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ABSTRACT

Consequences of the conserved isospin quantum numbgr T are developed
for compound nucleus reactions with particular emphasis on statistical cross
section fluctuations. The formalism is ﬁased on the Hauéer—Feshbach and
Ericson theories. The appropriate autocorrelation function in case of ;evels
of two different isospin values in the compound nucleus contains an interference
term between two Lérentzian functions that are associated with the two isqspins.
The formalism is applied to the statistical reactions ShCr(p,p) and ShCr(p,a)
where the ccherence width in the proton- and a-channels are markedly different.

This is attributed to the decay properties of states with different isospin in
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the compound ﬁucleus 55Mn. The formalism developed for the isospin quantum
number T can be extended to other quantum numbers._ For the case of angular

momentum and parity J7 interesting consequences with respect to heavy ion

reactions are discussed.

e
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I. INTRODUCTION

The consequences of isospin conservation are not always explicit in
current formulations of the theory of nuclear reactions and are rarely taken
into account in the interpretation of experiments. Noticeable exceptions, are
of course the theories of isobaric analogue xfesonancesl and a few investiga-
tions of isospin in direct transfer reactions.2 An outline of the role of
isospin in direct and compound nuclear reactions is givén in Refs. 3 and'h.

In the present paper we want té develop the consequences of the isospin
quantum number for compound reactions with particulér emphasis on statistical
Cross secfion fluétuations. In Sec. II the hecessary formalism is presented
which is based on the Hauser—Feshbach5 and Ericson6 theories. A difference
betweén our results for fluctuation phenomené and the results of Ref. k4 is
discussed. Section III contains the application of this formalism to the

51‘Cr(p,OL). The data of Refs. 7 and 8

. s L
statistical reactions ° Cr(p,p) and
show a differénce between the coherence widths measured in the proton and
o~channels, respectively. This can now be attributed to the decay properties.

55Mn. The results

of states with different isospin in the compound nucleus
of Sec. III are discussed in Sec. IV. Finally, in Sec. V we conclude with

general remarks about the effect of conserved quantum numbers on correlation

functions.
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IT. ,FORMALISM OF COMPOUND NUCLEUS REACTIONS WITH CQNSERVED ISOSPIN

Af Average Cross Sections
Let us begin this section‘by comparing the theory when the isospin T
is strictly a good quantum nﬁmber ﬁith the theory when T is ignored (as is
the case in the stahdard Hauser-Feshbach theory).
The chpound or fluctuating cross section is beiieved to arise from

an S-matrix given by a Breit—Wigner expansion
| Jm _gm

Jnr o _ Ec e o | ‘
Sc'c' = Z w s (e ") (2.1)

and in Hauser-Feshbach theory one considers the gxc,'gxc. to have random phases

and be:statisticélly distributed about zero mean for each total angular momentum

and parity. The channel index c¢ as usual represents a vector coupled partial
wave of definite total angular momentum J and parity m. For simplicity of pre-
sentation we suppress all angular momentum recoupling-ébefficients which arise
in cross section formulas. In this case, the simplest form of the statistical
compound nucleus theory, the energy averaged fluctuation'cross section is given
by
’ J'ﬂ"2 l Jm |2 ’

_an ( g)\c g)\c' )
= 53 _ -

" | Fin A

(Il ) e ([T ]

(2.2)
S Jm2 Jm 2

_am <'g)\c' >}\_< lg)\cv_l )AW
Jm Jm S ce
D ris Yy,

wherein the factor ch, is the width correlation factor and the brackets ( )
‘denote averages over the energy, unless otherwisé specified. In terms of
transmission coefficients the above expression becomes (we drop the Jm notation

for convenience)

-y
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<|scc,|2> = J—EC—-E—- Woor o (2.3)
Z Jon

with ch, =1 for ' << D (few channels) and wcc' =] + 6cc' for T >> D (many
channels), where I and D are the mean level width and mean level spacing;
respectively. The dc are usually calculated from the conventional optical

potential in channel c¢ i.e.

_ 140pt )2 '
Ho=1- 5. | . o (2.4)

Let us now suppose that there are levels of two different isospin

values T called T, and T

o that T is strictly conserved in S and that there

afe two level distributions appropriate to each T-value. This corresponds
to the case where a target nucleus with isospin To # 0 is bombarded with protons

so that T, = T_ + 1/2 and T_= T - 1/2. 1In this event
o] < o .

gT< 'gT< T, T,
: - S - S
_ Ve ve'! we Pwe
Sear = Z T, T, Z T T (2.5)
. > >
v E  <E-il" /2 E “-E-i" /2
v % w w

We now calculate <Occ' > and obtain (assuming two uncorrelated random distributions)

T T T T
<2 < 2 . > 2 > 2
: { )
(o Y« 21 Ig\)cl V (Igvc'l )\)WT< + am ”gmcl )w<lgw0'| >nL WT>
ce! T< T ce! T . T ce'
D (r <) b’ (r,”)
v oy _ woow
(2.6)
T - T T T
< < > 0>
gc dc' T< gc gc' T>
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For convenience, we introduce the obvious short hand notation

(occ ) =‘<0<) + (o>) . - ' . (2.7)

In this extreme limit we obtain significant differences from the usual
Hauser-Feshbach theory. These are as follows:
1) Since the total transmission in channel c¢ is given by unitarity as
T< - _>‘. - . ' .
I, = jév +'f1c , we see by .equating egs. (2.3) and (2.7) that conservation of
isospin leads to a width correlation factor ch, different from those conven-
tionally used. This is not surprising because ¢ and c' are correlated by the
requirement that the channels couple to the same Tfstéte; More explicitly
: ‘ ) ) -1
T, T T T)\/T T
> > < > < >
,j 7 T'< ’jc ﬂc' s (Jc +:’c)<"jc' +Jc')
W o= + W o
cc' 2: T, cc 2: J?> cc'fl 3 T, T\ -
e" U " ] C" o oM C" +jc,, |
T, T, _
which is not typically unity because of terms like j; :@, occurring in the

(2.8)

denominator but not in the ﬁumerator.

2) The iéospin dependentvwidth correlation factors Wgc' will in the case of
charge éxchange (i.e. ispspin‘"elastic" scattering) be equal to two (when

r >> D)‘as in the familiar case of compound-elastic sca£tering.

3) _Transmission coefficients gE are to be calculated.from‘an isospinvoptical
potential for a given total T; In the limit of pure isospin the'proton and its
associated charge exchange neutron channel are isobarically equivalent so that
a total isospin channel basis C

transmission coefficients are then obtainable from an isospin conserving nuclear

potential V(T) using the relation:

can be conveniently adopted. The corresponding .
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opt|2y - (2.9)

T 2
M. = (c]cT) (1 - ISCT
where (clcT) is an isospin vector coupling coefficient in channel ¢ and Cp is
the resulting "isospin-channel". The quantity Szpt is the optical model
S-matrix element for a nucleon in the isospin congerving potential.lo For
target nuclei with neutron excess, one canﬁot have in general 5z<:= Jc> so that
the conventional Hausef—FeshBach theory is really restricted to situations
where T is single-valued. Even then, Eq. (2.3) need not be corrgct if there
are any channels open which have dual ispspin since the denominator should
"express the decay into all channels of the appropriate isospin only. The

foregoing is true in the case of strict isospin conservation but can be

properly extended3 to include isospin mixing in the compound nucleus states.

- B. Cross Section Fluctuations

As in the previous subsection we compare the theory when isospin T
is strictly conserved with the theory when T is ignored (as is the case in the
standard theory of Ericson fluctuations).

The two central quantities in fluctuation theory are the variance of
cross sections and the mean level width of the compound’nucleus. Both gquantities
are obtained froﬁ the autocorrelation function

{o(E+e)o(E) ?

-1 . (2.10)
(o(E) )2

cle) =

The normalized variance is equal to C{e=0). In order to evaluate C(e) we intro-

duce following Brink and Stephenll the correlation function c(e) between the
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S-matrix elements by
(s (E+ejs“ (E)) ; c(e) C(|s_ ,(E)] y2 . (2.11)
ce! “ce! ce'!
From the particular form of the S-matrix (Eq. 2.1) follows

(2.12)

c(e) =
I'-ie

Egs. (2.10) - (2.12) and a general theorem on joint normal distributions’t
vield the Lorentzian shape of the autocorrelation function

. : 1.,2 '

cle) = - . | ' (2.13)

l“2+e2

Note, that C(0) = 1, which is true for the case that the number Neff of statis~

tically independent channels—2°13

is equal to one. 1In general the right hand
side of Eq. (2.13) would have to be multiplied by /N _por

Now we suppose that there are compound nucleus levels with two different
isospin values dénoted as in the previous subsection as T, and T<. In general
the numbef.of 6pen decay channels will be different for the T, and T states.
Hence the ratios T>/b> and T</D‘<will be different for the two isospins. The
meaning of the subscripts at the mean level width ana the mean level spacing
9,15

Jis obvious. In order to apply fluctuation theory we have to require

r/o . >2 and T,/D, >2 . | | (2.1b)
Since not only the I'/D ratios but also the level densities are different for
the two isospins the mean level widths F< and F> will not be the same, in

general.



In order to derive the appropriate correlation function in this case
we obtain from Eq. (2.5) using the definitions (2.7) the modified version of
Eq. (2.11), i.e.,

r r

b < >
(Scc'(E+€)Scc'(E) ) = T::EE—- <0<) + F-ic <0> ) . (2.15)
Inserting Eq. (2.15) into Eq. (2.10) then leads to
2.2 2.2
ce) = <0<> re , (0>) rs
(o_ V22w ) (o 2E(rD 4 €F)
| (2.16)

_2fo) (o) T, (M, ¢ e%)
(o 322+ ) (12 + €?) '
cc ’

We notice in Eq. (2.16) the existence of an "interference term" between
the two Lorentzian functions that are associated with the two isospins. This
term guarantees that the variance C{0) remains unity whatever values the

Quantities 0, Oy I' and P> take. This result is contrary to Eq. (5.13) of

<
Ref. L, which would predict a damping of the fluctuations (i.e. C(0) < 1)
due to isospin conservation. This seems to bé physically inconsistent since
isospin T is summed cohérgntly and should therefore bé treated very much like
the other coherently summed conserved quantum numberé J and m. In the latter
case it is known that the variance is not decreasing with increasing numbers
of JTr values unless the cross éection is integrated over angle so that the
sum over J" becomes incoherent. The sum over T is cohereqt even if the cross

section is integrated over angle; an incoherent sum is obtained only when a

Sum over proJectile charge states is performed.
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Using the above method, correlation functions involving correlations
between different channels and angles can be calculated as well. It is also

possible to generalize these results to the case of isospin mixing (Ref. 3).

ITII. REANALYSIS OF ShCr(p,p) AND 51‘Cr(p,oa) FLUCTUATION EXPERIMENTS

A. General Remarks

In the present section we want to reanalyze the statistical fluctua-

5 51

‘ _ | ) .
tions observed in the reactions ShCr(p,p) (Ref. T7) and ° Cr(p,a) V (Refs.

7 and 8). The target nucleus ShCr has isospin To = 3 so that in the compound

55

nucleus ““Mn states with isospin T_= 5/2 and T, = 7/2bare formed. Both types
of states can decay through proton emission while due to.the isospin zero of
the'a—particle only ﬁhe'I‘< states can decay to low lyipg states in 51V. This

~ simple picture isvof course justified only undervneglect of isospin mixing.

For medium mass compound nuclei there is some evidence that supports this
assumptiohl6. Among other, the most relevant informatioﬁ with respect to

the problems discussed in Sec. II is that tﬂe mean coherence width Fp determined
from the proton decay channels is significantly largef than the width Fa’

found from fhe o~decay channel. This points to an isOspih dependence of the

reaction Where_l“> > P<
Iﬁ part B of this section, the experimental results are summarized.

We then, in subsectionFC, determine the quantities F< and D<'from the (p,a)-

experiment.v In subsection D we derive the ratio F>/D> as well as g, and O,

~ from the compound nucleus cross sections in the (p,p)-experiment. Finally,

in subsection E the coherence width P> is derived by application of Eq. (2.16).
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B. Experimental Results

In the reactions > cr(p,p) and ShCr(p,oc) the mean excitation energy

S\n was E_ = 17.6 MeV. .The mean coherence width

in the compoundvnucleus
'was found to be Pp = 13.9 # O.TVkeV. Note that in Table 11 of Ref. T the
results from the Foﬁrier analysis‘of the excitation functions are quoted.

Here, we rather refer to the results obtained from the autocorrelation function
which_are given in Tables 5a énd 5b of Ref. 7. No errors are quoted there.

We estimated them ﬁsing-the formula given under "FRD erfors of correlation
ifunctions" in'Table élof’Reff 7. Some results of the 5')"Cr(p,ot)slV reaction

are reported in Ref. T. An extensive investigation 6f this reaction is
publisﬁed in Ref. 8. Iﬂ Ref. T-the mean coherence. width was found to be
r,=89=+0.8 MeV (see Table 5c of Ref. T and.the above remarks concerning

I ). This:is in fair agreement with Ref. 8, where after linear extrapolation

55

to the mean excitation energy of 17.6 MeV in ~’Mn we obtain the value of

Fa = 8.2 + 0.6 keV. (Again there is no error given’in;Ref. 4. We estimated
it as above.) 1In fhe following, we adopt the value Fa =.8.2 + 0.6 keV of
Ref. 8 since it is the more complete investigation 5f this reaction.

The total level density p = i/D ffoﬁ the (p,a) experiment of Ref. 8
has aléq to be reduced to the excitation energy EX =\17.6 MeV; We can do this
by estimating dp/dEx from Fig. 9 of Ref. 8. The result is

| 5 -1 + iOO%
D(Ex = 17.6 MeV) = 4.06 x 10° MeV - 20%

The high upper limit of the error is somewhat arbitrary, but has been intro-
duced because in Ref. 8 there is no determination of the direct reaction con-

tribution to the fluctuating cross sections. However, Table 5c¢ of Ref. 7
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indicates that there is some direct (p,0) reaction coméeting with the fluctu-
ating one. ' This is iﬁ agreement with similar findihgs in the 5Sc(p,a)
reaption17¢ The lower error limit on p results from‘thé uncertainties in
the abs&lute (p,a) cross section and the mean levél width of Ref. 8.

J_From the total level density p we have to calculate the density of
spin 1/2vlevélé pl/2 in ordef to‘make the comparison with the results of
Ref. 7T possiblei Using the usueal spin dependence of nuclear level densities

(see e.g. Ref.‘l8) we may write

_ | 2 A 2
0 = (1/2)py jp exp (3/(80()) D (2041) exp (-3(3+1)/207). (3.1)
‘ : | : 3
Here 0, is the spin cut off factor of the compound nucleus. The sum in Eq. (3.1)

may be approximated by

_:E:(2J+1) exp (-J(J+1)/2o§) 25203 | : (3.2)
J ' |
so that
=y, exp (3/(805))0% (3.3)

With oi = 20 from Ref. 8 it follows that

+100%
- 20%

b

= = -1
.,01/2 = 1/131/2 = 2.0 x 10" MeV

C. Mean Level Width I'_ and Mean Level Spacing D_ from the (p,o)-Experiment

The autocorrelation function in the (p,o)-experiment determines

[, = T, since the second and the third terms in Eq. (2.16) vanish.



Hoowdod d Yy TR
‘ ‘ , wwo R

Ca11- LBL-1643

The mean level distance D of the states with isospin T is,
. . l/2,< <

however, not equal to the quantity D1/2 from the previous subsection. We

1/2 <.from the avefaged fluctuating (p,0) cross sections which
.

according to Eq. (2.6) can be written as

derive D

(¢ ) = =R~

pa T, ' (3.4)
where we have made use of the facts that the reaction proceeds only through
' T
<
the isospin T< states and that the width correlation factor Wpa is unity.

: T
The transmission coefficients J% can be expressed as (Eq. (2.9))

T
< , : , 2 opt 2
= : - - - - [
¥, = (T, 1/2,1 ,-1/2|1 ~1/2, T -1/2)" (1 lspT<] (3.5)
We have
L : 5 2TO
(T, 1/2, T, -1/2|T -1/2, T -1/2)° = B (3.6)
~ In the 0~channel, the vector coupling coefficient is unity, hence
T .
< . opt |2
To = 1= Isgp 17 - - (3.7)
. . o 19
Substituting ds usual
o T T -
: < <
s 2. (3.8)
< C" )
we obtain from Eq. (3.L4)
: . 2T D T T
(¢ ) = 2 = R R (3.9)
po. _2To+l 2ﬂF< P O

wWhere
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= 1 - |s°Bt)2 | | . (3.10)
c cT ' .
is,the trénsmiésioﬁ.coefficiént calculated in the usual way from optical mpdel
phése shifts. We assume that TE does not explicitly depend on the isospin T,
bﬁt only on geometry and channel energy, a fact which is'true'e.g. in the
framework'of the sharp\cut-off model. (For a more detailed treatment, see,
however, the discussion:foliowing Eq. (2.9)). We shall therefore drop the
superscript on T that refers to the isospin. Expression (3.6) is of course
schematic in that it does not exhibiﬁ angular momentﬁm.conservation. The

full formula may be found in Refs. 8, 20, and 21 by help of which the expression

Ogi in the follbwing equation is defined

. 2T D , : - ) .
- o) 1/2,< HF
<0pa Y= 5w T T Tou . (3.11)
_ \ o 1/2,<

The quantity Qgg is'apart from D/F.the usual Hauser-Feshbach cross section.
Aétudlly there is a_slight difference between the ahélyses of Refs. 7 andh8

in that the formep allows for a dependence of I' on total angular momentum J
while the latter does not. Bécause the effect is small in proton induced
reactions we dié;egard this difference here {see Subsection IV. C). We note,
however,'thap the factorIQTo/(2T0+l) does of course not sppear in the expressions
of Refs. 7, 8, 20 and 21, because they do not exhibit isospin conservation.
Hence, the level spacing Dl/25 which we dgrived‘in Sec. III. B from the total

lével density p given in Ref. 8 is connected with D "via the relation

1/2,<

2To
D =

1/2 7 3T 41 Dyjo,< ¢ * ' - (3.12)

Using the result for ol/é from Sec. III. B we obtain
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+30%
D _= 0.058 keV '
1/2,< . ~50%

From F1/2,< and Dl/2,< results

+100%
141 .

r., . /D =
1/2)<. l/2a< - 20%

D. Ratio of I' /D, and the Cross Sections (o2 Ko 2

From Eq. (2.6) and the discussion in Sec. III. C follows that the
average compound nucleus (p,p)-cross section can be written in the form of

Eq. (3.11), namely

(o ) =[( T j 21/2,< wT< + 4 /2. WT>] el
~opp L [\2T L Tl/2,< 98 (2To+l)2 T1/2,> pp | PP ,
(3.13)
= (o<) + (o>)' .

In analogy to Eq. (3.11), this last equation defines the quantity ogg. In Eq.

(3.13) we have made use of the fact that

2 _ _1 |
(T, 1/2, T, -1/2|T +1/2, T -1/2)% = Zs (3.1%4)

Both width correlation factors are equal to 2 for elastic scattering and equal
to 1 for inelaétic scattering. We therefére drop the superscript of pr
referring to the isospin. It might look like gy is very small compared to O,

because of the factor (2TO)2 = 36 and thus practicall& impossible to determine

from the last equations. This is, however, not true, since 2nmT'/D is related to

the number of open decay channels, which is much larger for the T _ levels than

for the T, levels of the compound nucleus (see Subsec. IV.D). Hence, D /T, >> D/T_.
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: . - : |
W i the quantity (o . ) /(W o from Eq. .13) as an average
‘We derive the quantity op /( oD pp) a. (3 .) ag

over the results from 10 excitation functions in Tables 5a and 5b of Ref. T.

The weighted average over the last columns of these tablés'is

(g )

w_ﬁ%) = (0,037.; Q.017) mb/sr

bp PP -

where the error is taken to be the rms deviation of the. results of Ref. T.
Unfortunately, the quantity pr(e) of Ref. 7 is not the same as Ggi defined

here. Both quantities, however, are related by

HF _ .2 - 2,y , .
Opp = kp exp (-3/(804)) pr(e) . N (3.15)

with kp being the wavelength in the proton channel. From this follows.

(o)
—FB— = o0.017 * 0.008 .
W o .
PP Pp
D. .
Inserting this result and fllg&f'from Sec. III. C into Eq. (3.13) we obtain the
1/2,< :
result »
T, ' + 4.6
D_l£ﬁ= 1.7 . .
1/2,> = - 0.8

From Eq. (3.13) also follows the ratio

(o) + 6.3
2——7’> = 2.3 i
9¢ - 1.7

The fact that this ratio is of order unity confirms that the number of

open decay channels is smaller for the T> states than fbr the T states. As
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discussed above; this effect counteracts the weighing factors resulting from

isospin coupling. We need the ratio'(d> >/(G<) to calculate Ty from the

autocorrelation function.

E. Coherence Width Ty

The mean coherence width I has been obtained from an analysis of the

5hCr(p,p) in terms of a single lorentzian

excitaﬁi§n functions in the reaction’
for the auﬁocorrelatioh_function. In order to decompose Fp into its components
F< and F> we first derive & relation between the autocorrelation function with
the single Lorentzian and'the proper correlation function of Eq. (2.16), which

contains two lorentzian's associated with the two isospins T.,and T, and an

interference term. Equation (2.16) can be rewritten into the form

L2 2 -1
cle) = > < = > 5 Moo 5
' ,I‘<+e I‘>+e Mi_>+€.'
(3.16)
= c (e) ¢ (e) [ ,(e)]7
where
M‘i - I‘i I‘f [( ozoi )I'<++< ;‘:>)) P>]-2 (517)

and C<(e) and C>(€) are the autocorrelation functions for each isospin by

themselves. If F< < T'_ one has the following inequalities for all €

>

aC

3¢ <0

C;(e) < cle) < ¢ (e)

and’
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‘A conventional analysis uses an effective width defined in analogy to Eq. (2.13)

via , _
2
c (&) = Terr Cgrp . -
EFF r 2.2 ° de . N (3.18)
EFF : :

and hgnce yields a width TEFF at CEFF(€=FEFF) = 1/2. Since in our experiment

Pp:FEFF we obtain T by intro_ducihg22 Eq. (2.16) or (3516)'into the equation

c(e=rp) =1/2 .

with the known quantities T_, (o) and (O>I). The result is
+ 38
I, = 19.1 keV
- 1.7
where the errors come mainly from the uncertainty in the ratio of <0> )/(0<)
derived in the pfevious subsection.
COmbining the results for I'y and I',/D, one gets
+ 9.0

11.2 keV ,

D =
. > L
/2> - - 2.0

where we have taken into account that the errors in IS and l">/D> are completely

correlated.

IV. DISCUSSION

A. Angular Momentum Dependence of Coherence Widths tp and Pa

One objection may be raised against the foregOing analysis in that the

difference between Fp and Fa might not only be due to isospin but also to

angular momentum effects. According to Fig. 8b of Ref. 8; the angular momentum -

dependence of the coherence width FJ is négligibly small, however, the results

Yy
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in Fig. 20 of Ref..7 indicate a 25% decrease of FJ when the spin of the compound
nucleus increases from J = 1/2 to J =‘9/2. The experimental quantities Fp and
Pu are wéighﬁed averages of the‘quantities FJ with weighing factors given e.g.
in Refs. 23_and 2k, .For the reaction 5b'Cr(p,oc)slV these angle-integrated weighing
factors are displayed on Fig. 8a of Ref. 8. We have reproduced these results
and havé also calculated the appropriate weighing factors as a function of angle
for both reactions ShCr(p,a) and 51‘Cr(p,p). The weighing factors center around
J = 5/2 and the center changes by no more than 1 h as a function of both, angle
and exit channel. Even the rather strong J-dependence of the coherence width

: giveh in Ref. 7 would.then allow only for a 7% difference between Fp and Fa.
Hence, the experimentalldifference befween Fp and Fa must be explained as due to

isospin effects.

B. Density of T> - Sfates

In Subsec. IIT. E we obtain the mean distance Di/2 5 of the T, states
. X ]

or equivalently their level density
+
20 -1

89 . Mev
-~ 30 .

1/D

Pi/2,> 1/2,>

25 55

The T, levels in ““Mn are the isobaric analogs of states in ““Cr. The first

T> level in~55Mn is at the excitation energy

E (AT = 1) = M(°°Cr) + ME_ - 6 - M(SSMn) , : (4.1)

where M designates ground state masses, AEC is the Coulomb energy displacement
and § the neutron-proton mass difference. Evaluating AEC with thé_formula in

Ref. 25 we find-Ex(AT = 1) = 9.96 MeV. The isobaric analogs of the T, states
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in “Mn(E =17.6 MeV) are found at the excitation energy UsE -E (AT=1) = 7.6k

MeV. Our result can be compared to that of Farrel»g§_§;?6

who studied s-wave o
neutron resonance scattering 6n shCr and found 1 resonance per 4T keV between
0 and hOO'keV incidentvenergy, corresponding to the range of U = 6.25 to

U= 6.65 MeV in >°Cr, so that

01/2(U = 6.45 MeV) = 2/0.04T = 43 MeV ,

where the factor of 2 has been inclﬁded, because in Ref. 26 only positive parity
étatés were detected. Scaling this result to our excitation energy U = 7.6&
MeV with the help of a level density formula and the parameters given in v

Egs. (3) and (4) and Fig. 9 of Ref. 8 yields
o _ L
01/2(U = T.6L4) =~ 128 MeV .

This is in satisfactory agreement with our result for‘pl/2 5
. ) 9

- C. vApplicability of Fluctuation Théory

Wevshould notg that our result of P1/2,>/D1/2,> 1; at the limit of the

_applicability of fluctuation theory. Indeéd, Mbldaﬁer'(Ref; 27)\and Dallimore
and Hall (Ref. 15) have shown, that I'/D must not be smaller than 2. As noted

in Sec. IV. A, however, the most probable compound nucleus spin formed is

_ i

5/2,> '75/2,>

can be verified by the respective angular momentum depehdence of T and D.

J=5/2 and T is larger than F1/2,> /D1/2’> by a.factor of 2 as

. D. Modification of the Formula for the Coherence Width

Equation (3.8) is the basis of calculations of the coherence width.

More explicit formulations (without inclusion of isospih conservation, however)

can, e.g., be fouhd'iﬁ Refs. 28, 29 and 30. The presentvpaper shows, how isospin
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effects can be built into the formulag of these references. We note the following
points:

i) The trénsmission coefficients and, hence, the partial decay widths rov of

Ref. 29 (we refer to this paper only as an example) have to be multiplied by the
appropriate vector-coupling coefficients according to Eq. (2.9).

ii) The level densities oy of Ref. 29 are now isospin dependent31 since they

refer to only those levels to which isospin allowed decay is possible. For
inéfance, the T< - levels can decay via neutron emission to the low-lying states

of the residual hucleus, while the T> — levels cannot. In our examplg, the density
pn(T<) - occuring in the neutron partial width of F< - is that of the states

in Sth. The neutron partial width of T
54

5» however, requires the density p (1)

of T = 3 states in “ Mn since the isospin allowed neutron decay of the T> states
goes to the analog states of the target. The threshold of this nA - channel,
as it is usually called in the theory of isobaric analog resonances, is here

55Mn: It is, there-'

at the excitation energy of 17 MeV in the compound nucleus
fore, practically closed in the present experiment. This explains why there
are many more open decay channels for the T< than for the T> - states as
mentioned .in subsgction III. D.

iii) Densities of levels with isospin one unit greater than that of the ground
state (e.g. the above mentioned pn(T>) in Sth) can be'eéuated to the ievel
density in the appropriate parent nucleus (5 Cr in our example). The same is

true for the nuclear temperatures and spin distribution parameters that occur

in Eq. (1ka) of Ref. 29.
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V. CONSEQUENCES OF OTHER'CONSERVED QUANTUM NUMBERS ON CORRELATION FUNCTIONS
Fluctuation theory in its existing form assumeé ﬁhat there is no
dependence of the coherence width I on cbnserved quantum numbers - an assump-
tion wé know to be invalid. - It is hence worthwhiie noting that the formalism
developed in the previous sections for the isospin gquantum number T could be
extended to other quantum numbers as well. For the case of the consefved
quantum numbers angular momentum and parity J7T we have similar to Egs. (2.11),

(2.12) and (2.15) the correlation function c(e) defined via

' : Jm,T
(0) ele) = 3. (T I | (5.1)
Jm,T "> -ie -
with
(o) = ™y | o (5.2)

' Jm,T .
Then the autocorrelation function C(€) is

cle) = [ele)|®2 . | | (5.3)

The analysis of experimental excitation functions in terms of Egs. (5.1)-(5.3)

allows us to understand why and how FE defined in Eq. (3.18) for different

FF

T-distributions and now extended to include JT as well, can be different in

different reactions via the "same"

qompound system not oﬁiy.because of T but
also because of different J7 distfibutions of (OJH’T ) f6¥ the different

reactions. For the reactions (p,p'), (p,a) involving.mainly projectiles and
' ejectiles with small mass numbers the effect was found small relative to the

T-dependence effect in subsection IV. C. However, the -effect of different

J7m distributions clearly is significant in reactions involving heavy ions.



L =21- LBL-1643

A typical example is the behaviour of fluctuating crossvsections and

correlation functions for reactions 1ike3?

' *
160 + 12C 5 28Si 5 2hMg +

versus33 (5.4)

27Al +p > 283i* S 2hMg ‘o

which may be described quantitatively in terms of the formalism discussed in
the present paper. Noticeably, not only are the effective coherence widths

different in the 16O + 1

2C and in the 27Al + p reaction, respectively, but
does the effective coherence width vary slightly with scattering angle in
the heavy ion reaction, because the wéighing factors (a° "1 ) in Eq. (5.1)
vary with angle. We expect high angular momenta J to contribute relatively
stronger to 0° and 180° scattering than to 90° scattering: The classical
argument that the orbital angular momentum be perpendicular to the reaction
plane (which leads to the well known anisotropy of Hauser~Feshbach cross
sections) is more stringent for high than for low angular momenta. The two
different coherence widths FEFF from the reactions (5.4) can be understood
in terms of a model.3o A further example, where the effect of different JT
distributions is obvious, are the reactions 31P(p,a)2881 and l60(16O,a)2881
which has just appeared in the 1iterature.3h More experimental heavy ion

data, particularly data with small finite range of data uncertainties, would

be enlightening.
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