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ABSTRACT 

 Improving nitrogen (N) management is critical to maximizing the productivity and 

sustainability of our agroecosystems. Improving N management requires an understanding of 

crop N status and yield potential early enough in the growing season when changes to N 

management can influence yields. However, given the lack of tools currently available to 

accurately assess crop N status, farmers continuously face the challenge of determining whether 

their crops require additional N fertilizer. The recent emergence of remote sensing technology 

has provided a promising alternative that can provide farmers the information they need in an 

accurate and timely manner. Several studies have demonstrated the potential of remote sensing 

technology to accurately assess the health and vigor of vegetation at the landscape scale, 

however few have explored how this technology can be utilized to inform sustainable crop 

management at the farm scale. This knowledge gap is what inspired this research and led us to 

investigate how remote sensing technology can be utilized to improve in-season N management 

in California rice systems. 

In California, where more than 200,000 ha of flooded rice (Oryza sativa) is cultivated 

annually, the recommended N management strategy is for farmers to apply the average seasonal 

N fertilizer requirement prior to flooding and planting as aqua-ammonia injected into the soil. 

On-farm studies have reported that N fertilizer applied in this manner is efficiently utilized by 

the crop as it remains protected from denitrification and ammonia volatilization losses until the 

crop needs it. At panicle initiation (PI), it is recommended to assess crop N status to determine if 

additional N fertilizer inputs are required as top-dress. The current tools available to assess rice 

N status include the SPAD chlorophyll meter and Leaf Color Chart, but these tools are not often 
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used as they are time consuming and subjective. Thus, most top-dress N applications take place 

without evaluating crop N status; possibly resulting in inefficiencies due to over application. 

Our goal was to improve N management in California rice systems by developing a 

sensor-based decision support tool that could guide California rice farmers in their mid-season 

top-dress N management. This was pursued through N response trials that were established over 

a 4-yr. period across fourteen on-farm locations throughout the Sacramento Valley rice growing 

region of California. At PI, Normalized Difference Vegetation Index (NDVI) was measured 

using both a proximal crop sensor and a multispectral aerial sensor, and Normalized Difference 

Red-Edge Index (NDRE) was measured only using an aerial sensor. After NDVI and NDRE 

measurements, biomass was sampled destructively and then top-dress N fertilizer was applied. 

At maturity, rice plants were harvested to quantify grain yield.  

In the first chapter, our objective was to determine which N status parameter is best 

assessed by NDVI at PI and how accurately NDVI at PI can predict grain yield. The N status 

parameters quantified in this study were aboveground biomass, plant N concentration, and total 

N uptake. Quadratic linear regression models were developed to describe the relationship 

between each N status parameter and NDVI, and a simple linear regression model was developed 

to describe the relationship between grain yield and NDVI. Our results showed that PI N status 

was best assessed by NDVI when quantified as total N uptake and that NDVI at PI was 

positively correlated with grain yield. However, our results also showed that NDVI saturated 

once crop N uptake exceeded a certain threshold, suggesting alternative indices that do not 

saturate may provide a basis for a better assessment.  

In the second chapter, our objective was to compare the sensitivity of aerially sensed 

NDVI and NDRE to proximally sensed NDVI for assessing rice crop status when quantified as 
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PI N uptake and grain yield. In order to make direct comparisons across the three indices, the 

raw values from each index were normalized by calculating the Sufficiency-Index (SI). 

Quadratic-plateau linear regression models were developed to describe the relationship between 

each SI and PI N uptake and linear mixed effects models were developed to describe the 

relationship between each SI and grain yield. Our results showed that aerial NDRE SI and 

proximal NDVI SI were similarly sensitive at assessing PI N uptake and grain yield, whereas 

aerial NDVI SI was poorly sensitive. The difference in sensitivity among the three indices was 

attributed to the relative amount of saturation of each index. Our finding that both the aerial 

NDRE SI and proximal NDVI SI measured PI rice crop status effectively provides a unique 

advantage for end-users as it allows them the flexibility to choose the sensor most suitable for 

their goals. 

In the final chapter, our objective was to develop a NDVI Response-Index capable of 

predicting the grain yield response to top-dress N fertilizer applied at PI. The NDVI Response-

Index was developed by comparing the NDVI of each field treatment to the NDVI of a N non-

limiting plot. At PI, top-dress N fertilizer was applied to every plot, and at maturity grain yield 

was quantified. A linear mixed effects model was developed to describe the relationship between 

NDVI Response-Index and grain yield with and without top-dress N. An economic analysis was 

performed to determine the magnitude of grain yield response required for top-dress N 

applications to be economically feasible. Based on our results, we found that top-dress N 

applications become profitable once NDVI Response-Index exceeds 1.07 by PI. The NDVI 

Response-Index presented here provides a useful tool for farmers to make precise mid-season 

top-dress N decisions which can result in positive outcomes for both crop productivity and 

environmental sustainability.



 

 

x 

LIST OF TABLES 

CHAPTER ONE 

 

Table 1.1 Soil descriptions and selected properties of each N response trial site-year located 

throughout the Sacramento Valley.............................................................................................p. 23 

 

Table 1.2. Soil description, selected properties, and rice variety grown at each Farm Survey-15 

location.......................................................................................................................................p. 26 

 

Table 1.3. Descriptive statistics of rice N status parameters and NDVI measured at PI growth 

stage...........................................................................................................................................p. 31 

 

Table 1.4. Descriptive statistics of final grain yield at the N response trial site-years (yields were 

not obtained for Farm Survey-15)..............................................................................................p. 32 

 

CHAPTER TWO 

 

Table 2.1. Soil descriptions and selected properties of each N response trial site-year located 

throughout the Sacramento Valley, California..........................................................................p. 59 

 



 xi 

Table 2.2. Summary of the proximal and aerial sensors used to measure the Normalized 

Difference Vegetative Index (NDVI) and the Normalized Difference Red Edge (NDRE) at the 

panicle initiation (PI) rice growth stage.....................................................................................p. 62 

 

CHAPTER THREE 

 

Table 3.1. Soil descriptions and selected properties of each N response trial site-year located 

throughout the Sacramento Valley, California..........................................................................p. 95 

 

Table 3.2. Descriptive statistics (minimum, maximum, and mean) of GreenSeeker Normalized 

Difference Vegetative Index (NDVI) Response-Index measured at the panicle initiation rice 

growth stage from each N response trial site-year...................................................................p. 104 

 

Table 3.3. Model parameters of the linear mixed-effects model developed to describe the 

relationship between NDVI Response-Index (RI) and the rice grain yield response to top-dress N 

applied at the panicle initiation (PI) growth stage...................................................................p. 107



 

 

xii 

LIST OF FIGURES 

CHAPTER ONE 

 

Figure 1.1. A map of N response trial sites and Farm Survey-15 locations established during the 

2015 to 2018 growing seasons throughout the Sacramento Valley rice growing area of California 

(CA)...........................................................................................................................................p. 22 

 

Figure 1.2. The relationship between rice (A) aboveground biomass, (B) N concentration, and 

(C) total N uptake at panicle initiation rice growth stage and Normalized Difference Vegetation 

Index (NDVI) as described by quadratic linear regression models. The horizontal asymptote 

(asym) represents the NDVI value at which the relationship saturates. Data was collected during 

the 2015 to 2018 growing season from ten N response trial sites and 28 on-farm plots (Farm 

Survey-15) throughout the Sacramento Valley rice growing region of California (CA)..........p. 34 

 

Figure 1.3. (A) The relationship between rice total N uptake at panicle initiation (PI) growth 

stage and final grain yield as described by a segmented model. The vertical dashed line at 93.9 

kg N ha
-1

 represents the minimum amount of crop N uptake required by PI to achieve maximum 

grain yield. (B) The relationship between Normalized Difference Vegetation Index (NDVI) at PI 

and final grain yield as described by a simple linear regression model. Data was collected during 

2015 to 2018 from ten N response trial sites throughout the Sacramento Valley rice growing area 

of California (CA)......................................................................................................................p. 36 



 xiii 

CHAPTER TWO 

 

Figure 2.1. A map of N response trial sites established during the 2017 to 2019 growing seasons 

throughout the Sacramento Valley rice growing area of California, USA................................p. 58 

 

Figure 2.2. The relationship between pre-plant N rate and mean panicle initiation (PI) total N 

uptake (NUP) (left axis), and mean final grain yield (right axis), as described by unique quadratic 

linear regression models............................................................................................................p. 67 

 

Figure 2.3. Kernel density distributions of raw index values (IV) and the Sufficiency Index (SI) 

of each vegetative index measured at the panicle initiation (PI) rice growth stage. Note the 

differences in scale of the x-axis. Some colors of the rug are not visible due to overlap..........p. 69 

 

Figure 2.4. The relationship between panicle initiation (PI) total N uptake (NUP) and (a) 

GreenSeeker Normalized Difference Vegetation Index (NDVIGS) Sufficiency-Index (SI), (b) 

small unmanned aerial system Normalized Difference Red-Edge Index (NDREUAS) SI, and (c) 

NDVIUAS SI as described by unique quadratic-plateau linear regression models. The plateau 

value reported in each panel represents the PI NUP value where the regression model reached a 

plateau (i.e. the point of saturation for each index). Data were collected during the 2017 to 2019 

growing season from ten N response trial site-years established throughout the Sacramento 

Valley rice growing region of California...................................................................................p. 71 



 xiv 

 

Figure 2.5. The relationship between (a) GreenSeeker Normalized Difference Vegetation Idnex 

(NDVIGS) Sufficiency Index (SI) (b) small unmanned aerial system Normalized Difference Red-

Edge Index (NDREUAS) SI, and (c) NDVIUAS SI and rice final grain yield as described by unique 

linear mixed-effects models. The coefficient of determination (R
2
) reported in each panel 

represents the proportion of variability explained by the model fixed effects only. Data were 

collected during the 2017 to 2019 from ten N response trial site-years throughout the Sacramento 

Valley rice growing region of California...................................................................................p. 72 

 

CHAPTER THREE 

 

Figure 3.1. A map of N response trial sites established during the 2016, 2017, and 2019 growing 

seasons throughout the Sacramento Valley rice growing area of California, USA...................p. 94 

 

Figure 3.2. Relationship between pre-plant N rate with and without top-dress N and final grain 

yield for each site-year.............................................................................................................p. 103 

 

Figure 3.3. The relationship between the estimated rice grain yield response to top-dress N 

applied at 34 kg N ha
-1

 (typical grower rate in California) (A) when averaged across all NDVI 

Response Index (RINDVI) observations (i.e. without using RINDVI as a predictor) and (B) the 

RINDVI measured at the panicle initiation growth stage as described by a linear mixed-effects 



 xv 

model. The error bar (panel A) and the gray shading (panel B) represents the standard error 

around the estimated grain yield response...............................................................................p. 106 

 

Figure 3.4. The relationship between NDVI Response Index (RINDVI) and the estimated rice 

grain yield response to top-dress N applied at 34 kg N ha
-1

 (typical grower rate in California) at 

the panicle initiation growth stage as described by a linear mixed effects model (solid blue line). 

The gray shading around the line represents the standard error of the estimated yield response. 

The vertical red dashed line at a RINDVI of 1.07 corresponds to the top-dress break-even point of 

0.26 Mg ha
-1

 which represents the amount of grain yield response needed for a farmer to recover 

the cost of applying top-dress N. The dotted line represents the probability of the grain yield 

response to top-dress N exceeding the break-even point.........................................................p. 108 

 

 



 

 

xvi 

TABLE OF CONTENTS 

PAGE 

Title Page                     i 

Acknowledgments                             iii 

Abstract                  vii 

List of Tables                     x 

List of Figures                  xii 

Table of Contents                           xvi 

 

INTRODUCTION.........................................................................................................................1 

CHAPTER ONE..........................................................................................................................15 

Using Normalized Difference Vegetation Index to assess N status and predict grain yield in rice 

CHAPTER TWO.........................................................................................................................50 

Sensitivity of vegetative indices derived from proximal and aerial sensors for assessing the N 

status and predicting grain yield of rice 

CHAPTER THREE.....................................................................................................................86 

Using NDVI Response-Index to Inform Sustainable Top-dress N Fertilization in Direct-Seeded 

Rice 

CONCLUSION..........................................................................................................................122



 1 

INTRODUCTION 

 

 

 Nitrogen (N) is an essential element for plant growth and an adequate supply of N is 

fundamental to maximizing rice (Oryza sativa L.) grain yield and quality (De Datta, 1981). 

However, despite being the most studied nutrient worldwide, N use efficiency in global rice 

production is estimated to be less than 50% (Ladha et al., 2016). Annually, approximately 8 Tg 

of N fertilizer is applied to agricultural soils worldwide to produce rice, suggesting that 

approximately 4 Tg of N is lost to the environment (Ladha et al., 2020). This disparity between 

N fertilizer inputs and outputs negatively impacts the environment in many ways. For example, 

excessive N fertilization combined with improper water management causes nitrate to leach 

through the soil profile and pollute underlying aquifers; resulting in a variety of diseases when 

consumed by humans and animals (Di and Cameron, 2002; Fan and Steinberg, 1996; Fowler 

et al., 2013). Agriculture becomes a driver of global climate change through the significant 

amounts of greenhouse gases (e.g. NOx and N2O) that are emitted from fields where N fertilizer 

levels in the soil exceed crop N requirements (Almaraz et al., 2018; Pittelkow et al., 2014a; 

Tubiello et al., 2013). Elevated N inputs from agricultural tailwater convert downstream marine 

ecosystems into hypoxic dead zones due to eutrophication and the proliferation of harmful algal 

blooms (Conley et al., 2009; Howarth et al., 2011). Given the intensification of global 

agriculture required to feed the growing world population, these negative impacts on the 

biosphere will likely worsen unless new practices are developed and adopted that allow farmers 

to more efficiently utilize N fertilizer. 

 In California (CA), where more than 200,000 ha of flooded rice is cultivated annually, 

the recommended practice is to apply the average seasonal N fertilizer requirement (typically 

150 to 200 kg N ha
-1

) before flooding and planting (Linquist et al., 2009; Williams et al., 
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2010). Aqua ammonia (NH4OH) is the primary preplant N fertilizer used and it is injected 7 to 

10 cm deep in the soil, after which the fields are flooded and remain so continuously until 

harvest, thus keeping the N fertilizer protected from denitrification and ammonia volatilization 

losses until the crop needs it (Broadbent and Mikkelsen, 1968; Chuong et al., 2020). Linquist 

et al. (2009) reported from 14 on-farm studies that N applied in this manner led to an average 

fertilizer N recovery in the crop of 53%. Similarly, in dry-seeded systems in the mid-southern 

USA and Australia, it is also recommended to apply the total N requirement early in the season, 

prior to the establishment of permanent flood (Dunn et al., 2014, 2016; Norman et al., 2021; 

Troldahl, 2018). In both these systems, it is recommended to assess the crop at panicle initiation 

(PI) to determine whether the crop requires additional N fertilizer inputs to achieve maximum 

yields (Pittelkow et al., 2014b; Williams, 2010).  

Panicle initiation is considered a critical stage for in-season N management, as it marks 

the physiological shift from vegetative to reproductive plant growth (Counce et al., 2000), and N 

applications later than PI are less efficiently utilized for grain yield (DeDatta, 1981; Linquist 

and Sengxua, 2003). For short duration rice varieties such as M-206, which is the predominant 

variety in CA, PI occurs approximately 45 to 50 days after sowing and is visually determined by 

a dark green ring just below the initiating panicle, occurring 5 to 7 days before panicle 

differentiation (PD) (when the panicle becomes visible) (De Datta, 1981). Furthermore, most, if 

not all, of the pre-plant N fertilizer has been taken up by this stage in both water-seeded (LaHue 

et al., 2016) and dry-seeded systems (Norman et al., 2021). Because preplant N fertilizer has 

been taken up by this stage, further N uptake between PI and harvest relies on late season soil 

indigenous N supply (INS) and any top-dress fertilizer that may have been applied. If required, 

in CA typical PI top-dress rates range from 22 to 45 kg N ha
-1

 (Williams, 2010) with the average 



 3 

application being around 34 kg N ha
-1

 (Hartley and van Kessel, 2003). While the N rate applied 

at this stage is relatively low, it is still an important adjustment in a year where yield potential 

may be higher than average. Importantly, by PI, the yield components of tiller and panicle 

number have been determined, so major deficiencies due to initially low N rates would be too 

late to correct by this stage (DeDatta, 1981; Dunn et al., 2016). 

Some methods are available to assess midseason plant N status but have not been widely 

adopted by CA rice farmers due to their limitations. Plant tissue analysis provides the most direct 

measure; however, this technique is also time consuming and lab results are often received past 

the time when fertilizer decisions need to be made (Daugherty et al., 2000). Alternative 

technologies are available to expedite in-field N status assessment, such as the Leaf Color Chart 

(LCC) and the Soil Plant Analysis Development (SPAD) chlorophyll meter (Balasubramanian 

et al., 1999; Peng et al., 1996). The LCC estimates N content based on leaf greenness, while the 

SPAD chlorophyll meter measures the difference in transmittance between red and near infrared 

light passing through the leaf to estimate chlorophyll content (Alam et al., 2005; Uddling et al., 

2007). Previous research has demonstrated the ability of these technologies to assess rice N 

status and promote sustainable N management (Islam et al., 2007; Singh et al., 2007; Yang et 

al., 2003). However, both the LCC and SPAD chlorophyll meter are inefficient as they only 

assess a single leaf at a time, thus requiring considerable time and effort to accurately assess N 

status of an entire field (Daugherty et al., 2000; Saberioon et al., 2004; Xue et al., 2004). 

Given the limitations of the SPAD meter and the LCC, assessing crop N status in an accurate and 

timely manner remains a challenge in these systems, thus most top-dress N applications take 

place without evaluating crop N status; possibly resulting in inefficiencies due to over 

application. 
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The recent development of remote sensing techniques has provided a promising 

alternative to accurately assess crop N status and better manage N resources. Remote sensing of 

crops is based on the collection of canopy reflectance spectra at specific wavelengths in the 

electromagnetic spectrum, usually corresponding to regions where the plant canopy experiences 

strong absorption or reflectance of incoming radiation (Xue and Su, 2017). The most common 

method of assessing crop status using remote sensing is to place the proportion of observed 

reflectance at different wavelengths into a vegetative index, which is a mathematical 

combination of wavelengths related to specific biophysical characteristics of the plant (Hatfield 

et al., 2019). Among the most commonly measured indices in agricultural remote sensing 

applications is the Normalized Difference Vegetation Index (NDVI), as it has been shown to be 

sensitive to photosynthetic compounds, making it a useful index to measure the productivity of 

vegetation in a defined area (Huang et al., 2021; Tucker, 1979; Tucker et al., 1985). Within 

the past decade, the rapid development of new sensors with higher spatial and spectral sensing 

abilities, as well as new platforms that can carry such sensors and easily maneuver over the 

object space have led to a significant broadening of remote sensing applications in many fields 

including agriculture (Toth and Jóźków, 2016). As such, some of the current applications of 

remotely sensed data in agriculture include biomass estimation, assessing crop nutritional status, 

detecting plant stress, identifying disease incidence, scouting fields for weeds, and predicting 

potential yield among others. 

Remote sensing data can be collected using several different platforms including 

proximal handheld sensors or aerial sensors which can be mounted to airplanes, satellites, or 

unmanned aircraft vehicles (UAV; sensor mounted to an UAV is referred to as an unmanned 

aircraft system, UAS) (Toth and Jóźków, 2016). Over the past two decades, most of the 
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research in agricultural remote sensing has focused on the use of proximal sensors, especially 

those that utilize an active light source (Saberioon et al., 2014). However, with the recent 

development of compact aerial sensors that can be easily mounted to an UAV, an increasing 

number of studies have shifted toward utilizing UAS based platforms (Colomina and Molina, 

2014). Relative to proximal and UAS based remote sensing, airplane and satellite based 

measurements are less frequently used in agricultural applications due to the high complexity 

and costs of operating an airplane, and insufficient spatial and temporal resolution often 

experienced with satellite imagery (Zheng et al., 2018). However, despite more convenient than 

airplane and satellite based remote sensing, both proximal and UAS based remote sensing also 

come with their own unique advantages and disadvantages. 

Among proximal sensors, one of the most often used in agricultural research is the 

GreenSeeker (GS) HandHeld (Trimble Inc., Sunnyvale, CA, USA), which is an active canopy 

sensor, thus allowing it to collect reflectance data at any time during the day regardless of 

ambient light conditions or cloud cover (Saberioon et al., 2014). The GreenSeeker measures 

canopy reflectance at specific bands in the red (670 nm) and near infrared (780 nm) spectral 

regions and then automatically displays the NDVI. Among previously published studies that 

tested the ability of GS NDVI (NDVIGS) to assess crop N status in rice, Yao et al. (2014) and 

reported strong correlations between NDVIGS and aboveground biomass and total N uptake 

measured at the PI stage. However, a key disadvantage of the GS, as was noted by the study 

mentioned above, as well as many others, is that the GS can only measure NDVIGS which has 

been shown to lose its sensitivity (i.e. saturate) once crop biomass exceeds a certain threshold 

(Huang et al., 2021).  
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When collecting canopy reflectance data aerially, a passive multispectral sensor (in most 

cases) is mounted to an UAV and flown in a grid-style pattern over the field or experimental 

area; thus, facilitating the assessment of larger areas more efficiently and potentially identifying 

the spatial variability that is often present within a field (Delavarpour et al., 2021; Fu et al., 

2021; Tsouros et al., 2019). A multispectral sensor that is frequently used in agricultural 

applications is the MicaSense Red-Edge M (MicaSense, Inc., Seattle, WA, USA) which is a 

passive sensor and collects canopy reflectance across five spectral bands (blue, green, red, red 

edge, and near infrared) (Esposito et al., 2021). The additional bands included in multispectral 

sensors such as the MicaSense sensor and others provide an important advantage over proximal 

sensors like the GS as they permit the calculation of a wide range of vegetative indices, including 

red edge based indices, among which the Normalized Difference Red Edge Index (NDRE) is the 

most commonly used (Dunn et al., 2016). The NDRE is based on the same calculation as the 

NDVI but incorporates a red edge band in place of red, which allows the NDRE to be more 

resistant to the saturation problem inherent with NDVI (Dunn et al., 2016; Li et al, 2014). 

However, aerial based remote sensing also has its own limitations, among which some include 

the narrow timeframe around solar noon during which data must be collected, the prohibitive 

costs of UAS platforms which can be far more expensive than proximal sensors, and the concern 

that UAS platform can often experience technical issues mid-air, such as loss of power or an 

engine breakdown (Hardin and Jensen, 2011; Zhang and Kovacs, 2012). Among the studies 

that used aerial sensors to assess N status in rice, Dunn et al., 2016 reported strong correlations 

between NDVI and NDRE and total N uptake at PI but noted that the NDRE was less saturated 

than the NDVI. Similarly, Wang et al. (2021) reported stronger correlations between NDRE and 

red edge chlorophyll index and N-index (ratio of N concentration between fertilized and non-
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fertilized plants), for measurements collected between 30 to 55 days after transplanting relative 

to the NDVI. Although, Zheng et al. (2019) did not measure NDVI in their study, among the six 

indices evaluated in their study, they reported the highest accuracy between NDRE and red edge 

chlorophyll index when estimating total leaf N uptake and plant N uptake across the tillering, 

jointing, and heading stages. 

While NDVI or NDRE measurements are useful to assess the N status of a crop, a single 

measurement does not indicate the likelihood of a crop to respond to additional N. To address 

this issue, an N-enriched area, which is non-limiting with respect to N, can be used (Colaҫo and 

Bramley, 2018; Hussain et al., 2000). If the crop outside the N-enriched area has a lower NDVI 

than the N-enriched area, it is inferred that the crop may respond to additional N inputs (Raun et 

al., 2002; Tubaña et al., 2012). Mullen et al. (2003) developed an NDVI Response-Index 

(RINDVI) by dividing the NDVI from the N-enriched area by the NDVI from an adjacent area in 

the field. The RINDVI values will usually be > 1.0 with higher numbers indicating increased 

potential for N responsiveness. The N-enriched area and RINDVI have been used in many different 

applications across a wide range of crops and have been shown to be a robust indicator of crop 

responsiveness to N (Arnall et al., 2009; Cao et al., 2016; Lofton et al., 2012; Lu et al., 2020; 

Tubaña et al., 2008).  

In situations where N fertilizer may be split throughout the season, previous studies have 

used a N fertilization optimization algorithm (NFOA) to determine N needs throughout the 

season (Lukina et al., 2001; Raun et al., 2002; 2005). This approach also uses a N-enriched 

area, but the basic estimation of N needs is based on a mass balance calculation of the optimal N 

rate required for an expected yield (Colaҫo and Bramley, 2018). Several studies have 

demonstrated that this approach improves nitrogen use efficiency in rice relative to standard 
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farmer practice by producing similar grain yields with less N fertilizer (Ali et al., 2014; Bijay-

Singh et al., 2015; Xue et al., 2014; Xue and Yang, 2008; Yao et al., 2012). While this 

approach has a strong theoretical basis, it is based on several assumptions (e.g. seasonal NUP, 

grain yield potential, and N use efficiency) that vary considerably across fields and over time. 

Such an approach is also not easy to employ by a farmer who may not have access to such 

information. 

The overarching objective of this research was to improve mid-season N management in 

CA rice systems by using remote sensing technology in synergy with fundamental agronomy. 

The goal being to develop a remote sensing-based decision support tool that could aid CA rice 

farmers in their mid-season top-dress N management. Such a tool could help CA rice farmers 

inform sustainable top-dress N management, resulting in positive outcomes for crop productivity 

and environmental health. This objective was pursued through N response trials established over 

a 4-yr. period across fourteen on-farm locations throughout the Sacramento Valley rice growing 

region of CA. 
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ABSTRACT 

Fine tuning N recommendations requires an understanding of crop N status and yield potential 

early enough in the growing season when changes to N management can influence yields. Recent 

studies have demonstrated the ability of Normalized Difference Vegetation Index (NDVI) to 

assess crop N status and predict yield in wheat (Tricticum aestivum) and maize (Zea mays); 

however, there has been relatively little such research on rice (Oryza sativa L.). The objectives of 

this study were to determine how well NDVI measured at the panicle initiation (PI) rice growth 

stage assesses crop N status and predicts final grain yield. Nitrogen response trials were 

established over a four-year period (10 site-years) at various locations throughout the 

Sacramento Valley rice growing region of California. Additionally, the relationship between 

NDVI and crop N status was characterized across 28 on-farm plots representing a range of 

environmental conditions and management practices. The NDVI at PI was best correlated with 

total N uptake (NUP, r
2
 = 0.66), followed by N concentration (NCONC, r

2
 = 0.54), and aboveground 

biomass (AGB, r
2
 = 0.51). The utility of NDVI was greatest at lower values of crop N status, 

whereas at higher values, NDVI saturated. The NDVI at PI was positively correlated with final 

grain yield (r
2
 = 0.58) indicating utility for developing in-season yield predictions. While NDVI 

is a potentially useful tool to improve N fertilizer management and develop in-season yield 

predictions in rice, alternative indices that do not saturate would likely provide a basis for a 

better tool. 
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1.1. INTRODUCTION 

Despite being the most studied nutrient worldwide, nitrogen (N) use efficiency in global 

rice (Oryza sativa L.) production is only about 30 % (Ladha et al., 2005). In 2017, approximately 

16 million Mg of N fertilizer was used for rice production worldwide (IFA, 2017), implying 10 

million Mg of N was potentially lost to the environment. Nitrogen fertilizer losses from 

agricultural systems can have many adverse environmental and human health consequences. For 

example, nitrate leaching due to excessive N fertilization and improper water management can 

contaminate drinking water and lead to methemoglobinemia in infants (Di and Cameron, 2002; 

Harter et al., 2012). Significant amounts of greenhouse gases, such as nitrous oxide and methane, 

can be released from agricultural systems when N availability in the soil exceeds plant N 

requirements (Smith et al., 2007; Almaraz et al., 2018). Elevated N inputs to aquatic ecosystems 

from agricultural tailwater can result in hypoxic dead zones due to eutrophication and the 

proliferation of harmful algal blooms (Conley et al., 2009). Therefore, improved methods need to 

be designed and adopted that allow farmers to accurately assess crop N needs and make 

informed management decisions.  

In California (CA), the average seasonal N fertilizer requirement for rice is 

approximately 165 kg N ha
-1

 (UC ANR, 2018), which is most efficiently utilized when injected 

into the soil as aqua-ammonia before planting (Linquist et al., 2009). In recent years, an 

increasing number of CA rice farmers have started applying additional N fertilizer as top-dress 

around panicle initiation (PI) growth stage. For the short duration varieties commonly grown in 

CA, PI typically occurs around 45 to 50 days after sowing and is considered a critical stage for N 

management as all pre-plant N fertilizer has been taken up (LaHue et al., 2016), and N applied at 

growth stages later than PI is less efficiently utilized for grain yield (DeDatta, 1981, Linquist et 
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al., 2003). The current recommendation at PI is for farmers to first assess crop N status and apply 

top-dress N only if the crop is deemed N deficient (Linquist et al., 2009). However, assessing 

crop N status in an accurate and timely manner remains a challenge in these systems, thus most 

top-dress N applications take place without evaluating crop N status; possibly resulting in 

inefficiencies due to over application.  

Some methods are available to assess midseason plant N status but have not been widely 

adopted by CA rice farmers due to their limitations. Plant tissue analysis provides the most direct 

measure; however, this technique is also time consuming and lab results are often received past 

the time when fertilizer decisions need to be made (Daugherty et al., 2000). Alternative 

technologies are available to expedite in-field N status assessment, such as the Leaf Color Chart 

(LCC) and the Soil Plant Analysis Development (SPAD) chlorophyll meter (Peng et al., 1996; 

Balasubramanian et al., 1999). The LCC estimates N content based on leaf greenness, while the 

SPAD chlorophyll meter measures the difference in transmittance between red and near infrared 

light passing through the leaf to estimate chlorophyll content (Alam et al., 2005; Uddling et al., 

2007). Previous research has demonstrated the ability of these technologies to assess rice N 

status and promote sustainable N management (e.g. Yang et al., 2003; Islam et al., 2007; Singh et 

al., 2007). However, both the LCC and SPAD chlorophyll meter are inefficient as they only 

assess a single leaf at a time, thus requiring considerable time and effort to accurately assess a 

whole field (Daugherty et al., 2000; Saberioon et al., 2004; Xue et al., 2004).  

More recently, remote sensing technology has been developed which utilizes canopy 

reflectance measurements to assess crop N status in a quick and non-destructive manner. Canopy 

reflectance data is collected remotely (via satellite, aircraft, or proximal sensor), and interpreted 

through a vegetative index. The Normalized Difference Vegetation Index (NDVI) is the most 
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widely adopted (McFarland and van Riper, 2013) and is sensitive to photosynthetic compounds, 

making it a potentially useful index to measure the productivity of vegetation in a defined area 

(Tucker, 1979; Tucker et al., 1985).  

The ability of NDVI to assess crop N status and develop in-season yield predictions has 

been studied extensively in wheat (Tricticum aestivum) and maize (Zea mays) production 

systems. Many have shown NDVI to effectively quantify plant N status across a variety of 

growth stages and sensor types (Reyniers and Vrindts, 2006; Li et al., 2008; Erdle et al., 2011; Li 

et al., 2014). Others found NDVI to be useful for developing in-season yield predictions by 

estimating biomass growth in wheat and maize (Raun et al., 2001; Teal et al., 2006; Inman et al., 

2007). Adopting NDVI based N management in wheat and maize production systems has led to 

improved grain yield, N use efficiency, and net returns (Raun et al., 2002; Mullen et al., 2003; 

Raun et al., 2005; Tubaña et al., 2008). Comparatively, there have been relatively few such 

studies in rice. Some have tested the ability of NDVI to assess rice N status (Zhu et al. 2007; 

Gnyp et al., 2014; Yao et al., 2014; Lu et al. 2017) and few have used NDVI to develop in-

season yield predictions (Harrell et al., 2011; Yao et al., 2012; Cao et al., 2016). However, most 

of these studies have focused their research on single sites, leaving at question the scalability of 

their findings to other sites representing different soils and management practices. Therefore, the 

objectives of this study were to determine how well NDVI at PI assesses rice N status and 

predicts final grain yield across a range of sites and years. Such research will provide the basis 

for using NDVI as a N management tool in rice. 
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1.2. MATERIALS AND METHODS 

1.2.1 Nitrogen Response Trials 

1.2.1.1 Site Description 

Eight on-farm and two on-station N response trials were established during the 2015 to 

2018 rice growing seasons at various locations (referred to by proximity to nearest town or 

station and study year) throughout the Sacramento Valley rice growing region of CA (Fig. 1.1, 

Table 1.1). On-station sites were established at the CA Rice Experiment Station (RES) near 

Biggs.  The Sacramento Valley has a Mediterranean climate characterized by warm and dry 

conditions during the growing season (May to October). The average air temperature and 

precipitation during the growing season for the four years of this study were 23.4° C and 7.04 

mm, respectively, based on weather data collected from a centrally located CA Irrigation 

Management Information Systems (CIMIS) weather station near Biggs (CIMIS, 2018). In CA, 

most farmers use direct water-seeding to establish the rice crop. In this case, the fields are 

fertilized following seedbed preparation, flooded, and then soaked seed is broadcast onto the 

field using an airplane. 

Soil samples were collected from the plow layer (approximately 0 – 15 cm) after tillage, 

but prior to fertilizer application. Soil taxonomic classification and selected chemical and 

physical properties for each site-year are provided in Table 1.1. Most study sites consisted of 

soils with high clay contents (40 – 57%), typical of rice soils in CA. The only exceptions were 

soils at Biggs (20% clay) and Marysville (22% clay). Soil pH was measured using saturated 

paste (United States Salinity Laboratory Staff, 1954) and ranged from 4.6 – 7.0. Soil organic 

carbon and N were measured using an elemental analyzer interfaced to a continuous flow isotope 
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ratio mass spectrometer (EA-IRMS) and ranged from 1.19% to 2.25%, and from 0.12 to 0.20%, 

respectively. 
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Figure 1.1. A map of N response trial sites and Farm Survey-15 locations established during the 2015 to 2018 
growing seasons throughout the Sacramento Valley rice growing area of California (CA). 
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1.2.1.2 Experimental Design 

N response trials were arranged in a randomized complete block design with four 

replicates. In 2015 and 2016, plots measured 5 m by 6 m and in 2017 the plots measured 5 m by 

7.5 m. A wide range of crop N status (i.e. biomass and N concentrations) was achieved by 

broadcasting pre-plant N fertilizer by hand at rates of 0, 75, 125, 175, and 225 kg N ha-1 as urea 

(0.46 g N g-1). In 2017, additional pre-plant rates of 45 and 275 kg N ha-1 were included. In 2018, 

pre-plant N fertilizer was injected into the soil subsurface at approximately 7 to 10 cm depth as 

aqua-ammonia at rates of 0, 101, 135, 168, 202, 235 kg N ha-1. Plot width was determined by the 

swath width of the harrowing implement used to apply aqua-ammonia and ranged from 6.5 m to 

11.5 m. Plot length was 9.1 m at all sites and was taken from the central portion of a 21 m tractor 

pass to ensure uniform fertilizer application within the plots. Phosphorus (P) and potassium (K) 

were broadcast across all plots at a rate of 45 kg P2O5 ha-1 as triple superphosphate (0.45 g P g-1) 

and 50 kg K2O ha-1 as sulfate of potash (0.52 g K g-1; 0.17 g S g-1) to ensure these nutrients did 

not limit crop growth. Plots did not receive any additional fertilizer after pre-plant applications. 

Once all fertilizer was applied, fields were flooded and then aerially planted with pre-germinated 

seeds of medium grain rice variety M-206. Planting dates varied by site-year but were all within 

the normal timeframe for the Sacramento Valley (early to mid-May). Crop establishment and 

management followed common grower practice and was either managed by the grower (on-farm 

sites) or researchers (on-station sites).  

 

1.2.2 Farm Survey 

  In addition to the N response trials, in 2015 a total of 28 on-farm plots (Farm Survey-15) 

were established to evaluate the relationship between NDVI and PI N status across a range of 
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rice varieties, fertilizer management, soil types, microclimates, and crop establishment methods. 

Seven farms were selected (denoted by the nearest town or island) representing the major 

geographical regions of CA where rice is grown (Fig. 1.1, Table 1.2). Within each farm, two to 

seven plots were established. Soil samples (0 – 15 cm) were collected from each plot and 

taxonomic classification and selected chemical and physical characteristics are reported in Table 

1.2. All farms were within the Sacramento Valley, except Twitchell Island, which has peat and 

mineral soils, was dry-seeded (as opposed to water seeded), and has cooler temperatures due to 

its proximity to the Sacramento-San Joaquin Delta. 
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1.2.3 NDVI Measurements 

A GreenSeeker handheld crop sensor (Trimble Inc., Sunnyvale, CA) was used to measure 

NDVI. The GreenSeeker is an active sensor which measures canopy reflectance (r) at specific 

wavelengths in the red (670 +/- 10 nm) and near infrared (780 +/- 10 nm) regions of the 

electromagnetic spectrum and calculates NDVI as (r780 nm - r670 nm) / (r780 nm + r670 nm). 

Measurements were taken at PI, which marks the physiological shift from vegetative to 

reproductive plant growth (Counce et al., 2000). For the short duration varieties, which were 

used in most sites in this study, PI occurs approximately 45 to 50 days after sowing and is 

visually determined by a dark green ring just below the initiating panicle, occurring 5 to 7 days 

before panicle differentiation (PD) (when the panicle becomes visible) (De Datta, 1981). Panicle 

initiation was visually confirmed in the field prior to measuring NDVI using the method outlined 

by Dunn et al. (2014). Measurements were taken by holding the GreenSeeker in the nadir 

position and scanning it over the biomass sampling area at a constant height of 1.0 m above the 

crop canopy. For each plot, the final NDVI value represented the average of three to four NDVI 

readings. Canopy closure was achieved by PI in all plots that received N fertilizer, thus the effect 

of background water or soil on NDVI measurements was considered negligible. For the 0 N 

plots, some influence of background water was present and was accounted for by taking the 

average of multiple NDVI readings. 

Two GreenSeekers were used to measure NDVI (GreenSeeker 1 in 2015 and 

GreenSeeker 2 from 2016 to 2018). Consistent differences between the two devices were 

detected by plotting side by side NDVI measurements (n = 105) (Fig. S1). Differences were 

normalized by adjusting NDVI values based on the resulting fitted linear regression equation.  
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This variability across GreenSeekers is a concern and needs to be addressed when using 

the device in the field. Often, when using NDVI to inform N fertilizer management, a response 

index is developed where the NDVI of a N non-limiting plot and the field test area are measured 

and the ratio of the two provides the response index (Mullen et al., 2003). In such cases, the 

variability between GreenSeeker units in terms of direct NDVI measurements would be less a 

concern.   

 

1.2.4 Biomass Sampling 

Immediately following NDVI measurements, all rice plants within a 0.5 m2 quadrat were 

pulled from each plot. After removing roots, the aboveground biomass was oven dried at 60° C to 

constant weight; after which the samples were ground in a Wiley mill and then ball-milled. Plant 

material from each plot was analyzed for total N using EA-IRMS. Two plant samples were 

collected from each of the 28 Farm Survey-15 plots in order to calculate an average for each plot. 

One plant sample was collected per plot for the N response trial sites. From these samples, we 

quantified the following parameters of crop N status: aboveground biomass (AGB, kg ha-1), N 

concentration (NCONC, g N kg-1), and total N uptake (NUP, kg N ha-1, = AGB x NCONC). 

 

1.2.5 Grain Yield 

Grain yield (kg ha-1) was obtained by harvesting mature plants from a 1.0 m2 quadrat in 

each plot (grain yield was not obtained for the Farm Survey-15 plots). Grains were removed 

from panicles, cleaned using a seed blower, dried to constant moisture at 60° C, and weighed. 

Final yields are reported at 14% moisture.  
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1.2.6 Statistical Analysis 

Construction of plots, development of regression models, and the analysis thereof was 

performed using the statistical program R (version 3.5.2, R Core Team). The package ‘ggplot2’ 

(Wickman, 2009) was used to visualize the data and construct plots. For the purpose of analysis, 

data from the Farm Survey-15 plots were combined into a single site-year. The relationship 

between NDVI and each N status parameter was described using a quadratic linear regression 

model. The horizontal asymptote for each model was determined as the y-value at the vertex, 

which was calculated from the resulting model coefficients. Quadratic models were selected over 

complex higher order models as both model types explained a similar amount of variability in 

the data and the quadratic models allowed for direct comparisons of results with previous 

studies.  

The relationship between NUP and grain yield was described by a segmented linear 

regression model from the package ‘segmented’ (Muggeo, 2017). The segmented model 

identifies breakpoints in the data (i.e. significant changes in the slope parameter) and describes 

the data before and after the breakpoint using separate linear segments. The relationship between 

NDVI and grain yield was described by a simple linear regression model. 

Graphical and numerical summaries were examined to ensure the assumptions of linear 

regression were satisfied for all regression models. Model goodness of fit was assessed by 

comparing adjusted coefficient of determination (r2) and root mean squared error (RMSE), 

calculated as: RMSE = 	'!
"∑ (y# − y#)$"

#%! .   
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1.3. RESULTS 

1.3.1 N Response Trials 

Considerable variability in crop AGB, NCONC and NUP was present at PI both within and 

across N trial sites. As expected, the within-site variability was due to the different N rates with 

crop AGB, NCONC and NUP all increasing with increasing N rate (Table 1.3). Across site-years, 

mean AGB ranged from 2609 kg ha-1 (Davis-16) to 6334 kg ha-1 (Arbuckle-15); NCONC ranged 

from 21.4 g N kg-1 (Arbuckle-15, 18) to 29.9 g N kg-1 (Marysville-18); and NUP ranged from 

58.9 kg N ha-1 (Davis-16) to 147.7 kg N ha-1 (Nicolaus-17).  

At any given N trial site, NDVI increased with increasing N rate to a point then leveled 

off (i.e. saturated). Therefore, the lowest NDVI values tend to represent the 0 N rate, while the 

highest NDVI value represented the higher N rates. Minimum NDVI varied considerably among 

the site-years, ranging from 0.15 (Arbuckle-18) to 0.58 (Nicolaus-18) whereas maximum NDVI 

only ranged from 0.72 (Davis-16) to 0.82 (Williams-17) (Table 1.3).  

As expected, the lowest grain yields in the N trials were in the 0 N treatments, with grain 

yield increasing at most sites to a maximum and then leveling off or decreasing at higher N rates. 

Minimum site-year grain yield ranged from 2,948 kg ha-1 (Arbuckle-18) to 10,345 ka ha-1 

(Nicolaus-17) (Table 1.4). Despite different maximum AGB, NCONC, and NUP at PI across site-

years, maximum yields were relatively similar and ranged from 12,829 kg ha-1 (Williams-17) to 

14,675 kg ha-1 (RES-16). Overall, there was no segregation in crop AGB, NCONC, NUP, or grain 

yield between site-years based on different sources of pre-plant N fertilizer (i.e. urea and aqua-

ammonia).  
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Table 1.3. Descriptive statistics of rice N status parameters and NDVI measured at PI growth stage  

  Aboveground Biomass  N Concentration Total  
N Uptake NDVI 

Site-Year N Min – Max Mean  Min – Max Mean  Min – Max Mean  Min – Max Mean  

  ----------- kg ha-1  ----------- ----------- g N kg-1 ----------- ---------- kg N ha-1 ----------  

Arbuckle-15 20 3400 – 8540 6334 13.6 – 30.5 21.4 48.9 – 255.8 141.4 0.49 – 0.78 0.71 

Farm Survey-15 28 1260 – 7260  5090 10.9 – 33.6 21.9 13.8 – 196.4 114.9 0.18 – 0.82 0.65 

RES-15 20 3520 – 6540 5084 11.9 – 37.3 23.8 41.7 – 230.5 126.5 0.53 – 0.80 0.73 

Davis-16 20 1332 – 3714 2609 14.6 – 31.7 21.5 20.3– 114.7 58.9 0.56 – 0.72 0.67 

RES-16 20 1466 – 4960 3428 18.5 – 38.8 28.6 30.9 – 192.6 103.2 0.36 – 0.75 0.64 

Nicolaus-17 28 3970 – 7426 5559 15.5 – 36.1 25.7 61.7 – 240.2 147.7 0.49 – 0.80 0.68 

Williams-17 28 2740 – 7270 5471 12.3 – 30.6 22.1 33.8 – 194.3 124.6 0.36 – 0.82 0.71 

Arbuckle-18 24 730 – 8006 3397 12.1 – 30.2 21.4 9.7 – 160.6 76.5 0.15 – 0.75 0.61 

Biggs-18 23 1962 – 6812 5019 10.4 – 32.9 21.5 20.4 – 193.4 113.6 0.36 – 0.79 0.69 

Marysville-18 24 2384 – 5472 4604 16.1 – 37.0 29.9 38.3 – 202.4 142.0 0.45 – 0.75 0.66 

Nicolaus-18 24 3242 – 7282 6069 13.1 – 30.7 23.3 46.0 – 223.5 146.0 0.58 – 0.77 0.72 

All 289 730 – 8540 4840 10.4 – 38.8 23.7 9.7 – 255.8 118.9 0.15 – 0.82 0.68 
NDVI, Normalized Difference Vegetation Index; PI, panicle initiation; N, sampling number; Min, minimum value; Max, maximum value; 
Mean, average value 
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Table 1.4. Descriptive statistics of final grain yield at the N 
response trial site-years (yields were not obtained for Farm 
Survey-15) 

Site-Year N 
Grain Yield† 

Min – Max Mean 

   ----------------- kg ha-1 ----------------- 

Arbuckle-15 20 6469 – 14529 12072 

RES-15 20 5235 – 14140   11753 

Davis-16 20 6664 – 13969  10599 

RES-16 20 6653 – 14675  11246 

Nicolaus-17 28 10345 – 13375 12005 

Williams-17 28 6096 – 12829  10159 

Arbuckle-18 24 2948 – 13648  9980 

Biggs-18 23 6767 – 13069  11468 

Marysville-18 24 8046 – 12246  11000 

Nicolaus-18 24 8961 – 14391  12793 

All 231 2948 – 14675 11291 
N, sampling number; Min, minimum value; Max, maximum value; 
Mean, average value  
†Adjusted to 14% moisture  

 

1.3.2 Farm Survey 

Crop N status data taken at PI from the Farm Survey-15 plots varied considerably, as may 

be expected, given the large number of farms within Farm Survey-15 and the variability among 

them. The range of AGB (1260 – 7260 kg ha-1), NCONC (10.9 – 33.6 g N kg-1), and NUP (13.8 – 

196.4 kg N ha-1) was considerably larger across Farm Survey-15 plots relative to N trial site-

years (Table 1.3). Variability in crop N status was also reflected by the wide range of NDVI 

(0.18 to 0.82). Grain yield was not obtained for Farm Survey-15. 
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1.3.3 Relationship between PI N Status and NDVI 

An increase in PI N status led to a corresponding increase in NDVI, until a threshold was 

achieved, after which, NDVI values leveled off (Fig. 1.2). NDVI saturated within a narrow range 

(0.76 to 0.78), when AGB, NCONC, and NUP exceeded 7597 kg ha-1, 29.9 g N kg-1, and 185 kg N 

ha-1, respectively. Overall, the nature of the relationship between each N status parameter and 

NDVI was similar across the N response trials and Farm Survey-15. Of the three N status 

parameters, NUP explained the largest amount of variation in NDVI (r2 = 0.66), followed by 

NCONC (r2 = 0.54) and AGB (r2 = 0.51).
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Figure 1.2. The relationship between rice (A) aboveground biomass, (B) N concentration, and (C) total N uptake at panicle 
initiation rice growth stage and Normalized Difference Vegetation Index (NDVI) as described by quadratic linear regression 
models. The horizontal asymptote (asym) represents the NDVI value at which the relationship saturates. Data was collected during 
the 2015 to 2018 growing season from ten N response trial sites and 28 on-farm plots (Farm Survey-15) throughout the Sacramento 
Valley rice growing region of California (CA). 
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1.3.4 Relationship Between PI Total N Uptake, NDVI, and Final Grain Yield 

Based on the segmented model, PI NUP explained a large portion of the variation in final 

grain yield (r2 = 0.63; RMSE = 1321 kg ha-1) (Fig. 1.3a). The segmented model estimated a 

breakpoint at 93.9 kg N ha-1 (95% confidence interval: 85.1 to 102.9 kg N ha-1) (data not shown), 

indicating that an increase in crop PI NUP beyond this value did not result in a significant 

increase in average final grain yield. The slope before the breakpoint was 81 kg kg-1 N, and after 

the breakpoint was not statistically different than a zero slope. The breakpoint of 93.9 kg N ha-1 

corresponded to an average maximum grain yield of 12,314 kg ha-1. Based on the simple linear 

regression model, NDVI at PI was positively correlated with final grain yield (r2 = 0.58; RMSE 

= 1415 kg ha-1) (Fig. 1.3b).  
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Figure 1.3. (A) The relationship between rice total N uptake at panicle initiation (PI) growth stage and final grain yield as described 
by a segmented model. The vertical dashed line at 93.9 kg N ha-1 represents the minimum amount of crop N uptake required by PI 
to achieve maximum grain yield. (B) The relationship between Normalized Difference Vegetation Index (NDVI) at PI and final 
grain yield as described by a simple linear regression model. Data was collected during 2015 to 2018 from ten N response trial sites 
throughout the Sacramento Valley rice growing area of California (CA). 
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1.4. DISCUSSION 

1.4.1 NDVI Saturation 

Quadratic linear regression models were developed to describe the relationship between 

NDVI and crop N status. In each case, as crop N status increased, so did NDVI, until a horizontal 

asymptote was reached and additional increases in crop N status led to minimal change in NDVI 

(Fig.  2). This saturation of two-band indices such as NDVI is a well-known phenomenon (Asrar 

et al., 1984; Hatfield et al., 1985; Thenkabail et al., 2000; Cao et al., 2013; Gu et al., 2013). 

NDVI saturation is a result of the crop reaching 100% canopy cover, but AGB and leaf area 

index continuing to increase (Gitelson, 2003). Once the canopy reaches 100% cover, near 

infrared reflectance continues to rise, but red reflectance only exhibits a modest decrease, 

resulting in only slight changes in the ratio (i.e. the denominator will have a much greater impact 

on the ratio than the numerator) (Thenkabail et al., 2000). In our study, NDVI saturated within a 

narrow range (0.76 to 0.78), when AGB, NCONC, and NUP exceeded 7597 kg ha-1, 29.9 g N kg-1, 

and 185 kg N ha-1, respectively (Fig. 1.2). Our result is similar to the findings of Yao et al. 

(2014) who reported the relationship between NDVI and AGB and NUP to saturate at about 0.80 

and 0.78, respectively. Gnyp et al. (2014) reported the relationship between AGB and NDVI to 

saturate at approximately 0.90, which is higher than our study and may be because they 

simulated GreenSeeker NDVI from passive hyperspectral data, while we have used actual 

GreenSeeker measurements.   

Recent studies suggest indices which incorporate a red-edge band (690 to 730 nm) may 

improve rice N status assessment by overcoming the saturation problem (Wang et al., 2012; Cao 

et al., 2013; Dunn et al., 2016). Cao et al. (2013) found several red-edge based indices to explain 

a large portion of rice NUP variability when described by linear regression models. Wang et al. 
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(2012) developed a red-edge based three band index which estimated NCONC with high accuracy 

while reducing saturation. Dunn et al. (2016) confirmed the strong correlation of red-edge bands 

with rice NUP based on their analysis of fine-resolution hyperspectral data.  Given the saturation 

of NDVI, and strong linear relationships observed between red-edge based indices and rice N 

status, further research is warranted to investigate the potential improvement of red-edge based 

indices over NDVI to assess rice N status.    

 

1.4.2 Assessing PI N Status with NDVI 

Of the three N status parameters, NUP explained the largest amount of variation in NDVI 

(r2 = 0.66), followed by NCONC (r2 = 0.54) and AGB (r2 = 0.51) (Fig. 1.2). The relationship 

between NDVI and crop N status was similar across the N trial site-years and Farm Survey-15, 

indicating NDVI assessed crop N status consistently across the wide range of environmental 

conditions and management practices included in this study. Importantly, within the observations 

in this study, AGB at NDVI saturation was closer to the maximum observed AGB, whereas 

NDVI saturated earlier for NCONC and NUP (Fig 2). This suggests at PI, NDVI saturation may 

pose less of a limitation when assessing AGB as it would with NCONC or NUP. That said, the 

relationship between NDVI and AGB is still poorer than for NCONC or NUP.   

The relationship between NDVI and crop N status observed in this study is similar in 

strength to what others have found in wheat and maize (Reyniers and Vrindts, 2006; Li et al., 

2008; Erdle et al., 2011; Li et al., 2014). To our knowledge, only one other study has examined 

the relationship between NDVI and AGB, NCONC, and NUP in rice. In that study, Yao et al. (2014) 

reported the strongest correlation between NDVI and AGB (r2 = 0.76), followed by NUP (r2 = 

0.70), and NCONC (r2 = 0.38). This is in contrast to our study where NDVI predicted NUP and 
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NCONC better than AGB. We are not sure why this difference between studies, but it may be 

because Yao et al. (2014) conducted all their research at a single location, thus resulting in less 

variation of AGB during the course of their study. Others have looked at the relationship 

between NDVI and NCONC and have reported both strong (r2 = 0.81) and weak (r2 = 0.08) 

correlations (Zhu et al., 2007; Lu et al., 2017), which may be due to differences in rice varieties 

or the growth stage when data was collected. In other studies, Gnyp et al. (2014) examined the 

relationship between NDVI and AGB and reported the same correlation (r2 = 0.51) as our study; 

while Li et al. (2018) examined the relationship between leaf NUP and NDVI and found a similar 

correlation (r2 = 0.70) to our study with plant NUP.  

The strength of our study relative to most of the other studies mentioned above is that it 

considered multiple N status parameters over a large range of sites and years. The strong 

correlation observed between NDVI and rice N status in this study suggests that the GreenSeeker 

could be a scalable tool to assess N status. However, as previously discussed, NDVI saturation 

limits its utility to lower values of crop N status, suggesting alternative indices that do not 

saturate could potentially improve N status assessment.  

  

1.4.3 Predicting Final Grain Yield at PI with NUP and NDVI 

The utility of NDVI to develop regional scale rice yield predictions has received 

considerable attention (e.g. Huang et al., 2013; Son et al., 2014; Pagani et al., 2019), while fewer 

studies have focused on the farm scale. The ability to estimate rice yield early in the season is of 

interest to farmers and private companies for a number of reasons, including refining N fertilizer 

recommendations, planning harvest, forecasting milling and storage needs, and defining 

marketing strategies. 
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We observed a positive correlation (r2 = 0.63) between PI NUP and final grain yield (Fig. 

1.3a). Yields increased strongly with increasing NUP until they reached a plateau at a breakpoint 

of 93.9 kg N ha-1 (Fig. 1.3a). This breakpoint represents the average minimum amount of crop PI 

NUP required to achieve average maximum grain yield. Across sites the actual NUP value varied 

as indicated by the 95% confidence interval ranging from 85.1 to 102.9 kg N ha-1 (data not 

shown) and final grain yield at the breakpoint also varied considerably (Fig 3a). Part of this 

variability may be explained by differences in soil indigenous N supply after PI. For example, 

achieving the average maximum grain yield at the breakpoint (12,314 kg ha-1) requires a total 

seasonal NUP of approximately 215 kg N ha-1 (assuming N concentrations in rice grain and straw 

of 1.10% and 0.65%, respectively; Dobermann and Fairhurst, 2007), indicating that an additional 

121 kg N ha-1 is required after PI. Given that pre-plant N fertilizer is completely taken up by PI 

(LaHue et al., 2016), and additional N fertilizer was not applied, this requirement must have been 

satisfied by soil indigenous N. Previous studies have shown that indigenous N supply from rice 

soils can vary significantly across sites and over time; and is closely linked with soil properties 

such as organic carbon (Cassman et al., 1998; Espe et al., 2015). In theory, the breakpoint of 93.9 

kg N ha-1 NUP and corresponding NDVI could potentially serve as a target for farmers when 

assessing midseason crop N requirements. However, accounting for site-specific differences in 

soil N supply may be needed to refine this target and further research could explore this. In this 

study, NUP of 93.9 kg N ha-1 corresponds to a NDVI value for 0.66 (derived from Fig 2c); and 

importantly, this NDVI value is below the saturation value. 

Given the relationship between PI NUP and final grain yield (Fig 3a) and PI NUP and 

NDVI (Fig. 1.2c), the positive correlation between NDVI at PI and final grain yield (r2 = 0.58) 

was expected (Fig. 1.3b). This is similar to Cao et al. (2015), who found a comparable 
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correlation (r2 = 0.63) in their experiments at a single location. Others (e.g. Harrell et al., 2011; 

Yao et al., 2012) have reported a poorer relationship between NDVI and grain yield with r2 

values ranging from 0.36 to 0.44.  

Importantly, for short duration varieties grown in CA, PI usually occurs about 45 to 50 

days after seeding; thus, only one-third of the entire growing season. Grain yield can be altered 

in a number of ways after PI due to many abiotic and biotic factors. For example, in CA and 

elsewhere, cold nighttime temperatures at meiosis (between PI and heading) causes floret 

sterility and reduced grain yields (Board et al., 1980, Espe et al., 2016). High temperatures at 

flowering can result in yield losses in many rice growing areas, including CA (Espe et al., 2016, 

Fahad et al., 2018). Additionally, differences in soil N supply late in the season can affect yields 

as discussed above. Biotic factors such as insects and diseases can all negatively affect yields 

after PI (Sesma and Osbourne, 2004; Brooks et al., 2009; Hasanuzzaman et al., 2018). The 

greater the variability in these stresses across sites or years, the poorer the relationship will be 

between NDVI at PI and final grain yield. Given this, one should not expect the relationship 

between final grain yield and any plant measurement taken at PI to be very high. However, if 

those relationships were developed under optimal conditions where post PI stresses did not limit 

grain yield, then such measurements may provide a good estimate of yield potential. Although, 

the incidence of these stresses was not measured directly in this study, the fact that maximum 

grain yields were similar across all site-years suggests that post PI stresses did not have a 

significant impact on yields, thus providing optimal conditions to predict final grain yield at PI 

using NDVI. 
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1.5. CONCLUSION 

The significant correlation between GreenSeeker NDVI and crop N status suggests that it 

may be developed into a useful tool to guide midseason N management decisions. However, 

NDVI saturated at high values of crop N status, suggesting further research in alternative indices 

(e.g. red-edge based NDVI) is warranted and could potentially improve estimates of midseason 

N status. Interestingly, in this study we identified an NUP value at PI (93.9 kg N ha-1) at which 

average maximum grain yield was achieved. This value could serve as a midseason target in 

similar systems and may identify when further N applications are needed. The NDVI 

corresponding to this NUP value is 0.66 which, importantly, is below the saturation point. Finally, 

as technology advances, future research focusing on large scale production systems will likely 

shift away from handheld proximal sensors, like the GreenSeeker used in this study, in favor of 

sensors that can be mounted to drones or satellites.  
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ABSTRACT 

Remotely sensed vegetative indices can be valuable tool in assessing N status and predicting 

crop yields. This is a rapidly expanding field and numerous sensors and indices are available that 

can be used either proximally or aerially. While the Normalized Difference Vegetation Index 

(NDVI) is a reliable index to assess vegetative growth, it can saturate at high biomass or N levels 

and the Normalized Difference Red Edge Index (NDRE) has been shown to be a better index in 

this regard. Few have explored how aerial sensors compare to proximal sensors. The objective of 

this study was to evaluate the potential improvement of aerially sensed NDVI and NDRE and 

proximally sensed NDVI when assessing total N uptake (NUP) at panicle initiation (PI) and grain 

yield in rice. Nitrogen response trials were established over a 3-yr. period (10 site-years) at 

various locations throughout the Sacramento Valley rice growing region of California. At PI, an 

unmanned aerial system (UAS) was used to measure NDVIUAS and NDREUAS, and a proximal 

GreenSeeker (GS) sensor recorded NDVIGS. Each index was normalized by calculating the 

Sufficiency Index (SI) using a non-N limiting plot. Kernel density distributions indicated that 

NDVIUAS SI had a stronger saturation relative to the NDVIGS SI and NDREUAS SI. Quadratic-

plateau models were developed to describe the relationship between each SI and PI NUP and 

found that the relationship between PI NUP and NDVIUAS SI saturated the earliest (96 kg N ha-1), 

followed by the NDVIGS SI (kg N ha-1) and NDREUAS SI (129 kg N ha-1). Linear mixed effects 

models were developed to describe the relationship between each SI and grain yield. The 

resulting model for NDVIUAS SI was least sensitive to changes in final grain yields and thus had 

the steepest slope (25.3 Mg ha-1), while the NDVIGS SI (9.5 Mg ha-1) and NDREUAS SI (11.7 Mg 

ha-1) demonstrated greater sensitivity. Our results indicate that the NDREUAS and NDVIGS were 

the most reliable indices and were superior to NDVIUAS. 
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2.1. INTRODUCTION 

 Remote sensing has emerged as a powerful technology to inform sustainable agronomic 

management by providing an accurate and timely assessment of the health and status of 

developing crops (Hatfield et al., 2008). Remote sensing of crops is based on the collection of 

canopy reflectance spectra at specific wavelengths in the electromagnetic spectrum, usually 

corresponding to regions where the plant canopy experiences strong absorption or reflectance of 

incoming radiation (Xue and Su, 2017). A common method to interpret the data and evaluate 

crop status is to place the wavelengths into vegetative indices, which are mathematical 

combinations of wavelengths related to specific biophysical characteristics of the plant (Hatfield 

et al., 2019). Over the past decade, the rapid development of new sensors with higher spatial and 

spectral sensing abilities, as well as new platforms that can carry such sensors and easily 

maneuver over the object space have led to a significant broadening of remote sensing 

applications in many fields including agriculture (Toth and Jóźków, 2016). As such, some of 

the current applications of remotely sensed data in agriculture include biomass estimation, 

assessing crop nutritional status, detecting plant stress, identifying disease incidence, scouting 

fields for weeds, and predicting potential yield among others.  

An important application of remote sensing in rice (Oryza sativa L.) is the assessment of crop 

nitrogen (N) status and the prediction of final grain yield. Nitrogen is an essential element for 

plant growth and an adequate supply of N is fundamental to maximizing rice grain yield and 

quality (De Datta, 1981). However, over application of N fertilizer in rice and other crops has 

been associated with harmful impacts on the environment through nitrate leaching (Tamagno et 

al., 2021), greenhouse gas emissions (Pittelkow et al., 2014), or eutrophication of downstream 

aquifers (Smith et al., 2021). The most accurate method to assess plant N status is by plant tissue 
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analysis, but this technique is time consuming and lab results are often received past the time 

when decisions need to be made (Daughtry et al., 2000). Alternative methods to assess N status 

in rice include using the Soil Plant Analysis Development (SPAD) chlorophyll meter 

(Balasubramanian et al., 2000) or the Leaf Color Chart (Witt et al., 2005). While these tools 

are useful, they are limited by their single leaf sampling method, thus making it difficult to 

utilize these tools to accurately assess crop N status over large areas (Daughtry et al., 2000; 

Saberioon et al., 2014). The development of remote sensing techniques provides a promising 

alternative to assess crop N status and better manage N resources.  

Remote sensing data can be collected using several different platforms including proximal 

handheld sensors or aerial sensors which can be mounted to airplanes, satellites, or unmanned 

aircraft vehicles (UAV; sensor mounted to an UAV is referred to as an unmanned aircraft 

system, UAS) (Toth and Jóźków, 2016). Over the past two decades, most of the research in 

agricultural remote sensing has focused on the use of proximal sensors, especially those that 

utilize an active light source (Saberioon et al., 2014). However, with the recent expansion of 

compact aerial sensors that can be easily mounted to an UAV, an increasing number of studies 

have shifted toward utilizing UAS based platforms (Colomina and Molina, 2014). Relative to 

proximal and UAS based remote sensing, airplane and satellite-based measurements are less 

frequently used in agricultural applications due to the high operational complexity and costs of 

flying an airplane, and insufficient spatial and temporal resolution of satellite imagery (Zheng et 

al., 2018). However, despite being far more convenient than airplane and satellite based remote 

sensing, both proximal and UAS based remote sensing also come with their own unique 

advantages and disadvantages. 
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Among proximal sensors, one of the most often used in agricultural research has been the 

GreenSeeker (GS) HandHeld (Trimble Inc., Sunnyvale, CA, USA), which is an active canopy 

sensor, thus allowing it to collect reflectance data at any time during the day regardless of 

ambient light conditions or cloud cover (Saberioon et al., 2014). The GreenSeeker measures 

canopy reflectance at specific bands in the red (670 nm) and near infrared (780 nm) spectral 

regions and displays the Normalized Difference Vegetation Index (NDVI), which is the most 

commonly measured index in remote sensing applications and has been used widely to assess 

vegetative growth (Huang et al., 2021). Among studies that have tested the ability of GS NDVI 

(NDVIGS) to assess crop N status and predict yields, Yao et al. (2014) and Rehman et al. (2019) 

both reported strong correlations between NDVIGS and aboveground biomass and total N uptake 

in rice, and the latter study also showed that NDVIGS was useful to accurately predict grain 

yields. Others have reported similar results for wheat (Triticum aestivum) (Li et al., 2010) and 

maize (Zea mays) (Teal et al., 2006; Xia et al. 2016). However, a key disadvantage of the GS, 

as was noted by each of the studies mentioned above, as well as many others, is that NDVIGS 

loses sensitivity (i.e. saturates) once crop biomass exceeds a certain threshold (Huang et al., 

2020).  

When collecting canopy reflectance data aerially, a passive multispectral sensor (in most cases) 

is mounted to an UAV and flown in a grid-style pattern over the field or experimental area; thus, 

facilitating the assessment of larger areas more efficiently and potentially identifying the spatial 

variability that is often present within a field (Tsouros et al., 2019; Delavarpour et al., 2021; 

Fu et al., 2021). A multispectral sensor that is frequently used in agricultural applications is the 

MicaSense Red-Edge M (MicaSense, Inc., Seattle, WA, USA) which is a passive sensor and 

collects canopy reflectance across five spectral bands (blue, green, red, red edge, and near 
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infrared) (Esposito et al., 2021). The additional bands included in multispectral sensors such as 

the MicaSense sensor provide an important advantage over proximal sensors like the GS as they 

permit the calculation of a wide range of vegetative indices, including red edge based indices, 

among which the Normalized Difference Red Edge Index (NDRE) is the most commonly used 

(Dunn et al., 2016). The NDRE is based on the same calculation as the NDVI but incorporates a 

red edge band in place of red, which allows the NDRE to be more resistant to the saturation 

problem inherent with NDVI (Li et al, 2014; Dunn et al., 2016). However, aerial based remote 

sensing also has its own limitations, among which some include the narrow timeframe around 

solar noon during which data must be collected, UAS platforms are often more expensive than 

proximal sensors, and the UAS can experience technical issues mid-air, such as loss of power or 

an engine breakdown (Hardin and Jensen, 2011; Zhang and Kovacs, 2012).   

Among the studies that used aerial sensors to assess N status in rice, Dunn et al., 2016 reported 

strong correlations between NDVI and NDRE and total N uptake but noted that the NDRE was 

less saturated than the NDVI. Similarly, Zheng et al. (2019) and Wang et al. (2021) reported 

stronger correlations between NDRE and red edge chlorophyll index when estimating rice total 

N uptake and N-index (ratio of N concentration between fertilized and non-fertilized plants), 

respectively, relative to the NDVI. In similar experiments on other crops, Walsh et al. (2018) 

found that the red edge based indices measured in their study exhibited a higher correlation with 

wheat N concentration than red based indices. Becker et al. (2020) did not evaluate NDVI in 

their study but reported a stronger correlation between NDRE and grain yield relative to the 

other indices in their study in maize. 

Although numerous studies have demonstrated the ability of NDVI and NDRE to assess crop 

status measured using either a proximal sensor or an aerial sensor, few studies have compared 
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proximal and aerial sensors side-by-side. In rice, Zheng et al. (2019) reported that NDVI 

measured using an aerial multispectral sensor was better correlated with plant N concentration 

than NDVI measured with proximal hyperspectral sensor. Sumner et al. (2021) measured NDVI 

and NDRE in maize using a proximal and aerial sensor and found that both the NDVI and NDRE 

both exhibited a similar correlation with N fertilizer rate when each index was compared across 

the two sensors. In wheat, Hassan et al. (2018) and Duan et al. (2017) found the NDVI 

measured with a proximal and aerial sensor to be well correlated across a wide range of growth 

stages. 

Given the interest and the promise of this technology along with the lack of studies comparing 

different platforms, the objective of this study was to evaluate the sensitivity of aerially sensed 

NDVI and NDRE over proximally sensed NDVI in assessing rice crop status when quantified as 

total N uptake at PI and final grain yield. This was accomplished through field studies over a 3-

yr. period at ten locations throughout the Sacramento Valley rice growing region of California 

(CA), USA. 
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2.2. MATERIALS AND METHODS 

2.2.1 Site Description 

 Ten replicated N response trials (nine on-farm; one on-station) were established during 

the 2017 to 2019 rice growing seasons (referred to by proximity to nearest town or station and 

study year) throughout the Sacramento Valley rice growing region of California (CA) (Fig. 2.1; 

Table 2.1). The on-station site was established at the CA Rice Experiment Station (RES) near 

Biggs. The Sacramento Valley has a Mediterranean climate characterized by warm and dry 

conditions during the growing season (May to October). The average air temperature and 

precipitation during the three years of this study were 23.2° C and 5.9 mm, respectively (CIMIS 

2020 – Biggs Station). Pre-season soil samples were collected from the plow layer 

(approximately 0 – 15 cm) after tillage and prior to fertilizer applications at each site and 

analyzed for pH, particle size, organic C, and total N. The soil properties at each site were typical 

for rice soils in this region (Table 2.1). 

 

2.2.2 Experimental Design 

 Each N response trial was arranged as a randomized complete block design with four 

replicates. Treatments were pre-plant N fertilizer rates. In 2017, pre-plant N fertilizer was 

applied as urea at rates ranging from 0 to 275 kg N ha-1, and in 2018 and 2019 pre-plant N 

fertilizer was applied as aqua-ammonia at rates ranging from 0 to 235 kg N ha-1. Potassium (K) 

and phosphorus (P) fertilizers were broadcast across all plots at rates of 50 kg K2O ha-1 as sulfate 

of potash and 45 kg P2O5 ha-1 as triple superphosphate to ensure these nutrients did not limit crop 

growth. The rice crop was established using water-seeding at all sites which is the common 

practice in CA (Hill et al., 2006). In this case, the fields are fertilized
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Figure 2.1. A map of N response trial sites established during the 2017 to 2019 growing seasons throughout the Sacramento Valley 
rice growing area of California, USA. 
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Table 2.1. Soil descriptions and selected properties of each N response trial site-year located throughout the Sacramento Valley, California. 

Site-Year Soil 
Series Taxonomic Classification 

Texture (%) Organi
c 
Carbon 
(%) 

Total 
Nitrogen 
(%) 

pH 
Sand Silt Clay 

Nicolaus-17 Capay Fine, smectitic, thermic Typic Haploxererts 19 36 45 1.51 0.12 5.5 

Williams-17 Willows Fine, smectitic, thermic Sodic Endoaquerts 21 39 40 1.75 0.15 5.0 

Arbuckle-18 Clear Lake Fine, smectitic, thermic Xeric Endoaquerts 30 21 49 1.95 0.16 6.3 

Biggs-18 Eastbiggs Fine, mixed, active, thermic Abruptic Durixeralfs 50 30 20 1.60 0.12 4.9 

Marysville-18 San Joaquin Fine, mixed, active, thermic Abruptic Durixeralfs 39 39 22 1.64 0.13 4.6 

Nicolaus-18 Capay Fine, smectitic, thermic Typic Haploxererts 22 36 42 1.67 0.14 4.8 

Arbuckle-19 Clear Lake Fine, smectitic, thermic Xeric Endoaquerts 8 38 55 1.99 0.16 6.3 

Davis-19 Sycamore 
Fine-silty, mixed, super active, nonacid, thermic 
Mollic Endoaquepts 

9 38 53 1.98 0.18 6.3 

Marysville-19 San Joaquin Fine, mixed, active, thermic Abruptic Durixeralfs 35 41 24 1.54 0.12 4.7 

RES-19 
Esquon-
Neerdobe 

Fine, smectitic, thermic Xeric Epiaquerts 30 26 44 1.38 0.11 5.3 
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 following seedbed preparation, flooded, and then soaked seed is broadcast onto the field by 

airplane. The medium grain rice variety M-206, which is commonly grown in CA, was planted at 

all sites. Herbicide and irrigation management followed common grower practice and was either 

managed by the growers (on-farm sites) or researchers (on-station site). The fields remained 

flooded until three weeks before harvest when they are drained. 

 

2.2.3 Plant Sampling and Analysis 

 Biomass was collected at panicle initiation (PI) after canopy reflectance data was 

collected (see below) by pulling all rice plants within a 0.5 m2 quadrat from every main plot. 

Within 24 hr of collecting the samples, the biomass was washed to remove any residual soil, the 

roots were removed, and the aboveground shoots were oven dried to constant weight at 60° C; 

after which the samples were ground to pass a 4-mm sieve and then ball-milled. Plant material 

was analyzed for total N using an elemental analyzer interfaced to a continuous flow isotope 

ratio mass spectrometer (EA-IRMS) (Sharp, 2005). From these samples, we quantified total N 

uptake (NUP) as the product of aboveground biomass and N concentration.  

Grain yield was determined at physiological maturity by harvesting all plants from a 1.0 m2 

quadrat in every main plot. Grains were removed from panicles, cleaned using a seed blower, 

dried to constant moisture at 60° C, and then weighed. Grain yields are reported at 14% 

moisture. 

 

2.2.4 Measuring Canopy Reflectance  

 The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red-

Edge (NDRE) were measured for each main plot at PI using a proximal and/or aerial sensor 



 

  61 

(Table 2.2). The proximal sensor used in this study was the GreenSeeker (GS) handheld crop 

sensor (Trimble Inc., Sunnyvale, CA). The GS is an active sensor and measures canopy
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Table 2.2. Summary of the proximal and aerial sensors used to measure the Normalized Difference Vegetative Index (NDVI) and the 

Normalized Difference Red Edge (NDRE) at the panicle initiation (PI) rice growth stage. 

Vegetative 
Index 

Sensor 
Type Year Sensor Light 

Source 
Spectral 
Band 

Central 
Wavelength 
(nm) 

Bandwidth† 
(nm) Formula Reference 

NDVI 

Proximal 
2017-

2019 
GreenSeeker Active 

Red 670 10 

("#$%	'( − (#*)
("#$%	'( + (#*) 

Rouse 
1974? 

Tucker 
(1979) 

Near 

Infrared 
780 10 

Aerial 

2017 
SlantRange 

3P 
Passive 

Red 650 40 

Near 

Infrared 
850 100 

2018 
& 

2019 

MicaSense 
RedEdge-M 

Passive 

Red 668 10 

Near 
Infrared 

840 40 

NDRE Aerial 

2017 
SlantRange 
3P 

Passive 

Red Edge 710 20 

("#$%	'( − (#*	-*.#)
("#$%	'( + (#*	-*.#) 

Barnes et 
al. (2000) 

Near 
Infrared 

850 100 

2018 

& 
2019 

MicaSense 
Red Edge-M 

Passive 

Red Edge 717 10 

Near 
Infrared 

840 40 

†full width at half maximum 
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reflectance at two specific spectral wavelengths (red and near infrared) and then automatically 

calculates and displays the NDVI. The GS NDVI (NDVIGS) measurements were taken by 

holding the sensor in the nadir position at a constant height of 1.0 m above the crop canopy while 

walking steadily along the edges of each plot. For each plot, the final NDVIGS value represented 

the average of four NDVIGS readings. Canopy closure was achieved by PI in all plots that 

received N fertilizer, thus the effect of background water or soil on canopy reflectance 

measurements was considered negligible in those plots. 

 Two different aerial sensors were used in this study (Table 2.2). In 2017, canopy 

reflectance was measured using a SlantRange 3P (SlantRange Inc., San Diego, CA) passive 

multispectral sensor. The autonomous flight mission was loaded onto the unmanned aircraft 

system (UAS) using the DroneDeploy mobile app and images were captured at a height of 117 m 

above ground level (AGL) with 55% forward and side overlap. SlantView software (version 

2.16.0) was used to process the multispectral imagery into a georeferenced orthomosaic with an 

average ground sampling distance of 4.8 cm pixel-1. The SlantView software was also used to 

extract plot level canopy reflectance values for each of the spectral bands.  

In 2018 and 2019, a MicaSense Red-Edge M (MicaSense Inc., Seattle, WA) passive 

multispectral sensor was used to capture aerial imagery. The mobile app Pix4Dcapture was used 

to upload the flight mission onto the sUAS, and images were captured at a height of 50 m AGL 

with 85% forward and side overlap. The software Pix4DMapper (version 4.2.27) was used to 

process the imagery into a georeferenced orthomosaic with an average ground sampling distance 

of 3.5 cm pixel-1. Plot level reflectance values were extracted from the orthomosaic image using 

the recommended method of Haghighattalab et al. (2016) as modified by Nelsen (2019).  
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In all years, the aerial sensor was mounted to a Matrice 100 UAS (DJI, Shenzhen, China). All 

flights occurred within 1 hr. of solar noon. Before beginning each flight, images of a calibration 

reflectance panel were taken to calibrate for ambient light conditions. There was also an 

upwelling light sensor on-board the sUAS that calibrated for incoming irradiance. Plot-level 

canopy reflectance values were converted into NDVI (NDVIUAS) and Normalized Difference 

Red-Edge Index (NDREUAS) using the formulas provided in Table 2.2. 

 

2.2.5 Sufficiency-Index 

 In order to directly compare the ability of each vegetative index to predict PI NUP and 

final grain yield, the raw IV from the three indices were normalized by calculating the SI. 

Calculating the SI is an important step to qualify comparisons across differing sensors, 

vegetative indices, fields, varieties, and years all on a common scale (Lu et al., 2017; Chen et 

al., 2019). At each site-year, the SI was calculated by dividing the raw IV of each N treatment by 

the mean IV of the highest N rate (Lu et al., 2017; Chen et al., 2019). Using the mean IV of the 

highest N rate resulted in some main plots of the higher N rates to have a SI greater than 1.00, in 

which case, the SI was adjusted to equal 1.00, thus allowing data to be reported on a scale (0 to 

1) that coincides with previous work in this area.  

 

2.2.6 Data Analysis 

 Data analysis was performed using the statistical program R (version 4.0.5, R Core 

Team, 2021). The package dplyr (Wickham et al., 2021) was used to process the data, and the 

package ggplot2 (Wickham, 2016) was used to visualize the data and construct plots. The 

relationship between pre-plant N rate and both mean PI NUP and mean final grain yield at each 
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site-year was described by unique quadratic simple linear regression models. The univariate 

density distribution of raw IV and SI for each index was illustrated as kernel density plots 

developed from the geom_density() function in the package ggplot2 (Wickham, 2016). The 

relationship between each SI and PI NUP was described by unique quadratic-plateau linear 

regression models also using the nls() function from the stats package (R Core Team, 2021) and 

following the method outlined by Mangiafico (2016). The resulting model coefficients were 

used to identify the critical x-value (i.e. PI NUP) where each SI reaches a plateau (i.e. point of 

saturation for each index). The function nagelkerke() from the rcompanion package 

(Mangiafico, 2022) was used to calculate a pseudo coefficient of determination (R2) for each 

quadratic-plateau and the linear-plateau model using the method described by Cox and Snell 

(2018). The relationship between each SI and final grain yield was described by unique linear 

mixed-effects regression models using the function lme( ) in the nlme package (Pinheiro et al., 

2021). Each mixed-effects model contained a fixed-effect for SI and random-effects of site-year 

for both the slope and intercept. The response variable was final grain yield in each mixed-effect 

model. A pseudo R2 was calculated for the mixed-effects models using the function 

r.squaredGLMM( ) in the MuMIn package (Bartoń, 2020) with the conditional R2 representing 

the variability explained by the entire model (fixed and random effects), the marginal R2 

representing the variability explained only by the fixed-effects, and the portion of variability 

explained by the random-effects represented as the difference in conditional and marginal R2. 

The package emmeans (Lenth, 2021) was used to derive estimated marginal means (emmeans) 

from the mixed-effects model coefficients. For all regression models in this study, graphical and 

numerical summaries were examined to ensure the models satisfied the assumptions of linear 

regression. 
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2.3. RESULTS 

2.3.1 PI Total N Uptake and Grain Yield 

Mean PI NUP was lowest in the 0N treatment at all site-years, with values ranging from 15 kg N 

ha-1 (Arbuckle-18) to 75 kg N ha-1 (Nicolaus-17) across all sites (Fig. 2.2, left axis). At each site-

year, mean PI NUP increased with increasing pre-plant N rate; however, the magnitude of 

increase varied considerably across all sites. For example, at Davis-19 mean PI NUP only 

increased by a maximum of 61 kg N ha-1, whereas at Nicolaus-18 mean PI NUP increased by 140 

kg N ha-1. This variability in magnitude of NUP across site-years resulted in the maximum PI NUP 

to also range considerably, with values ranging from 94 kg N ha-1 (Davis-19) up to 209 kg N ha-1 

(Nicolaus-17) across all sites. At most site-years, maximum PI NUP was observed in the highest 

N rate, with the only exceptions being at Biggs-18 and RES-19 where it was observed in the 

second highest N rate.  

At every site-year, grain yield was also lowest in the 0N treatment, with values ranging from 3.2 

Mg ha-1 (Arbuckle-18) up to 10.6 Mg ha-1 (Nicolaus-17) (Fig. 2.2, right axis). Across all sites, 

yields increased with increasing pre-plant N rate up to a maximum and either leveled off or 

decreased. The magnitude of increase in grain yields in response to fertilizer N varied strongly 

across site-years, with yields at Nicolaus-17 only increasing by 1.6 Mg ha-1, whereas at 

Arbuckle-18 final grain yield increased by 9.5 Mg ha-1 across N rates. Despite these differences 

in the grain yield response to pre-plant N fertilizer across site-years, maximum final grain yields 

were relatively similar across all sites and ranged from 9.1 Mg ha-1 (RES-19) to 13.3 Mg ha-1 

(Nicolaus-18).  
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Figure 2.2. The relationship between pre-plant N rate and mean panicle initiation (PI) total N uptake (NUP) (left axis), and mean 
final grain yield (right axis), as described by unique quadratic linear regression models 
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2.3.2 Canopy Reflectance Data 

 There were considerable differences in the kernel density distributions among the three 

indices in this study, both in terms of raw IV and SI (Fig. 2.3). With respect to raw IV, the 

NDVIUAS exhibited the strongest saturation among the three indices, as seen by the relatively 

high and narrow peak of NDVIUAS IV observations centered around 0.90 (Fig. 2.3a). The 

NDREUAS exhibited the least amount of saturation as the peak of NDREUAS IV values was the 

lowest and generally broader relative to the other two indices. The NDVIGS was more saturated 

stronger saturation than the NDREUAS, as seen by the higher and narrower peak of NDVIGS IV 

observations centered around 0.72. However, both the NDREUAS and NDVIGS exhibited 

considerably less saturation relative to the NDVIUAS.  

The relative differences in saturation among the three indices in terms of raw IV were evident in 

the density distributions developed from SI data. The strong saturation of NDVIUAS IV resulted 

in 88% of the NDVIUAS SI observations to fall between 0.90 and 1.00, resulting in the NDVIUAS 

SI to also have the narrowest range (0.63 to 1.00) among the three indices in this study (Fig. 

2.3b). Among the NDVIGS and the NDREUAS, the NDVIGS SI had a larger range of observations 

(0.28 to 1.00) as compared to the NDREUAS SI (0.49 to 1.00). However, similar to the trend seen 

with respect to raw IV, the NDVIGS SI was slightly more saturated than the NDREUAS SI, as seen 

by the relatively higher overall peak, and larger proportion of NDVIGS SI values falling between 

0.90 and 1.00 (66%) as compared to the NDREUAS (62%).
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Figure 2.3. Kernel density distributions of raw index values (IV) and the Sufficiency Index (SI) of each vegetative index measured 
at the panicle initiation (PI) rice growth stage. Note the differences in scale of the x-axis. Some colors of the rug are not visible due 
to overlap. 
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2.3.3 Relationship between PI NUP and Sufficiency-Index 

Unique quadratic-plateau linear regression models were developed to describe the relationship 

between PI NUP and each SI (Fig. 2.4). All quadratic-plateau regression models had a R2 of 0.73 

or greater, suggesting that each model described the data appropriately. In each case, the 

quadratic-plateau model increased with increasing PI NUP up to a threshold, after which the 

model reached a plateau. Among the three indices in this study, the quadratic-plateau regression 

model for the NDVIUAS SI saturated (i.e., plateaued) the earliest (96 kg N ha-1), and the NDVIUAS 

SI was also the least sensitive to changes in PI NUP as seen by its narrow range of observations 

along the y-axis (0.63 to 0.99) (Fig. 2.4c). In contrast, the quadratic-plateau models for both the 

NDVIGS SI and NDREUAS SI saturated at higher NUP values and were more sensitive to changes 

in PI NUP prior to their respective points of saturation (Fig. 2.4a, 4b). The quadratic-plateau 

model for NDVIGS SI saturated earlier than NDREUAS SI (113 kg N ha-1 and 129 kg N ha-1, 

respectively), but the NDVIGS SI was more sensitive to changes in PI NUP prior to its point of 

saturation (0.28 to 0.96, left axis) relative to the NDREUAS SI (0.49 to 0.97, left axis).  

 

2.3.4 Relationship between Sufficiency-Index and Final Grain Yield 

 Results from the unique linear mixed-effects models that were developed to describe the 

relationship between each SI and yield show that each SI was positively correlated with yield 

(Fig. 2.5). However, the relative amount of saturation for each SI seen in Fig. 2.3b had an effect 

on the ability of each SI to quantify changes in  
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Figure 2.4. The relationship between panicle initiation (PI) total N uptake (NUP) and (a) GreenSeeker Normalized Difference 
Vegetation Index (NDVIGS) Sufficiency-Index (SI), (b) small unmanned aerial system Normalized Difference Red-Edge Index 
(NDREUAS) SI, and (c) NDVIUAS SI as described by unique quadratic-plateau linear regression models. The plateau value reported 
in each panel represents the PI NUP value where the regression model reached a plateau (i.e. the point of saturation for each index). 
Data were collected during the 2017 to 2019 growing season from ten N response trial site-years established throughout the 
Sacramento Valley rice growing region of California. 

 

 

 

 



 

  72 

 

 
Figure 2.5. The relationship between (a) GreenSeeker Normalized Difference Vegetation 
Idnex (NDVIGS) Sufficiency Index (SI) (b) small unmanned aerial system Normalized 
Difference Red-Edge Index (NDREUAS) SI, and (c) NDVIUAS SI and rice final grain yield as 
described by unique linear mixed-effects models. The coefficient of determination (R2) 
reported in each panel represents the proportion of variability explained by the model fixed 
effects only. Data were collected during the 2017 to 2019 from ten N response trial site-years 
throughout the Sacramento Valley rice growing region of California. 

 

 



 

  73 

grain yield. For example, the NDVIUAS SI which was the most saturated among the three indices, 

was also the poorest predictor of grain yields (Fig. 2.5c). Due to the high degree of saturation of 

NDVIUAS SI values, a large portion of grain yield observations were clustered between a 

NDVIUAS SI of 0.95 and 1.00. With respect to the portion of data that was not saturated, the 

NDVIUAS SI was least sensitive to changes in grain yield, as seen by the relatively large change 

in yields explained over a narrow range of NDVIUAS SI values. As a result, the mixed-effects 

model for NDVIUAS SI had the highest slope (25.3 Mg ha-1) among the three indices in this 

study. As seen in Fig. 2.3b, both the NDVIGS SI and NDREUAS SI were relatively less saturated 

than the NDVIUAS SI, which resulted in the NDVIGS SI and NDREUAS SI to measure changes in 

grain yields more effectively than the NDVIUAS SI (Fig. 2.5a, 5b). The NDVIGS SI and 

NDREUAS SI both explained the change in grain yield over a wider range of SI values relative to 

the NDVIUAS SI, thus resulting in the slope of the mixed-effects model for the NDVIGS SI and 

NDREUAS SI to be considerably lower (9.5 Mg ha-1 and 11.7 Mg ha-1, respectively). While the 

slopes of the mixed-effect model for the NDVIGS SI and NDREUAS SI were generally similar, the 

slope for NDVIGS SI was slightly lower than for the NDREUAS SI due to the NDVIGS SI having a 

larger range of observations. Overall, each mixed-effects model explained over 50% of the 

variability in grain yield, suggesting that the models appropriately described the data.  
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2.4. DISCUSSION 

2.4.1 Crop Response to N Fertilizer  

Applying pre-plant N fertilizer led to an increase in crop PI NUP and grain yield at every site; 

however, there were considerable differences in the magnitude of increase across sites (Fig 2). 

Across all sites, the net increase in PI NUP due to pre-plant N fertilizer ranged from 61 kg N ha-1 

to 140 kg N ha-1, and the grain yield response to pre-plant N fertilizer ranged from 1.6 Mg ha-1 to 

9.5 Mg ha-1. Observed variability in NUP and grain yields across sites in this study is not 

unexpected, given that they were established over a 3-yr. period at varying locations with 

differing soils and micro-climates. That being said, the strong variability in crop response to N 

fertilizer measured across sites in this study highlights the need to develop tools that take into 

account site and year specific differences and can develop an accurate prediction of crop status 

early in the season when decisions are made.  

 Despite the variability in the yield response to pre-plant N fertilizer, maximum grain 

yields were similar across all sites in this study, especially at those sites where rice was planted 

in May (all except RES-19), which is typically when rice is planted in CA (Hill et al., 2006). For 

sites where rice was planted in May, maximum yields ranged from 11.3 Mg ha-1 to 13.8 Mg ha-1 

(Fig 2), while at RES-19 maximum yield was 9.6 Mg ha-1, likely due to late planting in June. 

However, maximum yields at all sites fall within 75% of the maximum yield potential for this 

region (Espe et al., 2016), suggesting that the sites received proper management and were not 

significantly affected by diseases or pests. 

 

2.4.2 Index Saturation 
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 Saturation of red-based two-band indices, such as NDVI, is a well-documented problem 

(Hatfield and Pruger, 2010; Huang et al., 2020), and a growing body of research is reporting 

that red edge based indices, such as the NDRE, are less affected by saturation and can provide a 

better estimation of crop status than NDVI, especially at higher levels of crop biomass (Amaral 

et al., 2014; Li et al, 2014; Dunn et al., 2016).  

There were considerable differences in the relative amount of saturation observed among the 

three indices in this study, both with respect to raw IV and SI (Fig. 2.3). With respect to raw IV, 

both NDVI based indices (NDVIUAS and NDVIGS) saturated more than the NDRE based index, 

as illustrated by the relatively higher and narrower peaks of the NDVI based indices (Fig. 2.3a). 

These differences in saturation also effected the relative saturation of each index with respect to 

SI (Fig. 2.3b). Among the three indices evaluated in this study, the NDVIUAS SI exhibited the 

greatest degree of saturation, with over 80% of observations falling within a SI range of 0.90 and 

1.00, as compared to 66% and 62% of NDVIGS SI and NDREUAS SI observations falling within 

the same range, respectively.  

Saturation of NDVI is attributed to the crop reaching 100% canopy cover, but crop biomass 

beneath the canopy continuing to increase (Gitelson, 2004, Huang et al., 2020). Once the crop 

reaches 100% canopy cover, near infrared reflectance continues to rise, but red reflectance 

remains relatively constant due to strong absorption by chlorophyll at the top of the canopy, thus 

resulting in a minimal change in the overall ratio (i.e. the denominator will have a greater impact 

on the ratio than the numerator) (Hatfield et al., 1985; Thenkabail et al., 2000; Gitelson, 

2004). Red edge radiation can penetrate deeper into the crop canopy due to relatively lower 

chlorophyll absorption, causing it to be more sensitive to chlorophyll content within the entire 

canopy, especially at higher biomass levels (Li et al., 2014; Miller et al., 2018) Given this 
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greater sensitivity to total chlorophyll content within the canopy, to a certain degree, red edge 

based indices are able to overcome the saturation problem inherent to NDVI (Van Niel and 

McVicar, 2004; Nguy-Robertson et al., 2012). The results of our study are consistent with the 

findings of the aforementioned studies, as we also found the NDRE to be less saturated than both 

NDVI based indices in our study, with respect to both raw IV and SI.  

In addition to the differences in saturation observed between NDVI and NDRE, a difference in 

saturation was observed between the two NDVI based indices in our study, with the NDVIUAS 

saturating to a greater degree than the NDVIGS, both with respect to raw IV and SI (Fig. 2.3). 

Duan et al. (2017) observed a similar result in their wheat breeding trials where they measured 

NDVIGS and NDVIUAS at various time points throughout the growing period and found that 

NDVIUAS measurements were strongly correlated with NDVIGS, but the NDVIUAS readings were 

offset by about 0.2 units higher and were more compressed. A likely explanation for this 

difference in sensitivity among the two indices could be that compared to the NDVIGS which is 

measured using a proximal sensor close to the canopy, the lower resolution of the multispectral 

camera used to measure NDVIUAS cannot sample the small amount of background noise from a 

higher altitude which results in a higher NDVIUAS value with a smaller range (Duan et al., 

2017). 

 

2.4.3 Predicting PI NUP and Final Grain Yield with SI 

The objective of this study was to compare the utility of vegetative indices measured using aerial 

and proximal sensors at assessing rice crop status quantified as PI NUP and final grain yield. 

Predicting crop NUP and final grain yields early in the season is of interest to farmers and 

agricultural stakeholders for a number of reasons, including refining fertilizer management, 
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planning harvest, forecasting milling and storage needs, and directing marketing strategies. In 

order to directly compare the ability of each index to predict PI NUP and final grain yield, the raw 

IV from the three indices were normalized by calculating the SI. Unique quadratic-plateau 

models were developed to describe the relationship between each SI and PI NUP (Fig. 2.4), and 

unique linear mixed effects models were developed to describe the relationship between each SI 

and final grain yield (Fig. 2.5). As we had hypothesized, the relative degree of saturation across 

the three indices (as seen in Fig. 2.3b), significantly affected the ability of each SI to predict PI 

NUP and final grain yield. The NDVIUAS SI was the most saturated index among the three indices 

in this study and was also the poorest predictor of PI NUP and final grain yield, as the relationship 

between NUP and NDVIUAS SI saturated (i.e. reached a plateau) the earliest (plateau = 96 kg N 

ha-1) (Fig. 2.4c), the range of SI values before its point of saturation was the narrowest (Fig. 

2.4c, left axis), and the NDVIUAS SI was least sensitive to changes in final grain yield, as seen by 

the slope of the resulting mixed-effects models being the steepest (slope = 25.3 Mg ha-1) (Fig. 

2.5c). The NDREUAS SI, which was the least saturated index in this study, was the best predictor 

of PI NUP, as illustrated by the relationship between NUP and NDREUAS SI saturating the latest 

(plateau = 129 kg N ha-1) (Fig. 2.4b), and the relatively large range of SI values before its point 

of saturation (Fig. 2.4b, left axis), and the NDREUAS SI was more sensitive to changes in final 

grain yield, as it explained changes in final grain yield over a larger SI range, which resulted in 

the model to have a much lower slope (slope = 11.7 Mg ha-1, Fig 2.5b). Our finding that the 

NDREUAS saturates less than the NDVIUAS, which results in superior ability of the former to 

assess crop status is in agreement with what others have previously observed in rice (Dunn et 

al., 2016; Zheng et al. 2019; Wang et al. 2021) and also in wheat (Chen et al., 2019; Walsh et 

al., 2018). 
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Although we found the NDREUAS SI to be generally superior to the NDVIGS SI at assessing crop 

status, our results suggest that both the NDREUAS and NDVIGS are reliable options to assess rice 

crop status at PI and are far superior to the NDVIUAS. As seen in Fig. 2.3b, The NDVIGS SI was 

slightly more saturated than the NDREUAS SI, which led the relationship between PI NUP and 

NDVIGS SI to also saturate (plateau = 113 kg N ha-1) relatively sooner (Fig. 2.4a). However, 

with respect to predicting final grain yield, the NDREUAS SI and NDVIGS SI were similarly 

sensitive to changes in final grain yield, as seen by the relatively similar slope for both mixed 

effects models (slope = 11.7 Mg ha-1 and 9.5 Mg ha-1, respectively) (Fig. 2.5a, 2.5b). The 

NDVIGS SI did have a relatively larger range of SI values before its point of saturation (Fig. 

2.4a, left axis), and predicted final grain yield across a relatively larger range of SI values than 

the NDREUAS SI (Fig. 2.5), however this was in large part due to NDVIGS SI observations in the 

0N treatment at the Arbuckle sites which experienced a strong effect of background water (due 

to the close proximity of the sensor and sparse crop), resulting in very low NDVIGS SI 

measurements.  
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2.5. CONCLUSION 

To the best of our knowledge, the current study is the first effort to have compared the ability of 

NDVI and NDRE measured using a proximal and aerial sensor at assessing NUP and final grain 

yield in rice, wheat, or maize. Our finding that both the NDREUAS SI and NDVIGS SI measured 

PI rice crop status effectively is quite encouraging, considering that the former was measured 

using an aerial sensor at least 50 m. from the crop, while the latter was measured using a 

proximal sensor within 1 m. of the crop canopy. The ability to assess crop status effectively 

across different sensors provides a unique advantage for end-users as it allows them the 

flexibility to choose the sensor most suitable for their goals. This is especially important 

considering the significant differences among the sensors and how they are used to record 

canopy reflectance data. Given the relatively small number of studies that have explored this 

topic, additional studies are required to better understand how these results may be affected by 

the choice of vegetative indices, growth stages, biophysical parameters, or crops. 
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ABSTRACT 

 Accurately detecting nitrogen (N) deficiency and determining the need for additional N 

fertilizer is a key challenge to achieving precise in-season N fertilizer management in many 

crops including rice (Oryza sativa L.). In many direct-seeded rice systems, like in California 

(CA) and other regions of the world, the recommendation for N is to apply the N rate required 

for an average growing season at the beginning of the season and then assess the crop at panicle 

initiation (PI) to determine its N status and the potential need for a N top-dress to achieve 

maximum yields. However, accurately assessing rice N status and determining the need for top-

dress N is a challenge for farmers as the current tools are constrained by their small-scale 

sampling method. Our objective was to develop a method to accurately predict rice N deficiency 

and the need for top-dress N at PI using canopy reflectance measurements. Nitrogen fertilizer 

response trials were established over a 3-yr period (8 site-years) throughout the Sacramento 

Valley rice growing region of CA. The Normalized Difference Vegetation Index (NDVI) 

Response-Index (RINDVI) was measured by dividing the NDVI of an area that is not N limited by 

the NDVI of the area of interest. The RINDVI ranged from 1.00 (not N deficient) to higher, with 

higher numbers indicating greater N deficiency. A linear mixed-effects model was developed to 

describe the relationship between RINDVI at PI and the grain yield response to top-dress N. 

Results showed that the grain yield response to top-dress N increased with increasing RINDVI 

until a threshold was achieved, after which the response leveled off. Based on an economic 

analysis, a grain yield increase of 0.26 Mg ha-1 was required for top-dress N applications to be 

economically feasible. This yield increase was achieved when crop RINDVI had exceeded 1.07 by 

PI. Based on these findings, this RINDVI could serve as a robust tool for farmers to inform precise 

mid-season N fertilizer management in direct-seeded rice systems. 
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3.1. INTRODUCTION 

Annually, about 60 Tg of nitrogen (N) fertilizer is applied to soils worldwide to produce 

the three staple food crops (rice, wheat, and maize), with less than half of this amount being 

removed at the end of the season in the harvested grain (Ladha et al., 2020). This disparity 

between N fertilizer inputs and outputs negatively impacts the biosphere in many ways. For 

example, excessive N fertilization can result in nitrate leaching (Dzurella et al., 2015), increased 

greenhouse gas emissions (Almaraz et al., 2018; Pittelkow et al., 2014a), and elevated N levels 

in agricultural tailwater causing eutrophication (Smith et al., 2021). Given the intensification of 

global agriculture required to feed the growing world population, these negative impacts on the 

biosphere will likely worsen unless new practices are developed and adopted that allow farmers 

to more efficiently utilize N fertilizer.    

In California (CA), where rice (Oryza sativa L.) is predominantly water-seeded, the 

recommended practice is to apply the average seasonal N fertilizer requirement (typically 150 to 

200 kg N ha-1) before flooding and planting (Linquist et al., 2009; Williams et al., 2010). Aqua 

ammonia (NH4OH) is the primary preplant N fertilizer used and it is injected 7 to 10 cm deep in 

the soil, after which the fields are flooded and remain so continuously until harvest, thus keeping 

the N fertilizer protected from denitrification and ammonia volatilization losses until the crop 

needs it (Broadbent and Mikkelsen, 1968; Chuong et al., 2020). Linquist et al. (2009) 

reported from 14 on-farm studies that N applied in this manner led to an average fertilizer N 

recovery in the crop of 53%. Similarly, in dry-seeded systems in the mid-southern USA and 

Australia, it is also recommended to apply the total N requirement early in the season, prior to 

the establishment of permanent flood (Dunn et al., 2014a, 2016; Norman et al., 2021; 

Troldahl, 2018). In both these systems, it is recommended to assess the crop at panicle initiation 



 
 

  89 

(PI) to determine whether the crop requires additional N fertilizer inputs to achieve maximum 

yields (Pittelkow et al., 2014b; Williams, 2010). Panicle initiation is considered a critical stage 

for in-season N management as N applications later than PI are less efficiently utilized for grain 

yield (DeDatta, 1981; Linquist and Sengxua, 2003), and most, if not all, of the pre-plant N 

fertilizer has been taken up by this stage in both water-seeded (LaHue et al., 2016) and dry-

seeded systems (Norman et al., 2021). Because preplant N fertilizer has been taken up by this 

stage, further N uptake between PI and harvest relies on late season soil indigenous N supply 

(INS) and any top-dress fertilizer that may have been applied. If required, in CA typical PI top-

dress rates range from 22 to 45 kg N ha-1 (Williams, 2010) with the average application being 

around 34 kg N ha-1 (Hartley and van Kessel, 2003). While the N rate applied at this stage is 

relatively low, it is still an important adjustment in a year where yield potential may be higher 

than average. Importantly, by PI, the yield components of tiller and panicle number have been 

determined, so major deficiencies due to initially low N rates would be too late to correct by this 

stage (DeDatta, 1981; Dunn et al., 2016).  

Tools currently available to assess crop N status at PI include the Leaf Color Chart (LCC) 

and Soil Plant Analysis Development (SPAD) chlorophyll meter (Saberioon et al., 2014). The 

LCC estimates N content based on leaf greenness, while the SPAD meter measures the 

difference in transmittance between red and near infrared light passing through the leaf to 

estimate chlorophyll content (Alam et al., 2005; Uddling et al., 2007). Both the LCC and SPAD 

meter are simple diagnostic tools that have been shown to accurately estimate leaf N content and 

aid in the development of in-season top-dress N fertilizer recommendations (Balasubramanian 

et al., 1999; Peng et al., 1996; Singh et al., 2014; Turner and Jund, 1991). While the LCC and 

SPAD meter are useful, these tools have not seen large scale adoption in rice systems outside of 
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Asia as tools are constrained by a single leaf sampling method and thus can only assess a small 

fraction of the field, which in CA, can be over 50 ha in size (Daughtry et al., 2000; Saberioon 

et al., 2014). Consequently, developing an accurate assessment of crop N status at PI and 

determining the need for a N top-dress application remains a challenge in CA rice systems. 

 More recently, the development of remotely sensed vegetation indices, such as the 

Normalized Difference Vegetation Index (NDVI), have shown promise to accurately assess crop 

N status over larger areas (Foster et al., 2017). The NDVI is calculated by measuring crop 

canopy reflectance remotely (via a satellite, aircraft, or proximal sensor) at specific wavelengths 

in the red and near infrared regions of the electromagnetic spectrum and reported as a ratio 

(Tucker, 1979; Tucker et al., 1985). Among the different sensors used to measure NDVI, the 

GreenSeeker is one of the most commonly used as it is a portable handheld sensor with an active 

light source and can instantly display the NDVI measurement of the crop on its built-in screen 

(Saberioon et al., 2014). Several previous studies have reported strong correlations between 

GreenSeeker NDVI and rice N status at the PI growth stage (Gnyp et al., 2014; Rehman et al., 

2019; Yao et al., 2014). Although the simplicity and efficiency of the GreenSeeker provide 

several advantages to end users; one disadvantage of the GreenSeeker is that the device only 

measures NDVI, which a number of previous studies have shown to saturate once crop biomass 

exceeds a certain threshold (Asrar et al., 1984; Hatfield et al., 1985; Thenkabail et al., 2000). 

Rehman et al. (2019); however, reported that NDVI saturation occurs at rice biomass levels that 

are in excess of overall crop PI N requirements, suggesting that NDVI saturation would likely 

not occur at levels of crop biomass where farmers would make N top-dress fertilization 

decisions.  
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While NDVI measurements are useful to assess the N status of a crop, a single 

measurement does not indicate the likelihood of a crop to respond to additional N (Rehman et 

al., 2019). To address this issue, an N-enriched area, which is non-limiting with respect to N, can 

be used (Colaҫo and Bramley, 2018; Hussain et al., 2000). If the crop outside the N-enriched 

area has a lower NDVI than the N-enriched area, it is inferred that the crop may respond to 

additional N inputs (Raun et al., 2002; Tubaña et al., 2012). Mullen et al. (2003) developed an 

NDVI Response-Index (RINDVI) by dividing the NDVI from the N-enriched area by the NDVI 

from an adjacent area in the field. The RINDVI values will usually be > 1.0 with higher numbers 

indicating increased potential for N responsiveness. The N-enriched area and RINDVI have been 

used in many different applications across a wide range of crops and have been shown to be a 

robust indicator of crop responsiveness to N (Arnall et al., 2009; Cao et al., 2016; Lofton et al., 

2012; Lu et al., 2020; Tubaña et al., 2008).  

In situations where N fertilizer may be split throughout the season, previous studies have 

used a N fertilization optimization algorithm (NFOA) to determine N needs throughout the 

season (Lukina et al., 2001; Raun et al., 2002; Raun et al., 2005). This approach also uses a N-

enriched area, but the basic estimation of N needs is based on a mass balance calculation of the 

optimal N rate required for an expected yield (Colaҫo and Bramley, 2018). Several studies have 

demonstrated that this approach improves nitrogen use efficiency in rice relative to standard 

farmer practice by producing similar grain yields with less N fertilizer (Ali et al., 2014; Bijay-

Singh et al., 2015; Xue et al., 2014; Xue and Yang, 2008; Yao et al., 2012). While this 

approach has a strong theoretical basis, it is based on several assumptions (e.g. seasonal NUP, 

grain yield potential, and N use efficiency) that vary considerably across fields and over time. 
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Such an approach is also not easy to employ by a farmer who may not have access to such 

information.  

Our objective was to develop a simple and rapid approach using the RINDVI which can be 

easily and reliably used on-farm for making top-dress N decisions in direct-seeded rice systems 

where the average seasonal N fertilizer requirement has been applied preplant and a decision is 

being made whether to top-dress at PI. This objective was pursued via field studies conducted 

over three years at eight different locations. 
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3.2. MATERIALS AND METHODS 

3.2.1 Site Description 

Six on-farm and two on-station N response trials were established during the 2016, 2017, 

and 2019 growing seasons (named by proximity to the nearest town or research station and study 

year), with sites located throughout the Sacramento Valley rice growing region of CA (Fig. 3.1, 

Table 3.1). On-station sites were established at the CA Rice Experiment Station (RES) near 

Biggs. The Sacramento Valley has a Mediterranean climate characterized by warm and dry 

conditions during the growing season (May to October). The average air temperature and 

precipitation during the growing season for the three years of this study were 22.8° C and 10.9 

mm, respectively (CIMIS, 2020 – Biggs station).  

Pre-season soil samples were collected from the plow layer (approximately 0 – 15 cm) 

after tillage and prior to fertilizer application at each site. Samples were analyzed for soil pH 

using saturated paste (United States Salinity Laboratory Staff, 1954), particle size using the 

hydrometer method (Carter and Gregorich, 2007), and soil organic C (SOC) and total N using 

an elemental analyzer interfaced to a continuous flow isotope ratio mass spectrometer (EA-

IRMS) (Sharp, 2017). Soil properties were typical for rice soils in this region. Most soils had 

high clay contents (40 – 55%) (Table 3.1). The only exception was at Marysville-19 (24% clay). 

Across sites, soil pH ranged from 4.7 – 7.0, and SOC and total N ranged from 13.8 to 19.9 g kg-1, 

and from 1.1 to 1.9 g kg-1, respectively. 

 

3.2.2 Experimental Design and Management 

Each N response trial was arranged as a split-plot randomized complete block design 

with four replicates. The main plot treatment was the pre-plant N fertilizer rate and the subplot 
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Figure 3.1. A map of N response trial sites established during the 2016, 2017, and 2019 growing seasons throughout the 
Sacramento Valley rice growing area of California, USA. 
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Table 3.1. Soil descriptions and selected properties of each N response trial site-year located throughout the Sacramento Valley, California. 

Site-Year Soil 
Series Taxonomic Classification 

Texture (%) Organi
c 
Carbon 
(g kg-1) 

Total 
Nitrogen 
(g kg-1) 

pH 
Sand Silt Clay 

Davis-16 Sycamore Fine-silty, mixed, super active, nonacid, thermic 
Mollic Endoaquepts 13 37 50 19.6 1.9 7.0 

RES-16 Esquon-
Neerdobe Fine, smectitic, thermic Xeric Epiaquerts 32 24 44 16.2 1.1 5.0 

Nicolaus-17 Capay Fine, smectitic, thermic Typic Haploxererts 19 36 45 15.1 1.2 5.5 

Williams-17 Willows Fine, smectitic, thermic Sodic Endoaquerts 21 39 40 17.5 1.5 5.0 

Arbuckle-19 Clear Lake Fine, smectitic, thermic Xeric Endoaquerts 8 38 55 19.9 1.6 6.3 

Davis-19 Sycamore Fine-silty, mixed, super active, nonacid, thermic 
Mollic Endoaquepts 9 38 53 19.8 1.8 6.3 

Marysville-19 San Joaquin Fine, mixed, active, thermic Abruptic Durixeralfs 35 41 24 15.4 1.2 4.7 

RES-19 Esquon-
Neerdobe Fine, smectitic, thermic Xeric Epiaquerts 30 26 44 13.8 1.1 5.3 
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treatment was the top-dress N rate applied at PI. In 2016 and 2017, pre-plant N fertilizer was 

broadcast by hand as urea at rates of 0, 75, 125, 175, and 225 kg N ha-1. In 2017, an additional 

pre-plant N rate of 45 kg N ha-1 was also included. In 2019, pre-plant N fertilizer was injected 

into the soil (7 to 10 cm depth) as aqua-ammonia at rates of 0, 101, 135, 168, 202, and 235 kg N 

ha-1. Top-dress N fertilizer was broadcast by hand at PI as ammonium sulfate at rates of 0, 25, 

and 50 kg N ha-1 in 2016 and 2017; and 0 and 34 kg N ha-1 in 2019. The decision to utilize only 

one top-dress N rate in 2019, was made because there was not a significant difference between 

the 25 and 50 kg N ha-1 N rates in 2016 and 2017. In 2016 and 2017, main plots were at least 30 

m2 and the three subplots at least 10 m2. In 2019, main plot width was determined by the width 

of the implement used to apply aqua-ammonia and ranged from 3.0 m to 11.5 m. Each main plot 

was at least 9 m long and the area of the two subplots were at least 3.3 m2. Phosphorus (P) and 

potassium (K) were broadcast across all plots at a rate of 45 kg P2O5 ha-1 as triple superphosphate 

and 50 kg K2O ha-1 as potassium sulfate to ensure these nutrients were not limiting. The rice crop 

was established by water-seeding which is the common practice in CA (Hill et al., 2006). In this 

case, the fields are fertilized following seedbed preparation, flooded, and then soaked seed is 

broadcast onto the field by airplane. The medium grain rice variety M-206, which is commonly 

grown in CA, was planted at all sites. While planting dates varied by site, all sites were planted 

within the normal timeframe for the region (early to mid-May) with the exception of Davis and 

the RES in 2019, where planting was delayed until early June due to excessive rain in mid-May. 

Herbicide and irrigation management followed common grower practice and were managed by 

either the grower (on-farm sites) or researchers (on-station sites). No presence of disease or pests 

was identified in the plots during the course of the experiments.  
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At physiological maturity, grain yield was measured by harvesting mature plants from a 

1.0 m2 quadrat in each subplot. Grains were removed from panicles, cleaned using a seed blower, 

dried to constant moisture at 60° C, and then weighed. Final yields are reported at 14% moisture. 

 

3.2.3 NDVI and Response-Index 

The NDVI was measured in every main plot using a GreenSeeker handheld crop sensor 

(Trimble Inc., Sunnyvale, CA) at PI (was visually confirmed in the field using the method 

outlined by Dunn et al. (2014b)). Measurements were taken by holding the GreenSeeker in the 

nadir position at a constant height of 1.0 m above the crop canopy while walking steadily along 

the edges of each main plot. For each main plot, the final NDVI value represented the average of 

four NDVI readings. Canopy closure was achieved by PI in all plots that received N fertilizer, 

thus the effect of background water or soil on NDVI measurements was considered negligible. 

For each main plot, RINDVI was calculated using the following equation as outlined by 

Mullen et al. (2003):  

 

(1) RI!"#$ = $	NDVI!	&'()*+&,	-./0	) 	(	NDVI!	0(&102&'0⁄ 	) 

 

The main plot with the highest observed NDVI at each site served as the N enriched plot. At 

most sites, the highest NDVI was observed in a main plot with the highest pre-plant N rate (the 

only exceptions were at Davis-16 and Davis-19 where it was a main plot with the second highest 

pre-plant N rate). In all cases, the N enriched plot had the maximum yields or was in an N 

treatment which was above that required for maximum yields; both indicating that the plot was N 

enriched and not limited by N. 
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3.2.4 Data Analysis 

Data analysis was performed using the statistical program R (version 4.0.2, R Core 

Team, 2021). The package dplyr (Wickham et al., 2021) was used to transform the data, and the 

package ggplot2 (Wickham, 2016) was used to visualize the data and to construct figures. The 

relationship between pre-plant N rate and final grain yield at each top-dress N rate was described 

by a quadratic linear regression model. The function lme( ) in the nlme package (Pinheiro et al., 

2021) was used to develop a linear mixed-effects model to describe the relationship between PI 

RINDVI, top-dress N rate, and final grain yield. Given the shape of the relationship between 

RINDVI and final grain yield, RINDVI values were inverted to permit the inclusion of a quadratic 

term within the mixed-effects model. After fitting the model, (RINDVI)-1 values were reverted to 

RINDVI for the purpose of reporting results in units that coincide with previous work on this topic. 

The equation of the resulting mixed-effects model is provided below:  

 

(2) -./01	230./	4.516 =	 

7.856	 = (9:3456)78 ∶ <=> − 635@@	A	30<5	 +	[(9:3456)78]9,	

30/6=F	 = 	~	<=> − 635@@	A	30<5	|	@.<5 − I503 

 

Graphical and numerical summaries were examined to ensure the resulting model satisfied the 

assumptions of linear regression. Pseudo R2 were calculated for the mixed-effects model using 

the function r.squaredGLMM( ) in the MuMIn package (Bartoń, 2020) with the conditional R2 

representing the variability explained by the entire model (fixed and random effects), the 

marginal R2 representing the variability explained only by the fixed-effects, and the portion of 

variability explained by the random-effects (in this study site-year slope and intercept) 
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represented as the difference in conditional and marginal R2. The package emmeans (Lenth, 

2021) was used to derive estimated marginal means from the model coefficients. Hypothesis 

testing of the resulting marginal means followed the method outlined by the UCLA Statistical 

Consulting Group (2021). Top-dress N rate was included in the model as a continuous variable 

to allow for estimation of final grain yield at any given top-dress N rate within the range of rates 

included in this study (0 – 50 kg N ha-1). We did not detect a significant difference in grain yield 

response among top-dress rates in our study and thus elected to define the grain yield response to 

top-dress N as the difference in model estimated final grain yield between 0 and 34 kg N ha-1; the 

latter being a typical top-dress N rate in CA (Hartley and van Kessel, 2003).  

An economic analysis was performed to identify the break-even point for top-dress N 

applications (i.e., the amount of grain yield response needed to recover the cost of applying top-

dress N). Based on the cost of fertilizer and its application, and the market value of medium 

grain rice, a grain yield response of 0.26 Mg ha-1 was identified as the break-even point for top-

dress N applications. For the analysis, ammonium sulfate ((NH4)2SO4; 0.21 g N g-1) was used as 

the top-dressing N source at US$ 0.40 kg-1 (current fertilizer price based on a survey of five local 

chemical suppliers). At a N composition of 21%, an application rate of 160 kg (NH4)2SO4 ha-1 

would be required to achieve a top-dress rate of 34 kg N ha-1. In California, top-dress N is 

applied with an airplane for US$ 32 ha-1 (UC-ANR, 2015). The 5-yr (2015 to 2019) historical 

market value of medium grain rice was US$ 369 Mg-1 (USDA NASS, 2021). Therefore, the 

break-even point was calculated using the following equations: 

 

(3) Fertilizer	cost	(US$	ha78): US$	0.40	kg78	(price) × 160	kg	(NH:)9SO:	ha78	(rate) 

= US$	63	ha78 
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Adding the fertilizer cost (US$ 63 ha-1) from Eqn. 3 above and the aviation cost of US$ 32 ha-1 

(UC-ANR, 2015): 

 

(4) Total	application	cost	(US$	ha78): US$	63	ha78(fertilizer) + 	US$	32	ha78	(aviation) 

= US$	95	ha78 

 

The following equation illustrates how to calculate the top-dress break-even point: 

 

(5) Top − dress	break − even	point	(Mg	ha78):	US$	95	ha78	(application	costs) 	×

(XX	Mg	ha78)	(required	yield	response) = 		US$	369	Mg78		(rice	price) 

 

Re-writing Eqn. 5 to isolate the required yield response: 

 

(6)  Top − dress	break − even	point	(Mg	ha78):	US$	95	ha78	(application	costs) ÷

		US$	369	Mg78	(rice	price) = (XX	Mg	ha78)	(required	yield	response) = 0.26	Mg	ha78 

 

Using the estimated marginal means derived from the mixed effects model, a t-test was 

performed to calculate the probability of the model estimated grain yield response exceeding the 

break-even point at each RINDVI. The t-statistic was calculated as follows: <;< =	 u
;<7	;!
=.?.		(;<)u , with vw  

representing the model estimated grain yield response at a given RINDVI; vB representing the 

break-even yield response (0.26 Mg ha-1), and s.e. (vw) representing the standard error of the 

model. The p-value associated with the resulting t-statistic was calculated using the function pt( ) 
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from the base package (R Core Team, 2021), which returns the cumulative density function 

based on the Student’s t-distribution. 
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3.3. RESULTS 

3.3.1 Grain yield response to N fertilizer 

 Minimum grain yields ranged widely from 4.3 Mg ha-1 (Arbuckle-19) to 10.6 Mg ha-1 

(Nicolaus-17) while maximum grain yields ranged from 9.6 Mg ha-1 (RES-19) to 12.6 Mg ha-1 

(RES-16) (Fig. 3.2). Across all sites, the lowest grain yields were in the 0 N pre-plant treatment. 

Where no top-dress N was applied, yields increased with increasing pre-plant N rate to a 

maximum and then leveled off or decreased at higher N rates. Applying top-dress N at PI led to 

an increase in grain yields in the lower pre-plant N rates at all sites; however, the magnitude of 

the yield response varied considerably across sites. For example, the mean yield response to top-

dress N in the 0 N pre-plant treatment ranged from 0.1 Mg ha-1 (Nicolaus-17) to 2.4 Mg ha-1 

(RES-19), with the mean response across all site-years equaling 1.7 Mg ha-1. Overall, the grain 

yield response to top-dress N decreased with increasing pre-plant N rate across all site-years. The 

mean yield response to top-dress N in the highest pre-plant N rate also varied strongly across 

sites with values ranging from -1.1 Mg ha-1 (RES-16) to 0.6 Mg ha-1 (Nicolaus-17), with the 

mean response across all site-years equaling 0.0 Mg ha-1. No differences in final grain yields 

were seen between sites that received urea versus aqua-ammonia as the pre-plant N fertilizer 

source. 

  

3.3.2 Informing mid-season N management using RINDVI 

At most sites, the highest pre-plant N rate represented the N non-limiting treatment, as a 

RINDVI of 1.00 (resulting from the N non-limiting plot being compared to itself) was observed in 

the highest pre-plant N rate (Table 3.2). The only exceptions were at Davis-16 and Davis-19 

where a RINDVI of 1.00 occurred in the second highest N rate. 
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Figure 3.2. Relationship between pre-plant N rate with and without top-dress N and final grain yield for each site-
year. 
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Table 3.2. Descriptive statistics (minimum, maximum, and mean) of GreenSeeker Normalized Difference Vegetative Index 
(NDVI) Response-Index measured at the panicle initiation rice growth stage from each N response trial site-year. 

NDVI Response Index 

Pre-plant  
N rate  
(kg N ha-1) 

Davis-16 RES-16 Nicolaus-17 Williams-17 

min – max   mean min – max   mean min – max   mean min – max   mean 

0 1.11 – 1.30 1.16 1.54 – 2.09 1.81 1.53 – 1.61 1.56 1.81 – 2.29 2.03 

45 -- -- --  1.16 – 1.29 1.23 1.14 – 1.18 1.16 

75 1.08 – 1.14 1.11 1.14 – 1.32  1.19 1.11 – 1.38 1.22 1.06 – 1.21 1.18 

125 1.05 – 1.16 1.10 1.02 – 1.13 1.08 1.16 – 1.20 1.18 1.03 – 1.23 1.10 

175 1.00 – 1.12 1.05 1.03 – 1.08 1.04 1.01 – 1.12 1.06 1.01 – 1.06 1.03 

225 1.01 – 1.05 1.03 1.00 – 1.04 1.02 1.00 – 1.02 1.01 1.00 – 1.06 1.03 

All 1.00 – 1.30 1.09 1.00 – 2.09 1.23 1.00 – 1.61 1.21 1.00 – 2.29 1.26 

Pre-plant  
N rate  
(kg N ha-1) 

Arbuckle-19 Davis-19 Marysville-19 RES-19 

min – max   mean min – max   mean min – max   mean min – max   mean 

0 2.72 – 4.10 3.28 1.37 – 1.80 1.51 1.45 – 1.69 1.59 1.76 – 2.42 2.04 

101 1.24 – 1.29 1.27 1.25 – 1.83 1.47 1.09 – 1.11 1.10 1.14 – 1.25 1.19 

135 1.13 – 1.23 1.17 1.18 – 1.24 1.22 1.06 – 1.09 1.07 1.07 – 1.25 1.13 

168 1.04 – 1.22 1.10 1.04 – 1.37 1.21 1.01 – 1.06 1.03 1.09 – 1.42 1.20 

202 1.03 – 1.15 1.07 1.00 – 1.24 1.14 1.00 – 1.05 1.02 1.05 – 1.28 1.11 

235 1.00 – 1.10 1.04 1.09 – 1.17 1.13 1.00 – 1.03 1.01 1.00 – 1.23 1.13 

All 1.00 – 4.10 1.49 1.00 – 1.83 1.29 1.00 – 1.69 1.14 1.00 – 2.42 1.30 
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Across all site-years, the mean RINDVI decreased with increasing pre-plant N rate. Overall, strong 

variability in RINDVI values was seen across sites, with site-year maximum RINDVI ranging from 

1.30 (Davis-16) to 4.10 (Arbuckle-19). 

 There was a significant response to top-dress N applications; however, as discussed 

earlier, there was not a significant difference in grain yield response among the top-dress N rates 

in this study. Given the lack of significant difference among the top-dress N rates in our study, 

we elected to define the grain yield response to top-dress N as the difference in model estimated 

final grain yield between top-dress rates of 0 and 34 kg N ha-1; with the latter representing a 

typical top-dress N rate in CA (Hartley and van Kessel, 2003). Based on the liner mixed-effects 

model, the estimated grain yield response to top-dress N was 0.48 Mg ha-1 when averaged across 

all RINDVI observations (i.e. without using RINDVI as a predictor), and the model standard error 

around this estimate was ± 0.11 Mg ha-1 (Fig. 3.3a). However, when RINDVI was incorporated as 

a predictor of grain yield response, the estimated yield response ranged widely, from 0.10 Mg ha-

1 at a RINDVI of 1.00 up to 2.02 Mg ha-1 at a RINDVI of 4.10 (Fig. 3.3b). Overall, the mixed-effects 

model explained 66% of the variability in final grain yields, with 46% being explained by the 

model fixed effects (top-dress N rate and RINDVI), and 20% being explained by the site-year 

random effect (Table 3.3); and the mean model standard error was ± 0.19 Mg ha-1 when averaged 

across the entire range of RINDVI observations. Overall, the grain yield response to top-dress N 

increased rapidly with increasing RINDVI until a threshold was achieved, after which the yield 

response leveled off (Fig. 3.3b). The range of RINDVI between 1.00 and 1.25 represents the area  

where N fertilizer management decisions are most likely to be made. For every 0.05 increase in
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Figure 3.3. The relationship between the estimated rice grain yield response to top-dress N applied at 34 kg N ha-1 (typical grower rate in 
California) (A) when averaged across all NDVI Response Index (RINDVI) observations (i.e. without using RINDVI as a predictor) and (B) the 
RINDVI measured at the panicle initiation growth stage as described by a linear mixed-effects model. The error bar (panel A) and the gray shading 
(panel B) represents the standard error around the estimated grain yield response. 
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Table 3.3. Model parameters of the linear mixed-effects model developed 
to describe the relationship between NDVI Response-Index (RI) and the 
rice grain yield response to top-dress N applied at the panicle initiation (PI) 
growth stage. 
Number of Site-Years 8 
Number of Observations 456 
Range of RI  1.00 – 4.10 
R2†  

Fixed Effects .46 
Random Effects .20 

Entire Model .66 
Mean Model Standard Error (Mg ha-1)‡ ± 0.19 
Slope (Mg ha-1)§  

RI 1.00 – 1.25 0.10 
RI 1.25 – 2.50 0.04 
RI 2.50 – 4.10 0.01 

RI at break-even point¶ 1.07 
Model Standard Error at break-even point  
(Mg ha-1) ± 0.12 
† proportion of variability explained by model fixed effects, random effects, and the entire 
model (fixed and random effects) 
‡ averaged across the entire range of observations  
§ increase in the estimated grain yield response to top-dress N per 0.05 increase in RI 
within each corresponding range 
¶ top-dress break-even point of 0.26 Mg ha-1, which represents the amount of grain yield 
response required to recover the cost of applying top-dress N 

 

RINDVI between 1.00 and 1.25, applying top-dress N added 0.10 Mg ha-1 in final grain yield 

(Table 3.3, Fig. 4, left axis). Between a RINDVI of 1.25 and 2.50, the estimated yield response to 

N top-dress increased by 0.04 Mg ha-1 per 0.05 increase in RINDVI, and at a RINDVI greater than 

2.50, the increase in yield response to top-dress N per 0.05 RINDVI was marginal (0.01 Mg ha-1). 

Based on the economic analysis and assumptions provided in the Materials and Methods, 

a grain yield response of 0.26 Mg ha-1 was required to recover the costs of applying top-dress N 

fertilizer (i.e. break-even point). A grain yield increase of 0.26 Mg ha-1 corresponded to a RINDVI 



 
 

  

108 
 

 

 

Figure 3.4. The relationship between NDVI Response Index (RINDVI) and the estimated rice grain yield response to top-dress N applied at 34 
kg N ha-1 (typical grower rate in California) at the panicle initiation growth stage as described by a linear mixed effects model (solid blue line). 
The gray shading around the line represents the standard error of the estimated yield response. The vertical red dashed line at a RINDVI of 1.07 
corresponds to the top-dress break-even point of 0.26 Mg ha-1 which represents the amount of grain yield response needed for a farmer to 
recover the cost of applying top-dress N. The dotted line represents the probability of the grain yield response to top-dress N exceeding the 
break-even point.  
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of 1.07, and the model standard error at this RINDVI was ± 0.12 Mg ha-1 (Table 3.3, Fig. 4, left 

axis). The probability of the grain yield response exceeding the break-even point was 50% 

considering the uncertainty of the estimate at RINDVI = 1.07 (Fig. 4, right axis). The probability of 

the grain yield response exceeding the break-even point increased steadily with increasing RINDVI 

until it surpassed 90% at a RINDVI of 1.14, where the estimated yield response at that RINDVI was 

0.40 Mg ha-1 (Fig. 4, both vertical axes).  

 



 
 

  110 

3.4. DISCUSSION 

3.4.1 Grain yield response to N fertilizer 

The maximum grain yields observed in this study were greater than 11 Mg ha-1 with the 

exception of RES-19 where yields were 9.6 Mg ha-1 (Fig. 3.2). These yields are close to 85% of 

the yield potential for this region (Espe et al., 2016), which should be achievable with good 

management practices. In CA, most rice is planted in May (Hill et al., 2006), and the late 

planting date (June 12th) may have contributed to the lower yields at RES-19.  

At all sites, maximum yields in response to N were achieved as indicated by the leveling 

off of the N response curves. At two locations (Davis-16 and -19) the response curve did not 

level off where no top-dress N fertilizer was applied; however, looking more closely at the data 

points, maximum yields were achieved at these sites as the yields in the highest pre-plant N rate 

were numerically lower than yields in the next highest rate. Importantly, the leveling off of grain 

yield in the highest pre-plant N rates which did not receive a top-dress N application indicates 

that these plots were not N limited and thus serve as a valid N-rich plot for the development of 

the RINDVI. 

 

3.4.2 Informing mid-season N management using RINDVI 

The RINDVI presented here provides an improved tool for farmers to make precise mid-

season N management decisions in rice. Although, developed within a CA context, this approach 

can be adopted by similar rice production systems, such as in the mid-southern USA and 

Australia, where it is also common to apply the recommended N rate early in the season and 

assess the need to apply a top-dress mid-season (Dunn et al., 2014a, 2016; Norman et al., 

2021; Troldahl, 2018). This approach is less suited to rice systems where N fertilizer 
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applications are intentionally split throughout the season (Dobermann et al., 2002; Peng et al., 

2006). In situations where N fertilizer may be split throughout the season, previous studies have 

used a N fertilization optimization algorithm (NFOA) to determine N needs throughout the 

season (Lukina et al., 2001; Raun et al., 2002; Raun et al., 2005) and several studies have 

demonstrated that this approach improves nitrogen use efficiency in rice relative to standard 

farmer practice by producing similar grain yields with less N fertilizer (Ali et al., 2014; Bijay-

Singh et al., 2015; Xue et al., 2014; Xue and Yang, 2008; Yao et al., 2012). The difference in 

the approach employed here is that the optimal seasonal N rate for an average year is applied in a 

single application at the start of the season, as it is known that it is used relatively efficiently 

(Linquist et al., 2009). The RINDVI is then used midseason to determine whether a small amount 

of additional N fertilizer is needed to achieve maximum yields. 

While the RINDVI presented here provides a good tool for farmers to make precise mid-

season N management decisions in rice, there is considerable variability in the estimated grain 

yield response across the range of RINDVI values as seen by the standard error around the yield 

response (Fig. 3.3). One explanation for the variability in yield response to top-dress may be the 

variability in late season soil INS across all the sites in our study. The use of the RINDVI approach 

presented here, as well as others such as the previously mentioned NFOA, assumes that late 

season INS is similar across fields. Previous experiments in rice systems have shown that by PI 

all or most of preplant N fertilizer has been taken up by the crop (LaHue et al., 2016; Norman 

et al., 2021), thus the supply of N to rice after PI, in the absence of top-dress N, is primarily from 

the soil INS. Late season soil INS may impact the decision about whether to apply a top-dress N 

application, as sites with soils that have a high INS would be relatively less responsive to top-

dress N than sites with soils that have a low INS. Previous studies have shown that INS from rice 
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soils can vary significantly across sites and over time (Cassman et al., 1996; Cassman et al., 

1998; Espe et al., 2015), and is linked to the accumulation of phenolic compounds in the soil 

(Olk et al., 1996; 1998; 1999; 2000). Phenols are lignin derived compounds present in rice roots 

and shoots and have been shown to chemically stabilize N into compounds that would be less 

available to growing rice plants (Stevenson, 1994; Thorn et al., 1996; Thorn and Mikita, 

1992). In CA, after harvest farmers typically incorporate phenol-rich rice straw into the soil and 

flood the field during the winter to facilitate rice straw decomposition (Linquist et al., 2006). 

Previous rice studies have shown that such practices which promote anaerobic decomposition 

cause phenols to accumulate in the soil; subsequently leading to a significant decrease in crop N 

uptake (Olk et al. 2007; Olk et al., 2009a, 2009b). This would suggest that understanding late 

season INS could help further refine late season N management decisions, in addition to the 

RINDVI. While quantifying phenols in the soil is likely to be too time consuming and expensive, 

understanding management practices that alter soil phenol concentration would be beneficial and 

a good area for future research. 
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3.5. CONCLUSION 

 A RINDVI based mixed-effects model was developed to assess the N status of a rice crop 

at PI and determine the need for a N top-dress. This approach is superior to the Leaf Color Chart 

or SPAD meter approach as it allows for a more rapid assessment over a larger area. A drawback 

to the tool developed here is that a grower would need to have a N-enriched strip in a 

representative portion of the field. Importantly, this approach is limited to situations where the 

seasonal N rate is applied at the beginning of the season and an assessment is made at PI to 

determine if a relatively small amount of N may be required to achieve maximum yields. 

Understanding management practices that influence late season soil INS would allow for an even 

more robust decision support tool and is worthy of further research. Finally, as technology 

advances, future research in this area is likely to focus on drone or satellite-based RI’s which 

facilitate the assessment of larger areas more efficiently than the handheld proximal sensor used 

in this study. 
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CONCLUSION 
 

 Prior to this work, few studies had explored the potential of remote sensing technology to 

inform sustainable N management in agricultural crops. This study demonstrated that remotely 

sensed vegetative indices can be used to accurately assess crop N status and predict the grain 

yield response to top-dress N fertilizer in direct seeded rice systems. The decision support tool 

presented here can help California rice farmers make precise mid-season N management 

decisions and improve the productivity and sustainability of California rice agroecosystems. 

Additionally, the findings of this study provide a strong framework for using remote sensing 

technology to improve N fertilizer management in similar rice systems worldwide. Future work 

should focus on further validating the application of the tool presented here through large scale 

field experiments throughout the Sacramento Valley rice growing region. Additionally, 

alternative vegetative indices should be examined to determine if indices that do not saturate 

provide the basis for a better tool.  

 




