two or three “degrees of separation” from one another 

(Parkinson et al., 2018). More generally, a large body of research demonstrates that relationships 

between interpersonal similarities in a variety of cognitive, emotional, and behavioral 

phenomena (e.g., risk perception, cooperation, smoking, depression, loneliness, happiness) and 

social network proximity disappear beyond three to four “degrees of separation” (Cacioppo et 

al., 2009; Christakis & Fowler, 2007, 2008; Fowler & Christakis, 2010; Moussaïd et al., 2015, 

2017; J. N. Rosenquist et al., 2011). This widely documented phenomenon may result from 

social influence effects decaying with social distance (Christakis & Fowler, 2013), the relative 

instability of long chains of social ties (Christakis & Fowler, 2013), assortativity (i.e., attraction 

to similar others) only being possible when opportunities to encounter similar others exist (which 

becomes less likely as individuals become further removed from one another in social ties), or 

some combination of these factors. While the current work does not attempt to arbitrate between 

these possibilities, we limited our analyses to dyads four or fewer “degrees of separation” from 

one another in light of these findings. 



 106 

We note that recoding very large social distances to a common value (e.g., ~4) would 

have minimal impact when analyzing networks with smaller diameters and fewer dyads at 

remote social distances from one another (e.g., when analyzing the social network of a classroom 

rather than a village, city, or province). However, in networks with larger diameters (here, the 

diameter of the largest connected component in the network is 18) and where the vast majority of 

dyads have a social distance greater than four (here, 1,038 out of 1279, or 81% of fMRI dyads), 

recoding high social distance dyads would result in the vast majority of dyads being assigned the 

same social distance value (e.g., of four). Moreover, because we hypothesize that this very large 

set of dyads would be extremely heterogeneous with respect to their level of similarity, as 

described above, this would introduce noise that would likely obfuscate the effects that we 

hypothesized a priori to exist at more proximal social distances. That said, we note that although 

we constrained our main analyses to dyads four or fewer “degrees of separation” from one 

another, given our a priori hypotheses, when analyses were repeated without excluding dyads 

five or more “degrees of separation” from one another, neural similarity was still significantly 

related to social network proximity across several brain networks. In all cases where connectivity 

similarity was related to social network proximity, this relationship was positive. This held true 

when using social distances weighted by emotional closeness, as in our main analyses (Appendix 

– Table 12) and when basing social distance on unweighted “degrees of separation” (Appendix – 

Table 13). 

          Subjects indicated whether their alters were their parent, child, grandchild, sibling or 

“other” relative (e.g., cousin, aunt, etc.). Of the 241 resulting dyads, three dyads consisted of 

genetically related subjects and were excluded from analyses (two genetically related dyads 

consisted of siblings and one consisted of “other” relatives). In sum, these 1,778 dyads were 
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excluded from analysis, resulting in 238 unique fMRI dyads, which consisted of 57 fMRI 

subjects. Ultimately, we analyzed data from these 57 fMRI subjects (35 females, mean age = 

70.66, SD = 6.28). The fMRI study was approved by and performed in accordance with the 

relevant guidelines and regulations by the Institutional Review Board of Yonsei University, and 

all subjects provided written informed consent for the research procedure. 

  

Image acquisition 

Subjects were scanned at the Seoul National University Brain Imaging Center using a 3T 

Siemens Trio scanner. An echo-planar sequence (2,000 ms TR; 30 ms TE; resolution 3.0 mm x 

3.0 mm x 3.0 mm; gap = 1 mm; field of view 240 x 240 mm) was used to acquire resting-state 

fMRI data. For each subject, two 5-minute runs were acquired, totaling 10 minutes of data. A 

high-resolution T1-weighted magnetic prepared rapid gradient echo (MPRAGE) scan was 

acquired or each subject (2,300 ms TR; 30 ms TE; field of view 256 x 256 mm; resolution 1 mm 

x 1 mm x 1 mm) at the end of the scanning session. 

  

fMRI data preprocessing 

fMRIPrep version 1.1.8 was used for anatomical and functional data preprocessing 

(Esteban et al., 2019). Each subject’s T1-weighted (T1w) image was corrected for intensity non-

uniformity with N4BiasFieldCorrection, distributed with ANTs 2.1.0, and used as T1w-reference 

throughout the workflow. The T1w-reference was then skull-stripped with a Nipype 

implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as 

target template. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template 

version 2009c (MNI152NLin2009cAsym) was performed through nonlinear registration with 
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antsRegistration (implemented in ANTs 2.1.0), using brain-extracted versions of both T1w 

volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter 

(WM), and gray-matter (GM) was performed on the brain-extracted T1w using FSL FAST. 

For each of the two BOLD runs per subject, the following preprocessing was performed. 

First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. The BOLD reference was then co-registered to the T1w reference 

using FSL FLIRT with the boundary-based registration cost-function (BBR). Co-registration was 

configured with nine degrees of freedom to account for distortions remaining in the BOLD 

reference. Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) were estimated before any 

spatiotemporal filtering using FSL MCFLIRT. Automatic removal of motion artifacts using 

independent component analysis (ICA-AROMA) was performed on the preprocessed BOLD in 

MNI space time-series after removal of non-steady state volumes and spatial smoothing with an 

isotropic, Gaussian kernel of 6mm full-width at half-maximum. The BOLD time-series were 

then resampled to MNI152NLin2009cAsym standard space, generating a preprocessed BOLD 

run in MNI152NLin2009cAsym space. 

The confounding variables generated by fMRIPrep that were used as nuisance variables 

in the current study included global signals extracted from within the CSF, WM, and whole-brain 

masks, framewise displacement, three translational motion parameters, three rotational motion 

parameters, a basis set of cosine functions up to a cutoff of 128s, and a set of physiological noise 

regressors that were extracted to perform component-based noise correction (anatomical 

CompCor, aCompCor). More specifically, aCompCor variables were calculated within the 

intersection of a subcortical mask (created by heavily eroding the brain mask) and the union of 
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the CSF and WM masks. These confounds were regressed out of the data for each preprocessed 

run. Temporal filtering was performed with a band-pass filter between 0.009 and 0.08 Hz. 

  

Functional parcellation and whole-brain connectome construction 

To delineate the brain into regions of interest (ROIs), we used the Power et al. 2011 atlas 

with 264 brain regions, 236 of which are associated with one of 13 functionally defined brain 

networks - visual, auditory, cingulo-opercular task control, cerebellar, dorsal attention, default 

mode, fronto-parietal control, memory retrieval, salience, somatosensory motor-hand, 

somatosensory motor-mouth, subcortical, and ventral attention networks. Here, only the 236 

ROIs associated with the abovementioned brain networks were used for analysis. 

         For each subject, in each of the 236 ROIs, the fMRI signal was spatially averaged within 

a spherical mask (radius = 5 voxels) and extracted at each timepoint to characterize the neural 

time series at each brain region. We then calculated the pairwise Pearson correlations between all 

ROIs’ time series in order to construct a symmetric 236 x 236 functional connectivity matrix. 

This was conducted separately for each of the two resting-state fMRI runs. The two functional 

connectivity matrices from each run were then Fisher z-transformed and averaged to characterize 

each subject’s whole-brain resting-state functional connectome. 

  

Calculating dyadic similarities in whole-brain connectomes 

For each subject, the off-diagonal half of the whole-brain functional connectivity matrix 

was flattened into a vector containing 27,730 functional connectivity values. For each of the 

unique pairs of fMRI subjects, we calculated pairwise Euclidean distances (i.e., absolute value of 

numerical differences) between the corresponding functional connectivity values in subjects’ 
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connectome vectors. We then negated these Euclidean distance values to convert them into 

similarity values (i.e., higher values reflected higher neural similarity). This resulted in a vector 

of 27,730 similarity values that characterized whole-brain connectome similarity for each unique 

pair of fMRI subjects. To account for demographic similarities that may be related to social 

network proximity and/or similarity in resting-state functional connectivity, prior to all 

subsequent analyses, we regressed out the effects of inter-subject similarities in age (i.e., negated 

Euclidean distance between each pair of individuals’ ages) and in gender (i.e., 1: same gender; 0: 

dissimilar gender) from social network proximity. Significant associations between demographic 

similarity (as well as personality similarity) and similarity in connectivity within and between 

functional brain networks are reported in Appendix – Table 10; significant associations between 

demographic similarity (as well as personality similarity) and social network proximity are 

reported in Appendix – Table 11. 

  

Whole-brain connectome-based predictive modeling of social distance 

As described in the main text, we tested if similarities in individuals’ distributed patterns 

of whole-brain resting-state functional connectivity would be predictive of their proximity in 

their real-world social network, after having controlled for the effects of demographic variables 

in the previous data analytic step. We used Scikit-learn to implement PLSR (Pedregosa et al., 

2011), a multivariate data-driven regression model that implements dimension reduction by 

maximizing the covariance between predictors and the response variable to yield latent variables, 

which are subsequently used as predictors. As such, PLSR is well-suited for datasets whose 

predictors are characterized by high dimensionality and multicollinearity and is thus a powerful 
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tool to predict response variables using multivariate fMRI data (Krishnan et al., 2011; McIntosh 

& Mišić, 2013). 

Scikit-learn’s KFold function was used to divide the data into ten training and test folds 

(Pedregosa et al., 2011). Using Scikit-learn’s Pipeline function, we created an algorithm that 

performed three steps in sequence on the training data for each fold (models fit to each fold’s 

training data were used to predict social network proximity based on neural similarities in the 

corresponding testing data): (1) normalize the predictors using Scikit-learn’s RobustScaler 

function, (2) identify the 1,000 predictors that were mostly strongly associated with social 

network proximity (as measured using F-scores calculated by univariate linear regression 

between each predictor and social distance), and (3) implement PLSR using these 1,000 

predictors. Although PLSR is a robust solution to problems of high dimensionality, performing 

dimension reduction prior to implementing PLSR improves model performance (Mehmood et 

al., 2012). We used a nested cross-validation scheme to perform hyperparameter tuning using a 

grid search procedure (i.e., optimizing the n_components hyperparameter from a grid/range of 

integers ranging from 1 to 10), such that the training data of each of the 10 outer data folds was 

further subdivided into 10 inner folds consisting of sub-training and validation datasets. Within 

each of these inner folds, for each hyperparameter value provided in the hyperparameter grid 

(i.e., n_components values ranging from one to ten), the algorithm was trained on the sub-

training data and tested on the validation data. The hyperparameter value used in the model with 

the best performance across all validation sets was identified as the optimal hyperparameter for 

the corresponding outer training fold. Using this optimal hyperparameter, the algorithm was 

trained on the outer fold’s training data and tested on the outer fold’s testing data. This process 

was repeated for each of the ten outer data folds. Because each dyad was included in the testing 
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data for one of the outer data folds, this procedure yielded a predicted social network proximity 

value for each dyad in the sample. Out-of-sample performance was evaluated by calculating the 

Pearson r-value between predicted and actual social distance values. To account for the 

dependency structure of the data, this r-value was then tested against a null distribution of r-

values generated by permutation testing. Neuroimaging data was randomly shuffled across fMRI 

participants 5,000 times while holding all else in the dataset constant. In each permuted dataset, 

the entire data analytic procedure described above (including calculation of dyadic similarities in 

functional connectomes) was repeated to generate a null distribution of 5,000 r-values. P-values 

were determined by calculating the frequency with which the true model’s r-value exceeded the 

r-values in the null distribution. 

         To test whether inter-subject similarities in functional connectomes would be predictive 

of social network proximity above and beyond the effects of similarities not only in demographic 

variables but also in personality traits, we repeated the primary analysis described above while 

also controlling for inter-individual similarities in personality. Personality was assessed using the 

Big Five 44-item Inventory (Kim et al., 2016), and dyadic similarities in personality were 

calculated by computing (and negating) the Euclidean distance between individuals’ set of five 

personality traits (i.e., Extraversion, Agreeableness, Consciousness, Neuroticism, and Openness).  

 

Modeling social network proximity as a function of similarity in functional connectivity at the 

level of brain networks 

 To complement our data-driven predictive modeling framework and inform 

interpretations of these results, we tested the relationships between social network proximity and 

inter-subject similarity in functional connectivity within brain networks and between each 
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possible unique pair of brain networks. To calculate similarity in functional connectivity within 

each of the 13 functional brain networks defined in the Power et al. 2011 atlas, the following 

procedure was performed for each subject. For each brain network, functional connectivity edges 

between nodes associated with the brain network were averaged, yielding a single value 

reflecting the average level of functional connectivity within that brain network. To calculate 

similarity in functional connectivity between brain networks for each of the 78 possible unique 

pairs of brain networks, the following procedure was performed for each subject. For each pair 

of brain networks, functional connectivity values corresponding to edges between nodes 

associated with each of the two brain networks were averaged, yielding a single value reflecting 

the average level of functional connectivity between those two brain networks. In total, 91 

aggregate functional connectivity values (13 characterizing connectivity within each brain 

network and 78 characterizing connectivity between each of the unique pairs of brain networks) 

were calculated for each subject. For each aggregate functional connectivity value, inter-subject 

similarity was computed using Euclidean distance. These values were then negated to convert 

them to similarity values.  

For each brain network and for each unique pair of brain networks (i.e., 91 models total), 

the relationship between inter-subject similarity in functional connectivity and social network 

proximity was assessed using linear mixed-effects models with crossed random effects (i.e., 

random intercepts) for both participants to account for dependencies in the data introduced by 

having repeated observations for each participant. We adopted the method suggested by Chen et 

al. 2017 for analyses of inter-subject similarities of fMRI data, which was implemented using 

lme4 and lmerTest in R (Bates et al., 2015; Kuznetsova et al., 2017). The inter-subject similarity 

data was doubled to allow for crossed random effects, as suggested by Chen et al. 2017. For 



 114 

statistical inference, to avoid inflating degrees of freedom due to the resultant data redundancy, 

degrees of freedom were then corrected as suggested and validated by Chen et al. 2017–e.g., the 

degrees of freedom for the standard error were adjusted from (2N – k –1) to (N – k – 1), where k 

is the number of fixed effects in the model and N is the number of observations (dyads). Standard 

errors were adjusted with a scaling factor of √2𝑁 − 1/√𝑁 − 1, where N is the number of 

participants. All reported findings reflect results using the corrected degrees of freedom and 

standard error estimates. FDR correction was then implemented to correct for multiple 

comparisons across all 91 statistical tests. 

 

Exploratory moderation analysis  

Exploratory analyses tested whether geographic distance moderated the relationship 

between connectome similarity and social network proximity. For a given pair of subjects, 

geographic distance was calculated by computing the walking distance in meters between the 

geographic coordinates encoding the location of residence for each individual. The significance 

of the main effect of geographic distance on social network proximity, as well as the interaction 

between geographic distance and neural similarity on social network proximity, was assessed 

using linear mixed-effects models (using the approach described in the preceding section) that 

contained fixed effects for neural similarity (described in more detail below), geographic 

distance, and their interaction, and crossed random effects for both participants in each dyad. We 

carried out this procedure using two approaches to characterize neural similarity: (1) using the 

primary PLS component (to approximate the neural similarity data used in the predictive 

modeling analyses) and (2) using the aggregate neural similarity measures from the nine models 
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in which similarity in functional connectivity within and between brain networks was associated 

with social network proximity (see Table 1).  

In the first approach, we implemented a PLSR-based algorithm to characterize the 

connectome similarity variable. We first identified the modal n_components value across all 10 

data folds in the main analysis. In a separate implementation of the PLSR-based algorithm, we 

then set the n_components value equal to the aforementioned modal value. This algorithm then 

used connectome similarity across the entire sample to predict social network proximity across 

the entire sample, and the primary PLS component was extracted to be used as the neural 

similarity variable in the moderation analysis. A cross-validation scheme was not used here, as it 

would have produced multiple sets of different PLS components. Therefore, this analysis is not 

used to assess the significance of the relationship between neural similarity and social network 

proximity and is used only to assess how this relationship differs as a function of geographic 

distance for the aspects of neural connectivity that are associated with social network proximity. 

This process yielded latent variables that maximized the covariance between all of the 

functional connectivity-based predictors and social network proximity. We extracted the latent 

variable that best maximized this covariance, and we then used this single variable as the 

connectome similarity variable in approach (1) of the moderation analysis. This procedure was 

used to obtain a single variable that approximated the overall characterization of functional 

connectome similarity obtained in the predictive modeling analysis (as this variable necessarily 

varied across data folds in the predictive modeling analysis), so that the impact of geographic 

distance on the relationship between this aggregate variable and social network proximity could 

be explored. Given this procedure for deriving this aggregate connectome similarity measure, 

inferences regarding the relationship between neural similarity and social network proximity, 
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should be based on the analyses described in the preceding sections (rather than the main effect 

of neural similarity in this analysis or the extent to which each simple slope differs from 0). This 

exploratory analysis is specifically focused on examining how, for neural variables that are 

related to social network proximity, the relationship between functional connectivity similarity 

and social network proximity varies as a function of geographic distance. 

 We followed the common convention (Aiken & West, 1991; Cohen et al., 2003) of 

visualizing slopes at three levels of the moderator (the mean +/- 1 SD). However, given that the 

smallest geographic proximity values in this dataset were 0.958 SD below the mean, this is the 

precise value of geographic proximity used for characterizing and visualizing the simple slope 

for participants who lived particularly close to one another (rounded down to -1 SD below mean 

in the legend of Fig. 4 for simplicity).  
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Appendix 

 

 

Appendix - Figure 1. Consistently-selected predictors of social network proximity were widely distributed 

across the brain. In the main predictive modeling analysis, the PLSR-based algorithm predicted social network 

proximity from left-out data while controlling for inter-subject similarities in demographic variables. There were 

293 neural similarity predictors that were consistently selected across all ten data folds for predicting social network 

proximity, and these predictors spanned all thirteen function brain networks defined in the Power et al. 2011 atlas. 

(a) Of these 293 predictors, 261 predictors were positively associated with social network proximity (this 

information can be seen more clearly in Fig. 3d). (b) In contrast, only 32 predictors were negatively associated with 

social network proximity (also see Fig. 3e). (c) These 293 predictors characterized functional connectivity between 

192 different nodes, each of which was associated with one of the aforementioned thirteen brain networks. Given the 

large number of nodes and edges between them that were selected by the algorithm, chord diagrams, rather than 

brain images, are provided in the main text (Fig. 3) to convey information about the implicated brain networks. (d) 

The proportion of edges in which each node was involved was calculated, and the nodes that ranked in the top 50% 

of involvement are visualized here (node color signifies brain network).  
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Appendix - Figure 2. Similarity in functional connectomes predicts social network proximity when excluding 

cohabitating dyads. (a) The primary predictive modeling analysis was repeated when excluding 12 dyads living in 

the same residences, and we observed a pattern of results similar to those from the primary analysis (Fig. 3). In this 

subset of 222 dyads, inter-subject similarity in functional connectomes was significantly predictive of social network 

proximity while controlling for inter-subject similarities in demographic variables. (b) This relationship was 

significant after conducting permutation testing to account for the dependency structure of the data (see Methods for 

further details). (c) The algorithm consistently selected a multivariate pattern of 267 neural similarity predictors 

across all ten cross-validation data folds for predicting social network proximity. These predictors spanned all 

thirteen functional brain networks defined in the Power et al. 2011 atlas. (d) A positive relationship between 239 of 

these 267 predictors and social network proximity was observed. (e) In contrast, only 28 predictors were negatively 

associated with social network proximity. Note: Colors used for connections between two different brain networks 

were arbitrarily assigned to one of the two implicated networks. 
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Appendix – Figure 3. Similarity in functional connectomes predicts social network proximity when weighting 

edges by communication frequency. (a) The primary predictive modeling analysis was repeated when weighting 

edges by inter-individual communication frequency, and we observed a pattern of results similar to those from the 

primary analysis (Fig. 3). Inter-subject similarity in functional connectomes was significantly predictive of social 

network proximity while controlling for inter-subject similarities in demographic variables. (b) This relationship 

was significant after conducting permutation testing to account for the dependency structure of the data (see 

Methods for further details). (c) The algorithm consistently selected a multivariate pattern of 265 neural similarity 

predictors across all ten cross-validation data folds for predicting social network proximity. These predictors 

spanned all thirteen functional brain networks defined in the Power et al. 2011 atlas. (d) A positive relationship 

between 235 of these 265 predictors and social network proximity was observed. (e) In contrast, only 30 predictors 

were negatively associated with social network proximity. Note: Colors used for connections between two different 

brain networks were arbitrarily assigned to one of the two implicated networks. 

  



 121 

 

Appendix - 4. Similarity in functional connectomes predicts social network proximity when weighting edges 

by meeting frequency. (a) The primary predictive modeling analysis was repeated when weighting edges by inter-

individual meeting frequency, and we observed a pattern of results similar to those from the primary analysis (Fig. 

3). Inter-subject similarity in functional connectomes was significantly predictive of social network proximity when 

controlling for inter-subject similarities in demographic variables. (b) This relationship was significant after 

conducting permutation testing to account for the dependency structure of the data (see Methods for further details). 

(c) The algorithm consistently selected a multivariate pattern of 256 neural similarity predictors across all ten cross-

validation data folds for predicting social network proximity. These predictors spanned all thirteen functional brain 

networks defined in the Power et al. 2011 atlas. (d) A positive relationship between 235 of these 256 predictors and 

social network proximity was observed. (e) In contrast, only 34 predictors were negatively associated with social 

network proximity. Note: Colors used for connections between two different brain networks were arbitrarily 

assigned to one of the two implicated networks. 
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Appendix - 5. Similarity in functional connectomes is not predictive of social network proximity when using 

unweighted edges. (a) The primary analysis was repeated when using unweighted edges. (b) Inter-subject similarity 

in functional connectomes was not predictive of social network proximity when controlling for inter-subject 

similarities in demographics, unlike in analyses using edges that encode emotional closeness (Fig. 3), 

communication frequency (Appendix - Fig. 3), or meeting frequency (Appendix - Fig. 4). 
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Appendix – Figure 6. Similarity in functional connectomes predicts social network proximity when 

controlling for similarities in personality. (a) The primary predictive modeling analysis was repeated when 

controlling for similarities in personality, and we observed a pattern of results similar to those from the primary 

analysis (Fig. 3). Inter-subject similarity in functional connectomes was significantly predictive of social network 

proximity when controlling for inter-subject similarities in demographics and the Big Five personality traits. (b) 

This relationship was significant after conducting permutation testing to account for the dependency structure of the 

data (see Methods for further details). (c) The algorithm consistently selected a multivariate pattern of 312 neural 

similarity predictors across all ten cross-validation data folds for predicting social network proximity. These 

predictors spanned all thirteen functional brain networks defined in the Power et al. 2011 atlas. (d) A positive 

relationship between 286 of these 312 predictors and social network proximity was observed. (e) In contrast, only 26 

predictors were negatively associated with social network proximity. Note: Colors used for connections between two 

different brain networks were arbitrarily assigned to one of the two implicated networks. 
 

  



 124 

 

Appendix – Figure 7. Similarity in functional connectomes predicts social network proximity when 

controlling for similarities in personality and excluding cohabitating dyads. (a) The primary predictive 

modeling analysis was repeated when controlling for similarities in personality, and we observed a pattern of results 

similar to those from the primary analysis (Fig. 3). Inter-subject similarity in functional connectomes was 

significantly predictive of social network proximity when controlling for inter-subject similarities in demographics 

and the Big Five personality traits. (b) This relationship was significant after conducting permutation testing to 

account for the dependency structure of the data (see Methods for further details). (c) The algorithm consistently 

selected a multivariate pattern of 312 neural similarity predictors across all ten cross-validation data folds for 

predicting social network proximity. These predictors spanned all thirteen functional brain networks defined in the 

Power et al. 2011 atlas. (d) A positive relationship between 286 of these 312 predictors and social network 

proximity was observed. (e) In contrast, only 26 predictors were negatively associated with social network 

proximity. Note: Colors used for connections between two different brain networks were arbitrarily assigned to one 

of the two implicated networks. 
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Appendix – Figure 8. Similarity in functional connectomes predicts social network proximity when weighting 

edges by communication frequency while also controlling for similarities personality and excluding 

cohabitating dyads. (a) We observed a pattern of results similar to those from the primary predictive modeling 

analysis (Fig. 3) when weighting edges by communication frequency while also controlling for similarities in 

personality and excluding cohabitating dyads, such that inter-subject similarity in functional connectomes was 

significantly predictive of social network proximity. (b) This relationship was significant after conducting 

permutation testing to account for the dependency structure of the data (see Methods for further details). (c) The 

algorithm consistently selected a multivariate pattern of 293 neural similarity predictors across all ten cross-

validation data folds for predicting social network proximity. These predictors spanned all thirteen functional brain 

networks defined in the Power et al. 2011 atlas. (d) A positive relationship between 268 of these 293 predictors and 

social network proximity was observed. (e) In contrast, only 25 predictors were negatively associated with social 

network proximity. Note: Colors used for connections between two different brain networks were arbitrarily 

assigned to one of the two implicated networks. 
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Appendix – Figure 9. Similarity in functional connectomes predicts social network proximity when weighting 

edges by meeting frequency while also controlling for similarities in personality and excluding cohabitating 

dyads. (a) We observed a pattern of results similar to those from the primary predictive modeling analysis (Fig. 3) 

when weighting edges by meeting frequency while also controlling for inter-subject similarities in the Big Five 

personality traits and excluding cohabitating dyads, such that inter-subject similarity in functional connectomes was 

significantly predictive of social network proximity. (b) This relationship was significant after conducting 

permutation testing to account for the dependency structure of the data (see Methods for further details). (c) The 

algorithm consistently selected a multivariate pattern of 295 neural similarity predictors across all ten cross-

validation data folds for predicting social network proximity. These predictors spanned all thirteen functional brain 

networks defined in the Power et al. 2011 atlas. (d) A positive relationship between 273 of these 295 predictors and 

social network proximity was observed. (e) In contrast, only 22 predictors were negatively associated with social 

network proximity. Note: Colors used for connections between two different brain networks were arbitrarily 

assigned to one of the two implicated networks. 
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Appendix - Figure 10. Similarity in functional connectomes is not predictive of social network proximity 

when using unweighted edges while also controlling for similarities in personality and excluding cohabitating 

dyads. (a) The primary predictive modeling analysis was repeated when using unweighted edges while also 

controlling for similarities in the Big Five personality traits and excluding cohabitating dyads. (b) Inter-subject 

similarity in functional connectomes was not predictive of social network proximity, unlike in analyses that also 

control for interpersonal similarities in personality but use edges that encode emotional closeness (Appendix – Fig. 

6-7), communication frequency (Appendix – Fig. 8), or meeting frequency (Appendix – Fig. 9). 
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Appendix – Figure 11. Geographic proximity moderates the relationship between social network proximity 

and similarity in functional connectivity within and between brain networks. Linear mixed-effects models were 

used to test for an interaction between the effects of similarity in functional connectivity within and between specific 

brain networks and geographic proximity on social network proximity (see Methods). This was performed for each 

of the nine models in which similarity in functional connectivity within and between brain networks was associated 

with social network proximity (Table 1). In four of these nine models, significant interaction effects were observed, 

such that similarity in functional connectivity within the cingulo-opercular task control network (ß = -0.150, SE = 

0.052, p = 7.231 x 10-5), between the default mode and dorsal attention networks (ß = -0.150, SE = 0.055, p = 1.363 

x 10-4), and between the default mode and fronto-parietal task control networks (ß = -0.133, SE = 0.061, p = 2.440 x 

10-3) was particularly pronounced among participants who lived closest to one another. A fourth significant 

interaction was also observed such that similarity in functional connectivity between the somatosensory motor-hand 

and somatosensory-hand networks (ß = 0.193, SE = 0.059, p = 5.891 x 10-6) was particularly pronounced among 

participants who lived relatively far apart. COCN, Cingulo-opercular task control network; DMN, Default mode 

network; DAN, Dorsal attention network; FPCN, Fronto-parietal task control network; SMHN, Somatosensory 

motor-hand network; SMMN, Somatosensory motor-hand network. Shaded areas represent 95% confidence 

intervals.  
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Appendix – Table 1. Results of linear mixed-effects models testing for associations between 

functional connectivity within and between brain networks and social network proximity 

when excluding cohabitating dyads.  

Brain network(s) ß SE p p (FDR-corrected) 

DMN-CN 0.160 0.068 0.001 0.040 

DMN-VAN 0.168 0.070 0.001 0.040 

FPCN-SAN 0.159 0.071 0.002 0.040 

SMHN-SMMN 0.156 0.068 0.001 0.040 

COCN 0.151 0.070 0.003 0.049 

Each model included crossed random effects for participants and a fixed effect for neural similarity, with social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). Only significant associations are shown. CN, Cerebellar network; COCN, Cingulo-

opercular task control network; DMN, Default mode network; FPCN, Fronto-parietal task control network; SAN, 

Salience network; SMHN, Somatosensory motor-hand network; SMMN, Somatosensory motor-mouth network; 

VAN, Ventral attention network. 
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Appendix – Table 2. Results of linear mixed-effects models testing for associations between 

functional connectivity within and between brain networks and social network proximity 

when weighting edges by communication frequency. 

Brain network(s) ß SE p p (FDR-corrected) 

AN-SMHN 0.183 0.068 1.734 x 10-4 0.008 

DMN-VAN 0.189 0.069 1.411 x 10-4 0.008 

COCN 0.181 0.071 3.759 x 10-4 0.011 

SMHN-SMMN 0.164 0.066 0.001 0.014 

DMN-DAN 0.164 0.069 0.001 0.016 

COCN-AN 0.164 0.075 0.002 0.029 

SAN-CN 0.147 0.068 0.003 0.029 

DMN-FPCN 0.151 0.068 0.002 0.029 

DMN-CN 0.137 0.067 0.004 0.038 

SMHN-SUN 0.140 0.069 0.005 0.038 

SMHN-VN 0.140 0.068 0.004 0.038 

Each model included crossed random effects for participants and a fixed effect for neural similarity, with social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). Only significant associations are shown. AN, Auditory network; CN, Cerebellar 

network; COCN, Cingulo-opercular task control network; DMN, Default mode network; DAN, Dorsal attention 

network; FPCN, Fronto-parietal task control network; SAN, Salience network; SMHN, Somatosensory motor-

hand network; SMMN, Somatosensory motor-mouth network; SUN, Subcortical network; VAN, Ventral 

attention network; VN, Visual network. 
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Appendix – Table 3. Results of linear mixed-effects models testing for associations between functional 

connectivity within and between brain networks and social network proximity when weighting edges by 

meeting frequency.  

Brain network(s) ß SE p p (FDR-corrected) 

AN-SMHN 0.193 0.068 7.439 x 10-5 0.005 

DMN-VAN 0.194 0.069 9.903 x 10-5 0.005 

COCN 0.193 0.071 1.538 x 10-4 0.005 

DMN-DAN 0.183 0.069 2.240 x 10-4 0.005 

SMHN-SMMN 0.161 0.067 0.001 0.013 

SNA-CN 0.159 0.068 0.001 0.014 

DMN-FPCN 0.160 0.068 0.001 0.014 

SMHN-SUN 0.157 0.069 0.002 0.018 

COCN-AN 0.168 0.076 0.002 0.019 

DMN-CN 0.143 0.067 0.003 0.026 

SMHN-VN 0.142 0.069 0.004 0.030 

COCN-SMMN 0.145 0.072 0.005 0.036 

DMN-SMHN 0.136 0.069 0.006 0.039 

Each model included crossed random effects for participants and a fixed effect for neural similarity, with social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). Only significant associations are shown. AN, Auditory network; CN, Cerebellar 

network; COCN, Cingulo-opercular task control network; DMN, Default mode network; DAN, Dorsal attention 

network; FPCN, Fronto-parietal task control network; Salience network; SMHN, Somatosensory motor-hand 

network; SMMN, Somatosensory motor-mouth network; SUN, Subcortical network; VAN, Ventral attention 

network; VN, Visual network. 
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Appendix – Table 4. Results of linear mixed-effects models testing for associations between 

functional connectivity within and between brain networks and social network proximity 

when using unweighted edges.  

Brain network(s) ß SE p p (FDR-corrected) 

DMN-FPCN 0.191 0.064 3.247 x 10-5 0.003 

DMN-VAN 0.162 0.065 4.879 x 10-4 0.022 

AN-SMHN 0.150 0.064 0.001 0.025 

SMHN-SMMN 0.150 0.064 0.001 0.025 

Each model included crossed random effects for participants and a fixed effect for neural similarity, with 

social network proximity as the outcome variable. P-values and standard errors were adjusted to account 

for data redundancy (see Methods). Only significant associations are shown. AN, Auditory network; 

DMN, Default mode network; FPCN, Fronto-parietal task control network; SMHN, Somatosensory 

motor-hand network; SMMN, Somatosensory motor-mouth network; VAN, Ventral attention network. 
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Appendix – Table 5. Results of linear mixed-effects models testing for associations between 

functional connectivity within and between brain networks and social network proximity 

when controlling for similarities in personality. 

Brain network(s) ß SE p p (FDR-corrected) 

DMN-VAN 0.191 0.068 8.312 x 10-5 0.008 

DMN-CN 0.172 0.066 3.056 x 10-4 0.008 

DMN-DAN 0.170 0.067 4.490 x 10-4 0.008 

FPCN-SAN 0.179 0.068 2.423 x 10-4 0.008 

SMHN-SMMN 0.167 0.066 4.127 x 10-4 0.008 

AN-SMHN 0.153 0.067 0.001 0.021 

DMN-FPCN 0.150 0.067 0.002 0.023 

COCN 0.149 0.069 0.002 0.027 

Each model included crossed random effects for participants and a fixed effect for neural similarity, with social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). Only significant associations are shown. AN, Auditory network; CN, Cerebellar 

network; COCN, Cingulo-opercular task control network; DMN, Default mode network; DAN, Dorsal attention 

network; FPCN, Fronto-parietal task control network; SAN, Salience network; SMHN, Somatosensory motor-

hand network; SMMN, Somatosensory motor-mouth network; VAN, Ventral attention network. 
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Appendix – Table 6. Results of linear mixed-effects models testing for associations between 

functional connectivity within and between brain networks and social network proximity 

when controlling for similarities in personality and excluding cohabitating dyads.  

Brain network(s) ß SE p p (FDR-corrected) 

DMN-VAN 0.176 0.069 4.131 x 10-4 0.019 

FPCN-SAN 0.176 0.068 3.300 x 10-4 0.019 

DMN-CN 0.167 0.068 0.001 0.019 

SMHN-SMMN 0.155 0.068 0.001 0.031 

Each model included crossed random effects for participants and a fixed effect for neural similarity, with social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). Only significant associations are shown. CN, Cerebellar network; DMN, Default 

mode network; FPCN, Fronto-parietal task control network; SAN, Salience network; SMHN, Somatosensory 

motor-hand network; SMMN, Somatosensory motor-mouth network; VAN, Ventral attention network. 
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Appendix – Table 7. Results of linear mixed-effects models testing for associations between 

functional connectivity within and between brain networks and social network proximity 

when weighting edges by communication frequency while also controlling for similarities in 

personality and excluding cohabitating dyads. 

Brain network(s) ß SE p p (FDR-corrected) 

SAN-SN 0.199 0.070 8.554 x 10-5 0.004 

DMN-VAN 0.209 0.072 5.890 x 10-5 0.004 

AN-SMHN 0.182 0.071 3.449 x 10-4 0.009 

COCN 0.191 0.075 3.87 7x 10-4 0.009 

SMHN-SMMN 0.172 0.069 0.001 0.010 

COCN-AN 0.182 0.081 0.002 0.020 

DMN-CN 0.160 0.070 0.001 0.020 

SMHN-SUN 0.163 0.073 0.002 0.020 

DMN-DAN 0.152 0.072 0.003 0.033 

DMN-FPCN 0.145 0.071 0.005 0.041 

Each model included crossed random effects for participants and a fixed effect for neural similarity, with social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). Only significant associations are shown. AN, Auditory network; CN, Cerebellar 

network; COCN, Cingulo-opercular task control network; DMN, Default mode network; DAN, Dorsal attention 

network; FPCN, Fronto-parietal task control network; SMHN, Somatosensory motor-hand network; SMMN, 

Somatosensory motor-mouth network; SUN, Subcortical network; VAN, Ventral attention network. 
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Appendix – Table 8. Results of linear mixed-effects models testing for associations between 

functional connectivity within and between brain networks and social network proximity 

when weighting edges by meeting frequency while also controlling for similarities in 

personality and excluding cohabitating dyads.  

Brain network(s) ß SE p p (FDR-corrected) 

SAN-SN 0.212 0.07 3.098 x 10-5 0.002 

DMN-VAN 0.211 0.072 5.160 x 10-5 0.002 

AN-SMHN 0.193 0.071 1.593 x 10-4 0.004 

COCN 0.206 0.075 1.445 x 10-4 0.004 

SMHN-SUN 0.184 0.073 4.693 x 10-4 0.009 

SMHN-SMMN 0.169 0.069 0.001 0.011 

COCN-AN 0.195 0.082 0.001 0.011 

DMN-CN 0.163 0.070 0.001 0.011 

DMN-DAN 0.169 0.072 0.001 0.011 

CN-SMHN 0.165 0.072 0.001 0.013 

DMN-FPCN 0.151 0.071 0.003 0.026 

MRN 0.144 0.073 0.005 0.038 

SAN-VAN 0.146 0.073 0.005 0.038 

FPCN-SAN 0.148 0.077 0.007 0.042 

SMHN-VAN 0.144 0.074 0.007 0.042 

Each model included crossed random effects for participants and a fixed effect for neural similarity, with social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). Only significant associations are shown. AN, Auditory network; CN, Cerebellar 

network; COCN, Cingulo-opercular task control network; DMN, Default mode network; DAN, Dorsal attention 

network; FPCN, Fronto-parietal task control network; MRN, Memory retrieval network; SAN, Salience network; 
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SMHN, Somatosensory motor-hand network; SMMN, Somatosensory motor-mouth network; SUN, Subcortical 

network; VAN, Ventral attention network. 
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Appendix – Table 9. Results of linear mixed-effects models testing for associations between 

functional connectivity within and between brain networks and social network proximity 

when using unweighted edges while also controlling for similarities in personality and 

excluding cohabitating dyads.  

Brain network(s) ß SE p p (FDR-corrected) 

DMN-FPCN 0.176 0.067 2.721 x 10-4 0.012 

DMN-VAN 0.187 0.069 1.747 x 10-4 0.012 

SAN-CN 0.171 0.068 4.708 x 10-4 0.014 

SMHN-SMMN 0.164 0.067 0.001 0.015 

AN-SMHN 0.150 0.067 0.002 0.027 

DMN-SN 0.150 0.067 0.002 0.027 

VAN-SUN 0.147 0.067 0.002 0.027 

Each model included crossed random effects for participants and a fixed effect for neural similarity, with social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). Only significant associations are shown. AN, Auditory network; CN, Cerebellar 

network; DMN, Default mode network; FPCN, Fronto-parietal task control network; SAN, Salience network; 

SMHN, Somatosensory motor-hand network; SMMN, Somatosensory motor-mouth network; SUN, Subcortical 

network; VAN, Ventral attention network. 
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Appendix – Table 10. Results of mixed-effects models testing for associations between 

social network proximity and similarities in demographics and personality.  

Variable ß SE p p (FDR-corrected) 

Personality -0.019 0.068 0.688 0.688 

Age 0.089 0.065 0.055 0.166 

Gender -0.120 0.130 0.195 0.292 

A set of linear mixed-effects models included fixed effects for similarity in each demographic variable (age, 

gender) and in overall personality (based on the Big Five personality traits), with social network proximity as the 

outcome variable. All models included crossed random effects for participants. P-values and standard errors were 

adjusted to account for data redundancy (see Methods). FDR correction was used to correct for multiple 

comparisons across all three models. 
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Appendix – Table 11. Results of mixed-effects models testing for associations between 

neural similarity and similarities in demographics and personality.  

Variable Brain network(s) ß SE P p (FDR-corrected) 

Age FPCN-AN 0.165 0.054 2.163 x 10-5 0.006 

Age CN 0.140 0.051 1.435 x 10-4 0.020 

Personality DMN-SMHN -0.147 0.059 0.001 0.048 

Personality SAN-SUN -0.108 0.044 0.001 0.048 

The relationship between similarity in functional connectivity and each of the three variables of interest (i.e., age 

similarity, gender similarity, and personality similarity) was assessed using a set of linear mixed-effects models 

with demographic and personality similarity variables as fixed effects, neural similarity as the outcome variable, 

and crossed random effects for participants (see Methods). Models used similarity in functional connectivity 

within and between brain networks as the neural similarity variables (i.e., 91 different neural similarity variables), 

yielding a total of 273 models. P-values and standard errors were adjusted to account for data redundancy (see 

Methods). FDR correction was used to correct for multiple comparisons across all 273 models. Only significant 

associations are shown. AN, Auditory network; CN, Cerebellar network; DMN, Default mode network; FPCN, 

Fronto-parietal task control network; SAN, Salience network; SMHN, Somatosensory motor-hand network; SUN, 

Subcortical network. 
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Appendix – Table 12. Results of linear mixed-effects models testing for associations 

between functional connectivity within and between brain networks and social network 

proximity when including all dyads. 

Brain network(s) ß SE p p (FDR-corrected) 

FPCN-VAN 0.177 0.037 1.364 x 10-10 1.241 x 10-8 

FPCN-CN 0.138 0.036 1.592 x 10-7 7.245 x 10-6 

FPCN-DAN 0.103 0.035 5.422 x 10-5 0.002 

Models included crossed random effects for participants and a fixed effect for neural similarity, and social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). FDR correction was used to correct for multiple comparisons across all 91 models. 

Only significant associations are shown. CN, Cerebellar network; DAN, Dorsal attention network; FPCN, Fronto-

parietal task control network; VAN, Ventral attention network. 
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Appendix – Table 13. Results of linear mixed-effects models testing for associations 

between functional connectivity within and between brain networks and social network 

proximity when using unweighted edges and including all dyads. 

Brain network(s) ß SE p p (FDR-corrected) 

FPCN-VAN 0.140 0.034 1.157 x 10-8 1.053 x 10-6 

FPCN-CN 0.115 0.031 3.655 x 10-7 1.663 x 10-5 

FPCN-DAN 0.087 0.033 2.060 x 10-4 0.006 

Models included crossed random effects for participants and a fixed effect for neural similarity, and social 

network proximity as the outcome variable. P-values and standard errors were adjusted to account for data 

redundancy (see Methods). FDR correction was used to correct for multiple comparisons across all 91 models. 

Only significant associations are shown. CN, Cerebellar network; DAN, Dorsal attention network; FPCN, Fronto-

parietal task control network; VAN, Ventral attention network. 
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Chapter 3: Pre-existing neural similarity predicts future increases in 

social closeness 
 

Introduction 

What determines who becomes and stays friends? Many factors are linked to friendship, 

including physical proximity and interpersonal similarities (Festinger et al., 1950; Marmaros & 

Sacerdote, 2006). Recent work has leveraged neuroimaging to detect similarities among friend 

(Hyon, Kleinbaum, et al., 2020; Parkinson et al., 2018) by capturing how people process the 

world around them (Nguyen et al., 2019; Yeshurun et al., 2017). However, given the cross-

sectional nature of past research, it is unknown if neural similarity causes friendship, or simply 

results from it. Here, we show that pre-existing similarities in neural responses to audiovisual 

movies–acquired before participants met one another–predicted proximity in a friendship 

network (i.e., being friends rather than multiple “degrees of separation” apart) eight months later. 

We also examined changes in distance in participants’ shared social network over time, which 

result from the formation, persistence, and dissolution of friendships. Compared to people who 

drifted farther apart, people who grew closer in social ties showed greater neural similarity 

before meeting one another. Thus, whereas some friendships may initially form due to 

circumstance and dissolve over time, later-emerging and longer-lasting friendships may be 

rooted in “deeper” interpersonal compatibilities that are indexed by pre-existing neural 

similarities. The localization of these results suggests that pre-existing similarities in how people 

interpret, attend to, and emotionally respond to their surroundings facilitate future friendship. 

These results provide evidence for neural homophily, such that pre-existing neural similarities 

foster friendship and increased social closeness.  
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Humans tend to cluster in their real-world social networks based on similarities in their 

demographic characteristics, such as age, gender, and ethnicity, as well as in their behaviors and 

preferences (Kandel, 1978; Knoke, 1990; Mark, 1998; Marsden, 1988; McPherson et al., 2001). 

This tendency to surround oneself with similar others, a phenomenon known as homophily, is a 

ubiquitous property of human social networks that has been observed across wide-ranging 

contexts, from modern industrialized societies to hunter-gatherer communities and online 

communities (Apicella et al., 2012; Fu et al., 2012; K. Lewis et al., 2012; McPherson et al., 

2001). Such inter-individual similarities in demographic characteristics, behaviors, and 

preferences may reflect similarities in how friends think about and respond to the world around 

them. 

To investigate this possibility, prior work has attempted to relate inter-individual 

similarities in self-reported personality traits (e.g., Big Five personality traits) to how close 

people are in their social network. However, this approach has yielded null or inconsistent results 

(Asendorpf & Wilpers, 1998; Casciaro, 1998; Feiler & Kleinbaum, 2015; Klein et al., 2004; Y. 

H. Lee et al., 2010; Y. Liu & Ipe, 2010; Pollet et al., 2011; Selfhout et al., 2009; Totterdell et al., 

2008; Venkataramani et al., 2010), suggesting that traditional approaches using personality 

surveys or questionnaires may not be sensitive to the types of inter-individual similarities that 

characterize friends. More recent work has demonstrated that inter-individual similarity in 

thoughts, feelings, and beliefs about the world (a “generalized shared reality”) is predictive of 

social connection between individuals (Rossignac-Milon et al., 2020). Consistent this notion, a 

growing body of research has demonstrated that people closer together in their real-world social 

networks (i.e., who are fewer “degrees of separation” from one another) are characterized by 

similarities in neuroanatomy, neural responses to watching naturalistic stimuli (i.e., audiovisual 
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movies), and patterns of neural activity at rest (D’Onofrio et al., 2021; Hyon, Kleinbaum, et al., 

2020; Hyon, Youm, et al., 2020; Parkinson et al., 2018). Although this handful of studies 

demonstrates the utility of neuroimaging in probing the types of similarities that are shared 

among friends, their cross-sectional nature limits the types of inferences that can be made about 

the causal relationship between neural similarity and social network proximity. Here, we 

leveraged a longitudinal study design to test if pre-existing similarities in neural responses to 

naturalistic stimuli predict future proximity in a real-world friendship network eight months 

later, and if pre-existing neural similarity was also associated with increases in social closeness 

over time. 

 

Figure 1. Data collection timeline and social network characterization. A subset of students in a graduate 

program (red nodes; N = 41) participated in the fMRI study before the start of their first year of the program (Time 

1). The majority of participants were scanned shortly after arriving on the campus (Mediandays between arrival and fMRI scan = 

3; Modedays between arrival and fMRI scan = 1; see Methods for details). Two months later (Time 2), every student in the 

program participated in a social network survey (N = 288; 100% response rate). The majority of these students (N = 

287; 99.6% response rate) completed the social network survey again six months after Time 2 (Time 3). Their social 

networks at Time 2 and at Time 3 were reconstructed using these data.  
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Results 

A subset of individuals in a graduate student cohort participated in the fMRI study (NfMRI 

= 41) before the beginning of their program (Time 1). The majority of fMRI participants were 

scanned shortly after their arrival on campus (see Fig. 1 and Appendix –  Fig. 1). During the 

fMRI study, participants watched a series of naturalistic audiovisual stimuli (i.e., film clips). We 

then characterized the complete social network of this cohort two months later (after the 

beginning of their academic program, Time 2) and again six months later (Time 3). For each 

unique pair of fMRI participants, pre-existing neural similarities were characterized at Time 1, 

and social distance was characterized at Times 2 and 3 (Fig. 2).  
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Figure 2. Calculation of neural similarity and social distance. (a) Participants’ data were resampled to standard 

space and parcellated into 200 brain regions using the Schaefer et al. (2018) parcellation scheme. Each region is 

associated with a brain network from the Yeo et al. (2011) seven-network parcellation, signified by different colors. 

For each region, the mean neural response was extracted at each time point during the fMRI scan, yielding a mean 

neural response time series. This was repeated for each participant. For a given pair of fMRI participants, the 

similarity of their neural response time series in each brain region at Time 2 was calculated using Pearson’s r. For 

each pair of fMRI participants, the geodesic distance between them in the social network of their academic cohort 

was calculated at (b) Time 2 and at (c) Time 3.  
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If pre-existing neural similarities truly reflect “deep” interpersonal compatibilities, we 

reasoned that such similarities may be particularly predictive of friendships after students have 

ample time to get to know one another and sort out with whom they are compatible. As such, our 

primary analyses involve testing if Time 1 neural similarities predict (1) greater future proximity 

in the friendship network at our latest time point (Time 3; 8 months later) and (2) increases in 

social closeness over time (i.e., in the 6 months between Times 2 and 3). For completeness, we 

also visualized mean neural similarities for dyads within each of the three social distance levels 

at Time 2 in Appendix –  Fig. 2 and the links between pre-existing neural similarities and social 

network proximity two months into the academic program in Appendix –  Fig. 3. 

More specifically, in each brain region, we tested if individuals who came to be 

characterized by a social distance of 1 (i.e., friends) 8 months into the academic program had 

greater neural similarity before meeting one another than individuals characterized by greater 

social distances. Additionally, for each pair of fMRI participants, we calculated their change in 

social distance over time (i.e., from Time 2 to Time 3) and tested if (and in which brain 

region(s)) individuals who grew closer in social ties over time had exhibited greater initial neural 

similarity before meeting one another relative to individuals who did not grow closer over time 

(see Methods). 
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Figure 3. Pre-existing neural similarities averaged within levels of social distance measured 8 months later. 

Data are overlaid on a cortical surface model and are shown in (a) lateral, (b) medial, and (c) dorsal and ventral 

views. Inter-participant neural similarities were normalized (i.e., z-scored across dyads for each region), averaged 

within social distance level, then projected onto an inflated model of the cortical surface. Warmer colors correspond 

to relatively similar neural responses for a given region, and cooler colors correspond to relatively dissimilar neural 

responses for a given region.  

 

Pre-existing neural similarity predicted friendship 8 months later.  

Mean neural similarities for dyads within each of the three social distance levels are 

visualized in Fig. 3. We tested if pre-existing neural similarities among individuals who came to 

be characterized by a social distance of 1 (i.e., friends) 8 months later were greater than pre-

existing neural similarities among individuals who did not. Statistical significance was 

determined using permutation testing (see Methods). Relative to people who did not become 

friends, people who became friends 8 months after the fMRI study did not exhibit significantly 

higher pre-existing neural similarity (Fig. 4a). 
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We followed up on these analyses, in which all non-friends had been collapsed into a 

single category, with analogous analyses comparing pre-existing neural similarities among 

friends to those among individuals characterized by a social distance of 2 (i.e., friends-of-friends) 

or 3 (i.e., friends-of-friends-of-friends). Whereas no significant differences were observed 

between friends and friends-of-friends, friends exhibited significantly higher pre-existing neural 

similarity in a portion of the left orbitofrontal cortex (OFC; Fig. 4c) relative to pairs of 

individuals characterized by a social distance of 3 (p < 0.001, FDR-corrected). A similar pattern 

of results was observed when controlling for inter-individual similarities in handedness and 

demographic characteristics (Appendix – Fig. 4) and when excluding the pairs of individuals 

who reported having interacted with each other (e.g., briefly met at a happy hour) prior to the 

neuroimaging session (i.e., excluding 18 dyads of the total 820 dyads; Appendix –  Fig. 5).  

In exploratory analyses, we investigated if accounting for inter-individual similarities in 

ratings of enjoyment and interest in the stimuli would fully account for and/or significantly 

diminish the difference in neural similarity between friends and pairs of individuals characterized 

by a social distance of 3 (see Methods). First, we found that the effect in the OFC remained 

significant when controlling for inter-individual similarities in ratings of enjoyment and interest 

(Appendix – Fig. 6), suggesting that similarity in neural responding in this brain region captured 

similarities in friends’ responses to the stimuli that the interest and enjoyment ratings did not. 

Next, to inform our interpretation of the psychological meaning of the OFC result, we tested if 

controlling for inter-individual similarities in ratings of enjoyment and/or interest would 

significantly diminish the difference in neural similarity between friends and pairs of individuals 

characterized by a social distance of 3. Neither controlling for inter-individual similarity in 

interest ratings nor controlling for inter-individual similarity in enjoyment ratings significantly 
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decreased the difference in neural similarity between friends and individuals characterized by a 

social distance of 3.  

 

 

Figure 4. People who became friends with each other showed greater pre-existing neural similarity than those 

who ended up 3 “degrees of separation” from each other 8 months later. Data are overlaid on a cortical surface 

model. Warmer colors correspond to relatively greater neural similarity for future friends compared to other pairs of 

participants, and cooler colors correspond to relatively less neural similarity for future friends compared to other 

pairs of participants. Null results were observed when testing if individuals who became friends exhibited greater 

pre-existing neural similarity relative to (a) individuals who did not become friends and (b) individuals who ended 

up 2 degrees of separation from each other. (c) Individuals who became friends with each other showed greater pre-

existing neural similarity in a portion of the left OFC (p < 0.001, FDR-corrected) relative to individuals who ended 

up 3 degrees of separation from each other in the social network 8 months after Time 1. Regions with significant 

differences for each contrast are outlined in black.  

 

Individuals who grew closer over time had higher pre-existing neural similarity.  

For each dyad, we calculated their change in social distance between Time 2 (two months 

into their academic program) and Time 3 (8 months in). Dyads were divided into three categories 

depending on if they grew closer over time (i.e., decrease in social distance), grew apart over 
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time (i.e., increase in social distance), or remained at the same social distance. Mean neural 

similarities across dyads within each of the three change-in-social-distance categories are 

visualized in Fig. 5. We tested if pre-existing neural similarities among individuals who grew 

closer over time were greater than among individuals who did not grow closer over time (i.e., 

who grew apart or whose social distance did not change). Statistical significance was determined 

using permutation testing (see Methods). Relative to individuals who did not grow closer over 

the course of 6 months, people who grew closer did not exhibit significantly greater pre-existing 

neural similarity (Fig. 6a). 

 We followed up on these analyses, in which all pairs of participants that did not grow 

closer to each other over time had been collapsed into a single category, with analogous analyses 

comparing pre-existing similarities among pairs of individuals who grew closer over time (i.e., 

between Times 2 and 3) to those among pairs of individuals whose social distance did not change 

or who grew apart over time. Pairs of individuals who grew closer over time did not exhibit 

significantly higher pre-existing neural similarity relative to individuals whose social distance 

did not change over time (Fig. 6b). However, relative to individuals that grew apart over time, 

individuals who grew closer over time exhibited significantly higher pre-existing neural 

similarity in bilateral thalamus, left amygdala, and 40 cortical regions spanning visual cortex, 

occipitotemporal cortex, superior parietal cortex, angular gyrus, medial frontal cortex, and lateral 

prefrontal cortex (p < 0.05, FDR-corrected; Fig. 6c). A similar pattern of results was observed 

when controlling for inter-individual similarities in handedness and demographic characteristics 

(Appendix – Fig. 7), when excluding pairs of individuals who reported having interacted with 

each other in any way prior to the neuroimaging session (Appendix – Fig. 8), and when 

controlling for enjoyment and interest ratings (Appendix – Fig. 9).  
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Figure 5. Pre-existing inter-participant similarities in mean neural response time series, averaged within 

levels of change in social distance over time. Data are overlaid on a cortical surface model and are shown in (a) 

lateral, (b) medial, and (c) dorsal and ventral views. Inter-participant neural similarities were normalized (i.e., z-

scored across dyads for each region), averaged within levels of change in social distance, then projected onto an 

inflated model of the cortical surface. Warmer colors correspond to relatively similar neural responses for a given 

region, and cooler colors correspond to relatively dissimilar neural responses for a given region.  

 

To further investigate why individuals who grew closer over time exhibited significantly 

higher pre-existing neural similarity relative to individuals who grew apart over time, we tested 

if accounting for inter-individual similarities in ratings of enjoyment and interest in the stimuli 

would significantly diminish the difference in neural similarity between these two groups (see 

Methods). This analysis was repeated for each of the brain regions in which we observed a 

significant difference in mean neural similarity (i.e., regions outlined in black in Fig. 6c). 

Controlling for inter-individual similarities in ratings of enjoyment of the stimuli significantly 

decreased the extent to which individuals who grew closer over time exhibited higher neural 

similarity in a portion of right superior parietal cortex (Difference in mean normalized neural 
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similarity = 0.015; p < 0.05) relative to individuals who grew apart over time. However, this 

effect was not observed when controlling for inter-individual similarities in ratings of interest in 

the stimuli or in other brain regions.  

 

 

Figure 6. Pairs of individuals who grew closer to each other over time showed greater pre-existing neural 

similarity than individuals who grew farther apart over time. Data are overlaid on a cortical surface model. 

Warmer colors correspond to relatively greater mean neural similarity for a given brain region, and cooler colors 

correspond to relatively less mean neural similarity. For a given dyad, change in social distance over time was 

calculated by subtracting their social distance at Time 2 from their social distance at Time 3. Dyads were then 

placed into three categories depending on if their social distance increased, decreased, or remained the same. In the 

first set of analyses visualized here (a), dyads whose social distance either increased over time or did not change 

were treated as a single category (i.e., dyads who did not grow closer). Individuals who grew closer to each other 

over time (i.e., characterized by a decrease in social distance over time) did not exhibit greater pre-existing neural 

similarity relative to individuals who did not grow closer to each other. (b) Individuals who grew closer to each 

other over time did not exhibit greater pre-existing neural similarity relative to individuals whose social distance did 

not change. (c) Pairs of individuals who grew closer to each other over time exhibited greater pre-existing neural 

similarity in 40 cortical regions spanning portions of visual cortex, occipitotemporal cortex, superior parietal cortex, 

angular gyrus, medial frontal cortex, and lateral prefrontal cortex relative to pairs of individuals who grew apart over 

time. Regions with significant differences (p < 0.05, FDR-corrected) for each contrast are outlined in black.  

 

Discussion 

Do pre-existing neural similarities predict future friendship? The current results provide 

evidence for neural homophily, such that relative to people who end up relatively far from one 
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another in social ties, people who end up becoming friends with one another demonstrated 

greater pre-existing neural similarity before meeting one another. Additionally, pre-existing 

neural similarity was particularly strongly linked to changes in inter-individual social distance 

between two and eight months after entering a new community. Such changes reflect the 

formation, persistence, and dissolution of friendships in the community's social network.  

Relative to individuals that were characterized by a social distance of 3 after having lived 

in a new community for eight months, individuals who became friends exhibited greater pre-

existing neural similarity in a portion of left OFC. Given the role of OFC in processing of 

subjective value (Padoa-Schioppa & Cai, 2011), neural similarity in this brain region may reflect 

similarities in tastes and preferences (e.g., similarities in what individuals find funny). 

Controlling for inter-individual similarity in the extent to which individuals were interested in 

the stimuli did not significantly diminish the difference in pre-existing neural similarity between 

friends and individuals characterized by a social distance of 3. Although neural similarity in this 

brain region may reflect similarity in the processing of subjective value, inter-individual 

similarity in self-reported ratings of preferences may not sufficiently account for the subjective 

value processing that may be particularly aligned among friends.  

A similar pattern of results was observed when examining the relationship between pre-

existing neural similarities and changes in inter-individual social distance over the course of 6 

months. Relative to dyads who drifted apart over time, dyads who grew closer in social ties over 

time were characterized by exceptionally similar neural responses in portions of bilateral OFC, 

and this difference in neural similarity was not significantly diminished when controlling for 

similarities in individuals’ self-reported enjoyment of or interest in the stimuli. Furthermore, 

dyads who grew closer in social ties over time also exhibited exceptionally similar neural 
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responses in many brain regions spanning default mode network (DMN), the frontoparietal 

control network (FPCN), and the dorsal attention network (DAN), suggesting that pre-existing 

neural similarities are particularly predictive of whether friendships form, persist, or dissolve 

over time.  

In particular, this relationship was observed in canonical DMN regions (Raichle, 2015), such as 

the angular gyrus and medial prefrontal cortex, which have a well-established role in social 

cognitive functions such as mentalizing and perspective-taking (Dufour et al., 2013; Schurz et 

al., 2014; Spunt et al., 2015). Similarities in neural responding in these DMN regions are 

associated with convergent interpretations and affective responses to complex narratives (P. H. 

A. Chen et al., 2020; Finn et al., 2018; Nguyen et al., 2019; Saalasti et al., 2019; Smirnov et al., 

2019; Yeshurun et al., 2017). Thus, similar responding in these regions among people who later 

became friends may reflect pre-existing similarities in how such individuals deployed socio-

cognitive processing to interpret the stimuli. Indeed, a recent framework has suggested that the 

DMN serves as an active “sense-making” network that integrates prior beliefs and long-term 

memories (e.g., intrinsic information) with processing of extrinsic information to create models 

of real-life situations as they unfold in real-time (Yeshurun et al., 2021). However, this 

relationship was not observed in all DMN regions (e.g., temporal poles, precuneus) but was 

observed in portions of ventral temporal cortex and occipitotemporal cortex. Together with 

angular gyrus, these regions, in part, have been suggested to comprise “gestalt cortex,” in which 

inter-individual similarity in seemingly effortless subjective construals of complex narratives is 

associated with neural similarity (Lieberman, 2022). Thus, neural similarities in these regions 

may capture the creation of high-level meaning across individuals as they watch naturalistic 

stimuli. 
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People who grew closer over time also exhibited greater pre-existing neural similarities in 

several regions of the FPCN, such as the lateral prefrontal cortex, cingulate cortex, and a portion 

of the inferior temporal gyrus. Recent work has shown that a subsystem of the FPCN couples 

with the DMN across a multitude of tasks, such as those involving mentalizing, emotional 

processing, metacognitive awareness, prospective memory, stimulus-independent and abstract 

thinking, and future planning (Dixon et al., 2018). Given the well-established role of the FPCN 

in executive control (Vincent et al., 2008), the FPCN may support top-down management of 

thought by constraining one’s focus on contextually relevant material while simultaneously 

allowing for introspective thought (Christoff et al., 2016; Dixon et al., 2018), such as the 

processing of personally salient information or internally-focused autobiographical planning 

(Smallwood et al., 2012; Spreng et al., 2010). In the context of watching naturalistic stimuli, the 

integration of internal trains of thought (e.g., prior beliefs and memories) and processing of 

extrinsic stimuli is crucial for understanding complex narratives (Yeshurun et al., 2021), 

suggesting that the FPCN may work in concert with the DMN to engage in “sense-making” of 

complex narratives. This is in line with prior work demonstrating that similarity in neural 

responding in both the DMN and FPCN is associated with similarity in subjective understanding 

of a complex narrative (Nguyen et al., 2019). Such similarities in subjective construals of 

narratives may be particularly conducive to friendship formation, as they may reflect, more 

generally, alignment in how individuals make sense of the world around them.  

We also observed pre-existing neural similarities in the superior parietal lobule and 

occipitotemporal cortex among friends that were significantly greater than that of people more 

distant from each other in their social network. Given that both of these regions are associated 

with the DAN (Schaefer et al., 2018; Yeo et al., 2011), these neural similarities may reflect 
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similarities in attentional allocation and in level of engagement. A growing body of research has 

demonstrated that attention modulates DMN activity during the processing of complex narratives 

(Ki et al., 2016; Regev et al., 2019; Yeshurun et al., 2021). In the context of viewing naturalistic 

stimuli, pre-existing neural similarities in the DAN may reflect inter-individual similarities in 

how people allocate their attention and what people find particularly engaging, which may lead 

to convergent interpretations of complex stimuli.  

Controlling for inter-individual similarities in ratings of enjoyment of and interest in the 

stimuli did not significantly diminish the exceptionally large difference in pre-existing neural 

similarity between individuals that grew closer over time and those that drifted apart in nearly 

every brain region in which individuals that grew closer over time exhibited exceptionally higher 

pre-existing neural similarity. This suggests that pre-existing neural similarities largely capture 

similarities that are linked to whether people grow closer or drift apart over time, but that go 

beyond what is captured by self-reported ratings of interest and enjoyment. At the same time, 

accounting for inter-individual similarity in patterns of enjoyment ratings did significantly 

decrease the difference in neural similarity between pairs of people who grew closer and those 

who drifted farther apart in a portion of the right superior parietal cortex. This suggests that pre-

existing similarities in neural responding in this region among people who grow closer to one 

another over time partially reflect similarities in such individuals’ patterns of enjoyment of the 

stimuli and/or similarities in neural processing (e.g., in how people allocate their attention) that 

are impacted by similarities in what they find enjoyable. 

Taken together, the current results suggest that inter-individual similarities in neural 

responses in individuals who interpret, attend to, and emotionally respond to audiovisual movies 

in a similar fashion are exceptionally likely to become friends in the future and remain friends or 
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grow closer over time. Viewing naturalistic stimuli demands continuous integration of dynamic 

information streams as they unfold in real-time, thereby evoking a wide range of socio-cognitive 

and emotional processes that characterize everyday mental life (Bottenhorn et al., 2019; Nastase 

et al., 2020; Vanderwal et al., 2019). Thus, similarities in how people think about and respond to 

naturalistic stimuli may reflect, more generally, similarities in how people think about and 

respond to the world around them. Taken together with the current results, this growing body of 

research continues to demonstrate that these inter-individual similarities may facilitate social 

connection and the formation of social ties. Indeed, separate work has shown that a sense of 

“generalized shared reality” (i.e., similarities in feelings, beliefs, and concerns about the world in 

general) is linked to social connection and interpersonal liking (Rossignac-Milon et al., 2020) 

and thus may be conducive to friendship formation. The pre-existing neural similarities observed 

in the current study may also underpin similarities in sociobehavioral tendencies, which can lead 

individuals to participate in similar activities and frequent similar social spaces. Such 

sociobehavioral similarities can also foster the formation of affiliative ties by facilitating 

interpersonal communication and predictability (Berger & Calabrese, 1975; Clore & Byrne, 

1974; Redcay & Schilbach, 2019). 

Additionally, variability in these pre-existing neural similarities may have also facilitated 

the formation, persistence, and dissolution of direct social ties between the two-month mark and 

the eight-month mark after individuals entered their new community. It is possible that some 

initial friendships at the two-month mark may have been formed based on circumstance (e.g., 

befriending others who conveniently sit nearby in class), rather than based on “deep” 

interpersonal compatibility (e.g., a sense of generalized shared reality; Rossignac-Milon et al., 

2020). However, between the two-month mark and the eight-month mark, neural homophily 



 160 

processes may have had more time to unfold. As a result, given sufficient time, pairs of 

individuals may have formed and/or maintained friendships due to interpersonal compatibilities 

reflected in pre-existing neural similarity. On the other hand, friendships born out of mere 

circumstance may have dissolved due to interpersonal incompatibilities, reflected in pre-existing 

neural dissimilarities, which only became apparent with the extended passage of time.  

The current results are consistent with the possibility of neural homophily, such that 

future friends share pre-existing neural similarity before meeting one another. Future work 

would benefit from investigating the role of social influence, as it is likely that homophily and 

social influences processes interact in human social networks. For example, pre-existing 

similarities in how individuals think about and respond to the world around them may, in part, 

cause individuals to become friends, as suggested by the current results. Over time, these 

individuals may undergo repeated, sustained social interactions that lead to further convergence 

in how they tend to speak, think, feel, and behave (Cialdini & Goldstein, 2004; de Waal, 2007; 

Kovacs & Kleinbaum, 2020), which may further convergence in neural processing. This effect of 

social influence can percolate outward to more distal social ties, which allows for even indirectly 

individuals to influence and be influenced by each other (Christakis & Fowler, 2009). Although 

the current study attempted to test for both neural homophily and social influence, planned 

collection of fMRI data two years after the participants entered their new community was 

prohibited by the COVID-19 pandemic. Future work can leverage longitudinal fMRI to further 

examine such phenomena.  

A growing body of cross-sectional research integrating neuroimaging and social network 

analysis has demonstrated that individuals closer together in their real-world social network tend 

to share similarities in neuroanatomy (D’Onofrio et al., 2021), (resting-state functional 
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connectomes (Hyon, Youm, et al., 2020), and neural responses to watching naturalistic stimuli 

(Hyon, Kleinbaum, et al., 2020; Parkinson et al., 2018). However, the cross-sectional nature of 

this work has limited the types of inferences that can be made about the causal relationship 

between neural similarity and social distance. The current research expands upon this work and 

sheds light on the causal role of neural homophily in shaping human social structures. 

Although the current sample included participants from a wide range of nationalities (see 

Methods), the current results are reflective of a single context, and results may vary across 

cultures and contexts. Past cross-sectional work has linked neural (Hyon, Youm, et al., 2020) and 

behavioral (Apicella et al., 2012) similarities to social network proximity across markedly 

different cultural contexts. However, it is important to note that the current evidence for neural 

homophily is constrained within a single cultural context. Additionally, although the general 

phenomenon of neural homophily may be consistently observed across cultures and contexts, the 

types of interpersonal similarities that predict future friendship may vary. Thus, future work 

examining these effects across diverse cultures will yield a more comprehensive understanding 

of how this phenomenon may differentially unfold across different social networks. 
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Methods 

Participants 

fMRI participants. All data collection procedures were completed in accordance with 

the standards of the local ethical review board. A subset of 43 individuals from an incoming 

graduate student cohort (Ncohort = 288) at a private university in the United States participated in 

the neuroimaging study. Participants were scanned as soon as possible after their arrival on 

campus. The majority of fMRI participants were scanned shortly after arriving on campus 

(Appendix – Fig. 1). The modal number of days between participants’ arrival on campus and 

their participation in the fMRI study was 1 day and the median number of days was 3 days. Two 

of the fMRI participants were scanned more than 1 month after their arrival on campus; these 

participants had been enrolled in two different prior graduate programs at the university but had 

not met one another at the time of the fMRI scan. Participants provided informed consent in 

accordance with the policies of the institution’s ethical review board. Of the 43 participants, one 

participant did not complete the scan and was excluded from analysis and one participant did not 

participate in the social network survey administered at Time 3 (see Social network survey 

participants) and thus was excluded from analysis. Data from the resulting 41 participants (14 

female) aged 25-34 (M = 28.63, SD = 2.15) were used for analysis. Of these participants, two 

participants had excess movement in only one of the four fMRI runs; thus, these scans were 

excluded from the analyses involving these two participants. Of these 41 participants, 38 were 

right-handed and three were left-handed. Twenty-four participants self-identified their nationality 

as that of the United States, with five participants from India, two participants from Australia, 

two participants from Peru, and one participant each from Argentina, Iran, Russia, Kyrgyzstan, 

the United Kingdom, China, Brazil, and Canada. Fifteen participants identified as White/Non-
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Hispanic, two identified as Hispanic/Latino, one identified as Black/Non-Hispanic, one 

identified as Asian/Asian-American/Pacific-Islander, one identified as multi-racial, and 21 chose 

to not indicate their ethnicity. The neuroimaging study was advertised to all students in each 

cohort via email. All students who were interested in participating and who passed a standard 

MRI safety screening participated in the scan. 

Social network survey participants. Approximately two months (Time 2) and 8 months 

(Time 3) after the fMRI scan, the social network of the academic cohort was characterized (Fig. 

1). Participants were from the same cohort of 288 (129 females) first-year graduate students who 

had been recruited for the fMRI study at Time 1 and participated as part of their coursework on 

leadership. At Time 2, all students in the cohort completed an online social network survey (i.e., 

100% response rate). At Time 3, all students except one individual completed the survey (i.e., 

99.6% response rate). 

 

Experimental procedures 

fMRI acquisition. Participants were scanned using a Siemens Prisma 3T scanner. Six 

functional runs were acquired using an echo-planar sequence (25 ms echo time (TE); 2000 ms 

repetition time (TR); 3.0 mm x 3.0 mm 3.0 mm resolution; 240 mm FOV; 40 interleaved 

transverse slices with no gap. A high-resolution T1-weighted anatomical scan was also acquired 

for each participant (2.32 ms TE; 2300 ms TR; 240 mm FOV; 0.9 mm x 0.9 mm x 0.9 mm 

resolution) 

fMRI paradigm and stimuli. Before the fMRI study began, participants were told that 

they would be watching a set of videos while being scanned, which would vary in content, and 

that their experience in the study would be akin to watching television while someone else 
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“channel surfed.” All participants saw the same clips in the same order (as if the clips comprised 

different scenes of a continuous movie), to avoid inducing response variability between 

participants related to differences in how clips were presented. Stimuli consisted of 14 videos 

presented with sound over the course of six fMRI runs. Videos ranged in duration from 88 to 305 

s (see Table S1 for brief descriptions of stimuli). Criteria used to select stimuli are described in 

more detail elsewhere (Parkinson et al., 2018). Briefly, efforts were made to select stimuli that 

(1) most participants would not have seen before, (2) would be engaging for participants, and (3) 

would evoke diverging inferences and patterns of attentional allocation across viewers, and thus, 

psychologically meaningful variability in neural responding (e.g., because different people might 

attend to, emotionally react to, and/or interpret them differently). After the fMRI session, 

participants filled out an online survey and provided ratings of the extent to which they enjoyed 

and were interested in each of the stimuli shown during the fMRI session. For each stimulus, a 

screenshot was shown and participants answered, “How interesting did you find this video?” and 

“How much did you enjoy this video?” on a Likert scale from 1 to 5.  

Social network survey. Participants followed an e-mailed link to the study website 

where they responded to a survey designed to assess their position in the social network of 

students in their cohort of the academic program. The survey question was adapted from Burt 

(1992) and has been previously used in the modified form used here (Feiler & Kleinbaum, 2015; 

Kleinbaum et al., 2015; Parkinson et al., 2018). It read, “Consider the people with whom you like 

to spend your free time. Since you arrived at [institution name], who are the classmates you have 

been with most often for informal social activities, such as going out to lunch, dinner, drinks, 

films, visiting one another’s homes, and so on?” A roster-based name generator was used to 

avoid inadequate or biased recall. Participants indicated the presence of a social tie with an 

https://www.sciencedirect.com/science/article/pii/S1053811919310833#appsec1
https://www.sciencedirect.com/science/article/pii/S1053811919310833#appsec1
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individual by placing a checkmark next to his or her name. Participants could indicate any 

number of social ties, and had no time limit for responding to this question. 

 We note that in this particular graduate program, students lived in close proximity to each 

other in an isolated, rural area. Furthermore, they took classes together and frequently ate meals 

and socialized together. Taken together, these characteristics of this graduate program 

engendered an intense and immersive social experience. 

 

Data analysis 

 fMRI preprocessing and parcellation. fMRIPrep version 1.4.0 was used for anatomical 

and functional data preprocessing (Esteban et al., 2019). The T1-weighted (T1w) image was 

corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection, distributed with ANTs 

2.1.0, and used as T1w-reference throughout the workflow. The T1w-reference was then skull-

stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), 

using OASIS30ANT as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using FSL 

FAST. Volume-based spatial normalization to MNI152NLin2009cAsym standard space was 

performed through nonlinear registration with antsRegistration (ANTs 2.1.0), using brain-

extracted versions of both T1w reference and the T1w template.  

For each of the 6 BOLD runs per participant (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. The BOLD reference was then co-

registered to the T1w reference using FSL FLIRT with the boundary-based registration cost-

function. Co-registration was configured with nine degrees of freedom to account for distortions 
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remaining in the BOLD reference. Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation parameters) were 

estimated before any spatiotemporal filtering using FSL MCFLIRT. Automatic removal of 

motion artifacts using independent component analysis (ICA-AROMA) was performed on the 

preprocessed BOLD on MNI space time-series after removal of non-steady state volumes and 

spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-

maximum). The confounding variables generated by fMRIPrep that were used as nuisance 

variables in the current study included global signals extracted from the CSF, WM, and whole-

brain masks, framewise displacement, three translational motion parameters, and three rotational 

motion parameters. These confounds were regressed out of the data for each preprocessed run. 

Temporal filtering was performed with a band-pass filter between 0.009 and 0.08 Hz. 

The Schaefer et al. (2018) parcellation scheme (resampled to MNI152NLin2009cAsym 

standard space) with 200 parcels was used in the current study to define the 200 cortical ROIs. 

Each parcel is associated with one of seven brain networks from the Yeo et al. (2011) seven-

network parcellation - the visual, somatomotor, dorsal attention, ventral attention, limbic, 

frontoparietal task control, and default mode networks. The Harvard-Oxford subcortical atlas 

(Desikan et al., 2006) was used to define 14 subcortical ROIs - bilateral nucleus accumbens, 

amygdala, putamen, caudate, thalamus, hippocampus, and pallidum.  

 Social network analysis. The following steps were taken to characterize the social 

networks at Time 2 and at Time 3. Social network data were analyzed using igraph in R (Csárdi 

& Nepusz, 2014). An unweighted graph consisting of mutually reported social ties was used to 

estimate social distances between individuals. In other words, an undirected edge would connect 

two actors only if they had both nominated one another as friends. Social distance was defined as 
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the geodesic distance between people in the social network – i.e., as the smallest number of 

intermediary social ties required to connect them in the network. Pairs of individuals who both 

named one another as friends were assigned a social distance of one. Individuals would be 

assigned a distance of two from one another if they had a mutually reported friendship with a 

shared friend, but were not friends with one another, and so on.  

At Time 2, of the 820 dyads of fMRI participants, 63 (7.68%) were characterized by a 

social distance of one (i.e., they were friends), 436 (53.17%) were characterized by a social 

distance of two (i.e., they were friends of one another’s friends), 280 (34.15%) were 

characterized by a social distance of three, and 41 (5.00%) were characterized by a social 

distance of four. Dyads characterized by a social distance of four were recoded as dyads 

characterized by a social distance of three given that similarities in neural responses in people 

four or more degrees of separation apart have previously been found to be highly variable and 

not significantly different from that of social dyads two or three degrees of separation from one 

another (Parkinson et al., 2018). More generally, a large body of research demonstrates that 

relationships between interpersonal similarities in a variety of cognitive, emotional, and 

behavioral phenomena (e.g., risk perception, cooperation, smoking, depression, loneliness, and 

happiness) and social network proximity disappear beyond three to four “degrees of separation” 

(Cacioppo et al., 2009; Christakis & Fowler, 2007, 2008; Fowler & Christakis, 2010; Moussaïd 

et al., 2015, 2017; J. N. Rosenquist et al., 2011; J. Niels Rosenquist et al., 2010). At Time 3, of 

the 820 dyads of fMRI participants, 93 (11.34%) were characterized by a social distance of one, 

544 (66.34%) were characterized by a social distance of two, and 183 (22.32%) were 

characterized by a social distance of three. For each social network, for descriptive purposes, we 

then calculated the average number of social ties across individuals, the median number of social 
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ties, and the reciprocity of the graph, which refers to the probability that person i nominated 

person j as a friend if person j nominated person i as a friend (mean social tiesTime 2 = 72, median 

social tiesTime 2 = 65, reciprocityTime 2 = 0.53; mean social tiesTime 3 = 100, median social tiesTime 3 

= 91, reciprocityTime 3 = 0.56). Here, the number of social ties refers to degree centrality, where 

incoming and outgoing ties are summed.  

 

Testing if pre-existing neural similarity differed between levels of social distance at Time 3 

The following analysis was performed in each of the 200 cortical and 14 subcortical brain 

regions. For each fMRI participant, all six fMRI scans were concatenated into a single time 

series (with the exception of two participants who only had three scans that were concatenated 

due to excess movement in the excluded scan). For each fMRI participant, the neural response 

time series was spatially averaged across all voxels within a given region. For each unique pair 

of fMRI participants, we then calculated the Pearson r between their neural response time series, 

yielding a value reflecting neural similarity for a given region. For a given region, these neural 

similarity values were then Fisher-z transformed and normalized across fMRI dyads using scikit-

learn’s StandardScaler() function (Pedregosa et al., 2011).  

To test if individuals characterized by a social distance of 1 (i.e., friends) initially 

exhibited significantly higher neural similarity in a given brain region than did individuals 

characterized by a social distance of 2 or 3 (i.e., non-friends), we first bucketed all individuals 

characterized by a social distance of 2 or 3 into a single category of social distance (i.e., non-

friends). The mean neural similarity was then calculated for each of the two resulting levels of 

social distance (i.e., friends and non-friends). We then subtracted the mean neural similarity 

among pairs of individuals who did not become friends from the mean neural similarity among 
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pairs of individuals who did become friends. To assess the statistical significance of this 

difference, we implemented the following permutation testing procedure. Neuroimaging data 

were randomly shuffled across fMRI participants 1,000 times while holding all else in the dataset 

constant. In each permuted dataset, the mean neural similarity among individuals characterized 

by a social distance of 2 or 3 (shuffled) was again subtracted from the mean neural similarity 

among individuals characterized by a social distance of 1 (shuffled). This procedure yielded a 

null distribution of 1,000 permuted difference values. We then calculated the extent to which the 

true difference value was greater than the null distribution in order to generate a p-value. These 

p-values were then corrected for false discovery rates (FDR) across all 214 regions.  

This analytical procedure was repeated to test if individuals characterized by a social 

distance of 1 exhibited significantly higher neural similarity in a given region than did 

individuals characterized by a social distance of 2. It was also repeated to test if individuals 

characterized by a social distance of 1 exhibited significantly higher neural similarity in a given 

region than did individuals characterized by a social distance of 3. 

In each brain region in which a significant difference in neural similarity between groups 

was observed, we then tested if inter-individual similarity in self-reported ratings of enjoyment 

of the stimuli accounted for a significant portion of this difference. Even when a similar pattern 

of results is observed with and without controlling for similarities in behavioral ratings, it is 

possible that the magnitude of the neural similarity difference between groups would 

significantly decrease when controlling for such behavioral similarities if the neural similarities 

are partially driven by them. These exploratory analyses thus aim to inform the psychological 

interpretation of the significant findings. First, for a given dyad, inter-individual similarity in 

enjoyment or interest ratings was measured by calculating the Euclidean distance between 
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individuals’ vectorized series of enjoyment ratings across the stimuli to yield a single similarity 

value. We then calculated the between-group difference in mean normalized neural similarity, 

and we separately calculated the between-group difference in mean normalized neural similarity 

after controlling for inter-individual similarities in enjoyment ratings. We then subtracted the 

latter difference value from the former difference value to yield a value capturing the extent to 

which between-group difference in neural similarity was diminished when controlling for inter-

individual enjoyment similarity. To test whether this decrease in between-group difference in 

neural similarity was statistically significant, we implemented the following permutation testing 

procedure. Enjoyment ratings were randomly shuffled across fMRI participants 1,000 times 

while holding all else in the dataset constant. In each permuted dataset, the above-mentioned 

analytic procedure was repeated to generate a value capturing the decrease in between-group 

difference in neural similarity when controlling for enjoyment similarity. This procedure yielded 

a null distribution of 1,000 values capturing the decrease in between-group difference in neural 

similarity when controlling for enjoyment similarity. We then calculated the extent to which the 

true value was greater than this null distribution in order to generate a p-value.  

This analytical procedure was repeated using self-reported ratings of interest in the 

stimuli to test if inter-individual similarity in self-reported ratings of interest in the stimuli 

accounted for significant portions of the differences in neural similarity between groups.  

 

Testing if neural similarity significantly differed between levels of change in social distance 

between Time 2 and Time 3 

For each pair of fMRI participants, change in social distance between Time 2 and Time 3 

was calculated by subtracting their Time 3 social distance from their Time 2 social distance. To 
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test if individuals characterized by a decrease in social distance (i.e. individuals who grew closer 

over time) between Time 2 and 3 exhibited greater pre-existing neural similarity in a given brain 

region than did individuals characterized by no change in social distance between Time 2 and 3 

or an increase in social distance (i.e., individuals who grew apart over time) between Time 2 and 

3, we first bucketed all individuals characterized by no change or an increase in social distance 

into a single category of individuals who did not grow closer over time. In total, of the 820 dyads 

of fMRI participants, 279 dyads were characterized by a decrease in social distance, 445 dyads 

were characterized by no change in social distance, and 96 dyads were characterized by an 

increase in social distance. The following analysis was performed in each of the 200 cortical and 

14 subcortical brain regions. The mean neural similarity was calculated for individuals who grew 

closer over time and separately for individuals who did not grow closer over time. We then 

subtracted the mean neural similarity among individuals who did not grow closer over time from 

the mean neural similarity among individuals who did grow closer over time. To assess the 

statistical significance of this difference, we implemented the following permutation testing 

procedure. Neuroimaging data were randomly shuffled across fMRI participants 1,000 times 

while holding all else in the dataset constant. In each permuted dataset, the mean neural 

similarity among individuals who did not grow closer over time was again subtracted from the 

mean neural similarity among individuals who did grow closer over time. This procedure yielded 

a null distribution of 1,000 permuted difference values. We then calculated the extent to which 

the true difference value was greater than the null distribution in order to generate a p-value. 

These p-values were then corrected for false discovery rates (FDR) across all 214 regions.  
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This analytical procedure was repeated to test if individuals who grew closer over time 

exhibited greater pre-existing neural similarity in a given region than did individuals whose 

social distance did not change over time individuals who grew apart over time.  

In each brain region in which a significant difference in neural similarity between groups 

was observed, we then tested if inter-individual similarity in self-reported ratings of enjoyment 

of or interest in the stimuli accounted for this significant difference using the same data analytic 

and permutation-testing approaches described in the preceding section ("Testing if pre-existing 

neural similarity differed between levels of social distance at Time 3").  

 

 

  



 173 

Appendix 

 
Appendix – Figure 1. Distribution of days between participants’ arrival on campus and the fMRI study. The 

majority of fMRI participants were scanned shortly after their arrival on campus (Mode = 1 day; Median = 3 days). 

Only two participants were on campus for more than 30 days before the fMRI study; one participant was on campus 

for 400 days due to being enrolled in a prior graduate program at the same university, and the other participant was 

on campus for 1095 days due to being enrolled in a different prior graduate program at the same university. Thus, it 

was highly unlikely that participants formed meaningful relationships prior to the fMRI study. Additionally, we 

observed a similar pattern of results in the current study when excluding fMRI dyads who had encountered each 

other prior to the fMRI study (Appendix – Figures 4 and 7).  
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Appendix – Figure 2. Pre-existing neural similarities averaged within levels of social distance measured 2 

months later at Time 2. Data are overlaid on a cortical surface model and are shown in (a) lateral, (b) medial, and 

(c) dorsal and ventral views. Inter-participant neural similarities were normalized (i.e., z-scored across dyads for 

each region), averaged within social distance level, then projected onto an inflated model of the cortical surface. 

Warmer colors correspond to relatively similar neural responses for a given region, and cooler colors correspond to 

relatively dissimilar neural responses for a given region.  
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Appendix – Figure 3. Early in the school year, pre-existing neural similarities were not yet associated with 

friendship. Data are overlaid on a cortical surface model. Warmer colors correspond to relatively greater mean 

neural similarity, and cooler colors correspond to relatively less mean neural similarity. Early in the school year (two 

months in, at Time 2), null results were observed when testing (a) if individuals who became friends exhibited 

greater pre-existing neural similarity relative to individuals who did not become friends and if individuals who 

became friends exhibited greater pre-existing neural similarity relative to (b) individuals who ended up in 2 degrees 

of separation from each other and (c) individuals who ended up in 3 degrees of separation from each other.  
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Appendix – Figure 4. People who became friends showed greater pre-existing neural similarity than those 

who ended up 3 “degrees of separation” from each other 8 months later when controlling for similarities in 

demographics. Data are overlaid on a cortical surface model. Warmer colors correspond to relatively greater mean 

neural similarity, and cooler colors correspond to relatively less mean neural similarity. (a) Null results were 

observed when testing if individuals who became friends exhibited greater pre-existing neural similarity relative to 

(b) individuals who did not become friends and (b) individuals who ended up 2 degrees of separation from each 

other. (c) Relative to individuals who ended up 3 degrees of separation from each other in the social network, 

individuals who became friends with each other showed greater pre-existing neural similarity in a portion of the left 

OFC (p < 0.001, FDR-corrected). Regions with significant differences for each contrast are outlined in black.  
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Appendix – Figure 5. People who became friends showed greater pre-existing neural similarity than those 

who ended up 3 “degrees of separation” from each other 8 months later when excluding dyads who met each 

other prior to the neuroimaging session. Data are overlaid on a cortical surface model. Warmer colors correspond 

to relatively greater mean neural similarity, and cooler colors correspond to relatively less mean neural similarity. 

Null results were observed when testing if individuals who became friends exhibited greater pre-existing neural 

similarity relative to (a) individuals who did not become friends and (b) individuals who ended up 2 degrees of 

separation from each other. (c) Individuals who became friends with each other showed greater pre-existing neural 

similarity in a portion of the left OFC (p < 0.001, FDR-corrected) relative to individuals who ended up 3 degrees of 

separation from each other in the social network. Regions with significant differences for each contrast are outlined 

in black.  
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Appendix – Figure 6. People who became friends showed greater pre-existing neural similarity than those 

who ended up 3 “degrees of separation” from each other 8 months later when controlling for similarities in 

enjoyment and interest ratings. Data are overlaid on a cortical surface model. Warmer colors correspond to 

relatively greater mean neural similarity, and cooler colors correspond to relatively less mean neural similarity. (a) 

Null results were observed when testing if individuals who became friends exhibited greater pre-existing neural 

similarity relative to (b) individuals who did not become friends and (b) individuals who ended up 2 degrees of 

separation from each other. (c) Relative to individuals who ended up 3 degrees of separation from each other in the 

social network, individuals who became friends with each other showed greater pre-existing neural similarity in a 

portion of the left OFC (p < 0.001, FDR-corrected). Regions with significant differences for each contrast are 

outlined in black.  
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Appendix – Figure 7. Individuals who grew closer over time showed greater pre-existing similarity than 

individuals who grew farther apart over time when controlling for similarities in demographics. Data are 

overlaid on a cortical surface model. Warmer colors correspond to relatively greater mean neural similarity, and 

cooler colors correspond to relatively less mean neural similarity. For a given dyad, change in social distance over 

time was calculated by subtracting their social distance at Time 2 from their social distance at Time 3. Depending on 

these values, dyads were then placed into three categories depending on if their social distance increased, decreased, 

or remained the same (see Methods). Dyads whose social distance either increased over time or did not change were 

treated as a single category (i.e., dyads who did not grow closer). Individuals who grew closer over time (i.e., 

characterized by a decrease in social distance over time) did not exhibit significantly greater pre-existing neural 

similarity relative to (a) individuals that did not grow closer over time or (b) individuals whose social distance did 

not change. (c) Individuals who grew closer over time exhibited greater pre-existing neural similarity in regions 

spanning visual cortex, occipitotemporal cortex, superior parietal cortex, angular gyrus, medial frontal cortex, and 

lateral prefrontal cortex (p < 0.05, FDR-corrected) relative to individuals who grew apart over time. Regions with 

significant differences for each contrast are outlined in black.  
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Appendix – Figure 8. Individuals who grew closer over time showed greater pre-existing similarity than 

individuals who grew farther apart over time when excluding dyads who knew each other prior to the 

neuroimaging session. Data are overlaid on a cortical surface model. Warmer colors correspond to relatively 

greater mean neural similarity, and cooler colors correspond to relatively less mean neural similarity. For a given 

dyad, change in social distance over time was calculated by subtracting their social distance at Time 2 from their 

social distance at Time 3. Depending on these values, dyads were then placed into three categories depending on if 

their social distance increased, decreased, or remained the same (see Methods). Dyads whose social distance either 

increased over time or did not change were treated as a single category (i.e., dyads who did not grow closer). 

Individuals who grew closer over time (i.e., characterized by a decrease in social distance over time) did not exhibit 

significantly greater pre-existing neural similarity relative to individuals (a) who did not grow closer over time or 

(b) whose social distance did not change. (c) Individuals who grew closer over time exhibited greater pre-existing 

neural similarity in regions spanning visual cortex, occipitotemporal cortex, superior parietal cortex, angular gyrus, 

medial frontal cortex, and lateral prefrontal cortex (p < 0.05, FDR-corrected) relative to individuals who grew apart 

over time. Regions with significant differences for each contrast are outlined in black.  
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Appendix – Figure 9. Individuals who grew closer over time showed greater pre-existing similarity than 

individuals who grew farther apart over time when controlling for similarities in enjoyment and interest 

ratings. Data are overlaid on a cortical surface model. Warmer colors correspond to relatively greater mean neural 

similarity, and cooler colors correspond to relatively less mean neural similarity. For a given dyad, change in social 

distance over time was calculated by subtracting their social distance at Time 2 from their social distance at Time 3. 

Depending on these values, dyads were then placed into three categories depending on if their social distance 

increased, decreased, or remained the same (see Methods). Dyads whose social distance either increased over time 

or did not change were treated as a single category (i.e., dyads who did not grow closer). Individuals who grew 

closer over time (i.e., characterized by a decrease in social distance over time) did not exhibit significantly greater 

pre-existing neural similarity relative to (a) individuals that did not grow closer over time or (b) individuals whose 

social distance did not change. (c) Individuals who grew closer over time exhibited greater pre-existing neural 

similarity in regions spanning visual cortex, occipitotemporal cortex, superior parietal cortex, angular gyrus, medial 

frontal cortex, and lateral prefrontal cortex (p < 0.05, FDR-corrected) relative to individuals who grew apart over 

time. Regions with significant differences for each contrast are outlined in black.  
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Appendix  – Table 1. Summary of video clips shown in the fMRI study 

 

 

 

 

Clip Description Duration 

(s) 

1 ‘An Astronaut’s 

View of Earth’ 

An astronaut discusses viewing Earth from space, and in 

particular, witnessing the effects of climate change from 

space. He then urges viewers to mobilize to address this issue. 

223 

 

2 Google Glass 

review 

A journalist wears a Google Glass headset for a day and 

weighs the pros and cons of being an ‘early adopter’ of this 

technology. 

88 

3 ‘Crossfire’ Two journalists debate the appropriateness of President 

Obama’s use of humor in a speech; excerpts from the speech 

are shown. 

89 

4 ‘All I Want’ A sentimental music video depicting a social outcast with a 

facial deformity seeking companionship.  

305 

5 Wedding film  A homemade film depicting scenes from two men’s wedding 

ceremony and subsequent celebration with family and friends. 

120 

6 Scientific 

demonstration 

An astronaut at the International Space Station demonstrates 

and explains what happens when one wrings out a 

waterlogged washcloth in space. 

118 

7 ‘Food Inc.’ An excerpt from a documentary discussing how the fast food 

industry influences food production and farming practices in 

the United States.  

178 

8 ‘We Can Be 

Heroes’ 

An excerpt from a mockumentary-style series in which a man 

discusses why he nominated himself for the title of Australian 

of the Year. 

202 

9 ‘Ban College 

Football’ 

Journalists and athletes debate whether or not football should 

be banned as a college sport. 

195 

10 Soccer match  Highlights from a soccer match. 91 

11 Baby sloth 

sanctuary 

A documentary about caring for baby sloths at a sanctuary in 

Costa Rica. 

200 

12 ‘Ew!’ A comedy skit in which grown men play teenage girls 

disgusted by things around them. 

169 

13 ‘Life’s Too 

Short’ 

An example of ‘cringe comedy’ in which a dramatic actor is 

depicted unsuccessfully trying his hand at improvisational 

comedy. 

106 

14 ‘America’s 

Funniest Home 

Videos’ 

A series of homemade video clips depicting examples of 

unintentional physical comedy arising from accidents. 

101 

Table adapted from Parkinson et al. (2018). 
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General Discussion 

Summary 

 The research in this dissertation integrates methods from multimodal neuroimaging, 

social network analysis, and machine learning to investigate how the brain shapes and is shaped 

by real-world social networks. The current results shed light on the types of neurocognitive 

functioning that may be unique to individuals that occupy positions of centrality and brokerage 

in their social network. Furthermore, this research demonstrates that inter-individual similarities 

in patterns of whole-brain resting-state functional connectivity are predictive of how close people 

are in their social network. Finally, these results suggest that pre-existing similarities in 

individuals’ neural responses to naturalistic stimuli are predictive of not only future friendship 

formation but also whether friendship persists or dissolves over time.  

 The first study, presented in Chapter 1, leveraged structural neuroimaging to characterize 

multivariate patterns of white matter microstructural integrity within four key brain networks 

supporting socio-affective functioning. Using machine learning, we demonstrated that patterns of 

white matter microstructural integrity distributed across brain networks implicated in affective 

and mirroring processes were predictive of individuals’ eigenvector centrality and brokerage in 

their social network. These results suggest that neurocognitive processes supporting the 

perception and processing of emotions and those that underpin the self-regulation of behavior to 

adapt to social circumstances may be particularly unique to individuals that are highly popular 

and to individuals that serve as social brokers, connecting otherwise unconnected individuals.  

These results provide novel insight into the socio-affective functioning that may particularly 

characteristic of individuals that occupy social network positions associated with social prestige, 

popularity, and leverage.   
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 The second study, presented in Chapter 2, investigated whether people closer together in 

their social network were characterized by more similar resting-state brain activity. Using 

machine learning, we demonstrated that inter-individual similarities in whole-brain resting-state 

functional connectomes were predictive of inter-individual social network proximity in their 

social network. Our machine learning algorithm successfully used inter-individual similarity in 

functional connectomes to predict inter-individual social network proximity, whether social 

network proximity was weighted by emotional closeness ratings, communication frequency, or 

in-person meeting frequency. Furthermore, the positive relationship between inter-individual 

neural similarity and social network proximity was moderated by inter-individual geographic 

proximity, suggesting that the relationship between neural similarity and social network 

proximity was particularly robust among individuals that lived closer to each other. Taken 

together, these results demonstrate that people closer together in their social network share 

exceptionally similar resting-state brain activity and that this relationship varies as a function of 

inter-individual geographic distance.  

 The third study, presented in Chapter 3, demonstrates that pre-existing inter-individual 

similarities in neural responses to watching naturalistic stimuli was predictive of friendship 

formation eight months later. These pre-existing neural similarities were predominantly localized 

to brain networks in which neural similarity has previously been shown to be linked to shared 

understanding and interpretation of complex narratives. Thus, the current results suggest that pre-

existing similarities in how individuals more generally think about the world around them may, 

in part, determine whether they become friends in the future. Furthermore, we also examined 

how inter-individual social distance changed over time due to the formation, persistence, and 

dissolution of friendships. Individuals that grew closer in social ties over time were characterized 
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by greater pre-existing neural similarity relative to individuals that grew apart, suggesting that 

pre-existing neural similarity may capture “deeper” interpersonal compatibilities that give rise to 

longer-lasting friendships and friendships that may form over longer periods of time, in contrast 

to friendships that may initially form out of mere circumstance. Taken together, these results 

provide shed light on the role of neural homophily in shaping social networks, whereby pre-

existing neural similarities causally predict friendship and whether friendships form, persist, or 

dissolve over time.  

 

Future directions 

 Although the study presented in Chapter 3 provides evidence that pre-existing neural 

similarities predict future friendship, further research is needed to investigate the role of social 

influence in shaping social networks, whereby inter-individual neural similarity may increase 

over the course of friendship. As discussed in Chapter 3, this study attempted to collect fMRI 

data at two timepoints to investigate whether friendship predicts increased neural similarity over 

time. However, due to limitations imposed by the COVID-19 pandemic, we were unable to 

collect a second round of fMRI data to test this hypothesis. Future studies leveraging 

longitudinal fMRI data collection can further shed light on the role of neural homophily and 

social influence and on the extent to which these mechanisms interact to shape social networks.  

Furthermore, similar longitudinal designs can be leveraged to test whether pre-existing 

individual differences in white matter microstructural integrity are predictive of individuals’ 

future social network position characteristics (e.g., eigenvector centrality, brokerage) and 

whether the occupation of particular social network positions is predictive of future changes in 

neural structure and function.  Although the study presented in Chapter 1 demonstrated that 
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patterns of white matter microstructural integrity distributed across brain systems supporting 

socio-affective functioning were predictive of individuals’ social network position 

characteristics, this finding was derived from cross-sectional data. Longitudinal research would 

make significant contributions to our understanding of how neurocognitive processes and 

associated sociobehavioral tendencies may be particularly advantageous for attaining various 

positions of centrality and brokerage. Such work would also advance our understanding of how 

the brain’s neural structure and function may change in order to meet the heightened socio-

cognitive demands of occupying positions of centrality and brokerage.  

Future work may also benefit from incorporating multimodal neuroimaging data into 

models used to predict individual differences in social network position characteristics. Although 

the study presented in Chapter 1 provides a proof-of-concept for using structurally-derived 

neuroimaging features to predict social network position characteristics, including functionally-

derived neuroimaging features (e.g., features extracted from fMRI responses to highly controlled 

tasks or naturalistic stimuli) in addition to structurally-derived neuroimaging features (i.e., 

multimodal feature fusion; Zhu et al. 2015; Calhoun and Sui 2016) can boost the accuracy of 

models used to predict individuals social network position characteristics. Moreover, the 

inclusion of features derived from fMRI neural responses may also facilitate the interpretation of 

such models, particularly in cases where these neural responses are evoked by highly controlled 

paradigms designed to elicit particular neurocognitive functions (e.g., mentalizing). Furthermore, 

a similar multimodal fusion approach can be used to improve the performance and interpretation 

of models used to predict inter-individual social network proximity (e.g., friendship) based on 

unimodal features alone, such as the model used in the study described in Chapter 2 of this 

dissertation.  
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The studies described in this dissertation shed light on the individual differences in brain 

structure and associated neurocognitive processes that are linked to particular social network 

position characteristics and on the types of inter-individual neural similarities that are associated 

with and predict friendship in the real world. Taken together, this work provides proof-of-

concept for the utility of using a multi-method approach (e.g., social network analysis, structural 

and functional neuroimaging) to examine the complex relationship between individual 

differences in the brain and social network structure and the utility of longitudinal study design 

to investigate how individual differences in the brain relate to changes in social network structure 

over time. However, the current research constitutes only a small portion of the nascent but 

rapidly growing field that has continued to integrate tools from social psychology, cognitive 

neuroscience, and social network analysis to examine how an individual’s brain is remarkably 

influenced by direct and indirect social relationships and how an individual can also exert 

influence that propagates throughout a social network to effect change in the brains of others. 

Future work should strive to conduct further longitudinal studies and multimodal neuroimaging 

to advance our understanding of how the brain shapes is shaped by real-world social networks.  
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