
UC San Diego
Technical Reports

Title
Mencius: Building Efficient Replicated State Machines for WANs

Permalink
https://escholarship.org/uc/item/4f90w1zq

Authors
Mao, Yanhua
Junqueira, Flavio
Marzullo, Keith

Publication Date
2008-10-08

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4f90w1zq
https://escholarship.org
http://www.cdlib.org/

Mencius: Building Efficient Replicated State Machines for WANs

Yanhua Mao

CSE, UC San Diego

San Diego, CA - USA

maoyanhua@cs.ucsd.edu

Flavio P. Junqueira

Yahoo! Research Barcelona

Barcelona, Catalonia - Spain

fpj@yahoo-inc.com

Keith Marzullo

CSE, UC San Diego

San Diego, CA - USA

marzullo@cs.ucsd.edu

Abstract

We present a protocol for general state machine repli-

cation – a method that provides strong consistency – that

has high performance in a wide-area network. In particu-

lar, our protocol Mencius has high throughput under high

client load and low latency under low client load even un-

der changing wide-area network environment and client

load. We develop our protocol as a derivation from the

well-known protocol Paxos. Such a development can be

changed or further refined to take advantage of specific

network or application requirements.

1 Introduction

The most general approach for providing a highly avail-

able service is to use a replicated state machine archi-

tecture [32]. Assuming a deterministic service, the state

and function is replicated across a set of servers, and an

unbounded sequence of consensus instances is used to

agree upon the commands they execute. This approach

provides strong consistency guarantees, and so is broadly

applicable. Advances in efficient consensus protocols

have made this approach practical as well for a wide set

of system architectures, from its original application of

embedded systems [33] to asynchronous systems. Re-

cent examples of services that use replicated state ma-

chines include Chubby [6, 8], ZooKeeper [36] and Box-

wood [28].

With the rapid growth of wide-area services such as

web services, grid services, and service-oriented archi-

tectures, a basic research question is how to provide ef-

ficient state machine replication in the wide area. One

could choose an application – for example, atomic com-

mit in a service-oriented architecture, and provide an ef-

ficient solution for that application (for a large client base

and high throughput). Instead, we seek a general solution

that only assumes the servers and the clients are spread

across a wide-area network. We seek high performance:

both high throughput under high client load and low la-

tency under low client load in the face of changing wide-

area network environment and client load. And, we seek

a solution that comes with a derivation, like the popular

consensus protocol Paxos has [22], so it can be modified

to apply it to a specific application [15].

Existing protocols such as Paxos, Fast Paxos [25], and

CoReFP [13] are not, in general, the best consensus pro-

tocols for wide-area applications. For example, Paxos

relies on a single leader to choose the request sequence.

Due to its simplicity it has high throughput, and requests

generated by clients in the same site as the leader enjoy

low latency, but clients in other sites have higher latency.

In addition, the leader in Paxos is a bottleneck that limits

throughput. Having a single leader also leads to an un-

balanced communication pattern that limits the utiliza-

tion of bandwidth available in all of the network links

connecting the servers. Fast Paxos and CoReFP, on the

other hand do not rely on a single leader. They have low

latency under low load, but have lower throughput under

high load due to their higher message complexity.

This paper presents Mencius1, a multi-leader state ma-

chine replication protocol that derives from Paxos. It is

designed to achieve high throughput under high client

load and low latency under low client load, and to adapt

to changing network and client environments.

The basic approach of Mencius is to partition the

sequence of consensus protocol instances among the

servers. For example, in a system with three servers,

one could assign to server 0 the consensus instances 0,

3, 6 etc, server 1 the consensus instances 1, 4, 7, etc

and server 2 the consensus instances 2, 5, 8 etc. Doing

this amortizes the load of being a leader, which increases

throughput when the system is CPU-bound. When the

network is the bottleneck, a partitioned leader scheme

more fully utilizes the available bandwidth to increase

throughput. It also reduces latency, because clients can

use a local server as the leader for their requests; because

of the design of Mencius, a client will typically not have

1

to wait for its server to get its turn.

The idea of partitioning sequence numbers among

multiple leaders is not original: indeed, it is at the core of

a recent patent [26], for the purpose of amortizing server

load. To the best of our knowledge, however, Mencius

is novel: not only are sequence numbers partitioned,

key performance problems such as adapting to chang-

ing client load and to asymmetric network bandwidth are

addressed. Mencius accomplishes this by building on a

simplified version of consensus that we call simple con-

sensus. Simple consensus allows servers with low client

load to skip their turns without having to have a majority

of the servers agree on it first. By opportunistically pig-

gybacking SKIP messages on other messages, Mencius

allows servers to skip turns with little or no communica-

tion and computation overhead. This allows Mencius to

adapt inexpensively to client and network load variance.

The remainder of the paper is as follows. Section 2

describes the wide-area system architecture for which

Mencius is designed. Paxos and its performance prob-

lems under our system architecture is described in Sec-

tion 3. Section 4 refines Paxos into Mencius. Section 5

discusses a flexible commit mechanism that reduces la-

tency. Section 6 discusses how to choose parameters.

Section 7 evaluates Mencius, Section 8 summarizes re-

lated work, and Section 9 discusses future work and open

issues. Section 10 concludes the paper.

2 Wide-area replicated state ma-

chines

We model a system as n sites interconnected by a wide-

area network. Each site has a server and a group of

clients. These run on separate processors and commu-

nicate through a local-area network. The wide-area net-

work has higher latency and less bandwidth than the

local-area networks, and the latency can have high vari-

ance. We model the wide-area network as a set of links

pairwise connecting the servers. The bandwidth between

pairs of servers can be asymmetric and variable.

We do not explicitly consider any dependent behavior

of these links. For example, we do not consider issues

such as routers that are bottlenecks for communication

among three or more sites. This assumption holds when

sites are hosted by data centers and links between cen-

ters are dedicated. As it turns out, our protocol is quite

adaptable to different link behaviors.

Servers communicate with each other through the

wide-area network to implement a replicated state ma-

chine with 1-copy serializability consistency. Servers

can fail by crashing, and perhaps later recovering. The

system is asynchronous, in that servers and communica-

tion do not need to be timely. Clients access the service

by sending requests to their local server via local-area

communication. We assume it is acceptable for clients

not to make progress while their server is crashed. We

discuss relaxing this assumption in Section 9.

Consensus is a fundamental coordination problem that

requires a group of processes to agree on a common out-

put, based on their (possibly conflicting) inputs. To im-

plement the replicated state machine, the servers run an

unbounded sequence of concurrent instances of consen-

sus [32]. Upon receiving a request from a local client, a

server assigns the request (proposes a value) using one

of the unused consensus instances. Multiple servers may

propose different values to the same instance of consen-

sus. All correct servers (servers that do not crash) even-

tually agree on a unique request for each used instance,

and this request must have been proposed. When servers

agree upon a request for a consensus instance, we say

that this request has been chosen. Note that choosing a

request does not imply that the servers know the outcome

of the consensus instance. A server commits a request

once it learns the outcome of the consensus instance.

Upon commit, the server requests the application service

process to execute the request. If the server is the one that

originated the request, then it sends the result back to the

client. In addition, a server commits an instance only

when it has learned and committed all previous consen-

sus instances. 2

It is straightforward to see that all correct servers even-

tually learn and execute the same sequence of requests.

If the servers do not skip instances when proposing re-

quests, this sequence also contains no gaps. Thus, if all

servers start from the same initial state and the service is

deterministic, then the service state will always be con-

sistent across servers and servers will always generate

consistent responses.

2.1 Problem definition

More formally, we define the consensus problem as fol-

lows: Each server in a consensus starts with a initial

value to propose and it decides on some proposed value.

A consensus implementation satisfies the following four

properties.

• Termination: Every correct server eventually de-

cides some value.

• Validity: If all servers propose the same value v,

then every correct server decides v.

• Integrity: Every correct server decides at most one

value.

• Agreement: If a correct server decides v, then ev-

ery correct servers decides v.

2

Note that Termination is a liveness property, whereas

the other three are safety properties.

In a replicated state machine, a server submits requests

to the state machine, and later commits a sequence of re-

quests that are submitted by the servers. Assuming no

two requests are the same, a replicated state machine im-

plementation satisfies the following liveness and safety

properties.

• RSM-Validity: If a correct server submits a request

r, then all correct servers will eventually commit r.

• RSM-Agreement: If a correct server commits a re-

quest r, then all correct servers will eventually com-

mit r as well.

• RSM-Integrity: Any given request r is committed

by each correct server at most once, and only if r
was previously submitted.

• Total Order: If two correct servers p and q both

commit request r1 and r2, then p commits r1 before

r2 if and only if q commits r1 before r2.

Note that RSM-Validity and RSM-Agreement are live-

ness properties, whereas RSM-Integrity and Total Order

are safety properties.

2.2 Performance issues

An efficient implementation of replicated state ma-

chines should have high throughput under high client

load and low latency under low client load.

For throughput, there are two possible bottlenecks in

this service, depending upon the average request size:

Wide-area channels When the average request size is

large enough, channels saturate before the servers reach

their CPU limit. Therefore, the throughput is determined

by how efficiently the protocol is able to propagate re-

quests from its originator to the remaining sites. In this

case, we say the system is network-bound.

Server processing power When the average request

size is small enough, the servers reach their CPU limit

first. Therefore, the throughput is determined by the pro-

cessing efficiency at the bottleneck server. In this case,

we say the system is CPU-bound.

As a rule of thumb, lower message complexity leads

to higher throughput because more network bandwidth

is available to send actual state machine commands, and

less messages per request are processed.

Servers exchange messages to choose and learn the

consensus outcome. Each exchange constitutes a com-

munication step. To achieve low latency, it is impor-

tant to have short chains of wide-area communication

steps for the servers to learn the outcome. However,

the number of communication steps may not be the only

factor impacts latency: high variance on the delivery of

message in wide-area networks is also a major contribu-

tor [18].

3 Why not Paxos?

Paxos [21, 22] is an efficient asynchronous consensus

protocol for replicated state machines. Paxos is a leader-

based protocol: one of the servers acts differently than

the others, and coordinates the consensus instance. There

can be more than one leader at the same time, but during

such periods the protocol may not make progress.

Figure 1 illustrates the message flow in a run of a se-

quence of Paxos instances. Although we show the in-

stances executing sequentially, in practice they can over-

lap. Each instance of Paxos consists of one or more

rounds, and each round can have three phases. Phase 1

(explained in the next paragraph) is only run when there

is a leader change. Phase 1 can be simultaneously run for

an unbounded number of future instances, which amor-

tizes its cost across all instances that successfully choose

a command. Assuming no failures, each server forwards

its requests to the leader, which proposes commands (In-

stance 1 in Figure 1). When the leader receives a pro-

posal, it starts Phase 2 by sending PROPOSE messages

(Instance 0 and 1 in Figure 1) that ask the servers (accep-

tors in Paxos terminology) to accept the value. If there

are no other leaders concurrently proposing requests,

then the servers acknowledge the request with ACCEPT

messages. Once the leader receives ACCEPT messages

from a majority of the servers, it learns that the value has

been chosen and broadcasts a Phase 3 LEARN message

to inform the other servers of the consensus outcome.

Phase 3 can be omitted by broadcasting ACCEPT mes-

sages, which reduces the learning latency for non-leader

servers. This option, however, increases the number of

messages significantly and so lowers throughput.

When a leader crashes (Instance 2 in Figure 1), the

crash is eventually suspected, and another server eventu-

ally arises as the new leader. The new leader then starts

a higher numbered round and polls the other servers

to determine possible commands to propose by running

Phase 1 of the protocol. It does this by sending out PRE-

PARE messages and collecting ACK messages from a ma-

jority of the servers. Upon finishing Phase 1, the new

leader starts Phase 2 to finish any Paxos instances that

have been started but not finished by the old leader be-

fore crashing.

There are other variants of this protocol, such as Fast

Paxos [25] and CoReFP [13], designed to achieve lower

latency. Paxos, however, is in general a better candi-

3

Figure 1: A space time diagram showing the message flow of a sequence of Paxos instances.

date for multi-site systems than Fast Paxos and CoReFP

because of its simplicity and lower wide-area message

complexity, consequently achieving higher throughput.

In the remainder of the paper, we hence compare per-

formance relative only to Paxos. Paxos, however, is still

not ideal for wide-area systems:

Unbalanced communication pattern With Paxos, the

leader generates and consumes more traffic than the other

servers. Figure 1, shows that there is network traffic from

replicas to the leader, but no traffic between non-leader

replicas. Thus, in a system where sites are pairwise con-

nected, Paxos uses only the channels incident upon the

leader, which reduces its ability to sustain high through-

put. In addition, during periods of synchrony, only the

FWD and PROPOSE messages in Paxos carry significant

payload. When the system is network-bound, the volume

of these two messages determines the system through-

put. In Paxos, FWD is sent from the originator to the

leader and PROPOSE is broadcast by the leader. Under

high load, the outgoing bandwidth of the leader is a bot-

tleneck, whereas the channels between the non-leaders

idle. In contrast, Mencius uses a rotating leader scheme.

This not only eliminates the need to send FWD messages,

but also gives a more balanced communication pattern,

which better utilizes available bandwidth.

Computational bottleneck at the leader The leader

in Paxos is a potential bottleneck because it processes

more messages than other replicas. When CPU-bound,

a system running Paxos reaches its peak capacity when

the leader is at full CPU utilization. As the leader re-

quires more processing power than the other servers, the

CPU utilization on non-leader servers do not reach their

maximum capacity, thus underutilizing the overall pro-

cessing capacity of the system. The number of messages

a leader needs to process for every request grows linearly

with the number of servers n, but it remains constant for

other replicas. This seriously impacts the scalability of

Paxos for larger n. By rotating the leader in Mencius, no

single server is a potential bottleneck when the workload

is evenly distributed across the sites of the system.

Higher learning latency for non-leader servers

While the leader always learns and commits any value

it proposes in two communication steps, any other server

needs two more communication steps to learn and com-

mit the value it proposes due to the FWD and LEARN

messages. With a rotating leader scheme, any server can

propose values as a leader. By skipping turns opportunis-

tically when a server has no value to propose, one can

achieve the optimal commit delay of two communica-

tion steps for any server when there are no concurrent

proposals [23]. Concurrent proposals can result in ad-

ditional delay to commit, but such delays do not always

occur. When they do, one can take advantage of com-

mutable operations by having servers execute commands

possibly in different, but equivalent orders [24].

4 Deriving Mencius

In this section, we first explain our assumptions and de-

sign decisions. We then introduce the concept of sim-

ple consensus and use Coordinated Paxos to implement a

simple replicated state machine protocol. Finally, we op-

timize the initial protocol to derive a more efficient one.

This last protocol is the one that we call Mencius.

This development of Mencius has two benefits. First,

by deriving Mencius from Paxos, Coordinated Paxos,

and a set of optimizations and accelerators, it is easier to

see that Mencius is correct. Second, one can continue to

refine Mencius or even derive a new version of Mencius

to adapt it to a particular application.

4.1 Assumptions

We make the following assumptions about the system.

We omit a formal description of the assumptions, and we

refer readers to [9, 10, 21, 22] for details.

Crash process failure Like Paxos, Mencius assumes

that servers fail by crashing and can later recover.

Servers have access to stable storage, which they use to

recover their states prior to failures.

4

Unreliable failure detector ♦P Consensus is not solv-

able in an asynchronous environment when even a sin-

gle process can fail [14]. Like many other asynchronous

consensus protocols, Mencius utilizes a failure detector

oracle to circumvent the impossibility result. Like Paxos,

it relies on the failure detector only for liveness – Men-

cius is safe even when the failure detector makes an un-

bounded number of mistakes. Mencius requires ♦P,

a class of failure detectors that guarantees eventually all

faulty servers and only faulty servers are suspected. As

a comparison, Paxos assumes Ω, a class of failure detec-

tors that provides eventual leader election functionality.

Ω has been shown as the weakest failure detector to im-

plement consensus [9] and ♦P is strictly stronger than Ω.

We explain why Mencius requires ♦P in Section 4.3.

Asynchronous FIFO communication channel Since

we use TCP as the underlying transport protocol, we as-

sume FIFO channels and that messages between two cor-

rect servers are eventually delivered. This is a strictly

stronger assumption compared to the one of Paxos. Had

we instead decided to use UDP, we would have to imple-

ment our own message retransmission and flow control

at the application layer. Assuming FIFO enables opti-

mizations discussed in Section 4.4. These optimizations,

however, are applicable only if both parties of a channel

are available and a TCP connection is established. When

servers fail and recover after long periods, implementing

FIFO channels is impractical as it may require buffer-

ing a large number of messages. Mencius uses a separate

recovery mechanism that does not depend on FIFO chan-

nels (see Section 4.5).

4.2 Simple consensus and Coordinated

Paxos

As explained in Section 3, Paxos only allows the leader

to propose values. We instead have servers take turns

in proposing values. By doing so, servers do not con-

tend when proposing values if there are no failures and

no false suspicions. We take advantage of this fact with

simple consensus.

Simple consensus is consensus in which the values a

server can propose are restricted. Let no-op be a state

machine command that leaves the state unchanged and

that generates no response. In simple consensus, only

one special server, which we call the coordinator, can

propose any command (including no-op); the others can

only propose no-op.3 With Mencius, a replicated state

machine runs concurrent instances of simple consensus.

For each instance, one server is designated as the co-

ordinator. Also, the assignment scheme of instances to

coordinators is known by all servers. To guarantee that

every server has a turn to propose a value, we require

that: (1) every server is the coordinator of an unbounded

number of instances, and (2) for every server p there is

a bounded number of instances assigned to other servers

between consecutive instances that p coordinates. A sim-

ple scheme assigns instance cn + p to server p, where

c ∈ N0 and p ∈ {0, . . . , n− 1}. Without loss of general-

ity, we assume this scheme for the rest of this paper.

A benefit of using simple consensus is that servers can

learn a skipped no-op without having to have a majority

of servers to agree on it first. As a result, SKIP messages

have the minimal learning latency of just one one-way

message delay. This ability combined with two optimiza-

tions discussed in Section 4.4 makes it possible for the

servers to propose no-op at very little cost of both com-

munication and computation overhead. This gives Men-

cius the ability to adapt quickly and cheaply to changing

client load and network bandwidth. Another benefit of

simple consensus is discussed in Section 5: by restrict-

ing the values a non-coordinator can propose, one can

implement a flexible commit mechanism that further re-

duces Mencius’s latency.

Lemma 1. Paxos implements simple consensus.

Proof. Since simple consensus only restricts the initial

value a server can propose, any implementation of con-

sensus, including Paxos, can be used to solve simple con-

sensus. �

We use, however, an efficient variant of Paxos to

implement simple consensus. We call it Coordinated

Paxos (see Appendix A for the protocol in pseudo code).

In each instance of Coordinated Paxos, all servers agree

that the coordinator is the default leader, and start from

the state in which the coordinator had run Phase 1 for

some initial round r. Such a state consists of a promise

not to accept any value for any round smaller than r. A

server can subsequently initiate the following actions, as

shown in Figure 2:

Suggest The coordinator suggests a request v by send-

ing PROPOSE messages with payload v in round r (In-

stance 0 in Figure 2). We call these PROPOSE messages

SUGGEST messages.

Skip The coordinator skips its turn by sending PRO-

POSE messages that proposes no-op in round r (Instance

1 in Figure 2). We call these PROPOSE messages SKIP

messages. Note that because all other servers can only

propose no-op, when the coordinator proposes no-op,

any server learns that no-op has been chosen as soon as

it receives a SKIP message from the coordinator.

5

Figure 2: The message flow of suggest, skip and revoke in Coordinated Paxos.

Revoke When suspecting that the coordinator has

failed, some server will eventually arise as the new leader

and revoke the right of the coordinator to propose a value.

The new leader does so by trying to finish the simple con-

sensus instance on behalf of the coordinator (Instance 2

in Figure 2). Just like a new Paxos leader would do, it

starts Phase 1 for some round r′ > r. If Phase 1 in-

dicates no value may have been chosen, then the new

leader proposes no-op in Phase 2. Otherwise, it proposes

the possible consensus outcome indicated by Phase 1.

The actions suggest, skip and revoke specialize mech-

anisms that already exist in Paxos. Making them ex-

plicit, however, enables more efficient implementations

in wide-area networks.

Theorem 1. Assuming a failure detector at least as

strong as Ω, Coordinated Paxos implements simple con-

sensus.

Proof. By Lemma 1, we know Paxos implements simple

consensus. Coordinated Paxos differs from Paxos in the

followings: (1) Coordinated Paxos starts from a specific

(and safe) state; (2) a server learns no-op upon receiv-

ing a SKIP message from the coordinator, and can act

accordingly; and (3) Coordinated Paxos assumes a fail-

ure detector at least as strong as that assumed by Paxos.

None of the three affects Paxos’s safety and liveness in

term of implementing simple consensus, therefore, Co-

ordinated Paxos implements simple consensus. �

4.3 A simple state machine

We now construct an intermediate protocol P that imple-

ments replicated state machines. At high level, P runs an

unbounded sequence of simple consensus instances and

each instance is solved with Coordinated Paxos. We de-

scribe P using four rules that determine the behavior of a

server and argue that P is correct using these rules. The

pseudo code of P is in Appendix B. In Section 4.4, we

derive Mencius from P .

P needs to handle duplicate requests that arise from

clients submitting requests multiple times due to time-

outs. This can be done by using any well-known tech-

nique, such as assuming idempotent requests or by

recording committed requests and checking for dupli-

cates before committing. Without loss of generality, we

assume, for the rest of the paper, the latter is used and all

duplicated requests are silently dropped.

Lemma 2. Protocol P satisfies RSM-Agreement, RSM-

Integrity and Total Order.

Proof. We prove this lemma by arguing that each of the

three properties holds.

RSM-Agreement If request r is committed by a cor-

rect server p, then the following holds: (1) r must

have been decided by p in some simple consensus

instance i; (2) p must have learned all instances

smaller than i; and (3) p does not learn r in any

instance smaller than i. For any given correct server

q, the Termination property of consensus guarantees

that q will eventually learn all instances smaller than

or equal to i as well. According to the Agreement

property of consensus, the value learned in instance

i is r and no value learned in instances smaller than

i is r. Therefore q commit r once all instances

smaller than or equal to i are learned and committed

by q, which happens eventually.

RSM-Integrity As we have discussed, duplicated re-

quests are handled by recording committed request

and checking for duplicates before committing.

Now, suppose a request r is committed by a cor-

rect server, then r must have been chosen in some

simple consensus instance. The Validity property of

consensus guarantees that r was proposed by some

server in that instance, i.e., previously submitted by

some server.

Total Order If a correct server p commits r1 before r2,

then there must exist i1 and i2 (i1 < i2) such that

(1) p has learned all instances smaller than or equal

to i2; (2) p learns r1 in instance i1 and does not

learn r1 in instances smaller than i1; and (3) p learns

r2 in instance i2 and does not learn r2 in instances

smaller than i2. If a correct server q commits r2 be-

fore r1, then there must exist j1 and j2 (j1 < j2)

such that (1) q has learned all instances smaller than

or equal to j2; (2) p learns r2 in instance j1 and

6

does not learn r2 in instances smaller than j1; and

(3) q learns r1 in instance j2 and does not learn r1

in instances smaller than j2. Without loss of gen-

erality, we assume i2 ≤ j2. Since p learns r1 in

instance i1, according to the Agreement property of

consensus, q must also learn r1 in instance i1. Since

i1 < i2 ≤ j2, this contradicts with q does not learn

r1 in any instance smaller than j2.

�

For RSM-Validity, we use Rule 1-4 to ensure that any

client request sent to a correct server eventually commits.

To minimize the delay in learning, a server suggests a

value immediately upon receiving it from a client.

Rule 1 Each server p maintains its next simple consen-

sus sequence number Ip. We call Ip the index of server

p. Upon receiving a request from a client, a server p sug-

gests the request to the simple consensus instance Ip and

updates Ip to the next instance it will coordinate.

Rule 1 by itself performs well only when all servers

suggest values at about the same rate. Otherwise, the

index of a server generating requests more rapidly will

increase faster than the index of a slower server. Servers

cannot commit requests before all previous requests are

committed, and so Rule 1 commits requests at the rate

of the slowest server. In the extreme case that a server

suggests no request for a long period of time, the state

machine stalls, preventing a potentially unbounded num-

ber of requests from committing. Rule 2 uses a technique

similar to logical clocks [20] to overcomes this problem.

Rule 2 If server p receives a SUGGEST message for in-

stance i and i > Ip, before accepting the value and send-

ing back an ACCEPT message, p updates Ip such that its

new index I ′p = min{k : p coordinates instance k ∧ k >
i}. p also executes skip actions for each of the instances

in range [Ip, I
′
p) that p coordinates.

With Rule 2, slow servers skip their turns. Conse-

quently, the requests that fast servers suggest do not have

to wait for slow servers to have requests to suggest before

committing. However, a crashed server does not broad-

cast SKIP messages, and such a server can prevent others

from committing. Rule 3 overcomes this problem.

Rule 3 Let q be a server that another server p suspects

has failed, and let Cq be the smallest instance that is co-

ordinated by q and not learned by p. p revokes q for all

instances in the range [Cq, Ip] that q coordinates.

Lemma 3. When there is no false suspicion, P with

Rule 1-3 satisfies RSM-Validity.

Proof. If any correct server p suggests a value v to in-

stance i, a server updates its index to a value larger than i
upon receiving this SUGGEST message. Thus, accord-

ing to Rule 2, every correct server r eventually pro-

poses a value (either by skipping or by suggesting) to

every instance smaller than i that r coordinates, and all

non-faulty servers eventually learn the outcome of those

instances. For instances that faulty servers coordinate,

according to Rule 3, non-faulty servers eventually re-

voke them, and non-faulty servers eventually learn the

outcome. Thus, all instances prior to i are eventually

learned, and request v eventually commits, assuming that

p is not falsely suspected by other servers. �

False suspicions, however, are possible with unreliable

failure detectors. We add Rule 4 to allow a server to

suggest a request multiple times upon false suspicions.

Rule 4 If server p suggests a value v 6= no-op to in-

stance i, and p learns that no-op is chosen, then p sug-

gests v again.

Ω has been shown to be the weakest failure detectors

to solve consensus, and ♦W and Ω are equivalent classes

of failure detectors [9]. However, they are not sufficient

to implement a replicated state machine with P . For ex-

ample, ♦W only guarantees there is a time after which

at least one correct server is never suspected. In other

words, some correct server could be permanently falsely

suspected and hence be revoked for unbounded num-

ber of instances in P , keeping this server and its clients

from making progress. Therefore, we use ♦P – the next

stronger commonly-used failure detector.

Lemma 4. Assuming ♦P, P with Rule 1-4 satisfies RSM-

Validity.

Proof. If any correct server p suggests a value v. By

Rule 4, P will continue to re-suggest v upon false sus-

picion until v is chosen. By the definition of ♦P, there

exist a time t after which p will not be suspected. If v
hasn’t been chosen by t , by Lemma 3, v will be cho-

sen once p re-suggested v after t. Therefore, P satisfies

RSM-Validity. �

In practice, a period of no false suspicion only needs to

hold long enough for p to re-suggest v and have it chosen

for the protocol to make progress.

Theorem 2. Assuming ♦P, P implements replicated

state machines.

Proof. From Lemma 2 and Lemma 4. �

7

4.4 Optimizations

Protocol P is correct but not necessarily efficient. It

always achieves the minimal two communication steps

for a proposing server to learn the consensus value, but

its message complexity varies depending on the rates at

which the servers suggest values. The worst case is when

only one server suggests values, in which case the mes-

sage complexity is (n − 1)(n + 2) due to the broadcast

SKIP messages that Rule 2 generates.

Consider the case where server p receives a SUGGEST

message for instance i from server q. As a result, p skips

all of its unused instances smaller than i (Rule 2). Let

the first instance that p skips be i1 and the last instance p
skips be i2. Since p needs to acknowledge the SUGGEST

message of q with an ACCEPT message, p can piggyback

the SKIP messages on the ACCEPT message. Since chan-

nels are FIFO, by the time q receives this ACCEPT mes-

sage, q has received all the SUGGEST messages p sent to

q before sending the ACCEPT message to q. This means

that p does not need to include i1 in the ACCEPT mes-

sage: i1 is the first instance coordinated by p that q does

not know about. Similarly, i2 does not need to be in-

cluded in the ACCEPT message because i2 is the largest

instance smaller than i and coordinated by p. Since both i
and p are already included in the ACCEPT message, there

is no need for any additional information: all we need to

do is augmenting the semantics of the ACCEPT message.

In addition to acknowledging the value suggested by q,

this message now implies a promise from p that it will

not suggest any client requests to any instances smaller

than i in the future. This gives us the first optimization:

Optimization 1 p does not send a separate SKIP mes-

sage to q. Instead, p uses the ACCEPT message that

replies the SUGGEST to promise not to suggest any client

requests to instances smaller than i in the future.4

Lemma 5. Protocol P with Optimization 1 implements

replicated state machines correctly.

Proof. Optimization 1 merely combines multiple mes-

sages that P would have sent separately into one mes-

sage. Doing this clearly does not violate any of the safety

properties. It does not affect the liveness properties ei-

ther, since the combined message is sent with no addi-

tional delay. Therefore, Protocol P with Optimization 1

is correct. �

We can also apply the same technique to the SKIP mes-

sages from p to other servers. Instead of using ACCEPT

messages, we piggyback the SKIP messages on future

SUGGEST messages from p to another server r:5

Optimization 2 p does not send a SKIP message to r
immediately. Instead, p waits for a future SUGGEST mes-

sage from p to r to indicate that p has promised not to

suggest any client requests to instances smaller than i.

Note that Optimization 2 can potentially defer the

propagation of SKIP messages from p to r for an un-

bounded period of time. For example, consider three

servers p0, p1, p2. Only p0 suggests values for instance 0,

3, 6, and so on. p0 always learns the result for all in-

stances by means of the ACCEPT messages from p1 and

p2. Server p1, however, learns all values that p0 pro-

poses, and it knows which instances it is skipping, but it

does not learn that p2 skips, such as for instance 2 in this

example. This leaves gaps in the view of p1 of the con-

sensus sequence and prevents p1 from committing values

learned in instance 3, 6, and so on. Similarly, p2 does not

learn that p1 is skipping and prevents p2 from commit-

ting values learned in 3, 6, and so on.

This problem only occurs between two idle servers p1

and p2: any value suggested by either server will propa-

gate the SKIP messages in both directions and hence fill

in the gaps. Fortunately, while idle, neither p1 nor p2

is responsible for generating replies to the clients. This

means that, from the client perspective, its individual re-

quests are still being processed in a timely manner, even

if p1 and p2 are stalled. We use a simple accelerator rule

to limit the number of outstanding SKIP messages before

p1 and p2 start to catch up:

Accelerator 1 A server p propagates SKIP messages to

r if the total number of outstanding SKIP messages to r is

larger than some constant α, or the messages have been

deferred for more than some time τ .

Lemma 6. Protocol P with Optimization 2 and Acceler-

ator 1 implements replicated state machines correctly.

Proof. Optimization 2 merely combines multiple mes-

sages that P would have sent separately into one mes-

sage. Doing this clearly does not violate any of the safety

properties. Optimization 2 alone, however, could affect

the liveness properties, since it can potentially delay the

propagation of SKIP messages for an unbounded amount

of time. Because Accelerator 1 bounds the delay and P
only relies on the eventual delivery of messages for live-

ness, adding Optimization 2 and Accelerator 1 to pro-

tocol P would not affect liveness, and so P still imple-

ments replicated state machines. �

Given that the number of extra SKIP messages gener-

ated by Accelerator 1 are negligible over the long run, the

amortized wide-area message complexity for Mencius is

3n−3 ((n−1) SUGGEST, ACCEPT and LEARN messages

each), the same as Paxos when FWD is not considered.

8

We can also reduce the extra cost generated by the

revocation mechanism. If server q crashes, revocations

need to be issued for every simple consensus instance

that q coordinates. By doing this, we increase both the

latency and message complexity due to the use of the

full three phases of Paxos. A simple idea is to revoke all

q’s future turns, which irreversibly chooses no-op for all

q’s further turns. However, q may need to suggest values

in the future, either because q was falsely suspected or

because it recovers. A better idea is the following:

Optimization 3 Let q be a server that another server p
suspects has failed, and let Cq be the smallest instance

that is coordinated by q and not learned by p. For some

constant β, p revokes q for all instances in the range

[Cq, Ip + 2β] that q coordinates if Cq < Ip + β.

Optimization 3 allows p to revoke q at least β instances

in advance before p suggests a value to some instance i
greater than Cq. By tuning β, we ensure that by the time

p learns the outcome of instance i, all instances prior to

i and coordinated by q are revoked and learned. Thus, p
can commit instance i without further delay. Since Opti-

mization 3 also requires revocations being issued in large

blocks, the amortized message cost is small.

Lemma 7. Protocol P with Optimization 3 implements

replicated state machines correctly.

Proof. Note that Optimization 3 can only exclude the ac-

tions of a falsely suspected server for a bounded number

of instances. It clearly does not violate any of the safety

properties. Assuming ♦P means that such false suspi-

cions will eventually cease. So, using Optimization 3

does not affect the liveness of the protocol. �

Optimization 3 addresses the common case where

there are no false suspicions. When a false suspicion

does occur, it may result in poor performance while

servers are falsely suspected. We consider the poor per-

formance in this case acceptable because we assume

false suspicions occur rarely in practice and the cost of

recovery from a false suspicion is small (see Section 6).

Mencius is P combined with Optimizations 1-3 and

Accelerator 1. See Appendix C for its pseudo code.

Theorem 3. Mencius implements replicated state ma-

chines correctly.

Proof. From Lemma 5, 6 and 7. �

Mencius, being derived from Paxos, has the same quo-

rum size of f +1. This means that up to f servers can fail

among a set of 2f + 1 servers. Paxos incurs temporar-

ily reduced performance when the leader fails. Since all

servers in Mencius act as a leader for an unbounded num-

ber of instances, Mencius has this reduced performance

when any server fails. Thus, Mencius has higher perfor-

mance than Paxos in the failure-free case at the cost of

potentially higher latency upon failures. Note that higher

latency upon failures also depends on other factors such

as the stability of the communication network.

4.5 Recovery

In this section, we outline how Mencius recovers from

failures.

Temporary broken TCP connection We add an ap-

plication layer sequence number to Mencius’s messages.

FIFO channels are maintained by retransmitting missing

messages upon reestablishing the TCP connection.

Short term failure Like Paxos, Mencius logs its state

to stable storage and recovers from short term failures by

replaying the logs and learning recent chosen requests

from other servers.

Long term failure It is impractical for a server to re-

cover from a long period of down time by simply learn-

ing missing sequences from other servers, since this re-

quires correct servers to maintain an unbounded long log.

The best way to handle this, such as with checkpoints or

state transfer [8, 27], is usually application specific.

4.6 When to revoke

So far, we have assumed that every server can start the

revocation process against a suspected server. Doing so,

however, is an inefficient use of resources, and it also

creates a liveness problem. For example, consider three

servers p, q and r. Suppose r crashes and both p and

q suspect the failure. If p and q concurrently attempt to

revoke r – for example, p chooses round a1 and then q
chooses round a2 > a1 before p completes – then no

value will be chosen in round a1. This situation can re-

peat an unbounded number of times.

This is the same liveness problem that occurs in Paxos,

and it can be addressed in the same way: have a leader

elected to revoke the (suspected of being faulty) server r.

Like in a state machine built with Paxos, care has to be

taken in ensuring that all servers are up to date as to the

point that r failed. For example, suppose r crashed after

having learned the outcome of instance 2, but fails after

sending LEARN to p and not to q. When p revokes r, it

will start from the next instance – say, instance 5. When

p prepares q to revoke r starting at instance 5, q will note

that it doesn’t know the outcome of instance 2. So, q can

prompt p, and p can send a LEARN message that informs

q as to the outcome of instance 2.

9

Figure 3: Delayed commit.

5 Commit delay and out-of-order

commit

In Paxos, the leader serializes the requests from all the

servers. For purposes of comparison, assume that Paxos

is implemented, like Mencius, using FIFO channels. If

the leader does not crash, then each server learns the re-

quests in order, and can commit a request as soon as it

learns the request. The leader can commit a request as

soon as it collects ACCEPT messages from a quorum of

f+1 servers, and any other server will have an additional

round trip delay due to the FWD and LEARN messages.

While a Mencius server can commit the request in just

one round trip delay when there is no contention, com-

mits may have to be delayed up to two communication

steps when there are concurrent suggestions.

For example, in the scenario illustrated in Figure 3,

server p0 suggests x to instance 0 concurrently with p1

suggesting y to instance 1. p1 receives the SUGGEST

message for x from p0 before it receives the ACCEPT

message for y. Upon receiving the ACCEPT for y from

p0, p1 learns that y has been chosen for instance 1, but

cannot commit y yet as it has only accepted but not

learned x for instance 0. In this case, p1 cannot com-

mit y until it receives the LEARN message for x from p0,

at which point it can commit both x and y at once. We

say that y experiences a delayed commit at p1.

The delay can be up to two communication steps, since

p1 must learn y in between accepting x and learning x for

a delayed commit to occur. If p1 learns y after it learns x,

then there is clearly no extra delay. If p1 learns y before

it accepts x, then p0 must have accepted y before sug-

gesting x because of the FIFO property of the channel.

In this case, according to Rule 2, p0 must have skipped

instance 0, which contradicts the assumption that p0 sug-

gested x to instance 0. Thus, the extra delay to commit

y can be as long as one round trip communication be-

tween p0 and p1 (p1 sends ACCEPT to p0 and p0 sends

LEARN back), i.e., up to two communication steps. We

can reduce the upper bound of delayed commit to one

communication step by broadcasting ACCEPT messages

and eliminating LEARN messages. This reduction gives

Mencius an optimal commit delay of three communica-

tion steps when there are concurrent proposals [23] at

the cost of higher message complexity and thus lower

throughput.

Because delayed commit arises with concurrent sug-

gestions, it becomes more of a problem as the number of

suggestions grows. In addition, delayed commit impacts

the commit latency but not overall throughput: over a

long period of time, the total number of requests com-

mitted is independent of delayed commits.

Out-of-order commit We can mitigate the effects of

delayed commit with a simple and more flexible com-

mit mechanism that allows x and y to be executed in any

order when they are commutable, i.e., executing x fol-

lowed by y produces the same system state as executing

y followed by x. By the definition of simple consen-

sus, when p1 receives the SUGGEST message for x, it

knows that only x or no-op can be chosen for instance 0.

Since no-op commutes with any request, upon learning

y, p1 can commit y before learning x and send the re-

sult back to the client without any delay when x and y
are commutable. We call this mechanism out-of-order

commit and evaluate its effectiveness in Section 7.5. We

implement out-of-order commit in Mencius by tracking

the dependencies between the requests and by commit-

ting a request as soon as all requests it depends on have

been committed. This technique can not be applied to

Paxos as easily, because Paxos is based on consensus,

which does not have any restriction on the value a server

can propose – the key for Mencius to guarantee safety

while allowing out-of-order commit.

6 Choosing parameters

Accelerator 1 and Optimization 3 use three parameters:

α, β and τ . We discuss here strategies for choosing these

parameters.

Accelerator 1 limits the number of outstanding SKIP

messages between two idle server p1 and p2 before they

start to catch up. It bounds both the amount of time (τ)

and number of outstanding messages (α).

When choosing τ , it should be large enough so that the

cost of SKIP messages can be amortized. But, a larger τ
adds more delay to the propagation of SKIP messages,

and so results in extra commit delay for requests learned

at p1 and p2. Fortunately, when idle, neither p1 nor p2

generates any replies to the clients, and so such extra de-

lay has little impact from a client’s point of view. For

example, in a system with 50 ms one-way link delay, we

can set τ to the one-way delay. This is a good value be-

cause: (1) With τ = 50 ms, Accelerator 1 generates at

most 20 SKIP messages per second, if α is large enough.

10

The network resource and CPU power needed to transmit

and process these messages are negligible; and (2) The

extra delay added to the propagation of the SKIP mes-

sages is at most 50 ms, which could occur anyway due to

network delivery variance or packet loss.

α limits the number of outstanding SKIP messages be-

fore p1 and p2 start to catch up: if τ is large enough,

α SKIP messages are combined into just one SKIP mes-

sage, reducing the overhead of SKIP messages by a factor

of α. For example, we set α to 20 in our implementation,

which reduces the cost of SKIP message by 95%.

β defines an interval of instances: if a server q is

crashed and Ip is the index of a non-faulty server p, then

in steady state all instances coordinated by q and in the

range [Ip, Ip + k] for some k : β ≤ k ≤ 2β are re-

voked. Choosing a large β guarantees that while crashed,

q’s inactivity will not slow down other servers. It, how-

ever, makes the indexes of q and other servers more out

of synchronization when q recovers from a false suspi-

cion or a failure. Nonetheless, the overhead of having

a large β is negligible. Upon recovery, q will learn the

instances it coordinates that have been revoked. It then

updates its index to the next available slot and suggests

the next client request using that instance. Upon receiv-

ing the SUGGEST message, other replicas skip their turns

and catch up with q’s index (Rule 2). The communication

overhead of skipping is small, as discussed in Optimiza-

tion 1 and 2. The computation overhead of skipping mul-

tiple consecutive instances at once is also small, since an

efficient implementation can easily combine their states

and represent them at the cost of just one instance. While

setting β too large could introduce problems with con-

sensus instance sequence number wrapping, any practi-

cal implementation should have plenty of room to choose

an appropriate β.

Here is one way to calculate a lower bound for β. Re-

vocation takes up to two and a half round trip delays. Let

i be an instance of server q that is revoked. To avoid

delayed commit of some instance i′ > i at a server p,

one needs to start revoking i two and a half round trips

in advance of instance i′ being learned by p. In our im-

plementation with a round trip delay of 100 ms and with

n = 3, the maximum throughput is about 10, 000 oper-

ations per second. Two and a half round trip delays are

250 ms, which, at maximum throughput, is 2, 500 oper-

ations. All of these operations could be proposed by a

single server, and so the instance number may advance

by as many as 3 × 2, 500 = 7, 500 in any 250 ms in-

terval. Thus, if β ≥ 7, 500, then in steady state no in-

stances will suffer delayed commit arising from q being

crashed. Taking network deliver variance into account,

we set β = 100, 000, which is a conservative value that

is more than ten times the lower bound, but still reason-

ably small even for the 32-bit sequence number space in

our implementation.

7 Evaluation

We ran controlled experiments in the DETER testbed [5]

to evaluate the performance of Mencius and Paxos. We

used TCP as the transport protocol and implemented both

protocols in C++. Here are some implementation details:

API Both Paxos and Mencius implement two simple

API calls: PROPOSE(v) and ONCOMMIT(v). An appli-

cation calls PROPOSE to issue a request, and the state ma-

chine upcalls the application via ONCOMMIT when the

request is ready to commit. When out-of-order commit is

enabled, Mencius uses a third upcall ISCOMMUTE(u, v)
to ask the application if two requests are commutable.

Nagle’s algorithm Nagle’s algorithm [29] is a tech-

nique in TCP for improving the efficiency of wide-area

communication by batching small messages into larger

ones. It does so by delaying sending small messages and

waiting for data from the application. In our implemen-

tation, we can instruct servers to dynamically turn on or

turn off Nagle’s algorithm.

Parameters We set the parameters that control Ac-

celerator 1 and Optimization 3 to α = 20 messages,

τ = 50 ms, and β = 100, 000 instances.

7.1 Experimental settings

To compare the performance of Mencius and Paxos, we

use a simple, low-overhead application that enables com-

mutable operations. We chose a simple read/write reg-

ister service of κ registers. The service implements a

read and a write command. Each command consists of

the following fields: (1) operation type – read or write

(1 bit); (2) register name (2 bytes); (3) the request se-

quence number (4 bytes); and (4) ρ bytes of dummy pay-

load. All the commands are ordered by the replicated

state machine in our implementation. When a server

commits a request, it executes the action, sends a zero-

byte reply to the client and logs the first three fields along

with the client’s ID. We use the logs to verify that all

servers learn the same client request sequence; or, when

reordering is allowed, that the servers learned compati-

ble orders. Upon receiving the reply from the server, the

client computes and logs the latency of the request. We

use the client-side log to analyze experiment results.

We evaluated the protocols using a three-server clique

topology for all but the experiments in Section 7.4. This

architecture simulated three data centers (A, B and C)

connected by dedicated links. Each site had one server

11

node running the replicated register service, and one

client node that generated all the client requests from

that site. Each node was a 3.0 GHz Dual-Xeon PC with

2.0 GB memory running Fedora 6. Each client generated

requests at either a fixed rate or with inter-request delays

chosen randomly from a uniform distribution. The ad-

ditional payload size ρ was set to be 0 or 4, 000 bytes.

50% of the requests were reads and 50% were writes.

The register name was uniformly chosen from the total

number of registers the service implemented. A virtual

link was set up between each pair of sites using the Dum-

myNet [30] utility. Each link had a one-way delay of

50 ms. We also experimented with other delay settings

such as 25 ms and 100 ms, but do not report these results

here because we did not observe significant differences

in the findings. The link bandwidth values varied from

5 Mbps to 20 Mbps. When the bandwidths were chosen

within this range, the system was network-bound when

ρ = 4, 000 and CPU-bound when ρ = 0. Except where

noted, Nagle’s algorithm was enabled.

In this section, we use “Paxos” to denote the regis-

ter service implemented with Paxos, “Mencius” to de-

note the register service using Mencius and with out-of-

order commit disabled, and “Mencius-κ” to denote the

service using Mencius with κ total registers and out-of-

order commit enabled (e.g., Mencius-128 corresponds to

the service with 128 registers). Given the read/write ra-

tio, requests in Mencius-κ can be moved up, on average,

0.75κ slots before reaching an incommutable request.

We used κ equal to 16, 128, or 1, 024 registers to rep-

resent a service with low, moderate and a high likelihood

of adjacent requests being commutable, respectively.

We first describe, in Section 7.2, the throughput of

the service both when it is CPU-bound and when it is

network-bound, and we show the impact of asymmetric

channels and variable bandwidth. In both cases, Mencius

has higher throughput. We further evaluate both pro-

tocols under failures in Section 7.3. In Section 7.4 we

show that Mencius is more scalable than Paxos. In Sec-

tion 7.5 we measure latency and observe the impact of

delayed commit. In general, as load increases, the com-

mit latency of Mencius degrades from being lower than

Paxos to being the same as the one of Paxos. Reorder-

ing requests decreases the commit latency of Mencius.

Finally, we show that the impact of variance in network

latency is complex.

7.2 Throughput

To measure throughput, we use a large number of clients

generating requests at a high rate. Figure 4 shows the

throughput of the protocols, for a fully-connected topol-

ogy with 20 Mbps available for each link, and a total of

120 Mbps available bandwidth for the whole system.

Figure 4: Throughput for 20 Mbps bandwidth

� �� �� ��
�

���

���

���

�

�

�
�
	�
�
�
�
�
�
��
��
�

�

��
�	�� �
� ���	���

� � ���	� �

� � ���	� �

� � ���	� �

Figure 5: ρ = 4, 000 with asymmetric bandwidth

When ρ = 4, 000, the system was network-bound: all

four Mencius variants had a fixed throughput of about

1, 550 operations per sec (ops). This corresponds to

99.2 Mbps, or 82.7% utilization of the total bandwidth,

not counting the TCP/IP and MAC header overhead.

Paxos had a throughput of about 540 ops, or one third of

Mencius’s throughput: Paxos is limited by the leader’s

outgoing bandwidth.

When ρ = 0, the system is CPU-bound. Paxos

presents a throughput of 6, 000 ops, with 100% CPU uti-

lization at the leader and 50% at the other servers. Men-

cius’s throughput under the same condition was 9, 000
ops, and all three servers reached 100% CPU utilization.

Note that the throughput improvement for Mencius was

in proportion to the extra CPU processing power avail-

able. Mencius with out-of-order commit enabled had

lower throughput compared to Mencius with this feature

disabled because Mencius had to do the extra work of

dependency tracking. The throughput drops as the total

number of registers decreases because with fewer regis-

ters there is more contention and dependencies to handle.

Figure 5 demonstrates Mencius’s ability to use avail-

able bandwidth even when channels are asymmetric with

respect to bandwidth. Here, we set the bandwidth of the

links A→B and A→C to 20 Mbps, links B→C and

B→A to 15 Mbps and links C→B and C→A to 10 Mbps.

We varied the number of clients, ensuring that each site

had the same number of clients. Each client generated

requests at a constant rate of 100 ops. The additional

payload size ρ was 4, 000 bytes. As we increased the

number of clients, site C eventually saturated its outgo-

12

� �� ��� ��� ���
�

���

���

���

�

�

�
�
	�
�
�
�
�
�
��
��
�

�

���
� �

	�

� ���
� �

� ���
� �

� ���
� �

Figure 6: Mencius dynamically adapts to changing net-

work bandwidth (ρ = 4, 000)

ing links first; and from that point on committed requests

at a maximum throughput of 285 ops. In the meanwhile,

the throughput at both A and B increased until site B
saturated its outgoing links at 420 ops. Finally site A
saturated its outgoing links at 530 ops. As expected, the

maximum throughput at each site is proportional to the

outgoing bandwidth (in fact, the minimum bandwidth).

Figure 6, shows Mencius’s ability to adapt to chang-

ing network bandwidth. We set the bandwidth of links

A→B and A→C to 15 Mbps, links B→A and B→C
to 10 Mbps, and link C→A and C→B to 5 Mbps. Each

site had a large number of clients generating enough re-

quests to saturate the available bandwidth. Site A, B and

C initially committed requests with throughput of about

450 ops, 300 ops, and 150 ops respectively, reflecting the

bandwidth available to them. At time t = 60 seconds,

we dynamically increased the bandwidth of link C→A
from 5 Mbps to 10 Mbps. With the exception of a spike,

C’s throughput did not increase because it is limited by

the 5 Mbps link from C to B. At t = 120 seconds, we

dynamically increased the bandwidth of link C→B from

5 Mbps to 10 Mbps. This time, site C’s throughput dou-

bles accordingly. At t = 180 seconds, we dynamically

decreased the bandwidth of link A→C from 15 Mbps to

5 Mbps. The throughput at site A dropped, as expected,

to one third.

In summary, Mencius achieves higher throughput

compared to Paxos under both CPU-bound and network-

bound workload. Mencius also fully utilizes available

bandwidth and adapts to bandwidth changes.

7.3 Throughput under failure

In this section, we show throughput during and after a

server failure. We ran both protocols with three servers

under network-bound workload (ρ = 4, 000). After 30
seconds, we crashed one server. We implemented a sim-

ple failure detector that suspects a peer when it detects

the loss of TCP connection. The suspicion happened

quickly, and so we delayed reporting the failure to the

suspecting servers for another five seconds. Doing so

made it clearer what occurs during the interval when a

server’s crash has not yet been suspected.

Figure 7(a) shows Mencius’s instantaneous through-

put observed at server p0 when we crash server p1. The

throughput is roughly 850 ops in the beginning, and

quickly drops to zero when p1 crashes. During the pe-

riod the failure remains unreported, both p0 and p2 are

still able to make progress and learn instances they coor-

dinate, but cannot commit these instances because they

have to wait for the consensus outcome of the missing

instances coordinated by p1. When the failure detector

reports the failure, p0 starts revocation against p1. At the

end of the revocation, p0 and p2 learn of a large block of

no-ops for instances coordinated by p1. This enables p0

to commit all instances learned during the five second pe-

riod in which the failure was not reported, which results

in a sharp spike of 3, 600 ops. Once these instances are

committed, Mencius’s throughput stabilizes at roughly

580 ops. This is two thirds of the rate before the failure,

because there is a reduction in the available bandwidth

(there are fewer outgoing links), but it is still higher than

that of Paxos under the same condition.

Figure 7(b) shows Paxos’s instantaneous throughput

observed at server p1 when we crash the leader p0.

Throughput is roughly 285 ops before the failure, and it

quickly drops to zero when p0 crashes because the leader

serializes all requests. Throughput remains zero for five

seconds until p1 becomes the new leader, which then

starts recovering previously unfinished instances. Once

it finishes recovering such instances, Paxos’s throughput

goes back to 285 ops, which was roughly the throughput

before the failure of p0. Note that at t = 45 seconds,

there is a sharp drop in the throughput observed at p1.

This is due to duplicates: upon discovering the crash of

p0, both p1 and p2 need to re-propose requests that have

been forwarded to p0 and are still unlearned. Some of

the requests, however, have sequence numbers (assigned

by p0) and have been accepted by either p1 or p2. Upon

taking leadership, p1 revokes such instances, hence re-

sulting in duplicates. In addition, the throughput at p1

has higher variance after the failure than before. This is

consistent with our observation that the Paxos leader sees

higher variance than other servers.

Figure 7(c) shows Paxos’s instantaneous throughput of

leader p0 when p1 crashes. There is a small transient

drop in throughput but since the leader and a majority of

servers remain operational, throughput quickly recovers.

To summarize, Mencius temporarily stalls when any

of the servers fails while Paxos temporarily stalls only

when the leader fails. Also, the throughput of Men-

cius drops after a failure because of a reduction on avail-

able bandwidth, while the throughput of Paxos does not

change since it does not use all available bandwidth.

13

� �� �� �� ��

�

���

����

����

����

�	��
��
�

�
�	�
�� ������

�

�
�
�
	�
�
�
�
�
�
��
��
�

�

���
� ��
��

� �
������ �
��
�� �

�	����
� ����
��
� �	����
� �
����
�

��� �
�����

(a) One Mencius server crashes

� �� �� �� ��

�

���

���

�	����
� �
����
�

��� �	���

���
� ��
��

� �	���� �
��
�� ��	����
� ����
��
�

�	��
��
�

������	�
�

(b) Paxos leader crashes

� �� �� �� ��

�

���

���

���
���� �������

��� �����

����� ���	�

� ������ ������� �

���
���� �����	��

(c) One Paxos non-leader crashes

Figure 7: Mencius and Paxos’s throughput under failure

7.4 Scalability

For both Paxos and Mencius, availability increases by

increasing the number of servers. Given that wide-area

systems often target an increasing population of users,

and sites in a wide-area network can periodically discon-

nect, scalability is an important property.

We evaluated the scalability of both protocols by run-

ning them with a state machine ensemble of three, five

and seven sites. We used a star topology where all sites

connected to a central node: these links had a bandwidth

of 10 Mbps and 25 ms one-way delay. We chose the

star topology to represent the Internet cloud as the cen-

tral node models the cloud. The 10 Mbps link from a

site represents the aggregated bandwidth from that site

to all other sites. We chose 10 Mbps because it is large

enough to have a CPU-bound system when ρ = 0, but

small enough so that the system is network-bound when

ρ = 4, 000. When n = 7, 10 Mbps for each link gives

a maximum demand of 70 Mbps for the central node,

which is just under its 100 Mbps capacity. The 25 ms

one-way delay to the central node gives an effective

50 ms one-way delay between any two sites. Because we

only consider throughput in this section, network latency

is irrelevant. To limit the number of machines we use,

we chose to run the clients and the server on the same

physical machine at each site. Doing this takes away

some of the CPU processing power from the server; this

is equivalent to running the experiments on slower ma-

chines under CPU-bound workload (ρ = 0), and has no

effect under network-bound workload (ρ = 4, 000).

When the system is network-bound, increasing the

number of sites (n) makes both protocols consume more

bandwidth per request: each site sends a request to each

of the remaining n − 1 sites. Since Paxos is limited by

the leader’s total outgoing bandwidth, its throughput is in

proportion to 1
n−1 . Mencius, on the other hand, can use

the extra bandwidth provided by the new sites, and so the

throughput is in proportion to n
n−1 . Figure 8(a) shows

both protocols’ throughput with ρ = 4, 000. Mencius

started with a throughput of 430 ops with three sites, ap-

�

���

���

��

�	
 ��

�	

�
�
	�
�
�
�
�
�
��
��
�

�

��

�	

� �	��
�

� ����

(a) ρ = 4, 000

�

����

�����

�� ����� �� ������� �����

(b) ρ = 0

Figure 8: Throughput vs. number of sites

proximately three times higher than Paxos’s 150 ops un-

der the same condition. When n increased to five, Men-

cius’s throughput drops to 360 ops (84% ≈ (5
4)/(3

2)),
while Paxos’s drops to 75 ops (50% = (1

4)/(1
2)). When

n increased to seven, Mencius’s throughput dropped to

340 ops (79% ≈ (7
6)/(3

2)) while Paxos’s dropped to

50 ops (33% = (1
6)/(1

2)).
When the system is CPU-bound, increasing n requires

the leader to perform more work for each client request.

Since the CPU of the leader is a bottleneck for Paxos,

its throughput drops as n increases. Mencius, by rotating

the leader, takes advantage of the extra processing power.

Figure 8(b) shows throughput for both protocols with

ρ = 0. As n increases, Paxos’s throughput decreases

gradually. Mencius’s throughput increases gradually be-

cause more processing power outweighs the increasing

processing cost for each request. When n = 7, Men-

cius’s throughput is almost double that of Paxos.

7.5 Latency

In this section, we use the three-site clique topology to

measure Mencius’s commit latency under low to medium

load. We ran the experiments with both Nagle on and

off. Not surprisingly, both Mencius and Paxos with Na-

gle on show a higher commit latency due to the extra de-

lay added by Nagle’s algorithm. Having Nagle’s enabled

also adds some variability to the commit latency. For ex-

ample, with Paxos, instead of a constant commit latency

of 100 ms at the leader, the latency varied from 100 to

14

� �� ��� ���

��

���

���

���

��� ����� ����� ��

����	���� ��������

����� ����� �� 	��� �

����	��� ��������

����� ����� ��

����	���� ��������

� ����� �

� ����� �
�
�
��
	
�
�
��
�

�

����� ���
�

Figure 9: Mencius’s commit latency when client load

shifts from one site to another

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

�

�

�
�
	
�
��
��
�
�
��
�

��
��
�
��
�

�

�����	�� ����

� ���	���� ��
���
��

� ���	���� �� ��
����
��

� ������ ��
���
��

Figure 10: Commit latency distribution under low and

medium load

250 ms with a concentration around 150 ms. Except for

this, Nagle’s algorithm does not affect the general behav-

ior of commit latency. Therefore, for the sake of clarity,

we only present the results with Nagle off for the first

two experiments. With Nagle turned off, all experiments

with Paxos showed a constant latency of 100 ms at the

leader and 200 ms for the other servers. Since we have

three servers, Paxos’s average latency was 167 ms. In

the last set of experiments, we increased the load and so

turned Nagle on for more efficient network utilization.

In a wide-area system, the load of different sites can

be different for many reasons, such as time zone. To

demonstrate the ability of Mencius to adjust to a chang-

ing client load, we ran a three-minute experiment with

one client on site A and one on B. Site A’s client

generated requests during the first two minutes and site

B’s client generated requests during the last two min-

utes. Both clients generate requests at the same rate

(δ ∈ [100 ms, 200 ms]). Figure 9 shows that during the

first minute when only site A generated requests, all re-

quests had the minimal 100 ms commit latency. In the

next minute when both sites A and B generated requests,

the majority of the requests still had the minimal 100 ms

delay, but some requests experienced extra delayed com-

mits of up to 100 ms. During the last minute, the laten-

cies return to 100 ms.

To further see the impact of delayed commit, we ran

experiments with one client at each site and all three

clients concurrently generating requests. Figure 10 plots

the CDF of the commit latency under low load (the inter-

request delay of δ ∈ [100 ms, 200 ms]) and medium load

(δ ∈ [10 ms, 20 ms]). We show only the low load dis-

tribution for Paxos because the distribution for medium

load is indistinguishable from the one we show. For

Paxos, one third of the requests had a commit latency

of 100 ms and two thirds had a 200 ms latency. With low

load the contention level was low and delayed commit

happened less often for Mencius. As a result, about 50%
of the Mencius requests have the minimal 100 ms delay.

For those requests that did experience delayed commits,

the extra latency is roughly uniformly distributed in the

range (0 ms, 100 ms). Under medium load, the concur-

rency level goes up and almost all requests experience

delayed commits. The average latency is about 155 ms,

which is still better than Paxos’s average of 167 ms under

the same condition.

For the experiments of Figure 11, we increased the

load by adding more clients, and we enabled Nagle. All

curves show lower latency under higher load. This is be-

cause of the extra delay introduced by Nagle: the higher

the client load, the more often messages are sent, and

therefore on average, the less time any individual mes-

sage is buffered by Nagle. This effect is much weaker in

the ρ = 4, 000 cases than the ρ = 0 case because Na-

gle has more impact on small messages. All experiments

also show a rapid jump in latency as the protocols reach

their maximum throughput: at this point, the queues of

client requests start to grow rapidly.

Figure 11(a) shows the result for the network-bound

case of ρ = 4, 000. Mencius and Paxos had about

the same latency before Paxos reached its maximum

throughput. At this point, delayed commit has become

frequent enough that Mencius has the same latency as

Paxos. Lower latency can be obtained by allowing com-

mutable requests to be reordered. Indeed, Mencius-1024,

which has the lowest level of contention, had the low-

est latency. For example, at 340 ops, Paxos and Men-

cius showed an average latency of 195 ms, Mencius-

16 had an average latency of 150 ms, and Mencius-128

and Mencius-1024 had an average latency of 130 ms,

which is an approximate 30% improvement. As client

load increased, Mencius’s latency remained roughly the

same, whereas Mencius-16’s latency increased gradually

because the higher client load resulted in fewer oppor-

tunities to take advantage of commutable requests. Fi-

nally, Mencius-128 and Mencius-1024 showed about the

same latency as client load increased, with Mencius-

1024 being slightly better. This is because at the max-

imum client load (1, 400 ops) and correspondent latency

(130 ms), the maximum number of concurrently running

requests is about 180 requests. This gave Mencius-128

and Mencius-1024 about the same opportunity to reorder

requests.

Figure 11(b) shows the result for the CPU-bound case

of ρ = 0. It shows the same trends as Figure 11(a).

The impact of Nagle on latency is more obvious, and

before reaching 900 ops, the latency of all four vari-

ances of Mencius increase as the load goes up. This is

15

� ��� ��� ���� ����
���

���

���

���

�

�

�
�
��
	
�
�
��
�

�

���������� �����

� �������

� ������������

� ����������

� ���������	

� �����

(a) ρ = 4, 000, no network variance

� ���� �����
���

���

���

���

��	�������� ���
�

(b) ρ = 0, no network variance

� ���� ����
���

���

���

���

���

��	�������� ���
�

(c) ρ = 0, with network variance

Figure 11: Commit latency vs offered client load

because delayed commits happened more often as the

load increased. We see the increase in latency because

the penalty from delayed commits outweighed the ben-

efits gained by being delayed, on average, for less time

by Nagle. In addition, Mencius started with a slightly

worse latency than Paxos, and the gap between the two

decreased as throughput goes up. Out-of-order commit

helps Mencius to reduces its latency: Mencius-16 (a high

contention level) had about the same latency as Paxos.

Finally, Mencius-128’s latency was between Mencius-

16 and Mencius-1024. As client load increased, the la-

tency for Mencius-128 tended away from Mencius-1024

towards Mencius-16. This is because the higher load re-

sulted in higher contention: increased contention gave

Mencius-128 less and less flexibility to reorder requests.

In the experiment of Figure 11(c), we select delivery

latencies at random. It is the same experiment as the one

of Figure 11(b), except that we add a Pareto distribution

to each link using the NetEm [17] utility. The average

extra latency is 20 ms and the variance is 20 ms. The

latency time correlation is 50%, meaning that 50% of

the latency of the next packet depends on the latency of

the current packet. Pareto is a heavy tailed distribution,

which models the fact that wide-area links are usually

timely but can present high latency occasionally. Given

the 20 ms average and 20 ms variance, we observe the

extra latency range from 0 to 100 ms. This is at least a

twofold increase in latency at the tail. We also experi-

mented with different parameters and distributions, but

we do not report them here as we did not observe signif-

icant differences in the general trend.

The shapes of the curves in Figure 11(c) are similar

to those in Figure 11(b), despite the network variance,

except for the following: (1) All protocols have lower

throughput despite the system being CPU-bound – high

network variance results in packets being delivered out-

of-order, and TCP has to reorder and retransmit pack-

ets, since out-of-order delivery of ACK packets triggers

TCP fast retransmission. (2) At the beginning of the

curves in figure 11(b), all four Mencius variants show

lower latency under lower load because delayed com-

mit happened less often. There is no such a trend in

Figure 11(c). This happens because with Mencius we

wait for both servers to reply before committing a re-

quest, whereas with Paxos we only wait for the fastest

server to reply. The penalty for waiting for the extra re-

ply is an important factor under low load and results in

higher latency for Mencius. For example, at 300 ops,

Mencius’s latency is 455 ms compared to Paxos’s 415 ms

delay. However, out-of-order commit helps Mencius to

achieve lower latency: Mencius-16 shows 400 ms delay

while both Mencius-128 and Mencius-1024 show 350 ms

delay. (3) As load increases, Paxos’s latency becomes

larger than Mencius’s. This is due to the higher latency

observed at non-leader servers. Although with Paxos the

leader only waits for the fastest reply to learn a request,

the non-leaders have the extra delay of FWD and LEARN

messages. Consider two consecutive requests u and v
assigned to instances i and i + 1, respectively. If the

LEARN message for u arrives at a non-leader later than

the LEARN message for v because of network variance,

the server cannot commit v for instance i + 1 until it

learns u for instance i. If the delay between learning v
and learning u is long, then the commit delay of v is also

long. Note that in our implementation, TCP causes this

delay as TCP orders packets that are delivered out of or-

der. Under higher load, the interval between u and v is

shorter, and the penalty instance i + 1 takes is larger be-

cause of the longer relative delay of the LEARN message

for instance i.

In summary, Mencius has lower latency than Paxos

when network latency has little variance. The out-of-

order commit mechanism helps Mencius reduce up to

30% its latency. Non-negligible network variance has

negative impact on Mencius’s latency under low load,

but low load also gives Mencius’s out-of-order commit

mechanism more opportunity to reduce latency. And, un-

der higher load, Paxos shows higher latency than Men-

cius because of the impact of network variance on non-

leader replicas.

16

7.6 Other possible optimizations

There are other ways one can increase throughput or re-

duce latency. One idea is to batch multiple requests into

a single message, which increases throughput at the ex-

pense of increased latency. This technique can be ap-

plied to both protocols, and would have the same benefit.

We verified this with a simple experiment: we applied

a batching strategy that combined up to five messages

that arrive within 50 ms into one. With small messages

(ρ = 0), Paxos throughput increased by 4.9 and Mencius

by 4.8; with large messages the network was the bottle-

neck and throughput remained unchanged.

An approach to reducing latency consists of eliminat-

ing Phase 3 and instead broadcasting ACCEPT messages.

This approach cuts for Paxos the learning delay of non-

leaders by one communication step, and for Mencius it

reduces the upper bound on delayed commit by one com-

munication step. For both protocols, it increases the mes-

sage complexity from 3n − 3 to n2 − 1, thus reducing

throughput when the system is CPU-bound. However,

doing so has little effect on throughput when the system

is network-bound, because the extra messages are small

control messages that are negligible compared to the pay-

load of the requests.

Another optimization for Paxos is to have the servers

broadcast the body of the requests and reach consensus

on a unique identifier for each request. This optimization

allows Paxos, like Mencius, to take full advantage of the

available link bandwidth when the service is network-

bound. It is not effective, however, when the service is

CPU-bound, since it might reduce Paxos’s throughput by

increasing the wide-area message complexity.

8 Related work

Mencius is derived from Paxos [21, 22]. Fast Paxos, one

of the variants of Paxos [25], has been designed to im-

prove latency. However, it suffers from collisions (which

results in significantly higher latency) when concurrent

proposals occur. Another protocol, CoReFP [13], deals

with collisions by running Paxos and Fast Paxos concur-

rently, but has low throughput due to increased message

complexity. Generalized Paxos [24], on the other hand,

avoid collisions by allowing Fast Paxos to commit re-

quests in different but equivalent orders. In Mencius, we

allow all servers to immediately assign requests to the in-

stances they coordinate to obtain low latency. We avoid

contention by rotating the leader (coordinator), which is

called a moving sequencer in the classification of Défago

et al. [12]. We also use the rotating leader scheme to

achieve high throughput by balancing network utiliza-

tion. Mencius, like Generalized Paxos, can also commit

requests in different but equivalent orders.

Another moving sequencer protocol is Totem [4]

which enables any server to broadcast by passing a to-

ken. A process in Totem, however, has to wait for the to-

ken before broadcasting a message, whereas a Mencius

server does not have to wait to propose a request. Lam-

port’s application of multiple leaders [26] is the closest to

Mencius. It is primarily used to remove the single leader

bottleneck of Paxos. However, Lamport does not discuss

in detail how to handle failures or how to prevent a slow

leader from affecting others in a multi-leader setting. The

idea of rotating the leader has also been used for a single

consensus instance in the ♦S protocol of Chandra and

Toueg [10].

A number of low latency protocols have been pro-

posed in the literature to solve atomic broadcast, a prob-

lem equivalent to the one of implementing a replicated

state machine [10]. For example, Zieliński presents an

optimistic generic broadcast protocol that allows all mes-

sages to be delivered in two communication steps if all

conflicting messages are received by different processes

in the same order. Compared to Mencius, this algo-

rithm has the disadvantages of requiring n > 3f [34].

Zieliński also presents a protocol that relies on synchro-

nized clocks to deliver messages in two communication

steps [35]. Similar to Mencius, the latter protocol sends

empty (equivalent to no-op) messages when it has no

message to send. Unlike Mencius, it suffers from higher

latency after one server has failed. The Bias Algorithm

deterministically orders messages from multiple sources,

and uses the rates at which sources produce messages to

determine order, with the goal of minimizing the latency

to deliver a message [2]. In contrast, Mencius does not

assume knowledge of the message producing rates. It in-

stead skip instances to reduce delivery latency. Schmidt

et al. propose the M-Consensus problem for low latency

atomic broadcast and solved it with the Collision-fast

Paxos [31]. Instead of learning a single value for each

consensus instance, M-Consensus learns a vector of val-

ues. Collision-fast Paxos works similar to Mencius as it

requires a server to propose an empty value when it has

no value to propose, but different from Mencius, it as-

signs rounds of an M-Consensus instance to groups of

proposers (collision-fast proposers), and each instance

may have multiple values learned. When used in a so-

lution to atomic broadcast, Collision-fast Paxos also suf-

fers from a problem similar to the delayed commit prob-

lem in Mencius, since it needs to order the multiple val-

ues that are assigned to and learned in a single instance of

M-Consensus. Different from Mencius, however, out-of-

order commit is not possible because a slot is re-assigned

to a different server upon a server failure, and different

servers can propose two different arbitrary values. Re-

call that with Mencius, the value learned for an instance

can be only the value proposed by the coordinator of the

17

instance or no-op.

We are not the first to consider high-throughput con-

sensus and fault-scalability. For example, FSR [16] is

a protocol for high-throughput total-order broadcast for

clusters that uses both a fixed sequencer and ring topol-

ogy. PBFT [7] and Zyzzyva [19] propose practical proto-

cols for high-throughput consensus when processes can

fail arbitrarily. Q/U [1] proposes a scalable Byzantine

fault-tolerant protocol.

Steward [3] is a hybrid Byzantine fault-tolerant pro-

tocol for multi-site systems. It runs an Byzantine fault-

tolerant protocol within a site and benign consensus pro-

tocol in between sites. Steward could benefit from Men-

cius by replacing their inter-site protocol (the main bot-

tleneck of the system) with Mencius.

9 Future work and open issues

The following are issues that require further work.

Byzantine failures It is not straightforward to derive a

“Byzantine Mencius”, because skipping, the core tech-

nique that makes Mencius efficient, is not built on a quo-

rum abstraction. We plan to explore a Byzantine ver-

sion of Mencius by applying techniques such as Attested

Append-only Memory [11].

Coordinator allocation Mencius’s commit latency is

limited by the slowest server. A solution to this problem

is to have coordinators at only the fastest f + 1 servers

and have the slower f servers forward their requests to

the other sites.

Sites with faulty servers We have assumed that while

a server is crashed, it is acceptable that its clients do not

make progress. In practice, we can relax this assumption

and cope with faulty servers in two ways: (1) have the

clients forward their requests to other sites, or (2) repli-

cate the service within a site such that the servers can

continuously provide service despite the failure of a mi-

nority of the servers.

Managing out-of-order commit Out-of-order commit

improves Mencius’s lower latency, but also hurts its

throughput. It is not clear, though, which heuristics to

use to decide when to enable this feature.

Managing Nagle’s algorithm While Nagle’s algo-

rithm increases throughput under high load, it also adds

latency under low load. Nagle’s algorithm, however, can

be turned on and off on a per link basis, but it is not clear

how to make such choices in an optimal way.

10 Conclusion

We have derived, implemented, and evaluated Mencius,

a high performance state machine replication protocol in

which clients and servers are spread across a wide-area

network. By using a rotating coordinator scheme, Men-

cius is able to sustain higher throughput than Paxos, both

when the system is network-bound and when it is CPU-

bound. Mencius presents better scalability with more

servers compared to Paxos, which is an important at-

tribute for wide-area applications. Finally, the state ma-

chine commit latency of Mencius is usually no worse,

and often much better, than that of Paxos, although the

effect of network variance on both protocols is complex.

Acknowledgements This material is based upon

work supported by the National Science Foundation un-

der Grant No. 0546686. We would like thank the DE-

TER testbed for the experimental environment.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, et al. Fault-

scalable Byzantine fault-tolerant services. SIGOPS Oper. Syst.

Rev., 39(5):59–74, 2005.

[2] M. Aguilera and R. Strom. Efficient atomic broadcast using deter-

ministic merge. In Proceedings of ACM PODC, pages 209–218,

New York, NY, USA, 2000.

[3] Y. Amir, C. Danilov, J. Kirsch, et al. Scaling Byzantine fault-

tolerant replication to wide area networks. In Proceedings of

IEEE/IFIP DSN, pages 105–114, Washington, DC, USA, 2006.

[4] Y. Amir, L. Moser, P. M. Melliar-Smith, et al. The Totem single-

ring ordering and membership protocol. ACM Trans. Comput.

Syst., 13(4):311–342, 1995.

[5] T. Benzel, R. Braden, D. Kim, et al. Design, deployment, and use

of the DETER testbed. In Proceedings of the DETER Community

Workshop on Cyber-Security and Test., Aug 2007.

[6] M. Burrows. The Chubby lock service for loosely-coupled dis-

tributed systems. In Proceedings of OSDI, pages 335–350, Berke-

ley, CA, USA, 2006.

[7] M. Castro and B. Liskov. Practical Byzantine fault tolerance

and proactive recovery. ACM Transactions on Computer Systems

(TOCS), 20(4):398–461, Nov. 2002.

[8] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An

engineering perspective. In Proceedings of ACM PODC, pages

398–407, 2007.

[9] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure

detector for solving consensus. Journal of the ACM, 43(4):685–

722, 1996.

[10] T. Chandra and S. Toueg. Unreliable failure detectors for reliable

distributed systems. Journal of the ACM, 43(2):225–267, Mar.

1996.

[11] B. Chun, P. Maniatis, S. Shenker, et al. Attested append-only

memory: making adversaries stick to their word. In SOSP, pages

189–204, 2007.

[12] X. Défago, A. Schiper, and P. Urbán. Total order broadcast

and multicast algorithms: Taxonomy and survey. ACM Comput.

Surv., 36(4):372–421, 2004.

[13] D. Dobre, M. Majuntke, and N. Suri. CoReFP: Contention-

resistant Fast Paxos for WANs. Technical Report TR-TUD-

18

DEEDS-11-01-2006, Department of Computer Science, Technis-

che Universität Darmstadt, 2006.

[14] M. Fischer, N. Lynch, and M. Paterson. Impossibility of dis-

tributed consensus with one faulty process. In Proceedings of

ACM PODS, pages 1–7, New York, NY, USA, 1983.

[15] J. Gray and L. Lamport. Consensus on transaction commit. ACM

Trans. Database Syst., 31(1):133–160, 2006.

[16] R. Guerraoui, R. Levy, B. Pochon, et al. High throughput total

order broadcast for cluster environments. In Proceedings of DSN,

pages 549–557, Washington, DC, USA, 2006.

[17] S. Hemminger. Network emulation with NetEm. In Linux Conf

Au, April 2005.

[18] F. Junqueira, Y. Mao, and K. Marzullo. Classic Paxos vs.

Fast Paxos: Caveat emptor. In Proceedings of the 3rd

USENIX/IEEE/IFIP Workshop on Hot Topics in System Depend-

ability (HotDep’07), 2007.

[19] R. Kotla, L. Alvisi, M. Dahlin, et al. Zyzzyva: Speculative

Byzantine fault tolerance. In SOSP, pages 45–58, 2007.

[20] L. Lamport. Time, clocks, and the ordering of events in a dis-

tributed system. Commun. ACM, 21(7):558–565, 1978.

[21] L. Lamport. The part-time parliament. ACM Transactions on

Computer Systems, 16(2):133–169, May 1998.

[22] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–

25, December 2001.

[23] L. Lamport. Lower bounds on asynchronous consensus. In Fu-

ture Directions in Distributed Computing, volume 2584 of Lec-

ture Notes in Computer Science, pages 22–23, 2003.

[24] L. Lamport. Generalized Consensus and Paxos. Technical Report

MSR-TR-2005-33, Microsoft Research, 2005.

[25] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–103,

Oct. 2006.

[26] L. Lamport, A. Hydrie, and D. Achlioptas. Multi-leader dis-

tributed system. U.S. patent 7,260,611 B2, Aug 2007.

[27] J. Lorch, A. Adya, J. Bolosky, et al. The SMART way to migrate

replicated stateful services. In Proceedings of the ACM SIGOPS

EuroSys, pages 103–115, New York, NY, USA, 2006.

[28] J. MacCormick, N. Murphy, M. Najork, et al. Boxwood: Abstrac-

tions as the foundation for storage infrastructure. In Proceedings

of OSDI, pages 105–120, Berkeley, CA, USA, 2004.

[29] J. Nagle. RFC 896: Congestion control in IP/TCP internetworks,

Jan. 1984.

[30] L. Rizzo. Dummynet: a simple approach to the evaluation of net-

work protocols. SIGCOMM Comput. Commun. Rev., 27(1):31–

41, 1997.

[31] R. Schmidt, L. Camargos, and F. Pedone. On collision-fast

atomic broadcast. Technical report, Éole Polytechnique Fédérale

de Lausanne, 2007.

[32] F. Schneider. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys, pages

299–319, Dec. 1990.

[33] J. Wensley, L. Lamport, J. Goldberg, et al. Sift: Design and anal-

ysis of a fault-tolerant computer for aircraft control. Tutorial:

hard real-time systems, pages 560–575, 1989.

[34] P. Zieliński. Optimistic generic broadcast. In Proceedings of the

19th International Symposium on Distributed Computing, pages

369–383, Kraków, Poland, September 2005.

[35] P. Zieliński. Low-latency atomic broadcast in the presence of

contention. Distributed Computing, 20(6):435–450, 2008.

[36] ZooKeeper. http://hadoop.apache.org/zookeeper.

Appendix A Coordinated Paxos

/*Pseudo code of Coordinated Paxos at server p.*/

/*Each round of Coordinated Paxos is assigned to

one of the servers. The round number is also

called ballot number. */

/*Function owner(r) returns the server ID of the

owner of round (ballot number) r. */

/*Note that this is only the pseudo code for one

instance of Coordinated Paxos. */

/*PREPARE(b): PREPARE message for ballot number b

*/

/*ACK(b, ab, av): to acknowledge PREPARE(b): ab is

the highest ballot the sending server has

accepted a value, and av is the value accepted

for ballot ab. */

/*PROPOSE(b, v): to propose a value v with ballot

number b. */

/*ACCEPT(b, v): to acknowledge PROPOSE(b, v) that

the sending server has accepted v for ballot

number b. */

/*LEARN(v): to inform other servers that value v

has been chosen for this instance of simple

consensus. */

/*learner state: */

variable: learned←⊥; /*No value is learned

initially. */

variable: learner history ← {}; /*No peer has

accepted any value. */

/*proposer states: */

variable: prepared history ← {}; /*No prepared

history initially. */

/*acceptor states: */

variable: prepared ballot← 0; /*All servers are

initially prepared for ballot number 0. */

variable: accepted ballot← −1; /*Initially, no

ballot is accepted. */

variable: accepted value← ⊥; /*Initially, no value

is accepted. */

/*Coordinator can call either Suggest or Skip. */

DownCall Suggest(v) /*Coordinator proposes value

v. */

begin
Broadcast PROPOSE(0, v);

end

DownCall Skip() /*Coordinator proposes no-op. */

begin
Broadcast PROPOSE(0, no-op);

end

DownCall Revoke() /*Non-coordinator starts to

propose no-op. */

begin
ballot← Choose b : owner(b) = p ∧ b >

prepared ballot ∧ b > accepted ballot; /*Choose

a ballot number that is owned by p and

greater than other ballot number p has ever

seen. */

Broadcast PREPARE(ballot); /*Start phase 1 with

a higher ballot number. */

end

19

OnMessage ANY From q OnCondition learned 6= ⊥
begin

if the incoming message is not a LEARN message then
Send LEARN(learned) To q ;

end

end

OnMessage PREPARE(b) From q OnCondition learned = ⊥
begin

if b > prepared ballot then
prepared ballot← b;

Send ACK(b, accepted ballot, accepted value) To

q ;

end

end

OnMessage LEARN(v) From q OnCondition learned = ⊥
begin

learned← v;

UpCall OnLearned(v);

end

OnMessage ACCEPT(b, v) From q OnCondition learned = ⊥
begin

if b = 0 then
/*This ACCEPT message acknowledges a

SUGGEST message. */

UpCall OnAcceptSuggestion (q); /*An upcall

interface for Mencius. */

end

learner history ← learner history ∪ {〈b, v, q〉};
LSet← {〈e1, e2, e3, 〉 : e1 = b ∧ 〈e1, e2, e3〉 ∈
learner history};
if size(LSet) = ⌈(n + 1)/2⌉ then

/*a quorum has accepted the value, the

value is chosen. */

Broadcast LEARN(v);

end

end

OnMessage ACK(b, a, v) From q OnCondition learned = ⊥
begin

prepared history ← prepared history ∪ {〈b, a, v, q〉};
PSet← {〈e1, e2, e3, e4〉 : e1 = b ∧ 〈e1, e2, e3, e4〉 ∈
prepared history};
if size(PSet) = ⌈(n + 1)/2⌉ then

/*A quorum of peers have been prepared,

ready to propose. */

ha← max{a : 〈−, a,−,−〉 ∈ PSet};
hvset← {v : 〈−, ha, v,−〉 ∈ PSet};
hv ← Choose v : v ∈ hvset; /*hv is set to

the only element in hvset, since hvset

must have one unique element. */

if hv = ⊥ then
/*No value has been chosen yet,

propose no-op. */

Broadcast PROPOSE(b, no-op);

else
/*Must propose hv. */

Broadcast PROPOSE(b, hv);

end

end

end

OnMessage PROPOSE(b, v) From q OnCondition

learned = ⊥
begin

if b = 0 ∧ v = no-op then
/*Coordinator skips, p learns no-op

immediately */

learned← no-op ;

UpCall OnLearned (no-op);

else if prepared ballot ≤ b ∧ accepted ballot < b then
/*p accepts (b, v). */

if b = 0 then
/*this is a SUGGEST message. */

UpCall OnSuggestion; /*An upcall

interface for protocol P and

Mencius. */

end

accepted ballot← b;

accepted value← v;

Send ACCEPT(b, v) To q;

end

end

Appendix B Protocol P

/*Pseudo code of Protocol P at server p. */

/*Protocol P runs a series of Coordinated Paxos.

It commits a value learned in instance i once

all instances prior to i have been learned and

committed. The following code handles

duplication by checking for duplications before

committing. Other techniques, such as assuming

idempotent requests, can also be used. */

/*Note that besides the original arguments, all

upcalls/downcalls from/to Coordinated Paxos

also have an additional argument i that

specifies the simple consensus instance number.

*/

/*Protocol P provides two APIs to its

applications. The applications downcalls

OnClientRequest to submit a request to the

state machine. When a value is chosen, P
upcalls OnCommit to notify the application. */

/*Function owner(i) returns the coordinator of

instance i. */

/*Function learned(i) returns a reference to the

learned variable of the ith
simple consensus

instance. */

variable: proposed[]; /*An array records the value

that the coordinator initially suggested to an

instance. It maps an instance number to a

value. Every key is initially mapped to ⊥. */

variable: index← min{i : owner(i) = p}; /*The next

instance to suggest a value to. */

variable: expected← 0; /*The next instance number to

commit a value, i.e., the smallest instance

whose value is not learned. */

DownCall OnClientRequest(v)
begin

DownCall Suggest(index, v); /*Rule 1: p

suggests v to instance index. */

proposed[index]← v;

index← min{i : owner(i) = p ∧ i > index};
end

20

UpCall OnSuggestion(i) /*Rule 2: on receiving a

SUGGEST message for instance i, p skips all

unused instances prior to i. */

begin
SkipSet← {k : k ≥ index ∧ k < i ∧ owner(k) = p};
forall k ∈ SkipSet do

DownCall Skip(k); /*Skip instance k */

end

index← min{k : owner(k) = p ∧ k > i};
end

DownCall OnSuspect(q) /*Rule 3: When suspecting

q has failed, p revoke all instances that are

smaller than index and are coordinated by q. */

begin
RevokeSet← {i : owner(i) = q ∧ i <
index ∧ learned(i) = ⊥};
forall k ∈ RevokeSet do

DownCall Revoke(k); /*Revoke instance k.

*/

end

end

Procedure CheckCommit /*Check if a new value can

be committed. */

begin

while learned(expected) 6= ⊥ do
v ← learned(expected);

if

v 6= no-op ∧ v /∈ {learned(i) : 0 ≤ i < expected}
then

/*Commit value v only if it is not a

no-op and is not a duplication. */

UpCall OnCommit (v);

end

expected← expected + 1;

end

end

UpCall OnLearned(i, v) /*Upon instance i learns

value v. */

begin

if owner(i) = p ∧ proposed[i] 6= v then
/*Rule 4: v must be no-op and proposed[i]

must be re-suggested. */

Call OnClientRequest (proposed[i]);
end

Call CheckCommit;
end

Appendix C Mencius

/*Pseudo code of Mencius at server p. */

/*Mencius runs a series of Coordinated Paxos. It

commits a value learned in instance i once all

instances smaller than i have been learned and

committed. The following code handles

duplication by checking for duplications before

committing. Other techniques, such as assuming

idempotent requests, can also be used. */

/*Mencius provides two APIs to its applications.

The applications downcalls OnClientRequest to

submit a request to the state machine. When a

value is chosen, Mencius upcalls OnCommit to

notify the application. */

/*Note that besides the original arguments, all

upcalls/downcalls from/to Coordinated Paxos

also have an additional argument i that

specifies the simple consensus instance number.

*/

/*Function owner(i) returns the coordinator of

instance i. */

/*Function learned(i) returns a reference to the

learned variable of the ith
simple consensus

instance. */

/*Mencius also uses n timers for Accelerator 1.*/

variable: proposed[]; /*An array records the value

that the coordinator initially suggested to an

instance. It maps an instance number to a

value. Every key is initially mapped to ⊥. */

variable: expected← 0; /*The next instance number to

commit a value, i.e., the smallest instance

whose value is not learned. */

variable: index← min{i : owner(i) = p}; /*The next

instance to suggest a value to. */

variable: est index[]; /*An array records the

estimated index of other servers. It maps a

server ID to an instance number. Initially,

est index[q]← min{i : owner(i) = q}. */

variable: need to skip[]; /*An array records the set

of outstanding SKIP messages need to be sent to

a server. It maps a server ID to a set of

instance numbers. Every key is initially

mapped to an empty set. */

DownCall OnClientRequest(v)
begin

/*By Optimization 2, SKIP messages will be

piggybacked on SUGGEST messages. So, we

cancel the timers that were previously set

for Accelerator 1 and reset the records of

the outstanding SKIPs. */

forall q ∈ {0, . . . , n− 1} do

CancelTimer (q); /*Cancel the qth
timer. */

need to skip[q]← {};
end

DownCall Suggest(index, v); /*Rule 1: p

suggests v to instance index. */

proposed[index]← v;

index← min{i : owner(i) = p ∧ i > index};
end

UpCall OnAcceptSuggestion(i, q) /*Upon receiving

an ACCEPT message that acknowledges a previous

SUGGEST message. */

begin
QSkipSet← {j : est index[q] ≤ j < i ∧ owner(j) =

q}; /*By Optimization 1: SKIP messages are

piggybacked on this ACCEPT message.

QSkipSet is the set of instances q has

skipped. */

forall j ∈ QSkipSet do
learned(j)← no-op;

Call CheckCommit;
end

est index[q]← min{j : j > i ∧ owner(j) = q};
end

21

UpCall OnSuggestion(i) /*Upon receiving a

SUGGEST message for instance i. */

begin
q ← owner(i); /*q is the sender of the SUGGEST

message. */

QSkipSet← {j : est index[q] ≤ j < i ∧ owner(j) =
q}; /*By Optimization 2, SKIP messages are

piggybacked on this SUGGEST message.

QSkipSet is the set of instances q has

skipped. */

forall j ∈ QSkipSet do
learned(j)← no-op;

end

Call CheckCommit;

est index[q]← min{j : j > i ∧ owner(j) = q};

SkipSet← {j : j ≥ index ∧ j < i ∧ owner(j) =
p}; /*By Rule 2, server p skips all unused

instances smaller than i. SkipSet is the

set of instances p needs to skip. */

forall k ∈ SkipSet do
learned[k]← no-op;

end

Call CheckCommit;

/*p does not send SKIP messages to other

servers immediately. Optimization 1: p

piggyback the SKIP message to q on the

ACCEPT message. */

forall k ∈ {r : 0 ≤ r < n− 1 ∧ r 6= p ∧ r 6= q} do
/*Optimization 2: For all other servers,

SKIP messages are not sent immediately,

instead they wait for a future SUGGEST

message. */

if need to skip[k] = {} then
/*Set timer for Accelerator 1. */

need to skip[k]← SkipSet;
SetTimer (k, τ); /*Set the kth

timer to

trigger at τ unit time from now. */

else
need to skip[k]← need to skip[k]∪SkipSet;

end

/*Check if the number of outstanding SKIP

is greater than α. */

if size(need to skip[k]) > α then
/*By Accelerator 1, need to propagate

the SKIP messages when the

outstanding SKIP messages is larger

than α. */

Call SendSkip(k); /*propagate the SKIP

messages to server k. */

end

end

index← min{j : owner(j) = p ∧ j > i};
end

DownCall OnSuspect(q) /*Rule 3 and Optimization

3: p revokes q for large block of instances,

when suspecting server q has failed. */

begin
Cq = min{i : owner(i) = q ∧ learned(i) = ⊥};
if Cq < index + β then

RevokeSet← {i : Cq ≤ i ≤
index + 2β ∧ owner(i) = q ∧ learned(i) = ⊥} ;

forall k ∈ RevokeSet do
DownCall Revoke(k) /*Revoke instance

k. */

end

end

end

UpCall OnLearned(i, v) /*Upon instance i learns

value v. */

begin

if owner(i) = p ∧ proposed[i] 6= v then
/*Rule 4: v must be no-op and proposed[i]
must be re-suggested. */

Call OnClientRequest (proposed[i]);
end

Call CheckCommit;
end

OnTimeout (k) /*The kth
timer times out. */

begin
Call SendSkip(k); /*propagate the SKIP

messages to server k. */

end

Procedure SendSkip(k)
begin

CancelTimer (k); /*Cancel the kth
timer. */

forall q ∈ need to skip[k] do
DownCall Skip(q);

end

need to skip[k]← {};
end

Procedure CheckCommit /*Check if a new value can

be committed. */

begin

while learned(expected) 6= ⊥ do
v ← learned(expected);

if

v 6= no-op ∧ v /∈ {learned(i) : 0 ≤ i < expected}
then

/*Commit value v only if it is not a

no-op and is not a duplication. */

UpCall OnCommit (v);

end

expected← expected + 1;

end

end

Notes
1Mencius, or Meng Zi, was one of the principal philosophers dur-

ing the Warring States Period. During the fourth century BC, Mencius

worked on reform among the rulers of the area that is now China.
2 There are other structures of state machines, such as a primary-

backup structure where only one server executes the command and

communicates the result to the rest of the servers, or one in which a

command generates multiple responses, each sent to different clients.

Our protocol can be adapted to such structures.
3To eliminate trivial implementations, we require that there exists

an execution in which the coordinator proposes a value v 6= no-op that

is chosen as the consensus value.
4An alternative to implement Optimization 1 is to include ii as an

additional field in the ACCEPT message when FIFO channels are not

available. This alternative can be applied to Optimization 2 as well.
5An alternative way to propagate the SKIP messages from p to other

servers is to have p piggyback them on instance i’s Phase 3 LEARN

messages that are broadcast by p.

22

