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ABSTRACT OF THE DISSERTATION

The Orbital Eccentricities of Small Planets

by

Mason Gordon MacDougall

Doctor of Philosophy in Astronomy and Astrophysics

University of California, Los Angeles, 2023

Professor Erik A. Petigura, Chair

Planetary orbital eccentricities are key to probing the formation and evolution pathways of

exoplanets. Eccentricity measurements can be made through a variety of observing tech-

niques that currently tend to be limited by signal-to-noise constraints, data quality limita-

tions, or model biases, often leading to poorly constrained eccentricities for sub-Jovian-size

planets. To better understand the typical and extreme values of planetary eccentricities

for planets of all sizes, I investigated the photometric eccentricities of TESS planets and

accurately constrained the eccentricity distributions of both individual planets and planet

sub-populations. I used existing methods to identify several high-eccentricity sub-Jovian-

size planets from TESS transit photometry and confirmed their eccentricities via follow-up

radial velocity measurements (Chapters 2 and 3). Through these discoveries, I identified an

unaccounted-for bias in a common transit modeling method which unfairly skewed photomet-

ric eccentricity constraints towards higher values. I worked with a small team of collaborators

to mitigate this bias and proposed an alternative transit model parameterization that yields

accurate transit fits and unbiased eccentricity constraints (Chapters 4 and 5).

I used our proposed modeling approach to homogeneously measure the transit properties
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of 108 planets from the TESS-Keck Survey (TKS), including constraints on orbital periods,

transit-timing variations, and planet-to-star radius ratios (Chapter 6). In addition to mea-

suring these transit properties, I also performed precise stellar characterization that allowed

me to measure planet radii and constrain orbital eccentricities via importance sampling with

stellar density. These homogeneously-constrained posterior distributions of eccentricity from

my photometric modeling served as the foundation for my hierarchical Bayesian analysis of

the population-level eccentricity distribution of the TKS planet sample – a first among TESS

planets (Chapter 7). Through this analysis, I found that sub-Jovian-size planets display a

lower underlying eccentricity distribution than Jovian-size planets – the first confirmation of

this trend shown via hierarchical Bayesian modeling. I found a similar distinction between

the eccentricities of planets in single-planet systems versus multi-planet systems, with the

latter displaying lower eccentricities. I also demonstrated that the results of such hierarchi-

cal analyses can be used to improve the individual measurement precisions of planet radii,

impact parameters, and eccentricities. The parameter constraints and dynamical trends re-

vealed through this hierarchical analysis of exoplanet eccentricities will help improve our

understanding of the dynamical processes that drive the evolution of observed planetary

systems.
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3.7 (a) Best-fit radial velocity model (blue) for Keck/HIRES RV measurements (black)

using Radvel (Fulton et al. 2018) in a joint RV-photometry model via juliet

(Espinoza et al. 2018), with corresponding residuals shown below. (b)-(c) Phase-

folded views of best-fit RV model for TOI-1272 b and c, with binned points shown
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Right: Radius-period distribution of all planets, with Neptune-like planets shown
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4.1 Simulated photometry for a mini-Neptune on a circular 15 day orbit around a

Sun-like star, transiting at b = 0.5. The orange line indicates the ground truth

transit model. Grey points show simulated observations at a one minute observing
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4.5 Posterior distributions of impact parameter for a random selection of KOIs, orga-

nized in logarithmic bins on a P − r grid. Data shown are the posterior MCMC

chains from Kepler Data Release 25 (Thompson et al. 2018; Rowe et al. 2014a;

Akeson et al. 2013b). Each posterior distribution is plotted with 20% opacity so

that dark regions indicate where many distributions overlap; colors correspond

to the median b value for a given KOI, with a maximum of twelve KOIs plotted

per panel. The horizontal axis of each panel ranges over b = (0, 1.2); the vertical

range of each row is different, but the dashed line indicates the same distribution

height. The median S/N in each grid square is printed in the upper right-hand
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4.7 Fractional change in median planet-to-star radius ratio for all planet candidates

after correcting posterior chains from DR25 (Thompson et al., 2018) using the

Jacobian reweighting scheme described in §4.6. 5σ outliers have been iteratively
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insufficient sampling of low probability regions. There is a spike at δr = 0,

indicating that some subset of targets were accurately measured, but the majority
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5.4 Qualitative diagram showing the relative accuracy of measuring e and b from
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5.7 Ratio of sampling efficiencies ηT14+umb/ηT14+dyn as a function of duration ratio

T14/T14,ref and SNR. We bin the data across every 10th percentile of the duration

ratio distribution, showing a single point per bin per SNR (bins are separated by

vertical grey lines). Each point shows the 15th, 50th, and 85th percentiles of a given
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6.2 Stellar radius (left) and effective temperature (right) as measured by our stellar

characterization procedure (TKS) on the y-axis compared to the values reported
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6.4 Before (top) and after (bottom) applying our de-trending and initial TTV fitting

procedure to the photometry of TOI-1136, a multi-planet system with high stellar

variability. We only show the first sector (Sector 14) of this target’s photometry
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values which are all more than 1.5σ discrepant. Black points highlight transits

(±0.75 times T14), colored vertical dashed lines show modeled transit mid-points,

and dark grey vertical dashed lines show calculated transit mid-points assuming
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TOI-1136.03 (green) as can be seen by the separation between the modeled and
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6.8 Panel (a): radius and orbital period for all TKS planets, with stellar mass shown

as a color scale. Grey background points show the distribution of planets from

the CKS sample (Petigura et al. 2022). The radius gap, as defined by Petigura

et al. (2022), is shown as the orange shaded region. The Hot Neptune desert, as

defined by Mazeh et al. (2016), is shown as the region marked off by black dashed

lines. Panel (b): same as (a), except x-axis is Sinc. Panel (c): same as (a), except

x-axis is M⋆ and color scale is P . Panel (d): same as (c), except x-axis is [Fe/H]. 142
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cant scatter likely attributed to TTV chopping. These TTVs are measured from
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calculated assuming a linear ephemeris. An estimated sinusoidal signal is shown

fit to each set of TTVs, using a Lomb-Scargle periodogram and regression fit from

astropy. These significant TTV signals likely arise from dynamical interactions
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7.1 Illustrative example of the power of hierarchical modeling for some parameter(s)

θ, individual distributions pi(θi) for i targets, population level distribution P (θ),

prior π, and hyperparameters α. See §7.3 for full description. . . . . . . . . . . . 163

xxii



7.2 Various distribution types fit to the population-level eccentricity distribution of

the TKS sample using hierarchical Bayesian modeling. A commonly cited Beta

distribution (Kipping 2013) is shown for reference (black/grey). Our distribution

fits suggest that the TKS sample has a lower distribution of eccentricities than

the sample used by Kipping 2013, possibly attributed to differences in observing
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7.3 Comparison between fitting the TKS population-level eccentricity distribution

using hierarchical analysis (orange) versus estimating the underlying distribution

from summary statistics (blue). The histogram of median e values for each TKS
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with a bandwidth measured via Scott’s Rule (Scott 1992). . . . . . . . . . . . . 169
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7.6 Period-radius distribution of TKS planets, with markers shown at the radius

values calculated from our newly re-weighted Rp/R⋆ distributions. Planets with

radii that shifted by |∆Rp| > 1% are shown as red triangles, and all other planets

in the TKS sample are shown as black triangles. The triangles are pointed up

or down depending on the direction of the relative shift ∆Rp. The red triangles

form part of an arrow that shows the full extend of the shift ∆Rp, with the most

substantial shifts occurring among smaller planets. We also show noteworthy

areas of the period-radius parameter space for reference, including the Radius

Gap (Fulton et al. 2017a; Petigura et al. 2022) and the Hot Neptune Desert

(Mazeh et al. 2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.7 Best-fit hierarchical model fit to the shape of the underlying distribution of b

values among TKS planets both before (blue) and after (orange) applying our
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model fit to the underlying distribution histogram via a Gaussian process model
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Kipping & Sandford 2016). We show only the best-fit solutions here for simplicity,
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7.8 Rayleigh distribution (left) and half-Gaussian distribution (right) fit to multiplicity-

based sub-populations of the TKS sample. We show the 15th–to–85th percentile

ranges for our distribution fits (top), with the 50th percentile highlighted by the

solid line. We also show the distributions of the hyperparameters that we mea-

sure for each sub-population (bottom), highlighting their 15th, 50th, and 85th

percentiles as vertical lines. The mean eccentricity e for each distribution is

shown in the legend. We find that planets with observed transiting companions

(blue) have a significantly higher distribution of eccentricities than those without

observed transiting companions (green), consistent with the results of past studies.176

7.9 Mean eccentricity e from various Rayleigh distribution fits to exoplanet eccentric-

ities, drawn from both this work and the literature (Moorhead et al. 2011; Hadden

& Lithwick 2014; Xie et al. 2016; Mills et al. 2019; Van Eylen et al. 2019). Open

circles are from multi-planet fits, filled circles are from single-planet fits, and open

square points are from fits to a general planet population. Faint vertical lines are

used as a visual reference to compare literature results to the maximum-likelihood

fits from this work. The mean eccentricity is related to hyperparameter σrayleigh

via e = σrayleigh
√

π/2 (Jurić & Tremaine 2008). . . . . . . . . . . . . . . . . . . 178

7.10 Rayleigh and half-Gaussian distribution fits to metallicity-based sub-populations

of the TKS sample, with the metal-rich population ([Fe/H] > 0) shown in blue
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7.11 Rayleigh and half-Gaussian distribution fits to radius-based sub-populations of

the TKS sample, with the sub-Jovian-size population (Rp ≲ 8R⊕) shown in

blue and the Jovian-size population (Rp > 8R⊕) shown in green. We find that

Jovian-size planets tend to have a higher distribution of eccentricities than sub-

Jovian-size planets, consistent with theoretical expectations. . . . . . . . . . . . 182

xxv



LIST OF TABLES

2.1 HIP-97166 Radial Velocity Measurements . . . . . . . . . . . . . . . . . . . . . 15

2.2 HIP-97166 System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 HIP-97166 System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 TOI-1272 Radial Velocity Measurements . . . . . . . . . . . . . . . . . . . . . . 45

3.2 TOI-1272 System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 TOI-1272 System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Ground-truth simulation parameters; simulated photometry is shown in Figure 4.1. 74

4.2 Priors on model parameters for simulated lightcurve. . . . . . . . . . . . . . . . 76

5.1 Transit Model Parameters and Priors . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 TKS System Parameters: Median Fractional Uncertainties . . . . . . . . . . . . 127

6.2 Transit Model Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 TKS Stellar Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3 TKS Stellar Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 TKS Stellar Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 TKS Stellar Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.4 TKS Planet Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 TKS Planet Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 TKS Planet Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4 TKS Planet Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.4 TKS Planet Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.1 Select eccentricity distribution fits from the literature . . . . . . . . . . . . . . . 165

7.2 Eccentricity distribution fits from this work . . . . . . . . . . . . . . . . . . . . 167

xxvi



ACKNOWLEDGMENTS

I acknowledge that these findings are based on manuscripts with additional coauthors:

MacDougall et al. 2021 (Chapter 2), MacDougall et al. 2022 (Chapter 3), Gilbert et al. 2022

(Chapter 4), MacDougall, Gilbert, & Petigura 2023 (submitted; Chapter 5), MacDougall et

al. 2023a (accepted; Chapter 6), and MacDougall et al. 2023b (in prep; Chapter 7).

I would like to thank Professor Erik Petigura for his guidance throughout the research

presented in my thesis and for fostering my growth as a researcher and communicator. I

would not be the scientist that I am today had it not been for his constant support throughout

the highs and lows of my graduate studies. I also thank Dr. Greg Gilbert for his indispensable

mentorship and close collaboration which encouraged the development my thesis work to its

current state. I thank my collaborators within the TESS-Keck Survey team for allowing me

to join them in their endeavor to improve our understanding of exoplanet demographics. I

also thank my fellow students, staff, and faculty within the UCLA Physics & Astronomy

department for their supportive community that allows aspiring scientists to thrive.

I would also like to thank my family for their endless love and support throughout this long,

winding journey to become the first "doctor" in my family. I would not be where I am today

without my parents, Brian and Ruth, who have always been there for me through thick

and thin. Regardless of whether I am calling to vent about my frustrations, brag about

my accomplishments, or just catch up, they are always there to listen and offer words of

encouragement that only a parent could. Their constant support has encouraged me to work

hard, pursue my passions, and always do my best – and my thesis is the ultimate display

of these traits which they have instilled in me. I thank my sister, Alexis, for always being

my biggest advocate in my pursuit of becoming a scientist. I also thank my bean, Tanmyaa,

for joining me on this wild journey. Your love and beaniness have always kept me grounded,

and I would not be the person I am today without you by my side over these past five years.

xxvii



To the loved ones who I have lost over the years: although I cannot officially name planets

after you, these discoveries are dedicated to you – wherever you are out there in the universe.

I also acknowledge support from the UCLA Cota-Robles Graduate Fellowship which helped

to fund my graduate studies. This work was also supported by a NASA Keck PI Data

Award, administered by the NASA Exoplanet Science Institute. Data presented herein were

obtained at the W. M. Keck Observatory from telescope time allocated to the National

Aeronautics and Space Administration through the agency’s scientific partnership with the

California Institute of Technology and the University of California. The Observatory was

made possible by the generous financial support of the W. M. Keck Foundation.

I thank the time assignment committees of the University of California, the California In-

stitute of Technology, NASA, and the University of Hawaii for supporting the TESS-Keck

Survey with observing time at the Keck Observatory. I gratefully acknowledge the efforts

and dedication of the Keck Observatory staff for support of HIRES and remote observing. I

recognize and acknowledge the cultural role and reverence that the summit of Maunakea has

within the indigenous Hawaiian community and I am deeply grateful to have the opportunity

to conduct observations from this mountain.

This thesis is based on data collected by the TESS mission. Funding for the TESS mission is

provided by the NASA Explorer Program. I also acknowledge the use of public TESS data

from pipelines at the TESS Science Office and at the TESS Science Processing Operations

Center (SPOC). This thesis also includes data that are publicly available from the Mikulski

Archive for Space Telescopes (MAST) at the Space Telescope Science Institute. The specific

observations analyzed can be accessed via MAST 2021 and STScI 2018. Resources supporting

this work were provided by the NASA High-End Computing Program through the NASA

Advanced Supercomputing Division at Ames Research Center for the production of the

SPOC data products.

xxviii



VITA

2023– Data Scientist, Google, Mountain View, CA

2022 Data Scientist Intern, Google, Mountain View, CA

2020–present Graduate Student Researcher, Department of Physics and Astronomy,

UCLA, Los Angeles, CA

2020 M.S. – Astronomy and Astrophysics, UCLA, Los Angeles, CA

2019–2020 Teaching Assistant, Department of Physics and Astronomy, UCLA, Los

Angeles, CA

2018 B.S. – Astrophysics (Minor in Planetary Science), California Insti-

tute of Technology, Pasadena, CA

2018 Research Assistant, Division of Planetary Science, Jet Propulsion Lab-

oratory, Pasadena, CA

2015–2017 Undergraduate Researcher, Department of Astronomy, California In-

stitute of Technology, Pasadena, CA

PUBLICATIONS

MacDougall, M. G., Petigura, E. A., et al. 2023, "The TESS-Keck Survey. XVIII. A

Hierarchical Analysis of Photo-eccentricities from the TESS-Keck Survey Sample", in prep.

MacDougall, M. G., Gilbert, G. J., and Petigura, E. A. 2023, "Accurate and efficient

xxix



photo-eccentric transit modeling", The Astronomical Journal, Submitted.

MacDougall, M. G., Petigura, E. A., et al. 2023, "The TESS-Keck Survey. XV. Precise

Properties of 108 TESS Planets and Their Host Stars", The Astronomical Journal, Accepted.

MacDougall, M. G., Petigura, E. A., et al. 2022, "The TESS-Keck Survey. XIII. An

Eccentric Hot Neptune with a Similar-Mass Outer Companion around TOI-1272", The As-

tronomical Journal, 164, 97, doi: 10.3847/1538-3881/ac7ce1.

Gilbert, G. J., MacDougall, M. G., and Petigura, E. A. 2022, "Implicit Biases in Transit

Models using Stellar Pseudo-density", The Astronomical Journal, 164, 92, doi: 10.3847/1538-

3881/ac7f2f.

Chontos, A., Murphy, J. M. A., MacDougall, M. G., et al. 2022, "The TESS-Keck Survey:

Science Goals and Target Selection", The Astronomical Journal, Accepted, 163, 297, doi:

10.3847/1538-3881/ac6266.

MacDougall, M. G., Petigura, E. A., et al. 2021, "The TESS-Keck Survey. VI. Two

Eccentric sub-Neptunes Orbiting HIP-97166", The Astronomical Journal, 162, 265, doi:

10.3847/1538-3881/ac295e.

Dalba, P. A., Kane, S. R., Li, Z., MacDougall, M. G., et al. 2021, "Giant Outer Tran-

siting Exoplanet Mass (GOT ’EM) Survey. II. Discovery of a Failed Hot Jupiter on a 2.7

Year, Highly Eccentric Orbit", The Astronomical Journal, 162, 154, doi: 10.3847/1538-

3881/ac134b.

xxx



CHAPTER 1

Introduction

For most of human history, the existence of other worlds beyond our own Solar System was

the stuff of fantasy or theory – until it wasn’t. Since the first extrasolar planet was discovered

about 30 years ago by Wolszczan & Frail (1992), the collective curiosity of both the general

public and the scientific community has driven exoplanet researchers to develop a variety

of techniques for discovering and characterizing new planets, with the most prolific of these

being the transit method. The Kepler spacecraft (Borucki et al. 2010a) pioneered the use of

the transit method on large scales by simultaneously observing thousands of stars in search

of the periodic dips in brightness that are characteristic of transiting planets. The Kepler

mission went on to contribute ∼51% of the 5,338 exoplanet discoveries as of 1 May 2023

(Akeson et al. 2013a), along with another ∼10% from its extended K2 mission (Howell et al.

2014). Kepler ’s success paved the way for both current (TESS, Ricker et al. 2015a) and

future (PLATO, Rauer et al. 2014a) space-based transit surveys which share the common

goal of bolstering our sample size of well-characterized planetary systems.

In recent years, countless studies have sifted through the growing sample of known planets

to piece together the bigger picture of exoplanet demographics, providing us with invaluable

information about the distributions of planetary radii (e.g. Fulton et al. 2017a), masses (e.g.

Weiss & Marcy 2014), and system architectures (e.g. Fabrycky et al. 2014). Such investi-

gations have revealed a variety of planetary system outcomes which motivate the question:

how do we probe the past evolution of planets in order to better explain the demographics

1



that we observe today. Orbital eccentricities are a crucial piece of this puzzle, offering a

glimpse into the past dynamical interactions of bodies around distant stars. Through study-

ing exoplanets and their eccentricities, we gain a better understand our own place in the

evolutionary story told by the demographics of these distant worlds.

1.1 Background and Motivation

1.1.1 Exoplanet Dynamics

Planet formation occurs in flattened disks of gas and dust revolving around stars that re-

cently formed from the collapse of a molecular cloud (Lissauer 1993; Armitage 2018; Ray-

mond & Morbidelli 2022). Within these circumstellar disks, planets are believed to form on

near-circular, co-planar orbits within ∼100 million years after the formation of the disk. A

variety of physical processes can proceed to excite newly-formed planets onto more eccentric

elliptical orbits, including dynamical processes like disk interactions (e.g. Goldreich & Sari

2003), resonance crossing (e.g. Chiang 2003), planet-planet scattering (e.g. Chatterjee et al.

2008; Jurić & Tremaine 2008), and more complex N-body interactions such as the Eccentric

Kozai-Lidov Mechanism (e.g. Naoz 2016). Other processes can also damp eccentricities over

time, such as Kozai cycles and tidal friction (e.g. Fabrycky & Tremaine 2007). Thus, a

planet’s orbital eccentricity is a relic of past dynamical perturbations as well as a reflection

of ongoing interactions. Eccentricity measurements can provide important clues about di-

verging planet formation and evolution pathways that cannot be directly drawn from other

planet characteristics.

1.1.2 Constraining Eccentricity

The eccentricities of transiting planets have historically been constrained via follow-up radial

velocity (RV) observations which detect the reflex motion of a planet’s host star. Instruments

for measuring precise RVs such as the Keck Observatory’s High-Resolution Spectrograph
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(HIRES, Vogt et al. 1994) are capable of constraining eccentricities for large and/or close-in

planets, but obtaining enough RVs for a precise eccentricity measurement can be costly and

time-consuming. In many cases, small planet eccentricities will remain entirely unconstrained

from this method. On the other hand, transit photometry can be gathered in bulk via

space-based transit surveys for many stars hosting planets of all sizes, but recovering precise

eccentricity constraints directly from transit modeling is not so straight-forward. Therefore,

in order to better characterize both the typical and extreme values of planet eccentricities,

especially small planets, improved photometric eccentricity constraints may be the best

approach.

While many difficulties in transit modeling have long been solved (see, e.g., Mandel & Agol

2002a; Barnes 2007a), sampling the full parameter space of a transit model efficiently and ac-

curately is no easy task. Additionally, the complex relationship between impact parameter b,

eccentricity e, and argument of periastron ω (orbit orientation angle) makes sampling directly

in these all three of these variables computationally intensive. Fortunately, simplifications

that were used to efficiently model circular orbits (Seager & Mallén-Ornelas 2003a) helped

to pave the way for efficient photo-eccentric transit modeling that avoids direct sampling in

{e, ω} (see Ford et al. 2008; Kipping et al. 2012). This particular parameterization has been

used to model transit photometry for individual planets (see, e.g., Dawson & Johnson 2012),

small planet populations (e.g. Kane et al. 2012; Xie et al. 2016), and most notably, the

entire Kepler planet catalog (Rowe et al. 2014b). However, this transit modeling approach

can introduce a bias on impact parameter which then propagates to other modeled parame-

ters, including eccentricity (Gilbert et al. 2022). One can instead use an eccentricity-explicit

transit model parameterization that includes direct sampling in {e, ω, ρ⋆}, which achieves

unbiased results but with great inefficiency and a lack of flexibility for incorporating future

updated priors on these parameters. These shortcomings leave room for additional improve-

ments to achieve a photo-eccentric transit model that is efficient, accurate, and flexible (or

"future-proof").
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1.2 Structure of the dissertation

My thesis focuses on revealing both the typical and extreme values of small planet eccen-

tricities via improved transit fitting methods and robust statistical modeling techniques. In

Chapters 2 and 3, I use existing photo-eccentric transit modeling methods to discover two

eccentric sub-Jovian-size transiting planets, each with a non-transiting outer companion, in

collaboration with the TESS-Keck Survey team (MacDougall et al. 2021; MacDougall et al.

2022). Through these works, I identify a previously unaccounted-for bias in one of the most

common transit modeling methods which unfairly disfavors high impact parameters and low

eccentricities. In Chapter 4, I work with a small team of collaborators to explain and correct

this bias, proposing a duration-based transit model parameterization that allows for efficient

and unbiased estimates of exoplanet impact parameters (Gilbert et al. 2022). I expand upon

this work in Chapter 5 to measure accurate eccentricity constraints from our duration-based

transit model and validate these constraints through a suite of injection-and-recovery tests

(MacDougall, Gilbert, & Petigura 2023, submitted). In Chapter 6, I perform high-precision

stellar characterization for 85 TESS-Keck Survey targets and then apply our duration-based

transit model to characterize 108 transiting planets orbiting these host stars (MacDougall

et al 2023a, accepted). The complete photometric detrending and modeling pipeline that I

develop for this project measures planet sizes, orbital ephemerides, and transit timing vari-

ations along with unbiased measurements of impact parameter and eccentricity. In Chapter

7, I use these photometric eccentricity constraints to determine the underlying eccentric-

ity distribution of the TESS-Keck Survey planet sample via hierarchical Bayesian modeling

(MacDougall et al. 2023b, in prep). I also compare the derived eccentricity distributions

for various sub-populations of this sample to identify trends in eccentricity as a function of

planet multiplicity, planet radius, and stellar metallicity. I provide concluding remarks in

Chapter 8 along with and a brief discussion of future extensions of this work.
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CHAPTER 2

The TESS-Keck Survey. VI. Two Eccentric sub-Neptunes

Orbiting HIP-97166

2.1 Abstract

We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3-

day orbit around a K0 dwarf 68 pc from Earth. This planet was identified in a systematic

search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch

between the observed transit duration and the expected duration for a circular orbit. We

confirmed the planetary nature of HIP-97166b with ground-based radial velocity measure-

ments and measured a mass of Mb = 20 ± 2 M⊕ along with a radius of Rb = 2.7 ± 0.1

R⊕ from photometry. We detected an additional non-transiting planetary companion with

Mc sini = 10 ± 2 M⊕ on a 16.8-day orbit. While the short transit duration of the inner

planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high

impact parameter b = 0.84± 0.03 and a moderate eccentricity. Modeling the dynamics with

the condition that the system remain stable over >105 orbits yielded eccentricity constraints

eb = 0.16 ± 0.03 and ec < 0.25. The eccentricity we find for planet b is above average for

the small population of sub-Neptunes with well-measured eccentricities. We explored the

plausible formation pathways of this system, proposing an early instability and merger event

to explain the high density of the inner planet at 5.3 ± 0.9 g/cc as well as its moderate

eccentricity and proximity to a 5:3 mean-motion resonance.
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2.2 Introduction

One of the key features of the Solar System is its low dynamical temperature. The eight

planets are arranged with wide orbital spacing, low eccentricities, and no significant mean-

motion resonances. Even so, the low mean eccentricity of ∼0.06 within the Solar System

had to arise from somewhere. One explanation involves dynamical excitation and subsequent

eccentricity damping following the divergent migration of Jupiter and Saturn (e.g. Tsiganis

et al. 2005). Given a different set of initial conditions, however, it is possible for this and

other excitation processes to achieve even higher dynamical temperatures in other planetary

systems.

One of the major surprises of early exoplanet observations was the prevalence of high-

eccentricity Jovians, in direct contrast to the Solar System planets. For reference, ∼25%

of known planets with Mp > 100 M⊕ and a > 1 AU have e > 0.4 (NASA Exoplanet Archive;

Akeson et al. 2013a). Various mechanisms have been proposed to explain the highly excited

states of these Jovian orbits, including planet migration, resonances, and close approaches

(see, Fabrycky & Tremaine 2007; Ford & Rasio 2008; Winn & Fabrycky 2015).

On the other hand, characterizing the orbits and eccentricities of sub-Jovians is more chal-

lenging. The standard method of measuring a planet’s eccentricity through radial velocity

(RV) observations relies on the detection of a significant, non-sinusoidal motion from the

host star. While many sub-Jovian semi-amplitudes are detectable with current facilities, the

departures from sinusoidal are often less clear. Of the other available methods for planet de-

tection, the transit method is the most prolific to date, but precise eccentricities are typically

achieved through transit-timing variations (TTVs) when planets are near resonance, which

is not representative of all systems (see, e.g., Hadden & Lithwick 2014). This limitation has

led to a low fraction of sub-Neptune discoveries with well-constrained eccentricities.

Fortunately, a connection between transit duration and eccentricity exists (see, e.g., Ford
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& Rasio 2008), assuming one has a well-constrained estimate of impact parameter. This

relationship has given rise to a variety of studies that derive dynamical insights from transit

photometry alone (Kipping 2010a; Kipping 2014b; Xie et al. 2016). Such work has been

successfully carried out in recent years to determine both the eccentricities of individual

planets (Dawson & Johnson 2012; Van Eylen et al. 2014) and the eccentricity distributions

of larger samples of planetary systems (Kane et al. 2012; Van Eylen & Albrecht 2015; Xie

et al. 2016). In our ongoing study, we use this relationship as a pre-filter to identify planet

candidates at the extremes of the eccentricity distribution, observed with the Transiting

Exoplanet Survey Satellite (TESS; Ricker et al. 2015a).

One of such candidates is HIP-97166b (TOI-1255b, TIC 237222864b), a sub-Neptune around

an early K dwarf located high in the Northern hemisphere (dec = +74◦) at a distance of 68

pc (Gaia Collaboration; Lindegren et al. 2018). Our investigation is part of a larger effort by

the TESS-Keck Survey (see Chontos et al. 2022 for more information on TKS and its goals),

which will build upon the legacies of Kepler and K2 to address major outstanding questions

about exoplanet compositions, atmospheres, and system architectures.

In this paper, we describe the HIP-97166 system and the transit profile modeling that we used

to identify eccentric planet candidates from photometry (§2.3) as well as our follow-up radial

velocity observations (§2.4). We analyze our spectroscopic measurements to characterize

both the stellar (§2.5) and planetary properties. From our rich RV data set, we also detect

the presence of a non-transiting outer planet (§2.6). Finally, we explore the dynamics of

this system through N-body simulations, which we used to further constrain our eccentricity

measurements (§2.7). We also place this system in context with past exoplanet discoveries

(§2.8) and consider possible formation pathways that could have led to the observed system

architecture (§2.9).
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2.3 HIP-97166b: A High-Eccentricity Candidate

2.3.1 TESS Photometry

HIP-97166 was observed by TESS with 2-min-cadence photometry in 12 sectors between

UT 2019 July 18 and 2020 June 9 (Sectors 14–17, 19–26). The time-series photometry was

processed by the TESS Science Processing Operations Center pipeline (SPOC; Jenkins et al.

2016), which first detected the periodic transit signal of HIP-97166b in 2019 September with

a wavelet-based, noise-compensating matched filter (Jenkins 2002; Jenkins et al. 2010). An

initial limb-darkened transit model fit was performed (Li et al. 2019) and the signature passed

a suite of diagnostic tests (Twicken et al. 2018) but for the difference imaging centroid test,

which located the source of the transit-like signal 10.2”± 3.1” from the target. As the data

accumulated for this target, the difference imaging centroid test results improved, shrinking

the maximum deviation from the known target star’s location to 0.9”± 3.5” in the analysis

of the data from sectors 14 through 26. The TESS Science Office reviewed the vetting results

and issued an alert to the community on UT 2019 October 17 (Guerrero et al. 2021).

We accessed the Pre-search Data Conditioning Simple Aperture Photometry (PDC-SAP;

Stumpe et al. 2012, Stumpe et al. 2014; Smith et al. 2012) through the Mikulski Archive for

Space Telescopes (MAST), stitching together the light curves from individual TESS sectors

into a single time-series using Lightkurve (Lightkurve Collaboration et al. 2018). We cleaned

the TESS photometry by keeping only points with quality_flag = 0 and excluding outliers

beyond 10-σ from the baseline flux. We divided out the median background flux of the time-

series data to normalize the light curve then searched for transits using a box least squares

(BLS; Kovács et al. 2002a) transit search to recover the same planetary signal detected by

SPOC with SNR = 29.6. We subtracted the known transits and applied the BLS search

again but identified no additional periodic transit events.

With the measured transit mid-point t0 and period P of the transiting planet, we masked
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Figure 2.1: TESS photometry of HIP-97166. The data has been processed following the

procedures discussed in §2.3.1. Transits of HIP-97166b are indicated by blue triangles and

are 0.8 ppt.

out all transit events to detrend the light curve without obscuring the signal. We do note

some photometric variability in the Simple Aperture Photometry (SAP) light curve, which

we discuss in brief in §2.6.1. Interpolating over the masked transits, we fit a smoothed

curve to systematics in the photometry with a Savitzky-Golay filter then subtracted out

such additional structure to produce the flattened and normalized final light curve seen in

Figure 2.1. Before unmasking the transit events, we clipped any individual outliers whose

residuals to the smoothed fit were greater than 5-σ discrepant.

2.3.2 Photometric Transit Model

The standard Mandel-Agol transit model can be specified by 5 transit parameters {P , t0,

Rp/R∗, b, a/R∗} in addition to stellar limb-darkening (Mandel & Agol 2002a). Eccentricity

e and longitude of periastron ω can also be directly sampled by such models, but including

these dynamical parameters can significantly increase model run-time. Before devoting ex-

tensive computation time to every TOI system, a faster calculation involving transit duration

can serve as a pre-filter for planets with potentially eccentric orbits.

While a planet on a circular orbit has a constant velocity, an eccentric planet will move faster

when closer to its host star according to Kepler’s 2nd Law. As a result, an observer viewing
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Figure 2.2: Transit duration as a function of e and ω. (a) Observer (blue triangle) viewing a

planet transiting on a circular orbit (blue light curve). (b) Observer (orange triangle) viewing

a planet transiting at periastron (orange light curve). (c) Observer (green triangle) viewing

a planet transiting at apastron (green light curve). (d) Simulated light curves associated

with scenarios a-c for a Jupiter-size planet orbiting edge-on around a Sun-like star with a

period of 5 days.

an eccentric planet transiting at periastron (ω∗ = 90◦, see Figure 2.2b) would see a shorter

duration while another observer viewing this transit at apastron (ω∗ = 270◦, see Figure 2.2c)

would see a longer duration. Thus, the ratio between a planet’s observed transit duration and

its duration if it were on a circular orbit depends on the eccentricity and orbital orientation.

The true duration (mid-ingress to mid-egress) can be computed using the geometric relation

given in Winn 2010b:

T =

(
R∗P

πa

√
1− b2

) √
1− e2

1 + e sinω
. (2.1)
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We modeled this effect by re-parametrizing the standard transit model to sample duration

rather than a/R∗. Our fitting basis included {P , t0, Rp/R∗, b, T , µ, u, v}, where µ was

mean out-of-transit stellar flux and u, v were quadratic limb darkening parameters. We fit the

transit photometry of HIP-97166 using the statistical transit modeling package exoplanet

(Foreman-Mackey et al. 2021a), which generates samples from the posterior probability den-

sity for these parameters conditioned on the observed TESS light curve. To generate these

samples, exoplanet uses a gradient-based MCMC algorithm that is a generalization of the

No U-Turn Sampling method (Hoffman & Gelman 2011a; Betancourt 2016). The versatility

of exoplanet allowed us to build a model that best suited our goal here of obtaining a rapid

transit duration fit. The sampled model produced a set of parameter posterior distributions

from which we identified a median observed transit duration of Tobs = 0.06 days.

To calculate the theoretical "circular" transit duration Tcirc that the planet would have had

given e = 0, we first point out that a/R∗ in Eq. 2.1 maps to stellar density ρ∗ through

Kepler’s 3rd Law (assuming m ≪ M):

a

R∗
=

(
P 2Gρ∗
3π

)1/3

. (2.2)

Since ρ∗ can be directly measured through independent observations (see, e.g. §2.5), a more

useful parametrization of Eq. 2.1 is obtained by substituting in Eq. 2.2, yielding

T ∝ P 1/3
(
1− b2

)1/2
ρ−1/3
∗

√
1− e2

1 + e sinω
. (2.3)

Assuming one has an independently measured value for ρ∗, reliable estimates for b and P ,

and e = 0, Eq. 2.3 can be used to compute the expected transit duration of a planet if it

were on a circular orbit (all else equal). For HIP-97166b, we found Tcirc = 0.12 ± 0.02 days,

for which a representative simulated transit curve can be seen in Figure 2.3. This calculation

demonstrated that Tobs is significantly shorter than Tcirc, with Tobs/Tcirc ≈ 0.5, implying a

potential highly eccentric orbit transiting near periastron.
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Figure 2.3: Top: Transit models (orange; 50 samples) drawn from parameter posterior

distributions fit from phase-folded TESS photometry of HIP-97166b. A simulated transit

curve (blue) is shown for a theoretical circular orbit of HIP-97166b, modeled using median

posterior distribution values for all other parameters. Details regarding fitting procedure are

discussed in §2.3.2. Bottom: Residuals to our maximum a posteriori model.

Although each of the variables in our transit duration model represented a unique transit

property, they were not completely independent. In particular, there is significant e-ω-b

degeneracy for moderate-to-low SNR transits (Petigura 2020). For example, observed transit

durations that are shorter than the expected duration for an edge-on, circular orbit can be

caused by higher b and/or higher e (Moorhead et al. 2011; Dawson & Johnson 2012). On the

other hand, this degeneracy is not a concern when modeling transits that are longer than

expected since only eccentricity can have such an effect.

Given the short transit duration and these degeneracy concerns, we followed up our initial

transit fit with a more detailed exoplanet model sampling 10 variables, {P , t0, Rp/R∗, b,

ρ∗,
√
e sinω,

√
e cosω, µ, u, v}, each with weakly informative priors similar to those used by

Sandford & Kipping (2017). We re-fit the TESS transit photometry of HIP-97166 with this
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Figure 2.4: 2D joint posterior distribution of e and ω for HIP-97166b, showing 1-σ and

2-σ credibility intervals. Best-fit values for both parameters are given: e = 0.68+0.18
−0.16 and

ω = 71◦+81◦

−48◦.

model using 8,000 tuning steps and 6,000 sampling steps over 4 parallel chains, measuring an

autocorrelation length of ∼8. We find that the largest Gelman-Rubin statistic amongst the

sampled parameters is R = 1.0004, suggesting convergence of the posterior chains according

to Gelman & Rubin (1992). Figure 2.3 shows the final transit model sampled from the

posteriors.

2.3.3 Eccentricity Constraints from Photometry

The photometrically-constrained eccentricity posterior distribution that we modeled for HIP-

97166b was consistent with our initial high-eccentricity hypothesis, yielding a 1-σ range of

e = 0.52–0.86. While ω is loosely constrained from this method, this analysis favors that the

transit occurs closer to periastron. The joint 2D posterior for e and ω is shown in Fig. 2.4,

with the 1-σ and 2-σ credible regions shown in shades of blue.
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We note, however, that our impact parameter distribution remains loosely constrained as

well, with a 1-σ range of b = 0.28–0.79, peaking in density towards the upper end of this

range. Due to this high variance in the posterior distributions of both b and e, we required

additional observations to break the e-ω-b degeneracy of our transit model.

2.4 Spectroscopic Follow-up

2.4.1 HIRES RVs

We collected 44 spectra of HIP-97166 with the HIRES instrument at the Keck Observatory

(Vogt et al. 1994) between UT 2020 May 30 and UT 2021 April 9 (Table 2.1). On average,

the observations have a spectral resolution of R = 50,000, using a median exposure time of

900 s at 5500 Å. We also obtained a high-SNR template spectrum on UT 2020 June 27 with

400 SNR pixel−1 at 5000 Å.

For such observations, a heated cell of gaseous iodine was included along the light path

just behind the entrance slit of the spectrometer, imprinting a dense forest of molecular

absorption lines onto the observed stellar spectrum (Marcy & Butler 1992). These lines

served as a wavelength reference for measuring the relative Doppler shift of each spectrum

and tracking variations in the instrument profile using the standard forward-modeling pro-

cedures of the California Planet Search (Howard et al. 2010). Along with the measured

RVs and corresponding uncertainties, the stellar activity S-index was computed for all 43

Keck/HIRES observations using the observed strengths of the Ca II H and K lines in our

template spectrum, following the methods of Isaacson & Fischer (2010).

2.4.2 APF RVs

In addition to the Keck/HIRES follow-up, we also collected 124 iodine-in spectra of HIP-

97166 with the Levy spectrograph on the Automated Planet Finder (APF) telescope (Vogt

et al. 2014) between UT 2020 May 9 and UT 2021 April 11 at a spectral resolution of R =
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Table 2.1: HIP-97166 Radial Velocity Measurements

Time Tele. RV RV Unc. SHK

(BJD) (m s−1) (m s−1)

2458978.987 APF 0.549 3.407 0.202

2458979.905 APF 3.990 3.534 0.201

2458980.841 APF -1.571 4.051 0.212

2458980.863 APF -5.655 3.644 0.236

2458996.786 APF 5.818 3.092 0.278

2458996.807 APF 10.543 3.434 0.246

2459000.034 HIRES -2.029 1.013 0.185

2459004.053 HIRES -2.293 1.544 0.179

2459007.975 HIRES -0.449 1.378 0.173

2459008.015 HIRES -0.165 1.477 0.172

Note. — Only the first 10 RVs are displayed in this

table. A complete list has been made available on-

line. SHK values were measured using procedures from

Isaacson & Fischer (2010) with standard uncertainties

of 0.002 for APF/Levy measurements and 0.001 for

Keck/HIRES measurements.

15



100,000. For a majority of these, two observations were taken roughly 30 minutes apart over

70 separate nights. We also obtained 7 iodine-free template spectra using APF/Levy on UT

2020 May 26 with an average SNR pixel−1 of 102 at 5100 Å.

The APF/Levy Doppler code was developed based on the Keck/HIRES Doppler code and

therefore follows a similar process for reducing spectra to RVs. However, this target is close

to the APF/Levy magnitude limit with V = 9.85, contributing to a high cosmic ray rate

that ultimately rendered the APF/Levy template unusable. Fortunately, we were able to

substitute this with the the Keck/HIRES template to extract APF RVs, which has been

successfully done in previous studies (see, e.g. Dai et al. 2020).

2.5 Stellar Characterization

We searched for nearby stars to rule out any contamination scenarios which would dilute

the transit depth and, therefore, underestimate the planet size. We note that the star has

a single neighbor listed in Gaia Data Release 2 (DR2) within 30′′ which, at ∆G = 8.75,

contributes negligible dilution (Gaia Collaboration et al. 2018). Although Gaia is capable

of spatially resolving sources down to ∼0.5” separation in some instances, this still leaves a

small region around our target star in which additional contaminating sources could exist.

We used Gemini/NIRI adaptive optics imager (Hodapp et al. 2003) to collect high resolution

images of HIP-97166 on UT 2019 December 4. We collected nine images in the Brγ filter,

each with exposure time 1.75 s, in a grid dither pattern. We also collected flat frames and

used the median-combined, dithered science frames as a sky background frame. For each

frame we removed bad pixels, flat-fielded, and subtracted the sky background. We then

aligned each image to the position of the frame and co-added the stack of images. We

searched for companions visually, and did not detect companions anywhere in the field of

view (26.′′7×26.′′7, centered on the target). To assess the sensitivity of these observations,

we injected fake PSFs at a number of position angles and separations from the host star
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and scaled the brightness of these such that they could be detected at 5σ. We reached a

contrast of 5-mag relative to the host star beyond 270 mas and of 7.3-mag in the background

limited regime beyond ∼1.′′1. We were thus able to rule out close-in diluting sources with

high certainty.

We sought to further characterize HIP-97166 by inferring Teff and [Fe/H] from our Keck/HIRES

template spectrum using SpecMatch-Synth, as described in Petigura et al. (2017b). Follow-

ing the methodology of Fulton & Petigura (2018), we then used these values as priors for

stellar isochrone modeling with isoclassify (Berger et al. 2020a; Huber et al. 2017). Our

model also incorporated 2MASS K-band magnitude and Gaia parallax to identify the best-

fit stellar properties according to the MESA Isochrones and Stellar Tracks models (MIST;

Dotter 2016; Choi et al. 2016). We characterized ρ∗ and several other stellar parameters

using this method, accounting for model grid uncertainties according to Tayar et al. (2022),

and we present these values in table 2.2.

Based on the solar-like values measured for log(g), SHK, and logR′
HK, HIP-97166 places

among the bottom quartile of expected activity-induced RV jitter, according to Luhn et al.

(2020). The minimum jitter of similar stars in this study is ≲ 2.5 m/s, which is consistent

with a jitter measurement of ∼2.5 m/s from our RVs.

2.6 Keplerian Modeling

2.6.1 RV Detection of Planets b and c

A preliminary search of our RV data for periodic signals using RVSearch (Rosenthal et al.

2021) revealed a Keplerian signal that matched the period of the transiting planet, with a

false-alarm probability FAP ≪ 0.001 and a Doppler semi-amplitude of K ≈ 6.6 m/s. After

subtracting, we identified an additional signal at 16.8 days, with K ≈ 2.8 m/s and FAP ≈
10−3 (Figure 2.5).
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Figure 2.5: Iterative Keplerian periodogram search of HIP-97166 RVs using RVSearch, con-

firming the 10.3-day transiting planet and identifying a significant non-transiting companion

with a 16.8-day period. ∆BIC is used to discriminate between models with Keplerians at

varying periods (Bayesian Information Criterion; Schwarz 1978), corresponding to a signif-

icance threshold of FAP = 0.001 at the yellow dashed line. Monthly and yearly aliases are

shown with in green and red dashed lines, respectively.
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We also searched for planets using the l1 periodogram described in Hara et al. 2017, designed

to reduce periodogram noise for unevenly sampled data as compared to the Lomb-Scargle

method by solving the Basis Pursuit minimization problem (Chen et al. 2001). In our

implementation, we used jitter term σ = 2.5 m/s, correlation time τ = 0, and maximum

frequency of 1.5 cycles d−1. Within the period range of 1.1 to 1000 days, the only clear

detections in the l1-periodogram occurred near the known period of 10.3 days and within

1-σ of the suspected period of 16.8 days, with FAP values of ∼10−9 and ∼10−3, respectively.

To confirm the significance of the 16.8 day period relative to other plausible signals that

could be achieved by random fluctuations in noise, we re-sampled 103 synthetic data sets

from the original RV data (Howard et al. 2010). We found that the 16.8 day signal was

consistently the next strongest signal found in l1-periodogram searches of the synthetic data,

with the 10.3 day period always being the most significant.

While the 16.8-day RV signal was statistically significant, we did not identify a correspond-

ing transit in §2.3.1. We confirmed this by phase-folding the detrended TESS photometry

according to the RV-constrained period P and time of conjunction Tc for the outer RV sig-

nal, detecting no evidence for a transit event at this period. We therefore considered the

possibility that this signal was stellar activity induced. We searched for trends in the SHK

activity time-series described in §2.5 and shown in Table 2.1. Similar to the RV data, we

processed the nightly SHK measurements using an l1-periodogram, showing no indication of

stellar activity with a 16.8-day period nor any other statistically significant periodicity (FAP

≤ 10−3). Applying a similar approach to the SAP photometry of HIP-97166, we identified

a significant l1-periodogram signal at a period of 27.2 days, which was inconsistent with

the 16.8 day RV signal. This periodicity in the SAP photometry is likely a systematic effect

associated with the orbital period of the TESS spacecraft which has been seen in other TESS

light curves as well.

To further test if the Keplerian signal was driven by stellar variability, we looked for a corre-
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Figure 2.6: Spearman rank-order linear correlation fit between 1-planet RV residuals and

SHK activity metric shows a tenuous trend with a low correlation score ρspear, suggesting that

no significant relationship exists between the observed RV signals and stellar activity.

lation between the SHK index time-series and the RV residuals after removing the 10.3-day

planet signal. Using the Spearman rank-order correlation test (Press et al. 1992), however,

we found only a tenuous correlation with coefficient ρspear = 0.12 (Figure 2.6). We, therefore,

conclude that the 16.8-day periodicity is planetary in origin.

2.6.2 RV-only Constraints

We fit our complete RV data set using a two-planet model with RadVel, a Python package

that applies maximum a posteriori model fitting and parameter estimation via MCMC to

characterize planets from Keplerian RV signals (Fulton et al. 2018). The model that we

selected consisted of the following free parameters for both planets: P , Tc, K,
√
e cosω,

and
√
e sinω. We also included RV offsets γ and RV jitter terms σ for each instrument,

accounting for other astrophysical and instrumental uncertainty that are not already included

in the model. Figure 2.7 shows the best-fit two-planet model as determined by the posterior

distributions for each parameter shown in Figure 2.8.
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Our best-fit model confirms the existence of two eccentric sub-Jovians orbiting HIP-97166,

with a summary of planet properties provided in Table 2.2. Notably, the mass constraints

for both planets b and c are significant, at the ∼10-σ and ∼5-σ levels, respectively. We also

constrained the eccentricity of the transiting planet, eb = 0.26 ± 0.07, which was ∼2.5-σ

below the median eb value of our transit model posterior distribution.

2.6.3 RV-Photometry Joint Model

While the RV-measured eccentricity was lower than expected, our RV and photometric

posterior distributions on eb remained consistent at the 2-σ level. The degeneracy between e

and b in our transit model was likely the source of this high spread, so we sought to build a

complete model that more accurately accounted for this degeneracy. We performed a joint

RV-transit fit of the data, using the posteriors on e and ω from our RV fit as priors in

a transit model to determine the combination of e and b needed to account for both the

anomalously short transit duration and the RV signal.

In addition to e and ω priors, we also placed a Gaussian prior on ρ∗ in our RV-informed

transit model, informed by our isoclassify stellar characterization. All other aspects of

the model remained the same from the earlier implementation of exoplanet in §2.3.2. These

RV-derived priors allowed us to constrain impact parameter to b = 0.84 ± 0.03, significantly

more constrained than our initial model fit and more consistent with what we observed in our

RV-derived eccentricity posterior. Due to the covariance between b and Rp/R∗, a higher b

also meant a higher Rp/R∗ and subsequently resulted in our final planet radius measurement

of Rp = 2.74 ± 0.13 R⊕.
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Figure 2.7: a) Best-fit model (blue) of radial velocity measurements from Keck/HIRES

(black) and APF/Levy (green) using Radvel (Fulton et al. 2018) with no binning; b) Resid-

uals to best-fit RV model; c) Phase-folded view of best-fit model and RV data for HIP-97166b,

with binned points shown in red; d) Phase-folded view of best-fit model and RV data for

HIP-97166c
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Figure 2.8: Posterior distributions of parameters from two-planet RV-only model with

RadVel.
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Table 2.2: HIP-97166 System Properties

Parameter Value Notes

Stellar

RA (◦) 296.24462 A

Dec (◦) 74.06286 A

π (mas) 15.134± 0.023 A

mK 7.92± 0.02 B

mV 9.92± 0.03 C

Teff (K) 5198± 100 D

[Fe/H] (dex) 0.27± 0.09 D

log(g) 4.41± 0.10 D

age (Gyr) 3.33± 3.28 E

M∗ (M⊙) 0.898± 0.054 E

R∗ (R⊙) 0.836± 0.036 E

ρ∗ (g/cc) 2.154± 0.312 E

SHK 0.182 F

logR′
HK −5.01 F

u, v 0.47± 0.05, 0.10± 0.05 G

Planet b

P (days) 10.28891± 0.00004 H

Tc (BJD-2457000) 1691.6486± 0.0007 H

b 0.836± 0.027 H

Rp (R⊕) 2.74± 0.13 H,E

Mp (M⊕) 20.0± 1.5 I

ρp (g/cc) 5.3± 0.9 I

a (AU) 0.089± 0.001 I

ω (◦) 120.9± 15.5 I
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Table 2.2 (cont’d): HIP-97166 System Properties

Parameter Value Notes

e 0.16± 0.03 J

Teq (K) 757± 25 K

Planet c

P (days) 16.84± 0.22 I

Tc (BJD-2457000) 1988.4± 1.6 I

Mp sini (M⊕) 9.9± 1.8 I

a (AU) 0.124± 0.002 I

ω (◦) 178.2± 53.0 I

e < 0.25 J

Teq (K) 642± 22 K

Note. — A: Gaia DR2 (Gaia Collaboration

et al. 2018); B: 2MASS (Skrutskie et al. 2006);

C: TESS Input Catalog (TIC; Stassun et al.

2019); D: Derived with SpecMatch-Synth;

E: Derived with isoclassify; F: Measured

from Keck/HIRES template; G: Derived with

LDTK (Parviainen & Aigrain 2015); H: Con-

strained from exoplanet transit model; I:

Best-fit RV model with RadVel; J: Dynami-

cally constrained with rebound; K: Derived.
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2.7 System Dynamics

2.7.1 Eccentricity Constraints from Stability Requirements

The best-fit RV model suggested a significant (>3-σ) non-zero eccentricity for the inner

transiting planet but had only limited constraints for the eccentricity of the outer planet.

Given this dynamical assessment and the relative proximity of these orbits (∆a ≈ 0.035 AU

≈ 30 ∆Hill), orbit crossing constraints revealed that the best-fit eb and ec values existed in an

unstable region of parameter space. We subsequently evaluated the long-term stability and

effects of planet-planet interactions within this system. We applied dynamical constraints

on the orbital properties of both planets using N-body code rebound (Rein & Liu 2012),

initializing 10,000 orbital simulations of the HIP-97166 system with properties drawn from

our joint model posterior distributions.

For each simulation, we randomly drew the various system parameters (M∗, Mb, Mc, Pb,

Pc, ωb, ωc) from the posterior distributions of our joint model. For eb and ec, we performed

a similar random sampling but with conditions that prevented orbit crossing at the initial

state of the system based on derived values of ab and ac. We ran the simulations for up to

104 years (∼3×105 orbits of planet b) and found that only ∼33% of credible models were

stable.

There is a region of eb-ec parameter space where orbital stability is preferred that is consistent

within ∼1.5-σ of the values derived from the best-fit RV model (Figure 2.9). Simulations

that successfully completed the 104 year run had overall eccentricity distributions given by

eb = 0.16 ± 0.03 and ec < 0.25. Although the best-fit e values from our RV model are within

the upper tail of the dynamically constrained distributions, it is clear that our RadVel model

posteriors, which do not account for orbit crossing, skew towards higher values than allowed

by stability criteria. Nonetheless, we confirmed that HIP-97166b can maintain a moderate

eccentricity over long timescales even with a mildly eccentric, nearby companion.
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Figure 2.9: Distribution of initialized eb-ec values for all rebound simulations (grey) of the

HIP-97166 system. Blue-green contours show regions with the highest density of stable

eccentricity configurations (simulations lasting 104 years).

2.7.2 Secular Eccentricity Variability

For simulations that experienced orbit crossing prior to 104 years, significant exchanges be-

tween eb and ec drove the system towards the instability region of eb-ec parameter space.

Stable systems, on the other hand, exhibited Laplace-Lagrange oscillations that remained

stable long-term with a secular timescale on the order of ∼102 years (Figure 2.10). While

neither planet’s eccentricity is expected to reach exceptionally high values during such oscil-

lations, it is interesting to consider which formation scenarios could have led to this compact,

excited orbital architecture. We note that these orbits are near 5:3 second-order mean-motion

resonance (MMR), Pc/Pb ≈ 1.64 ± 0.02, but only in rare cases did we observe an impact of

this resonance on the long-term stability of our simulations (see Figure 2.10, middle row). Al-

though we cannot confirm the existence of MMR in this system, we cannot rule this scenario

out either given the uncertainty on Pb.
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Figure 2.10: Three different dynamical scenarios of HIP-97166 b and c eccentricities and

TTVs simulated using rebound and sampled from our previous results as described in §2.7.2.

Rows: Stable eccentric scenario with negligible TTVs (Top). Stable eccentric scenario with

periods oscillating about 5:3 MMR, displaying non-negligible TTVs (Middle). Unstable

eccentric scenario lasting only ∼800 years with moderate TTVs (Bottom). Columns: e as a

function of time over final 500 years of integration (Left). e as a function of ∆ω libration

(Middle). TTV amplitude as a function of transit number over the same time baseline as

TESS photometry (Right).
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2.7.3 TTV Analysis

Through our dynamical simulations, we also computed the expected magnitude of the TTVs

experienced by the inner planet due to interactions from the outer planet in the HIP-97166

system (Figure 2.10, 3rd column). Evaluating the RMS of these simulated TTVs over the

same baseline as our TESS photometry, we found that stable simulations had a TTV RMS

distribution of 1.8 ± 1.8 mins. We also measured the magnitude of any observed TTVs from

the transit photometry using exoplanet, finding an O-C RMS of ∼2.9 mins. This agreement

between the simulated and empirical TTV RMS values demonstrated a consistency between

the photometry and our proposed dynamics in which neither detected a significant TTV

signal.

2.8 System in Context

2.8.1 Bulk Density and Core-Envelope Fraction

HIP-97166b is a sub-Neptune, a class of planets with radii ∼2–4 R⊕ that have been the

subject of numerous studies in recent years (Marcy et al. 2014; Weiss & Marcy 2014; Lopez

& Fortney 2014; Wolfgang et al. 2016). Sub-Neptunes display a wide range of characteristics

and compositions but tend to have densities lower than that of Earth, suggesting H/He

envelopes of a few percent (see, e.g., Rogers & Showman 2014; Owen & Wu 2017). With

respect to the Weiss & Marcy (2014) relation, HIP-97166b is an outlier in the mass-radius

parameter space, with bulk properties that place it among the denser and more massive

planets in this class like K2-110b (Osborn et al. 2017).

We investigated the composition of HIP-97166b using a 2-component model, following the

procedures of Petigura et al. (2017a) to quantify the core and envelope fractions of this

planet. Assuming an Earth-like core composition and a solar-composition H/He envelope,

we interpolated over a 4D grid of planetary and stellar parameters to quantitatively derive

an estimate of the envelope mass fraction using Lopez & Fortney (2014) planet structure
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models. We identified an envelope fraction of 1.4 ± 0.4%, giving a core mass of ∼19.6 M⊕

(see Figure 2.11).

As for the outer planet, it is difficult to comment on its composition without a detectable

transit. In the event that the outer planet is indeed transiting but below the detection

threshold (SNR < 8), we could place an upper limit on the radius of planet c. Assuming a

transit duration of 0.1 days and no inclination, we find that Rp,c ≤ 1.5 R⊕. A high-density

planet of this size with expected mass ∼10 M⊕ would be an outlier in Mp − Rp space, but

it cannot necessarily be ruled out. A sufficiently inclined orbit, however, could allow nearly

any planet size, so we are left with only a minimum mass measurement at this time.

2.8.2 Weak Eccentricity Damping

While we found no indication of eccentricity decay in this system during our 10,000 year

simulations, we considered the extent of tidal circularization on longer timescales following

the procedure of Petigura et al. (2017a). Goldreich & Soter (1966) give the timescale for

tidal eccentricity damping:

τe =
4

63

(
Q′

n

)(
Mp

M∗

)(
a

Rp

)5

(2.4)

The mean motion and the reduced tidal quality factor are given by n =
√

GM∗/a3 and

Q′ = 3Q/2k2, respectively, where Q is the specific dissipation function and k2 is the tidal

Love number (Goldreich & Soter 1966; Murray & Dermott 1999; Mardling & Lin 2004).

While Q′ is highly uncertain even for Solar System planets, we estimated its value for the

sub-Neptune HIP-97166b based on the range of values associated with Earth (∼ 103 – 2×103)

and Uranus (∼ 105 – 6 × 105), drawn from Lainey (2016) and Petigura et al. (2017a).

Assuming an Earth-like Q′ = 103 from the lower end of this range, we calculated τe ≈ 5

Gyr. This was a similar timescale to the expected age of the system (3.3+4.1
−2.3 Gyr) based on
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our isoclassify model, implying that significant eccentricity decay was unlikely to have

occurred so far in this scenario. Since τe scales linearly with Q′, larger values of Q′ would

only continue to inflate τe. Thus, we conclude that the observed eccentricity of HIP-97166b

is, at most, susceptible only to weak tidal damping over large timescales.

2.8.3 Sub-Neptune Eccentricity

To date, sub-Neptunes make up 29% of all planet discoveries, but only 6.4% of planets with

eccentricity constraints of σe < 0.1 fall within this radius range (Akeson et al. 2013a). In

Figure 2.11, we show HIP-97166 b and c in context with other sub-Neptunes with well-

constrained eccentricities. The small sample size makes it difficult to characterize the under-

lying eccentricity distribution of sub-Neptunes. Nevertheless, current observations suggest

suppressed dynamical temperatures among this population, including the system presented

in this paper. While our RV fit showed a 1-σ eccentricity range of eb = 0.19 – 0.33, our

dynamically constrained N-body model lowered this 1-σ range to eb = 0.13 – 0.19. We dis-

play the latter result in Figure 2.11, adopting this as our final characterization. This finding

is consistent with that of Correia et al. (2020), which suggests that warm Neptune-mass

planets tend to present moderate, non-zero eccentricities.

Van Eylen & Albrecht (2015) also carried out an investigation into the eccentricity distri-

bution of small planets using a sample of Kepler multi-planet systems. The eccentricity

measurements in this study were performed using similar methods as we employed in our

work in §2.3. The authors found that the overall eccentricity distribution was consistent with

a Rayleigh function with dispersion σe = 0.049 ± 0.013, which indicated that smaller planets

(Rp ∼ 2.6 R⊕) generally had lower eccentricities when in the presence of planetary compan-

ions. A follow-up study investigating both multi-planet and single-planet transiting systems

implemented a different distribution parametrization but still found that small planets in

multi systems had lower eccentricities (Van Eylen et al. 2019). The modeled distributions

for multi and single planet systems in this work were consistent with half-Gaussians with
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dispersions σe = 0.083 ± 0.018 and σe = 0.32 ± 0.06.

Given these past findings, we assert that HIP-97166b has a typical eccentricity relative to

other single transiting systems of small planets. Similarly, the eccentricity of HIP-97166b

is also consistent within ∼1-σ of the typical well-characterized sub-Neptune. We do note,

however, that in comparison to well-characterized Jovian planets, sub-Neptunes display a

trend of suppressed eccentricities verified by a Kolmogorov-Smirnov test. The discovery of

HIP-97166b is consistent with the observed trend.

2.9 Formation Scenarios

Although past studies have shown that Kepler multi-planet systems display no preference for

being near mean-motion resonances (Fabrycky et al. 2014), resonances may still play a role

in shaping some system architectures. One possible formation pathway for the HIP-97166

system is convergent migration, a process of interactions with smaller bodies in the circum-

stellar disk that lowers the period ratio and often drives planets into resonant configurations

(Ford & Rasio 2008). While it has been noted that 5:3 MMR is a poor configuration for

long-term stability (Lee & Thommes 2009), it is possible that the presently observed 5:3

near-MMR is a result of the past crossing of a stronger resonance. The dynamical instabil-

ity and subsequent scattering from this compact resonance would be sufficient to excite the

eccentricities that we observed for these two planets (Chiang et al. 2002; Izidoro et al. 2017).

While the HIP-97166 system is < 2% away from the 5:3 second-order resonance, it is also

only ∼18% away from the stronger 2:1 resonance, making this a plausible source of a past

dynamical instability as well. A complication with this hypothesis, however, is that con-

vergent migration requires dissipation and is expected to naturally damp eccentricities over

time. While it is possible that the free eccentricities of HIP-97166 b and c may have been

larger in the past if the orbits were spaced further apart, we also consider other possible

explanations.
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Figure 2.11: Left: Mass-radius distribution of known sub-Neptunes (Akeson et al. 2013a)

with 20% measurement precision or better in both mass and radius (grey), shown with HIP-

97166b (green). Planetary interior composition curves for various 2-component models (no

atmosphere) from Zeng et al. (2016) are shown as dashed colored lines. Composition curves

which include H2 envelopes of varying size on top of an Earth-like core are given by faded

blue dot-dash lines (Zeng et al. 2019), assuming an equilibrium temperature of 700 K. Weiss

& Marcy (2014) model shown as red dotted line (note the log-log axes). Right: Eccentricity

distribution of planets with σe < 0.1 (sub-Neptunes in red, other known planets in gray) as

a function of orbital separation, showing HIP-97166 b and c in green and blue, respectively.

While the eccentricity constraints of both planets place their upper bounds towards the

eccentric tail of the sub-Neptune distribution, they are consistent with overall suppressed

dynamical temperatures of sub-Neptunes relative to other planet populations. Periastron

distance of 0.03 AU is also shown.
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Another formation pathway for the HIP-97166 system is that the eccentricities were excited

as the result of dynamical instabilities from planet-planet scattering and/or merger events

(see, e.g., Jurić & Tremaine 2008). Chiang & Laughlin (2013a) demonstrated that in-situ

formation of close-in super-Earths and sub-Neptunes can result in planet-planet mergers that

lead to more massive planets on compact orbits. This led us to suggest that both the high

density and moderate eccentricity of HIP-97166b may be a consequence of a past merger

event between two ∼10 M⊕ planets. The occurrence of three or more planets of similar size

on evenly spaced, compact orbits like this is not unheard of and has previously bean referred

to as the "peas in a pod" effect (Weiss et al. 2018). An instability in the dynamics of either

inner planet in this proposed origin scenario could have easily resulted in a merged ∼20 M⊕

planet with e ∼ 0.2, exciting the orbit of the outer planet in the process.

Finally, we considered the possibility that the observed planetary orbits may have been ex-

cited by a distant giant planetary companion. A giant perturber would have the capacity to

increase inner planet eccentricities through dynamical interactions (Hansen 2017; Becker &

Adams 2017; Pu & Lai 2018) or complex resonance effects such as the Eccentric Kozai-Lidov

Mechanism (Naoz 2016; Denham et al. 2019; Barnes et al. 2020). Our RV observations pre-

sented only a marginal detection of acceleration, which allowed us to place loose constraints

on a possible distant giant companion. With an observational baseline of ∼12-months, we

computed that an unobserved Jupiter-mass companion or larger could have a separation as

low as a few AU but larger separations were more likely. These results indicated that the

distant giant excitation scenario could not entirely be ruled out.

2.10 Summary and Conclusions

In this work, we identified HIP-97166b as an eccentric sub-Neptune candidate. This is the

first in a series of investigations into TOIs with transit durations that significantly differ from

expectations of a circular orbit. Combining our duration pre-filter and transit model with an
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analysis of follow-up RV observations from Keck/HIRES and APF/Levy, we measured the

mass, radius, and moderate eccentricity of HIP-97166b. This sub-Neptune is both denser

(ρp,b = 5.3 ± 0.9 g/cc) and more eccentric (eb = 0.16 ± 0.03) than is typical for planets of

similar size, making it an interesting find among the TESS candidates. We also discovered

a moderately eccentric outer companion (ec < 0.25) from RV observations, with a minimum

mass of 10 M⊕ and a 16.8 day orbit.

N-body simulations of these orbits over time revealed a narrow region of dynamical stability

that allowed us to measure the eccentricity of the inner planet with high precision, excluding

a circular orbit to ∼5-σ. Our leading hypothesis is that this system originally formed with

a "peas in a pod" architecture, where the inner two of three original planets merged after a

dynamical instability placed them on crossing orbits. The eccentricities that we observed in

this system could have resulted from such an event and persisted on timescales of the age of

the system. HIP-97166b is now among a small group of sub-Neptunes with high-precision

eccentricity measurements.
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CHAPTER 3

The TESS-Keck Survey. XIII. An Eccentric Hot Neptune

with a Similar-Mass Outer Companion around TOI-1272

3.1 Abstract

We report the discovery of an eccentric hot Neptune and a non-transiting outer planet around

TOI-1272. We identified the eccentricity of the inner planet, with an orbital period of 3.3 d

and Rp,b = 4.1 ± 0.2 R⊕, based on a mismatch between the observed transit duration and

the expected duration for a circular orbit. Using ground-based radial velocity measurements

from the HIRES instrument at the Keck Observatory, we measured the mass of TOI-1272b

to be Mp,b = 25 ± 2 M⊕. We also confirmed a high eccentricity of eb = 0.34 ± 0.06, plac-

ing TOI-1272b among the most eccentric well-characterized sub-Jovians. We used these RV

measurements to also identify a non-transiting outer companion on an 8.7-d orbit with a

similar mass of Mp,c sini = 27 ± 3 M⊕ and ec ≲ 0.35. Dynamically stable planet-planet

interactions have likely allowed TOI-1272b to avoid tidal eccentricity decay despite the short

circularization timescale expected for a close-in eccentric Neptune. TOI-1272b also main-

tains an envelope mass fraction of fenv ≈ 11% despite its high equilibrium temperature,

implying that it may currently be undergoing photoevaporation. This planet joins a small

population of short-period Neptune-like planets within the "Hot Neptune Desert" with a

poorly understood formation pathway.
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3.2 Introduction

The Solar System consists of eight planets from three size categories: terrestrial (0.4–1.0

R⊕), ice giant (3.9–4.0 R⊕), and gas giant (9.5–11.2 R⊕). They are spread out across a 30

AU radial expanse and, with the exception of Mercury, their orbits are nearly circular. All

three of these Solar System based patterns (distributions of planet sizes, orbit spacing, and

orbital eccentricity) are contradicted by known exoplanetary systems. The prime Kepler

mission (Borucki et al. 2010b) revealed that the most common exoplanet sizes are between

Earth and Neptune (1.0–3.9 R⊕; super-Earths / mini-Neptunes) in addition to a significant

population with sizes between Uranus and Saturn (4.0–9.4 R⊕; super-Neptunes or sub-

Saturns). Moreover, planetary orbits interior to Mercury’s orbit are common, as well as

orbits with eccentricities of e > 0.1 (> 60% of known planets, NASA Exoplanet Archive

2022a). Such broad demographics demonstrate a variety of possible outcomes to planet

formation.

However, there are certain planet characteristics that are less common, even with observa-

tional biases accounted for. These include the dearth of extremely high eccentricity planets

at short orbital periods, the "gap" in planet radius between super-Earths and mini-Neptunes

at P < 100 days (Fulton et al. 2017a), and the paucity of short-period Neptunian planets

(Mazeh et al. 2016). The latter was first proposed as a natural consequence of photo-

evaporation by planet characterization studies (Lopez & Fortney 2013; Owen & Wu 2013).

The resulting “Hot Neptune desert” implies that for intermediate size planets between ∼10–

100 M⊕ and ∼2–6 R⊕, an inefficient formation pathway or an efficient mass loss mechanism

sharply differentiates Neptunes from Jupiters at periods of ≲ 5 days. Owen & Lai (2018)

proposed that the upper and lower boundaries of this sparse region of Mp-P and Rp-P pa-

rameter space can be mostly explained by limitations from either eccentricity decay of larger

planets or photo-evaporation of smaller planets. The handful of observations of atmosphere-

stripped Neptunian cores in the desert further supports this hypothesis (e.g. TOI-849b;
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Armstrong et al. 2020), but many questions remain surrounding the formation pathways of

such planets.

Eccentricity further complicates the long-term evolutionary history of sub-Jovians on com-

pact orbits. To date, only 8 planets with sizes between 2.0–6.0 R⊕ and Mp < 100 M⊕

have been found to have well-constrained eccentricities of e > 0.2, the greatest outlier being

Kepler-1656b at e ≈ 0.84± 0.01 (Brady et al. 2018). Only 2 of these planets, however, have

orbital periods of P < 5 days. Hot Jupiter-size planets tend to have longer tidal circulariza-

tion time-scales and more massive cores that can retain their H/He envelopes during close-in

periastron passage, but hot sub-Jovians are more susceptible to eccentricity decay and at-

mospheric loss. Consequently, the population of hot, eccentric Neptunes with ≳10% H/He

envelope mass fraction is small, consisting only of a handful of planets including HAT-P-11b

(Yee et al. 2018) and GJ 436b (Lanotte et al. 2014).

In this paper, we discuss TOI-1272b, the latest Neptune to join the sparse population of hot,

eccentric sub-Jovians. Leveraging the "photo-eccentric" methodology outlined by Dawson &

Johnson (2012) and Kipping et al. (2012), we identified TOI-1272b as a candidate for high

eccentricity based on a mismatch between the observed transit duration and the expected

duration for a circular orbit. We used this technique as a pre-filter to vet for high-eccentricity

candidates based on photometry alone, motivating follow-up radial velocity observations.

Similar photometric modeling methods have been applied to Kepler target samples (Kane

et al. 2012; Van Eylen & Albrecht 2015; Xie et al. 2016; Van Eylen et al. 2019), but those

studies were not followed up by radial velocity campaigns. We present TOI-1272 as the

second system from our photo-eccentric pre-filter study of TOIs, in association with the

planetary demographics work being carried out by the TESS-Keck Survey collaboration

(TKS; Chontos et al. 2022).

We introduce the TOI-1272 system and discuss the transit profile modeling that we used

to identify TOI-1272b as an eccentric planet candidate from photometry (§3.3). We also
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describe our follow-up radial velocity observations (§3.4) and analyze our spectroscopic mea-

surements to characterize the properties of the host star, including stellar variability and

age (§3.5). From our dense RV data set, we confirm the high eccentricity of TOI-1272b and

detect the presence of a non-transiting outer planet (§3.6). Finally, we explore the long-

term stability of this system through various dynamical criteria which we use to further

constrain our eccentricity measurements (§3.7). We also place this system in context within

the Hot Neptune Desert (§3.8) and consider possible formation and evolution pathways for

TOI-1272b and other hot Neptunes.

3.3 TOI-1272b: A High-Eccentricity Candidate

3.3.1 Photometry

TOI-1272 was observed by TESS with 2-min-cadence photometry in sectors 15, 16, and 22

between UT 2019 October 10 and 2020 May 11. The time-series photometry was processed

by the TESS Science Processing Operations Center pipeline (SPOC; Jenkins et al. 2016),

which first detected the periodic transit signal of TOI-1272b with a wavelet-based, noise-

compensating matched filter (Jenkins 2002; Jenkins et al. 2010). An initial limb-darkened

transit model fit was performed (Li et al. 2019) and the signature passed a suite of diagnostic

tests described by Twicken et al. 2018, leading this target to be selected as a TOI.

We accessed the Pre-search Data Conditioning Simple Aperture Photometry (PDC-SAP;

Stumpe et al. 2012; Stumpe et al. 2014; Smith et al. 2012) through the Mikulski Archive

for Space Telescopes (MAST), stitching together the light curves from individual TESS

sectors into a single time-series using Lightkurve (Lightkurve Collaboration et al. 2018). We

performed outlier rejection, normalization, and de-trending of the full light curve following

the procedures outlined in MacDougall et al. (2021). We then searched for transits using a

box least squares (BLS; Kovács et al. 2002a) transit search to recover the same planetary

signal detected by SPOC with SNR = 23.3. We subtracted the known transits and applied
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the BLS search again but identified no additional periodic transit events.

To confirm that the observed transit events were on target and not the result of a background

source, we referenced additional ground-based time-series photometry taken for TOI-1272.

Independent observations were collected with MuSCAT2 (Narita et al. 2019) at a pixel

scale of 0.44” in g, r, i, and zs filters on UT 2020 February 28 and again ∼1 year later with

MuSCAT (Narita et al. 2015) at a pixel scale of 0.36” in g, r, and zs filters on UT 2021 May 8.

These detections confirmed that the expected transit was on target and presented no evidence

of nearby eclipsing binaries. This target has one neighbor listed in Gaia Data Release 2

(DR2) within 30”. At a separation of 8.45” and ∆G = 5.93, the neighbor contributes < 1%

dilution to the light curve, which was already corrected for in the photometric data products

that we used.

3.3.2 Photometric Transit Model

We characterized the planetary transit signal using a photometric light curve model to de-

termine if TOI-1272b was a candidate for high-eccentricity. We made this determination

by comparing the planet’s observed transit duration (T ; mid-ingress to mid-egress) to the

expected duration for a circular orbit Tcirc. The ratio of these two values can be used to

assess the orbital geometry of a transiting planet through the geometric relation for transit

duration given by Winn 2010a:

T =

(
R∗P

πa

√
1− b2

) √
1− e2

1 + e sinω
, (3.1)

Given the known period P = 3.316 days, fixed b = 0, and the stellar characterization from

§3.5.1, TOI-1272b would have a transit duration of Tcirc = 0.094± 0.004 days if it were on a

circular orbit. The observed transit, however, had a duration that was nearly 40% shorter

than this at Tobs ≈ 0.06 days. The short transit duration suggests either a high eccentricity

orbit transiting near periastron or an orbit with a high impact parameter, motivating our
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follow-up analysis to constrain the true eccentricity.

To characterize the transit properties of TOI-1272b more precisely, we fit the available TESS

photometry with the exoplanet package (Foreman-Mackey et al. 2021a). The exoplanet

package uses a Hamiltonian Monte Carlo algorithm that is a generalization of the No U-

Turn Sampling method (Hoffman & Gelman 2011a; Betancourt 2016). We used this model

to generate samples from the posterior probability density for the parameters {P , t0, Rp/R∗,

b, ρ∗,
√
e sinω,

√
e cosω, µ, u, v}, conditioned on the observed TESS light curve. Here, µ

is the mean out-of-transit stellar flux and {u, v} are quadratic limb darkening parameters.

The model used here follows that of MacDougall et al. 2021.

We applied weakly informative priors to each of the 10 model parameters, similar to those

used by Sandford & Kipping (2017). In particular, the prior used on our parameterization of

eccentricity and argument of periastron {
√
e sinω,

√
e cosω} was uniform on both parame-

ters, not accounting for transit probability or other astrophysically motivated considerations.

Also, our prior on ρ∗ was based on the stellar characterization discussed in §3.5.1. We fit the

photometry of TOI-1272 with this model using 6,000 tuning steps and 4,000 sampling steps

over 4 parallel chains. Figure 3.1 shows the final transit model sampled from the posteriors.

An independent fit to the MuSCAT2 transit photometry of TOI-1272b was performed and

used to verify the results of our transit fit to the full TESS photometry (Figure 3.2). The

raw MuSCAT2 data was reduced by the MuSCAT2 pipeline (Parviainen et al. 2019) which

performed standard image calibration, aperture photometry, and modeled the instrumental

systematics present in the data while simultaneously fitting a transit model to the light curve.

We also applied our own transit model to the detrended MuSCAT2 photometry, achieving

consistent posterior constraints on all transit parameters. The same process was repeated

for independent transit photometry from MuSCAT, producing similar results.
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Figure 3.1: Top: Transit models drawn from parameter posterior distributions (orange; 50

samples) for phase-folded TESS photometry of TOI-1272b. Expected transit shape for a

circular orbit shown in blue, modeled using median posterior distribution values for all other

model parameters. Details regarding fitting procedure are discussed in §3.3.2. Bottom:

Residuals to our maximum a posteriori model.

3.3.3 Eccentricity Constraints from Photometry

The photometrically-constrained eccentricity posterior distribution that we measured for

TOI-1272b from {
√
e sinω,

√
e cosω} was consistent with our high-eccentricity hypothesis,

yielding a 1σ range of e = 0.18–0.60 and an ω suggestive of a transit near periastron. The

individual posterior distributions of e and ω are shown in Figure 3.3, along with their joint

2D posterior.

We do note, however, that our impact parameter distribution remains loosely constrained,

with a 1σ range of b = 0.19–0.73, peaking in density towards the upper end of this range
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Figure 3.2: Transit photometry for two independent single transits measured by the MuS-

CAT2 and MuSCAT instruments, plotted with 10 minute binning and a photometric fits by

the corresponding instrument pipeline. Horizontal dashed lines indicate the expected transit

depth. Top: Combined photometry from MuSCAT2 g, r, i, and zs bands, observed on UT

2020 February 28. Bottom: Photometry from MuSCAT g, r, and z bands, observed on UT

2021 April 8.

(Figure 3.3). The similarly loose constraints on both e and ω implied that our photometric

characterization of the orbital geometry was complicated by e-ω-b degeneracy, as can be seen

in the 2D joint posterior distributions in Figure 3.3. Nevertheless, the potential for a high

eccentricity combined with the expected Neptune-like size of the planet and its short orbital

period made TOI-1272b a prime target for follow-up radial velocity observations.
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Figure 3.3: Corner plot of exoplanet model posteriors for TOI-1272b, showing the effects

of e-ω-b degeneracy on our transit fit. Best-fit value for eccentricity given by e = 0.40+0.20
−0.22.

Argument of periastron ω remained loosely constrained about 90◦, suggesting a transit near

periastron.

3.4 Spectroscopic Follow-up

We obtained a high-SNR template spectrum of TOI-1272 with the HIRES instrument at the

Keck Observatory (Vogt et al. 1994) on UT 2020 June 11 with 282 SNR pixel−1 at 5000 Å.

We also collected 62 spectra of TOI-1272 between UT 2020 Feb 5 and UT 2021 November 27

(Table 3.1). On average, the observations had a spectral resolution of R = 50,000, using a

median exposure time of 900 s at 5500 Å. Along with the RVs, we also measured the stellar

activity S-index SHK for all 62 Keck/HIRES observations using the observed strengths of the

Ca II H and K lines in our spectra, following the methods of Isaacson & Fischer (2010).
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Table 3.1: TOI-1272 Radial Velocity Measurements

Time RV RV Unc. SHK

(BJD) (m s−1) (m s−1)

2458885.021035 11.00 1.68 0.315

2458904.925436 -0.66 1.55 0.277

2458911.896259 4.05 1.88 0.290

2458999.786695 4.78 1.51 0.304

2459003.840909 20.53 1.42 0.309

2459006.852128 -1.18 1.60 0.300

2459010.867973 4.47 1.55 0.294

2459024.775924 -3.86 1.58 0.300

2459024.829972 -3.96 1.36 0.295

2459024.883105 -6.08 1.70 0.302

Note. — Only the first 10 Keck/HIRES RVs

are displayed in this table. A complete list has

been made available online. SHK values were

measured using procedures from Isaacson & Fis-

cher (2010) with standard uncertainties of 0.001.

For the RV observations, a heated cell of gaseous iodine was included along the light path just

behind the entrance slit of the spectrometer, imprinting a dense forest of molecular absorption

lines onto the observed stellar spectrum (Marcy & Butler 1992). These lines served as a

wavelength reference for measuring the relative Doppler shift of each spectrum and tracking

variations in the instrument profile using the standard forward-modeling procedures of the

California Planet Search (Howard et al. 2010).
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3.5 Stellar Characterization

3.5.1 Bulk Properties

Following the procedures outlined by MacDougall et al. (2021), we characterized the bulk

properties of TOI-1272 by first inferring Teff and [Fe/H] from our Keck/HIRES template

spectrum using SpecMatch-Synth (Petigura et al. 2017b). We then modeled the stellar

mass, radius, surface gravity, density, and age via stellar isochrone fitting with isoclassify

(Berger et al. 2020a; Huber et al. 2017). We report these values and their associated un-

certainties in Table 3.2, accounting for small corrections due to model grid uncertainties

discussed by Tayar et al. (2022). We note that the properties derived with isoclassify rely

on 2MASS K-band magnitude and Gaia parallax, also reported in Table 3.2. The properties

that we measured were consistent with those reported to ExoFOP-TESS from two spectra

obtained with the TRES instrument at the Whipple Observatory, analyzed using the Stellar

Parameter Classification (SPC) tool (Buchhave et al. 2012; Buchhave et al. 2014).

3.5.2 Variability and Rotation

To properly detrend our RV data and interpret any planetary signals, we first needed to

characterize the intrinsic stellar variability for TOI-1272. We measured stellar variability

from the TESS 2-min cadence SAP photometry where TOI-1272 was observed in 3 sectors,

one of which partially overlapped with our RV observation baseline. Upon removing data

that were flagged as being poor quality, ≥5σ outliers, or part of the TOI-1272b transit

events, we measured the stellar variability period from the trimmed SAP light curve using

the TESS-SIP algorithm (Hedges et al. 2020). This systematics-insensitive Lomb-Scargle

periodogram (Angus et al. 2016) yielded a clear variability signal at 28.3 ± 0.6 days, likely

associated with stellar rotation. The corrected TESS-SIP light curve, Lomb-Scargle peri-

odogram, and phase-folded light curve with a sinusoidal fit are shown in Figure 3.4.
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Figure 3.4: Top: TESS light curve of TOI-1272 from sectors 15, 16, and 22. The gray

points show the original TESS SAP light curve and the black points show the TESS-SIP

corrected light curve that is used to extract the variability period. The vertical dashed

lines mark the gaps between TESS sectors. Bottom Left: Lomb-Scargle periodogram of

the TESS-SIP corrected light curve. The orbital period and transit depth from the TOI

catalog are listed at the top of the panel. Bottom Right: Phase-folded light curve based

on the most significant period detected from the periodogram. The gray points show the

TESS-SIP corrected photometry, the black points show the binned data, and the red curve is

a sinusoidal fit to the phase-folded light curve. The period, amplitude, and their associated

uncertainties from the best-fit sinusoidal function are listed at the top of the panel.
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The stellar variability observed in the TESS photometry of TOI-1272 also allowed us to

derive the expected stellar activity-driven variability in our RV measurements using the FF ′

method (Aigrain et al. 2012). This method uses the light curve flux (F ), its derivative (F ′),

an estimate of relative spot coverage (f ∼ 0.005 in this work), and a simple spot model

to simulate activity-induced RV variability. We estimated that this stellar activity would

produce an RV variability signal with semi-amplitude K ≈ 5.0 m s−1, assuming a sinusoidal

signal. Given the partial overlap of our RV baseline with that of the TESS photometry, we

used this RV variability estimate as the foundation for our consideration of activity-driven RV

signals in §3.6.2. By doing so, we implicitly assumed that the variability signal in the region

of overlap could be extrapolated out to the entire data set. Based on the measured value of

log(g) and the observed values of activity metrics SHK and logR′
HK, moderate stellar activity-

driven RV jitter was also expected for TOI-1272 based on the classifications presented in

Luhn et al. 2020, σjit ≳ 2.5 m s−1, consistent with our photometry-only estimate.

As a final consideration of stellar variability, we searched for periodic, activity-driven signals

in the SHK data series for TOI-1272 using a Lomb-Scargle periodogram. We identified a

significant 28.5 day signal, consistent with our stellar variability measurement from TESS-SIP

(Figure 3.5). We also detected additional sub-significant SHK variability signals that did not

correspond to any known sources. We consider the impact that activity may have on our

RV measurements when constructing our RV-only model in §3.6.

3.5.3 Age

Given the short orbital period of TOI-1272b and the possibility of a high-eccentricity orbit,

the age constraints for this system were valuable for interpreting the tidal circularization

timescale of the transiting planet. Our isochrone fit using isoclassify yielded a poorly

constrained age estimate of ∼1–7 Gyr. This was consistent with a first-order analytical

estimate of the age of TOI-1272, 3.1 Gyr, based on GBp − GRp color and stellar rotation

period via gyrochronology (Angus et al. 2019b).
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Figure 3.5: Lomb-Scargle periodogram search of TOI-1272 SHK data using, identifying a

significant 28.5 day variability signal consistent with the suspected stellar rotation period.

We took this analysis a step further by using stardate (Angus et al. 2019a) to combine

stellar isochrone modeling with gyrochronology to precisely measure the stellar age. Running

the stardate MCMC sampler for 105 draws, we measured an age of 3.65+4.17
−0.98 Gyr. While

this age range remained broad and consistent with our isoclassify measurement, the

increased median value and reduced lower uncertainty from stardate provided us with

better constraints on the lower bound of the age of this system.

3.6 Keplerian Modeling

3.6.1 RV Detection of Planets b and c

We searched for periodic signals in our RV data using the RVSearch pipeline (Rosenthal et al.

2021). We set Gaussian priors on the period Pb and time of conjunction Tc,b of the 3.3-day

planetary signal known from photometry. We then used RVSearch to iteratively search the

RV data for additional Keplerian signals across the period range from 2 to 4000 days. This

search yielded an eccentric Keplerian fit with K ≈ 12.6 m s−1 at the known period and an
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outer 8.7-day Keplerian fit with K ≈ 9.4 m s−1 (Figure 3.6). Both signals surpassed our

significance threshold, with false-alarm probabilities (FAP) measured by RVSearch FAP ≈
10−4 and 10−5, respectively.

We corroborated the significance of the 8.7-day signal by performing an independent search

of the RV data set using an l1 periodogram (Hara et al. 2017), which minimizes the aliasing

seen in a general Lomb-Scargle periodogram by evaluating all frequencies simultaneously

rather than iteratively. We implemented our l1 periodogram with jitter σ = 5.0 m s−1,

correlation time τ = 0, and maximum frequency 1.5 cycles d−1 across the period range from

1.1 to 1000 days. Both the 3.3 and 8.7 day signals were clearly detected by from this l1

periodogram search, with consistent FAP values of ∼10−4 and ∼10−5, respectively. Given

the significance of the 8.7-day period and the lack of a corresponding signal in either the

SHK activity data or photometric time series (see §3.5.2), we concluded that this Keplerian

signal was of planetary origin. A close inspection of the phase-folded and detrended TESS

photometry at the RV-constrained period and time of conjunction for the outer RV signal

showed no evidence for a corresponding transit event.

3.6.2 Additional RV Signals

While we did not identify any additional signals in our RV data that met our significance

criteria, we did detect a sub-significant Keplerian signal at a 14.1 day period using both

RVSearch and an l1 periodogram search. This signal persisted throughout our entire ob-

serving baseline and was detectable in the residuals to a preliminary two-planet RV fit with

Keplerian modeling code RadVel (Fulton et al. 2018). We concluded that this signal was the

first harmonic (Prot/2) of the 28.3 day stellar rotation as measured from the SHK time series

and TESS photometry. The Prot/2 harmonic of a star’s rotation period is known to induce

strong periodic activity signatures such as this in RV time-series data (Boisse et al. 2011).
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Figure 3.6: Iterative Keplerian periodogram search of TOI-1272 RV data using RVSearch.

We confirmed the 3.3-day transiting planet (panel a) and identified a significant 8.7-day

period with no corresponding transits (panel b). ∆BIC was used to discriminate between

models with additional Keplerians over a grid of periods (Bayesian Information Criterion;

Schwarz 1978), corresponding to a significance threshold of FAP = 0.001 at the yellow

dashed horizontal line. Panel c shows a sub-significant signal at a 14.1 day period, likely

corresponding to Prot/2.
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Preliminary RV modeling revealed no other RV signals and insignificant detections of a trend

and curvature in our RV time-series, providing no evidence of further companions. We also

found an estimated RV jitter of σ ≈ 5.5 m s−1. This jitter measurement was consistent with

both our FF ′ estimate of RV variability and the RV semi-amplitude of the marginal 14.1 day

signal (K = 4±1 m s−1). Given the low significance of this additional signal and its sub-jitter

amplitude, we chose to only consider the two planetary signals in our final RV models. We

therefore interpreted the spectroscopic data for TOI-1272 to reveal 2 planetary signals (3.3

days and 8.7 days), with a sub-significant activity signal driven by stellar rotation (Prot/2 ≈
14.1 days).

3.6.3 RV-only Model

We performed a two-planet fit to the RV time series for TOI-1272 using RadVel, a Python

package used to characterize planets from Keplerian RV signals by applying maximum a

posteriori model fitting and parameter estimation via MCMC (Fulton et al. 2018). Our model

consisted of two planetary Keplerian signals with periods 3.3 and 8.7 days. We modeled

the data by fitting the following free parameters for both planets: P , Tc, K,
√
e cosω,

and
√
e sinω. Our model also included RV offset γ and RV jitter term σ to account for

astrophysical white noise and instrumental uncertainty. The best-fit RV-only RadVel model

confirmed the existence of two eccentric sub-Jovian mass planets orbiting TOI-1272, and we

used these results to inform the priors for a joint RV-photometry model.

3.6.4 RV-Photometry Joint Model

We obtained the most precise planet parameters for the TOI-1272 system by performing

global RV-photometry modeling using juliet (Espinoza et al. 2018), a robust tool for mod-

elling both transiting and non-transiting exoplanets. We used juliet to jointly fit the radial

velocities through RadVel and the transit photometry through batman (Kreidberg 2015), with

proper handling of limb-darkening coefficients (Kipping 2013). Estimation and comparison
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of Bayesian evidences and posteriors was performed directly by the dynamic nested sam-

pling package dynesty (Speagle 2020), one of several such tools offered through the juliet

interface. Unlike the Monte Carlo algorithm used in our initial transit-only analysis, nested

sampling algorithms break up complex posterior distributions into simpler nested slices, sam-

pling from each slice individually then recombining the weighted results to reconstruct the

complete posterior. This method becomes more efficient in the higher-dimensional posterior

spaces of joint models.

We directly fit for each transit and Keplerian property with priors informed from our previous

photometry-only and RV-only models. For the final global model, we fit for photometry-

only properties {Rp/R∗, b, ρ∗, µ, u, v}, joint properties {Pb, t0,b,
√
eb sinωb,

√
eb cosωb}, and

RV-only properties {Pc, t0,c,
√
ec sinωc,

√
ec cosωc, Kb, Kc, γ, σ}. Our final measurements

are included in Table 3.2 and the corresponding maximum a posteriori RV model is shown

in Figure 3.7.

In summary, we measured mass constraints for TOI-1272 b and c at significance levels ∼11σ

and ∼9σ, respectively, reflecting the strengths of the two periodogram signals discussed in

§3.6.1. We also measured a high eccentricity of eb = 0.34 ± 0.06 for TOI-1272b, consistent

within 1σ of our photometry-only eccentricity constraint from §3.3.3. The eccentricity of

the outer planet was loosely constrained to ec = 0.12 +0.1
−0.08. We note, however, that a model

fit with ec = 0 performed nearly identically to the eccentric model, suggesting that the

eccentricity of TOI-1272c is only marginally significant. We discuss these constraints on

eccentricity further in §3.7.1. Our global model also served to minimize degeneracies between

e-ω-b and allowed us to obtain more precise b and Rp,b values than with our photometry-only

model. Our loose posterior constraint on impact parameter from Figure 3.3 was improved

to b = 0.45+0.15
−0.21, subsequently yielding our final radius measurement of Rp,b = 4.14 ± 0.21

R⊕.
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Figure 3.7: (a) Best-fit radial velocity model (blue) for Keck/HIRES RV measurements

(black) using Radvel (Fulton et al. 2018) in a joint RV-photometry model via juliet (Es-

pinoza et al. 2018), with corresponding residuals shown below. (b)-(c) Phase-folded views

of best-fit RV model for TOI-1272 b and c, with binned points shown in red.
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Table 3.2: TOI-1272 System Properties

Parameter Value Notes

Stellar

RA (◦) 199.1966 A

Dec (◦) 49.86104 A

π (mas) 7.24± 0.021 A

mK 9.70± 0.02 B

Teff (K) 4985± 121 C

[Fe/H] (dex) 0.17± 0.06 C

log(g) 4.55± 0.10 C

M∗ (M⊙) 0.851± 0.049 C

R∗ (R⊙) 0.788± 0.033 C

ρ∗ (g cm−3) 2.453± 0.343 C

age (Gyr) 3.65+4.17
−0.98 D

Prot (days) 28.3± 0.6 E

SHK 0.331 F

logR′
HK −4.705 F

u, v 0.39± 0.05, 0.09± 0.05 G

γ (m s−1) 0.7± 0.7 H

σjit (m s−1) 5.6± 0.6 H

Planet b

P (days) 3.31599± 0.00002 H

Tc (BJD-2457000) 1713.0253± 0.0006 H

b 0.45+0.15
−0.21 H

Rp (R⊕) 4.14± 0.21 H

Mp (M⊕) 24.6± 2.3 H

ρp (g cm−3) 1.9± 0.3 H

K (m s−1) 12.6± 1.1 H
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Table 3.2 (cont’d): TOI-1272 System Properties

Parameter Value Notes

a (AU) 0.0412± 0.0008 H

e 0.338+0.056
−0.062 H

ω (◦) 123.6± 11.5 H

Teq (K) 961± 32 I

Planet c

P (days) 8.689± 0.008 H

Tc (BJD-2457000) 1885.34± 0.48 H

Mp sini (M⊕) 26.7± 3.1 H

K (m s−1) 9.4± 1.0 H

a (AU) 0.0783± 0.0014 H

e ≲ 0.35 J

ω (◦) −80.8+97.4
−57.3 H

Teq (K) 697± 23 I

Note. — A: Gaia DR2, epoch J2015.5 (Gaia

Collaboration et al. 2018); B: 2MASS (Skrutskie

et al. 2006); C: Derived with isoclassify; D:

Derived with stardate (Angus et al. 2019a); E:

Derived with TESS-SIP (Hedges et al. 2020); F:

Measured from Keck/HIRES template; G: De-

rived with LDTK (Parviainen & Aigrain 2015); H:

Constrained from joint RV-photometry model

with juliet (Espinoza et al. 2018; Kreidberg

2015, Fulton et al. 2018, Speagle 2020); I: Cal-

culated from other parameters assuming albedo

α = 0.3; J: Dynamically constrained with

rebound (Rein & Liu 2012).
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3.7 System Dynamics

3.7.1 Eccentricity Constraints from Stability Requirements

Despite the compact architecture of the TOI-1272 system, both planets had moderate RV-

constrained eccentricities that were inconsistent with zero to ∼5σ and ∼1σ significance,

respectively. Such excited dynamics put TOI-1272 b and c at risk of dynamical instability

if orbit crossing were to occur:

ac (1− ec)

ab (1 + eb)
> 1. (3.2)

Given our RV-constrained measurements of eccentricity and orbital separation in this system,

we found the left-hand side of the above equation to be 1.22 ± 0.15, or <2σ from the orbit

crossing threshold. We note, however, that our confidence in long-term orbital stability

based on this value is highly sensitive to our eccentricity uncertainties. Assuming a fixed

true value of ec = 0.05, this system would be firmly out of reach of geometric orbit crossing

given its current configuration.

With the ambiguity in our orbit-crossing stability result, we also calculated the dynamical

stability of the TOI-1272 system according to the stricter criterion from Petrovich (2015):

ac (1− ec)

ab (1 + eb)
− 2.4× max (µb, µc)

1/3

(
ac
ab

)1/2

> 1.15, (3.3)

where µ is Mp/M∗, drawn from our joint model results. This threshold marks an estimated

empirical boundary in two-planet system stability, determined by applying a Support Vector

Machine algorithm to a large number of numerical integrations. Planet-planet interactions

resulting in ejecting a planet into the star or out of the system were considered by Petrovich

(2015) in developing this criterion.

57



Systems that satisfy the condition in Eq. 3.3 are expected to maintain dynamical stability

for integrations out to at least 108 orbits of the inner planet. When computed for this

system, we measured the left-hand side of Eq. 3.3 to be 1.1± 0.15, or <1σ below the stated

stability threshold of 1.15. Similar to the orbit crossing criterion, TOI-1272 straddles the

stability boundary for the Petrovich (2015) empirical threshold. We again note that a fixed

outer planet eccentricity of ec = 0.05 would promote the long-term stability of the TOI-1272

system according this stability criterion.

We followed up these inconclusive analytical predictions of long-term stability with a full

N-body treatment of the stability of the TOI-1272 system. Drawing initial conditions from

our RV-photometry model posteriors, we ran 104 N-body simulations with rebound (Rein

& Liu 2012) for ∼106 orbits of the inner planet. We restricted the initialized eccentricities

of our simulations to avoid starting on crossing orbits, and we considered a simulation to

be "unstable" after an orbit-crossing event or close dynamical encounter. Overall, ∼81% of

simulations remained "stable" for the entirety of our integration time, suggesting that the

eccentricities and masses measured from our RV model were largely consistent with a stable

architecture on moderate time-scales (Figure 3.8). Our rebound simulations also showed that

stable configurations of this system exhibit Laplace-Lagrange oscillations in eccentricity with

a secular timescale on the order of ∼102 years.

While our eb posterior remained mostly unchanged by this N-body model, our stability

constraints on ec allowed us to determine an upper bound of ec ≲ 0.35. Upon this redefinition

of ec, we inferred that the true eccentricity of TOI-1272c was likely in the lower tail of the

acceptable range. Given that a RadVel model with ec = 0 performed nearly equivalently to

the non-zero eccentricity model (§3.6.4), this interpretation is consistent with our RV-only

analysis.
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Figure 3.8: Distribution of initialized eb-ec values for all rebound simulations of the TOI-

1272 system. Green-blue contours show regions with highest density of stable configurations

(simulations lasting 106 orbits of the inner planet).

3.7.2 No Evidence for TTVs

Along with our N-body integration, we also used rebound to model the transit-timing vari-

ations (TTVs) expected to be observed in this system over a similar baseline as our TESS

photometry (∼215 days). We estimated a TTV O-C RMS of 0.3 ± 0.3 minutes, below our

threshold of sensitivity for individual transits. We verified this empirically by modeling the

TESS photometry with exoplanet, similar to §3.3.3 but this time including TTVs as an

additional model parameter. From this fit, we measured a TTV O-C RMS of 2± 2 minutes,

consistent with the estimate from rebound.

With the additional photometric observations from MuSCAT, we extended our TTV search
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to a total photometric baseline of ∼600 days. A fit to the single transit measured by MuSCAT

yielded a transit mid-point of BJD-2457000 = 2313.223, only ∼3 minutes off from predicted

mid-point of 2313.221 ± 0.003 and within the ∼5 minute uncertainty of this prediction.

The extended photometric baseline demonstrated again that the TTVs in this system are

negligible, within ∼1σ of showing no evidence for TTVs.

The lack of TTVs was also consistent with the non-resonant orbital period ratio between

TOI-1272 b and c: Pc/Pb ≈ 2.62. This period ratio is outside of the resonant width of

any strong resonances, lying most closely to the 3:1 second-order mean-motion resonance

(MMR), with a ∼14% difference in ratio. However, we cannot rule out the possibility of

past planet migration leading to resonance-crossing, which could have played a role in the

planet-planet excitation of eb discussed briefly in §3.8.3.

3.7.3 Strong Tidal Eccentricity Decay

The age measurement of TOI-1272 from §3.5.3 is valuable when considering the potential

tidal eccentricity decay of TOI-1272b. According to Millholland et al. (2020), which draws

from Leconte et al. (2010), the timescale of orbital circularization due to tidal eccentricity

damping for an eccentric orbit is given by

τe =
4

99

(
Q′

n

)(
Mp

M∗

)(
a

Rp

)5

×
(
Ωe (e) cos ϵ

(ωeq

n

)
− 18

11
Ne (e)

)−1

. (3.4)

Here, the mean motion is given by n =
√
GM∗/a3 and the reduced tidal quality factor Q′

can be rewritten as Q′ = 3Q/2k2, with specific dissipation function Q and tidal Love number

k2 (Murray & Dermott 1999; Mardling & Lin 2004). We defined ωeq as the spin rotation

frequency of TOI-1272b at equilibrium, which we found to be 3 ± 0.5 day−1 following the

procedure outlined in Millholland et al. (2020). We assumed the obliquity ϵ to be 0◦. We

have also introduced functions of eccentricity Ωe(e) and Ne(e) given by
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Ωe (e) =
1 + 3

2
e2 + 1

8
e4

(1− e2)5
(3.5)

Ne (e) =
1 + 15

4
e2 + 15

8
e4 + 5

64
e6

(1− e2)
13
2

. (3.6)

A typical Neptune-like planet is generally assumed to have a tidal quality factor of Q′ ≈ 105,

but the true value is highly uncertain. Assuming this fixed value for Q′ and drawing the other

parameters in Eq. 3.4 from our previous analysis, we estimated a circularization timescale of

τe ≈ 0.21±0.09 Gyr. This nominal value of τe is >3σ below our age measurement of 3.65+4.17
−0.98

Gyr, suggesting that TOI-1272b has experienced significant eccentricity decay due to tides.

This is not reflected in the anomalously high eccentricity that we measured, suggesting that

another mechanism must be driving the excited state of this system. We note, however,

that Q′ is highly uncertain and τe ∝ Q′, so a tidal quality factor of 2 × 106 would make τe

consistent with the age of the system.

Continuing with the assumption of Q′ ≈ 105, we estimated the initial eccentricity that would

have bean needed for TOI-1272b to reach its currently observed eb after 3.65 Gyr of tidal

eccentricity decay. Assuming constant Q′ and τe, we followed the procedures of Correia et al.

(2020) to derive the required post-formation eccentricity of eb ≈ 0.8. Without a significant

restructuring of the TOI-1272 system architecture, however, such a high eccentricity would

not have allowed for a stable companion at the orbital separation of TOI-1272c. Ruling out

this "hot-start" scenario, we are left to consider whether the anomalously high eccentricity

of the inner planet is due to an underestimated Q′ or excitation by some other dynamical

mechanism. We discuss such formation and evolution scenarios further in §3.8.3.
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3.8 Context in the Hot Neptune Desert

3.8.1 Bulk Density and Core-Envelope Fraction

TOI-1272b is a Neptune-like planet for which we measured a mass of 24.6 ± 2.3 M⊕ and a

radius of 4.1 ± 0.2 R⊕, yielding a density of 1.9 ± 0.3 g cm−3. This system also contains a

similar-mass outer companion (Mp sini = 26.7± 3.1 M⊕) that is not transiting. Planets in

this size and mass range have been reported frequently in the literature, only a few of which

also fall within the Hot Neptune Desert (Mazeh et al. 2016; Owen & Lai 2018). At moderate

planet sizes (∼2–6 R⊕; Mp ≲ 100 M⊕) and low orbital separations (P ≲ 5 days), a relative

paucity of planets has been observed.

The triangular regions of Rp-P and Mp-P parameter space shown in Figure 3.9 highlight

this phenomenon, as defined by Mazeh et al. (2016). TOI-1272b can be seen here among the

small subset of Neptunes that fall within this otherwise sparse parameter space. Some notable

inhabitants of the Hot Neptune Desert include GJ 436b (Lanotte et al. 2014) and HAT-P-11b

(Yee et al. 2018) along with more recent finds from TESS photometry including LP 714-47b

(Dreizler et al. 2020) and TOI-132b (Díaz et al. 2020). While the the exact mechanism

responsible for clearing out this Rp-P and Mp-P region remains unknown, some models

support a combination of photoevaporation and tidal disruption following high-eccentricity

migration (Mazeh et al. 2016; Lundkvist et al. 2016; Owen & Lai 2018).

Planets within the Hot Neptune Desert range from dense, atmosphere-poor mini-Neptunes

to atmosphere-rich, "puffy" super-Neptunes. TOI-1272b lies in the middle of this spectrum,

with an elevated density relative to the upper end of the Weiss & Marcy (2014) relation. We

used a 2-component composition model to determine the relative abundances of solid core and

gaseous envelope for this dense Neptune, following the procedure of MacDougall et al. (2021).

We interpolated over a 4D grid of stellar and planetary properties to derive the expected

envelope mass fraction for TOI-1272b using the Lopez & Fortney (2014) planet structure

62



Figure 3.9: Hot Neptune Desert in Rp-P and Mp-P parameter space, where Neptune-like is

defined as Mp < 100 M⊕ and Rp = 2.0 − 6.0 R⊕. Data drawn from the NASA Exoplanet

Archive (Akeson et al. 2013a; NASA Exoplanet Archive 2022a). TOI-1272 b and c depicted

as green point (both panels) and blue point (left panel), respectively. Relations dictating the

upper and lower boundaries of the Hot Neptune Desert from Mazeh et al. (2016) shown as

black dashed lines. Left: Mass-period distribution of all planets, with Neptune-like planets

shown in red. Right: Radius-period distribution of all planets, with Neptune-like planets

shown in red and Rp = 2 R⊕ limit shown as black dotted line.

models. Assuming an earth-like core composition and a solar-composition H/He envelope,

we estimated fenv = 10.9± 2.0% and a core mass of 21.9± 2.0 M⊕. Given the strong stellar

irradiance experienced by this planet, with Teq ≈ 960 K (assuming albedo α = 0.3), TOI-

1272b could have begun as a more atmosphere-rich Neptune similar to GJ 3470b (Kosiarek

et al. 2019) and experienced subsequent atmosphere loss. TOI-1272b may then serve as a

strong candidate for follow-up atmospheric observations, following the treatment of similar

targets like those discussed by Crossfield & Kreidberg (2017).

The outer companion in this system, TOI-1272c, likely falls into the same size category as

63



TOI-1272b, with Mp,c sini = 27.4 ± 3.2 M⊕. However, since no transit was detected in

TESS photometry, we were unable to make any claims regarding its density or composition.

One might suppose that a sufficiently low-radius planet on an 8.7-day orbit could produce

a transit signal below the detection threshold of S/N ≈ 7.1. Assuming a transit duration of

T14 ≈ 0.15 days and the same noise properties as the TOI-1272b transit, this would require

Rp,c ≲ 2.3 R⊕ and ρp,c ≳ 12.0 g cm−3. While this density is not entirely unreasonable (see,

e.g., Kepler-411b; Sun et al. 2019), it is unlikely given the known sample of similar planets.

3.8.2 Eccentricities

The eccentricity distribution of hot Neptunes was discussed in depth by Correia et al. (2020)

who noted that such planets exhibit elevated eccentricities despite being on compact orbits.

We reconsidered this claim using a more recent set of confirmed planet data from the NASA

Exoplanet Archive (Akeson et al. 2013a; NASA Exoplanet Archive 2022a), including TOI-

1272b in our sample. We considered Neptunes to have radii ∼2–6 R⊕ and "hot" planets to

have P < 5 days. Constraining our sample to only planets with eccentricity uncertainties

less than 0.1 (Figure 3.10), we found that hot Neptunes (N = 17) displayed a broader

eccentricity distribution than their longer period counterparts (N = 75). We verified the

distinction between the two distributions using a Kolmogorov-Smirnov (KS) test, finding

p ≈ 0.008. TOI-1272b contributed to this significant trend among hot Neptunes.

On the other hand, planets with radii > 6 R⊕ showed the opposite trend as can also be seen

in Figure 3.10, verified by a KS test with p ≪ 0.01. In this radius range, 66 planets had

P < 5 d and 88 had P ≥ 5 d. We did not consider planets with radii < 2 R⊕ in this analysis

due to the low sample size of such planets with eccentricity uncertainties < 0.1. However, a

cursory examination of this small subset suggested similar eccentricity distributions between

shorter and longer period planets in this size range.

While these findings are statistically significant based on KS tests given the current data,
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Figure 3.10: Eccentricity distribution of planets with eccentricity uncertainties of σe < 0.1,

comparing shorter period planets (blue) against longer period planets (orange). The lines

show kernel density estimation fits to the data of the corresponding color. Top: Jupiter-like

planets (> 6 R⊕). Bottom: Neptune-like planets (2–6 R⊕), including TOI-1272b (dashed

gray line).

several confounding factors led us to determine that these eccentricity trends are suggestive

rather than definitive at this time. These factors include the small sample size of hot Nep-

tunes, the reliability of the data reported by the NASA Exoplanet Archive, and potential

observational biases. Nonetheless, the possible disagreement between the eccentricity trend

for hot Neptunes versus hot Jupiters is an active area of research. The low eccentricities of

hot Jupiters were consistent with the rapid tidal circularization timescales expected at lower

semi-major axes. Conversely, hot Neptunes seem more likely to violate the rule.

A nominal empirically-derived periastron distance of rperi ≈ 0.03 au is often used to approx-

imate the boundary of rapid tidal eccentricity decay, shown in Figure 3.11. Here, we see

65



Figure 3.11: Eccentricity distribution of planets with σe < 0.1 (Neptune-like in red, other

known planets in gray) as a function of orbital separation, showing TOI-1272 b and c in green

and blue, respectively. Periastron distance of 0.03 AU is shown as an empirical threshold for

rapid tidal eccentricity decay. Three eccentric Neptunes are labeled for reference (Kepler-

1656b; TOI-269b, Cointepas et al. 2021; GJ 436b).

that only a small subset of well-characterized planets inhabit the high-eccentricity area of

parameter space beyond this boundary, including TOI-1272b and a few other eccentric hot

Neptunes. The well-studied planet GJ 436b is among these Neptunes with orbits that dis-

agree with tidal circularization, making it a near-twin to TOI-1272b based on mass, radius,

eccentricity, and period.
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3.8.3 A Unique Formation and Evolution Pathway

The sparsity of the Hot Neptune Desert along with the counter-intuitive trend in hot Neptune

eccentricities suggests a unique evolutionary pathway for hot planets within the Neptune

size regime. Several studies have sought to explain the dearth of planets within the "desert"

region of Mp-P and Rp-P parameter space. The leading hypothesis suggests a combination

of photoevaporation (Owen & Wu 2013; Owen & Lai 2018) and high-eccentricity migration

(Mazeh et al. 2016; Matsakos & Königl 2016). Interestingly, photoevaporation is also cited as

a possible mechanism for maintaining non-zero eccentricities among hot Neptunes (Correia

et al. 2020), along with planet-planet excitation (see, e.g. Jurić & Tremaine 2008; Chiang &

Laughlin 2013b) or an Eccentric Kozai-Lidov (EKL) effect from a distant giant companion

(Naoz 2016). The persisting eccentricities of some hot Neptunes could also simply be a

result of Q′ values underestimated by an order of magnitude or more, which would make

them inconsistent with the Q′ values measured for Neptune and Uranus through interior

modeling.

An underestimated Q′ could certainly be the case for TOI-1272b, contributing to a longer

τe and slower rate of eccentricity decay. TOI-1272b may also be undergoing significant

photoevaporation given its fenv and close-in rperi, contributing to both its location in the

middle of the Hot Neptune Desert and its high eccentricity. However, TOI-1272b differs from

the plausible formation and evolution pathways of other hot Neptunes due to the presence of

a stable, nearby outer companion. Both high-eccentricity migration and perturbations from

a distant companion through EKL effects are complicated by the presence of the mildly

eccentric companion on an 8.7-day orbit. Such excitation mechanisms would have likely

caused an orbit-crossing event and subsequent ejection of one or both planets.

Instead, we propose that, along with photoevaporation, TOI-1272b has experienced mi-

nor planet-planet excitation events with TOI-1272c, possibly involving close-approaches or

resonance-crossing events during migration (Ford & Rasio 2008). These events could have
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contributed to both the high eccentricity and possible inward migration of TOI-1272b into

the Hot Neptune Desert region of parameter space, similar to the proposed evolution of

mini-Neptune HIP-97166b (MacDougall et al. 2021). The elevated eccentricity of the inner

planet may then persist in spite of strong tidal forces through Laplace-Lagrange oscillations

that continue to force the eccentricity, as seen in our dynamical simulations mentioned in

§3.7.1. However, additional considerations such as the relative inclination of the two planets

may be necessary for a more detailed description of the dynamical evolution of this system.

3.9 Summary and Conclusions

In this work, we introduced a newly discovered planet within the Hot Neptune Desert around

TOI-1272 with a 3.3-day orbital period. We predicted that this planet might have a high

eccentricity based on a mismatch between the observed transit duration and the expected

duration for a circular orbit upon modeling 3 sectors of transit photometry from TESS. We

confirmed this high eccentricity with follow-up RV measurements and verified its stability

through dynamical constraints, yielding eb = 0.34±0.06. We also identified a non-transiting

outer companion on an 8.7-day orbit, placing a limit on its eccentricity of ec ≲ 0.35. TOI-

1272b is now one of only a handful of close-in Neptunes with a well-constrained high ec-

centricity. The high eccentricity of this inner planet persists in spite of strong tidal forces,

likely as a result of either underestimated tidal quality factors for close-in exo-Neptunes or

stable dynamical interactions with the outer planet that continue to pump the eccentricity.

Nonetheless, the discovery of TOI-1272 b and c has boosted the sample size of a small and

poorly understood class of planets, contributing to ongoing studies of hot Neptunes and

eccentric short-period planets.

68



CHAPTER 4

Implicit biases in transit models using stellar

pseudo-density

4.1 Abstract

The transit technique is responsible for the majority of exoplanet discoveries to date. Char-

acterizing these planets involves careful modeling of their transit profiles. A common tech-

nique involves expressing the transit duration using a density-like parameter, ρ̃, often called

the "circular density." Most notably, the Kepler project – the largest analysis of transit

lightcurves to date – adopted a linear prior on ρ̃. Here, we show that such a prior biases

measurements of impact parameter, b, due to the non-linear relationship between ρ̃ and tran-

sit duration. This bias slightly favors low values (b ≲ 0.3) and strongly disfavors high values

(b ≳ 0.7) unless transit signal-to-noise ratio is sufficient to provide an independent constraint

on b, a criterion that is not satisfied for the majority of Kepler planets. Planet-to-star radius

ratio, r, is also biased due to r−b covariance. Consequently, the median Kepler DR25 target

suffers a 1.6% systematic underestimate of r. We present techniques for correcting these

biases and for avoiding them in the first place.

4.2 Introduction

In the two decades since the discovery of the first transiting hot Jupiter (Charbonneau et al.,

2000; Henry et al., 2000), the transit technique has grown to be the most prolific exoplanet
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detection method to date, accounting for 77% of the current census. Contemporary work

continues to rely heavily on the transit technique. To wit, several transit-focused NASA and

ESA missions are either already on-sky (TESS, Ricker et al. 2015b) or slated for launch in the

near future (PLATO, Rauer et al. 2014b), and next-generation radial velocity spectrographs

have been designed for follow-up characterization of known transiting planets (e.g. KPF,

Gibson et al. 2016; MAROON-X, Seifahrt et al. 2018). The transit technique will remain

indispensable for exoplanet astronomy for decades to come.

Accurate modeling of the transit lightcurve is a critical step for characterizing transiting

planets. At the most basic level, transit modeling involves computing the time-dependent

flux F (t) of a star obscured by a transiting planet relative to the unobscured flux F0. If one

assumes a spherical planet and star, this computation depends strictly on the planet-to-star

size ratio r, the (time-dependent) center-to-center sky-projected planet-to-star separation z

(measured in units of R⋆), and the radial dependence of the stellar limb-darkening profile {u}.
Early analyses computed F (z; r, {u}) via numerical integration, but today the most widely

used method is the Mandel & Agol (2002b) model, which expresses the transit lightcurve via

an analytic solution to F (z; r, {u}) for several limb darkening profiles which can be described

by a small set of limb-darkening parameters.

In order to model time-series photometry, one must convert F (z; r, {u}) into F (t; r, {u}).
While z is the only parameter that varies with time, one may choose how to specify the

function that maps t → z. If one assumes strict periodicity of transits and a constant

projected velocity during transit., then in the limit r → 0, z(t) may be specified completely

by an orbital period, P , a transit mid-point, t0, an impact parameter, b, and 1st-to-4th

contact transit duration, T14.1 This parameterization — F (t;P, t0, r, b, T14) — is convenient

1Several alternative transit durations may be substituted for T14: (1) the 2nd-to-3rd contact duration,
T23, (2) the center-to-center contact duration, Tcc, also called the 1.5-to-3.5 contact duration, or (3) the
full-width-half-max duration, TFWHM, which may be defined in relation to the transit depth. While each has
its merits (see Kipping 2010b for discussion), we adopt T14 throughout this work because it is the transit
duration which is most readily defined for all grazing and non-grazing transit geometries.
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and is closely linked to the transit geometry.

An alternative approach is to specify T14 from a combination of scaled separation a/R⋆,

orbital eccentricity e, argument of periastron ω, and projected inclination cos i, following

(Winn, 2010a) as

T14 ≃
P

π
sin−1

(R⋆

a

√
(1 + r)2 − b2

sin i

)( √
1− e2

1 + e sinω

)
(4.1)

b =
a cos i

R⋆

( 1− e2

1 + e sinω

)
(4.2)

Now the lightcurve is specified by the function F (t;P, t0, r, a/R⋆, b, e, ω), which is similar to

the parameterization used by the EXOFAST suite (Eastman et al., 2013a; Eastman, 2017).2

A related approach is to replace a/R⋆ with stellar density by employing Kepler’s third law.

Thus, the light curve may also be parameterized by F (t;P, t0, r, ρ⋆, cos i, e, ω).

These two eccentricity-explicit parameterizations have the advantage that the lightcurve has

been specified completely by properties of the star, planet, and planetary orbit; the disadvan-

tage is that five parameters have been replaced by seven, and thus significant degeneracies

between {a/R⋆, e, ω} or {ρ⋆, e, ω} are inevitable. These degeneracies lead to inefficiencies

with light curve fitting and posterior sampling.

A common shortcut is to fit the lightcurve assuming that e = 0 even though the orbit may,

in fact, be eccentric. This assumption reduces the number of free parameters back to five,

but ρ⋆ can no longer be thought of as a stellar density. Rather, it is a stand-in for duration

2In practice, EXOFAST uses log(a/R⋆) and expresses b as cos i; {e, ω} is usually specified as
{√e sinω,

√
e cosω} in order to establish uniform priors on e and ω and to a avoid a boundary issue at

e = 0.
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which merely has units of density, defined by Seager & Mallén-Ornelas (2003b) as

ρ̃ ≡
(

4π2

P 2G

)(
(1 + r)2 − b2

(
1− sin2[πT14/P ]

)
sin2[πT14/P ]

)3/2

(4.3)

where G is Newton’s gravitational constant. This quantity ρ̃ is sometimes referred to as the

“mean stellar density,” the “circular density,” or the “observed density,” but we prefer to call

it the “pseudo-density” because (1) the other names are confusing, and (2) ρ̃ matches the

true stellar density only when numerous assumptions are met (see Kipping, 2014a).

Because the prior expectation for ρ̃ is a complicated function of ρ⋆, b, e, and ω, naïvely

placing a flat prior on ρ̃ and adopting it as a fitting parameter induces undesired biases on

T14 and b.

To date, ρ̃ has enjoyed widespread use in the exoplanet literature. For example, the Kepler

project (Borucki et al. 2010c; the largest analysis of transit lightcurves to date) fit their

lightcurves with the F (t;P, t0, r, ρ̃, b) parameterization (Rowe et al., 2014a, 2015; Mullally

et al., 2015; Coughlin et al., 2016; Thompson et al., 2018). We discuss the effects of that

choice in §4.6. More broadly, this paper investigates the implicit biases on impact parameter

and other light curve parameters that result from the use of ρ̃.

Throughout this work, we assume that all transit signals under investigation have been thor-

oughly vetted such that the detected signal is known to be a real transit at high confidence.

The methods employed in this work are thus appropriate for parameter estimation but not

for transit detection or vetting.

This paper is organized as follows. In §4.3 we empirically demonstrate the origin of the ρ̃

bias by fitting a transit lightcurve model to simulated photometry using the Kepler project

parameterization; we then demonstrate that our preferred parameterization does not suffer

from this bias. In §4.4 we present a numerical experiment which isolates the effects of various

model assumptions on posterior inferences. In §4.5 we analytically derive the Jacobian of
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the coordinate transformation T14 → ρ̃ which explains the origin of the empirical bias. In

§4.6 we show that the ρ̃ bias has affected most posterior inferences of b and r derived from

Kepler data. In §4.7 we summarize our conclusions and discuss other biases which arise from

using related parameterizations such as a/R⋆.

4.3 Understanding parameter biases with fits to synthetic photom-

etry

To illustrate the ρ̃ bias, we simulated photometric observations of a warm mini-Neptune

(P = 15 days, rp = 3.3 R⊕) on a circular orbit around a Sun-like star, transiting at impact

parameter b = 0.5. We simulated data with a 30 minute observing cadence (matching

Kepler ’s long cadence observing mode) within ±T from the transit center. All photometric

data were oversampled by a factor of 7 and integrated using Simpson’s rule to account for

the effects of finite integration time (Kipping, 2010c). The white noise level was tuned to

produce S/N = 16, which is slightly lower than the median Kepler value and results in a

posterior model with σr/r ≈ 0.10 and σT/T ≈ 0.05, where σr/r corresponds to the fractional

posterior measurement, and similar for T . We chose these values in order to produce a transit

which is similar to those found by Kepler. Ground-truth simulation parameters are listed in

Table 4.1, and simulated photometry is shown in Figure 4.1.

The transit model was specified using a standard pseudo-density parameterization: {P , t0,

r, b, ρ̃}. In order to minimize confounding factors, we held P and t0 fixed at their injected

values; we also held the mean out-of-transit flux, F0, and photometric white noise level, σ2
phot,

fixed to their true values, which is equivalent to assuming the raw photometry has been

accurately pre-whitened. For the remaining transit parameters, we adopted broad weakly

informative priors with permissive bounds (see Table 4.2 for details), for a total of three free

parameters per model: {r, b, ρ̃} (the “ ρ̃ basis”), or {log r, b, log T14} (the “ log T basis”). We

chose the later basis because T14 is typically well constrained by the data and furthermore
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Table 4.1: Ground-truth simulation parameters; simulated photometry is shown in Figure

4.1.

Parameter Value

M⋆[M⊙] 1.0

R⋆[R⊙] 1.0

u1, u2 0.40, 0.25

P [days] 15.0

r 0.03

b 0.5

T14 [hrs] 3.29

S/N 16

may be assigned priors in a sensible fashion; sampling in log r and log T14 is equivalent to

placing log-uniform priors on r and T14 which facilitates exploration of posterior values over

different orders of magnitude. We modeled a circular transit in all cases and held stellar mass,

radius, and limb darkening to their true values during the fit; there is no loss of generality in

this approach, because as long as we ignore minuscule ingress/egress asymmetry that exists

for eccentric transits (Barnes, 2007b), there is no difference between a circular and eccentric

transit. In order to avoid complications which arise when modeling grazing transits, we

restricted impact parameters to b < 1−r.3 To confirm that this restriction is permissible, we

explored the parameter space near the limb of the star following the methodology of Gilbert

(2022) and verified that the simulated transit is inconsistent with a grazing geometry.

We drew samples from the posterior using Hamiltonian Monte Carlo (HMC; Neal, 2011) and

3A common approach (which we did not adopt) is to draw samples uniformly from the r − b plane using
triangular sampling (Espinoza, 2018). However, naive application of this method induces a marginal prior
on r, so caution must be taken to ensure that priors are established as intended.
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Figure 4.1: Simulated photometry for a mini-Neptune on a circular 15 day orbit around a

Sun-like star, transiting at b = 0.5. The orange line indicates the ground truth transit model.

Grey points show simulated observations at a one minute observing cadence; black circles

are binned to 30 minutes. The white noise level was set to S/N = 16, close to the Kepler

median. See Table 4.1 for ground-truth simulation parameters.

the No U-Turn Sampler (NUTS; Hoffman & Gelman, 2011b). Each model iteration consisted

of two chains run for 5000 tuning steps and 20,000 draws, producing an effective number of

samples greater than 11,000 for all parameters for each of the the two parameterizations.

Posterior corner plots for the quantities of interest are shown in Figure 4.2. The most notable

difference is in the 1D marginalized distribution of impact parameter. When sampling using

the ρ̃ basis, the posterior is biased toward low b; as a point of reference, 74% of the probability

mass is below b = 0.5, the injected value. When sampling using the log T basis, however, the

distribution of b is nearly uniform over the allowed range, reflecting the fact that for a low

signal-to-noise transit the impact parameter is largely unconstrained. Our results did not

substantially change when simulating a one minute observing cadence (matching Kepler ’s

short cadence mode), indicating that the ρ̃ bias arises from the model parameterization and

is not an artifact of data binning. We also repeated the analysis using r = 0.1 and r = 0.01

and found that the results did not change.
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Table 4.2: Priors on model parameters for simulated lightcurve.

Parameter Value Parameter Value

r U(0.01, 0.1) log r U(−2,−1)

b U(0, 1− r) b U(0, 1− r)

ρ̃/ρ⊙ U(0.1, 10) log[T14/hr] U(1, 10)

Clearly, the results are inconsistent between models – which contain identical underlying

physics and differ only in their parameter bases – so at least one of the two models has

produced biased inference. In the sections that follow, we present both a numerical argument

(§4.4) and an analytic argument (§4.5) which demonstrate that the log T basis has produced

the desired result.

4.4 Numerical sampling experiment

We will now demonstrate that the bias on b seen in the previous section arises solely from

the model parameterization and not from vagaries of the MCMC sampling algorithm or

peculiarities of the noise realization in the photometry.

To do so, we performed a numerical experiment which approximated the lightcurve model-

ing procedure from §4.3 by drawing samples directly from the prior distributions and then

applying an a posteriori importance weighting designed to mimic the constraints imposed

by the photometry. When determining these importance weights, we employed a Gaussian

likelihood function and approximated the (covariant) parameter constraints from §4.3 as

independent univariate Gaussians. The key advantage of this method is that we no longer

needed to directly fit the photometry, thereby eliminating potential confounding factors

introduced by the photometry and the sampler.

76



{log r, b, log T14}
{r, b, ρ̃}

0.
2

0.
4

0.
6

0.
8

b

0.
02

4
0.
03

2
0.
04

0
0.
04

8

r

3.
2

4.
0

4.
8

5.
6

T
14

[h
rs

]

0.
2

0.
4

0.
6

0.
8

b
3.
2

4.
0

4.
8

5.
6

T14 [hrs]

Figure 4.2: Posterior corner plots when sampling in the ρ̃ basis (orange) vs the log T14 basis

(purple). The bias on impact parameter, b, is apparent when sampling with ρ̃ but is resolved

when sampling in T14.

4.4.1 Experimental setup

We adopted the same fiducial star-planet system as §4.3, placing a 3.3R⊕ mini-Neptune on

a circular 15 day orbit around a solar twin. We fixed the ephemeris {P, t0} throughout and

placed uniform interval priors on all other parameters {r, b, ρ̃, log T14} as before (see Table

4.2), with the small modification that we now allow b to range over all detectable values, i.e.

b ∼ U(0, 1 + r); this modification is acceptable because our sampling procedure (see below)

avoids the usual issues which arise when fitting grazing transits (see Gilbert, 2022).

77



For the first iteration of the experiment we adopted the ρ̃ basis {r, b, ρ̃} and drew random

samples directly from the prior distributions. We next calculated transit duration using

T14 =
PR⋆

πa

(
(1 + r)2 − b2

)1/2
(4.4)

for each sample. Here, we have approximated Equation 4.1 by using the small angle approx-

imation sin−1 ϕ ≈ ϕ and i ≈ π/2 → sin i ≈ 1. The scaled separation can be calculated from

Kepler’s Third Law as a/R⋆ = [(GP 2ρ)/(3π)]1/3.

For subsequent iterations of the experiment, we modified the procedure to use use three

alternative parameter bases: (1) {log r, b, log ρ̃}, (2) {r, b, T14}, and (3) {log r, b, log T14}. We

chose these parameterizations in order to explore the effects of uniform vs log-uniform priors

in addition to the effect of substituting ρ̃ → T14. We followed the same sampling procedure

as before, except when drawing samples of T14 or log T14 we calculated ρ̃ following Equation

4.3.

Mimicking the simulated light curve in §2, we assumed that we could constrain r to 10%

accuracy and T14 to 5% accuracy, with independent Gaussian precision from the photometry

(i.e. σr/r = 0.1, σT/T = 0.05). We further assumed that the impact parameter would be

entirely unconstrained by the data. These uncertainties are representative of typical values,

but we have removed the covariance and forced them to be Gaussian (or unconstrained),

which eases interpretation.

We imposed our assumed measurement uncertainties on r and T14 by calculating the log-

likelihood of each ith sample

logLi = −1

2

(Ti − Ttrue

σT

)2
− 1

2

(ri − rtrue

σr

)2
(4.5)

which assumes a Gaussian likelihood function. We then weighted each sample by

wi =
Li∑
i Li

(4.6)

to produce our synthetic posterior distributions.
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4.4.2 Bias on impact parameter

The results of our numerical experiment are summarized in Figure 4.3. As expected, when

parameterizing the model as {r, b, ρ̃} with uniform priors, we obtain biased results that are

qualitatively similar to those produced in §4.3 (i.e. by fitting the photometry directly).

Notably, sampling in ρ̃ produces a strong prior on T14 (purple) which is not physically moti-

vated. Because T14 is constrained to 5%, the data overwhelm the prior and the T14 posterior

distribution (orange) is only slightly biased. The posterior on impact parameter, however,

is clearly different from the prior even though our model included no information about im-

pact parameter. Because we have (by construction) placed no measurement constraint on b,

the posterior distribution should match the prior. In reality however, the posterior is tilted

toward b = 0, giving the illusion of a (modestly) constrained posterior.

The ρ̃−b bias is resolved by using any of the alternative parameterizations which substitute

log ρ̃, T14, or log T14 for ρ̃. Although using the substitution ρ̃ → log ρ̃ may seem at first glace

to be the simplest choice (requiring little change from existing practices), we argue that

using either of the duration-based parameterizations is preferable for two reasons. First, the

results are insensitive to the exact choice of (reasonable) prior placed on T14, whereas they

are highly sensitive to the prior placed on ρ̃; insensitivity to priors is in general a desirable

feature of robust inference. Second, setting prior interval bounds on ρ̃ is a non-intuitive task,

requiring careful consideration of the true stellar density and orbital elements. In contrast,

principled priors may be placed on the transit duration quite simply following inspection of

the transit lightcurve. In fact, setting bounds on T14 is so straightforward that it could even

be done algorithmically following the output of a box-least squares transit search (Kovács

et al., 2002b). The bottom line is that given the choice between options which produce

equivalent results, we prefer the simpler of the two.

In summary, because we have decoupled the posteriors from complicating factors (e.g. pa-

rameter covariances, sampler inefficiencies, etc.), we conclude that the differences between
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Parameterization Prior Likelihood Posterior

{r, b, ρ̃}

{log r, b, log T14}

r ∼ U(0.001, 1)
b ∼ U(0,1 + r)
ρ̃/ρ⊙ ∼ U(0.1,10)

  measured to 10%r
  measured to 5%T14

log[T14/hr]

{log r, b, log ρ̃}
b ∼ U(0,1 + r)
log[ρ̃/ρ⊙] ∼ U(−3,3)

log r ∼ U(−3,0)

T14/hr

same

{r, b, T14}

  unconstrainedb

same

same

r ∼ U(0.001, 1)
b ∼ U(0,1 + r)

b ∼ U(0,1 + r)
log r ∼ U(−3,0)

∼ U(1,10)

∼ U(0,1)

Figure 4.3: Results of the numerical sampling experiment described in §4.4. Each row

corresponds to the prior, likelihood, and posterior for a given model parameterization. For

visual clarity, the height of the T14 posterior has been reduced by a factor of 3 on all plots.

The difference in the prior distribution on b for rows 1 & 3 compared to rows 2 & 4 stems from

the use of r vs log r, respectively. Sampling with a uniform prior on ρ̃ (top row) produces

a nonuniform prior on T14 and a biased posterior for b. In contrast, sampling in any of the

other parameter bases produces a posterior estimate of b which matches the prior, except in

cases where constraints on r would produce a non-transiting orbit.
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posterior distributions obtained under the ρ̃ basis versus the log T14 basis arise solely due the

parameterization. Furthermore, we conclude that the ρ̃ basis (with a uniform prior) induces

a bias on b, whereas the other options we have presented produce unbiased estimates.

4.5 Mathematical origin of the bias

In the previous sections, we illustrated the biases on b that result from uniform and log-

uniform priors on ρ̃ by exploring synthetic photometry fits and simple numerical experiments.

In this section, we investigate the mathematical origins of this bias.

The transit parameter covariance matrix was previously derived by Carter et al. (2008), but

where their treatment prioritized analytic interpretability (with a small sacrifice to accu-

racy), our treatment prioritizes accuracy (with a small sacrifice to interpretability). Most

importantly, the covariance matrix derived by Carter et al. (2008) are least accurate as b → 1

and in the presence of non-neglible limb darkening, which are precisely the conditions under

which the ρ̃ bias we are investigating become most important. Thus, our work complements

rather than supplants Carter et al. (2008).

When modeling light curves, our main goal is to derive the posterior probability density

function, p(x⃗), i.e. the probability that a set of planet properties x⃗ resides in an infinitesimal

volume element spanning x⃗ to x⃗+dx⃗. However, this probability is not invariant under changes

in parameterization. Specifically, for our problem, p(T14)/dT14 ̸= p(ρ̃)/dρ̃. To convert p(T14)

to p(ρ̃), one must account for the change in infinitesimal volume element resulting from the

T14 → ρ̃ transformation, i.e. the Jacobian

J =
dρ̃

dT14

= −12π3

P 3G

(
(1 + r)2 − b2

)3/2(
πT14

P

)−4

(4.7)

which we derive in the Appendix. The Jacobian of the transformation T14 → log ρ̃ is simply

J ′ =
d log ρ̃

dT14

= − 3

T14

(4.8)

81



0.0 0.2 0.4 0.6 0.8 1.0
b

co
un

ts

simulated
numerical
analytical

Figure 4.4: Posterior samples of b from the simulated transit fit (orange histogram, §4.3)

and the numerical experiment (purple histogram, §4.4) are nearly perfectly matched by the

expected bias from the analytically derived Jacobian (grey shaded region, §4.5).

which is independent of b, explaining why using log ρ̃ in place of ρ̃ produces unbiased poste-

riors.

In Figure 4.4, we show the analytic Jacobian in Equation 4.7 alongside the simulated posterior

samples of b obtained in §4.3 and the numerical results obtained in §4.4. It is evident from

inspection that the distributions are in close agreement. We conclude that the non-uniform

distribution of b arises from the combination of parameterization and (incorrect) prior, rather

than from any real constraint imposed by the data.

4.6 Biased Kepler planet properties

We have shown that adopting a linear ρ̃ prior results in a biased impact parameter. The

Kepler project (Borucki et al., 2010c; Rowe et al., 2014a, 2015; Mullally et al., 2015; Coughlin

et al., 2016; Thompson et al., 2018) used such a parameterization (Jason Rowe, private
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communication). Therefore, we expect biased b in all cases except those where b is strongly

constrained by the light curve itself. Because most Kepler planet candidates exhibit modest

transit signal-to-noise (median S/N = 22.4), the characteristic “hill” shape we have seen for

biased posterior b distributions in the previous three sections is also present in the posterior

distributions of nearly every Kepler planet candidate from DR25 (Thompson et al., 2018).

Figure 4.5 illustrates the presence of the b bias over a grid of orbital periods and radii. Only

the largest (and therefore highest S/N) planets consistently exhibit meaningful constraints

on b.

Due to signal-to-noise bias which disfavors the detection of high-b transits (Kipping & Sand-

ford, 2016), the prior expectation on impact parameter is not exactly flat, and so the poste-

riors exhibited in Kepler data will not exactly match the idealized distribution we derived

in §4.3-4.5. However, most Kepler detections have S/N > 10 and fall in the flat part of the

detection completeness curve (Christiansen et al., 2020). Thus, the appropriate prior for the

vast majority of Kepler planets should be nearly flat in b, with a fall off at the value of b

that reduces S/N to ∼ 10.

Detection biases notwithstanding, the ρ̃ bias is easily understood and corrected. Because

the relationship between ρ̃, b, r, and T14 is known analytically (Seager & Mallén-Ornelas,

2003b), one needs only to apply the appropriate Jacobian weighting in order to transform

an unintended prior on ρ̃ into the desired prior on b or T14 (or any other basis parameter

derivable from these quantities). Unbiased parameter estimates can then be recovered from

existing (biased) posterior chains by implementing an importance sampling scheme which

accounts for this coordinate transformation, provided the chains are not too sparsely sampled

in their low probability regions. Specifically, one can sample from a distribution p1(x⃗) by

reweighting samples from a different distribution p2(x⃗). An example of this reweighting

scheme as applied to a selection of DR25 targets is shown in Figure 4.6. A caveat is there

is increased sampling error since p2(x⃗) is a different distribution and the samples are not
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Figure 4.5: Posterior distributions of impact parameter for a random selection of KOIs,

organized in logarithmic bins on a P − r grid. Data shown are the posterior MCMC chains

from Kepler Data Release 25 (Thompson et al. 2018; Rowe et al. 2014a; Akeson et al. 2013b).

Each posterior distribution is plotted with 20% opacity so that dark regions indicate where

many distributions overlap; colors correspond to the median b value for a given KOI, with a

maximum of twelve KOIs plotted per panel. The horizontal axis of each panel ranges over

b = (0, 1.2); the vertical range of each row is different, but the dashed line indicates the same

distribution height. The median S/N in each grid square is printed in the upper right-hand

corners. Most of the objects (excluding the highest S/N objects) show qualitatively similar

posterior distributions of b. The similarity is particularly striking for small objects.
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BIASED preference for low values UNBIASED nearly uniform distribution

Figure 4.6: Posterior samples of b from a representative selection of DR25 targets before and

after reweighting by the Jacobian to correct for biases induced by sampling in ρ̃. All targets

have 0.02 < r < 0.04 and 10 < P < 30 days. Left panel : raw DR25 posteriors chains show a

clear (biased) preference for low values of b. Right panel : after reweighting, the (unbiased)

distribution is nearly flat. To minimize spurious peaks and sampling noise in low probability

regions, the lowest density 1% of samples have bean excluded from our reweighting scheme.

The slight increase in probability density near b ≈ 1 in the reweighted posteriors reflects

the presence of residual importance sampling noise rather than a real feature of the data.

Because there is significant sampling noise (due to the large implied posterior mass in regions

with few samples), our preferred method for ameliorating the pseudo-density bias is to refit

the photometry.

optimally distributed in p1(x⃗). In essence there are smaller number of “effective samples”

after reweighting. Care must therefore be taken to ensure that Jacobian-corrected posteriors

are reliable, and the reweighting scheme we have outlined here should not be applied blindly.

Because b is covariant with r (interacting via non-zero limb darkening), any bias on b trans-

lates to a bias on r. For measurements in the final Kepler data release, DR25, we find

this covariance has produced a 1.6% median systematic underestimate of r (Figure 4.7),

extending as high as ∼6% for some targets. This offset is comparable to the fractional un-
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Figure 4.7: Fractional change in median planet-to-star radius ratio for all planet candidates

after correcting posterior chains from DR25 (Thompson et al., 2018) using the Jacobian

reweighting scheme described in §4.6. 5σ outliers have been iteratively clipped in order

to eliminate spurious values that are expected to arise due to insufficient sampling of low

probability regions. There is a spike at δr = 0, indicating that some subset of targets were

accurately measured, but the majority of targets are distributed around δr/r = 1.6%.

certainty on R⋆ (Gaia Collaboration et al., 2018; Berger et al., 2018a) and so makes up a

sizeable portion of the error budget for Kepler planetary radii. While a few percent differ-

ence in planetary radius for a single planet may be sub-significant, a systematic bias of a

few percent on all planetary radii will significantly impact our interpretation of population

demographics – for example, the precise characteristics of the radius valley (Fulton et al.,

2017b) – thereby altering our understanding of the processes by which planets form and

evolve.
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4.7 Summary and conclusions

In this work, we explored the the biases that result from using the popular stellar pseudo-

density, ρ̃, as a parameter in light curve fits. Adopting a linear prior on this parameter

results in a biased distribution on impact parameter due to the Jacobian that arises from

the non-linear relationship between ρ̃ and transit duration, T14. Biased inferences on b lead

to biased inferences on r due to covariances between the two parameters. We confirmed that

the these biases are present in Kepler modeling that used ρ̃ as a fitting parameter, and we

presented a method for de-biasing the distributions.

Although the ρ̃ bias may be resolved by using log ρ̃ in place of ρ̃ (or, equivalently, placing log-

uniform priors on ρ̃), we prefer sampling in duration over ρ̃ for aesthetic and conceptual rea-

sons. To avoid inducing biases, we recommend sampling directly in duration T14 or replacing

T14 with the true stellar density and orbital eccentricity vector, i.e. {ρ⋆,
√
e sinω,

√
e cosω}.

This work focused on the biases induced from using ρ̃ directly as a fitting parameter; similar

biases may arise when using any related parameterization, for example a/R⋆, which is a

popular choice (e.g. Crossfield et al., 2015; David et al., 2016; Stassun et al., 2017). As with

ρ̃, adopting a log-uniform prior rather than a linear prior on a/R⋆ avoids the unwanted bias.

A log-uniform prior is a common choice, so most analyses which have used a/R⋆ as a fitting

parameter are probably unaffected by the bias. However, one should always verify what

priors were adopted when interpreting the results of any transit model.

4.8 Appendix 4A: Derivation of Jacobian for T14 → ρ̃

In this section, we derive the Jacobian of the coordinate transformation T14 → ρ̃. The

pseudo-density derived by Seager & Mallén-Ornelas (2003b) is

ρ̃ ≡
(

4π2

P 2G

)(
(1 + r)2 − b2

(
1− sin2[πT/P ]

)
sin2[πT/P ]

)3/2

(4.9)
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where all variables are defined as in previous sections. For notational clarity, we also define

T ≡ T14 and make the simplifying assumption r ≈
√
∆F , where ∆F is the fractional change

in flux. Substituting terms

x = 4π2/(P 2G)

y = (1 + r)2

z = sin2[πT/P ]

(4.10)

yields

ρ̃ = x

(
y − b2(1− z)

z

)3/2

. (4.11)

By the chain rule,
dρ̃

dT
=

dρ̃

dz

dz

dT
. (4.12)

The first term is
dρ̃

dz
= −3x

2

(
y − b2

z2

)(
y − b2(1− z)

z

)1/2

(4.13)

and the second term is
dz

dT
=

π

P
sin
[2πT

P

]
(4.14)

Combining equations 4.10, 4.12, 4.13, and 4.14 yields the exact Jacobian

J =
dρ̃

dT
= − 6π3

P 3G

(
(1 + r)2 − b2

sin4[πT/P ]

)(
(1 + r)2 − b2

(
1− sin2[πT/P ]

)
sin2[πT/P ]

)1/2

sin
[2πT

P

]
(4.15)

Making the small angle approximation sinϕ ≈ ϕ (assuming πT ≪ P ) and collecting terms

yields

J = −12π3

P 3G

(
(1 + r)2 − b2

)(
(1 + r)2 − b2

(
1− [πT/P ]2

))1/2(
πT

P

)−4

. (4.16)

Once again taking advantage of πT ≪ P simplifies the expression further to

J = −12π3

P 3G

(
(1 + r)2 − b2

)3/2(
πT

P

)−4

. (4.17)
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4.9 Appendix 4B: Derivation of Jacobian for T14 → ln ρ̃

To derive the Jacobian of the transformation T → ln ρ̃, we note that

d ln ρ̃

dT
=

1

ρ̃

dρ̃

dT
. (4.18)

Adopting our usual approximations sinϕ ≈ ϕ, πT ≪ P , we may rewrite Equation 4.9 in the

simplified form

ρ̃ ≡
(

4π2

P 2G

)(
(1 + r)2 − b2

)3/2(
πT

P

)−3

. (4.19)

Combining Equations 4.17, 4.18, and 4.19 and cancelling terms yields

d ln ρ̃

dT
= − 3

T
. (4.20)

We see that d ln ρ̃/dT is independent of b.

4.10 Appendix 4C: Derivation of Jacobian for T14 → a/R⋆

To derive the Jacobian of the transformation T → a/R⋆, we define α ≡ a/R⋆ and recognize

that from Seager & Mallén-Ornelas (2003b) (their Equations 8 & 9),

α =

(
4π2

P 2G

)−1/3

ρ̃1/3 (4.21)

.

By the chain rule,
dα

dT
=

dα

dρ̃

dρ̃

dT
. (4.22)

The first term is
dα

dρ̃
=

1

3

(
4π2

P 2G

)−1/3

ρ̃−2/3 (4.23)
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and the second term we derived previously. Adopting our usual approximations sinϕ ≈ ϕ,

πT ≪ P and combining Equations 4.17, 4.19, 4.22, and 4.23 yields

dα

dT
= − π

P

(
(1 + r)2 − b2

)1/2(
πT

P

)−2

. (4.24)

4.11 Appendix 4D: Derivation of Jacobian for T14 → ln a/R⋆

To derive the Jacobian of the transformation T → ln a/R⋆, we note that

d lnα

dT
=

1

α

dα

dT
(4.25)

where as before α ≡ a/R⋆. Following our usual strategies and combining Equations 4.21,

4.24, and 4.25, we arrive at
d lnα

dT
= − 1

T
(4.26)

which is independent of b.
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CHAPTER 5

Accurate and efficient photo-eccentric transit modeling

5.1 Abstract

Kepler- and TESS-quality transit light curves typically allow robust first-order determina-

tion of planet sizes (i.e. planet-to-star radius ratio r) and orbital ephemerides (i.e. period

P and epoch t0). Other orbital parameters (i.e. impact parameter b, eccentricity e, and

argument of periastron ω) are more challenging to measure because they imprint themselves

on the transit lightcurve through second-order effects on the transit duration T14. In Gilbert

et al. 2022, we investigated using a five parameter model basis {P, t0, r, b, T14} to recover

unbiased measurements of r and b. Here, we expand upon our previous work and use post-

hoc importance sampling to recover unbiased measurements of e and ω. We perform a suite

of injection-and-recovery test to demonstrate that eccentricities derived using our method

are consistent with those derived from a standard model basis {P, t0, r, b, ρ⋆, e, ω} which ex-

plicitly fits eccentricity vectors. The advantage of our five-parameter photo-eccentric transit

model is that it is both simpler than the seven-parameter model and is “future-proof”: our

posterior measurements can be quickly resampled to accommodate updated priors as more

precise stellar characterization becomes available without requiring an expensive re-run of

the transit fitting routine. We conclude by offering suggestions for accurate measurement of

b, e, and ω from transit photometry.
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5.2 Introduction

Out of more than 5,300 confirmed planets to date, ∼75% were discovered via the transit

method. These discoveries have paved the way for keystone scientific advancements in our

understanding of planetary formation, evolution, and demographics. To ensure the reliability

of these discoveries, we must also ensure that the individual transiting planet characteriza-

tions are accurately and consistently derived. Previously, uncertainties on stellar parameters

significantly limited the achievable precision of planet properties (i.e. σ(R⋆) ∼ 27% and

σ(ρ⋆) ∼ 51%; Thompson et al. 2018). Now, in the era of Gaia (Gaia Collaboration et al.

2018) and high-precision stellar characterizations (i.e. σ(R⋆) ≲ 2% and σ(ρ⋆) ≲ 10%), the

determination of key planet properties is limited by light curve modeling.

A variety of methods exist for fitting transit signals, including various parameterizations

(e.g. Seager & Mallén-Ornelas 2003b; Dawson & Johnson 2012; Eastman et al. 2013a;

Thompson et al. 2018; Gilbert et al. 2022) and sampling techniques (e.g. Feroz & Hobson

2008; Foreman-Mackey et al. 2013; Foreman-Mackey et al. 2021b; Speagle 2020; Gilbert

2022). Substantial effort has been put into vetting such methods for transit signal detec-

tion (see, e.g., Christiansen et al. 2015), but less effort has been devoted to validating and

comparing the final characterizations achieved by these models. Differences between sam-

pling techniques are typically assumed to be insignificant relative to parameter uncertainties,

but differences in model parameterizations can have a substantial impact on the subsequent

planet characterization (see, e.g., Gilbert et al. 2022; G22 hereafter). In particular, the

implementation of a given transit model must be done with careful consideration of the co-

variances that exist between transit parameters, including planet-to-star radius radio versus

impact parameter (r−b), impact parameter versus eccentricity (b−e), and eccentricity versus

argument of periastron (e−ω). Here, we show that our implementation of a duration-based

transit model parameterization can model these covariances with equivalent accuracy as an

eccentricity-explicit model.
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Typically, transit model parameterizations will include orbital period P , transit mid-point

t0, planet-to-star radius ratio r, impact parameter b, and some additional parameter(s) to

describe the transit duration. Such models also tend to include quadratic limb darkening

coefficients {u1, u2} and additional parameters relating to the zero-point photometric flux

µflux and photometric noise σflux.

A popular transit modeling basis characterizes a transit using 7 primary parameters, with

transit duration described via three parameters: eccentricity e, argument of periastron ω,

and stellar density ρ⋆ (or, alternatively, scaled orbital separation a/R⋆ via Kepler’s third

law). This eccentricity-explicit parameter basis (e–ω–ρ hereafter) benefits from being fully

characterized by properties of the star, planet, and planetary orbit. However, transit pho-

tometry typically only has enough information from observable properties to constrain ∼4–5

parameters well. Additionally, the e–ω–ρ basis is computationally expensive to run because

the sampler must trace a thin, curving degeneracy in {e, ω} space and also solve Kepler’s

equation at each sampler step.

This basis also relies on an input constraint on ρ⋆, preventing model outputs from being

“future-proof” and necessitating an expensive re-run of the model when the stellar charac-

terization is inevitably updated at a later time (e.g. from a new Gaia data release). An

alternative approach that improves upon these limitations requires fitting the lightcurve as-

suming a circular orbit, e = 0, regardless of what the true underlying eccentricity might

be (see, e.g., Seager & Mallén-Ornelas 2003b; Dawson & Johnson 2012). This shortcut

approach reduces the total number of model parameters by two, relative to the e–ω–ρ pa-

rameterization, and allows for e and ω to instead be derived post-modeling via a non-physical

pseudo-density parameter ρ̃. As G22 points out, however, this alternative parameterization

can introduce a bias on b that artificially disfavors b ≳ 0.7. This bias propagates through to

other model parameters, shifting e towards higher values and underestimating r.

G22 offers a more intuitive alternate parameterization that achieves similar improvements
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over the e–ω–ρ basis but without imposing an unintended bias on b. This proposed pa-

rameterization is motivated by observable transit parameters, which includes the transit

duration T14 – defined from 1st-to-4th contact: {P, t0, r, b, T14}. G22 demonstrated that the

duration-based parameterization achieves improved b and r constraints relative to the bi-

ased pseudo-density parameter basis. Here, we provide a recipe for extracting {e, ω} from

this alternative basis quickly and accurately, relative to the e–ω–ρ basis. We combine the

duration-based parameterization with umbrella sampling (Gilbert, 2022) to ensure full explo-

ration of the b posterior space. We then perform post-hoc importance sampling to derive the

posterior distributions of e and ω, without needing to include them as explicit model param-

eters. These improvements resolve various limitations of both the e–ω–ρ {P, t0, r, b, e, ω, ρ⋆}
and pseudo-density {P, t0, r, b, ρ̃} parameterizations.

In this work, we use simulated photometry to perform injection-and-recovery tests over a

range of injected transit properties to compare the performances of our proposed modeling

approach and the e–ω–ρ modeling basis for modeling e and ω. We lay out our methodology

for lightcurve synthesis and transit injection-and-recovery in §5.3. We then highlight the

procedural differences between the e–ω–ρ method (§5.4) and our T14+umb modeling approach

(§5.5). In §5.6, we analyze the results of our injection-and-recovery tests and compare the

performances of the two parameterizations. We provide a summary of our conclusions in

§5.7.

5.3 Synthetic Lightcurve Construction

Our objective is to compare the performance of the physical e–ω–ρ parameter basis to the

simpler T14 basis. We aim to demonstrate whether or not these methods return equivalent

and accurate posterior results and determine their relative efficiencies. To achieve these ob-

jectives, we perform a suite of injection-and-recovery tests over a grid of parameters which

spans a wide range of values of eccentricity e, argument of periastron ω, inclination (param-
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eterized as impact parameter b), and signal-to-noise (see Figure 5.1). Injection-and-recovery

is a standard tool used to evaluate transit signal detection methods (see, e.g., Christiansen

et al. 2015), but it has not been applied to transit model validation on nearly the same scale.

Here, we construct a set of synthetic lightcurves, then we proceed to use two distinct transit

modeling methods to recover the injected transit properties and compare the relative model

performances.

For all injection-recovery tests in this work, we inject the transit signal of a sub-Neptune-

size planet orbiting a Sun-like star with an orbital period close to the average among Kepler

planets. We synthesize 10 transits per lightcurve with a photometric zero-point flux of

µflux = 0 and a fixed photometric noise σflux, consistent with raw photometry that has

been accurately prewhitened. We calculate the duration of each injected transit signal T14

according to the following equation from Winn (2010a):

T14 =
P

π
sin−1


√√√√√ (1 + r)2 − b2(

GP 2ρ⋆
3π

)2/3
− b2


√
1− e2

1 + e sinω
. (5.1)

We construct our synthetic lightcurves at three different signal-to-noise ratio (SNR) levels:

SNR ∼ [20, 40, 80]. We show example lightcurves for each SNR level in Figure 5.1. At an

SNR of 20, the injected signal has a slightly lower significance compared to the median Kepler

planet signal. At the higher SNR levels of 40 and 80, we seek to identify any differences

that emerge between our two models as the transit ingress and egress become more distinct

from the photometric noise, making b measurements more precise. From the selected SNR

and other injected lightcurve properties, we generate Gaussian white noise per lightcurve

centered on σflux, which we calculate according to:

σflux =

√
T14,trueNtransits

texp

r2true

SNR
, (5.2)
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Figure 5.1: Diagram showing (bottom middle) our grid of injected e and b values, along with

(top) a gallery of phase-folded lightcurves for all combination of SNR and injected ω values

(at e = 0.2 and b = 0.7, as an example). The four panels to the left and right of the bottom

grid show demonstrative examples of phase-folded lightcurves at the different extremes of

our injected parameter grid (e.g. b = 0.1 or 0.9 and e = 0.05 or 0.8), all shown with ω = 132◦

and SNR = 40. Each lightcurve is shown with the median final transit fits from both the

e–ω–ρ (orange) and T14 + umb (blue) modeling methods, which overlap almost entirely.
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where Ntransits is the number of injected transits and texp is the simulated exposure time of

our synthetic lightcurve. The random seed used to generate the synthetic white noise is

unique to each injection-recovery test.

We also assign a unique set of transit parameter values {b, e, ω} for each injection-recovery

test, where each of these inputs is drawn from a grid of discrete parameter values (see Figure

5.1). We specifically choose a parameter grid that emphasizes the region of parameter space

where the e−ω− b degeneracy is strongest (see, e.g., Van Eylen & Albrecht 2015) since this

is where the two parameterizations are more likely to yield differing results. As a result, our

injected planet signals do not exactly mirror the distribution of Kepler planets, but they do

include a broad range of realistic planet characteristics.

Since the transit shape is more sensitive to small changes in b at high values, we select

injected values of b with tighter spacing towards higher values, spanning the non-grazing

parameter space. We construct an array of b values that are evenly spaced on a reversed

log scale: b ∼ [0.1, 0.48, 0.7, 0.83, 0.9]. We also prefer to use e values that span the range

of eccentricities with tighter spacing towards low-to-moderate values, since these are more

common. We select an array of possible e values which are evenly spaced on a log scale:

e ∼ [0.05, 0.1, 0.2, 0.4, 0.8]. Additionally, the ω values that we draw upon for our grid of

injected parameters are intentionally selected to include the inflection points of periastron

(π/2 or 90◦) and apastron (3π/2 or 270◦) along with three roughly evenly spaced values in

between: ω ∼ [90◦, 132◦, 178◦, 226◦, 270◦].

We construct a set of 375 unique transit lightcurves from all combinations of {b, e, ω, SNR}

using the batman transit modeling package (Kreidberg 2015). We synthesize these injected

lightcurve models with an oversampling rate of 11 and texp = 30 minutes, similar to real

Kepler photometry. These lightcurves serve as inputs to the two modeling methods that we

are comparing, described below, in order to demonstrate similarities and differences in model

performance across a range of potential transit signals (see Figure 5.2 for an overview).
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Table 5.1: Transit Model Parameters and Priors

Parameter Input Value(s) Prior

P (d) 26.1 fixed

t0 (d) 1.0 t0 ∼ N(1.0, 0.1)

r 0.03 logr ∼ U(-9, 0)

b [0.1, 0.48, 0.7, 0.83, 0.9] b ∼ U(0, 1 + r)

u1, u2 {0.4, 0.25} fixed

µflux 0 fixed

σflux derived fixed per lightcurve

T14 (d) derived logT14 ∼ U(-9, 0)

e [0.05, 0.1, 0.2, 0.4, 0.8] e ∼ U(0, 0.92)

ω (◦) [90, 132, 178, 226, 270] ω ∼ U(-90, 270)

ρ⋆ (g/cm3) 1.41 (e.g. ρ⊙) ρ⋆ ∼ N(1.41, 0.141)

Note. — All parameters used in the models discussed

throughout this analysis, along with their units, input values,

and associated priors (if applicable). Priors include normal (N)

and uniform (U) distributions. b, e, and ω each have five input

value options that form a grid of possible injected transit signal

properties. We note that the priors on e and ω can also be

represented via the transform {e, ω} → {√e sinω,
√
e cosω} ∼

UniformDisk(
√
0.92).

98



Sample directly in  
e, ω, and 𝝆

Sample directly in 
T14 (with umbrellas)

Importance sample 
for e, ω, and 𝝆

-90° 0° 90° 180° 270°

0.8

0.6

0.4

0.2

0

e

-90° 0° 90° 180° 270°

0.8

0.6

0.4

0.2

0

e

ω

Com
pared in Section 5

Described in Section 3

Described in Section 4

Described in Section 2

b = 0.7
e = 0.2
ω = 90°
SNR = 80

Method #1

Method #2

Figure 5.2: Diagram demonstrating an overview of our modeling procedure, from an input

synthetic lightcurve to output e and ω constraints via both the e–ω–ρ (orange) and T14+umb

(blue) modeling methods.

5.4 Method #1: Direct sampling in e–ω–ρ

We first model our synthetic transit lightcurves using the e–ω–ρ model, which serves as our

baseline model and standard reference when evaluating the performance of our proposed T14+

umb model. This physically-motivated transit model is parameterized by {P, t0, r, b, ρ⋆, e, ω},
along with quadratic limb darkening parameters {u1, u2}. Since we simulate lightcurves with

white noise, we fix µflux and σflux which would otherwise be directly sampled parameters when

modeling real transit photometry.

We construct the e–ω–ρ model using uninformative priors that are of standard use in transit

fitting literature or drawn directly from G22, summarized in Table 5.1. We apply a normal

prior on ρ⋆ which assumes that the stellar density is known with 10% uncertainty through

independent measurements. To mitigate boundary issues that can occur when sampling e

and ω directly, we use a common redefinition of these parameters {√e sinω,
√
e cosω} (see,
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e.g. Eastman et al. 2013a), with implicit uniform priors on both e and ω. These priors

do not account for transit probability or other astrophysically motivated considerations (see

Barnes 2007a).

We implement this model using exoplanet (Foreman-Mackey et al., 2021b), with sampling

performed by the NUTS algorithm via PyMC3 (Salvatier et al., 2016b). We use 30,000 tuning

steps with an additional 40,000 sampler draws to ensure that the sampler converges with

an effective sample size Neff ≈ 103. We also set a high target acceptance fraction of 0.99 to

encourage the sampler to adequately explore complex topologies in the posterior parameter

space, such as the b− r and e− ω degeneracies. This sampling process is performed via two

sampler chains across two CPU cores.

From initial experimentation, we found that sampler limitations exist which restrict the

valid parameter space of eccentricity modeling when applying the e–ω–ρ parameterization

via NUTS sampling with exoplanet. When sampling e ≳ 0.92, this implementation of

the e–ω–ρ model can have convergence issues due to the high curvature of the posterior

parameter space being traversed. This also roughly corresponds with the upper eccentricity

limit where we expect transit duration approximations to begin breaking down (see, e.g.

Kipping 2014a). Given that only 5 known planets have e > 0.9 and only one of these was

discovered via transit modeling, we choose to restrict our eccentricity sampling to e < 0.92

for all modeling approaches considered in this work. By doing so, we avoid conflating our

primary interest – differences in modeling methods – with rare edge cases that are beyond

the scope of this work.

5.5 Method #2: Direct sampling in T14, then importance sampling

in e–ω–ρ

Our alternative transit modeling approach, the T14+umb model, has a parameter basis that

includes the observable transit duration T14 as an explicit parameter. This parameterization
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avoids explicitly sampling the complex degeneracies introduced by e and ω, allowing us

to instead measure these parameters post-hoc via importance sampling (see 5.5.2). We

couple this duration-based parameterization with umbrella sampling (see Gilbert 2022) to

ensure that our model accurately samples the complicated topology of the high-b “grazing”

parameter space. Based on the arguments made in both G22 and Gilbert (2022), we expect

that our T14 + umb approach should achieve results that are consistent with those from the

e–ω–ρ model with a potential boost in efficiency.

5.5.1 Transit fitting

Similar to our implementation of the baseline e–ω–ρ model, we also construct our T14+umb

model via exoplanet with NUTS sampling and use it to model our synthetic transit signals.

This parameterization is motivated by observable transit properties and characterized by the

basis {P, t0, r, b, T14}. Like the e–ω–ρ model, the T14 + umb model also includes quadratic

limb darkening parameters {u1, u2} as well as fixed values of µflux and σflux. The priors used

here are identical to those used in our e–ω–ρ model, summarized in Table 5.1. Neither e

nor ω is explicitly constrained during the sampling process here, and their values are instead

estimated from post-model importance sampling. This parameterization is thus agnostic to

orbital eccentricity, except for the implicit assumption of a symmetric transit. This is a

reasonable approximation since the acceleration of an eccentric planet during its transit is

unlikely to introduce detectable asymmetry given modern photometry (Barnes, 2007a).

To improve both the sampling convergence and the exploration of complex posterior topolo-

gies, we follow Gilbert (2022) to implement umbrella sampling. We separate our NUTS

sampler into three windows (i.e. “umbrellas”) defined within the joint {r, b} parameter space,

which allows us to sample the full posterior parameter space in smaller pieces that are easier

to explore. The resulting posteriors can later be stitched together by applying the appropri-

ate umbrella weights. The three umbrella windows that we use correspond to non-grazing

and grazing orbits separated by a region that we refer to as the transition umbrella, which
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partially overlaps with the other two (see Gilbert 2022 for full description). In our implemen-

tation, we apply the three umbrella models in series but emphasize that this task can easily

be parallelized to reduce the apparent wall-clock run-time. In the Appendix, we also discuss

a potential alternative to umbrella sampling, known as dynamic nested sampling (see, e.g.,

Skilling 2004; Skilling 2006), which achieves roughly comparable results.

5.5.2 Importance sampling

To recover {e, ω} samples from the T14 + umb modeling approach, we apply post-hoc im-

portance sampling to the combined umbrella model posterior distributions. Importance

sampling (see, e.g., Oh & Berger 1993; Gilks et al. 1995; Madras & Piccioni 1999) allows

one to measure the properties of a given parameter’s probability distribution based on sam-

ples generated from a different (typically easier to sample) parameter’s distribution. This

method was first incorporated into exoplanet characterization models by Ford (2005) and

Ford (2006), used in combination with MCMC sampling to improve radial velocity model

efficiency. Such methods can be useful to correct for observational biases post-hoc or derive

the distributions of more complicated distributions outside of the MCMC sampling routine.

Importance sampling is closely related to umbrella sampling, and the former can be thought

of as a single-window special case of the latter. In our implementation, importance sampling

only marginally increase the total run-time of the T14 + umb approach by a few seconds.

We first compute the relative weights of the three umbrella models following Gilbert (2022)

and combine our posterior chains into a single set of weighted posterior distributions. Since

the umbrella weights effectively reduce the total number of samples, we up-sample the merged

posterior distributions via random resampling to generate a total of 105 samples per param-

eter for convenience. We then perform importance sampling to weigh how well the measured

values of {P, r, b, T14} at each sampler step can be described by an independently measured

density of the host star. We will refer to this independent stellar density as ρ⋆,true, with

some uncertainty σρ⋆,true . To determine the appropriate importance weights, we first cal-
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culate the sampler-derived stellar density, ρ⋆,samp, at each point in the umbrella-weighted

posterior. This calculation directly follows from the transit duration equation described by

Winn (2010a):

ρ⋆,samp =
3π

GP 2

 (1 + r)2 − b2

sin2
(

T14π
P

1+e sinω√
1−e2

) + b2

3/2

. (5.3)

We note that Equation 5.3 explicitly includes e and ω, for which we do not yet have any

information. We substitute these parameters with random draws of {e, ω} from uniform

priors e ∼ U(0, 0.92) and ω ∼ U(−π
2
, 3π

2
). By deriving ρ⋆,samp from measured values of

{P, r, b, T14} and random uniform values of {e, ω}, we ensure that ρ⋆,samp reflects a true stellar

density as opposed to the pseudo-stellar density parameterization which assumes e = 0 and

was deemed unreliable by G22.

We compare the samples of ρ⋆,samp against the independently measured ρ⋆,true by computing

the log-likelihood of each ith sample,

logLi = −1

2

(ρ⋆,samp,i − ρ⋆,true

σρ⋆,true

)2
, (5.4)

assuming a Gaussian likelihood function. We then weight each sample from our umbrella-

weighted posterior distributions by

wi =
Li∑
i Li

(5.5)

to produce the final, importance-weighted posterior distributions for each parameter. We

apply these same weights to the random uniform {e, ω} samples to derive the final posterior

distributions of these two parameters. All analysis in this work regarding the T14+umb model

is based on these posterior distributions that have bean umbrella-weighted, up-sampled,

and importance-weighted. The final posterior distribution of e that we measure using our

T14 + umb modeling approach can thus be directly compared to the e posterior from the

e–ω–ρ model.
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We therefore can use the T14 basis {P, t0, b, r, T14} along with an independently constrained

ρtrue to derive posterior distributions for all parameters represented by the e–ω–ρ basis

{P, t0, b, r, e, ω, ρ⋆}. With the T14 basis, we have the advantage of avoiding introducing

significant stellar constraints (i.e. ρ⋆) until after the transit has already been fully modeled.

Thus, our T14+umb model only needs to be run once while the e–ω–ρ model would have to be

re-run for each updated measurement of stellar density. The post-hoc importance sampling

step can easily be re-run for an updated ρ⋆,true value (or different priors on e or ω) within

only a few seconds, making our T14 + umb modeling approach essentially future-proof. In

the era of Gaia and high-precision stellar characterization, such future-proofing will become

increasingly valuable.

5.6 Results

5.6.1 Both methods return equivalent eccentricity constraints

We fit 375 injected transit signals from our grid of injection-recovery tests using both the e–

ω–ρ baseline model and our T14+umb modeling approach. We measure all transit parameters

using both modeling approaches, including e and ω. The posterior distributions of e, ω, and

b serve as our primary points of comparison between the baseline model and our alternative

modeling approach. Here, we specifically focus our analysis on e, since b (and its relationship

with r) was already covered in G22 and ω is often a nuisance parameter in photometric

modeling. We use posterior comparisons of ω and b for secondary analysis when necessary.

We perform a quantile-quantile comparison of the posterior values ek at the k = 15th, 50th,

and 85th percentiles of the eeωρ and eT14+umb eccentricity distributions. In Figure 5.3, we

present a comparison of ek from both modeling methods at each of the key percentiles for all

injection-recovery tests. We see that all tests at each percentile are close to the 1-to-1 line

(black), demonstrating that the two modeling methods produce nearly equivalent posterior

results for e.
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Figure 5.3: Comparison of e values measured from the T14 + umb and e–ω–ρ modeling

methods at the 15th, 50th, and 85th percentiles of their distributions. We show ∆ek = {0.05,

0.1, 0.15} in grey, as well as the ideal 1-to-1 line shown in black. These comparisons generally

lie close to the 1-to-1 line, implying that the results of the two models are approximately

equivalent.

We compute the difference ∆ek (e.g. ∆e50 = e50,umb − e50,eωρ) and use this as a measure

of similarity between the two model results. To estimate the significance of ∆ek for each

posterior comparison, we assume a standard eccentricity uncertainty of σe = 0.05, informed

by the typical uncertainty on e measured among all known planets (σmedian(e) ≈ 0.05; NASA

Exoplanet Science Institute 20201). For injection-recovery tests where |∆ek| ≲ 0.05 at the

15th, 50th, and 85th percentiles of eccentricity, we assert that the e–ω–ρ and T14+umb methods

produce equivalent results. Among multiple iterations of our suite of injection-recovery tests,

we did not identify any tests which consistently produced posterior measurements for e that

differed by |∆ek| ≲ 0.05 (see Figure 5.3). This suggests that our approach is an excellent

alternative to the e–ω–ρ method, since the two methods should converge on identical results

(as opposed to ∼68% identical).

We also consider how ∆ek differs as a function of both the lightcurve SNR and the injected

transit duration T14. Specifically, we consider the ratio between T14 and the expected du-

1NASA Exoplanet Archive data retrieved on 2023 February 23
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ration of the same planet on a circular, centrally transiting orbit (the reference duration,

T14,ref): T14/T14,ref. This duration ratio is a more concise metric to interpret the effects of

e, ω, and b on the duration of a transit. While we observe no trend in ∆ek with respect

to SNR, we do note a marginal trend in ∆ek as a function of T14/T14,ref across our sample.

We find that the T14 + umb model estimates slightly higher e values than the e–ω–ρ model

at short transit durations and vice-versa at long transit durations, but the deviations that

contribute to this trend are sub-significant. We ultimately conclude that the two modeling

methods produce equivalent eccentricity measurements (within a reasonable uncertainty) for

virtually all tenable combinations of {e, ω, b, SNR}.

5.6.2 Both methods return accurate results

We have demonstrated that our alternative transit modeling approach produces equivalently

accurate results relative to our baseline model, but we have not yet considered if these

models yield the correct results (relative to the injected parameters). It is known in the field

of exoplanet characterization that photometric eccentricity constraints (and ω constraints)

tend to have large uncertainties for individual planets (see, e.g. Van Eylen et al. 2019). Here,

we qualitatively assess these uncertainties across our set of injection-recovery tests.

Since our sample is not representative of the observed planet population, we describe the

observed trends among our e measurements according to different quadrants of e− b param-

eter space. We split up our tests into four broad scenarios based on their injected transit

properties: (1) low e and low b, (2) low e and high b, (3) high e and low b, (4) high e and

high b. We show demonstrative examples of of these four scenarios in Figure 5.4 with several

ω values, all at SNR = 20. In all four quadrants, the posterior distributions of e and b are

broad, non-Gaussian, and display a range of outcomes, but we describe the general trends

that we observe below. We also offer some additional discussion regarding how ω can affect

these posterior constraints. We limit our discussion to only the posterior distributions of the

T14 + umb modeling approach since the two approaches produce nearly equivalent results.
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Figure 5.4: Qualitative diagram showing the relative accuracy of measuring e and b from

transit photometry in four distinct quadrants of e − b parameter space, at three different

ω values. The four scenarios shown are (Top Left) low-e and low-b, (Bottom Left) low-e

and high-b, (Top Right) high-e and low-b, and (Bottom Right) high-e and high-b. Across all

areas of e− b parameter space, the T14 + umb (blue) and e–ω–ρ (orange) modeling methods

perform equivalently.
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In scenario 1 (low e and low b), transit models accurately measure low values for both e and

b with little posterior mass at higher values (Figure 5.4, top left), regardless of ω. In scenario

2 (low e and high b), models tends to significantly overestimate e but produce more accurate

measurements of b (Figure 5.4, bottom left), regardless of ω. The opposite is true in scenario

3 (high e and low b) where b tends to be overestimated while e is measured more accurately

(Figure 5.4, top right), except near apastron where both are measured fairly accurately.

In scenario 4 (high e and high b), transit models tend to accurately measure high values

for both parameters with little posterior mass at lower values (Figure 5.4, bottom right),

except near apastron where neither is measured well. We avoid providing a quantitative

description of these observed trends because the non-Gaussian posterior distributions are

not well-represented by simple summary statistics.

When e is high (e.g. scenarios 3 and 4), the value of ωtrue can significantly impact the

posterior constraints on e and b due to the degenerate influence that these parameters can

have on the observed transit duration, particularly near apastron. On the other hand, we

do not observe any noteworthy trends in model accuracy as a function of SNR. For a typical

Kepler planet which has low e, non-grazing b, and ω closer to periastron, we would generally

expect to measure e and b posterior distributions that are somewhat consistent with the true

underlying orbital geometry of the planet based on the trends that we observe in Figure 5.4.

In Appendix 5.8, we briefly explore whether using a different sampler (i.e. dynamic nested

sampling via dynesty; Speagle 2020) might yield even more accurate posterior constraints,

but our findings there are inconclusive.

5.6.3 Our T14 + umb method is more efficient than the e–ω–ρ method

We have shown that the T14 + umb basis can be used as an alternative to the e–ω–ρ basis,

achieving equivalent results while also reducing the number of parameters by two. This

parameter reduction should increase the efficiency of the T14+umb model, but this approach

also requires three separate sampling runs – one for each of the three umbrellas. To evaluate
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the overall model efficiencies, we compared the number of effective samples per second (η)

achieved by each method for all injection-recovery tests.

For the e–ω–ρ method, we measure the number of effective samples from the r posterior

distribution for each test using Geyer’s initial monotone sequence criterion via arviz (Geyer

1992; Gelman et al. 2013; Kumar et al. 2019). We select r because it is a common output

between our models and is less affected by complicated parameter degeneracies. We then

divide Neff by the total run-time for this model to achieve the e–ω–ρ sampling efficiency:

ηeωρ. For the T14 + umb method, we average Neff of the r posteriors from each umbrella

model, weighted by their respective umbrella weights. We divide this weighted average by

the sum of the run-times for the three umbrella models (e.g. the CPU run-time) to achieve

the overall T14 + umb sampling efficiency: ηT14+umb.

We calculate the ratio of these two efficiencies for all injection-recovery tests and find that

ηT14+umb/ηeωρ > 1 for ∼73% of tests, suggesting that the T14 + umb approach is generally

more efficient across our set of injected planet parameters. The median value of ηT14+umb/ηeωρ

across our sample is 2.0, implying that the T14+umb approach is typically 2× more efficient

than the e–ω–ρ method, although the range of this efficiency ratio is broad. When we consider

ηT14+umb/ηeωρ as a function of SNR, however, we measure a median efficiency increase of 5.7×
at SNR = 80, 1.2× at SNR = 40, and 1.1× at SNR = 20 (see Figure 5.5). We also find that

the T14 + umb method is only more efficient than the e–ω–ρ method in ∼52% of low-SNR

tests. These findings suggest that the T14 + umb method tends to be less efficient when the

transit signal is weaker.

From Figure 5.5, we also see that the efficiency ratio changes with respect to the duration

ratio T14/T14,ref. For tests with SNR = 20, the median efficiency ratio ηT14+umb/ηeωρ decreases

significantly as the duration ratio increases, dropping from 2.1× at T14/T14,ref ≤ 0.8 to 0.6×
at T14/T14,ref > 0.8. This trend is likely due to differences in how the two methods explore

the high-b grazing regime. As the duration ratio approaches unity or higher, high b values
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Figure 5.5: Ratio of sampling efficiencies ηT14+umb/ηeωρ as a function of duration ratio

T14/T14,ref and SNR. We bin the data across every 10th percentile of the duration ratio

distribution, showing a single point per bin per SNR (bins are separated by vertical grey

lines). Each point shows the 15th, 50th, and 85th percentiles of a given bin. The increased

efficiency of the T14+umb method relative to the e–ω–ρ method depends on the SNR of the

modeled lightcurve. At higher SNR the T14+umb method is significantly more efficient, but

at moderate-to-low SNR the two methods have more similar efficiencies. At shorter transit

durations, the T14 + umb method is always more efficient, but this behavior changes around

T14/T14,ref ≈ 0.8. The large spread in some uncertainties reflects the heterogeneity of our

injected lightcurve parameters.

are significantly less likely, but the T14 + umb approach continues to carefully explore the

high-b regime via three umbrella models even when it is not necessary. On the other hand,

injection-recovery tests with higher b values (and generally shorter transit durations) are

more efficiently sampled by the T14 + umb approach. This behavior is consistent with what

we would expect, given that umbrella sampling is specifically intended to ensure accurate

measurements of the high-b parameter space.

Our set of injected transit properties, however, is not completely representative of observed

planet demographics. To make a more representative comparison, we estimate the efficiency

ratio for a typical Kepler planet based on both SNR and duration ratio T14/T14,ref. We use
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the latter metric because it reflects the combined effects of e, b, and ω in a single variable.

For a typical confirmed Kepler planet with SNR ≈ 20 − 40 and T14/T14,ref ≈ 0.6 − 1.1,

we estimate an efficiency ratio of ∼0.9×. Based on these findings, we assert that the two

methods generally have similar sampling efficiencies for real planetary transit signals, with

the T14 + umb approach excelling for signals with higher SNR or lower duration ratio.

The efficiency increase from the T14 + umb approach is more significant when we consider

wall-clock time rather than CPU time. Since the three umbrella models can be run in

parallel, we can reduce the apparent run-time of the T14+umb approach by up to a factor of

a few. In this parallelized case, the apparent sampling efficiency of the T14 + umb method is

∼1.2× faster than the e–ω–ρ method for a typical Kepler planet. As another added benefit,

the posteriors of the T14 + umb approach can be importance sampled for updated values of

ρ⋆ (as they become available) without re-running the NUTS sampling process (see §5.5.2),

which is a major advantage in the long-term efficiency of the T14 + umb parameterization.

5.7 Conclusions

In this work, we presented an updated photo-eccentric transit modeling method using a

duration-based parameterization {P, t0, r, b, T14} (with umbrella sampling) and post-hoc im-

portance sampling which efficiently achieves accurate constraints on e, ω, and b. Through a

suite of synthetic injection-and-recovery tests, we demonstrated that our approach produces

equivalent eccentricity constraints relative to the more common eccentricity-explicit transit

model parameterization {P, t0, r, b, e, ω, ρ}. We find that our modeling method generally has

a higher sampling efficiency than the e–ω–ρ method when the true e or b value is high or

a similar efficiency otherwise. Our approach can also be parallelized to increase its relative

sampling efficiency several-fold more.

A key advantage of our modeling method is that post-hoc importance sampling allows us to

successfully derive accurate e and ω posterior distributions (relative to the e–ω–ρ method)
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without including e, ω, or ρ as explicit model parameters. Our importance sampling routine

is fast and flexible enough to easily incorporate an updated prior on e and/or ω, which is

critical for hierarchical modeling approaches at the population level. Our method also allows

us to update parameter posterior distributions according to updated values of ρ⋆ (e.g. from

new Gaia data releases) without any loss of generality. In the modern era of high-precision

stellar characterization, this sort of “future-proofing” will be invaluable as the number of

transit candidates around well-characterized stars continues to grow.

5.8 Appendix 5A: Sampler comparison: NUTS vs. Nested Sam-

pling

In the previous sections, we demonstrated that the baseline e–ω–ρ model and our alterna-

tive T14 + umb approach yield equivalent results when posterior samples are obtained using

MCMC methods. Unfortunately, we also saw that posterior inferences of eccentricity can be

significantly over- or under-estimated relative to their true values. Here, we explore whether

using a different sampling technique – dynamic nested sampling (Skilling 2004; Skilling 2006)

– can yield more accurate results and/or serve as a potential alternative to NUTS sampling

with umbrella sampling.

We implement the duration-based parameterization using the dynesty framework for dy-

namic nested sampling (Speagle 2020), which does not necessitate the use of umbrella sam-

pling because it already accomplishes the same goal of thoroughly exploring complicated

posterior topologies. To model the transit shape and measure the log-likelihood at each

sampler step, we use a modified version of batman which takes {P, t0, r, b, T14} as explicit

transit parameters (in contrast to the default set {P, t0, r, b, e, ω, ρ⋆}). As before, we per-

form post-hoc importance sampling to obtain {e, ω, ρ⋆} samples. We apply this alternative

modeling method, T14+dyn, to all 375 injection-recovery tests in an identical manner as the

previous models.
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5.8.1 Posterior comparison

For each injection-recovery test, we measure the values ek,T14+dyn from the T14 + dyn eccen-

tricity posterior at the k = 15th, 50th, and 85th percentiles of the distribution and compare

to the results of the T14+umb method like in §5.6.1 (Figure 5.6). We find that the T14+umb

and T14 + dyn methods yield eccentricity results that are broadly in agreement. However,

there appears to be more differences between samplers (T14 + umb versus T14 + dyn) than

between parameterizations (T14+umb versus e–ω–ρ ). The comparison between parameteri-

zations yielded no test results that consistently differed by |∆ek| ≥ 0.05, but the comparison

between samplers yields 42 of such discrepancies. Among these, there are three tests that

differ by |∆ek| ≥ 0.15 and yield entirely different posterior topologies for e.

The discrepant measurements of ∆ek are most common at the k = 15th percentile, implying

that the two sampling methods differ most at sampling the low-e tail of the eccentricity

distribution. We observe that the T14 + dyn method produces e posterior distributions

with much less posterior weight in the low-e tail as compared to the results of the T14 +

umb approach. We also see a similar divergence of the two methods in the upper tail of

the b posterior distributions. This is consistent with our additional observation that the

majority of the discrepancies occur in tests with shorter duration ratios (T14/T14,ref ≲ 0.5).

Most discrepancies also occur at higher SNR levels, counter to expectations. Together,

these criteria for discrepant results only match with ∼1% of observed Kepler transit signals,

implying that real systems are highly unlikely to fall into this subset.

5.8.2 Accuracy

We compare the true underlying eccentricity of each injection-recovery test with the mea-

sured posterior distribution of e from the T14 + dyn modeling method. Overall, we find that

the qualitative trends in e and b measured via the T14 + dyn method are roughly equivalent

to those measured from the T14 + umb method (see §5.6.2). We do, however, find a signifi-
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Figure 5.6: Comparison of e values measured from the T14 + umb and T14 + dyn modeling

methods at the 15th, 50th, and 85th percentiles of their distributions. We show the ∆ek =

{0.05, 0.1, 0.15} in grey, as well as the ideal 1-to-1 line shown in black. These comparisons

generally lie close to the 1-to-1 line, implying that the results of the two models are approx-

imately equivalent. However, we do observe 42 tests where the T14 + umb and T14 + dyn

model results are discrepant by more than |∆ek| ≲ 0.05.

cant difference between the accuracies of the two modeling methods among the three most

discrepant injection-recovery tests, where |∆e50| ≥ 0.15. For these discrepant tests, seen as

outliers in Figure 5.6, the T14 + dyn method achieves more accurate posterior constraints

on both e and b. This may suggest that differences between samplers can, in some cases,

lead to significant differences in the accuracy of modeled parameters. While all three of

these tests have etrue = 0.8, we unfortunately do not find any discernible rules by which to

distinguish when sampler differences will lead to substantial differences in the accuracy of

posterior results.

5.8.3 Efficiency

We also compare these two modeling approaches according their sampling efficiencies. We

calculate the efficiency ηT14+dyn of the T14 + dyn approach for each injection-recovery test,

based on the number of effective samples measured via the Kish 1965 approach using

dynesty. Similar to §5.6.3, we compute the efficiency ratio between the T14+dyn model and
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Figure 5.7: Ratio of sampling efficiencies ηT14+umb/ηT14+dyn as a function of duration ratio

T14/T14,ref and SNR. We bin the data across every 10th percentile of the duration ratio

distribution, showing a single point per bin per SNR (bins are separated by vertical grey

lines). Each point shows the 15th, 50th, and 85th percentiles of a given bin. The efficiency

of the T14 + umb method relative to the T14 + dyn method depends partially on the SNR

of the modeled lightcurve. At shorter transit durations, the T14 + umb method is typically

more efficient, but the opposite is true at longer transit durations. The large spread in some

uncertainties reflects the heterogeneity of our injected lightcurve parameters.

our T14+umb approach (ηT14+umb/ηT14+dyn) and show these results in Figure 5.7. The distri-

bution of efficiency ratios among our sample is broad but suggests that the two methods gen-

erally have similar sampling efficiencies, with a median efficiency ratio of ηT14+umb/ηT14+dyn ≈
1.1. At lower duration ratios, the T14 + umb approach is ∼1.4× more efficient, which is to

be expected since this part of parameter space includes higher b values – the specialty of

umbrella sampling as implemented by Gilbert (2022).

For a typical Kepler planet, however, we estimate that the T14+dyn method is ∼1.6× faster

than the T14 + umb approach. This observation, along with an occasional improvement in

accuracy, leans in favor of dynamic nested sampling compared to NUTS sampling + umbrella

sampling for our tests, but there are many other compounding factors that are beyond the

scope of our experiment. Overall, both sampling methods offer their own benefits with
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neither winning out 100% of the time, but it is clear that the duration-based parameterization

performs well regardless of the underlying sampling method.
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CHAPTER 6

The TESS-Keck Survey. XV. Precise Properties of 108

TESS Planets and Their Host Stars

6.1 Abstract

We present the stellar and planetary properties for 85 TESS Objects of Interest (TOIs)

hosting 108 planet candidates which comprise the TESS-Keck Survey (TKS) sample. We

combine photometry, high-resolution spectroscopy, and Gaia parallaxes to measure precise

and accurate stellar properties. We then use these parameters as inputs to a lightcurve pro-

cessing pipeline to recover planetary signals and homogeneously fit their transit properties.

Among these transit fits, we detect significant transit-timing variations among at least three

multi-planet systems (TOI-1136, TOI-1246, TOI-1339) and at least one single-planet system

(TOI-1279). We also reduce the uncertainties on planet-to-star radius ratios Rp/R⋆ across

our sample, from a median fractional uncertainty of 8.8% among the original TOI Catalog

values to 3.0% among our updated results. With this improvement, we are able to recover

the Radius Gap among small TKS planets and find that the topology of the Radius Gap

among our sample is broadly consistent with that measured among Kepler planets. The

stellar and planetary properties presented here will facilitate follow-up investigations of both

individual TOIs and broader trends in planet properties, system dynamics, and the evolution

of planetary systems.
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6.2 Introduction

The NASA Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2015a) is currently in

its 5th year of carrying out an all-sky survey in search of transiting planets orbiting nearby

bright stars. So far, TESS has revealed over 6,000 planet candidates, building upon the

legacies of its predecessors, NASA’s Kepler (Borucki et al. 2010a) and K2 (Howell et al.

2014). These TESS Objects of Interest (TOIs) are now the subjects of numerous follow-up

studies to verify their planetary nature and measure their properties (e.g. Kane et al. 2021;

Teske et al. 2021; Chontos et al. 2022; Yee et al. 2022). The precise characterization of planet

properties, however, is greatly dependent on the robustness of the input stellar parameters

and lightcurve modeling procedure.

The TESS Input Catalog (TIC; Stassun et al. 2018, Stassun et al. 2019; ExoFOP 2019)

contains stellar parameters for all TESS targets which were measured from broadband pho-

tometry and parallaxes. These stellar properties were used as inputs to the TESS data

processing pipeline developed by the Science Processing Operations Center (SPOC; Jenkins

et al. 2016), which flags planet candidates as TOIs and performs an initial characterization

(Guerrero et al. 2021; NASA Exoplanet Archive 2022b). The propagation of large uncertain-

ties throughout this process can lead to miscalculated or poorly constrained planet radii for

TOIs, with a median fractional radius uncertainty of σ(Rp)/Rp ≈ 7.4% and a mean fractional

uncertainty of ∼20.2%. This large discrepancy between the median and mean uncertainty

is due to a significant high-σ(Rp) tail, with ∼1 in 5 TOIs having σ(Rp)/Rp > 20%.

The TESS-Keck Survey (TKS) has set out to confirm and characterize a sample of 108

TOIs orbiting 85 TESS host stars (Chontos et al. 2022). The TKS collaboration aims to

precisely measure the stellar properties of this sample using spectra taken with the High-

Resolution Spectrograph (HIRES; Vogt et al. 1994) on the Keck I telescope at the W. M.

Keck Observatory. These spectra also allow us to dynamically confirm the planetary nature

of the TKS TOIs through the measurement of precise radial velocities (RVs), leading to
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numerous planet discoveries among the TKS team (e.g. Dalba et al. 2020; Dai et al. 2020;

Weiss et al. 2021; Rubenzahl et al. 2021; Scarsdale et al. 2021; MacDougall et al. 2021; Dalba

et al. 2022; Lubin et al. 2022; Dai et al. 2022; Turtelboom et al. 2022; MacDougall et al.

2022; Van Zandt et al. 2022).

To ensure consistency among the planetary and stellar parameters reported for TKS targets,

we use the stellar parameters measured with our spectroscopic constraints as inputs to a

lightcurve detrending and transit fitting pipeline applied homogeneously to all TKS targets.

The planet properties derived by our pipeline allow us to begin addressing the major TKS

Science Cases (see Chontos et al. 2022), such as improving our understanding of planet bulk

compositions, system architectures and dynamics, planetary atmospheres, and the role of

stellar evolution in shaping planetary systems.

In this work, we describe our homogeneous characterization of both planetary and stellar

properties of TKS targets, derived from transit photometry and single stellar spectra. In §6.3,

we update the stellar properties reported by Chontos et al. 2022 with additional photometric

constraints and compare these results against those reported by the TOI Catalog and Gaia

Data Release 2. We also derive estimates of the quadratic limb darkening parameters for

each TOI host to set priors on our transit model. In §6.4, we describe the data processing

pipeline used to retrieve, detrend, and fit the lightcurve photometry for our target sample.

We account for both stellar variability and transit-timing variations in order to properly

model the transit signals. We use the results from our transit fits and stellar characterization

to derive various planet parameters in §6.5, including planet radius which we measure to a

median uncertainty of 3.8%. In §6.6, we offer some preliminary insight gained through this

analysis to begin addressing the science goals of TKS which will be evaluated in more depth

in future works by the TKS team. Planet masses, precise eccentricities, and non-transiting

companions are not addressed in this transit-focused study, and we leave that analysis to a

full radial velocity analysis by TKS collaborators (Polanski et al. 2023, in prep).
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6.3 Stellar Properties

6.3.1 Spectroscopic Constraints

The TKS collaboration has collected spectra for the 85 TOIs from Chontos et al. (2022) at a

spectral resolution of R = 50, 000 using the HIRES instrument at the W.M. Keck Observa-

tory (Vogt et al. 1994) from Summer 2019 to Fall 2022. We used iodine-free reconnaissance

spectra, with S/N ≈ 40/pixel across 3600 – 9000 Å, to check for rapid stellar rotation and

rule out spectroscopic false-positives. We also extracted stellar effective temperature Teff,

metallicity [Fe/H], and surface gravity logg from these spectra using two different methods

according to the estimated effective temperature per target. The two methods used were

SpecMatch-Syn (synthetic; Petigura 2015) and SpecMatch-Emp (empirical; Yee et al. 2017).

SpecMatch-Syn compares a given stellar spectrum to synthetic spectra generated by inter-

polating within a grid of modeled spectra from a library described by Coelho et al. (2005).

SpecMatch-Emp fits a stellar spectrum via direct comparison to observed optical spectra from

a dense library of stars with well-measured properties.

We initially processed the spectra of each target using both techniques and used their respec-

tive valid ranges of effective temperature to determine which set of derived properties is more

reliable for a given star. Specifically, we use SpecMatch-Syn measurements for stars with

estimated effective temperature between 4800 – 6500 K, as determined by SpecMatch-Emp.

For stars with estimated Teff beyond this range (i.e. Teff < 4800 K and Teff > 6500 K), we

use SpecMatch-Emp measurements. In cases where SpecMatch-Emp is used, the SpecMatch

model does not output an estimate of logg.

6.3.2 Isochrone Modeling

6.3.2.1 Input values

We derive additional stellar properties such as mass M⋆, radius R⋆, density ρ⋆, luminosity

L⋆, age, and extinction Av using isoclassify (Berger et al. 2020a; Huber et al. 2017).
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This software interpolates between the MESA Isochrones and Stellar Tracks models (MIST;

Dotter 2016; Choi et al. 2016) to measure the best-fitting solution of stellar properties for

a given set of input spectroscopic and photometric constraints. For M-dwarfs, isoclassify

uses empirical relations from Mann et al. (2019) to derive fundamental stellar properties

(see Berger et al. 2020a for details). isoclassify has been shown to produce robust results

and was the foundation for deriving the Gaia-Kepler stellar properties catalog (Berger et al.

2020a).

We used the outputs of the preferred SpecMatch model per target as priors to constrain the

isochrone grid space explored by our isoclassify models. This includes priors on Teff and

[Fe/H] from either SpecMatch method, along with a prior on logg when SpecMatch-Syn is

preferred. We also include priors on stellar parallax drawn from Gaia DR2, with a median

uncertainty of 0.03 mas. We incorporate photometric inputs for several all-sky photomet-

ric bands from the 2MASS (Skrutskie et al. 2006) and Gaia missions to further constrain

our isoclassify results. These bands are 2MASS J , H, K and Gaia DR2 G, Bp, Rp,

from which various photometric colors are used to calibrate the underlying isochrone model

grid. We also select 2MASS K as the photometric band to be used for absolute magnitude

calculations during isoclassify modeling. All input parameter priors are assumed to be

normally distributed.

The inclusion of multiple photometric constraints allows us to fit for extinction directly using

isoclassify without needing to specify a generalized dust map (see, e.g. Lallement et al.

2019), making our extinction and metallicity estimates more accurate on a target-by-target

basis. This improves the accuracy of our stellar characterizations as compared to Chontos

et al. (2022) where only a single photometric band was used with a generalized dust map.

The median uncertainty for the 2MASS photometry that we use is 0.02 mag. To account for

systematic zero-point differences in photometric systems, we use a standardized uncertainty

floor of 0.01 mag for Gaia photometry.
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Figure 6.1: Stellar radius as a function of effective temperature for the 85 host stars in

the TKS sample, with metallicity shown as color gradient. The California-Kepler Survey

sample (Petigura et al. 2022) and the Gaia-Kepler sample (Berger et al. 2020b) are shown

for reference in dark and light grey, respectively.

With these inputs to isoclassify, we perform stellar characterization via isochrone grid

modeling to measure M⋆, R⋆, ρ⋆, L⋆, age, and Av for all 85 TKS targets, in addition to

spectroscopically constrained Teff, [Fe/H], and logg. This catalog of precise homogeneously

derived stellar properties will serve as a reference for all future TKS studies and as a resource

for the broader astronomy community. We show the relationship between R⋆–Teff–[Fe/H] in

Figure 6.1 for this sample, as compared to the distributions of both the California-Kepler

Survey sample (Petigura et al. 2017a) and the Gaia-Kepler sample (Berger et al. 2020b). We

note that the TKS sample includes a broad range of stellar types, similar to the distributions

of stars studied of similar past works.
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6.3.2.2 Uncertainties

The median uncertainties that we measure for R⋆, M⋆, Teff, and logg are reported in Ta-

ble 6.1, as compared against the original TOI Catalog source uncertainties (Guerrero et al.

2021; NASA Exoplanet Archive 2022b). We do not currently account for model-dependent

uncertainties associated with the MIST models to maintain consistency with the reported

uncertainties by the TOI Catalog and Gaia DR2 catalog. The appropriate corrections (de-

scribed by Tayar et al. 2022) can be added in quadrature to our error values to encapsulate

this systematic error. When we perform this correction, we find updated median fractional

uncertainties of 4.5%, 4.0%, 1.3%, and 0.6% for R⋆, M⋆, Teff, and logg, respectively. Most

notable among these is the change in the stellar radius uncertainty, which increased from

1.7% to 4.5% when the systematic error was introduced. This ultimately propagates to an

increase in the median Rp uncertainty as well, from 3.8% to 5.8%. Even with this additional

systematic uncertainty on Rp, our results remain better constrained compared to the TOI

Catalog.

We also note that two targets from the TKS sample have missing or erroneous 2MASS

catalog uncertainties. TOI-1807 has an anomalously large K-mag uncertainty (σK = 10

mag) and TOI-1246 is missing an uncertainty value for J-mag. We replaced both of these

with a standardized uncertainty value of 0.02 mag, roughly consistent with the median errors

for these bands among our sample.

6.3.2.3 Comparison with TOI Catalog and Gaia results

To validate our stellar parameters, we compared our final values of Teff and R⋆ from isoclassify

with the TOI Catalog and Gaia DR2. We show these comparisons in Figure 6.2. The stellar

parameters measured from these external sources were calculated using either photometry

with parallaxes (TOI Catalog; Stassun et al. 2018) or a combination of photometry with

parallaxes and low-resolution spectra (Gaia DR2; Bailer-Jones et al. 2013).
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For each comparison, we calculated the ratio of the given parameter between our TKS

results and the external source data (i.e. R⋆,TKS/R⋆,TOI) to demonstrate the lack of bias in

these results. We measured the mean and standard deviation of these ratio distributions

for each comparison and found: (Fig. 6.2a) R⋆,TKS/R⋆,Gaia = 0.99 ± 0.04, (Fig. 6.2b)

Teff,TKS/Teff,Gaia = 1.00 ± 0.01, (Fig. 6.2c) R⋆,TKS/R⋆,TOI = 0.99 ± 0.03, and (Fig. 6.2d)

Teff,TKS/Teff,TOI = 1.00 ± 0.02. The scatter between our TKS results and the external data

source for each comparison was consistent with the reported parameter uncertainty. This

implies a general agreement between our TKS stellar parameters and those reported by

external data sources. We do find that the Gaia DR2 pipeline produces overestimated Teff

for cooler TKS stars, but this is consistent with a known degradation in the precision of the

Gaia DR2 pipeline around Teff ≈ 4000 K (Andrae, René et al. 2018).

From these comparisons, we flag two targets with discrepancies of >3σ between our results

and the values reported from the external data sources. TOI-2145 had an estimated ef-

fective temperature whose uncertainty spanned across the threshold of reliability between

SpecMatch-Emp and SpecMatch-Syn. Selecting between these two methods following the cri-

teria in §6.3.1 yielded a radius measurement for this target that was inconsistent with both

the TOI Catalog and Gaia DR2 estimates. By manually swapping methods and allowing for

an exception to these rules, we found good alignment between our final radius measurement

and the values reported from the other two sources. The remaining flagged target (TOI-

2114), which can be seen in Figure 6.2d, has a discrepant Teff when we compare our result

to the TOI Catalog. However, our result remains highly consistent with the Teff reported by

Gaia DR2 and other external sources. Given this observation and the relatively large uncer-

tainties reported by the TOI Catalog, we attribute the disagreement to slight differences in

modeling methods and proceed without making any adjustments for this particular target.
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Figure 6.2: Stellar radius (left) and effective temperature (right) as measured by our stellar

characterization procedure (TKS) on the y-axis compared to the values reported by the Gaia

DR2 pipeline (top) and the TOI Catalog (bottom) on the x-axis. The TKS results produce

reduced uncertainties and are generally consistent with one or both external sources. The

residuals of our comparison between R⋆,TKS and R⋆,TOI can be seen in Figure 6.6a. We also

note that the Gaia DR2 pipeline does not report stellar properties when R⋆,Gaia ≲ 0.5R⊙,

leaving out two TKS targets.
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6.3.3 Limb Darkening

Stellar limb darkening is the decrease in brightness of the disk of star from its center towards

its edge or limb. A set of quadratic coefficients is often used to define this limb darkening

function, which describes the ingress and egress of a transit profile (Mandel & Agol 2002a).

An accurate estimate of limb darkening coefficients is crucial for measuring accurate planet

properties, especially for planets that transit closer to the limb of a star (e.g. higher impact

parameter or inclination).

There are two leading stellar atmosphere models that are widely used for calculating quadratic

limb darkening coefficients: the PHOENIX model (Hauschildt & Baron 1999) as implemented

by Husser et al. (2013) and the ATLAS models (Castelli & Kurucz 2004) as implemented

by Claret & Bloemen (2011). Investigations into the accuracy of these two methods (see,

e.g., Patel & Espinoza 2022) have demonstrated that such models produce quadratic limb

darkening coefficients with an average discrepancy of ∼0.1. For reference, a typical quadratic

limb darkening value for a solar-like star is in the range 0.1 – 0.5, so an uncertainty of 0.1

is typically >20% of the nominal measurement. Additionally, this formal uncertainty be-

tween methods only encompasses part of the true uncertainty that arises when measuring

these coefficients from atmospheric models. With this in mind, we use the limb-darkening

code (Espinoza & Jordán 2015) to easily compute both the PHOENIX-derived and ATLAS-

derived limb darkening coefficients for all targets in our sample. This derivation requires

several stellar inputs, which we draw from our isoclassify results: Teff, [Fe/H], and logg.

We then use these values to adopt nominal estimates of coefficients {u1, u2} for each target

with a systematic noise floor of 0.1.

Given the large uncertainty in these measurements, we establish a simple set of rules to

determine which set of limb darkening coefficients (ui) to use in deriving our final cata-

log of system properties. (1) When |ui,ATLAS - ui,PHOENIX| < 0.1, we select AVG(ui,ATLAS,

ui,PHOENIX) as the final coefficient values. (2) When |ui,ATLAS - ui,PHOENIX| ≥ 0.1, we select
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Table 6.1: TKS System Parameters: Median Fractional Uncertainties

Parameter TKS Result Unc. TOI Catalog Unc.

% %

Star R⋆ 1.7 5.1

M⋆ 3.0 12.6

Teff 1.2 2.3

logg 0.52 1.9

Planet Rp 3.8 6.7

Rp/R⋆ 3.0 8.8

T14 1.8 9.7

P 2.2× 10−4 3.8× 10−4

t0 7.1× 10−5 7.3× 10−5

Note. — Reported fractional uncertainties for several stellar

and planetary parameters compared between our TKS results

and those reported in the TOI Catalog, demonstrating our im-

proved precision across the TKS sample. The values presented

here do not account for systematic uncertainties that may arise

from differences in underlying stellar model grids (see §6.3.2.2).
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ui,ATLAS as the final coefficient values. These rules were established upon consideration of the

systematic comparison of these two methods carried out by Patel & Espinoza 2022. We also

assume a standardized uncertainty of 0.1 for all limb darkening coefficients among the TKS

sample, which is later propagated into a model prior during our transit fitting procedure.

6.4 Light Curve Modeling

6.4.1 Input Data

We perform our light curve detrending and modeling using transit photometry from Sectors

1–60 of the TESS mission. We accessed the Pre-search Data Conditioning Simple Aperture

Photometry (PDC-SAP; Stumpe et al. 2012; Stumpe et al. 2014; Smith et al. 2012) through

the Mikulski Archive for Space Telescopes (MAST). For the majority of TKS targets, we used

2-min-cadence time-series photometry processed by the primary TESS Science Processing

Operations Center pipeline (SPOC; Jenkins et al. 2016). For TOI-1386, 1601, and 2045,

photometry from the primary SPOC pipeline was unavailable, so we instead used PDC-SAP

photometry from the TESS-SPOC updated pipeline which produces lightcurves for targets

selected from full-frame image observations (Caldwell et al. 2020).

6.4.2 False-Positive Vetting

While false-positive vetting is not a primary focus of this work, we acknowledge that the

resolved false-positive rate amongst all TOIs is on the order of ∼20–30% (NASA Exoplanet

Archive 2022b; Cacciapuoti et al. 2022; Magliano et al. 2023). However, this is an extreme

upper bound for the TKS sample. We specifically selected our sample to include only TOIs

with unambiguous planetary dispositions confirmed by both the initial TOI vetting pipeline

(Guerrero et al. 2021) and the TESS Follow-up Program Working Group.

Additionally, all TKS targets were individually vetted by members of the TKS collaboration,

as detailed in Chontos et al. (2022). This vetting process allowed us to establish a set of
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Figure 6.3: Diagram demonstrating the flow of data throughout the TKS light curve modeling

pipeline. Yellow arrows are data inputs, grey boxes are processes, and blue ovals are data

products.

selection rules to minimize the risk of including unresolved false-positives in our final target

sample by making cuts based on transit S/N, out-of-transit centroid offsets, and the proximity

of stellar companions. Therefore, we suspect that the false-positive rate in the TKS sample

is much lower than the quoted upper bound, but we leave a quantitative assessment of this

value for later work. Should any of the TKS TOIs be deemed false-positives, the planetary

properties presented here would need to be revisited.

6.4.3 Lightcurve Pre-Processing

We apply the following pre-processing routine homogeneously across all lightcurves for the 85

TKS targets. A complete outline of this pre-processing routine and our subsequent modeling

pipeline can be found in a flowchart in Figure 6.3. We first mask all points that were flagged

for poor quality (quality flag > 0), with the exception of TOI-1456 for which a valid transit

signal is mistakenly flagged as scattered light contamination by the SPOC pipeline (see Dalba
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et al. 2020). We then normalize each lightcurve sector iteratively and subtract 1 from the

normalized flux values such that µflux = 0 for all sectors. We also flag four lightcurves as

having high stellar variability, which we determine based on whether or not the standard

deviation of a target’s out-of-transit flux is >3σflux, where σflux is the median uncertainty of

the individual photometric data points. These four targets are TOI-1136, 1726, 1807, and

2076. We also apply an upper sigma cut of 5σ to remove high photometric outliers among

targets that do not meet this high-variability criteria.

For light curves with low stellar variability, we perform a box least squares (BLS; Kovács

et al. 2002a) search to determine initial estimates of the orbital period and first transit mid-

point of each planet. We compare the BLS search results to estimates taken from the primary

TOI Catalog (NASA Exoplanet Archive 2022b), flagging any results with >3σ discrepancy

when compared to this source. We then follow up flagged targets with a manual inspection,

determining that all discrepancies are likely the result of new photometry assisting in pinning

down the orbital period with greater precision. In cases of high stellar variability, we do not

perform this initial BLS search and instead proceed with the values drawn directly from the

TOI Catalog or other literature as our initial guesses.

We use these period and mid-point values, along with transit durations from the TOI catalog,

to mask out all transits with a mask width of ±0.75 times the transit duration from the transit

mid-point. While this mask does not yet account for transit-timing variations (TTVs), we

use it here for an initial detrending step which we improve upon in our subsequent fit

in §6.4.5. With the masked photometry, we modeled stellar variability in each lightcurve

sector using a Gaussian Process (GP) via celerite2 (Foreman-Mackey 2018) through the

exoplanet interface (Foreman-Mackey et al. 2021a). The GP fit includes a term to model

the variability via a stochastically-driven damped harmonic oscillator with quality factor

Q = 1/
√
2, with log-normal priors on both the undamped period (ρGP) and the standard

deviation of the process (σGP) with means µρGP = 0 and µσGP = ln(σflux), respectively.
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We interpolate over the masked transits to create a smooth fit to the variability for each

lightcurve sector and subtract this trend from the original unmasked data to produce an

initial flattened lightcurve. We stitch together the flattened photometry for each sector and

save the maximum a posteriori (MAP) parameters for the GP fit which we use later as

informed initial guesses in a more complete lightcurve model.

6.4.4 Estimating TTVs

Along with determining an initial fit to the stellar variability trend, we also use the exoplanet

lightcurve modeling package to find an initial MAP fit to the transit times for each planet.

We use our previous P and t0 estimates to calculate a set of initial guesses for the transit

times assuming a linear ephemeris. We model the true transit times for each planet using an

initial Gaussian prior for each transit time, centered on their linear ephemeris values with

a standard deviation of 0.1 day. Along with the transit times, we also fit the planet-to-star

radius ratio (Rp/R⋆), impact parameter (b), transit duration from 1st-to-4th contact (T14),

quadratic limb darkening parameters (u1, u2), mean out-of-transit flux (µ), and lightcurve

jitter (σLC). The orbital period (P ) and initial transit mid-point (t0) are also measured

as derived values. The priors used on all modeled parameters are given in Table 6.2 and

described in more detail in §6.4.5.

This MAP fit to the transit shape and transit times allows us to get a quick estimate of

any TTVs detected for each planet. Based on these estimates, we determine for each planet

whether to proceed with a final model that assumes a linear ephemeris or includes transit-

time fits with a Gaussian prior. We use the following criteria to determine if the estimated

TTVs warrant further consideration in our full lightcurve model: (1) more than 3 high-quality

transits, (2) a TTV standard deviation greater than the photometric exposure time (i.e. 2

minutes), and (3) a single-transit signal-to-noise ratio of 2 or greater. Since we expect a

linear ephemeris for most planets in our sample, we do not offer an in-depth analysis of these

variations here and instead leave that analysis to later work (see §6.6.3 for more details).
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Table 6.2: Transit Model Priors

Parameter Prior

P (days) logP ∼ N(logPinit, 1)

t0 (days) t0 ∼ N(t0, init, 1)

Rp/R⋆ log(Rp/R⋆) ∼ U(-9, 0)

b b ∼ U(0, 1 +Rp/R⋆)

T14 (days) logT14 ∼ U(-9, 0)

ui ui ∼ N(ui,init, 0.1)

µ µ ∼ N(0, 1)

σLC logσLC ∼ N(logσflux, 1.0)

Note. — Priors on final transit model parame-

ters. P , T14, and t0 are all given in units of days,

with t0 using the reference frame BJD - 2457000.

Priors include normal (N) and uniform (U) dis-

tributions.
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6.4.5 Full Lightcurve Model

We use the MAP values of all model parameters from both our trend model and TTV

model as well-informed initial guesses for a complete MAP fit to the normalized lightcurve

photometry. We simultaneously fit for the stellar variability trend, transit times, and transit

shape using exoplanet with the same model priors as were used in our previous MAP fits.

This full model allows us to measure photometric variability via Gaussian Processes (as was

done in §6.4.3) while also accounting for the true transit shapes and times. We subtract this

MAP fit of the photometric variability to produce the final de-trended lightcurve for our

analysis (see Figure 6.4 for an example). We create a transit mask using the MAP values

from this full model fit to exclude out-of-transit photometry beyond ±2.5 T14,MAP from each

transit mid-point time, removing data that is uninformative of the transit fit in order to

improve posterior sampling efficiency.

With our fully de-trended photometry and TTV estimates from this full MAP fit, we build

our final model intended for posterior sampling and robustly fitting the transit shape. For

planets with TTV estimates below the thresholds described in §6.4.4, we assume a linear

ephemeris and do not directly fit transit times in the final model. Altogether, we fit for {P ,

t0, Rp/R⋆, b, T14, u1, u2, µ, σLC} and sometimes transit times {TTi}, conditioned on our

fully de-trended TESS lightcurve.

We apply priors to each of the lightcurve model parameters, briefly outlined below and in

Table 6.2. We apply Gaussian priors on t0, µ, u1, and u2, each centered on estimates that

were reasonably well constrained from earlier analysis. We use a log-normal prior on σLC to

ensure positive values, with µ(σLC) = log(σflux) and σ(σLC) = 1. For Rp/R⋆ and T14, we use

log-uniform priors with upper and lower bounds described in Table 6.2, designed to minimize

the effect that these boundaries have on the completeness of the posterior sampling. We also

model b with a uniform prior from 0 to 1+Rp/R⋆ to encompass the regime of grazing transits

in our posterior space.
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Figure 6.4: Before (top) and after (bottom) applying our de-trending and initial TTV fitting

procedure to the photometry of TOI-1136, a multi-planet system with high stellar variability.

We only show the first sector (Sector 14) of this target’s photometry here, but all sectors

display similar variability. We model our de-trended transit photometry and measure Rp/R⋆

values for all 4 planets which agree with the values reported by Dai et al. 2022 within ∼1.5σ,

as opposed to the TOI Catalog values which are all more than 1.5σ discrepant. Black points

highlight transits (±0.75 times T14), colored vertical dashed lines show modeled transit mid-

points, and dark grey vertical dashed lines show calculated transit mid-points assuming a

linear ephemeris. In the sector shown, we find the most significant TTVs for TOI-1136.03

(green) as can be seen by the separation between the modeled and calculated mid-points.
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Here, we use T14 to directly fit the transit duration rather than measuring it through indirect

means such as sampling in "circular" stellar density (see, e.g. Dawson & Johnson 2012)

or simultaneously fitting the true stellar density (ρ⋆), eccentricity (e), and argument of

periastron (ω). While the former method has been found to produce biased results (see

Gilbert et al. 2022), the latter is unbiased but requires three parameters to measure that

which can be described by one (T14) more efficiently. Our duration-sampling method also

allows us to calculate posterior distributions for e and ω post-modeling through importance

sampling, described further in §6.5. Regardless of the method used, we emphasize that most

{e, ω} constraints measured from photometry alone are imprecise for individual planets and

are better applied towards population-level studies (§6.6.4).

We sample the posterior probability density of all model parameters with exoplanet using

the gradient-based No U-Turn Sampling method (Hoffman & Gelman 2011a; Betancourt

2016) as implemented by PyMC3 (Salvatier et al. 2016a). For all posterior sampling performed

in this work, we use 5,000 tuning steps with an additional 3,000 sampler draws and a target

acceptance fraction of 0.95. This sampling process is performed via two sampler chains

across two CPU cores, and we consider the process to be converged when the Gelman-Rubin

statistic R̂ for these chains is R̂ < 1.01 (Gelman & Rubin 1992).

6.5 Planet Properties

6.5.1 Importance-Weighted Posterior Distributions

Our final planet property measurements are based on the posterior distributions measured

with exoplanet. These properties are modeled via a fit to the transit shape, conditioned on

the input lightcurve data. However, our selected modeling basis does not inherently assume

that any information is known about ρ⋆, e, or ω and, therefore, the posterior chains produced

directly by our sampler can be considered unweighted. Given our robust measurements of ρ⋆

from our stellar characterization, we can apply an "importance weight" (Oh & Berger 1993;

135



Gilks et al. 1995) to these posterior samples according to how well the unweighted results can

be described by the ρ⋆ values measured with isoclassify. We will refer to these precise

stellar density measurements as ρ⋆,iso. The importance weights also allow us to produce

properly weighted posterior distributions for e and ω without needing to directly sample

them during the lightcurve modeling – a step that takes seconds rather than hours. This

method has bean used extensively in past literature for similar applications of improving

modeling efficiency (see, e.g., Ford 2005; Ford 2006) or measuring eccentricity (see, e.g.,

Dawson & Johnson 2012; Van Eylen et al. 2019).

To determine the appropriate importance weights, we first calculate the estimated stellar

density at each sampler step based on the sampled quantities P , Rp/R⋆, b, and T14. We

refer to this derived density as ρ⋆,derived. We calculate these values according to Equation

6.1, which is a rearrangement of the transit duration equation described by Winn (2010b):

ρ⋆,derived =
3π

GP 2

(1 +Rp/R⋆)
2 − b2

sin2
(

T14π
P

1+e sinω√
1−e2

) + b2

3/2

. (6.1)

This equation, however, also includes e and ω, for which we do not yet have any information.

Here, we draw random samples of {e, ω} from uniform prior distributions e ∼ U(0, 1) and ω ∼
U(−π

2
, 3π

2
) to be used in the calculation. We prefer to use uninformative uniform priors on

these parameters to remain agnostic to eccentricity here but will explore the parameterization

of this eccentricity prior more in depth in MacDougall et al. 2023 (in prep). The stellar

density values that we calculate here produce a derived posterior distribution based on our

unweighted posterior samples and uniform {e, ω} samples.

We then compare the samples of ρ⋆,derived against the independently measured ρ⋆,iso for a

given target by computing the log-likelihood of each ith sample,

logLi = −1

2

(ρ⋆,derived,i − ρ⋆,iso
σ(ρ⋆,iso)

)2
, (6.2)
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assuming a Gaussian likelihood function. We then weight each sample from our original

unweighted posterior distributions by

wi =
Li∑
i Li

(6.3)

to produce the final importance-weighted posterior distributions for each parameter. We also

apply these same weights to the random, uniform {e, ω} samples to derive their weighted

posterior distributions. All summary statistics that are reported or used throughout the

remaining analysis are based on the 15th, 50th, and 85th percentiles of these importance-

weighted posteriors.

6.5.2 Planet-to-star Radius Ratio

Before deriving final planet radii, we first confirm that our final modeled Rp/R⋆ values are

unbiased and generally consistent with those reported by the TOI Catalog (Figure 6.5).

We find no evidence of systematic bias in our results, measuring the average ratio between

the TKS results and TOI Catalog values (Rp/R⋆)TKS/(Rp/R⋆)TOI = 1.02 ± 0.11. This is

consistent within the average fractional uncertainty of Rp/R⋆ from the TOI Catalog. We

show the residuals of this comparison, ((Rp/R⋆)TKS − (Rp/R⋆)TOI)/σ(Rp/R⋆)TOI, in Figure

6.6b. Here we see that 4 out of 108 TKS planets have (Rp/R⋆)TKS measurements that are

≳3σTOI discrepant from (Rp/R⋆)TOI.

Upon closer inspection, we find that these discrepancies occur in instances where our careful

de-trending and TTV modeling led to more reliable Rp/R⋆ measurements. An example of

this can be seen in Figure 6.4, where the initial PDC-SAP photometry of TOI-1136 displays

significant variability which we remove before performing our final transit fits that include

TTV modeling. Our measured Rp/R⋆ values are consistent within ∼1.5σ of the published

values reported by Dai et al. 2022 while the Rp/R⋆ values reported by the TOI Catalog are

far more discrepant.
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Figure 6.5: Planet-to-star radius ratio Rp/R⋆ as measured by our planet characterization

pipeline (TKS; y-axis) compared to the radius ratio values reported by the TOI Catalog (x-

axis). The TKS results have significantly reduced uncertainties and are generally consistent

with the TOI Catalog results (see §6.5.2).
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(a) (b) (c)

Figure 6.6: Residuals of (a) stellar radius R⋆, (b) planet-to-star radius ratio Rp/R⋆, and (c)

planet radius Rp between our results and the TOI Catalog measurements (i.e. residual =

(R⋆,TKS −R⋆,TOI)/σ(R⋆,TOI)). Dashed vertical lines show the 15th, 50th, and 85th percentiles

of each distribution of residuals.

6.5.3 Derived Planet Properties

We calculate the radius of each planet in our sample (Rp) from our final weighted posterior

distributions of Rp/R⋆ and our isochrone-modeled R⋆ values. When compared against the

TOI Catalog measurements, we find that our planet radii have a lower median uncertainty,

reduced from σ(Rp)/Rp ≈ 6.7% for TOI Catalog values to 3.8% for TKS results. When look-

ing at the mean uncertainty rather than the median, the difference is even more significant

due to large outliers among the SPOC pipeline outputs, with mean uncertainties reduced

from σ(Rp)/Rp ≈ 16.1% to 3.9%.

The planet radius distribution that we measure for the TKS sample is shown in Figure 6.7,

displayed against the distribution of TKS planet radii reported by the TOI Catalog. We

show the residuals of this comparison, (Rp, TKS − Rp, TOI)/σ(Rp, TOI), in Figure 6.6c. We

observe similar residual distributions for both Rp/R⋆ and Rp but far less significant scatter

in the R⋆ residuals (Figure 6.6a), suggesting that the uncertainties on Rp are dominated by

differences in lightcurve modeling rather than stellar characterization (Petigura 2020).

Along with planet radii, we also compute semi-major axis a, incident stellar flux Sinc, and

equilibrium temperature Teq for each planet. We calculate these parameters assuming con-
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Figure 6.7: Distribution of median planet radius measurements for the TKS sample from

this work, compared against the median radii taken from the TOI Catalog (green). Shaded

regions show specific planet categories, classified by planetary radius. We observe a sparser

radius gap region using TKS results than is implied by radii from the TOI Catalog, likely

owing to our higher precision measurements.

stant planet-to-star separation, which is not a valid approximation for eccentric orbits so

these values should only be considered as estimates in such cases. We compute semi-major

axes from Kepler’s Third Law, using precise values of P and our well-constrained measure-

ments of M⋆. The median uncertainty among these measurements is σ(a)/a ≈ 1%. We

also calculate Sinc and Teq using the standard equations described in Johnson et al. (2017),

assuming a Bond albedo of α = 0.3 which is typical of a super-Earth-size Kepler planet

(Demory 2014). This assumption is not uniformly applicable across our sample, but it is a

common simplification among similar studies such as the California-Kepler Survey (Johnson

et al. 2017). The median uncertainties that we measure for Sinc and Teq are 6.7% and 1.7%,

respectively, without accounting for the uncertainty in α.
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6.6 Discussion

6.6.1 Radius Gap

We note from Chontos et al. (2022) that a primary goal of TKS Science Case 1A is to

better understand the bimodal distribution of small planet radii first described by Fulton

et al. (2017a). This radius valley has been studied extensively from both Kepler and K2

planets (see, e.g., Berger et al. 2018b; Cloutier & Menou 2020) which have improved our

understanding of the physical mechanisms leading to this phenomenon (Van Eylen et al.

2018; Gupta & Schlichting 2019). For the first time among TESS planets, we observe a

valley-like structure between 1.5–2.0 R⊕ among the TKS sample. In Figure 6.7, we show the

distribution of TKS planet radii and highlight the radius valley, which we find is insensitive to

differences in binning. We also find this structure to be more significant among our precisely

measured TKS radii from this work as compared to the TOI Catalog radii. We attribute this

difference primarily to our improved constraints on Rp/R⋆ from our lightcurve detrending

and modeling procedure (see, e.g., Petigura 2020).

The radius gap has also been found to have some reliance on various other system properties

such as orbital period, incident flux (Cloutier & Menou 2020), and stellar parameters as well

(Fulton & Petigura 2018; Berger et al. 2020c). This was recently explored by Petigura et al.

2022 for the sample of 1,246 planets in the California-Kepler Survey (CKS; Petigura et al.

2017a), which was the Kepler -focused predecessor to the TESS-Keck Survey. Although the

TKS planet sample is only 8.4% the size of the CKS sample, our results do suggest the

existence of a radius valley in various 2D representations of radius as a function of other pa-

rameters, including P , Sinc, M⋆, and [Fe/H] (Figure 6.8). The orange shaded regions in these

figures show the radius valley as measured by Petigura et al. (2022) in the various parame-

ter spaces, which generally agree with our results despite differences between the CKS and

TKS samples. Future investigations of the radius valley may combine these samples to gain

further insight to the mechanisms driving the bi-modality in the planet radius distribution.
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(a) (b)

(c) (d)

Figure 6.8: Panel (a): radius and orbital period for all TKS planets, with stellar mass shown

as a color scale. Grey background points show the distribution of planets from the CKS

sample (Petigura et al. 2022). The radius gap, as defined by Petigura et al. (2022), is shown

as the orange shaded region. The Hot Neptune desert, as defined by Mazeh et al. (2016), is

shown as the region marked off by black dashed lines. Panel (b): same as (a), except x-axis

is Sinc. Panel (c): same as (a), except x-axis is M⋆ and color scale is P . Panel (d): same as

(c), except x-axis is [Fe/H].
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6.6.2 Hot Neptune Desert

Similar to the radius gap, the Hot Neptune Desert has been proposed as a region of Rp − P

parameter space that is sparsely populated, with few Neptune-size planets at P ≲ 5 d. The

mechanism that would drive such an effect is currently unknown, but this sparsity has been

proposed as a natural consequence of photo-evaporation (Lopez & Fortney 2013; Owen & Wu

2013). The Hot Neptune Desert region can be seen in Figure 6.8a, outlined by boundaries

defined by Mazeh et al. (2016). We find that the TKS sample includes at least 12 planets

which fall firmly within this region (see, e.g., MacDougall et al. 2022; Van Zandt et al.

2022), supplying future investigations with an increased sample size to better understand

the nature of the Hot Neptune Desert. Further studies will be carried out by the TKS team

to determine the compositions (TKS Science Case 1B) and atmospheric properties (TKS

Science Case 3) of such TKS planets to probe this topic further with planet masses retrieved

from ongoing radial velocity measurements.

6.6.3 Multis and TTVs

The TKS sample was selected to contain several systems with multiple transiting planet

signals, fulfilling TKS Science Case 2C. Among our 85 target systems, we report 69 with a

single transiting planet signal, 11 with two transit signals, 3 with three transit signals (TOI-

561, Weiss et al. 2021; TOI-1339, Lubin et al. 2022; TOI-2076, Osborn et al. 2022), 1 with

four transit signals (TOI-1246, Turtelboom et al. 2022), and 1 with more than four transit

signals (TOI-1136). For TOI-1136, we only report on 4 transiting planets in this work, but

ongoing investigations by TKS collaborators are working towards revealing the true number

of transiting planets in this system (see Dai et al. 2022). We also measure orbital periods

in some multi-planet systems that differ from those reported by the SPOC pipeline. These

include TOI-561.03 (see Lacedelli et al. 2022), TOI-266.02 (Akana Murphy et al. 2023, in
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(a)

(b)

(c)

(d)

Figure 6.9: Four examples of significant transit-timing variations detected among TKS sys-

tems, including three from multi-planet systems (panels a, b, and d) and one from a single-

planet system (panel c). (Panel a) TOI-1136.01: TTV semi-amplitude ≈ 24 minutes, TTV

signal period ≈ 790 days; (b) TOI-1246.03: TTV semi-amplitude ≈ 61 minutes, TTV signal

period ≈ 990 days; (c) TOI-1279.01: TTV semi-amplitude ≈ 34 minutes, TTV signal period

≈ 775 days; (d) TOI-1339.03: TTV semi-amplitude ≈ 22 minutes, TTV signal period ≈ 960

days, with significant scatter likely attributed to TTV chopping. These TTVs are measured

from the observed transit midpoints (fit via exoplanet) minus the transit midpoints calcu-

lated assuming a linear ephemeris. An estimated sinusoidal signal is shown fit to each set of

TTVs, using a Lomb-Scargle periodogram and regression fit from astropy. These significant

TTV signals likely arise from dynamical interactions between planetary companions.
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prep1), and TOI-1471.02 (Osborn et al. 2023, in prep). These findings help to better resolve

the architectures of several multi-planet systems and are discussed in existing or upcoming

literature which verify by our analysis.

We also note that several of the multi-planet systems in our sample display resonant or

near-resonant orbital configurations, such as the 1:2 orbital period ratios among the inner

planets in the TOI-1136 system (see Dai et al. 2022) as well as the outer planets in the

TOI-1246 system (Turtelboom et al. 2022). Such orbital configurations can give rise to

significant transit-timing variations, which we observe for TOI-1136.01 and TOI-1246.03 with

TTV semi-amplitudes of ∼24 and ∼61 minutes, respectively (Figure 6.9a–b). The resonant

counterparts to these two planets, TOI-1136.02 and TOI-1246.04, also display significant

TTVs with similar semi-amplitudes as their companions but with possible anti-correlation

and less distinguishable periodicity. We assert that our measured TTVs for a given planet

are significant when >32% of the measured transit times differ from a linear ephemeris by

>1σ.

The near-resonant planets in the TOI-2076 system also display possibly significant TTVs,

as first noted by Osborn et al. (2022), but we do not identify a clear structure to this sig-

nal. Additionally, we observe possible TTV chopping for TOI-1339.03 (TTV semi-amplitude

≈ 22 minutes; Figure 6.9d) which orbits near the 3:4 mean-motion resonance with TOI-

1339.02 (TTV semi-amplitude ≈ 10 minutes), as suggested by Badenas-Agusti et al. (2020).

The semi-amplitudes that we report here are only an approximation, estimated as half the

difference between the maximum and minimum TTV value for a given planet.

It is also possible for transit-timing variations to arise in systems without a known transiting

companion, suggesting the presence of an additional non-transiting planet. Although most

single-planet orbits among the TKS sample can be described by a linear ephemeris (see

1Period ambiguity resolved via private communications with the CHEOPS team (point of contact: Hugh
Osborn)
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§6.4.4), we identify at least one planet that displays significant TTVs without a known

companion: TOI-1279.01 with a TTV semi-amplitude of ∼34 minutes (Figure 6.9c). At

least two other single-planet systems among the TKS sample also display possible TTVs,

TOI-1611.01 and TOI-1742.01, but these signals are less significant relative to the other TTV

systems described above. The dynamics and multiplicities of the TKS systems discussed in

this section will be examined further in future TKS studies of multi-planet systems (TKS

Science Case 2C) and distant giant companions (TKS Science Case 2A).

6.6.4 Eccentricity

Through importance sampling (§6.5.1), we measure posterior distributions for e and ω for

all planets in the TKS sample using stellar density and the results of our photometric mod-

eling. The goal of TKS Science Case 2Bi is to characterize the eccentricities of sub-Jovian

planets and better measure their underlying eccentricity distribution. Generally, however,

photometric modeling alone is known to produce imprecise measurements of {e, ω} on a

planet-by-planet basis. Since ω is typically unconstrained from transits and b is often loosely

constrained for small planets due to ambiguous ingress / egress signals, strong covariances

between b, e, and ω drive large uncertainties in photometrically derived eccentricities. We

observe this with sub-Neptune TOI-1255.01 from the TKS sample (MacDougall et al. 2021),

for which the photometric eccentricity ephot was highly degenerate with b until additional

eccentricity constraints were introduced from radial velocity measurements to determine

e ≈ 0.16. On the other hand, we also identified the Neptune-size TKS target TOI-1272.01

(MacDougall et al. 2022) as moderately eccentric based on ephot and later confirmed a self-

consistent eccentricity of e ≈ 0.34 via joint modeling with radial velocities.

Rather than using our photometrically-derived eccentricities to draw conclusions about plan-

ets on an individual level, we are conducting an ongoing study to determine the population-

level eccentricity distribution underlying the TKS sample (MacDougall et al. 2023, in prep).

In this way, we are less sensitive to parameter covariances like b-e-ω and other effects like
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the Lucy-Sweeney bias which leads to preferentially non-circular orbit fits (Lucy & Sweeney

1971; Eastman et al. 2013b). An investigation is also underway by members of TKS to mea-

sure more precise eccentricities for planets in our sample using radial velocity measurements

(Polanski et al. 2023, in prep), which will aid in breaking the degeneracy between e and b

for lower signal-to-noise planets.

6.7 Conclusions

In this work, we characterized 85 TESS target stars presented by Chontos et al. (2022)

as the TESS-Keck Survey sample. Through a combination of photometry, high-resolution

spectroscopy, and Gaia parallaxes, we measured stellar properties for these targets with

improved precision relative to past works. We used these stellar characterizations to facilitate

in homogeneously modeling the lightcurve photometry of each TKS target, including fitting

for photometric variability, estimating transit times, and measuring the transit properties

of planet candidates recovered from the reduced lightcurve photometry. We characterized

a total of 108 transiting planet candidates orbiting the 85 TKS target stars - the largest

sample of homogeneously characterized planets from the TESS mission to date.

In measuring the radii of these planets, we found a substantial increase in precision amongst

our radii relative to the TOI Catalog (σ(Rp, TOI)/Rp, TOI ≈ 6.7% versus σ(Rp, TKS)/Rp, TKS ≈
3.8%), largely attributed to our improved accuracy in measuring Rp/R⋆. From our up-

dated radii, we successfully recovered the radius gap in both one-dimensional (Rp) and

two-dimensional (Rp − P , Rp − Sinc, Rp −M⋆, and Rp–[Fe/H]) parameter spaces. While we

do not provide new models to fit the topology of the radius gap in these parameter spaces,

we find that the distribution of radii in the radius gap region is broadly consistent with

that of Kepler planets. We also identify significant transit-timing variations among several

TKS systems, including multi-planet systems TOI-1136, TOI-1246, and TOI-1339 as well as

the single-planet system TOI-1279. These TTVs will inform future investigations into the
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dynamics and multiplicity of TKS systems.

The TKS Collaboration will continue use the planetary and stellar characterizations from

this work to answer key questions that remain in the field of exoplanet science, covering the

topics of bulk planet compositions, system architectures and dynamics, planet atmospheres,

and the effects of stellar evolution. Our photometric analysis will soon be accompanied by

a radial velocity analysis of all TKS targets as well (Polanski et al. 2023, in prep), which

will provide us with new planetary system characteristics such as planet masses, precise

eccentricities, and discoveries of non-transiting planets. The combination of insights from

the photometry described here and upcoming radial velocity measurements will allow us to

more fully answer the questions laid out by the TKS Science Cases.

The stellar and planetary properties measured from this work, along with additional sup-

porting materials, will be made available in machine-readable format on GitHub2. The

TESS-Keck Survey sample adds to the legacy of in-depth surveys of host stars and their

transiting exoplanets, such as the California-Kepler Survey, which will continue to serve the

community as a source of precise, homogeneously derived planetary system properties.

2https://github.com/mason-macdougall/tks_system_properties.git
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Table 6.3: TKS Stellar Properties

TOI mK π Teff [Fe/H] R⋆ M⋆ ρ⋆ age SpecMatch

mag mas K dex R⊙ M⊙ g cm−3 Gyr

260 6.55 49.51 4050+35
−30 −0.21+0.06

−0.09 0.55+0.01
−0.01 0.55+0.01

−0.01 4.7+0.14
−0.2 15.9+2.8

−5.5 emp

266 8.45 9.8 5617+74
−73 0.01+0.06

−0.06 0.96+0.02
−0.02 0.94+0.03

−0.03 1.48+0.11
−0.1 6.0+2.4

−2.3 syn

329 9.68 3.49 5613+78
−73 0.2+0.06

−0.06 1.53+0.03
−0.03 1.07+0.03

−0.03 0.41+0.03
−0.03 8.7+1.0

−1.0 syn

465 9.34 8.16 4986+57
−56 0.3+0.06

−0.06 0.83+0.01
−0.01 0.87+0.02

−0.03 2.15+0.15
−0.14 5.6+3.9

−3.2 syn

469 7.59 14.64 5322+72
−70 0.33+0.06

−0.06 0.98+0.02
−0.02 0.95+0.03

−0.03 1.39+0.1
−0.1 8.6+2.8

−2.7 syn

480 6.01 18.31 6173 +89
−118 0.16+0.08

−0.07 1.49+0.04
−0.03 1.28+0.03

−0.03 0.54+0.04
−0.05 2.7+0.6

−0.5 syn

509 6.88 20.39 5512+71
−72 0.11+0.05

−0.06 0.96+0.02
−0.02 0.94+0.03

−0.03 1.49+0.11
−0.1 6.6+2.5

−2.4 syn

554 5.71 21.89 6352+84
−76 −0.02+0.05

−0.06 1.42+0.02
−0.02 1.25+0.02

−0.02 0.61+0.04
−0.03 2.3+0.4

−0.4 syn

561 8.39 11.63 5342+57
−54 −0.3+0.06

−0.06 0.86+0.01
−0.01 0.76+0.02

−0.02 1.69+0.11
−0.09 16.1+2.4

−3.1 syn

669 9.13 6.97 5597+71
−72 0.0+0.06

−0.06 0.99+0.02
−0.02 0.92+0.03

−0.03 1.34 +0.1
−0.09 7.9+2.3

−2.2 syn

1136 8.03 11.8 5805+57
−57 0.08+0.05

−0.06 0.96+0.01
−0.01 1.04+0.02

−0.02 1.66+0.06
−0.07 0.7+0.9

−0.4 syn

1173 9.13 7.53 5414+62
−65 0.19+0.06

−0.06 0.94+0.02
−0.01 0.95+0.03

−0.03 1.61+0.11
−0.1 5.9+2.4

−2.4 syn

1174 8.96 10.54 5157+59
−57 −0.0+0.06

−0.06 0.78+0.03
−0.02 0.84+0.02

−0.02 2.44+0.18
−0.25 2.7+3.6

−1.9 syn

1180 8.59 13.86 4803+53
−52 0.07+0.08

−0.09 0.74+0.02
−0.02 0.78+0.02

−0.03 2.66+0.22
−0.28 5.0+6.3

−3.6 emp

1181 9.22 3.27 6045+88
−84 0.39+0.05

−0.06 1.93+0.04
−0.04 1.46+0.02

−0.03 0.28+0.02
−0.02 2.4+0.3

−0.3 syn

1184 8.32 17.04 4616+47
−48 0.02+0.08

−0.09 0.7+0.02
−0.02 0.73+0.02

−0.03 3.0+0.24
−0.27 5.3+6.6

−3.9 emp

1194 9.34 6.65 5393+64
−62 0.35+0.06

−0.06 0.96+0.02
−0.01 0.98+0.03

−0.03 1.55+0.1
−0.1 4.9+2.3

−2.1 syn

1244 9.42 9.72 4721+55
−54 0.03+0.09

−0.09 0.72+0.02
−0.02 0.75+0.02

−0.03 2.78+0.24
−0.27 5.9+6.8

−4.2 emp

1246 9.91 5.87 5213+70
−67 0.17+0.06

−0.06 0.86+0.02
−0.02 0.89+0.03

−0.03 1.92+0.16
−0.15 6.3+3.6

−3.2 syn

1247 7.5 13.51 5697+75
−72 −0.12+0.06

−0.06 1.07+0.02
−0.02 0.91+0.03

−0.03 1.03+0.07
−0.07 9.8+2.0

−2.0 syn

1248 9.87 5.9 5205+56
−61 0.22+0.06

−0.06 0.87+0.01
−0.01 0.9+0.03

−0.03 1.93+0.13
−0.12 5.5+3.0

−2.7 syn

1249 9.13 7.14 5496+68
−66 0.3+0.06

−0.06 0.98+0.02
−0.02 1.01+0.03

−0.03 1.5+0.11
−0.1 4.0+2.3

−2.0 syn

1255 7.92 15.13 5216+52
−52 0.25+0.08

−0.05 0.84+0.01
−0.01 0.93+0.02

−0.02 2.19+0.08
−0.09 1.2+1.5

−0.8 syn

1269 9.89 5.78 5499+63
−60 −0.05+0.06

−0.06 0.85+0.01
−0.01 0.9+0.02

−0.03 2.04+0.12
−0.12 3.1+2.3

−1.8 syn

1272 9.7 7.24 5065+52
−50 0.18+0.05

−0.06 0.79+0.01
−0.01 0.88+0.01

−0.02 2.46+0.08
−0.09 1.1+1.6

−0.8 syn
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Table 6.3 (cont’d): TKS Stellar Properties

TOI mK π Teff [Fe/H] R⋆ M⋆ ρ⋆ age SpecMatch

mag mas K dex R⊙ M⊙ g cm−3 Gyr

1279 8.89 9.31 5457+66
−67 −0.08+0.06

−0.06 0.84+0.01
−0.01 0.88+0.03

−0.03 2.05+0.13
−0.13 4.2+2.5

−2.2 syn

1288 8.78 8.68 5388+68
−66 0.26+0.06

−0.06 0.96+0.02
−0.02 0.96+0.03

−0.03 1.52+0.11
−0.1 6.5+2.6

−2.5 syn

1294 9.96 2.98 5718+58
−77 0.28+0.06

−0.06 1.56+0.03
−0.03 1.16+0.06

−0.05 0.43+0.03
−0.03 6.2+1.4

−1.4 syn

1296 9.74 3.06 5567+77
−72 0.4+0.06

−0.02 1.7+0.03
−0.03 1.16+0.03

−0.02 0.33+0.02
−0.02 7.1+0.6

−0.7 syn

1298 10.01 3.11 5752+68
−98 0.4+0.06

−0.06 1.45+0.03
−0.02 1.22+0.02

−0.06 0.55+0.03
−0.04 4.3+1.7

−0.6 syn

1339 7.18 18.62 5385+69
−64 −0.14+0.06

−0.06 0.93+0.02
−0.02 0.82+0.03

−0.03 1.41 +0.1
−0.09 13.9+2.8

−2.7 syn

1347 9.62 6.75 5493+53
−55 0.02+0.06

−0.05 0.84+0.01
−0.01 0.93+0.02

−0.02 2.19+0.08
−0.08 0.8+1.1

−0.6 syn

1386 9.09 6.78 5734+75
−76 0.15+0.06

−0.06 1.02+0.02
−0.02 1.04+0.03

−0.04 1.35+0.09
−0.09 3.2+1.9

−1.6 syn

1410 8.58 13.72 4635+52
−51 0.33+0.08

−0.09 0.76+0.02
−0.02 0.79+0.02

−0.02 2.57+0.22
−0.28 6.6+6.6

−4.6 emp

1411 7.25 30.76 4115+41
−45 0.01+0.07

−0.07 0.61+0.02
−0.02 0.6+0.01

−0.01 3.63+0.23
−0.23 9.6+6.6

−6.3 emp

1422 9.19 6.42 5810+81
−80 −0.03+0.06

−0.06 1.02+0.02
−0.02 0.99+0.04

−0.04 1.29+0.09
−0.09 4.6+2.0

−1.8 syn

1430 7.08 24.26 5086+62
−59 0.11+0.06

−0.06 0.8+0.03
−0.02 0.85+0.02

−0.02 2.34+0.19
−0.26 3.4+4.3

−2.4 syn

1436 9.72 7.57 5029+58
−57 −0.13+0.06

−0.06 0.75+0.03
−0.02 0.77+0.02

−0.03 2.58+0.28
−0.32 5.9+5.9

−4.0 syn

1437 7.82 9.65 5985+82
−81 −0.16+0.03

−0.05 1.26+0.02
−0.02 1.01+0.04

−0.04 0.71+0.05
−0.05 6.7+1.4

−1.3 syn

1438 9.09 9.02 5237+55
−55 0.08+0.05

−0.05 0.82+0.01
−0.01 0.89+0.02

−0.02 2.29 +0.1
−0.13 2.2+2.2

−1.5 syn

1439 9.05 4.31 5840+63
−64 0.23+0.06

−0.07 1.62+0.03
−0.03 1.23+0.04

−0.08 0.4+0.02
−0.03 4.6+1.6

−0.7 syn

1443 8.67 11.63 5223+58
−57 −0.29+0.06

−0.06 0.75+0.03
−0.03 0.77+0.02

−0.03 2.49+0.33
−0.35 7.4+5.9

−4.8 syn

1444 9.06 7.94 5460+66
−66 0.15+0.06

−0.06 0.91+0.02
−0.01 0.95+0.03

−0.03 1.76+0.12
−0.11 3.8+2.5

−2.1 syn

1451 8.07 10.85 5800+77
−78 0.02+0.06

−0.06 1.02+0.02
−0.02 1.0+0.04

−0.03 1.34+0.09
−0.09 4.0+1.9

−1.7 syn

1456 7.24 12.37 6127+87
−79 0.04+0.06

−0.06 1.27+0.02
−0.02 1.16+0.03

−0.03 0.8+0.05
−0.04 2.9+0.9

−0.8 syn

1467 8.57 26.68 3775+22
−20 −0.06+0.04

−0.05 0.46+0.01
−0.01 0.45+0.01

−0.01 6.65+0.22
−0.24 13.4+4.4

−6.4 emp

1471 7.56 14.78 5648+74
−70 −0.02+0.06

−0.06 0.96+0.02
−0.02 0.94+0.03

−0.03 1.49+0.11
−0.1 5.6+2.3

−2.2 syn

1472 9.28 8.18 5132+54
−53 0.29+0.06

−0.06 0.84+0.01
−0.01 0.92+0.02

−0.02 2.18 +0.1
−0.13 2.3+2.5

−1.5 syn

1473 7.39 14.76 5934+74
−78 −0.05+0.06

−0.05 1.01+0.02
−0.02 1.03+0.03

−0.04 1.41+0.09
−0.09 2.4+1.6

−1.3 syn

1601 9.19 2.94 5982+78
−64 0.34+0.05

−0.06 2.2+0.06
−0.06 1.51+0.03

−0.05 0.2+0.02
−0.02 2.4+0.4

−0.2 syn
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Table 6.3 (cont’d): TKS Stellar Properties

TOI mK π Teff [Fe/H] R⋆ M⋆ ρ⋆ age SpecMatch

mag mas K dex R⊙ M⊙ g cm−3 Gyr

1611 6.31 35.31 5106+66
−63 −0.03+0.06

−0.06 0.78+0.03
−0.03 0.82+0.02

−0.03 2.38+0.25
−0.31 4.7+5.1

−3.2 syn

1669 8.46 8.96 5497+73
−72 0.27+0.06

−0.06 1.06+0.02
−0.02 0.99+0.03

−0.03 1.17+0.08
−0.08 7.7+2.2

−2.1 syn

1691 8.54 8.94 5641+80
−74 0.05+0.06

−0.06 1.01+0.02
−0.02 0.96+0.04

−0.03 1.3 +0.1
−0.09 6.6+2.3

−2.2 syn

1694 9.43 7.99 5058+60
−55 0.13+0.05

−0.06 0.8+0.01
−0.01 0.85+0.02

−0.02 2.3+0.14
−0.15 4.3+3.5

−2.6 syn

1710 7.96 12.28 5684+63
−67 0.15+0.04

−0.05 0.96+0.02
−0.02 1.03+0.02

−0.03 1.64+0.08
−0.09 1.5+1.6

−1.0 syn

1716 7.93 9.57 5877+78
−78 0.1+0.06

−0.06 1.22+0.02
−0.02 1.07+0.04

−0.04 0.83+0.06
−0.06 5.4+1.4

−1.3 syn

1723 8.13 9.9 5742+82
−80 0.16+0.05

−0.06 1.09+0.02
−0.02 1.04+0.04

−0.04 1.13+0.09
−0.08 4.8+1.9

−1.8 syn

1726 5.26 44.61 5634+62
−64 0.08+0.05

−0.05 0.92+0.01
−0.01 0.99+0.02

−0.03 1.8+0.08
−0.09 1.5+1.6

−1.0 syn

1736 7.28 11.21 5636+86
−79 0.15+0.06

−0.06 1.43+0.03
−0.02 1.04+0.04

−0.03 0.5+0.04
−0.03 9.2+1.3

−1.4 syn

1742 7.34 13.69 5814+75
−72 0.19+0.06

−0.06 1.13+0.02
−0.02 1.09+0.03

−0.03 1.05+0.07
−0.06 3.9+1.5

−1.3 syn

1751 7.93 8.79 5970+85
−83 −0.37+0.06

−0.06 1.31+0.03
−0.02 0.94+0.04

−0.03 0.58+0.04
−0.04 9.0+1.4

−1.4 syn

1753 10.18 4.38 5620+75
−71 0.03+0.06

−0.06 0.97+0.02
−0.02 0.95+0.03

−0.03 1.44+0.12
−0.11 5.9+2.4

−2.3 syn

1758 8.81 10.32 5150+64
−59 −0.02+0.06

−0.06 0.82+0.01
−0.01 0.83+0.03

−0.03 2.13+0.15
−0.15 7.5+3.7

−3.2 syn

1759 7.93 24.93 3930+32
−29 0.08+0.04

−0.04 0.57+0.01
−0.01 0.57+0.01

−0.01 4.18+0.15
−0.17 15.1+3.4

−5.4 emp

1775 9.72 6.67 5283+50
−51 0.16+0.03

−0.05 0.83+0.01
−0.01 0.92+0.01

−0.02 2.27+0.07
−0.08 0.8+1.1

−0.5 syn

1776 6.69 22.37 5784+74
−71 −0.19+0.06

−0.06 0.94+0.02
−0.02 0.92+0.03

−0.03 1.57+0.11
−0.1 5.1+2.2

−2.0 syn

1778 7.62 10.03 6007+83
−87 0.22+0.06

−0.06 1.32+0.02
−0.01 1.2+0.03

−0.03 0.73+0.03
−0.05 3.1+0.9

−0.7 syn

1794 8.69 6.39 5631+77
−73 0.03+0.05

−0.06 1.32+0.02
−0.02 0.97+0.03

−0.03 0.59+0.04
−0.04 10.8+1.5

−1.5 syn

1797 7.78 12.12 5907+65
−71 0.11+0.06

−0.06 1.03+0.02
−0.02 1.08+0.03

−0.03 1.38+0.07
−0.08 1.3+1.2

−0.8 syn

1798 9.24 8.81 5106+53
−55 0.07+0.06

−0.05 0.79+0.01
−0.01 0.85+0.02

−0.02 2.42 +0.1
−0.13 2.6+2.6

−1.7 syn

1799 7.38 16.07 5697+74
−68 −0.06+0.06

−0.05 0.95+0.02
−0.02 0.94+0.03

−0.03 1.52+0.1
−0.1 5.1+2.2

−2.0 syn

1801 7.8 32.57 3747+24
−23 0.15+0.05

−0.04 0.51+0.01
−0.01 0.51+0.01

−0.01 5.23+0.23
−0.23 13.3+4.6

−6.6 emp

1807 7.57 23.46 4914+60
−57 0.04+0.09

−0.1 0.75+0.02
−0.02 0.8+0.02

−0.03 2.72+0.18
−0.2 2.1+3.4

−1.5 emp

1823 8.33 13.93 4926+57
−56 0.24+0.09

−0.09 0.8+0.03
−0.03 0.84+0.03

−0.03 2.24+0.25
−0.31 6.3+6.3

−4.4 emp

1824 7.76 16.8 5165+56
−56 0.12+0.06

−0.06 0.81+0.01
−0.01 0.88+0.02

−0.02 2.3 +0.1
−0.13 2.5+2.5

−1.6 syn
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Table 6.3 (cont’d): TKS Stellar Properties

TOI mK π Teff [Fe/H] R⋆ M⋆ ρ⋆ age SpecMatch

mag mas K dex R⊙ M⊙ g cm−3 Gyr

1836 8.53 5.19 6237+91
−68 −0.14+0.07

−0.03 1.65+0.03
−0.03 1.25+0.02

−0.04 0.39+0.02
−0.02 3.2+0.7

−0.3 syn

1842 8.45 4.45 6039+93
−88 0.33+0.06

−0.06 2.03+0.04
−0.04 1.46+0.03

−0.04 0.24+0.02
−0.02 2.5+0.4

−0.3 syn

1898 6.66 12.52 6241+88
−84 −0.1+0.06

−0.07 1.61+0.03
−0.03 1.25+0.03

−0.04 0.41+0.03
−0.02 3.1+0.6

−0.3 syn

2019 8.6 5.02 5625+77
−77 0.41+0.06

−0.06 1.75+0.03
−0.03 1.18+0.11

−0.02 0.31+0.03
−0.02 6.4+0.6

−1.9 syn

2045 9.85 2.7 6045+75
−68 0.07+0.06

−0.04 1.78+0.04
−0.04 1.29+0.03

−0.08 0.32+0.02
−0.02 3.4+1.2

−0.4 syn

2076 7.12 23.83 5191+61
−57 0.02+0.06

−0.06 0.8+0.03
−0.02 0.86+0.02

−0.02 2.36+0.19
−0.25 2.7+3.6

−1.9 syn

2088 9.52 7.88 5080+55
−54 0.34+0.06

−0.06 0.85+0.03
−0.02 0.9+0.02

−0.03 2.05 +0.2
−0.26 4.5+4.6

−3.1 syn

2114 9.09 3.12 6359+88
−85 0.11+0.05

−0.06 2.1+0.04
−0.04 1.48+0.03

−0.04 0.23+0.01
−0.01 2.0+0.2

−0.2 syn

2128 5.82 27.31 5967+85
−84 −0.07+0.05

−0.06 1.12+0.02
−0.02 1.03+0.04

−0.04 1.02+0.08
−0.08 4.7+1.7

−1.5 syn

2145 7.76 4.42 6200+83
−81 0.29+0.06

−0.05 2.75+0.06
−0.05 1.72+0.03

−0.04 0.11+0.01
−0.01 1.6+0.2

−0.1 syn

Note. — Properties of 85 planet hosting stars from the TKS sample (Chontos et al. 2022). mK is

2MASS K-band apparent magnitude and π is Gaia DR2 parallax. Teff, [Fe/H], R⋆, M⋆, ρ⋆ and age

were derived using isoclassify isochrone modeling (Huber et al. 2017) as described in §6.3.2. The

given values reflect median measurements with upper and lower uncertainties. The last column denotes

which SpecMatch method was used to derive the initial stellar property inputs to isoclassify: "syn" –

SpecMatch-Synthetic or "emp" – SpecMatch-Empirical (see §6.3.1).
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Table 6.4: TKS Planet Properties

Planet P t0 Rp/R⋆ Rp T14 Tcirc TTVs?

d BTJD % R⊕ hr hr y/n

260.01 13.475832+4.5e−05
−5.6e−05 1392.2944+0.0021

−0.0023 2.47 +0.2
−0.14 1.47+0.12

−0.08 2.0+0.14
−0.13 2.96+0.03

−0.04 n

266.01 10.751013+7.2e−05
−7e−05 1393.0862+0.0035

−0.0032 2.42+0.14
−0.12 2.54+0.16

−0.14 3.0+0.16
−0.13 4.04 +0.1

−0.09 n

266.02 19.605464+0.000228
−0.000237 1398.2927+0.0087

−0.0059 2.41+0.14
−0.13 2.52+0.15

−0.14 4.38+0.27
−0.21 4.94+0.12

−0.11 n

329.01 5.70442+0.000116
−0.000101 2090.7934+0.0043

−0.0057 2.96+0.16
−0.14 4.94+0.29

−0.26 4.21+0.21
−0.18 5.04+0.13

−0.11 n

465.01 3.836162+2e−06
−2e−06 1414.1361+0.0004

−0.0003 6.68+0.09
−0.07 6.03+0.13

−0.12 2.4+0.02
−0.02 2.64+0.06

−0.06 n

469.01 13.630829+2.6e−05
−2.6e−05 1474.5691+0.0011

−0.0011 3.19+0.07
−0.06 3.43 +0.1

−0.09 4.33+0.05
−0.04 4.5+0.11

−0.11 n

480.01 6.865906+1.7e−05
−1.9e−05 1469.5655+0.0016

−0.0015 1.76+0.06
−0.05 2.85+0.13

−0.1 3.57+0.06
−0.06 4.84+0.13

−0.15 n

509.01 9.058805+1.8e−05
−1.6e−05 1494.4467+0.001

−0.001 2.79+0.07
−0.06 2.92+0.09

−0.08 3.7+0.04
−0.04 3.82+0.09

−0.09 n

509.02 21.402464+0.001794
−0.001919 1504.1438 +0.067

−0.0622 2.93+0.07
−0.06 3.06+0.09

−0.08 5.42+0.08
−0.06 5.1+0.12

−0.12 n

554.01 3.04405+9e−06
−8e−06 1438.4733 +0.002

−0.0025 0.88+0.08
−0.06 1.36+0.13

−0.1 1.35+0.06
−0.06 3.52+0.08

−0.05 n

554.02 7.049157+1.3e−05
−1.4e−05 1442.6179+0.0016

−0.0016 1.65+0.07
−0.05 2.55+0.11

−0.08 3.35+0.06
−0.04 4.68 +0.1

−0.07 n

561.01 0.4465691+4e−07
−4e−07 1517.9451+0.0007

−0.0008 1.56+0.05
−0.04 1.46+0.05

−0.05 1.35+0.02
−0.02 1.36+0.03

−0.03 n

561.02 10.778858+3.3e−05
−3.5e−05 1527.0608+0.0025

−0.0023 3.13+0.21
−0.09 2.93+0.2

−0.1 3.83+0.16
−0.11 3.89+0.08

−0.07 n

561.03 25.712443+0.000111
−0.000122 1521.8835+0.0038

−0.0036 2.91+0.11
−0.09 2.72+0.11

−0.1 5.19+0.17
−0.12 5.19+0.11

−0.09 n

669.01 3.945154+1.3e−05
−1.1e−05 1546.1417+0.0021

−0.003 2.4+0.11
−0.09 2.59+0.13

−0.11 2.87 +0.1
−0.09 2.99+0.07

−0.07 n

1136.01 6.258767+1.5e−05
−1.4e−05 1688.7067+0.0013

−0.0012 2.65+0.06
−0.05 2.77+0.08

−0.07 3.49+0.05
−0.04 3.25+0.04

−0.04 y

1136.02 12.518595+1.5e−05
−1.5e−05 1686.0634+0.0005

−0.0006 4.43+0.13
−0.08 4.62+0.15

−0.1 4.13+0.07
−0.04 4.17+0.05

−0.06 y

1136.03 18.797505+0.000141
−0.000121 1697.799 +0.004

−0.0045 2.44+0.09
−0.08 2.55 +0.1

−0.09 4.46+0.11
−0.1 4.68+0.06

−0.06 y

1136.04 26.317767+4.7e−05
−4.7e−05 1699.3798+0.0011

−0.0011 3.58+0.06
−0.06 3.74+0.09

−0.08 5.18+0.05
−0.05 5.3+0.07

−0.07 y

1173.01 7.064397+3e−06
−3e−06 1688.7154+0.0002

−0.0002 8.83+0.06
−0.06 9.02+0.16

−0.15 2.56+0.02
−0.02 3.63+0.08

−0.08 n

1174.01 8.9534+4.1e−05
−3.9e−05 1690.0626+0.0022

−0.0026 2.93+0.13
−0.1 2.51+0.14

−0.11 3.0+0.12
−0.1 3.23+0.08

−0.11 n

1180.01 9.686755+1.2e−05
−1.2e−05 1691.0488+0.0009

−0.0009 3.75 +0.2
−0.12 3.04+0.19

−0.13 2.76+0.08
−0.05 3.25+0.09

−0.11 n

1181.01 2.1031937+3e−07
−3e−07 1957.8213+0.0001

−0.0001 7.68+0.02
−0.02 16.2+0.33

−0.34 4.12+0.01
−0.01 4.33+0.09

−0.08 n

1184.01 5.748431+3e−06
−3e−06 1684.3594+0.0005

−0.0005 3.17+0.09
−0.16 2.41 +0.1

−0.14 1.88+0.03
−0.03 2.61+0.07

−0.08 n

1194.01 2.310645+1e−06
−1e−06 1684.9235+0.0002

−0.0002 8.32+0.06
−0.06 8.72+0.16

−0.15 1.63+0.01
−0.01 2.53+0.06

−0.05 n
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Table 6.4 (cont’d): TKS Planet Properties

Planet P t0 Rp/R⋆ Rp T14 Tcirc TTVs?

d BTJD % R⊕ hr hr y/n

1244.01 6.400317+8e−06
−8e−06 1684.9474+0.0008

−0.0008 3.01+0.14
−0.1 2.38+0.13

−0.11 2.22+0.04
−0.04 2.77+0.08

−0.09 n

1246.01 4.30744+4e−06
−3e−06 1686.5661+0.0007

−0.0008 3.05+0.12
−0.08 2.87+0.13

−0.1 2.18+0.04
−0.03 2.75+0.08

−0.07 n

1246.02 5.904141+1.3e−05
−1.4e−05 1683.4664+0.0016

−0.0016 2.6+0.14
−0.08 2.45+0.14

−0.09 2.89+0.07
−0.07 3.04+0.08

−0.08 n

1246.03 18.654958+4.9e−05
−4.7e−05 1688.9746+0.002

−0.002 3.64+0.14
−0.1 3.43+0.15

−0.12 3.95 +0.1
−0.08 4.5+0.12

−0.12 y

1246.04 37.925389+0.000149
−0.000156 1700.6956+0.0033

−0.0034 3.73+0.27
−0.18 3.51+0.27

−0.18 3.54+0.16
−0.12 5.71+0.16

−0.15 y

1247.01 15.923365+3.4e−05
−3.6e−05 1687.6494+0.0014

−0.0014 2.16+0.06
−0.05 2.53+0.08

−0.07 4.33+0.07
−0.07 5.18+0.12

−0.11 n

1248.01 4.360156+1e−06
−1e−06 1687.1212+0.0002

−0.0002 7.19+0.05
−0.06 6.81+0.12

−0.12 2.31+0.01
−0.01 2.87+0.06

−0.06 n

1249.01 13.079163+6.3e−05
−6.3e−05 1694.3786+0.0027

−0.0029 3.06+0.28
−0.17 3.27+0.31

−0.19 3.15+0.26
−0.15 4.32+0.1

−0.1 n

1255.01 10.288889+4e−06
−4e−06 1691.6544+0.0004

−0.0003 2.7+0.07
−0.05 2.48+0.07

−0.05 1.53+0.02
−0.01 3.5+0.04

−0.05 n

1269.01 4.252989+6e−06
−6e−06 1686.6058+0.0009

−0.0013 2.58+0.16
−0.07 2.4+0.15

−0.07 2.62+0.07
−0.05 2.67+0.05

−0.05 n

1269.02 9.237875+2e−05
−2e−05 1685.9772+0.0022

−0.0017 2.45+0.12
−0.09 2.27+0.12

−0.09 2.72+0.07
−0.07 3.45+0.07

−0.07 n

1272.01 3.315979+6e−06
−5e−06 1713.0315+0.0006

−0.0006 4.77+0.25
−0.17 4.13+0.23

−0.15 1.57+0.06
−0.05 2.36+0.03

−0.03 n

1279.01 9.614216+3.7e−05
−3.5e−05 1717.4777+0.0026

−0.0027 2.9+0.14
−0.11 2.66+0.14

−0.11 2.76+0.11
−0.09 3.5+0.07

−0.07 y

1288.01 2.699831+1e−06
−1e−06 1712.3587+0.0002

−0.0002 4.75+0.06
−0.05 4.97+0.11

−0.1 2.38+0.01
−0.01 2.59+0.06

−0.06 n

1294.01 3.915289+1.6e−05
−1.6e−05 2393.0074+0.0007

−0.0007 5.96+0.08
−0.08 10.12+0.24

−0.22 3.03+0.05
−0.05 4.51 +0.1

−0.12 n

1296.01 3.944373+1e−06
−1e−06 1930.7553+0.0002

−0.0002 7.6+0.04
−0.04 14.12+0.28

−0.26 4.86+0.01
−0.01 5.04+0.12

−0.1 n

1298.01 4.537142+2e−06
−2e−06 1934.1225+0.0003

−0.0003 6.09+0.05
−0.04 9.66 +0.2

−0.17 4.03+0.02
−0.02 4.38+0.09

−0.1 n

1339.01 8.880322+3e−06
−3e−06 1715.3558+0.0003

−0.0002 3.33+0.05
−0.07 3.4+0.08

−0.09 3.07+0.02
−0.02 3.89+0.09

−0.08 n

1339.02 28.579984+2.4e−05
−2.4e−05 1726.0547+0.0006

−0.0006 3.12+0.08
−0.07 3.18 +0.1

−0.09 4.47+0.05
−0.04 5.73+0.14

−0.12 y

1339.03 38.352218+4.2e−05
−4.1e−05 1743.556+0.0008

−0.0007 3.06+0.05
−0.04 3.12+0.07

−0.07 5.51+0.05
−0.04 6.31+0.15

−0.13 y

1347.01 0.8474247+4e−07
−4e−07 1683.5587+0.0003

−0.0003 1.98+0.09
−0.06 1.81+0.09

−0.06 0.88+0.02
−0.01 1.53+0.02

−0.02 n

1347.02 4.84195+1.3e−05
−1.2e−05 1688.1903+0.0017

−0.002 1.83+0.09
−0.07 1.68+0.09

−0.07 2.24+0.09
−0.08 2.7+0.03

−0.03 n

1386.01 25.840653+0.003119
−0.003192 1752.3213+0.0022

−0.0022 5.57+0.16
−0.12 6.22+0.21

−0.17 5.67+0.15
−0.12 5.75+0.13

−0.13 n

1410.01 1.216876+1e−06
−1e−06 1739.7293+0.0006

−0.0006 3.76+0.24
−0.17 3.1+0.22

−0.16 1.11+0.05
−0.04 1.66+0.05

−0.06 n

1411.01 1.452053+2e−06
−2e−06 1739.474+0.0005

−0.0005 1.79+0.05
−0.04 1.2+0.05

−0.04 1.51+0.02
−0.02 1.53+0.03

−0.03 n
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Table 6.4 (cont’d): TKS Planet Properties

Planet P t0 Rp/R⋆ Rp T14 Tcirc TTVs?

d BTJD % R⊕ hr hr y/n

1422.01 13.001782 +5e−05
−4.2e−05 1745.9141+0.0018

−0.0016 3.53+0.12
−0.09 3.94+0.15

−0.13 4.44+0.11
−0.09 4.55+0.11

−0.11 n

1430.01 7.434098+9e−06
−9e−06 1690.779+0.0009

−0.0009 2.38+0.07
−0.05 2.08+0.09

−0.07 2.67+0.04
−0.04 3.06+0.08

−0.11 n

1436.01 0.867617+2e−06
−3e−06 1711.8961+0.0012

−0.0011 1.87 +0.1
−0.09 1.52 +0.1

−0.09 1.32+0.05
−0.05 1.45+0.05

−0.06 n

1437.01 18.840952+7.7e−05
−7.7e−05 1700.7335+0.0029

−0.003 1.77+0.04
−0.03 2.43+0.07

−0.06 6.19+0.12
−0.11 6.19+0.15

−0.14 n

1438.01 5.139659+5e−06
−5e−06 1683.6266+0.0007

−0.0007 3.22 +0.2
−0.34 2.87+0.18

−0.3 1.01+0.06
−0.1 2.75+0.04

−0.05 n

1438.02 9.428074+1.6e−05
−1.5e−05 1689.9152+0.0014

−0.0014 2.92+0.17
−0.3 2.6+0.15

−0.27 1.56+0.11
−0.1 3.36+0.05

−0.06 n

1439.01 27.643869+0.000133
−0.000138 1703.4782 +0.004

−0.0039 2.4+0.12
−0.09 4.24+0.23

−0.17 5.63+0.21
−0.14 8.52+0.17

−0.2 n

1443.01 23.540714+6.6e−05
−6.2e−05 1693.2443+0.0023

−0.0025 2.81+0.09
−0.07 2.3+0.13

−0.1 4.26+0.08
−0.07 4.43 +0.2

−0.21 n

1444.01 0.4702737+3e−07
−3e−07 1711.3666+0.0005

−0.0008 1.43+0.04
−0.03 1.42+0.05

−0.04 1.28+0.02
−0.02 1.36+0.03

−0.03 n

1451.01 16.537903+6.9e−05
−6.3e−05 1694.3138+0.0021

−0.0029 2.36+0.11
−0.08 2.61+0.13

−0.1 3.09+0.09
−0.07 4.82+0.11

−0.11 n

1456.01 18.711796+1.4e−05
−1.4e−05 1692.2609+0.0005

−0.0005 6.57+0.06
−0.05 9.07+0.19

−0.18 6.17+0.03
−0.03 6.21+0.14

−0.12 y

1467.01 5.971148+1.1e−05
−1e−05 1766.9883+0.0013

−0.0022 3.37+0.17
−0.16 1.68+0.09

−0.08 1.58+0.07
−0.05 2.03+0.02

−0.02 n

1471.01 20.772891+4.8e−05
−5e−05 1767.422+0.0014

−0.0014 3.66+0.07
−0.06 3.83 +0.1

−0.09 4.94+0.06
−0.05 5.08+0.12

−0.11 n

1471.02 52.563553+0.000166
−0.000185 1779.1909+0.0016

−0.0014 3.28+0.07
−0.06 3.43 +0.1

−0.09 6.57+0.08
−0.06 6.9+0.17

−0.15 n

1472.01 6.363386+9e−06
−8e−06 1765.6096+0.0012

−0.0013 4.55+0.15
−0.12 4.16+0.16

−0.13 2.61+0.06
−0.05 3.04+0.05

−0.06 n

1473.01 5.254479+1.2e−05
−1.3e−05 1769.7834+0.0026

−0.0019 2.21+0.08
−0.06 2.43 +0.1

−0.07 3.24 +0.1
−0.07 3.23+0.07

−0.07 n

1601.01 5.333298+0.000889
−0.000968 1793.2752+0.0017

−0.0016 5.93+0.21
−0.13 14.2+0.65

−0.51 6.49+0.13
−0.11 6.5+0.18

−0.18 n

1611.01 16.201708+1.3e−05
−1.2e−05 1796.495+0.0006

−0.0006 2.74+0.09
−0.05 2.34+0.12

−0.09 2.9+0.03
−0.03 3.96+0.14

−0.17 y

1669.01 2.680055+3e−06
−3e−06 1816.9447+0.0009

−0.0008 1.99+0.08
−0.07 2.3 +0.1

−0.09 1.93+0.04
−0.03 2.75+0.07

−0.06 n

1691.01 16.7369+3.2e−05
−3e−05 1818.0907+0.0013

−0.0014 3.24+0.08
−0.05 3.57+0.11

−0.09 4.97+0.07
−0.05 4.92+0.12

−0.12 n

1694.01 3.770137+8.8e−05
−8.9e−05 1817.2664+0.0006

−0.0006 6.09+0.14
−0.1 5.34+0.15

−0.12 2.87+0.04
−0.03 2.55+0.05

−0.05 n

1710.01 24.283384+1.9e−05
−2e−05 1836.9629+0.0005

−0.0005 4.98+0.04
−0.04 5.2 +0.1

−0.09 5.26+0.03
−0.02 5.25+0.09

−0.1 n

1716.01 8.082366+3.5e−05
−3.6e−05 1843.8553+0.0034

−0.0031 2.17+0.12
−0.09 2.88+0.17

−0.13 3.51+0.17
−0.16 4.45+0.1

−0.1 n

1723.01 13.726468+0.000386
−0.000398 1852.7027+0.0027

−0.0023 2.78+0.11
−0.09 3.29+0.14

−0.13 4.4+0.22
−0.22 4.81+0.12

−0.12 n

1726.01 7.107941+7e−06
−6e−06 1845.3735+0.0005

−0.0006 2.16+0.05
−0.04 2.16+0.06

−0.05 3.24+0.04
−0.03 3.29+0.05

−0.06 n
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Table 6.4 (cont’d): TKS Planet Properties

Planet P t0 Rp/R⋆ Rp T14 Tcirc TTVs?

d BTJD % R⊕ hr hr y/n

1726.02 20.543827+2.1e−05
−2.1e−05 1844.0589+0.0006

−0.0006 2.58+0.04
−0.04 2.58+0.06

−0.06 4.07+0.04
−0.04 4.7+0.07

−0.08 n

1736.01 7.073092+1.7e−05
−1.7e−05 1792.7939+0.0018

−0.0019 2.04+0.07
−0.05 3.18+0.12

−0.1 3.98+0.08
−0.08 5.04+0.12

−0.11 n

1742.01 21.269084+5.4e−05
−5.1e−05 1725.352+0.0018

−0.0022 1.92+0.03
−0.03 2.37+0.06

−0.05 6.29+0.07
−0.07 5.66+0.12

−0.11 y

1751.01 37.468555+0.000141
−0.000138 1733.6315+0.0028

−0.0029 2.06+0.07
−0.04 2.95+0.11

−0.08 7.65+0.16
−0.1 8.35+0.21

−0.19 n

1753.01 5.384623 +9e−06
−1.1e−05 1684.504+0.0016

−0.0013 2.34+0.08
−0.06 2.48 +0.1

−0.08 3.18+0.05
−0.05 3.23+0.09

−0.08 n

1758.01 20.705061+4.8e−05
−4.8e−05 1806.6981+0.0015

−0.0016 4.0+0.25
−0.15 3.56+0.23

−0.14 3.67 +0.1
−0.08 4.52+0.11

−0.1 n

1759.01 18.850009+2.2e−05
−2.3e−05 1745.4661+0.0009

−0.001 4.98+0.17
−0.1 3.12+0.12

−0.08 3.59+0.09
−0.05 3.53+0.04

−0.05 n

1775.01 10.240554+1e−05
−1e−05 1877.5645+0.0005

−0.0005 8.9 +0.1
−0.09 8.05+0.14

−0.13 3.66+0.04
−0.03 3.66+0.04

−0.04 n

1776.01 2.799865+2.5e−05
−3.2e−05 1871.498+0.0038

−0.0037 1.19+0.09
−0.07 1.22+0.09

−0.08 1.93+0.19
−0.18 2.5+0.06

−0.05 n

1778.01 6.527337+4.4e−05
−4e−05 1876.0046+0.0025

−0.0026 2.02+0.12
−0.1 2.9+0.19

−0.14 2.98+0.18
−0.15 4.31+0.05

−0.09 n

1794.01 8.765566+7.3e−05
−6.8e−05 1715.309 +0.004

−0.0033 2.3+0.11
−0.09 3.3+0.17

−0.14 3.92+0.13
−0.13 5.11+0.12

−0.1 n

1797.01 1.039141+5e−06
−3e−06 1900.238+0.0014

−0.0016 1.31+0.06
−0.05 1.47+0.07

−0.07 1.82+0.06
−0.06 1.89+0.03

−0.04 n

1797.02 3.645143+8e−06
−8e−06 1902.8746+0.0014

−0.0014 2.77+0.11
−0.08 3.12+0.14

−0.1 2.36+0.06
−0.06 2.89+0.05

−0.06 n

1798.01 0.437815+1e−06
−2e−06 1739.0717+0.001

−0.001 1.62+0.08
−0.06 1.4+0.07

−0.06 1.28+0.04
−0.05 1.19+0.02

−0.02 n

1798.02 8.021543+2.9e−05
−3.3e−05 1741.5941+0.0022

−0.0022 2.76+0.13
−0.1 2.39+0.12

−0.09 3.14+0.11
−0.08 3.12+0.04

−0.06 n

1799.01 7.085754+8.4e−05
−9.2e−05 1904.8305+0.0084

−0.008 1.37+0.09
−0.08 1.42+0.09

−0.09 3.14+0.18
−0.18 3.45+0.08

−0.08 n

1801.01 10.643985+2.7e−05
−2.5e−05 1903.5423+0.0013

−0.0014 3.51+0.11
−0.11 1.96+0.08

−0.08 2.7+0.06
−0.05 2.67+0.04

−0.04 n

1807.01 0.549371+1e−06
−1e−06 1900.4436+0.0004

−0.0003 1.84+0.09
−0.07 1.5+0.08

−0.07 0.98+0.02
−0.02 1.23+0.03

−0.03 n

1823.01 38.81359+3.3e−05
−3.3e−05 1715.179+0.0004

−0.0004 8.59+0.11
−0.08 7.54+0.33

−0.25 5.92+0.04
−0.04 5.72+0.21

−0.26 n

1824.01 22.80853 +6e−05
−6.2e−05 1879.5468+0.0013

−0.0012 3.1+0.09
−0.07 2.74+0.09

−0.07 4.11+0.06
−0.05 4.51+0.07

−0.08 n

1836.01 1.772745+6e−06
−5e−06 1929.5241+0.0018

−0.0024 1.45+0.12
−0.08 2.6+0.22

−0.14 1.79+0.06
−0.08 3.46+0.07

−0.07 n

1836.02 20.380831+2.5e−05
−2.7e−05 1933.166+0.0008

−0.0008 4.61+0.07
−0.06 8.28 +0.2

−0.17 6.62+0.07
−0.05 7.97+0.16

−0.16 n

1842.01 9.573924+1.5e−05
−1.5e−05 1933.3359+0.0009

−0.0009 5.57+0.07
−0.07 12.35+0.28

−0.29 4.31+0.08
−0.07 7.32+0.16

−0.15 n

1898.01 45.522288+6.1e−05
−6.2e−05 1894.252+0.0007

−0.0007 5.34+0.09
−0.14 9.4+0.23

−0.31 4.27+0.06
−0.06 10.28+0.22

−0.19 n

2019.01 15.32222+0.000181
−0.000172 1942.9799+0.0042

−0.0054 2.8+0.13
−0.1 5.33+0.26

−0.21 7.57+0.24
−0.26 7.67+0.26

−0.13 n
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Table 6.4 (cont’d): TKS Planet Properties

Planet P t0 Rp/R⋆ Rp T14 Tcirc TTVs?

d BTJD % R⊕ hr hr y/n

2045.01 9.077535+8.5e−05
−8.4e−05 1765.5949+0.0014

−0.0014 6.59+0.12
−0.1 12.77+0.36

−0.34 5.9+0.09
−0.08 6.62+0.16

−0.16 n

2076.01 10.355307+1.4e−05
−1.5e−05 1743.724 +0.001

−0.0009 3.19+0.12
−0.07 2.77+0.14

−0.1 3.24+0.05
−0.04 3.44+0.09

−0.12 y

2076.02 21.015324+2.3e−05
−2.4e−05 1748.6895+0.0006

−0.0006 4.26+0.06
−0.05 3.69+0.14

−0.11 4.19+0.04
−0.03 4.4+0.12

−0.16 y

2076.03 35.125611+9.6e−05
−8.5e−05 1762.6658+0.0016

−0.0019 3.95 +0.2
−0.27 3.43+0.21

−0.25 2.97+0.12
−0.09 5.2+0.14

−0.18 n

2088.01 124.730182 +0.00061
−0.000575 1769.6077+0.0031

−0.0032 3.98+0.13
−0.1 3.68+0.19

−0.14 7.36+0.15
−0.14 8.32+0.27

−0.36 n

2114.01 6.209837+0.000206
−0.000197 2719.047+0.0011

−0.0011 6.17+0.07
−0.08 14.1+0.33

−0.32 4.6+0.08
−0.08 6.55+0.11

−0.13 n

2128.01 16.341418+0.000145
−0.000128 1987.2651+0.0022

−0.0022 1.71+0.06
−0.05 2.09+0.09

−0.08 4.7+0.14
−0.11 5.22+0.14

−0.13 n

2145.01 10.261125+1.1e−05
−1.2e−05 2013.2802+0.0006

−0.0006 4.14+0.05
−0.04 12.42+0.31

−0.25 7.47+0.05
−0.04 9.52+0.21

−0.19 n

Note. — Properties of 108 planets orbiting the 85 star TKS sample. Orbital period P , transit mid-point t0

(given in BTJD = BJD - 2457000), transit duration T14, and planet-to-star radius ratio Rp/R⋆ were measured

from a final fit using exoplanet (Foreman-Mackey et al. 2021a) and reweighted via importance sampling.

The given values reflect median measurements with upper and lower uncertainties. Rp follows from Rp/R⋆

and R⋆. The expected duration of a centrally transiting object on a circular orbit Tcirc and semi-major axis a

are determined from Kepler’s Third Law (Winn 2010b). The last column shows a flag (yes or no) indicating

whether or not observed TTVs are significant for a given planet.
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CHAPTER 7

Distribution of Orbital Eccentricities for 93 Small Planets

and 15 Giant Planets from the TESS-Keck Survey

7.1 Abstract

We determine the underlying eccentricity distribution for a sample of transiting planets

from the TESS-Keck Survey. We use a hierarchical Bayesian model to fit the population-

level eccentricity distribution of 108 planets from their individual posterior samples. The

eccentricities are consistent with a Rayleigh distribution with a mean value of e = 0.135+0.018
−0.016.

One feature of our hierarchical analysis is the ability to simultaneously fit the true eccentricity

distribution while also improving measurements of impact parameter and planet size via

importance sampling. We also apply hierarchical analysis to study sub-populations of our

planet sample according to planet multiplicity, stellar metallicity, and planet radius. We

find that planets in single-planet systems tend to have higher eccentricities than those in

multi-planet systems, but our single-planet eccentricity distribution (with e = 0.158+0.024
−0.020)

is significantly lower than the findings of comparable studies of single Kepler planets (e.g.

e = 0.30+0.05
−0.05 from Van Eylen et al. 2019). In contrast to past findings, we also measure

a broader eccentricity distribution for planets around metal-poor stars versus those around

metal-rich stars. Additionally, we offer the first hierarchical analysis of eccentricities for

a sample of transiting planets with heterogeneous sizes, allowing us to identify a broad

eccentricity distribution for Jovian-size planets that is distinct from the lower distribution of
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eccentricities among sub-Jovian-size planets in our sample. Hierarchical Bayesian modeling

thus allows us to probe potential diverging pathways of exoplanet formation and evolution

using large sets of noisy individual observations in a statistically robust manner.

7.2 Introduction

Orbital eccentricities are a crucial yet elusive clue to understanding the evolution of planets

and planetary systems. Planets orbiting a given star are believed to form on near-circular, co-

planar orbits, but the observed distribution of exoplanet eccentricities points towards a broad

range of dynamical behaviors. A variety of dynamical processes have thus been proposed

as potential means of exciting (see, e.g., Goldreich & Sari 2003; Chiang 2003; Chatterjee

et al. 2008; Naoz 2016) or damping (see, e.g., Fabrycky & Tremaine 2007) planetary orbital

eccentricities. Several of such interactions may have even played out within the evolutionary

history of our own Solar System (e.g. Tsiganis et al. 2005; Gomes et al. 2005). However,

further observational evidence is needed to better distinguish between the formation and

evolution pathways that may have led to observed trends in the dynamical outcomes of

planetary systems.

To better understand the breadth of orbital eccentricities, several studies have sought to

estimate the underlying distribution of best-fit eccentricity e values for planets measured

from both radial velocities (e.g. Kipping 2013) and transit photometry (e.g. Van Eylen

& Albrecht 2015; Mills et al. 2019; Xie et al. 2016). These studies come to qualitatively

similar conclusions regarding e and its relationship with other planetary system properties.

Noteworthy trends include a general tendency towards near-circular orbits, lower e values

in high-multiplicity systems, and a possible positive correlation between e and host star

metallicity. However, deriving a general model to describe a population-level parameter

is often not as simple as adding the best-fit results of all samples together. This issue is

amplified for a variable like e that is generally loosely constrained or noisy on an individual
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basis. In such cases, it is crucial to retain information regarding the complete structure of the

posterior distribution of the modeled parameter when developing a generalized population-

level model.

A tool that has recently gained popularity in exoplanet science for its use in addressing

this issue is hierarchical Bayesian modeling (HBM). HBM enables simultaneous inference

of the individual system parameters and the hyperparameters that govern the underlying

distribution of the population by applying Bayes’ Theorem at both levels. HBM was first

introduced in the context of exoplanet eccentricities by Hogg et al. (2010) who used it to infer

the eccentricity distribution of simulated planets from radial velocity (RV) model posteriors.

The technique was later expanded upon by Foreman-Mackey et al. (2014) to be more robust

and generalized. Other studies have since since used HBM to measure the densities of small

planets (Rogers 2015), the planetary mass–radius relationship (Wolfgang et al. 2016), and

the rotation period distribution of stars (Masuda et al. 2022), demonstrating the power of

this methodology for studying exoplanetary system properties.

For eccentricity modeling, Kipping (2013) points out that HBM is difficult to apply to RV-fit

planets in practice due to the inhomogeneity of RV modeling and the lack of a centralized

database for RV model posterior data. Instead, Bowler et al. 2020 applied hierarchical

modeling to direct imaging data to infer the underlying eccentricity distribution of 9 giant

planets and 18 brown dwarfs. While their measurements of individual objects were noisy,

the hierarchical analysis showed that the giant planets had a much smaller mean eccentricity

than the brown-dwarfs – a clear sign of alternate formation pathways. However, the small

sample size of homogeneously available data from either RV modeling or direct imaging can

limit the generalizations that can be made from such hierarchical analyses.

On the other hand, transit photometry offers a significant number of available targets with a

more complete description of the entire exoplanet population. Accordingly, Van Eylen et al.

(2019) used HBM to estimate the underlying eccentricity distributions of single- and multi-

160



planet systems from Kepler photometry, identifying a clear distinction between these two

populations. The multi-planet population from Van Eylen et al. (2019) could be described

by a Rayleigh distribution with a mean eccentricity of emulti = 0.076+0.013
−0.015, which is far less

eccentric than their single-planet population with esingle = 0.30+0.05
−0.05. Their multi-planet pop-

ulation findings are consistent with past works (which also use Kepler planets) but their

single-planet population findings differ from past works, with Xie et al. (2016) measuring

esingle = 0.32+0.02
−0.02 and Mills et al. (2019) measuring esingle = 0.209+0.016

−0.010. These previous

studies, however, rely on summary statistics to describe their individual planet eccentrici-

ties whereas Van Eylen et al. (2019) incorporates the full posterior distributions via HBM

analysis.

Here, we implement a hierarchical Bayesian analysis to infer the underlying distribution of

eccentricity from transit photometry for a sample of 108 heterogeneous TESS planets. We

draw these 69 single-planet systems and 16 multi-planet systems (hosting 39 planets) from

the TESS-Keck Survey sample (TKS, Chontos et al. 2022; MacDougall et al. 2023a), with

individual e posterior distributions homogeneously measured via the methods described in

MacDougall, Gilbert, & Petigura 2023. We then estimate the underlying true eccentricity

distribution of this sample following a framework similar to past studies: (1) implement

the HBM statistical methodology from Hogg et al. (2010), (2) try describing the underlying

eccentricity distribution using various distribution forms (see, e.g., Van Eylen et al. 2019),

and (3) use Monte Carlo sampling to model the population-level hyperparameters.

We also re-analyze the parameter posterior distributions of individual TKS planets by re-

weighting their samples via importance sampling, using the underlying e distribution mea-

sured from our HBM analysis as an updated prior. This leads to improved measurements

of planet-to-star radius ratio Rp/R⋆ and impact parameter b. Additionally, we investigate

how the underlying e distribution changes as a function of other system properties, includ-

ing planet multiplicity, stellar metallicity, and planet radius. We compare our results to
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other works and consider how the details of sample selection and sample size can impact the

outcomes of hierarchical eccentricity distribution modeling.

7.3 Framework for Hierarchical Bayesian Analysis

The objective of any Bayesian analysis is to infer the posterior probability density p(θ) for

some parameter(s) θ. We typically wish to obtain an estimate of both the population-level

distribution P (θ) and individual pi(θi) for i independent targets. In practice, we are often

presented with a large sample of noisy measurements leading to poor independent constraints

on pi(θi), which then makes inferring P (θ) challenging. Instead, one can use hierarchical

Bayesian modeling to leverage the large volume of individual measurements in order to

improve estimates of both P (θ) and pi(θi) (see Figure 7.1 for a graphical explanation),

assuming that the i independent targets belong to the same underlying population (or a

mixture of distinguishable sub-populations).

Using standard Bayesian inference (Figure 7.1, left), information flows in one direction: from

the individual level pi(θi) to the population level P (θ). Under this paradigm, parameter

posterior distributions for individual targets cannot simultaneously and self-consistently be

constrained with the population, so noisy measurements lead to poorly constrained pi(θi)

and the inferred posterior P (θ) thus depends strongly on choice of prior π(θ). In realty, we

do not infer P (θ), but rather P (θ|Λ) for some choice of hyperparameters Λ used to specify

the functional form of the prior π(θ) = π(θ|Λ).

One might be tempted to circumvent these challenges by iteratively adopting the posterior

P (θ) as an updated prior, but this method, is incorrect as it double-conditions the data. The

self-consistent solution for determining both pi(θi) and P (θ) is hierarchical Bayesian modeling

(Figure 7.1, right). The trick is to open up the prior π(θ) itself to modeling by making the

transformation π(θ) → P (θ|Λ) and placing hyperpriors π(Λ) on Λ. This allows information

to flow bidirectionally between individuals and populations. We then simultaneously and self
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Figure 7.1: Illustrative example of the power of hierarchical modeling for some parameter(s)

θ, individual distributions pi(θi) for i targets, population level distribution P (θ), prior π,

and hyperparameters α. See §7.3 for full description.
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consistently infer both the true population distribution P (θ) = P (θ|Λ)π(Λ) and more precise

individual pi(θi), which exhibit hierarchical shrinkage and are meaningfully constrained by

learning from the population.

For our hierarchical Bayesian analysis of the TKS dataset, we adopt the HBM framework

established by Hogg et al. (2010) and further developed by Foreman-Mackey et al. (2014)

and Van Eylen et al. (2019). The likelihood function L that describes the population-

level distribution of the data d conditioned on the population-level hyperparameter(s) Λ is

approximately given by

L(d|Λ) ≈
N∏

n=1

1

N

K∑
k=1

P (enk|Λ)
π(enk)

, (7.1)

where N is the number of planets being considered, K is the number of samples from the

posterior eccentricity distribution, enk is the kth random sample for each eccentricity distri-

bution n, P (enk|Λ) is the probability density of the population-level eccentricity distribution

at enk and conditioned on the hyperparameter(s) Λ, and π(enk) is the probability density of

the prior probability distribution evaluated at enk (Bowler et al. 2020). Equation 7.1 is ap-

proximate for finite K, approaching an exact solution as K increases. The population-level

probability density function P can take on any distribution form, including a Beta distri-

bution with hyperparameters Λ = {α, β} (e.g. Kipping 2013; Bowler et al. 2020), Rayleigh

distribution with Λ = {σrayleigh} (e.g. Mills et al. 2019; Xie et al. 2016), or zero-mean

positive-half-Gaussian distribution with Λ = {µ = 0, σgaussian} (e.g. Van Eylen et al. 2019).

We implement this analytical framework using the PyMC statistical modeling software (Sal-

vatier et al. 2016b), with sampling performed via the No-U-Turns Sampling method (NUTS;

Hoffman & Gelman 2011b). For all HBM analysis performed in this work, we use 3,000

tuning steps with an additional 2,000 sampler draws and a target acceptance fraction of

0.95. This sampling process is performed via two sampler chains across two CPU cores, and

we consider the process to be converged when the Gelman-Rubin statistic R̂ for these chains

is R̂ < 1.01 (Gelman & Rubin 1992).
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Table 7.1: Select eccentricity distribution fits from the literature

Population(s) Source Distribution Parameter(s) Measurement(s) Estimated e

Heterogeneous Sample A Rayleigh σrayleigh, all 0.1− 0.2 0.125− 0.25

B Beta {αall, βall} {0.87+0.04
−0.04, 3.03

+0.17
−0.16} 0.222+0.013

−0.013

Planet Multiplicity C Rayleigh σrayleigh, multi 0.018+0.005
−0.004 0.023+0.006

−0.005

D Rayleigh σrayleigh, single 0.26+0.02
−0.02 0.32+0.02

−0.02

σrayleigh, multi 0.03+0.02
−0.03 0.04+0.03

−0.04

E Rayleigh σrayleigh, single 0.167+0.013
−0.008 0.209+0.016

−0.010

σrayleigh, multi 0.0355+0.012
−0.012 0.044+0.015

−0.015

F Rayleigh σrayleigh, single 0.24+0.04
−0.04 0.301+0.050

−0.050

σrayleigh, multi 0.061+0.010
−0.012 0.076+0.013

−0.015

Half-Gaussian σgaussian, single 0.32+0.06
−0.06 0.255+0.048

−0.048

σgaussian, multi 0.083+0.015
−0.020 0.066+0.012

−0.016

Beta {αsingle, βsingle} {1.58+0.59
−0.93, 4.4

+1.8
−2.2} 0.264+0.108

−0.150

{αmulti, βmulti} {1.52+0.50
−0.85, 29

+9
−17} 0.050+0.021

−0.038

Note. — A: Moorhead et al. (2011); distribution fit to best-fit e values measured from transit photometry

for 104 Kepler Objects of Interest with cool host stars (Teff < 5100 K). B: Kipping (2013); distribution fit

to best-fit e values measured from RV data for 396 planets. C: Hadden & Lithwick (2014); distribution

fit to best-fit e values measured from transit-timing variations for 139 Kepler planets. D: Xie et al. (2016);

distribution fit via forward modeling of best-fit e measurements from transit photometry for 368 single planets

and 330 planets from multi-planet systems. E: Mills et al. (2019); distribution fit to best-fit e values measured

from Kepler transit data for a sample of 439 single planets and 870 planets from multi-planet systems. F:

Van Eylen et al. (2019); distributions fit via hierarchical analysis of full posterior distributions measured

from Kepler transit photometry for a sample of 51 single planets and 66 planets from multi-planet systems.
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7.4 A Hierarchical Analysis of the Full TKS Sample

The TKS sample is composed of 16 multi-planet systems hosting 39 planets along with

another 69 single-planet systems, displaying heterogeneous radii, periods, and orbital archi-

tectures (see Chontos et al. 2022 for sample selection criteria). These planets are hosted

mostly by inactive, solar-like, main-sequence stars with a wide range of metallicities and

3700 ≲ Teff ≲ 6500. Both stellar characterization and lightcurve modeling were performed by

MacDougall et al. 2023a for all targets in the TKS sample, producing a set of homogeneously-

measured posterior distributions for all transit parameters including eccentricity. As noted

in MacDougall et al. 2023a, these e posteriors are sampled post-modeling via importance

sampling using an uninformative uniform prior on e from 0 to 1 and also using stellar den-

sities measured with isoclassify (Huber et al. 2017; Berger et al. 2020b) with typical

uncertainties of ∼4–8%.

We can apply the hierarchical Bayesian modeling procedure described in §7.3 to measure the

underlying eccentricity distribution of the 108 planets in the TESS-Keck Survey sample. We

draw our e posterior distributions for individual planets in this sample from MacDougall et

al. 2023a. We take these posterior distributions in their entirety as inputs to our HBM anal-

ysis. Following similar studies in the literature, we use our hierarchical model to try fitting

the population-level e distribution with various distribution shapes, including a Rayleigh

distribution, zero-mean half-Gaussian distribution, and Beta distribution. Here, we use this

method to measure the the e distribution of the full TKS sample. Later, in §7.5, we in-

vestigate how e may vary as a function of other system parameters by analyzing various

sub-populations of this sample.

7.4.1 Measuring the true eccentricity distribution of TKS planets

We analyze the population-level eccentricity distribution for the full TKS sample first with-

out considering separate sub-populations. We apply the analytical framework described
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Table 7.2: Eccentricity distribution fits from this work

Population(s) Distribution Parameter(s) Measurement(s) Estimated e

Full TKS Sample Rayleigh σrayleigh, all 0.106+0.014
−0.013 0.135+0.018

−0.016

Half-Gaussian σgaussian, all 0.149+0.026
−0.021 0.119+0.021

−0.017

Beta αall, βall {0.360+0.097
−0.067, 4.03

+1.49
−1.09} 0.082+0.035

−0.025

Planet Multiplicity Rayleigh σrayleigh, single 0.126+0.019
−0.016 0.158+0.024

−0.020

σrayleigh, multi 0.038+0.018
−0.014 0.048+0.023

−0.018

Half-Gaussian σgaussian, single 0.176+0.030
−0.025 0.140+0.024

−0.020

σgaussian, multi 0.058+0.030
−0.020 0.046+0.024

−0.016

Beta αsingle, βsingle {0.355+0.128
−0.078, 3.32

+1.42
−1.01} 0.097+0.049

−0.033

αmulti, βmulti {0.580+1.006
−0.264, 12.38

+20.08
−7.32 } 0.045+0.102

−0.032

Stellar Metallicity Rayleigh σrayleigh, met-poor 0.148+0.033
−0.027 0.185+0.041

−0.034

σrayleigh, met-rich 0.086+0.015
−0.012 0.108+0.019

−0.015

Half-Gaussian σgaussian, met-poor 0.196+0.058
−0.042 0.156+0.046

−0.034

σgaussian, met-rich 0.123+0.028
−0.022 0.098+0.022

−0.018

Beta αmet-poor, βmet-poor {0.309+0.200
−0.092, 2.61

+2.19
−1.18} 0.106+0.100

−0.051

αmet-rich, βmet-rich {0.392+0.149
−0.088, 4.71

+2.40
−1.49} 0.077+0.045

−0.028

Planet Radius Rayleigh σrayleigh, sub-jov 0.085+0.016
−0.012 0.107+0.020

−0.015

σrayleigh, jov 0.155+0.038
−0.030 0.194+0.048

−0.038

Half-Gaussian σgaussian, sub-jov 0.119+0.026
−0.021 0.095+0.021

−0.017

σgaussian, jov 0.217+0.072
−0.048 0.173+0.057

−0.038

Beta αsub-jov, βsub-jov {0.368+0.133
−0.079, 4.93

+2.43
−1.59} 0.069+0.040

−0.025

αjov, βjov {0.318+0.217
−0.114, 1.98

+1.94
−1.02} 0.139+0.143

−0.075

Note. — Eccentricity distribution fits from this work for various populations drawn from the TKS

planet sample. Metal-poor ([Fe/H] < 0) versus metal-rich ([Fe/H] > 0) and sub-Jovian-size (Rp < 8R⊕)

versus Jovian-size (Rp > 8R⊕) sub-populations based on characterizations drawn from MacDougall et

al. 2023a.
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Figure 7.2: Various distribution types fit to the population-level eccentricity distribution of

the TKS sample using hierarchical Bayesian modeling. A commonly cited Beta distribution

(Kipping 2013) is shown for reference (black/grey). Our distribution fits suggest that the

TKS sample has a lower distribution of eccentricities than the sample used by Kipping 2013,

possibly attributed to differences in observing techniques or sample selection biases.

in §7.3 to fit our observed eccentricities using a simple Rayleigh distribution with a single

hyperparameter σrayleigh, finding σrayleigh = 0.106+0.014
−0.013. This distribution fit implies that

planets in our sample tend to have low orbital eccentricities, with a mean eccentricity of

erayleigh = 0.135+0.018
−0.016 among the TKS population. Here, we prefer to describe the population-

level eccentricities using a Rayleigh distribution because it is commonly used in the literature

and also because it describes the magnitude of a two-dimensional random vector where each

component is independent and normally distributed, approximately fitting the description

of e in its relationship to argument of periastron ω.

However, various other distribution forms have also been considered in the literature when

modeling population-level eccentricity distributions since the true topology is loosely con-

strained. For completeness, we also try fitting both a zero-mean positive-half-Gaussian
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Figure 7.3: Comparison between fitting the TKS population-level eccentricity distribution

using hierarchical analysis (orange) versus estimating the underlying distribution from sum-

mary statistics (blue). The histogram of median e values for each TKS planet is shown with

a Gaussian kernel density estimate fit to this distribution with a bandwidth measured via

Scott’s Rule (Scott 1992).

distribution (e.g. Van Eylen et al. 2019) and a Beta distribution (e.g., Kipping 2013; Van

Eylen et al. 2019; Bowler et al. 2020) to our TKS eccentricities. While each fit uses a different

distribution shape to describe the eccentricities, they all achieve similar e estimates for the

population within ∼1.5σ of each other. These results are summarized in Table 7.2 and shown

in Figure 7.2. We could also consider mixture models or non-parametric models, but such

considerations are beyond the scope of this analysis. We proceed with our analysis focusing

on the results from the physically-motivated Rayleigh distribution fit to our population-level

eccentricities.

We compare the results of our hierarchical analysis of TKS eccentricities to a simple analysis

of these same eccentricities based on individual planet summary statistics. We take the

median e values measured for each TKS planet and calculate the mean eccentricity of the
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Figure 7.4: Distribution of orbital periods (from NASA Exoplanet Archive on 22 May 2023;

Akeson et al. 2013a) for planets discovered via transit detection (Kepler, blue; TESS, orange)

or radial velocity detection (green). Generally, planets discovered via RVs have significantly

longer orbital periods than transiting planets. Also, Kepler planets tend to have longer

periods than TESS planets, with 15th–to–85th percentile period ranges of PKepler ≈ 3.5− 45

days versus PTESS ≈ 2− 20 days.

histogram of these summary statistics, measuring ehistogram ≈ 0.25. If we use the mean

e values from individual planet posteriors rather than medians, this estimate increases to

ehistogram ≈ 0.31. The underlying eccentricity distribution estimated from summary statistics

is thus significantly broader than the distribution that we measure from our hierarchical

analysis (erayleigh ≈ 0.14). We show this comparison in Figure 7.3 where the two distributions

clearly differ. The hierarchical Bayesian modeling approach retains all posterior information

of e from the individual targets which leads to a more reliable interpretation of the underlying

dynamics.

Our population-level erayleigh estimate is marginally consistent with that of Moorhead et al.

(2011) measured from Kepler planet transits (erayleigh ≈ 0.125 − 0.25), but our estimate is
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significantly lower than the result of Kipping (2013) measured from RVs (ebeta ≈ 0.222+0.013
−0.013)

– where both studies considered heterogeneous planet samples. A possible explanation for

this disagreement is that TESS planets have an inherently lower period distribution than

either Kepler planets or planets found via RVs (see Figure 7.4). The TESS mission generally

detects fewer longer-period planets than other surveys due to its short observing baseline of

<30 days per observing sector. This may lead to lower observed eccentricities among the

TESS planet population since short-period planets tend to have low eccentricities due to

tidal circularization (e.g. Matsumura et al. 2010).

7.4.2 Improving Rp/R⋆ measurements via HBM-informed importance sampling

The eccentricities that we use as inputs to our HBM analysis were produced through im-

portance sampling with an uninformative uniform prior on e (see MacDougall et al. 2023a).

This post-model importance-weighting process also allows one to easily go back and re-weight

parameter posterior distributions with an updated e prior. This is useful for post-hoc re-

analysis of transit model results following a hierarchical evaluation of the population-level

eccentricity distribution. We can thus use our HBM-informed e distribution from §7.4.1 to

update the individual target parameter posterior distributions from MacDougall et al. 2023a

via importance sampling.

We use a Rayleigh distribution with σrayleigh = 0.106 as our new prior to re-weight the TKS

sample posteriors, drawing this prior from our hierarchical fit to the population-level eccen-

tricity distribution. We re-weight the parameter posterior distributions of all TKS planets

individually via importance sampling using this prior, then we calculate updated summary

statistics for all planet parameters. Since the updated e prior is a Rayleigh distribution,

it enforces zero posterior weight at e = 0 and low weight at high e values. We prefer

the Rayleigh distribution here over the half-Gaussian or Beta distributions because of its

simplicity, physical motivation, and common usage in the literature.
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Figure 7.5: Distribution of the fractional uncertainty measurements σ(Rp/R⋆) for all TKS

planets using an uninformative e prior (blue) versus an e prior informed by our hierarchical

analysis of the population-level e distribution (orange). The HBM-informed e prior leads to

more precise radius ratios with narrower distribution of σ(Rp/R⋆) uncertainties. Gaussian

kernel density estimates are shown fit to each distribution.

Post re-weighting, we find that the newly-constrained (lower) eccentricities generally lead

to better constrained (higher) impact parameters and, subsequently, more precise (higher)

radius ratios Rp/R⋆. Following this re-weighting, we re-measure radius ratios for all TKS

planets and obtain more precise radius measurements than those from MacDougall et al.

2023a. This can be seen in Figure 7.5 where we compare the before-and-after distributions

of fractional radius ratio uncertainties σ(Rp/R⋆). We measure a 15th–to–85th percentile un-

certainty range of σ(Rp/R⋆) ∼ 1.3 − 3.8% for our re-weighted planet population. These

uncertainties are thus more precise than our initial radius ratios measured with an unin-

formative e prior, where the corresponding 15th–to–85th percentile range of uncertainties

was broader: σ(Rp/R⋆) ∼ 1.4 − 4.9%. The largest Rp/R⋆ uncertainty amongst our sample

subsequently shrank from 8.3% to 6.9% after our informative re-weighting.
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Figure 7.6: Period-radius distribution of TKS planets, with markers shown at the radius

values calculated from our newly re-weighted Rp/R⋆ distributions. Planets with radii that

shifted by |∆Rp| > 1% are shown as red triangles, and all other planets in the TKS sample are

shown as black triangles. The triangles are pointed up or down depending on the direction

of the relative shift ∆Rp. The red triangles form part of an arrow that shows the full extend

of the shift ∆Rp, with the most substantial shifts occurring among smaller planets. We

also show noteworthy areas of the period-radius parameter space for reference, including the

Radius Gap (Fulton et al. 2017a; Petigura et al. 2022) and the Hot Neptune Desert (Mazeh

et al. 2016).
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Figure 7.7: Best-fit hierarchical model fit to the shape of the underlying distribution of b val-

ues among TKS planets both before (blue) and after (orange) applying our HBM-informed

e prior. We measure both curves with a hierarchical Bayesian model fit to the underlying

distribution histogram via a Gaussian process model with a Matérn-3/2 kernel. The b dis-

tribution achieved via our updated prior is closer to what is expected from orbital geometry

and observational bias (grey; Kipping & Sandford 2016). We show only the best-fit solutions

here for simplicity, noting that the 1σ uncertainties on these probability distributions are

significant and thus this figure is only intended to convey qualitative results.

Overall, ∼20% of TKS planets experienced a shift of |∆Rp/R⋆| > 1%, highlighted in Figure

7.6 where we show the significant corresponding shift in ∆Rp in some cases. The largest

∆Rp/R⋆ shifts mostly occurred for smaller planets, like a ∼10% increase in planet size for

the super-Earth TOI-554.01. Such planets generally have lower signal-to-noise transits with

initially overestimated e values and underestimated b values due to the inherent degeneracy

between b, e, and argument of periastron ω (see MacDougall et al. 2023b). By including

an informative eccentricity prior, we are able to minimize this degeneracy to obtain more

accurate radius measurements for smaller planets.
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In support of our updated Rp/R⋆ constraints, we also find that our informative e prior yields

more realistic impact parameter measurements. Before applying our updated e prior, the

underlying distribution of impact parameter values among our sample was skewed in favor of

lower impact parameters due to the b–e–ω degeneracy (Figure 7.7). After implementing our

HBM-informed e prior, we find that our impact parameter distribution is closer to the true

distribution expected from orbital geometry and observational bias (see Kipping & Sandford

2016). We estimate the b distribution in both cases using a hierarchical Bayesian model fit to

the binned underlying distribution via a Gaussian process model with a Matérn-3/2 kernel.

7.5 A Hierarchical Analysis of Sub-populations of the TKS sample

7.5.1 Planet Multiplicity-based Sub-populations

We apply our HBM fitting procedure to measure the underlying eccentricity distribution

for various sub-populations of the TKS sample, starting with a comparison of systems with

multiple transiting planets versus those with a single transiting planet. This is a common

basis for separating a planet sample into sub-populations (see, e.g., Van Eylen et al. 2019;

Mills et al. 2019) because it allows us to consider the dynamical differences that arise from the

different formation and evolution pathways that planets undergo with or without additional

observed companions. It has previously been observed that multi-planet systems tend to have

smaller eccentricities than single planets (e.g. Wright et al. 2009; Limbach & Turner 2015;

Xie et al. 2016), typically attributed to dynamical interactions with remnant protoplanetary

disk material (e.g. Dawson et al. 2016) or between planetesimals (e.g. Mulders et al. 2020)

which preferentially damp orbital eccentricities over time in high-multiplicity systems.

Given the differences identified in previous studies, we seek to perform a similar comparison

of the population-level eccentricity distributions of the TKS single-planet (N = 69) and

multi-planet (N = 39) populations through our hierarchical Bayesian framework. As we did

in §7.4.1, we try fitting three different distribution shapes to each sub-population: Rayleigh,
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Figure 7.8: Rayleigh distribution (left) and half-Gaussian distribution (right) fit to

multiplicity-based sub-populations of the TKS sample. We show the 15th–to–85th percentile

ranges for our distribution fits (top), with the 50th percentile highlighted by the solid line. We

also show the distributions of the hyperparameters that we measure for each sub-population

(bottom), highlighting their 15th, 50th, and 85th percentiles as vertical lines. The mean ec-

centricity e for each distribution is shown in the legend. We find that planets with observed

transiting companions (blue) have a significantly higher distribution of eccentricities than

those without observed transiting companions (green), consistent with the results of past

studies.

176



half-Gaussian, and Beta distributions. We measure the hyperparameters for each distribution

fit to our two sub-populations and summarize these results in Table 7.2. We also show

the measured Rayleigh and half-Gaussian distributions along with their hyperparameter

distributions in Figure 7.8, but we mainly focus on the Rayleigh fit throughout our analysis.

Overall, our findings suggest that single-planet systems in the TKS sample display a higher

eccentricity distribution than our multi-planet systems – consistent with past studies.

When we fit a Rayleigh distribution to our eccentricities, we measure σrayleigh, multi consistent

with Mills et al. (2019) but we measure an inconsistent σrayleigh, single. Those authors used a

large sample size and high-quality data, but their results are based on best-fit e values rather

than complete posterior distributions. We also compare our Rayleigh distribution results

with those from Van Eylen et al. (2019), again finding consistent σrayleigh, multi values but

inconsistent σrayleigh, single values (see Figure 7.9). This inconsistency persists even when we

apply cuts to our sample to mimic those used by Van Eylen et al. (2019) (i.e. Rp < 6R⊕, P >

5d). We also consider a half-Gaussian fit to our eccentricity distributions, following Van

Eylen et al. (2019), and again measure consistent σgaussian, multi but inconsistent σrayleigh, single.

These differences suggest that single-planet systems in the TKS sample display lower eccen-

tricities than single-planet populations examined in similar studies. A possible explanation

for this disagreement is that there are inherent difference between the TESS planet popu-

lation (our study) and the Kepler population (all similar past studies). The TESS mission

tends to detect fewer long-period planets than Kepler due to its significantly shorter ob-

serving baseline (see Figure 7.4), which may lead to lower observed eccentricities among

TESS planets due to tidal effects. Alternatively, the short observing baseline of TESS may

also limit our ability to detect additional companions that have longer orbital periods. This

may lead to some true multi-planet systems being mistakenly considered as single-planet

systems in our analysis, polluting our single-planet population with low-e planets from true

multi-planet systems.
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Xie et al. 2016
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Mills et al. 2019
Van Eylen et al. 2019

Figure 7.9: Mean eccentricity e from various Rayleigh distribution fits to exoplanet eccen-

tricities, drawn from both this work and the literature (Moorhead et al. 2011; Hadden &

Lithwick 2014; Xie et al. 2016; Mills et al. 2019; Van Eylen et al. 2019). Open circles are from

multi-planet fits, filled circles are from single-planet fits, and open square points are from fits

to a general planet population. Faint vertical lines are used as a visual reference to compare

literature results to the maximum-likelihood fits from this work. The mean eccentricity is

related to hyperparameter σrayleigh via e = σrayleigh
√

π/2 (Jurić & Tremaine 2008).

7.5.2 Stellar Metallicity-based Sub-populations

We also consider metallicity-based sub-populations of the TKS sample in our hierarchical

Bayesian analysis. We split the sample into two groups: planets orbiting metal-poor stars

([Fe/H] < 0; N = 31) versus planets orbiting metal-rich stars ([Fe/H] ≳ 0; N = 77), as

done by Mills et al. (2019). Those authors modeled the distribution of best-fit e values from

transit data and found that planets around metal-rich stars tend to have higher eccentricities

than those around metal-poor stars, supported by An et al. (2023) using transit data. This

relationship may be linked to the early evolution of planetary systems when metal-rich stars

would likely have had more solid protoplanetary disk material to form more planetesimals

which could then excite each other’s orbits (e.g. Dawson & Murray-Clay 2013).
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We split our sample into these two sub-populations and fit the eccentricities of each group

separately following the same hierarchical framework as before (see Table 7.2 for a summary

of these results). We find a statistically significant difference between the e distributions

of metal-poor versus metal-rich populations based on both σrayleigh and σgaussian (see Figure

7.10). However, contrary to past studies, our results show that planets around metal-rich

stars in the TKS sample have lower eccentricities while those around metal-poor stars have

higher eccentricities.

One possible explanation for this discrepancy between ours and past studies could stem

from loosely constrained metallicity measurements that mistakenly fall on the wrong side

of our binary sub-population grouping. If we instead require that a host star’s metallicity

measurement from 15th-to-85th percentile falls entirely above or below [Fe/H] = 0, we end

up with N = 20 planets around metal-poor stars and N = 59 planets around metal-rich

stars, with another 29 planets orbiting stars with more moderate Sun-like metallicities. For

this exaggerated set of metallicity-based sub-populations, we more confidently recover the

same result as before. We also repeat this process with metallicities drawn from Berger et al.

(2023) rather than MacDougall et al. 2023a, again producing similar results.

It is also possible that the specific selection criteria of the TKS sample (Chontos et al. 2022)

may have led to a planet population that defies the broader metallicity-eccentricity relation-

ship. On the other hand, Van Eylen et al. (2019) found no evidence for any metallicity-

eccentricity relationship through their own hierarchical Bayesian analysis – the only other

such analysis to-date in the literature. In summary, the relationship between metallicity and

eccentricity remains loosely constrained, but our sample demonstrates that planetary orbital

eccentricities may be anti-correlated to host star metallicities for TESS targets.
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Figure 7.10: Rayleigh and half-Gaussian distribution fits to metallicity-based sub-

populations of the TKS sample, with the metal-rich population ([Fe/H] > 0) shown in blue

and the metal-poor population ([Fe/H] < 0) shown in green. We find that planets orbit-

ing metal-poor stars tend to have a higher distribution of eccentricities than those orbiting

metal-rich stars, counter to the results of past studies.
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7.5.3 Planet Radius-based Sub-populations

We also use our hierarchical Bayesian analysis to measure the true eccentricity distribution

of sub-Jovian-size TKS planets (Rp < 8R⊕) as compared to that of Jovian-size TKS planets

(Rp ≳ 8R⊕). There is substantial evidence indicating that smaller planets tend to have lower

eccentricities while giant planets have a much broader eccentricity distribution (see, e.g.,

Wright et al. 2009; Mayor et al. 2011; Mills et al. 2019). Several evolutionary pathways have

bean proposed to explain this e divergence based on planet size, including strong dynamical

interactions between multiple planetary bodies that result in orbital excitation for giant

planets while small eccentric planets are destroyed or ejected (e.g. Bitsch et al. 2020). There

are no radius-based hierarchical analyses of exoplanet eccentricities in the literature, so we

offer the first HBM-based investigation of this radius-eccentricity trend.

As before, we split our sample into two sub-populations: small planets (N = 93) versus

large planets (N = 15), separated at Rp = 8R⊕. We try fitting several different distribution

shapes to the eccentricities of both sub-populations and consistently find that giant planets in

our sample have a broader underlying eccentricity distribution than sub-Jovian-size planets.

Our Rayleigh and half-Gaussian distribution fits yield hyperparameter measurements that

significantly differentiate between the two sub-populations (see Figure 7.11 and Table 7.2).

We try repeating this process with different radius values separating the two sub-populations

(instead of 8R⊕), including all integer values from 2−7R⊕. We find that the measured eccen-

tricity distributions of the two populations start to diverge significantly when the separation

radius reaches ≳6R⊕. Including a third sub-population (i.e. small, medium, and large plan-

ets) helps to distinguish more strongly between small planets and large planets, but the

middle population always has significant overlap with one or both of the outer populations.

These different ways of splitting up our sample into sub-populations also lead to different sub-

sample sizes which can impact the statistical significance these supplementary tests’ results.

Generally, our findings strongly support a differentiation between the dynamical outcomes of
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Figure 7.11: Rayleigh and half-Gaussian distribution fits to radius-based sub-populations of

the TKS sample, with the sub-Jovian-size population (Rp ≲ 8R⊕) shown in blue and the

Jovian-size population (Rp > 8R⊕) shown in green. We find that Jovian-size planets tend

to have a higher distribution of eccentricities than sub-Jovian-size planets, consistent with

theoretical expectations.
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small versus large planets, with the latter consistently displaying higher eccentricities with

statistical significance.

7.6 Conclusions

In this work, we used hierarchical Bayesian modeling to measure the eccentricity distribution

of a sample of TESS planets for the first time. Drawing our input data and planet popu-

lation from MacDougall et al. 2023a, we recover an underlying eccentricity distribution for

this sample that is somewhat less eccentric than past results from other planet populations

found in the literature. We propose using the output eccentricity distribution fit from our

hierarchical analysis as an input prior for re-weighting the parameter posterior distributions

of our planet sample, including for Rp/R⋆ and b. The updated planet-to-star radius ratios

that we measure from this re-weighting process are more precise than those measured us-

ing an uninformative uniform prior on eccentricity. We also find preliminary evidence to

suggest that our updated re-weighted impact parameter measurements have a more realistic

underlying distribution than before implementing our updated e prior.

To better investigate trends between eccentricity and other system properties, we also apply

this hierarchical analysis to various sub-populations of our sample based on planet mul-

tiplicity, stellar metallicity, and planet radius. We find that single-planet systems in our

sample display a broader eccentricity distribution than multi-planet systems, but this distri-

bution is less eccentric than the single-planet e distributions recovered by comparable works

using Kepler planets. This likely points towards an underestimate in the multiplicity of

TESS systems due to the shorter baseline of TESS observations. We also find evidence for

an anti-correlation between planetary orbital eccentricity and stellar metallicity, counter to

expectations.

We offer the first hierarchical Bayesian analysis to investigate the eccentricity distribution

of sub-Jovian-size planets (Rp < 8R⊕) versus Jovian-size planets. We identify a significant
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difference between these two populations, with Jovian-size planets generally having higher

eccentricities. This observation is supported by various proposed dynamical processes that

preferentially excite the orbits of giant transiting planets. Thus, by measuring the true eccen-

tricity distribution underlying all or sub-populations of exoplanets, we can both improve our

constraints on exoplanet properties and better identify trends that highlight the dynamical

processes governing planetary evolution.
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CHAPTER 8

Conclusions

To understand the origin of Earth, we must look beyond our own Solar System and study the

processes that govern the formation and evolution of distant planetary systems. Large-scale

exoplanet surveys such as Kepler and TESS have revealed that the range of planetary system

outcomes stretches far beyond what we observe among the Solar System planets. Planetary

orbital eccentricities help us to make sense of observed planet characteristics and system

architectures by providing a glimpse into the dynamical evolution that a planet must have

undergone to reach its current state. Although individual exoplanet eccentricities can be

difficult to constrain in many cases, trends between eccentricity and other system properties

can be measured among planetary sub-populations as evidence of diverging evolutionary

pathways.

I have presented a study of photometrically-constrained eccentricities of planets from the

TESS-Keck Survey and used my results to identify population-level trends in eccentricity

along with individual high-eccentricity sub-Jovian-size planets. I accomplished this by de-

veloping a new approach to measuring orbital eccentricities from transit photometry which I

then applied towards modeling the transit properties of 108 planets from the TESS mission.

I demonstrated that photometric eccentricity constraints can be used to identify potential

high-eccentricity planets which can then be followed up through additional observations.

I also demonstrated that a large sample of individual noisy eccentricity constraints from

TESS photometry can be used to estimate the population-level eccentricity distribution of
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transiting planets via hierarchical Bayesian modeling. I used such hierarchical analysis to

show that Jovian-size planets have a much broader underlying eccentricity distribution than

sub-Jovian-size planets. I also found that planets in single-planet systems display a higher

eccentricity distribution than planets in multi-planet systems, consistent with the results of

similar studies of Kepler planets found in the literature.

My collaborators and I propose using the techniques discussed in this thesis to homogeneously

analyze all transiting planets in order to improve individual exoplanet properties and reveal

new population-level trends in exoplanet demographics. A precise homogeneous re-analysis

of exoplanet transit photometry on such a large scale has yet to be performed, but I have a

good feeling that we will soon see new discoveries made from such an analysis in the near

future. Although I am now stepping away from exoplanet research, I am excited to see the

future progress made by my collaborators and fellow exoplaneteers.
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