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Refining epileptogenic high-frequency
oscillations using deep learning: a reverse
engineering approach

Yipeng Zhang,1 Qiujing Lu,1 Tonmoy Monsoor,1 Shaun A. Hussain,2 Joe X. Qiao,3

Noriko Salamon,3 Aria Fallah,4 Myung Shin Sim,5 Eishi Asano,6 Raman Sankar,2,7,8

Richard J. Staba,7 Jerome Engel Jr,7,9,10,11 William Speier,12,13 Vwani Roychowdhury1 and
Hiroki Nariai2,8

Intracranially recorded interictal high-frequency oscillations have been proposed as a promising spatial biomarker of the epilepto-

genic zone. However, its visual verification is time-consuming and exhibits poor inter-rater reliability. Furthermore, no method is

currently available to distinguish high-frequency oscillations generated from the epileptogenic zone (epileptogenic high-frequency

oscillations) from those generated from other areas (non-epileptogenic high-frequency oscillations). To address these issues, we con-

structed a deep learning-based algorithm using chronic intracranial EEG data via subdural grids from 19 children with medication-

resistant neocortical epilepsy to: (i) replicate human expert annotation of artefacts and high-frequency oscillations with or without

spikes, and (ii) discover epileptogenic high-frequency oscillations by designing a novel weakly supervised model. The ‘purification

power’ of deep learning is then used to automatically relabel the high-frequency oscillations to distill epileptogenic high-frequency

oscillations. Using 12 958 annotated high-frequency oscillation events from 19 patients, the model achieved 96.3% accuracy on

artefact detection (F1 score¼ 96.8%) and 86.5% accuracy on classifying high-frequency oscillations with or without spikes (F1

score¼ 80.8%) using patient-wise cross-validation. Based on the algorithm trained from 84 602 high-frequency oscillation events

from nine patients who achieved seizure-freedom after resection, the majority of such discovered epileptogenic high-frequency oscil-

lations were found to be ones with spikes (78.6%, P< 0.001). While the resection ratio of detected high-frequency oscillations

(number of resected events/number of detected events) did not correlate significantly with post-operative seizure freedom (the area

under the curve¼ 0.76, P¼ 0.06), the resection ratio of epileptogenic high-frequency oscillations positively correlated with post-op-

erative seizure freedom (the area under the curve¼ 0.87, P¼ 0.01). We discovered that epileptogenic high-frequency oscillations

had a higher signal intensity associated with ripple (80–250 Hz) and fast ripple (250–500 Hz) bands at the high-frequency oscilla-

tion onset and with a lower frequency band throughout the event time window (the inverted T-shaped), compared to non-epilepto-

genic high-frequency oscillations. We then designed perturbations on the input of the trained model for non-epileptogenic high-fre-

quency oscillations to determine the model’s decision-making logic. The model confidence significantly increased towards

epileptogenic high-frequency oscillations by the artificial introduction of the inverted T-shaped signal template (mean probability

increase: 0.285, P< 0.001), and by the artificial insertion of spike-like signals into the time domain (mean probability increase:

0.452, P< 0.001). With this deep learning-based framework, we reliably replicated high-frequency oscillation classification tasks

by human experts. Using a reverse engineering technique, we distinguished epileptogenic high-frequency oscillations from others

and identified its salient features that aligned with current knowledge.
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Introduction
More than one-third of individuals with epilepsy are

medication-resistant, making them potential surgical can-

didates.1 Currently, surgery is primarily guided by neuroi-

maging and neurophysiology (interictal spikes and seizure

onset zone). However, the seizure-freedom rate of surgery

is suboptimal, ranging from 50% to 85%.2–5 Identifying

a biomarker that can accurately delineate the spatial ex-

tent of the epileptogenic zone (EZ: brain areas respon-

sible for generating seizures) will be groundbreaking.

Human and animal studies of epilepsy have suggested

that intracranially recorded interictal high-frequency oscil-

lations (HFOs) on EEG is a promising spatial neuro-

physiological biomarker of the epileptogenic zone.6–10

Many retrospective studies demonstrated that the removal

of brain regions producing HFOs correlated with post-

operative seizure-freedom.11–14 However, a recent pro-

spective study could not reproduce these results.15 One of

the most challenging issues is the presence of HFOs gen-

erated in healthy brain regions (physiological HFOs),

which means seizure-freedom may be achieved despite

leaving behind some areas displaying HFOs.16–18 In

short, to utilize HFOs as a spatial biomarker to guide

epilepsy surgery, one needs to establish a methodology to

differentiate HFOs that are generated from the EZ (epi-

leptogenic HFOs: eHFOs) and HFOs that are generated

from other areas (non-epileptogenic HFOs: non-eHFOs).

A hypothesis-driven approach to look for eHFOs is

quite challenging in practice because one needs to con-

sider numerous and yet-to-be-identified features. Visual

classification of HFOs with or without spikes along with

artefact removal is commonly performed,19 because

HFOs with spike-wave discharges are considered repre-

sentative of eHFOs.20–22 However, this task is time-con-

suming and exhibits poor inter-rater reliability.23 Semi-

automated computational methods to evaluate HFO char-

acteristics (frequency, amplitude and duration) do not ap-

pear to be useful for differentiating between eHFOs and

non-eHFOs.16,24 Fast ripples (250–500 Hz) might more

specifically localize epileptogenic zones than ripples (80–

250 Hz), but their detection rate is much lower than rip-

ples.12,25,26 Correcting the HFO detection rate with re-

gion-specific normative values seems a reasonable

approach,27,28 but this does not determine each HFO

event as an eHFO or non-eHFO.

Therefore, automated computational methods, such as

those developed in the fields of artificial intelligence,

would ideally discover eHFOs, guided purely by large

samples of HFOs and clinical outcomes. Once trained, an

ideal model should work robustly for any future patient.

Moreover, these automated models should be interpret-

able to enable clinical decisions with high confidence and

guide further scientific explorations of biological mecha-

nisms. Indeed, machine learning has been successfully

applied to the problem of classifying HFOs based on a

priori manual engineering of event-wise features, which

includes linear discriminant analysis,29 support vector

machines,30,31 decision trees32 and clustering.33 More re-

cently, the deep learning (DL) framework has been

adopted, which directly works with raw data (avoiding

any a priori feature engineering) and yields better per-

formance in the field of neuroimaging.34 Leveraging DL’s

revolutionary success in the field of computer vision using

Convolutional Neural Networks (CNNs), prior studies

explored the use of CNNs in EEG analysis, especially

converting one-dimensional EEG signal into a two-dimen-

sional image for CNNs input.35–37 The previous DL

approaches conducted the HFO classification in a super-

vised manner, requiring human annotated labels which

constrains the spectrum of usage of their methods, espe-

cially the needs of human expert labelling. In the context

of medical image analysis, recent work38 has shown that

optimized model architectures and loss functions could

mitigate data labelling errors, thus making the DL frame-

work even more applicable.

This study employed innovative analytic approaches to

address several challenges expected in applying DL frame-

works to the HFO classification task. As noted above, no

direct observation of eHFOs is currently possible, making

the most widely used supervised framework of DL im-

practical for our problem. Even if one were to solve this

challenging problem, one still needs to make the DL

models interpretable, which is yet another difficult task.

In this study, we first proved that DL models could reli-

ably emulate experts’ visual annotations in classifying the

HFOs into artefacts, HFOs with spikes, or HFOs without

spikes, without any a priori feature extractions. To

HFO classification using deep learning BRAIN COMMUNICATIONS 2021: Page 3 of 20 | 3
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mitigate potential labelling errors, we then generalized

this approach to our central task of discovering eHFOs

by replacing experts’ inputs with inexact weak labels

implied by clinical outcomes and by using the ‘purifica-

tion power’ of DL to automatically distill eHFOs.

Furthermore, (i) we proved the generalizability of this ap-

proach by using patient-wise cross-validation, implying a

DL algorithm trained by EEG data from a large and di-

verse enough retrospective cohort is likely applicable to

future patients; and (ii) we reverse engineered interpret-

able salient features of the DL-discovered eHFOs and

showed that they aligned with current expert knowledge.

Methods

Patient cohort

This was a retrospective cohort study. Children (below

age 21) with medically refractory epilepsy (typically with

monthly or greater seizure frequency and failure of more

than three first-line anti-seizure medications) who had

intracranial electrodes implanted for the planning of epi-

lepsy surgery with anticipated cortical resection with the

Pediatric Epilepsy Program at UCLA were consecutively

recruited between August 2016 and August 2018.

Diagnostic stereo-EEG evaluation (not intended for resec-

tive surgery) was excluded (Table 1).

Standard protocol approvals,

registrations and patient consents

The institutional review board at UCLA approved the use

of human subjects and waived the need for written

informed consent. All testing was deemed clinically rele-

vant for patient care, and also all the retrospective EEG

data used for this study were de-identified before data ex-

traction and analysis. This study was not a clinical trial,

and it was not registered in any public registry.

Patient evaluation

All children with medically refractory epilepsy referred

during the study period underwent a standardized presur-

gical evaluation, which—at a minimum—consisted of in-

patient video-EEG monitoring, high resolution (3.0 T)

brain MRI and 18 fluoro-deoxyglucose positron emission

tomography (FDG-PET), with MRI-PET co-registration.26

The margins and extent of resections were determined

mainly based on seizure onset zone (SOZ), clinically

defined as regions initially exhibiting sustained rhythmic

waveforms at the onset of habitual seizures. In some

cases, the seizure onset zones were incompletely resected

to prevent an unacceptable neurological deficit.

Subdural electrode placement

Macroelectrodes, including platinum grid electrodes

(10 mm intercontact distance) and depth electrodes (plat-

inum, 5 mm intercontact distance), were surgically

implanted. The total number of electrode contacts in each

subject ranged from 40 to 128 (median 96 contacts). The

placement of intracranial electrodes was mainly guided by

the results of scalp video-EEG recording and neuroimaging

studies. All electrode plates were stitched to adjacent

plates, the edge of the dura mater, or both, to minimize

movement of subdural electrodes after placement.

Acquisition of three-dimensional
(3D) brain surface images

We obtained preoperative high-resolution 3D magnetiza-

tion-prepared rapid acquisition with gradient echo

(MPRAGE) T1-weighted image of the entire head. A

FreeSurfer-based 3D surface image was created with the

location of electrodes directly defined on the brain sur-

face, using post-implant computed tomography (CT)

images.39 In addition, intraoperative pictures were taken

with a digital camera before dural closure to enhance

spatial accuracy of electrode localization on the 3D brain

surface. Upon re-exposure for resective surgery, we visu-

ally confirmed that the electrodes had not migrated com-

pared to the digital photo obtained during the electrode

implantation surgery.

Intracranial EEG recording

Intracranial EEG (iEEG) recording was obtained using

Nihon Kohden Systems (Neurofax 1100A, Irvine, CA,

USA). The study recording was acquired with a digital

sampling frequency of 2000 Hz, which defaults to a pro-

prietary Nihon Kohden setting of a low frequency filter

of 0.016 Hz and a high frequency filter of 600 Hz at the

time of acquisition. For each subject, separate 10-min

and 90-min EEG segments from slow-wave sleep were

selected at least 2 h before or after seizures, before anti-

seizure medication tapering and before cortical stimula-

tion mapping, which typically occurred 2 days after the

implant. All the study iEEG data were part of the clinical

EEG recording.

Automated detection of HFOs

A customized average reference was used for the HFO ana-

lysis, with the removal of electrodes containing significant

artefacts.26,28,40 Candidate interictal HFOs were identified

by an automated short-term energy detector (STE).41,42 This

detector considers HFOs as oscillatory events with at least

six peaks and a centre frequency occurring between 80 and

500 Hz. The root mean square (RMS) threshold was set at

five standard deviations (SD), and the peak threshold was

set at three SD. The HFO events are segments of EEG sig-

nals with durations ranging from 60 to 200 ms (see SI for
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duration distribution). We referred to these detected events

as candidate HFOs (c-HFOs).

Human expert classification of

HFOs

A human expert (HN: board certified in clinical neuro-

physiology and epilepsy, with experience in HFO ana-

lysis) classified c-HFOs in each patient’s 10-min EEG

segments into three classes: HFOs with spikes (spk-HFO),

HFOs without spikes (non-spk-HFO) and artefacts using

RippleLabs graphic user interface,42 based on three

images (unfiltered EEG tracing, filtered EEG tracing [80–

500 Hz] and time-frequency plot). Artefacts are false-posi-

tive events, including ringing (filtering of sharp transi-

ents),19 as well as muscle and background fluctuations

(see examples in Fig. 1). Another expert with similar

qualifications (SH) independently scored c-HFOs from

two representative patients, and inter-rater reliability was

examined using Cohen’s kappa statistics.

Supervised deep learning networks

using expert labels

The general workflow of the DL training and inference

were shown in the flowchart (Fig. 2).

Figure 1 Automated detection of HFOs and classification of HFOs by a human expert. After each EEG sample was arranged with a

referential montage, the short-term energy (STE) HFO detector was applied to detect candidate HFO events (A). The detected HFO events

were marked in the original tracing (B). Each detected HFO event was reviewed by a human expert to classify into HFO with spike (spk-HFO)

(C), HFO without spike (D), and artefacts: ringing artefact (E) and background noise (F). EEG ¼ electroencephalogram; HFOs ¼ high-frequency

oscillations; STE ¼ short-term energy.
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Feature representation of c-HFOs

Each c-HFO was represented by a one-second window,

with the c-HFO was located at the centre (0 ms), and

including 500 ms of EEG signal before and after. To util-

ize the power of CNN, we captured the time-frequency

domain features as well as signal morphology informa-

tion of the c-HFO window via three images (Fig. 3A).

The time-frequency plot (scalogram) was generated by

continuous Gabor Wavelets ranging from 10 Hz to

500 Hz.42 The EEG tracing plot was generated on a

2000 � 2000 image by scaling the time-series signal into

the 0–2000 range to represent the EEG waveform’s

morphology. The amplitude-coding plot was generated to

represent the relative amplitude of the time-series signal:

for every time point, the pixel intensity of a column of

the image represented the signal’s raw value at that time.

These three images were resized into the standard size

(224 � 224), serving as the input to the neural network.

Two-step deep learning model architecture

Given the expert labelling with three labels (artefacts,

spk-HFO and non-spk-HFO), the training of the deep

neural network (DNN) model was formulated as two

binary classification steps. Step 1 (artefact detector): we

differentiated between artefacts and ‘Real HFOs’, defined

as the union of spk-HFOs and non-spk-HFOs. All ‘Real

HFOs’ were labelled as the positive samples and the

artefacts were the negative samples. Step 2 (spk-HFO de-

tector) classified the ‘Real HFOs’ into spk-HFO and non-

spk-HFO; the spk-HFO were defined as positive samples,

and the non-spk-HFO were defined as negative samples.

The artefact detector and spike detector’s architectures

are identical and adapted from ResNet1843 with a modi-

fication in the last few layers to accommodate the binary

classification tasks. Specifically, the last layer of the

resnet18 was modified to be three fully connected layers

with LeakyReLU, BatchNorm and 10% dropout in be-

tween. The output of the model was fed into a sigmoid

function to bound the output between 0 and 1, represent-

ing the probability of each task. The input comprising

three image channels and the architecture of the networks

are shown in Fig. 3B. For the artefact detector, only the

time-frequency information was used. Hence time-fre-

quency plots were repeated three times and concatenated

together as the input to the artefact detector. For the

spk-HFO detector, concatenation of the three feature-rep-

resenting images (time-frequency plot, EEG tracing plot

and amplitude-coding plot) served as input.

Training and performance analysis

There were two types of training conducted: patient-wise

cross-validation and all-patients training. For patient-wise

cross-validation, one patient was selected at a time as the

test set, and the remaining patients were used for model

Figure 2 Processing workflow. Our study’s overall data processing workflow is shown as a flowchart.
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training. All events were pooled across the rest of the

patients, with 10% randomly sampled to serve as a valid-

ation set and the remaining 90% used for training. In

all-patients training, five-fold cross-validation was con-

ducted across the pooled data across the full patient co-

hort. For each fold, 20% of the dataset was selected as

the test set, 70% was selected as the training set, and the

remaining 10% was used for validation.

Since the optimization goal of both detectors is binary

classification, we adopted binary cross-entropy as the loss

function and the Adam optimizer32 with a learning rate

of 0.0003. All of the training was conducted using 15

epochs (training iterations) and validation loss was plot-

ted with respect to the number of epochs completed. For

the artefact detector, to improve generalization, we

picked the model in the epoch that corresponds to the

Figure 3 Network input and architecture. (A) Network input images. The network input includes three images constructed from a one-

second raw EEG segment with a detected HFO in the centre (500 ms before and after). Left: The time-frequency plot was generated by

continuous Gabor Wavelets ranging from 10 Hz to 500 Hz. Middle: EEG tracing plot was generated on a 2000 � 2000 image by scaling the time-

series signal into the 0 to 2000 range. Right: amplitude-coding plot contains the amplitude at every time point; a column of the image represented

the signal’s actual value rescaled with a colour gradient. These three images were resized into 224 � 224 in order to fit into the neural network.

(B) CNN architecture. The architecture of the model was adapted from Resnet-18. The last layer of the resnet18 was modified to be three fully-

connected layers with LeakyReLU, BatchNorm and 10% dropout in between. The output of the model was fed into a sigmoid function to bound

the output between 0 and 1, representing the probability of each task. For task 2 (HFOs with spikes versus HFOs without spikes), the input

consisted of the three images (time-frequency plot, EEG tracing plot and amplitude-coding plot). Meanwhile, for task 1 (Real HFOs versus

artefacts), only the time-frequency plot information was found to be sufficient, and hence three same time-frequency plots were concatenated

together as the input of the model. EEG ¼ electroencephalogram; HFO ¼ high-frequency oscillation; CNN ¼ convolutional neural network.

HFO classification using deep learning BRAIN COMMUNICATIONS 2021: Page 9 of 20 | 9



first local minima in the plot; this technique is also

known as an early stopping regularization. For the spike

detector, we directly picked the model corresponding to

the global minima over 15 iterations, i.e. the lowest val-

idation loss.

We calculated the precision, recall and accuracy of the

classification results. To measure the model performance

on an unbalanced dataset like ours, we also calculated

the F1-score. For the patient-wise cross-validation task,

we averaged the performance statistics across patients.

For the all-patients training task with five-fold cross-val-

idation, we reported average model performance over

cross-validation folds.

Discovery of epileptogenic HFOs via
deep learning based on clinical
outcomes and channel resection
status

While no direct observation of eHFOs is currently pos-

sible, clinical evidence such as seizure outcomes and re-

section status of the channels can be used to determine

highly likely groups of eHFOs and non-eHFOs. Such

data-driven inexact or weak labels thus contain unknown

labelling errors and in order to further purify the labels,

one would need to do an automated geometric similarity

analysis in the HFO feature space: the HFOs that are

geometric outliers in the group dominated by eHFOs

should be relabelled as non-eHFOs and vice versa. A uni-

versal classifier, such as a DNN, has the potential to do

exactly this when trained with weak labels: it automatic-

ally computes an optimal boundary in the space of all

HFOs so that the geometric outliers get separated by this

boundary. The trained DNN classifier then could deter-

mine when any given HFO is most likely an eHFO and

its confidence level. This blackbox classifier was then

probed and analysed to obtain a more computational def-

inition of eHFOs, a step akin to reverse engineering.

Label assignment for training: Weak Supervision

We generated a weakly labelled training set with the fol-

lowing assumptions. For those patients that became seiz-

ure-free after resection (9 patients), we assumed that all

epileptogenic tissue was contained in the resection.

Similarly, the preserved regions in post-surgery seizure-

free patients could not contain epileptogenic tissue, lead-

ing us to assume that the HFOs in the preserved regions

are non-epileptogenic. We thus labelled all of the HFOs

from resected channels as 1 and all HFOs from preserved

channels as 0. By doing such weak supervision, we intro-

duced potential errors in the data labels. Specifically, (i)

the epileptogenic zone may generate non-eHFOs in add-

ition to eHFOs; (ii) some tissue was resected based on

anatomical location (e.g. the channel was located within

the same gyrus as the SOZ) and was likely not epilepto-

genic, leading to false-positive labels; and (iii) in the non-

resected region, while the majority of the HFOs were in-

deed non-epileptogenic, a few HFOs that are morpho-

logically similar to epileptogenic HFOs could have been

introduced by phenomena such as propagation.44 To ad-

dress (i) and (iii), we believed the automatic geometric

purification property of the neural network could denoise

the errors introduced by this mislabelling since the clinic-

al outcomes constrain the number of mislabels to be few.

To address (ii), we introduced a weight term in the net-

work’s loss function to reduce the noise introduced by

the false positives, which is described in the following

section. Note that for patients that were not seizure-free

after surgery, the assumption that all epileptogenic tissue

lay within the resected boundary did not hold. Thus,

they were not used for any training.

To maximize the training set size, we used 90 min of

data from each patient for training. In order to ensure

that our proposed framework generalizes across patients,

a patient-specific model was designed for each patient

without using any of its data. Thus, for a post-operative

seizure-free patient, a patient-specific model was trained

on data from other patients who became seizure-free after

surgery. For post-operative non-seizure-free patients, a pa-

tient-specific model was trained on data from all post-op-

erative seizure-free patients. Specifically, for training, we

used 90 min of EEG data from 8 patients (if the target

patient is post-surgery seizure-free) or 9 patients (if the

target patient is not post-surgery seizure-free). All predic-

tions (inference) used for the rest of the analysis were

generated following this strategy.

The Deep Learning Architecture and Training for

REVerse engineering (DLATREV)

The training details are as follows. We first used the arte-

fact detector trained on all patients’ 10 min EEG data to

filter out the potential artefacts in the c-HFOs from the

90 min EEG data. For the sake of convenience, any

HFOs that passed this filtering, and hence are ‘Real

HFOs’, would simply be referred to as HFOs going for-

ward. The total number of HFOs differed considerably

among the patients, and a data balancing process was

required to balance the information introduced from each

patient. For each patient, if the number of HFOs was

smaller than a threshold of 2500 (the median of the

HFO distribution among patients), all of the HFOs were

used. Otherwise, 2500 events were uniformly sampled

from that patient without replacement. There could po-

tentially be many non-eHFOs in the non-seizure-onset

but resected channels that were labelled incorrectly as

eHFOs in our weak supervision process. For each input

with a label of y and prediction of x, we introduced a

weight term, w, in the Binary Cross Entropy (BCE) loss.

(Loss ¼ w* BCE Loss, where BCE Loss ¼
�[y�log(x)þ(1�y)�log(1�x)]). If y¼ 0 (the HFO is from a

preserved channel), then w¼ 1. If y¼ 1 (the HFO is from

a resected channel) and the HFO is from a SOZ channel,

then also w¼ 1. However, if y¼ 1 and the HFO is not
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from a SOZ channel, we used a value of w¼ 0.5, which

was found to be optimal for our dataset (see

Supplementary Fig). For the model architecture and train-

ing, we used the same setup as the spike detector, except

the CNN’s convolution layers were frozen to only act as

feature extractors.

Relationship between epileptogenic HFOs and

HFOs with spikes

In order to understand the correspondence between the

discovered eHFOs or non-eHFOs and common clinical

knowledge about such HFOs (i.e. HFOs with and with-

out spikes), we let the model classify each HFO event on

the 10 min annotated data using DLATREV. We quanti-

tatively analysed the correlation of classified eHFOs and

non-eHFOs with their corresponding spk-HFO annota-

tion using the chi-square test.

Spatial distribution of epileptogenic and

non-epileptogenic HFOs

To visualize the distribution of the eHFOs and non-

eHFOs in each patient’s data, we performed inference on

HFOs obtained from 90-min EEG data from 15 patients

who underwent resection, using their corresponding pa-

tient-specific DLATREV models. Then we plotted the

voltage map on the 3D cortical reconstruction to visualize

the performance based on the number of eHFOs and

non-eHFOs using the FreeSurfer-based cortical model-

ling.22,39 The rate of eHFOs and non-eHFOs was com-

pared in the SOZ and non-SOZ.

Comparison of resection ratios of HFOs to

post-operative seizure outcomes

We estimated the probability of each patient’s surgical

success (for the 14 patients who underwent resective sur-

gery with known seizure outcome at 24 months) based on

the resection ratio of HFOs (number of resected HFOs/

number of detected HFOs) as a classifier. We constructed

the receiver operating characteristic (ROC) curve and cal-

culated the area under the curve (AUC) values in the re-

section ratio of (i) c-HFOs, (ii) Real HFOs and (iii)

eHFOs. Determination of the channel resection status

(resected versus preserved) was determined based on

intraoperative pictures (pre-and post-resection) and also

on post-resection brain MRI, based on discussion among

a clinical neurophysiologist (HN), neurosurgeon (AF) and

radiologist (SN). A multiple logistic regression model

incorporating the resection ratio of eHFOs and complete

resection of the SOZ was also created. The surgical out-

comes were determined 24 months after resection, as ei-

ther seizure-free or not seizure-free.

Time-frequency plot characteristics of epileptogenic

and non-epileptogenic HFOs

We determined whether the time-frequency scalogram of

eHFOs differed from that of non-eHFOs. This compari-

son constituted the first step in reverse engineering the

computations that the DLATREV model learned to per-

form while executing its classification task. For every

pixel (x, y) in a 224*224 image, we created two sets of

data points, SeHFO (x, y) and Snon-eHFOs (x, y).

SeHFOs(x, y) consisted of the intensity values f(x, y) of

the scalogram for all the classified eHFOs for all patients.

Similarly, Snon-eHFOs (x, y) consisted of the intensity

values f(x, y) of the scalogram for all the classified non-

eHFOs for all patients. Then we performed one-tailed t-

tests to determine whether a random variable A(x, y),

whose samples are given by SeHFO (x, y), is greater than

that of a random variable B(x, y) whose samples are

given by Snon-eHFOs (x, y). If this hypothesis was

returned to be true with a P-value less than 0.005, we

set the pixel value I(x, y) ¼ 1 otherwise I(x, y) ¼ 0.

Perturbation analysis to investigate salient features

of epileptogenic and non-epileptogenic HFOs

There exist several potential ways to determine an inter-

pretable function computed by a blackbox classifier such

as a DNN, including (i) training an interpretable model

with the outputs of the classifier,45 and (ii) adversarial

perturbations of the inputs so as to effect maximum

changes in the probability of the predicted outcomes such

as Grad-CAM.46 Both of these methods are computation-

ally expensive, and may not yield useful answers without

prior knowledge. The knowledge distilled from the time-

frequency plot characteristics of eHFOs and non-eHFOs

and positive correlation between the eHFOs and spk-

HFO was used for the perturbation analysis. We hence

conducted the following two perturbations on all classi-

fied non-eHFOs in 90 min data to investigate the salient

features that are critical to the model’s decision.

Perturbation on time-frequency plot

The I(x, y) image provided a template of the pixels where

eHFOs had statistically significantly higher magnitudes

than non-eHFOs. Then we designed an inverted T-shaped

mask to approximate this template. We hypothesized that

if we perturbed the scalogram of a non-eHFO over the

template using the maximum value of the corresponding

scalogram (thus making the scalogram similar to that of

an eHFO), then the probability of the classifier output

should significantly increase, making it look more like an

eHFO to the classifier. In practice, each new value within

this template equals 0.5 * original value þ 0.5 * max-

imum value. Note that this method perturbed only the

scalogram channel input and kept the other channel

inputs unchanged. We summarized the results via a histo-

gram of the change in probabilities for each patient

across all classified non-eHFOs. Additionally, a one-tailed

t-test comparing values of eHFOs and non-eHFOs, was

performed on the change of output probability score to

ensure that the change was significant and generalized

well on the population level.
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Perturbation on amplitude-coding plot

We hypothesized that a spike-like pattern close to an

HFO detection in the time domain was a salient feature

contributing to the eHFO discovery. We referred to this

pattern as the upgoing or downgoing time-domain char-

acteristic pattern (TDCP). There were two channels in

which we could inject a TDCP: the EEG tracing plot and

the amplitude-coding plot. We picked the amplitude-cod-

ing plot as it contained denser information than the EEG

tracing plot, so that the model can have a more evident

response to the perturbation. We mimicked the insertion

of a TDCP by centreing it at a particular time step and

then replacing the values in the corresponding columns of

the amplitude-coding with that of the TDCP.

Furthermore, we scaled the TDCP such that for an

upgoing TDCP, its peak equals the maximum value in

the whole plot, and similarly for the downgoing TDCP,

its valley equals the minimum value in the whole plot. In

the perturbation, we kept the value of other input chan-

nels the same. If the hypothesis were true, we would ex-

pect the perturbed amplitude-coding input for a non-

eHFO to significantly increase the classifier output prob-

ability, making it look more like an eHFO to the classi-

fier. We searched through all possible placements of the

TDCP in the amplitude-coding plot to determine the loca-

tion that led to the most perturbation to the model. The

column (where the centre of the TDCP was placed) with

the maximum change of the probability score was viewed

as the optimal time-location of the TDCP. We summar-

ized the results via the histogram of the change in proba-

bilities for each patient across all the classified non-

eHFOs. A one-tailed t-test was also performed on the

change of that output probability score to ensure that the

change was significant and generalized well on the popu-

lation level.

Statistical analysis

Above mentioned statistical calculations were carried out

using Python (version 3.7.3; Python Software Foundation,

USA) and JMP Pro (version 14; SAS Institute, USA). The

deep neural network was developed using PyTorch (ver-

sion 1.6.0; Facebook’s AI Research lab). Quantitative

measures are described by medians with interquartile, or

means with standard deviations. Comparisons between

groups were performed using chi-square for comparing

two distributions and Student’s t-test for quantitative

measures (in means with standard deviations). All com-

parisons were two-sided and significant results were con-

sidered at P< 0.05 unless stated otherwise. Specific

statistical tests performed for each experiment were

described in each section. Machine learning model per-

formance was evaluated using accuracy ([TP þ TN]/

[TPþTNþFPþFN]), recall (TP/[TPþFN]), precision (TP/

[TPþFP]), and F-1 score (2/[1/recall þ 1/precision]).

Data sharing and availability of the

methods

Anonymized EEG data used in this study are available

upon reasonable request to the corresponding author.

The python-based code used in this study is freely avail-

able at (https://github.com/roychowdhuryresearch/HFO-

Classification). One can train and test the deep learning

algorithm from their data and confirm our methods’ val-

idity and utility.

Results

Patient characteristics

There were 19 patients (10 females) enrolled during the

study period. The median age at surgery was 14 years

(range: 3–20 years). Median electrocorticography monitor-

ing duration was 4 days (range: 2–14 days), and the me-

dian number of seizures captured during the monitoring

was 8 (IQ range: 4–25). There were 15 patients who

underwent resection, and 14 patients provided post-op-

erative seizure outcomes at 24 months (9 of 14 became

seizure-free). Details of patients’ clinical information are

listed in Table 1.

Interictal HFO detection

Two experts showed favourable inter-rater reliability

when 583 c-HFOs were labelled independently (kappa ¼
0.96 for labelling artefacts, 0.85 for labelling HFOs with

spikes); thus, labels from one expert (HN) were used for

the rest of the study. A total of 12 958 HFO events were

detected (median 456 events per patient) in 10-min EEG

data from the 19 patients. The expert classification

yielded 6430 HFOs with spikes, 3721 HFOs without

spikes and 2807 artefacts. The 90-min EEG data from

the nine patients who became seizure-free after 24 months

yielded 34 199 HFO events in total (median 2570.5

events per patient). The 15 patients who had 90-min

data yielded 84 602 HFO events in total (median 2766

events per patient).

Table 2 Machine learning performance against expert

labelling

Artefacts Spike-HFO

5-fold Patient-wise 5-fold Patient-wise

Accuracy 98.9% (0.15%) 96.3% (4.96%) 89.1% (1.00%) 86.5% (8.33%)

F1-score 99.3% (0.33%) 96.8% (5.12%) 89.1% (2.12%) 80.8% (16.63%)

Recall 99.2% (0.40%) 98.0% (2.16%) 91.0% (0.89%) 83.7% (17.06%)

Precision 99.4% (0.40%) 96.1% (8.72%) 92.0% (0.84%) 81.4% (16.07%)

Parenthesis indicates standard deviation.
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Machine learning algorithm against

expert labelling

In the patient-wise cross-validation, our model achieved

96.3% accuracy on artefact detection (recall ¼ 98.0%,

precision ¼ 96.1%, F1 score ¼ 96.8%) and 86.5% ac-

curacy for detecting HFOs with spikes (recall ¼ 83.7%,

precision ¼ 81.4%, F1 score ¼ 80.8%). In all-patients 5-

folds training, the model achieved accuracy of 98.9%

and 89.1% for detecting artefacts and HFO with spikes,

respectively (details in Table 2).

Relationship between eHFOs and

HFOs with spikes

The DLATREV model (trained on 90-min data) was

applied to the 10-min EEG dataset to discover eHFOs.

These results were compared with the spk-HFO labels

annotated by an expert. We noted 71.1% (4573/6430) of

the eHFOs were HFOs with spikes, and 73.7% (2739/

3721) of non-eHFOs were HFOs without spikes

(P< 0.0001, a chi-square test).

Spatial mapping of eHFOs and non-

eHFOs

The DLATREV model was applied on a 90-min EEG

dataset for all subjects who underwent resection (n¼ 15)

and the classified eHFOs and non-eHFOs were mapped

on each reconstructed 3D MRI (examples in Fig. 4A). In

general, eHFOs clustered around the SOZ, while non-

eHFOs distributed diffusely. The rate of eHFOs (eHFOs/

min/channel) was higher in SOZ than that in non-SOZ

(mean 0.74 versus 0.28, P¼ 0.02, paired t-test), and the

rate of non-eHFOs (non-eHFOs/min/channel) did not dif-

fer between the SOZ and non-SOZ (mean 0.36 versus

0.29, P¼ 0.27, paired t-test) (Fig. 4B).

Prediction of post-operative seizure-

outcomes using the HFO

classification algorithms

We created the ROC curves using HFO resection ratio to

predict post-operative seizure freedom at 24 months

(n¼ 14) (Fig. 5). Using the resection ratio of c-HFOs

and Real HFOs showed acceptable prediction perform-

ance but did not show statistical significance

(AUC¼ 0.78 and 0.76; P¼ 0.05 and 0.06, respectively).

The use of resection ratio of eHFOs exhibited a high

AUC value of 0.87 (P¼ 0.01). The performance was fur-

ther augmented by using a multiple regression model

incorporating both the resection ratio of eHFOs and

complete removal of SOZ (AUC ¼ 0.91, P¼ 0.004). The

resection ratio of spk-HFOs in the 90-min data (the spk-

HFO detector developed from 10-min data was applied

to 90-min data) yielded an AUC of 0.88, which was

comparable to the use of resection ratio of eHFOs.

Characterization of eHFOs and

non-eHFOs using the time-

frequency map and perturbation

analysis

Time-frequency plot characteristics of epileptogenic

and non-epileptogenic HFOs

The analysis of the time-frequency map demonstrated

that eHFOs had higher values throughout the frequency

band, including both ripples (80–250 Hz) and fast ripples

(250–500 Hz) around the centre point (0 ms, where HFOs

were detected) than non-eHFOs. There were statistically

higher values of eHFOs at the low-frequency band

throughout the time window compared to non-eHFOs

(Fig. 6A and B). This pattern resembles an inverted T-

shaped, limited to �45 ms to þ45 ms on the time axis

and 10 Hz to 59 Hz on the frequency axis. The mean

pixel values (value ¼ 1, if P-value < 0.005 from one-

tailed t-test; value ¼ 0, otherwise) were not different be-

tween ripples and fast ripples as a group (mean ¼ 0.48

versus 0.32; P¼ 0.15, two-tailed t-test). In individual ana-

lysis, statistically significant pixel values were present in

12/15 subjects for ripples and 12/15 subjects for fast rip-

ples (details in Supplementary Table).

Perturbation analysis to investigate salient features

of epileptogenic and non-epileptogenic HFOs

By utilizing the inverted T-shaped template found in the

time-frequency map, we observed that the inverted T-

shaped perturbation on the time-frequency plot signifi-

cantly increased the model prediction probability towards

eHFOs (mean probability increase was 0.285, P< 0.001)

(Fig. 6C and D). Based on the positive correlation be-

tween eHFOs and spk-HFOs, we set our hypothesized

TDCP pattern as a spike. Therefore, we analysed the ef-

fect of introducing a spike-like shape in the amplitude-

coding plot. By introducing a downgoing or an upgoing

spike close to 0 ms location in a non-eHFOs event, the

model confidence increased towards an eHFO event

(Fig. 7A and D). On the population level, the time step

with the highest probability increase was around the

centre location along the time-axis (Fig. 7B and E),

where the HFO was detected. Moreover, the prevalent

probability increase in non-eHFO events among all 15

patients who underwent resection (Fig. 7C and F) dem-

onstrated the non-trivial model response by introducing a

spike in the time domain (mean probability increase of

0.438 for a downgoing spike introduction, and 0.465 for

an upgoing spike introduction, both with P< 0.001).
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Discussion
We demonstrated how DL might be used in HFO classifi-

cation to complement experts at multiple levels. As a first

step, we demonstrated that a DL-based algorithm robustly

emulated HFO annotations by human experts in rejecting

artefacts and determining if an event is associated with a

spike. Thus, the associated DL models could help experts

with their manual verifications and significantly reduce

experts’ efforts without compromising performance. More

importantly, in the second step, we showed how DL could

create novel computational models which could define

morphological classes of HFOs indicative of eHFOs and

non-eHFOs when guided only by clinical outcomes such

as seizure outcomes and resection status of the channels

without any expert EEG labelling. We took advantage of

our large dataset containing more than 30 000 HFOs with-

in 90 min of EEG data from subjects with known post-op-

erative seizure outcomes. The model was trained with a

novel weakly supervised approach that utilized the inexact

Figure 4 Spatial mapping of epileptogenic and non-epileptogenic HFOs by the DLATREV model. (A) In each row, individual 3D-

reconstructed MRI with spatially coregistered electrodes is shown. Using a model developed using patient-wise cross-validation, the number of

epileptogenic and non-epileptogenic HFOs (number/90 min) are projected onto the individual 3D MRI as an inference. Seizure onset zones are

marked with white squares, and resected brain regions are marked with orange lines. The first three rows include subjects who achieved

seizure-freedom after resection. The last row represents a subject who did not achieve seizure-freedom after resection. Epileptogenic HFOs

localize around the seizure onset zones, whereas non-epileptogenic HFOs are localized more diffusely in the entire hemispheres. (B) The rate of

HFOs (epileptogenic and non-epileptogenic HFOs) in each patient (n¼ 15) is plotted in box plots based on the location (SOZ versus non-SOZ).

The rate of eHFOs (eHFOs/min/channel) was higher in SOZ than that in non-SOZ (mean 0.74 versus 0.28, P¼ 0.02, paired t-test). The rate of

non-eHFOs (non-eHFOs/min/channel) did not differ between the SOZ and non-SOZ (mean 0.36 versus 0.29, P¼ 0.27, paired t-test). HFOs ¼
high-frequency oscillations; SOZ ¼ seizure onset zone; Pt ¼ patient; MRI ¼ magnetic resonance imaging.
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label of resected and non-resected status to discover

eHFOs and non-eHFOs. We further showed that the DL-

defined eHFOs were clinically relevant and possessed two

salient features (HFOs associated with spikes and the

inverted T-shaped pattern in scalogram) that experts had

identified as characteristics of eHFOs. The removal rate of

eHFOs correlated to seizure-freedom after resection, but

no such relationship was seen with non-eHFOs. The use

of the removal ratio of eHFOs may have an additional

value on the status of complete removal of the SOZ, but

the number of patients may be too small to conclude this

definitively. By comparing the predicted results with expert

annotation, we observed that the most classified eHFOs

were spk-HFOs. Similarly, most non-eHFOs were non-spk-

HFOs. At SOZ, we observed a higher rate of eHFOs com-

pared to that of non-eHFOs.

Figure 5 The accuracy of models incorporating HFO resection ratio. We constructed post-operative seizure outcome prediction

models using HFO resection ratio derived from 90-min EEG data (n¼ 14). Each receiver-operating characteristics (ROC) curve delineates the

accuracy of seizure outcome classification of a given model, using the area under the ROC curve statistics. (A) HFO resection ratio using c-

HFOs (raw HFO detections) was used as a single classifier. (B) Real HFO (rejection of artefacts from c-HFOs using the deep-learning based

artefact detector) resection ratio was used as a single classifier. (C) eHFO (using the reverse engineering approach) resection ratio was used as a

single classifier, which showed significant improvement in the prediction. (D) A multiple regression model incorporating the resection ratio of

eHFOs and complete removal of the SOZ (yes or no) was used, which demonstrated further improved predictive value of post-operative seizure

outcomes. HFO ¼ high-frequency oscillation; c-HFOs ¼ candidate HFOs; eHFOs ¼ epileptogenic HFOs; SOZ ¼ Seizure onset zone.
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Figure 6 Characteristics in the time-frequency plot of eHFOs against non-eHFOs. (A) The time-frequency plot characteristics of

epileptogenic and non-epileptogenic HFOs for Pt 1, 2, 3 and 5. The yellow-coloured regions in the figure stood for the pixels, where the power

spectrum of eHFOs is statistically higher than (P-value below 0.005 from one-tailed t-test) non-eHFOs. The figure showed one set of clearly

interpretable distinguishing features between eHFOs and non-eHFOs: the eHFOs generally have higher power at higher frequencies during the

HFO event (centre part along the time axis), and more power in the low-frequency region in the entire time interval. Panel (B-top) was

generated by taking the average of the individual binary images from each of the 15 patients. It showed the distinguishing features are also

significant at the population level. The inverted T-shaped was designed to approximate the differentiating region on the time-frequency plot

(B-bottom). (C) The model’s response to the inverted T-shaped perturbation on time-frequency plot. We provide two examples for

perturbation for non-eHFO events in Pt 12. Each row presents one example and the first column indicates the original time-frequency plot while

the second indicates the perturbed time-frequency plot based on the inverted T-shaped perturbation. The prediction value of the model changed

from below 0.4 (therefore originally labelling it as non-eHFO) to above 0.8 (thus a change of þ0.4) implying that the perturbed HFO would

correspond to an eHFO. (D) The change in model confidence in population level. Each column (along the y-axis) is a histogram of the change in

confidence for one distinct patient. It shows the frequency distribution of confidence changes after adding the inverted T-shaped perturbation to

the time-frequency plot to all classified non-eHFOs for the given patient. The change in confidence level is significant, with an average of 0.285

noted as the red solid line in the histogram (a standard deviation noted as the red dashed line). HFO ¼ high-frequency oscillation; eHFOs ¼
epileptogenic HFOs; non-eHFOs ¼ non-epileptogenic HFOs.
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We next elaborated on how the traits of DL-discovered

eHFOs compared with hypothesized traits of so-called

pathological HFOs. Pathological HFOs, often seen as fast

ripples (FRs: 250 Hz or above), are believed to be excita-

tory neuronal activities, such as summated action poten-

tials from synchronously bursting neurons.6,47 Contrarily,

physiological HFOs, which often involve ripples (80–

250 Hz), are considered to reflect summated inhibitory

postsynaptic potentials.41,48 These biological mechanisms

are hypothesized to lead to morphological differences

between pathological and physiological HFOs, and hence,

making them discoverable with computer vision. We used

the trained DL model to derive certain signatures of

eHFOs in the time-frequency domain that agreed with

such common clinical knowledge. In particular, based on

the analysis of time-frequency plots of eHFOs and non-

eHFOs, eHFOs showed stronger signals throughout ripple

and fast ripple bands at the onset of HFOs, which shares

the similar observation in HFOs seen at the SOZ.49

Meanwhile, eHFOs generally showed stronger signals in

Figure 7 The model’s responses to injecting a spike-like feature into the amplitude-coding plot. (A, D) Examples of introducing a

downgoing (A) and upgoing (D) spike feature in classified non-eHFO events. These demonstrate that on the introduction of a spike-like

perturbation, the model predicts higher confidence towards eHFOs. Subfigure A shows the original amplitude encoding image input and the

corresponding time-series signal (top row), and the perturbed amplitude-coding plot, and the corresponding time-series signal with downgoing

spike perturbation (bottom row). Similarly, subfigure D shows the same information about a different classified eHFO but with upgoing spike

perturbation. (B, C) For each non-eHFO, a downgoing spike perturbation could be introduced at every point in the time interval. For the

perturbation, which resulted in the maximum change in confidence, its location (relative to the centre, thus in the range of þ500 to �500 ms)

and the resulting change in confidence (�0.5, 1) are noted. For each patient, we compute a histogram for the distribution of the change in

confidence (C) and a separate histogram for the location of the spike over non-eHFOs (B). The same steps are repeated for upgoing spike

perturbation, and the results are shown in (E, F). For both up-and-downgoing spikes, the histograms (B, E) show that the spikes located close to

the HFO event lead to maximum change in confidence. The change in confidence for both up-and-downgoing spike perturbation is significantly

greater than zeros, with means downgoing: 0.438 and upgoing: 0.465, and the locations leading to the max perturbation are close to zeros

location with means downgoing: �25 ms and upgoing: þ4 ms. All of these means are noted as red solid lines in each histogram (a standard

deviation noted as red dashed lines). HFO ¼ high-frequency oscillation; eHFOs ¼ epileptogenic HFOs; non-eHFOs ¼ non-epileptogenic HFOs.
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the low frequency region throughout the time window,

which might represent an inhibitory slow-wave postsy-

naptic component, coupled with out-of-phase excitatory

fast firing of HFOs.50 Taking advantage of these observa-

tions, we designed perturbations in the input to probe

whether these characteristics were actually the salient fea-

tures that the model relied on to make a prediction. The

group analysis on 90 min data demonstrated that both

characteristics led to a significant model confidence in-

crease towards eHFOs. Similarly, we found that the

model had automatically learned the salient characteristics

of manually labelled spk-HFOs. In addition, the artificial

introduction of spike-like activity around the HFO onset

also increased model confidence towards eHFOs. Clearly,

such expert knowledge was not hard-coded into the

DNNs and was automatically inferred only from the par-

tial clinical outcomes. It is noteworthy that we discovered

such salient features of epileptogenic HFOs from explora-

tory approaches utilizing DL. Clearly, one cannot ex-

haustively enumerate all the features that the DL model

used to make its predictions, and these features are only

some of the salient ones that aligned well with expert

knowledge. As the study grows in scale and the DL mod-

els become accurate and robust in discovering eHFOs, we

expect new salient characteristics to be discovered. The

prior studies used DL architecture to classify HFOs using

human-annotated data,36,37 however, such approach has

constraints including necessity of human experts and its

associated potentially unfavourable inter-rater reliability

among experts.23 This is the first study to demonstrate

that DL algorithms can learn from clinical outcomes

(such as seizure-freedom after resection) and soft labels

(such as resected versus preserved status) to classify

HFOs. A recent DL study demonstrated that classifying

raw EEG signals into focal and non-focal seizures in

patients with epilepsy using clinical outcomes as soft

labels was feasible.51 Our approach expands the spectrum

of clinical usage, since there will be no need for expert

annotation and easily applied to a larger dataset. In this

study, we determined the resection status of channels

among human experts, by reviewing pre-and post-resec-

tion intraoperative picture and post-operative brain MRI.

This subjective approach might provide another type of

labelling error, thus automated and objective determin-

ation of channel resection status might have been

considered.

This work indicates that our deep learning approach

can overcome issues including poor inter-rater reliability

of HFO classification among human experts and their

time constraints of analysis. Although our inter-rater reli-

ability in this study was favourable as previously

reported,52 we expect the agreement will likely diminish

when raters are from different institutions or have differ-

ent experience levels.15,23 Using HFO analysis, we may

identify brain tissue that needs to be removed during sur-

gery without human experts’ effort if an algorithm was

trained from large enough EEG data from patients with

known post-operative outcomes. Notably, validation was

performed using patient-wise cross-validation to maintain

generalizability across patients so that the results may be

applicable to new patients. Based on our results, the

higher standard deviation in the performance of the test

set in patient-wise cross-validation than the 5-fold cross-

validation implies that the data distribution for some spe-

cific patients differs in some aspects from the rest (pos-

sibly by recording environment, sex, age and pathology).

This issue will be resolved once we increase the number

of patients in the cohort. The already high performance

obtained in patient-wise cross-validation, even with

n¼ 19, is a promising indicator that models trained with

retrospective data from a large enough cohort will gener-

alize well to new and unseen patients.

There are several limitations in our study. Regarding

the dataset, we have included only 19 patients, and there

were only 14 patients who had resective surgery with

known clinical outcomes at 24 months. Although we ana-

lysed extended EEG data (90 min) from nine patients

who achieved seizure-freedom at 24 months after surgery,

we did not analyse the entire EEG recordings. It is of

interest to include more patients and EEG data to train

our DL algorithm and evaluate how much the perform-

ance could improve. In fact, we are planning to build a

model using EEG data from more than 100 patients who

underwent resection. Also, all the data were from paedi-

atric patients from the same institution. With a diversified

age range and epilepsy pathology, the morphology of

HFOs may change, and the algorithm might be trained

differently.

In this work, we proposed an automated tool to ana-

lyse HFOs in a large dataset by using DL to simulate a

human expert’s visual verification and to predict seizure-

free status through an outcome-based reverse engineering

approach. Future work to further refine this methodology

by examining more datasets from multiple institutions is

still needed. By refining a method to distinguish epilepto-

genic HFOs from others, we will be better positioned to

confidently use HFOs to guide resection margin in clinic-

al trials to improve the chance of post-operative seizure-

freedom in patients with drug-resistant epilepsy who

undergo epilepsy surgery.

Supplementary material
Supplementary material is available at Brain

Communications online.
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