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Abstract.

A theory to describe the conversion of poloidal momentum into toroidal momentum

by phase space structures in trapped ion resonance driven turbulence is presented. In

trapped ion resonance driven turbulence, phase space structures are expected to form

and can contribute to transport by exerting dynamical friction. Toroidal momentum

flux by dynamical friction is calculated. It is shown that dynamical friction exerted

on trapped ion granulations can mediate momentum transfer between poloidal and

toroidal flows. The conversion coefficient is calculated as measurable that can be

validated in present devices.
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1. Introduction

The interplay among turbulence and flows is an important problem for magnetic

confinement fusion, since turbulence driven flows can reduce transport by exerting E×B

shear and can stabilize harmful MHD instability[1, 2, 3, 4, 5, 6, 7, 8, 9]. In torus

plasmas, there can be two distinct flows in the poloidal and toroidal direction due to

doubly connected topology. These two flows can interact one another, where drift wave

turbulence can mediate the conversion of momentum. An example of the conversion

process may be the generation of toroidal intrinsic rotation[5, 6, 7, 8, 9], where poloidal

flows can set E × B shear to break the parallel symmetry[10] in drift wave turbulence

and can lead to intrinsic torque to spin-up toroidal flows. The overall process may be

viewed as a conversion of poloidal flows into toroidal flows. A similar process can be

found in magnetic dynamo, where poloidal magnetic field can be converted to toroidal

magnetic field by the Ω-effect[11].

In a recent study[12], the theory that describes the conversion process was developed

by accounting for acoustic coupling in drift wave turbulence. The momentum balance

theorem[13] for zonal flow evolution was extended to include acoustic waves. Based on

the theorem, a coupling of perpendicular and parallel flows was discussed. However,

while that study reveals a root for converting poloidal and toroidal momentum to

one another, there can be a distinct mechanism in trapped ion resonance driven

turbulence[14, 15, 16]. In trapped ion modes, acoustic coupling is averaged out due

to the bouncing motion in the magnetic mirror. Thus acoustic coupling is not available

for converting poloidal and toroidal flows. More importantly, in trapped ion resonance

driven turbulence, phase space structures are expected to form due to strong wave

particle resonance[17, 18, 19, 20, 21]. Once formed, phase space structure dynamics can
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cause several important effects, including subcritical instability[17, 18, 22], transport

by dynamical friction[23, 24], zonal flow acceleration[25, 26, 27, 28], etc. Since phase

space structure can drive phase space density transport by dynamical friction, we then

simply expect that phase space structures can cause toroidal momentum transport.

In particular, while structures would be dynamically coupled to toroidal momentum

transport on one hand, structure dynamics is coupled to zonal flow acceleration on the

other hand[25, 26, 27, 28]. Thus phase space structures would be a plausible candidate

for connecting poloidal and toroidal flows dynamically, and for converting poloidal and

toroidal momentum in trapped ion resonance driven turbulence.

In this paper, by explicitly retaining phase space structures as a component of

trapped ion resonance driven turbulence, we show that plasma turbulence can convert

poloidal flows into toroidal flows via plasma phase space (Fig.2, which is explained

in detail later). To show this, we first discuss the conversion process by a single

structure located in phase space (i.e. a phase space density hole). We calculate toroidal

momentum flux associated with the growth of the structure. By relating the structure

growth to poloidal flow evolution, we argue that phase space structures can connect

toroidal flow evolution and poloidal flow evolution. Then, we turn to the case of an

ensemble of structures, i.e. granulations. We discuss that when turbulent plasma

granulations can form in phase space, mean field evolution of phase space density is

described not by a quasilinear diffusion process, but by a Lenard-Balescu type evolution

with dynamical friction[23, 24, 25, 26, 28]. We derive toroidal momentum evolution

equation by taking toroidal precession velocity moment of the mean field transport

equation of phase space density. Based on the toroidal momentum transport equation,

we argue that turbulent granulations can mediate momentum transfer between two flows

(poloidal and toroidal) inherent in torus plasmas. Based on the theory developed here,
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we give a qualitative estimate of the conversion process. The result shows that in the

present devices the acceleration of toroidal flows have the same order of magnitude as

the acceleration of poloidal zonal flows.

The remaining of the paper is organized as follows. In section 2, we introduce

a model for trapped ion resonance driven turbulence and discuss the relation of the

dynamics of a single phase space structure to toroidal momentum transport. In section

3, we turn to the case of an ensemble of multi-structures, i.e. phase space density

granulations. We calculate toroidal momentum transport driven by granulations and

show that granulations can mediate momentum transfer from poloidal flows to toroidal

flows. Quantitative estimate for the toroidal flow acceleration is given, and a possible

experiment to probe the effect of granulations is discussed. Section 4 is conclusion and

discussion.

2. Conversion of poloidal flows into toroidal flows by a single structure

As a specific example of plasma turbulence, we consider trapped ion resonance driven

ion temperature gradient (ITG) turbulence[14, 15, 16]. While trapped ion mode (TIM)

considered here has many similarities with typical ITG, we note that they do have

differences as well. For example, they have different frequency ordering, as ω > k‖vthi for

ITG while ω < k‖vthi for TIM. The dependence of frequency on mode number is different

as well. ITG frequency depends on ion inertia through finite Larmor radius effect k⊥ρi,

while TIM frequency depends on ion inertia through finite Banana radius effect k⊥ρb.

In order to describe the dynamics of trapped ion resonance driven turbulence, we use

the model developed in literature[14, 15, 16]. The model [14, 15, 16] used here consists

of the bounce averaged kinetic equation for ions and the gyrokinetic Poisson equation
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to account for quasi-neutrality:

∂tf + vd(E)∂yf +
c

B
{φ, f} = 0, (1)

eφ̃

Te
− ρ2∇2

⊥
eφ̃

Te
=

2

n0

√
π

∫ ∞
0

dE
√
Eδf. (2)

Electrons are dissipative in the frequency range of interest νe,eff � ω. Thus electrons are

treated as laminar. Here, vd(E) = vd,0E/Ti is an energy dependent magnetic precession

drift velocity, and ρ2 includes both the classical and neo-classical polarization effects.

In the case of long wave length, ρ2 = ρ2s(1 + 1.6q2/
√
ε0)[29]. (q is the safety factor and

ε0 is the inverse of the aspect ratio of plasmas) . For this model, the Kubo number[30],

which measures coherence of the turbulence, is

K ∼ ṽ

(|dω/dkθ − ω/kθ|∆kθ)∆c

. (3)

Here ṽ is the typical fluctuation velocity and ∆c is the correlation length. Given the

weakly dispersive nature of long wavelength drift wave turbulence, it is very easy to

have long τac ≡ |(dω/dkθ − ω/kθ)∆kθ|−1, and thus Kubo number K = τacṽ/∆c > 1

is likely. Hence phase space structures due to strong wave-particle resonance, such as

granulations, can form in this model. The model used in the paper for trapped ion

turbulence is arguably the minimal model that can capture the role of granulations on

drift wave dynamics. This is since the fast bouncing motion of trapped ions average out

the parallel heating, as dE/dt = v‖E‖ → 0 where (...) is the bounce average. This fact is

manifested in the absence of energy scattering term in the bounce kinetic equation. This

allows us to focus on the 2D spatial nonlinear dynamics of drift waves, while keeping

the effect of velocity space resonance (toroidal ion precession resonance).

Before starting a detailed analysis, we start by considering a simple case of a single

structure in phase space density (Fig.1). Here, we consider a hole structure[18, 21]

(a localized deficit) located at (x0, E0) in phase space. x0 is the radial position of
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the structure and E0/Ti ∼= ω/ωDi ∼
√
ε0v∗i/vDi ∼ 1/

√
ε0 is the energy of resonating

trapped ions. Once formed, a phase space structure can grow by extracting free energy,

as shown in Fig.1. In this process, the structure can climb against the gradient by

scattering off electrons and polarization charge. Since the total f is conserved during

the displacement (i.e. df/dt = 0), the depth must grow. The growing process can be

formulated by following analysis in literature[18, 25] as:

∂t〈δf 2〉 = −2〈ṽxδf〉
∂〈f〉
∂x

∣∣∣∣
0

(4)

where δf is the increment due to the displacement, 〈...〉 is the zonal average, and (...)|0

denotes the location (x0, E0). Note scattering in energy does not enter here, since it is

averaged out by the bouncing motion in the magnetic mirror. As clearly seen in Eq.4,

structure growth is tied to the flux of phase space density, 〈ṽxδf〉.

The structure dynamics can be related to toroidal momentum transport as

follows. To demonstrate the connection, we multiply the toroidal precession velocity

v̄DiĒ(Bζ/Bθ) of the structure and take velocity moment of Eq.4, to obtain toroidal

momentum flux associate with the growing process:

〈ṽxṽζ〉 =

∫
d3vvDiĒ0

Bζ

Bθ

〈ṽrδf〉

∼= −vDi
1
√
ε0

Bζ

Bθ

∂

∂t

∫
d3v

〈δf 2〉
2∂〈f〉/∂x|0

. (5)

This relates toroidal momentum flux to dynamics of a phase space structure.

Importantly, Eq.5 describes the conversion of momentum between toroidal and poloidal

flows, mediated by a phase space structure. This can be seen by noting that the

righthand side is proportional to the evolution of poloidal pseudomomentum of the

structure[25, 26]. We can explicitly see the link of this term to poloidal momentum of

fluctuation by considering non-resonant limit, as
∫
d3v〈δf 2〉/∂〈f〉/∂x → −kθNk where

Nk is the wave action density. By exchanging the poloidal pseudomomentum, a single
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Figure 1. Illustration of a single structure in phase space density and its growth.

Initially, a single structure is located at a position (x0, E0), f = 〈f〉|0 + fH |0. By

scattering off electrons and polarization charge, the structure can climb against the

background gradient. Since df/dt = 0, the total f is conserved along the trajectory

and thus the depth grows by δf .

phase space structure can drive poloidal flows.[25, 26, 27]. Thus the righthand side

of Eq.5 is tied to the evolution of poloidal flows. Then, Eq.5 overall relates toroidal

momentum transport to poloidal flow evolution, through the dynamics of a single

structure in phase space. The bottom line of this simple calculation is that a single phase

space structure can convert poloidal flow momentum into toroidal flow momentum.
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3. Conversion of poloidal flows into toroidal flows by granulations

Given a single phase space structure can convert poloidal momentum into toroidal

momentum as demonstrated above, now we turn to the case of an ensemble of structures,

i.e. granulations, in trapped ion resonance driven turbulence. Once formed, granulations

induce the effect of discreteness in plasmas[23, 24]. This effect can be modeled as

incoherent fluctuation[17] in phase space density fluctuation, δf = −(eφ̃/Ti) + δh =

−(eφ̃/Ti)+δhc+ δ̃h. Here, δh is a non-adiabatic part of phase space density fluctuation,

δhc = Rφ̃ is the coherent response of δh to φ̃, R = i(ω−ωDiE+i/τc)
−1 is a propagator for

the model used in this paper, and δ̃h is an incoherent fluctuation due to granulations.

The incoherent fluctuation cannot be written as a response to the fluctuating field

φ̃. δ̃h physically describes the population of correlated resonant ions, and gives rises

to discreteness in the system. This term is analogous to the incoherent fluctuation

induced by particle discreteness in the test particle model near the thermodynamic

equilibrium[30], albeit now the effect of discreteness is incorporated into turbulent

plasmas with granulations. By retaining the incoherent fluctuation due to granulations,

the electrostatic potential φ̃ is made self-consistent by accounting for the gyrokinetic

Poisson equation:

ε̂(k, t)
eφ̃k(t)

Ti
=

∫
d3vδ̃hk(t). (6)

where ε̂(k, t) is the plasma dielectric function[30, 26]. This suggests that the electrostatic

fluctuation can be supported by two parts:

eφ̃k(t)

Ti
=
eφ̃k

Ti
exp(−iωkt) + ε̂−1(k, t)

∫
d3vδ̃hk(t). (7)

Here, the first term is associated with normal modes in the system with ε(k, ωk) = 0,

while the latter is supported by granulations. Hereafter, to focus on the effects of

granulations, we only retain fluctuations supported by granulations, by assuming weakly
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unstable or saturated modes with exp(−iωkt) → 0 as t → ∞. In this case, potential

fluctuation is supported by Cerenkov emission from turbulent plasma granulations.

By retaining the effect of granulations, mean field evolution of phase space density

is obtained as follows[25, 26]:

∂t〈f〉+ ∂r〈ṽrδf〉 = 0 (8)

where 〈...〉 denotes the zonal average. The total flux has two parts from the coherent

and incoherent response 〈ṽrδf〉 = 〈ṽrδhc〉 + 〈ṽrδ̃h〉. The flux by the coherent response

leads to quasilinear-like diffusive term, 〈ṽrδhc〉 = −Dturb〈f〉′ where Dturb is the turbulent

diffusivity. The flux by the incoherent response leads to dynamical friction[25, 26, 28],

〈ṽrδ̃h〉 = Ji,e + Ji,pol where

Ji,e = −
∑
kω

kθρivthi
Imεe
|ε(k, ω)|2

〈
δ̃n

n0

δ̃h
∗
〉
kω

(9)

Ji,pol = −
∑
kω

kθρivthi
(−2ρ2kr)

|ε(k, ω)|2

〈
δ̃n

n0

∂rδ̃h
∗
〉
kω

(10)

Here, Imε is the imaginary part of the plasma dielectric function[25]. Imεe ∝ ν−1e

is due to collisional dissipation in electrons. Imεpol ∝ Im∇2
⊥ ∝ kr∂r originates from

meso scale spatial variation in turbulent wake[25, 26], as it is obtained by replacing

kr → kr − i∂r, where ∂r acts on the envelope of turbulent fluctuation. As these two

terms are proportional to Imε, these terms are associated with dynamical friction[23, 24].

Note that in the presence of granulations, mean field evolution takes a Lenard-Balescu

form with diffusion term and dynamical friction[19, 20, 25, 26, 28]. This is in contrast to

mean field evolution by plasma turbulence without the effect from granulations, which

only involves quasilinear diffusion.

Granulations can exert dynamical friction to drive toroidal flows. To discuss the

effect of dynamical friction on toroidal flows, first we note that the flow supported by

trapped ions is obtained by averaging toroidal precession of each individual particles.
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The averaging leads to a macroscopic flow 〈vζ〉 =
∫
d3vvDi(E/Ti)(Bζ/Bθ)〈fi〉 =

(3/2)vDi(q/ε0). The macroscopic flow can be disturbed by granulations. This is since

granulations with microscopic momentum vDi(E/Ti)(q/ε0) are dragged via dynamical

friction. This process leads to a re-distribution of momentum and can distort the

macroscopic toroidal flows. The process is formulated by taking vDi(E/Ti)(q/ε0)

moment of the mean field evolution for 〈f〉 as:

∂t〈vζ〉+ ∂r〈ṽrṽζ〉 = 0 (11)

Here 〈ṽrṽζ〉 ≡
∫
d3vvDi(E/Ti)(q/ε0)〈ṽrδf〉 is the radial flux of toroidal momentum or

Reynolds stress on toroidal flow. Using the above results, we find that the Reynolds

stress consists of two parts:

〈ṽrṽζ〉 =

∫
d3vvDi(E/Ti)(q/ε0)(−Dturb〈f〉′)

+

∫
d3vvDi(E/Ti)(q/ε0)(Ji,e + Ji,pol) (12)

where Dturb is the turbulent diffusivity. The first piece is due to turbulent diffusion

and appears in quasilinear analysis. This term can contain both the diagonal term

(anomalous viscosity) and off-diagonal terms[5, 6] such as the residual stress[8], since

〈f〉′ = 〈f〉′[∇〈Vζ〉,∇〈n〉,∇〈Ti〉]. Since this term appears in the conventional quasilinear

mean field theory with weak resonance[7], hereafter we focus on the contribution from

the second piece in Eq.12. This piece (≡ Πgran
rζ ) arises due to dynamical friction exerted

on turbulent granulations. This effect can only be recovered by retaining the effect

of granulations[23, 24]. This term is specific for collisionless plasma turbulence, where

phase space dynamics plays important roles in determining behavior of the system.

Clearly, Πgran
rζ shows that turbulent granulations can drive toroidal flows by exerting

the Reynolds stress.

Πgran
rζ can be further calculated as follows. Since turbulent granulations are
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resonating with trapped ion ITG, we have ωDi(E/Ti) '
√

2ε0ω∗i. This allows us to

perform the velocity integral to give

Πgran
rζ '

√
2ε0v∗i

q

ε0

Γturbe

n0

+
√

2ε0v∗i
q

ε0

∂r〈ṽrṽθ〉
ωci

(
1 + 1.6

q2
√
ε0

)
(13)

In order to write Eq.13 in terms of experimentally measurable quantities, we use

simplified momentum balance relations ∂t〈vζ〉+∂rΠ
gran
rζ = 0 and (1+1.6q2/

√
ε0)∂t〈vθ〉+

∂r〈ṽrṽθ〉 = 0[29] to obtain:

∂〈vζ〉
∂t

= M gran
ζ←p

∂〈vθ〉
∂t

(14)

The coefficient is defined as

M gran
ζ←p ≡

√
2

qv∗i∂rΓ
turb
e√

ε0n0∂r〈ṽrṽθ〉

(
1 + 1.6

q2
√
ε0

)
+
√

2
qv∗i√
ε0LIωci

(
1 + 1.6

q2
√
ε0

)2

(15)

Here LI is the scale length of turbulent intensity, which is typically in the range of

mesoscale. Eq.14 describes interference between poloidal and toroidal flows, mediated

via turbulent granulations. The process is depicted in Fig.2. When poloidal momentum

changes, E × B vortices in the poloidal cross section are tilted to produce 〈ṽrṽθ〉. This

change in turn drags trapped ion granulations in the radial direction. Overall, the

change in poloidal momentum is transferred to the change in toroidal momentum. In

particular, in the absence of a boundary term, Eq.13 describes the generation of zonal

flows in the toroidal direction. Thus we may alternatively say that zonal flows in the

poloidal direction are converted into zonal flows in the toroidal direction.

Quantitatively, the conversion coefficient (Eq.15) may be evaluated as follows. First,

we note that the typical scale of toroidal zonal flows would be the meso scale, as poloidal

zonal flows have the typical scale LI ∼
√
ρia where a is the minor radius of plasmas.
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Figure 2. A schematic diagram for interference of poloidal and toroidal momenta via

granulations (plasma phase space eddys). When poloidal momentum changes, E × B

vortices in the poloidal plane are tilted to produce Reynolds stress. On the other hand,

the Reynolds stress can drag toroidally precessing turbulent granulations (correlated

resonant ions) by exerting dynamical friction Ji,pol. This can cause transport of toroidal

momentum and thus can drive toroidal flows. In (x, vζ ∝ E) phase plane, the process

appears as a deformation of granulation vortex.

Secondly, by assuming a typical turbulence level of order of mixing length estimate, we

have:

|M gran
ζ←p | ∼

√
2qρ∗√
ε0

(
1 + 1.6

q2
√
ε0

)
×
(

1 +
√
ρ∗

(
1 + 1.6

q2
√
ε0

))
(16)

Here ρ∗ ≡ ρi/a. For example, using numerical values of ε0 ∼ 1/3, ρ∗ ∼ 1/200, q ∼ 3, we
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have |M gran
ζ←p | ∼ 2.69. Thus, when poloidal zonal flows accelerate, an acceleration with

the same order of magnitude can appear in the toroidal direction as well.

The mechanism presented here can be evaluated experimentally. For example,

poloidal Reynolds forcing can be measured by Langmuir probes, while toroidal

acceleration can be measured by Mach probes. By taking the correlation between

poloidal forcing and toroidal acceleration, we may be able to identify interference

between poloidal flows and toroidal flows. In order to further clarify specific mechanisms

behind the conversion process (i.e. either by granulations or by acoustic coupling[12],

etc), we can evaluate a conversion coefficient of the process, ∂t〈vζ〉/∂r〈ṽrṽθ〉. We can

compare the parameter dependence of the result with the conversion matrix derived

here (Eq.16). Though indirect, such a procedure may be used to measure the effect

of turbulent plasma granulations. As a caveat, we note that the error associated with

probe measurements could be large. It may require more detailed, quantitative error

analysis of probe measurements to determine whether the error is significant enough to

make experiments inaccessible or not. This is beyond the scope of the paper and will

be discussed elsewhere.

Up to this point, we discussed that turbulent granulations can drive toroidal flows by

converting poloidal momentum into toroidal momentum. In this sense, the mechanism

developed here is analogous to that by torque exerted by radial current, which can

also convert poloidal flows into toroidal flows. This mechanism does not involve k‖

coupling, thus can be at work in trapped ion turbulence. To distinguish the two

processes, here we give a quantitative estimate of plasma parameters for the conversion

by phase space structures, i.e. Πgran
rζ , to be a dominant mechanism. To begin with, we

note that the torque exerted by radial current can drive poloidal and toroidal flows as

∂t〈vζ〉 ∼= 〈Jr〉Bθ/(minc) and (1 + 1.6q2/
√
ε0)∂t〈vθ〉 = −〈Jr〉Bζ/(minc). Then we have
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ρ∗ 1/100 1/200 1/500 1/1000

|M gran
ζ←p | 6.9 2.7 0.82 0.35

|M gran
ζ←p /M

current
ζ←p | 2.4 0.94 0.29 0.12

Table 1. The conversion matrix and its relative value for different values of ρ∗, with

ε0 = 1/3, q = 3.

ρ∗ 1/100 1/200 1/500 1/1000

|M gran
ζ←p | 69.1 25.7 7.1 2.8

|M gran
ζ←p /M

current
ζ←p | 14.7 5.5 1.5 0.59

Table 2. The conversion matrix and its relative value for different values of ρ∗, with

ε0 = 1/3, q = 5.

∂t〈vζ〉 = M current
ζ←p ∂t〈vθ〉 where

M current
ζ←p = −

(
1 +

1.6q2
√
ε0

)
ε0
q

(17)

We can compare the two conversion mechanisms. To do so, we have

|M gran
ζ←p |

|M current
ζ←p |

∼
√

2q2ρ∗

ε
3/2
0

(
1 +
√
ρ∗

(
1 + 1.6

q2
√
ε0

))
(18)

For example, if we use the same parameter used above, we have |M current
ζ←p | ∼ 2.9

and |M gran
ζ←p |/|M current

ζ←p | ∼ O(1). Thus the both mechanisms can be comparable.

Alternatively, if we use q ∼ 5, ρ∗ ∼ 1/100, and ε0 ∼ 1/3, we have |M gran
ζ←p |/|M current

ζ←p | ∼

14.7, which means the conversion by granulations is more effective. Table 1 and 2

summarize the value of the conversion matrix for several q and ρ∗. As we can see, the

conversion by phase space structures is more effective for larger q and larger ρ∗. This

tendency is manifested in Eq.18 as well. As ρ∗ ∝ a−1 is related to the size of devices,

(i.e. larger machines have smaller ρ∗, and vice versa), high q region of smaller tokamaks

would be more accessible to measure the conversion process by phase space structures.
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4. Conclusion and discussion

In this paper, we presented a theory to describe conversion of poloidal momentum

into toroidal momentum by phase space structures in trapped ion resonance driven

turbulence. Principal results of the paper are:

(i) Toroidal flows can be accelerated by phase space structures. In particular, we

considered the simplified case of a single structure in phase space(Fig.1). When the

structure grows, the growth can cause toroidal momentum flux, Eq.5. Since the

right hand side describes evolution of poloidal pseudomomentum of the structure,

and it is related to the acceleration of poloidal flow, toroidal flow can be driven by

converting poloidal flow momentum via a structure in phase space.

(ii) Poloidal flows can be converted into toroidal flows via an ensemble of stochastic

granulations, ∂t〈vζ〉 = M gran
ζ←p ∂t〈vθ〉 (Fig.2). The conversion matrix is calculated as

Eqs.15 and 16. For typical parameters in present devices, |M gran
ζ←p | ∼ 2.69. Thus

when poloidal zonal flows accelerate a quantitatively comparable acceleration can

appear in the toroidal direction. The ratio of the conversion by granulations to the

conversion by the radial current is given as Eq.18. Our result indicate that it may

be easier to distinguish and measure the conversion by phase space structures in

higher q, smaller machines (i.e. larger ρ∗).

While we addressed the role of granulations in converting poloidal and toroidal flows

with one another, the drive of toroidal flows discussed here can be understood as a part of

residual stress in toroidal momentum transport in magnetic fusion community.[7, 8, 9] To

elaborate this point, it is useful to recall that toroidal flow evolution equation generally

takes the form:

∂t〈vζ〉+
∂

∂r

(
−χζ

∂〈vζ〉
∂r

+ Vpinch〈vζ〉+ Πres
rζ

)
= a‖ (19)
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Here χζ is the anomalous viscosity, Vpinch is the pinch[31, 32, 33], Πres
rζ is the residual

stress[7, 8, 9], and a‖ is a parallel acceleration[7, 34] which acts as a local source. Πres
rζ and

a‖ are required to spin-up plasmas from rest[8, 9]. Physically, a‖ originates from acoustic

coupling, which includes refractive force[7] or turbulent acceleration[34]. Whereas, the

residual stress has several contributions[7, 8, 9]:

Πres
rζ = ΠRP

rζ + Πwave
r‖ +

c2

B2
〈ẼrẼ‖〉 −

Bθ

Bζ

〈ṽrṽθ〉 (20)

Here, the first is the momentum flux carried by resonant particles, the second is the

momentum flux carried by drift wave turbulence[7], the third term is the polarization

stress[35, 36], and the fourth is the projection of perpendicular force[37], or equivalently,

the 〈J〉×B torque. The first term, i.e. the momentum flux due to resonant particles can

have two contributions, both from quasilinear like flux[7] and from dynamical friction,

i.e. ΠRP
rζ = (ΠRP

rζ )QL + (ΠRP
rζ )DF . It is this (ΠRP

rζ )DF that has been calculated in this

work, i.e. Πgran
rζ . In particular, we showed that Πgran

rζ can be comparable in magnitude to

the projection of perpendicular force by calculating |M gran
ζ←p |/|M current

ζ←p | in Eq.18. Thus

momentum transport by phase space structures can contribute to intrinsic torque. The

contribution from (ΠRP
rζ )DF would be especially important when phase space structures

can form in turbulence due to strong wave-particle resonance, such as trapped ion or

trapped electron precession resonances. Relevant applications to toroidal momentum

transport phenomenology, e.g. the competition between the effect developed here

and other components in intrinsic torque in CTEM turbulence with acoustic coupling,

implications to scaling of flows to plasma parameters, etc, will be pursued in future.



Conversion of poloidal flows into toroidal flows by phase space structures 17

Acknowledgments

We thank Drs. X. Garbet, G. Dif-Pradalier, O.D. Gurcan, M. Lesur, M.E. McIntyre,

T.S. Hahm, A. Fujisawa, S. Inagaki, and the participants in the 2009 and 2011 Festival de

Theorie for stimulating discussions. This work was supported by CMTFO, the Ministry

of Education, Science and Technology of Korea via the WCI project 2009-001, U.S.

Department of Energy Grants No. DE-FG02-04ER54738, Grants-in-Aid for Scientific

Research of JSPF of Japan (21224014), the collaboration programs of the RIAM of

Kyushu University and of NIFS (NIFS10KOAP023), and Asada Science Foundation.

References

[1] A. Fujisawa, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamura, A. Shimizu, T. Minami, Y. Yoshimura,

K. Nagaoka, C. Takahashi, M. Kojima, H. Nakano, S. Oshima, S. Nishimura, M. Isobe, C. Suzuki,

T. Akiyama, K. Ida, K. Toi, S. I. Itoh, and P. H. Diamond. Phys. Rev. Lett., 93:165002, 2004.

[2] P. H. Diamond, S.-I. Itoh, K. Itoh, and T.S. Hahm. Plasma Phys. Control. Fusion, 47:R35, 2005.

[3] H. Bilari, P. H. Diamond, and P. W. Terry. Phys. Fluids B, 2:1, 1990.

[4] K. H. Burrell. Phys. Plasmas, 4:1499, 1997.

[5] K. Ida, Y. Miura, T. Matsuda, K. Itoh, S. Hidekuma, S. I. Itoh, and JFT-2M Group. Phys. Rev.

Lett., 74:1990, 1995.

[6] J. E. Rice, J. W. Hughes, P. H. Diamond, Y. Kosuga, Y. A. Podpaly, M. L. Reinke, M. J.
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