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Abstract

Understanding the Human Effects of Climate Change

by

Patrick William Baylis

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximilian Auffhammer, Chair

Climate change has already begun to profoundly alter the relationship be-
tween humans and their environment for the vast majority of the world’s pop-
ulation. However, history has demonstrated that human are nothing if not
responsive: as the climate changes, so too will economies, governments, and in-
dividuals. This dissertation examines impacts and responses to climate change
with an eye towards understanding how future societies might adapt to sub-
stantial climatic changes. The first chapter measures the welfare cost of changes
in amenity values due to climate change by proxying for temperature prefer-
ences using contemporaneous changes in mood, as detected from posts on the
social media platform Twitter. The second chapter examines the response of
electricity demand to changes in temperature as a means to project patterns
of future energy consumption and large-scale capital investments. The third
chapter makes a methodological contribution to test three quasi-experimental
methods of estimating electricity savings in dynamic pricing programs versus
an empirical “gold standard”: the results from this chapter will aid policymak-
ers in quantifying the effects these programs on curbing future increases in
electricity generation due to climate change.

The first chapter is motivated by a gap in the climate impacts literature:
the change in amenity values resulting from temperature increases may be
a substantial unaccounted-for cost of climate change. Without an explicit
market for climate, prior work has relied on cross-sectional variation or sur-
vey data to identify this cost. This paper presents an alternative method of
estimating preferences over nonmarket goods which accounts for unobserved
cross-sectional and temporal variation and allows for precise estimates of non-
linear effects. Specifically, I create a rich panel dataset on hedonic state: a
geographically and temporally dense collection of updates from the social me-
dia platform Twitter, scored using a set of both human- and machine-trained
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sentiment analysis algorithms. Using this dataset, I find strong evidence of a
sharp declines in hedonic state above and below 20◦C (68◦F). This finding is
robust across all measures of hedonic state and to a variety of specifications.

The second chapter simulates the effect of climate change on future electric-
ity demand in the United States. We combine fine-scaled hourly electricity load
data with observations of weather to estimate the response of both average and
peak electricity demand to changes in temperature. Applying these estimates
to a set of locally downscaled climate projections, we project regional end-of-
century changes in electricity load. The results document increases in average
hourly load across the country, with more pronounced changes occurring in
the southern United States. Importantly, we find changes in peak demand to
be larger than changes in average demand, which has implications for public
policy choices around future capital investment.

The third chapter compares quasi-experimental designs to experimental de-
signs in the context of a dynamic pricing setting designed to encourage cus-
tomers to save energy. Randomized controlled trials (RCTs) are widely viewed
as the “gold standard” for evaluating the effectiveness of an intervention. How-
ever, because are percieved to be prohibitively expensive and challenging to
implement successfully, they are not broadly executed in policy settings. In
particular, analysis of the effect of energy pricing has largely been conducted
through a two commonly used quasi-experimental methodologies: difference-
in-differences and propensity score matching. Using a rare set of large-scale
randomized field evaluations of electricity pricing, we compare the estimates
obtained from these quasi-experimental designs and from a regression disconti-
nuity design to the true estimates obtained through the experimental method.
We demonstrate empirical evidence in favor of four stylized facts that highlight
the importance of understanding selection bias and spillover effects in this con-
text. First, difference-in-differences and propensity-score methods mis-estimate
the true effect by up to 5% of mean peak hour usage. Second, propensity score
estimates resemble difference-in-difference findings, but standard errors tend
to be larger and point estimates are more biased for opt-out models. Third,
regression discontinuity methods can be heavily biased relative to the true av-
erage treatment effect. Finally, we find strong evidence that biases are more
pronounced in opt-in vs. opt-out designs.
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Chapter 1

Temperature and Temperament:
Evidence from a billion tweets

1.1 Introduction
Acute environmental stressors like typhoons, hurricanes, and other marked changes in
the external environment are known to have large economic costs (Hsiang and Jina
2014). However, slower-moving changes in the environment, such as temperature
increases due to climate change, tend to have subtler economic effects. The empirical
climate impacts literature has set out to estimate the size of these effects, largely
focusing on estimating the indirect impacts of climate change, e.g., temperature-
induced changes in income, crime, or natural disasters.

Because temperature is a nonmarket good, estimating the “direct” impacts of
climate change has proven to be more challenging1. Prior work has estimated that
individuals would be willing to pay between 1% and 3% of their incomes to avoid a
one ◦F increase in summer temperatures (Cragg and Kahn 1997; Sinha and Cropper
2015; Albouy, Graf, Kellogg, and Wolff 2013). However, these costs are almost
exclusively identified using cross-sectional variation in climate and therefore rely
on important assumptions about unobservable variation in climate preferences. A
separate literature uses subjective well-being surveys in order to estimate preferences
for temperatures. While these papers do not estimate costs directly, they are able
to account for some unobserved cross-sectional variation by controlling for time-
invariant characteristics in space (Levinson 2012; Feddersen, Metcalfe, and Wooden

1“Direct” here refers to the hypothesized welfare impact of changing average daily temperature
while holding the indirect impacts of temperature constant. This can also be viewed as the amenity
value of changes in climate.
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2012), but yield conflicting results due to limited statistical power.
This paper demonstrates a new method to estimate preferences over nonmarket

goods using an approach that addresses both the identification and statistical power
concerns described above. I construct a geographically and temporally dense collec-
tion of more than a billion geocoded social media updates from the online platform
Twitter. To estimate preferences for temperature, I code each tweet using a set of
sentiment analysis algorithms designed to extract hedonic state from natural lan-
guag.2. The density of my dataset allows me to resolve identification concerns by
accounting for correlated unobservables at the county, neighborhood, and even indi-
vidual level with an extensive set of fixed effects and while simultaneously accounting
for unobserved state-specific seasonal variation.

I define hedonic state as a one-dimensional measure of mood ranging from nega-
tive to positive3. The four measures I use span a range of sentiment analysis tech-
niques designed to elicit mood from natural language. Two measures are specified
using expert- and crowd-sourced dictionaries that map words to numerical scores. A
third measure scores tweets by whether or not they contain profanity. The final mea-
sure trains a machine-learning algorithm using those Twitter updates that contain
emoticons, e.g., “:)” or “:(”, to predict the emotional content of the full set of tweets.
I validate these measures by demonstrating their change across days of the week and,
following Card and Dahl (2011), their response to nearby NFL teams’ wins or losses.

Using geographical information attached to the Twitter updates, I match these
measures of emotional state to daily weather conditions at the precise location of
the user. My identifying assumption is that temperature realizations are as good as
random after accounting for spatial and seasonal fixed effects. Allowing temperature
to enter the econometric model flexibly, I find strong evidence of a sharp decline in
hedonic state above and below 20◦C (68◦F). The difference in hedonic state between
20-25◦C (68-77◦F) and 30-35◦C (86-95◦F) is significant and comparable in size to the
average difference in hedonic state between Sundays and Mondays.

I conduct a series of robustness checks to further explore the results and to test
for potential sources of bias. First, I demonstrate consistent effects in both direction
and standardized magnitude across all measures of hedonic state, indicating that the
results are not driven by measure design. I additionally confirm that the observed

2Since climate change is projected to manifest primarily as changes in average temperature for
most of the world (IPCC 2014), I focus specifically on temperature as the environmental variable.
Still, this approach generalizes to many other similar phenomena that are experienced heteroge-
neously across space and time.

3The definition of emotional state, mood, and other measures of affective well-being are active
areas of research. See Russell (1980) or Kahneman, Diener, and Schwarz (1999) for more details on
these definitions.
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effects are not generated by correlated compositional changes in the sample across
temperatures by estimating a model with individual fixed effects. Next, I examine
heterogeneity in the response by hour of day and document that warmer temperatures
are strongly dispreferred in the morning, weekly preferred in the afternoon, and
weakly dispreferred in the evening. Following Albouy, Graf, Kellogg, and Wolff
(2013), I also document heterogeneity in the effects by season. I combine estimates
of regional temperature response functions and downscaled climate projection data
to project the effects of changes in temperature on hedonic state under scenarios with
and without adaptation. Finally, following prior work, I implement a back-of-the-
envelope calculation of the monetary costs implied by the changes in hedonic state I
estimate.

The paper proceeds as follows: sections 1.2 and 1.3 sketch the conceptual frame-
work and review the related literature. Section 1.4 describes the data and sentiment
analysis algorithms I use, while section 1.5 lays out the empirical approach and iden-
tifying assumptions. Section 3.5 reports the baseline results, section 1.7 documents
robustness checks and extensions, and section 1.8 concludes.

1.2 Conceptual framework
A simple conceptual framework helps illustrate the problem of estimating the costs
of climate change. Consider a representative consumer with a utility function defined
over temperature T , a composite of goods whose consumption utility is affected by
temperature cT , and a composite of goods whose consumption utility is unaffected by
temperature cN . Let this consumer choose the quantity of cT and cN she consumes,
subject to their prices pT and pN and income I. T is assumed to be determined
exogenously4 and as a result does not enter the budget constraint. The consumer’s
problem is as follows:

max
cT ,cN

U = U(T, cT , cN) s.t. pT cT + pNcN ≤ I

To maximize utility, the consumer chooses c∗T and c∗N optimally such that ∂U
∂cT

= λpT
and ∂U

∂cN
= λpN , where λ is the shadow value of relaxing the budget constraint by

one unit. Note that c∗N is implicitly a function of T through the budget constraint,
since changes in T may alter c∗T . Consider two types of exogenous shocks: a change

4A two-period model would allow consumers to choose T by changing location, in doing so alter
the prices and utility value of both cT and cN . I focus on the simpler model for clarity.
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in T and a change in I.

dU

dT
=
∂U

∂T
+
∂U

∂c∗T

∂c∗T
∂T

+
∂U

∂c∗N

∂c∗N
∂T

dU

dI
=
∂U

∂c∗T

∂c∗T
∂I

+
∂U

∂c∗N

∂c∗N
∂I

Combining these, the monetary cost of a unit change in temperature is the compen-
sating variation x that keeps the consumer on her original indifference curve:

dU

dT
+ x

dI

dT
= 0

∂U

∂T
+
∂U

∂c∗T

∂c∗T
∂T

+
∂U

∂c∗N

∂c∗N
∂T

+ x

[
∂U

∂c∗T

∂c∗T
∂I

+
∂U

∂c∗N

∂c∗N
∂I

]
= 0

In principle, a researcher could estimate x using a choice experiment in which con-
sumers are asked to state their willingness to pay to avoid a degree rise in average
temperature. In reality, multiple market failures make this design infeasible. First,
information is not perfect: the costs of climate change are incompletely understood
even by researchers in the field, and likely less so by the average consumer (IPCC
2014). Moreover, even with perfect information, present-day consumers may have a
discount function that is inappropriate to capture the full costs of climate change,
since those costs will likely be endured mostly by generations who have yet to be
born5. Third, the choice experiment as presented suffers from a collective action
problem, since the benefits of climate change mitigation are spread across the entire
world, while the implied cost would be born by the respondent alone.

Instead, in practice, the literature estimates the effect of temperature on different
sectors of the economy and calculates the cost of climate change to be the sum of
the value of the projected changes in those sectors. As an example, let cCT be crime
risk, which has been documented by Ranson (2014) to increase in temperature. Re-
searchers estimate ∂cCT

∂T
and multiply by estimates of willingness to pay to avoid crime.

Integrated Assessment Models (Hope 2006; Nordhaus and Sztorc 2013; Antoff and
Tol 2014) and the Social Cost of Carbon (Interagency Working Group on Social Cost
of Carbon 2013) aggregate ∂cT

∂T
for all possible impacts, then multiply by expected

temperature changes to obtain the net benefit of climate change6.
5The problem of how to properly account for the preferences of future generations remains a

topic of active debate. See Stern (2006) and Nordhaus (2007) for two views of this question.
6For more complete descriptions of the construction of the IAMs or the SCC, see the listed

citations or the summary in Diaz (2014). This framework does not imply that the net benefit must
be less than zero, but most current estimates find this to be the case empirically.
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The climate impacts literature has historically focused on estimating ∂cT
∂T

, which I
refer to as the “indirect” effects of climate change. Because these effects on welfare are
driven through other factors, measuring indirect impacts relies on the combination
of measurement of preferences for these indirect factors and predicted changes in
these factors due to climate change, but not measurement of direct preferences for
temperature itself. This paper instead measures ∂U

∂T
, the “direct impacts” of climate

change. ∂U
∂T

can be thought of as the amenity value of temperature, or the marginal
change in hedonic state associated with a marginal change in temperature7.

1.3 Background
Economists have studied the economic impacts of climate change for more than two
decades (Nordhaus 1991; Cline 1992), but the recent availability of panel datasets
and advanced econometric techniques have made possible the identification of the
causal effects of changes in temperature on a wide variety of outcomes (Dell, Jones,
and Olken 2014), the results of which are used to project the economic impacts of
climate change.

Early work in the climate impacts literature focused on identifying the effects of
changes in climate on agricultural output (Mendelsohn, Nordhaus, and Shaw 1994;
Schlenker, Hanemann, and Fisher 2005; Deschênes and Greenstone 2011). One no-
table finding from this literature is that the response function of yields to temper-
ature changes contains important non-linearities: yields tend to increase slightly up
to a threshold, after which they decrease sharply, implying severe negative effects on
yields under many climate change scenarios (Schlenker and Roberts 2009).

Recently, scholars have directed their attention to non-agricultural impacts of
climate change. Dell, Jones, and Olken (2012) use country-level data to identify the
effect of weather variation on aggregate economic outcomes, and find that higher
temperatures reduce economic growth in poor countries. Using county-level data on
U.S. incomes, Deryugina and Hsiang (2014) conduct a similar analysis in the United
States and document the negative impacts of warm weekday temperatures on county
income, and provide suggestive evidence that these effects are driven by changes in

7It is reasonable to argue that this paper too examines an “indirect impact”, since psychological
changes, for example, could be viewed as a kind of mechanism. I use the term “direct” here to refer
to mechanisms in which weather alters individuals’ day-to-day experience of the world. I make use
of the fact that the main drivers of hedonic state are an individual’s underlying hedonic state and
transient changes in the state of the world (Kahneman and Krueger 2006). This suggests that the
primary effects I observe are likely to correspond closely with the prior literature’s definition of
amenity value.
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the productivity level of basic economic units such as workers and crops. Burke,
Hsiang, and Miguel (2015b) expand these findings to the global scale, providing
evidence that economic productivity declines in high temperatures for both rich and
poor countries.

Other work has examined the effect of temperature on economic productivity.
Graff Zivin and Neidell (2014) study the effect of temperature on time allocation
using county-level data, finding that the quantity allocated to labor decreases in
higher temperatures. In related work, Graff Zivin, Hsiang, and Neidell (2015) study
the effect of temperature on cognitive performance, using a panel of test scores to
find statistically significant decreases in math (but not reading) performance when
the temperature rises above 79◦F.

A substantial literature has examined the relationship between climate and con-
flict. Burke, Hsiang, and Miguel (2015a) conduct a meta-analysis of the available
estimates and find that one standard deviation increase in temperature increases
interpersonal and intergroup violence by 2.4% and 11.3%, respectively.

Other work has looked at the relationship between temperature and electricity
usage, or load. Auffhammer and Mansur (2014) review the existing literature and
document the need for additional panel data studies to properly control for unob-
served cross-sectional variation. Existing panel data studies, such as Deschênes and
Greenstone (2011) find a significant increase in energy consumption due to high tem-
peratures using state-level averages, while Auffhammer and Aroonruengsawat (2011)
use detailed billing data from California to document within-state heterogeneity in
load responses.

Individuals without access to air conditioning are more susceptible to the ef-
fects of temperature changes. Understanding the adoption of temperature-regulating
technology informs predictions about future effects of climate change. Auffhammer
(2013) uses a two-stage model to estimate both intensive and extensive margin in-
creases in air conditioning due to climate change. In related work, Davis and Gertler
(2015a) study air conditioner adoption in Mexico, predicting close to full adoption
within a few decades primarily due to income growth rather than changes in climate.

Climate-induced changes in mortality have been studied by Deschênes and Green-
stone (2011) and Barreca2013b, among others. The first estimates a 3% increase in
the age-adjusted mortality rate in the United States, while the second documents the
importance of air conditioning in mitigating the temperature-mortality relationship
observed in the first half of the 20th century.

Many of the estimates described contribute, directly or indirectly, to aggregate
measures of the total cost of climate change produced by summary reports (Stern
2006; Houser et al. 2014) and integrated assessment models (IAMs), which in turn

6



are inputs to the United States government’s estimate of the social cost of carbon
(Interagency Working Group on Social Cost of Carbon 2013). In particular, three
IAMs are used to construct this estimate. They are the Dynamic Integrated Climate-
Economy Model (Nordhaus and Sztorc 2013), or DICE, the Climate Framework for
Uncertainty, Negotiation, and Distribution (Antoff and Tol 2014), or FUND, and
the Policy Analysis of the Greenhouse Effect (Hope 2006), or PAGE. IAMs integrate
economic and ecological models to weigh the costs and benefits of global warming8.
The link between warming and damages (or benefits) is modeled in each using either
a single damage function or a set of damage functions.

DICE uses a global damage function that is built from separate, sector-level dam-
age functions. The author uses a time of use survey to value nonmarket amenities,
resulting in a quadratic damage function between temperature and amenity value.
This formulation estimates net benefits from changes in amenity value that actually
exceed the total market impacts in the United States (Nordhaus and Boyer 2000).
PAGE includes damage functions for both economic and noneconomic changes, the
parameters of which are generated from the findings of the third IPCC report (Hope
2006), which did not include nonmarket amenity values directly (IPCC 2001). FUND
uses a set of damage functions, but these do not include a separate function for non-
market amenities (Antoff and Tol 2014).

That the direct effect of climate change could entail a significant welfare im-
pact follows from the observation that people have preferences over weather. Still,
estimating these preferences and the cost associated with shifting the temperature
distribution has been challenging, due primarily to the fact that there is no market
for temperature. Two main approaches have emerged, the first using hedonic price
models and the second using life satisfaction surveys.

The hedonic price approach recovers willingness-to-pay (WTP) for climate ameni-
ties by comparing cross-sectional differences in wages and climate amenities after
controlling for other covariates; for an early example, see Hoch and Drake (1974).
Cragg and Kahn (1997) model the locational choices of migrants and find that movers
are willing to pay about about 1.5% of annual income for an additional one ◦F in
winter and -1.2% of annual income for an additional one ◦F in summer9. Sinha and
Cropper (2015) also look at migration decisions using a discrete model of location
choice to estimate the rate of substitution between wages and climate amenities. The
authors estimate that the marginal WTP for a one ◦F increase is between 1% and

8For a detailed review of the three IAMs listed, see Diaz (2014) or Rose (2014).
9The authors split results up by age and estimate different of WTP. Estimates are the unweighted

average of the estimates in Table 7 of Cragg and Kahn (1997), adjusted for a one ◦F increase and
divided by the annual household income of the movers in their sample.
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5% of income in winter, and between -3% and -1.5% of income in summer. Finally,
Albouy, Graf, Kellogg, and Wolff (2013) use a hedonic framework and data from the
2000 census to find a marginal WTP for a one ◦F increase in winter to be between
0.5% and 1% of income, and in summer between -2.5% and -1% of income10.

The hedonic approaches described above are appealing because they identify im-
plicit demand for climate using households’ observed choices on where to live. Using
estimates of the differential between wages and costs of living, they are also able to
back out a WTP for climate. However, because the models estimate the effect of
climate characteristics, which are mostly stable across time, the coefficients are iden-
tified using cross-sectional variation. This approach requires the assumption that
there is no unobserved variation that is correlated with both climate and with the
differential between wages and costs of living, an assumption that may be violated
by cultural norms, geographic factors, or other unobserved amenities.

The survey approach uses surveys of subjective well-being (SWB) to estimate
preferences over temperature. These surveys ask respondents to assess their well-
being on a single dimensional scale (Diener 2000; Dolan, Peasgood, and White 2008).
Kahneman and Krueger (2006) and Mackerron (2012) discuss the merits and weak-
nesses of these studies: a common challenge is that measurements of SWB are by
definition subjective and likely to include unobserved variation across time and space.
For example, responses to questions about one’s well-being may depend on regional
dialects or norms, or could be driven by the interaction between the interviewer and
the interviewee, which may itself be affected by temperature.

The estimates of the effect of temperature on SWB vary widely within the lit-
erature. Most studies use cross-sectional variation or follow a very small group of
individuals over time11. Only two control for unobservable cross-sectional variation
using panel data models. Levinson (2012) uses 6,035 surveyed individuals from the
General Social Survey to find a inverse-U shaped relationship between temperature
and happiness, though the paper is primarily focused on the effects of pollution.

10I take the estimates of MWTP for a day at 40◦(80◦) F from Table 3 in Albouy, Graf, Kellogg,
and Wolff (2013) and divide by the distance between 40 (80) and 65 to get the MWTP for one
degree at that temperature.

11Howarth and Hoffman (1984) collect data from 24 Canadian male university students over a
period of 11 days and find that higher temperatures improve hedonic state. Keller et al. (2005)
study the effect of weather on both cognition and hedonic state and find that pleasant weather, i.e.
moderate temperature or barometric pressure, is associated with higher hedonic state, although they
find that higher temperatures in the summer are associated with lower hedonic state. Dennisenn,
Butalid, Penke, and Van Aken (2008) also find that higher temperatures reduce hedonic state, while
Klimstra et al. (2011) follow nearly 500 adolescents and find large individual differences in their
responses to hedonic state. Lucas and Lawless (2013) find little effect of temperature on hedonic
state using state-level data.
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Feddersen, Metcalfe, and Wooden (2012) use nearly 100,000 observations from Aus-
tralian SWB surveys to compare the effects of short-term weather and long-term
climate on life satisfaction. Since individuals are observed more than once in their
data, they are able to control for individual fixed effects for some specifications. They
find that weather affects reported life satisfaction through solar exposure, barometric
pressure, and wind speed, but they do not find impacts from changes in temperature
itself.

The mixed results in this literature suggest that statistical power is constrained by
the combination of the high variance in SWB responses driven by non-temperature
factors and relatively small sample sizes. Most studies in this area have either relied
heavily on small sets of repeated samples, which limits external validity, or large
sets of non-repeated samples, which raises concerns about unobserved cross-sectional
variation.

Temperature preferences are likely to be correlated with unobservable factors
that vary across both space and time, and may be small relative to preferences for
other goods and services. To control for both geographic and temporal variation
while maintaining sufficient power to identify small, non-linear effects would require
a prohibitively expensive survey of subjective well-being.

In lieu of conducting such a survey, I use sentiment analysis algorithms to de-
tect hedonic state from a large set of Twitter data. Sentiment analysis is a natural
language processing technique designed to elicit subjective feeling from textual data.
There are a small number of a studies in computer science and computational lin-
guistics that have used sentiment analysis techniques on Twitter data. Dodds and
Danforth (2010) create an dictionary-based algorithm that scores individual tweets
using a mapping of more than ten thousand English words to scores of hedonic
state. The authors demonstrate that although the algorithm can misclassify indi-
vidual sentiments, it produces accurate results in aggregate (Mitchell et al. 2013).
Other work uses machine learning techniques to predict the sentiment of tweets (Pak
and Paroubek 2010). Related work has used sentiment analysis on Twitter data to
predict economic outcomes of interest. Bollen, Mao, and Zeng (2011) find that col-
lective hedonic state can help predict the stock market, Eichstaedt et al. (2015) use
measures of county-level hedonic state to predict heart disease mortality, and Gerber
(2014) shows that local Twitter hedonic state can improve local predictions of crime.
To my knowledge, no studies have used sentiment-analyzed Twitter data in a causal
setting.

By collecting a large, geographically and temporally detailed dataset, I am able
to account for unobserved variation across both time and space. The size of my
sample and the empirical techniques I use allow me to precisely estimate the effect
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of temperature in the midst of substantial unrelated variation in hedonic state. Ad-
ditionally, I am able to identify non-linearities in the temperature response function
and previously unexplored dimensions of heterogeneity.

1.4 Data
I generate four measures of hedonic state using data from Twitter and match these
to weather data at the tweet level. Table 1.1 describes sample characteristics. The
first panel shows the count, mean, median, minimum, and maximum of the measures
of hedonic state I describe later in this section, the second and third panel describe
the weather data used, and the fourth panel summarizes the number of tweets by
individual, grid cell, and county in the data.

1.4.1 Twitter data

Created in 2006, Twitter is a social networking site built around the public12 exchange
of short (<140 characters) Twitter updates. Since its founding, Twitter has become
one of the most popular social media platforms worldwide, with 288 million active
users sending over 500 million tweets per day13.

Twitter’s Streaming API14 is designed to give developers access to the massive
amount of data generated on the Twitter platform in real-time. Starting in June
2014, I began collecting geolocated Twitter updates from within the continental
United States using a client that is continuously connected to the Streaming API15

I collect the vast majority of geolocated tweets produced within my sample period,
which ends in December 2015.

Geo-located tweets are those for which the user has consented to have his or her
location information shared. The location information is either produced using the
exact latitude and longitude of the user if the tweet is sent from a phone, or from
a reverse-geocoding algorithm that derives the latitude and longitude from location
information entered by the user. In principle, Twitter limits the total number of
tweets delivered through the Streaming API to 1% (Morstatter, Pfeffer, Liu, and
Carley 2013) of the total tweets created. Since I request only geolocated tweets from

12Tweets are in the public domain.
13Population summary statistics from https://about.twitter.com/company.
14https://dev.twitter.com/streaming/overview.
15There are two gaps, from June 26th to July 12th, 2014, and from September 18th to October

27th, 2014, corresponding to periods of time when the streaming client was unable to connect to
the Streaming API.
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Table 1.1: Sample characteristics

Count Mean Median Min Max
Measures of hedonic state

Expert 1,077,127,397 0.37 0.38 -5.00 5.00
Crowd-sourced 1,083,068,307 5.51 5.51 1.30 8.44
Profanity 1,083,498,783 0.94 0.94 0.00 1.00
Emoticon 1,083,498,783 0.79 0.80 0.00 1.00

PRISM weather
Min temperature (F) 943,724,684 53.6 58.0 -33.9 99.3
Mean temperature (F) 943,724,684 63.3 68.4 -22.9 108.7
Max temperature (F) 943,724,684 73.1 78.3 -17.3 123.9
Precipitation (mm) 943,724,684 3.0 0.0 0.0 318.3

QCLCD weather
Proportion overcast 918,921,992 0.2 0.1 0.0 1.0
Visibility (km) 918,921,992 15.3 15.7 0.2 132.1
Relative humidity 918,921,992 59.6 60.4 2.1 100.0
Station pressure 918,921,992 29.2 29.4 19.9 30.8
Wind speed 918,921,992 7.7 7.3 0.0 74.7

Twitter updates per ...
Individual 10,227,302 87 9 1 240,045
PRISM grid cell 519,942 2,084 14 1 20,849,368
County 3,102 307,508 33,276 44 45,557,251

Notes: First panel shows statistics for the measures of hedonic state, second and
third panels for the weather datasets. For first through third panel, one obser-
vation is a single Twitter update. First column in the fourth panel is the total
number of individuals, grid cells, and counties in the sample. Second through
fifth columns are the means, medians, minimums, and maximums of the count
of Twitter updates by individuals, grid cells, and counties, respectively.
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within the United States, this rarely comes to more than 1% of the total tweets
worldwide (geocoded and otherwise). Over the course of the sample I collect, the
percentage of missed tweets is fewer than 0.01% of the total available. Figure 1.1 is
a map of Twitter update density where the shading for each pixel represents the log
of the total number of tweets in the dataset for each grid cell, a 4 km2 area. The
distribution of tweets closely resembles the population distribution in the United
States.

Figure 1.1: Tweet density

Notes: Darker areas represent higher levels of activity. Each pixel is a 4 km × 4 km grid cell,
colored to represent the total recorded number of tweets in that grid cell over the sample period.
Color is on a log10 scale.

To construct a measure of hedonic state, I generate measures of hedonic state
from the text of the Twitter updates in the dataset. Because no single measure of
hedonic state will perfectly capture the hedonic state of the individual at time of
update, I construct four separate measures of hedonic state from the text in the
Twitter updates: Expert, Crowd-sourced, Profanity, and Emoticon measures.

Table 1.1 shows the raw measures of hedonic state in the sample. Count is the
total counts of Twitter updates in the dataset, irrespective of whether or not covariate
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Table 1.2: Measure correlations

Expert Crowd-sourced Emoticon Profanity

Expert 1.00
Crowd-sourced 0.59 1.00
Emoticon 0.35 0.31 1.00
Profanity 0.39 0.19 0.12 1.00

Notes: Table displays correlations between the four measures of
hedonic state within the sampling frame.

data was obtained for those tweets.16 Note that although the Profanity and Emoticon
scores are binary variables and thus would be expected to have median zero or one,
the table displays the median of the average measure in a grid-cell day, weighted by
count of tweets. The descriptive statistics are constructed using the raw measures,
but the difference in means and scales suggests that standardization will be useful
for empirical comparison. As such, the measures are standardized (mean zero and
unit standard deviation) for the empirical estimation described in section 1.5. The
fourth panel shows the number of tweets per individual, grid cell, and county in my
dataset over the entire sample. There is considerable variation in the tweet volume
across these groups. Los Angeles county, for example, is responsible for more nearly
5% of the sample, while a single user accounts for nearly a quarter million tweets17.

Table 1.2 shows the correlations between the four measures. As expected, all of
the measures are positively correlated with each other, reflecting general agreement.
Some of the correlations are low, particular those between the Profanity measure
and the other measures, likely reflecting the considerable differences in the ways
these measures are constructed. The complexity of measuring hedonic state, as
demonstrated by the relatively limited agreement of the measures presented here,
suggests the importance of considering the effects across all measures rather than
just one. I next detail the construction of each measure.

Expert measure

The Expert measure is constructed using an expert-created dictionary that maps
words to scores of hedonic state. The AFINN-111 dictionary contains 2,477 words

16A proportion of tweets in my sample came from locations just outside the continental United
States, which is outside the range of the meteorological data I use.

17I do not include users with more than 10,000 tweets over the sample period in the analysis.
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scored using integers between -5 and 5, where -5 indicates negative hedonic state and
5 indicates positive hedonic state. The dictionary focuses on words that are indicative
of hedonic state, and was created by Nielsen (2011) to analyze language typically
used in microblogging. The dictionary is refined from an earlier dictionary built
by psychologists to assess the affective state (the psychological equivalent concept to
hedonic state) of written texts (Bradley and Lang 1999). The measure is constructed
using the following procedure:

1. Tweets are cleaned of extraneous punctuation, URLs, hashtags, and other non-
sense characters.

2. Tweets are checked for weather-related stopwords to avoid a mechanical cor-
relation generated by individuals discussing aberrant weather patterns. If a
stopword is found, the given tweet is scored as missing.

3. For each word in a tweet that matches an entry in the AFINN dictionary, the
corresponding measure of hedonic state is retrieved.

4. The overall score for a given tweet is the average score for word matched in
step 3. If no words in the tweet matched to the dictionary, then the measure
is scored as missing.

Let j = 1..J index words wj in a cleaned tweet and let k = 1..K index the tuples
(wk, sk), which are the word-score pairings in the dictionary. The Expert measure
EE for a given tweet is:

EE =

∑J
j=1

∑K
k=1 1[wj = wk]× sk∑J

j=1

∑K
k=1 1[wj = wk]

The AFINN-111 dictionary is specifically designed to include only words that are
indicative of emotional state. For example, the tweet “happy anniversary mom and
dad” has five words, but only “happy” is included in the AFINN-111 dictionary, and
has rating shappy = 3. The overall score for the tweet is just the average across scored
words, which in this case is just EE = 3 for this tweet, since only “happy” was scored.
Similarly, the tweet “i can’t watch matt cry” is given EE = −1, since the word “cry”
has scry = −1.

Crowd-sourced measure

The Crowd-sourced measure EC is constructed in a similar manner, but the dictio-
nary used is that provided by and described in Dodds and Danforth (2010). The
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authors crowd-source a dictionary of more than 10,000 words using the Mechanical
Turk service, which outsources tasks to external users. Users were asked to rate
each word on a scale from 1 to 9, where 1 indicated negative emotional state and
9 indicated positive emotional state, and scores were averaged across users to get a
single score for each word.

Unlike the Expert-measure, the Crowd-sourced measure scores most commonly-
used words regardless of whether they are likely to be indicative of underlying hedonic
state. Taking the same example tweets from the section above, “happy anniversary
mom and dad” has EC = 6.976, since the words in the tweet have scores of 8.3, 6.7,
7.64, 5.22, and 7.02, respectively. “i can’t watch matt cry” has EC = 4.428 with word
scores of 5.92, 3.42, 5.7, 5.26, and 1.84 for each word in the tweet, respectively.

Emoticon measure

While lexical affinity approaches such as the Expert and Crowd-sourced methods
are frequently used in the sentiment analysis literature, they can be sensitive to the
particular word-sentiment score mapping chosen by the researcher. To complement
these approaches, I construct a measure of hedonic state that classifies tweets as
positive or negative using a small set of assumptions and machine learning techniques.

Emoticons are text-based facsimiles of common facial expressions. In general,
emoticons can indicate positive moods, e.g. “:)” or “:-)”, or negative moods, e.g.
“:(” or “:-(”. One possible approach would be to limit the sample to tweets that
contain either a positive or a negative emoticon. However, since emoticons appear in
only about 2% of the sample, this approach substantially limits power. Since most
Twitter updates with emoticons contain words as well, researchers in computational
linguistics have employed machine learning techniques to leverage the subset of tweets
with both emoticons and words to predict the sentiment of the entire set of tweets
(Go, Bhayani, and Huang 2009; Kouloumpis, Wilson, and Moore 2011).

I collect a training dataset consisting of all tweets containing either positive or
negative emoticons. For this training dataset, I code the hedonic state as binary and
assume its polarity (1 if positive, 0 if negative) is indicated by the attached emoti-
con. Next, I train an effective, computationally efficient machine learning classifier,
Multinomial Naïve Bayes18, to estimate whether particular words are more likely to
be associated with positive or negative emoticons. Finally, I use this classifier to
compute the Emoticon measure EM of the population of tweets.

Developing a predictive model as described above could be done using a variety
18I use the scikit-learn implementation of the Multinomial Naive Bayes classification algorithm

(Pedregosa et al. 2011).
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of tools, ranging in complexity from ordinary least squares to ensemble techniques
that incorporate multiple machine-learning algorithms. I select Naïve Bayes because
it is equally effective and computationally much more efficient than other standard
approaches complex machine learning techniques for text classification tasks (Go,
Bhayani, and Huang 2009)19.

Naïve Bayes uses Bayes’ Theorem to estimate the probability that a given word
(called a unigram) or set of words (called bigrams, trigrams, etc.) are associated with
a particular sentiment. Multinomial Naïve Bayes is a variation of this technique
demonstrated to which work well with collections of words such as tweets. Pang,
Lee, and Vaithyanathan (2002) report that unigrams perform as well or better than
bigrams, and described the Naïve Bayes classification as follows: sentiment class
s∗ ∈ {0,1} is assigned to tweet d, where

s∗ = argmax
s

P (s|d)

P (s|d) = P (s)
∏M

m=1 P (wm|s)
P (d)

P (s|d) is the probability that tweet d has sentiment s. wm represents a particular
unigram (word) out of a total of M possible words. P (s) is the overall average
sentiment, estimated in the training set, while P (wm|s) is the likelihood of observing
word w given sentiment s, estimated in the training set. Laplacian smoothing is
used to ensure that P (wm|s) 6= 0. P (d) is the probability of observing a particular
tweet d, but since it is a scalar it does not affect the choice of s∗ and is therefore not
included in the estimation procedure. The predicted sentiment obtained from the
represent a simple scoring system: tweets whose content is predicted to be positive
are scored 1, while those with negative content are scored 0.

Profanity measure

Finally, to provide a measure with a more intuitive interpretation, I compile a list
of more than 300 profanities and scored each tweet for the presence or absence of

19I also test other machine learning classification algorithms. To do so, I train different classi-
fiers using a random subsample of the training set of tweets with emoticons, then cross-validate
the predicted sentiment classification using the remainder of the training set. I test Multinomial
Bayes, Stochastic Gradient Descent (SGD), and Support Vector Machines (SVM), and find that
Multinomial Bayes performs as well or better as SGD and SVM, which are more complicated tech-
niques. For detailed descriptions of Stochastic Gradient Descent and Support Vector Machines, see
Pedregosa et al. (2011). I find that Multinomial Bayes achieves an accuracy of around 80%, which
matches the observed percentage with which human raters of sentiment tend to agree (Wilson,
Wiebe, and Hoffmann 2005).
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these profanities20. In the sentiment analysis literature, this approach is called a
“keyword spotting” approach. I calculate the Profanity measure as follows: EP =
1[Profanity /∈ Tweet]. The assumption that drives the Profanity measure is that,
in general, profanities indicate negative hedonic states. To align with the other
measures, note that I code tweets without profanities as 1.

Validation exercises

I conduct a series of validation exercises to tie the measures to phenomena that most
readers will find intuitive. Figure 1.2 shows the measures by day of week. Since
the raw measures use different scales, I standardize such that all have mean = 0
and standard deviation = 1. The weekly variation in matches prior work (Dodds et
al. 2011) and common intuition: weekends and Fridays are preferred to non-Friday
weekdays, with the lowest measures of affect occuring on Mondays and the highest
on Saturdays. To calibrate the results later in the paper, it is useful to note that the
average difference in sentiment score between Sunday and Monday is approximately
0.01σ across measures.

Following Card and Dahl (2011), I conduct a separate validation exercise using
2014 National Football League (NFL) game outcomes. Twitter users within 80 kilo-
meters of an NFL stadium are matched to their home team, and their average hedonic
state in the remainder of a day following a win or loss is measured. The results are
shown in Figure 1.3. The difference between a win and a loss is approximately 0.01σ
across all measures, though the difference is larger in the Expert measure and smaller
in the Profanity measure. This corresponds roughly to the difference in hedonic state
observed between Sundays and Mondays.

1.4.2 Weather data

This work focuses primarily on the effects of temperature, but some specifications
include other weather variables such as precipitation, cloud cover, humidity, and
wind speed.

Temperature and precipitation

I use daily data on minimum temperature, maximum temperature, and precipitation
at 4 km2 grid cell across the contiguous United States. These data are from PRISM

20List of profanities available from http://www.noswearing.com/dictionary, which maintains
a comprehensive database of swear and curse words.
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Figure 1.2: Hedonic state by day of week
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Notes: Each line shows the average hedonic state for each measure described in section 1.4 by day of
week. Measures are standardized to have zero mean and unit standard deviation. Sample excludes
major U.S. holidays.

Climate Group’s AN81d dataset and are produced using the Parameter-elevation
Relationships on Independent Slopes Model, which interpolate measurements from
more than 10,000 weather stations (Daly et al. 2002). The data capture a high degree
of both spatial and temporal heterogeneity in weather. The second panel in Table
1.1 describes sample statistics for the PRISM data, weighted by tweet volume.

Other weather data

Prior work suggests that other weather variables besides temperature and precipi-
tation may be important determinants of hedonic state (Dennisenn, Butalid, Penke,
and Van Aken 2008; Levinson 2012). I collapse hourly data on proportion of day
that was overcast, visibility in kilometers, relative humidity, station pressure, and
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Figure 1.3: Effect of nearby NFL team win on hedonic state
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Notes: Height of bars is the change in hedonic state after a win by an National Football League
(NFL) team within 80 kilometers. Hedonic response is estimated using the four measures of hedonic
state described in section 1.4. Measures are standardized to have zero mean and unit standard
deviation. Sample includes areas within 80 kilometers of an NFL team on Sundays and Mondays
during the 2014 season, which ran from September to December. Error bars are the 95% confidence
intervals, estimated using two-way cluster robust standard errors on county and day-of-sample.

wind speed from 2,162 weather stations included in the Quality Controlled Local
Climatological Data (QCLCD) data from NOAA to the daily level. I drop any
station-months in which more than 10% of the observations were missing. To fill
in the remaining observations, I compute the inverse-distance weighted quantile of
a given measure from nearby stations and estimate the value of that measure for
the station with the missing data using the cumulative distribution function of that
station. This gives me a balanced panel of weather station observations. I then use
inverse distance weighting to impute these measures of weather on a grid similar to
that of the PRISM data. All measures of weather show substantial geographic and
temporal heterogeneity. The third panel in Table 1.1 describes sample statistics for
the QCLCD data, weighted by tweet volume.

19



1.5 Empirical specification
I estimate a panel fixed effects model to identify the effect of temperature on hedo-
nic state. As is standard in the climate impacts literature, the model is identified
under the assumption that temperature is as good as random after accounting for
unobserved cross-sectional and seasonal variation (Dell, Jones, and Olken 2014). To
this end, I include PRISM grid cell and state-by-month of year fixed effects in my
empirical specification. Following prior work that estimates marked non-linearities
in weather impacts across multiple economic outcomes (Schlenker and Roberts 2009;
Ranson 2014; Graff Zivin, Hsiang, and Neidell 2015), I estimate the effects on he-
donic state as a non-linear function of temperature by including temperature in the
model using a set of ten ◦F bins. Following standard practice, 20-25◦C is the omitted
category, such that the coefficient on, say, 30-35◦C should be interpreted as the effect
on hedonic state caused by replacing a 20-25◦C with a day which has an maximum
daily temperature of between 30-35◦C (Barreca2013b; Albouy, Graf, Kellogg, and
Wolff 2013). The empirical model I estimate is given by:

Egd =
B∑

b6=20-25

βbT
b
gd + f(P )gdφcmy + φd + εgd (1.1)

Let g, c, s, d, m, y index grid cell, county, state, day, month, and year, while b
is an index over temperature bins. Egd is the grid cell-day average of one of the
four measures of hedonic state described in section 1.4. Because my temperature
measure varies at the grid cell-day, taking the grid-cell day average of the hedonic
state measures and weighting by the total number of tweets in that grid-cell day
produces the same point estimates and standard errors as would be estimated using
a model where each observation represented a single tweet (Wooldridge 2002), while
reducing computation time substantially.

T bgd is a dummy variable = 1 if the maximum daily temperature in a grid cell falls
within the associated five degree bin b. I estimate a similar model with precipitation
in bins as the primary right-hand side variable, where the zero precipitation bin is
the omitted category. f(P )gd is a flexible function of daily precipitation.

The county by month-of-sample fixed effects φcmy control for unobservables within
each county-month. For example, individuals with higher income tend to have higher
levels of life satisfaction (Easterlin 2001) and may be inclined to locate in areas with
generally pleasant climate. By including φcmy, I identify the coefficients of interest
using within-cell variation over time. I also include date fixed effects φd to account for
national trends in weather, e.g., the well-known seasonal variation of human emotion
and seasonal changes in weather.
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The coefficients βb are identified using within-grid cell variation in weather that
is not absorbed by state-month fixed effects and map out a non-linear response
function between temperature and hedonic state. To allow for spatial and temporal
correlation in the data, I cluster the standard errors two ways, by state (48)21 and
by week of sample (50)22.

1.6 Baseline results
Using the econometric model specificied above, I document sharp declines in hedo-
nic state above and below 20◦C. For expositional clarity, this section presents these
results in two formats: first, I tabulate results for two of the measures using in-
creasingly robust sets of fixed effects, the last of which reflects the model described
in equation (1.1). Next, I plot the point estimates and standard errors to visually
represent the response of hedonic state to daily temperature. Because each outcome
measure Egd is standardized to have mean zero and unit standard deviations, the
point estimates βb represent the change in the conditional mean of hedonic state,
measured in standard deviations, expected as a result replacing a day having maxi-
mum temperature between 20-25◦C (the omitted bin) with a day having maximum
temperature within the corresponding temperature bin. For example, the coefficient
for 35-40◦C represents the change in hedonic state caused by replacing a 20-25◦day
with a 35-40◦day.

Each column in Tables 1.3 and 1.4 displays point estimates and standard errors
for increasingly robust sets of fixed effects and controls. Column (1) is the ordinary
least squares (OLS) estimate, which finds a large negative effect of high tempera-
tures, estimating that the difference between 20-25◦day and a 35-40◦day is equivalent
to seven times the difference in hedonic state observed between Sundays and Mon-
days. This model also documents mixed evidence of effects in colder temperatures,
though the sign of point estimates are inconsistent across measures: negative for the
Expert measure and positive for the Emoticon measure. However, the coefficients
in this model likely suffer from the classical omitted variables bias problem: with-
out controls, endogenous sorting, regional lexical norms, income levels, and seasonal

21I exclude Alaska and Hawaii due to limitations of the Twitter Streaming API and because the
PRISM weather data are confined to the continental United States.

22I also run a model that allows for spatial correlation up to 16 km and temporal correlation
of up to 7 days using spatial standard errors as described by Conley (2008) and implemented
using code from Hsiang (2010). The standard errors are smaller than those obtained using the
two way clustering described here, suggesting that the confidence intervals presented here may be
conservative.
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variation in temperature and hedonic state all likely correlate with both tempera-
ture and hedonic state. For example, the northern United States tends to be more
affluent and experiences lower average temperatures. If affluence has a positive effect
on hedonic state, this would introduce a downward bias in the coefficients on high
temperatures.
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Table 1.3: Effect of temperature on hedonic state (Expert measure)

(1) (2) (3) (4)

Max temperature T
T ≤ 0 −0.015∗∗ −0.012∗∗ −0.017∗∗∗ −0.009∗∗∗

(0.006) (0.005) (0.005) (0.002)
T ∈ (0,5] −0.009∗ −0.004 −0.008 −0.007∗∗∗

(0.005) (0.004) (0.005) (0.002)
T ∈ (5, 10] −0.006 0.002 −0.007∗∗ −0.007∗∗∗

(0.004) (0.003) (0.003) (0.001)
T ∈ (10, 15] 0.007 0.011∗∗∗ −0.002 −0.003∗∗∗

(0.004) (0.004) (0.003) (0.001)
T ∈ (15, 20] 0.012∗∗∗ 0.011∗∗∗ 0.0001 −0.001

(0.003) (0.002) (0.002) (0.001)
T ∈ (25, 30] −0.014∗∗∗ −0.010∗∗∗ −0.003∗∗ −0.002∗∗∗

(0.002) (0.002) (0.001) (0.001)
T ∈ (30, 35] −0.033∗∗∗ −0.018∗∗∗ −0.008∗∗∗ −0.007∗∗∗

(0.003) (0.003) (0.001) (0.001)
T ∈ (35, 40] −0.037∗∗∗ −0.027∗∗∗ −0.013∗∗∗ −0.011∗∗∗

(0.005) (0.003) (0.002) (0.001)
T ≥ 40 −0.015 −0.032∗∗∗ −0.014∗∗∗ −0.013∗∗∗

(0.010) (0.007) (0.003) (0.002)

Grid cell-days (m.) 20.7 20.7 20.7 20.7
Twitter updates (m.) 527 527 527 527
County FE No Yes Yes Yes
State × m-y FE No No Yes Yes
Date FE No No No Yes

* p < 0.1, ** p < 0.05, *** p < 0.01.
Notes: Dependent variable is the average standardized (mean zero, unit
standard deviation) Expert measure of hedonic state for a grid cell-day.
Independent variables are dummies for temperature (in ◦F) bins. Each
column is a separate regression, coefficients represent the change in stan-
dard deviations of hedonic state between a day within the associated tem-
perature bin and a day with temperature T ∈ [20,25), the omitted cate-
gory. Coefficients are estimated conditional on the fixed effects and con-
trols listed. Grid cell-days is the count of observations in the regressions
in millions. Twitter updates is the count the number of Twitter updates
aggregated into the grid cell-days in millions.
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Table 1.4: Effect of temperature on hedonic state (Emoticon measure)

(1) (2) (3) (4)

Max temperature T
T ≤ 0 0.006 −0.012∗∗∗ −0.014∗∗∗ −0.011∗∗∗

(0.005) (0.004) (0.003) (0.002)
T ∈ (0,5] 0.010∗∗ −0.004 −0.005∗ −0.007∗∗∗

(0.004) (0.004) (0.003) (0.001)
T ∈ (5, 10] 0.014∗∗∗ 0.004 −0.004∗∗ −0.007∗∗∗

(0.004) (0.003) (0.002) (0.001)
T ∈ (10, 15] 0.020∗∗∗ 0.013∗∗∗ −0.002 −0.004∗∗∗

(0.004) (0.003) (0.002) (0.001)
T ∈ (15, 20] 0.017∗∗∗ 0.013∗∗∗ 0.0002 −0.001

(0.003) (0.002) (0.001) (0.001)
T ∈ (25, 30] −0.015∗∗∗ −0.013∗∗∗ −0.004∗∗∗ −0.003∗∗∗

(0.003) (0.002) (0.001) (0.001)
T ∈ (30, 35] −0.044∗∗∗ −0.022∗∗∗ −0.011∗∗∗ −0.008∗∗∗

(0.004) (0.003) (0.001) (0.001)
T ∈ (35, 40] −0.071∗∗∗ −0.032∗∗∗ −0.015∗∗∗ −0.013∗∗∗

(0.005) (0.004) (0.002) (0.002)
T ≥ 40 −0.061∗∗∗ −0.045∗∗∗ −0.020∗∗∗ −0.017∗∗∗

(0.013) (0.008) (0.003) (0.003)

Grid cell-days (m.) 25.3 25.3 25.3 25.3
Twitter updates (m.) 1056.3 1056.3 1056.3 1056.3
County FE No Yes Yes Yes
State × m-y FE No No Yes Yes
Date FE No No No Yes

* p < 0.1, ** p < 0.05, *** p < 0.01.
Notes: Dependent variable is the average standardized (mean zero, unit
standard deviation) Emoticon measure of hedonic state for a grid cell-
day. Independent variables are dummies for temperature (in ◦F) bins.
Each column is a separate regression, coefficients represent the change in
standard deviations of hedonic state between a day within the associated
temperature bin and a day with temperature T ∈ [20,25), the omitted
category. Coefficients are estimated conditional on the fixed effects and
controls listed. Weather controls include day-level measures of tempera-
ture range, cloudiness, visibility, station pressure, relative humidity, and
average wind speed. Grid cell-days is the count of observations in the re-
gressions in millions. Twitter updates is the count the number of Twitter
updates aggregated into the grid cell-days in millions.
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To account for unobservables in space, column (2) adds county-level fixed effects
φc, standard in the climate impacts literature (Dell, Jones, and Olken 2014). These
point estimates are identified using within-county fluctuations in temperature, and
document smaller (in magnitude) effects in of high temperature and more consistenty
negative effects of cold temperatures than the OLS estimates. These results suggests
that unobserved variation in space was likely responsible for some portion of the
OLS estimates. However, this model continues to find substantial positive effects
associated with temperatures between 10 and 20◦C, which contrasts with intuition
and prior evidence.

To control for seasonal variation, column (3) adds state-by-month of sample fixed
effects φsmy, allowing for differential seasonal trends by states. This specification not
only accounts for unobservable seasonal effects, but also allows those seasonal effects
to differ by state. The addition of these controls to the model produces estimates
that are more in line with intuition: days with maximum temperature from 20-25◦C
are preferred to all other days, while increasingly extreme days on either side are
found to be increasingly dispreferred.

Finally, column (4) adds date fixed effects φd to account for within-month cor-
relation between hedonic state and temperature. While controlling by seasonality
using month fixed effects aligns with the extant literature (Auffhammer, Hsiang,
Schlenker, and Sobel 2013), it is possible that, for example, trends in hedonic state
may mean that moods in early March tend to be higher than in late March, for
example, which would spuriously correlate with within-month temperature trends.
This model reflects equation (1.1) and is my preferred specification. Empirically,
adding these fixed effects does not qualitatively alter the results, however.

A concern with fixed effects models is that accounting for additional unobserv-
ables wipes out much of the useful variation in the data and can frequently result
in measurement error overwhelming the model (Angrist and Pischke 2008b). This
kind of classical measurement error would result in attenuated estimates, which do
not appear to be an issue with the models I estimate. Still, I plot the distribution
of the residual variance used for these models in Figure 1.4 as a method of demon-
strating the amount of variance used to estimate the model as additional fixed effects
are added. Notably, both the OLS and the model in column (2) displayed skewed
distributions for temperature, while the addition of seasonal fixed effects results in
residuals whose distribution resembles a normal distribution but reduces the variance
in the distribution substantially.

Turning to Figure 1.5, the four measures of hedonic state all strongly reject
the null of no effect of temperature on hedonic state, and provide strong evidence
of a negative relationship between hedonic state and maximum daily temperatures
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Figure 1.4: Residual variance in daily maximum temperature

Daily maximum temperature deviation

-20 -10 0 10 20

-30 -20 -10 0 10 20 30

Fixed effects
None
County
County + state × m-y
County + state × m-y + date

Notes: Kernel densities of the residuals from regression of hedonic state on temperature bins using
four different econometric models. First model does not include fixed effects, second adds county
fixed effects, third adds state by month of sample fixed effects, and fourth adds day of sample fixed
effects.

both above and below 20◦C. The left panels of Figure 1.5 capture the results from
column (4) in Tables 1.3 and 1.4, while the right panels document results for the
Crowd-sourced and the Profanity measures. All measures reflect the same qualitative
findings, with the possible exception of the Profanity measure, which does not find
significant changes in hedonic state in lower temperatures. A possible explanation
for this is that aggressive behavior, which is most captured lexically using profanity,
is not additionally reduced by colder temperatures (Ranson 2014), while depressive
behavior, which would be missed by the Profanity measure but captured by the other
measures, could still increase.

The negative relationship between temperature and hedonic state both above and
below a 20-25◦C “bliss point” resembles that estimated by Albouy, Graf, Kellogg,
and Wolff (2013) and other work in the locational choice literature, who find that
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Figure 1.5: Effect of temperature on hedonic state
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Notes: Plots represent the hedonic response to temperature, where each plot uses a different measure
of hedonic state described in section 1.4. Measures are standardized to have zero mean and unit
standard deviation. Each point estimate is the difference in the average grid cell-day hedonic state
for the associated five ◦C temperature bin relative to the 20-25◦C (68-77◦F) bin (the omitted
category), conditional on grid cell and state by month fixed effects and weighted by the number of
tweets in a grid cell-day. 95% confidence intervals estimated using two-way cluster robust standard
errors on county and day-of-sample.

individuals would pay to avoid warm temperatures in summer and cold temperatures
in winter. All measures estimate that the difference between a 20-25◦C day and a
35-40◦C day to be approximately 0.01σ, and three of the measures find a similar
difference between a less than 0◦C day and a 20-25◦C day. As a point of comparison,
these differences are roughly comparable to the average difference in hedonic state
between tweets sent on Sunday versus tweets sent on Monday (see Figure 1.2).

27



1.7 Robustness checks and extensions
This section extends the baseline results with a series of robustness checks and ex-
tensions: I account for possible endogenous selection into sample using individual
fixed effects, examine seasonal differences in responses to temperature, disaggregate
the response by hour of day, project future changes in hedonic state as a result of
climate change both with and without adaptation, and use a preliminary method to
estimate a willingness-to-pay for temperature from these data.

1.7.1 Accounting for endogenous sample selection

Including county fixed effects in the empirical model accounts for sorting into pre-
ferred climates. In this respect, model (1.1) is highly robust to unobserved variation.
However, since participation in Twitter is a choice on the part of a given user, failing
to account for potential endogeneity of Twitter participation may induce a sample
selection bias (Heckman 1979). In this setting, the selection bias of greatest concern
is compositional sorting: samples of tweets at different temperatures may reflects
different sets of users with different unobservable characteristics. For example, if
individuals with higher or lower native affect become more likely to compose Twitter
updates in different temperatures, the coefficients could be capturing this composi-
tional change in the sample rather than a change in average hedonic state.

Since the data I collect include an identifier for the tweet creator, I control for
compositional sorting in my sample using user fixed effects. To do so, I estimate the
following model:

Eid =
B∑

b6=20-25

βbT
b
gd + φi + φd + εid (1.2)

This model substitutes user fixed effects, φi, for the county fixed effects, φc, in model
()1.1)23. The model requires the use of the entire unaggregated sample of observations
in my dataset; because the right-hand side of model (1.2) includes variation at the
individual level, it not possible to compute the same coefficients using grid cell-day
averages. Let i and d be the user and date a status update was sent, respectively.
Eit is one of the four measures of hedonic state. For computational reasons, I use a

23A possible concern with model (1.2) is that the same individual tweeting from different locations
may be endogenously determined with weather, e.g. a family choosing to vacation in California to
avoid a cold snap in Minnesota. To address this bias, I estimate a specification that also includes
PRISM grid cell fixed effects alongside the individual fixed effects. The results are qualitatively the
same.
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20% subsample of users to estimate the following results: they are robust to multiple
subsample selection.

To compare the results from models (1.1) and (1.2), I overlay the estimates from
each model in Figure 1.6. I find qualitatively similar results for the measures, al-
though the estimates for higher temperatures are attenuated in the individual fixed
effects model relative to the baseline model. It is possible that this is evidence of
some compositional sorting at higher temperatures, but more likely the result of
measurement error driven using a sparser source of variation. The negative response
to cold temperature is nearly identical between models, suggesting that the source
of the differential is heterogenous in temperature.

To further examine this possibility, Figure 1.7 plots the volume of tweets by
temperature, using a model similar to (1.1), but with the log of the count of tweets
in grid cell-day as the outcome variable. After accounting fixed effects, I find that
tweet volume is higher on days with higher temperature, and that the change in
volume is more pronounced in low temperatures. This is suggestive evidence that
compositional sorting is unlikely to be driving the results in Figure 1.6, since we
would expect the temperatures with the greatest change in the volume of tweets to
also reflect the most compositional sorting.

1.7.2 Effect by hour of day

To better understand how temperature affects hedonic state, I compare the effect
of temperatures across different hours of the day. To do so, I replace the PRISM
weather data with the hourly station-level data from QCLCD described in section
1.4. Using this level of details allows me to investigate the extent to which daytime
and/or nighttime temperatures are driving the observed effects on hedonic state.
To estimate this model, I simplify the bins by using a piecewise linear function in
temperature with a break at 20◦C and allow this function to differ by how of day.
More precisely, I estimate the following econometric model:

Egdh = γ1min(Tgdh, 20) + γ2max(20− Tgdh, 0) + φc + φsmy + φh+ µgdh (1.3)

This model adds hour of day fixed effects φh to control for spurious correlated
variation in mood over the course of the day and weather patterns, and is identified
by comparing tweets within a given hour in the same grid cell on warm days to tweets
within the same hour on cooler days, after accounting for geographic and seasonal
variation. γ1 and γ2 are the coefficients of interest, where the first represents the
linearized response up to 20◦C, and the second represents the response about 20◦C.
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Figure 1.6: User and grid cell fixed effects comparison
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Notes: Plots compares the hedonic response to temperature across two statistical models, one with
county and one with user fixed effects. Both models include date fixed effects. Each point estimate
is the difference in the average grid cell-day hedonic state for the associated five ◦C temperature bin
relative to the 20-25◦C (68-77◦F) bin (the omitted category). 95% confidence intervals estimated
using two-way cluster robust standard errors on county and day-of-sample.

Figure 1.8 plots the piecewise linear functions for each hour of the day for the Expert
measure. For nearly every hour, hedonic state increases in temperature up to the
20◦midpoint. Above 20◦, sharp negative decreases in temperature are observed for
the morning hours until around 1 PM, when a slight positive relationship between
temperature and mood can be observed until about 4 PM. This abates in the evening,
when small negative effects of higher temperatures are observed.
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Figure 1.7: Volume of tweets by temperature
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Notes: Plot estimates the effect of temperature on tweet volume, after conditioning on county,
state by month, and date fixed effects. Outcome variable is the natural log of tweets, coefficients
approximate the proportional change in tweets induced by replacing a 20-25◦C day with a day in
the given temperature bin.
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Figure 1.8: Response by hour of day (Expert measure)

Hour 1 Hour 2 Hour 3 Hour 4

Hour 5 Hour 6 Hour 7 Hour 8

Hour 9 Hour 10 Hour 11 Hour 12

Hour 13 Hour 14 Hour 15 Hour 16

Hour 17 Hour 18 Hour 19 Hour 20

Hour 21 Hour 22 Hour 23 Hour 24

Notes: Each plot captures the fitted piecewise linear function of hedonic state in temperature for
one hour of the day, with a breakpoint imposed at 20◦C. Model includes county, state by month of
sample, and hour fixed effects. Standard errors clustered by county by month of sample and date.
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1.7.3 Heterogeneity in response by season

Model (1.1) estimates an average response function over the entire year. Pooling
the response over the entire year could mask seasonal heterogeneity in the response,
since individuals may respond differently to a relatively warm day in winter than
they would in summer. Indeed, results obtained by other researchers suggest that
people are willing to pay for lower temperatures in summer and higher temperatures
in winter. To test this in my data, I specify a model that allows for the effects of
temperature to differ seasonally:

Egd =
B∑

b 6=20-25

Seasons∑
s 6=1

βsbT
b
gd × 1[Season = s]m + φc + φsmy + εgd (1.4)

Figure 1.9 documents the response function by seasons for the Expert measure. In
general, colder temperatures are dispreferred in the winter but viewed with ambiva-
lence in the fall, while the relationship between high temperatures and hedonic state
is uniformly negative across seasons. This evidence suggests that preferences for
temperature differ seasonally in a way that reflects observed willingness to pay for
housing (Albouy, Graf, Kellogg, and Wolff 2013). These results are consistent across
all measures.
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Figure 1.9: Seasonal response heterogeneity
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Notes: Plots illustrate hedonic response to high temperatures by hour of day. Measures of hedonic
state are as described in section 1.4 and standardized to have zero mean and unit standard deviation.
Sample is limited to days with average daily temperature greater than 20◦C. Each point is the
coefficient from a separate regression of hedonic state on the daily temperature where the sample
is limited to observations in corresponding hour, conditional on county, state by month, and date
fixed effects and weighted by the number of tweets in a grid cell-day. 95% confidence intervals
estimated using two-way cluster robust standard errors on county and day-of-sample.
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1.7.4 Climate projections

The projected effects of climate change are, on average, an increase in the mean
and variance of the climate distribution. To better understand the future impacts
of climate change on hedonic state, I combine the estimates documented above with
projected changes in United States climate. The thought experiment I perform is as
follows: if the predicted end-of-century effects of climate change were to take place
tomorrow, how should we expect hedonic state to change? By using downscaled
climate data, I am able to account for likely geographic heterogeneity in climate
impacts and observe how different regions of the United States may be affected. I
emphasize that these projection exercises are not meant to be direct predictions of
future changes in hedonic state but are instead meant to illustrate ways in the which
the amenity costs of temperature could be differentially altered in the United States.
I conduct two projection exercises, with and without accounting for adaptation.

First, I use the average response function across the United States as the basis
of projection, holding that response function constant over time. The projected
damages are products of the coefficients estimated in Figure 1.5 and the expected
change in the number of days in a given bin, summed over all bins. The result of this
exercise is mapped in the top left panel of Figure 1.10. In general, southern areas
of the United States experience the greatest losses of hedonic state. This finding is
driven by the findings of the climate models, which predict a large increase in the
number of very hot days in this region. Because the most severe impacts of hedonic
state are found in higher temperatures, these regions are most profoundly affected.
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Figure 1.10: Projected changes in hedonic state (no adaptation)
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Notes: Darker areas represent larger (in absolute values) annual changes in hedonic state, as mea-
sured using the Expert measure described in section 1.4. Projected changes are computed by taking
the difference in the average annual days in a given temperature bin between climate model output
of 2086-2099 and 2000-2019, multiplying by the corresponding coefficients in Table 1.3, and then
summing the products. Each pixel is a 4 km × 4 km grid cell, colored to represent the predicted
annual change in standard deviations of hedonic state.
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The extent to which individuals adapt to changing climate regimes is an im-
portant input to understanding the cost of climate change (Barreca2013b; Burke,
Hsiang, and Miguel 2015a). Since hedonic state is known to adapt to changes in
circumstances, it is possible that the hedonic response to temperature could fully
adjust to changes in the mean of the climate distribution. Put another way, if the
change in hedonic state due to temperature is solely a function of the distance from
the mean temperature, then the change in the mean of the climate distribution will
have no effect on welfare. With sufficient data, one way to test for this possibility
would be to use a long differences approach similar that implemented by Burke and
Emerick (2015).

Because my data are a much shorter time series, I provide suggestive evidence of
future adaptation by estimating separate temperature response functions for areas
with different climates. Next, I allow areas to adapt to a new temperature regime by
adopting a response function of their new quintile, using the historical quintile breaks.
To fix ideas, suppose that there is a county in Minnesota in the lowest historical daily
average temperature quintile. After allowing for climate change, this county would
now fall into the second lowest quintile using the historical temperature cutoffs. I
project the effect of climate change using the response function of the second lowest
quintile, which would, for example, include Kansas. This exercise allows Minnesota’s
response function to adjust to look more like Kansas’ response function. Figure 1.11
contains this final projection exercise. This map suggests that the most affected
regions are likely to be in the northern part of the country.
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Figure 1.11: Projected changes in hedonic state (with adaptation)
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Notes: Darker areas represent larger (in absolute values) annual changes in hedonic state, as mea-
sured using the Expert measure described in section 1.4. Projected changes are computed by taking
the difference in the average annual days in a given temperature bin between climate model output
of 2086-2099 and 2000-2019, multiplying by the corresponding coefficients in Table 1.3, and then
summing the products. Each pixel is a 4 km × 4 km grid cell, colored to represent the predicted
annual change in standard deviations of hedonic state.
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I emphasize that these projections are reliant on strong assumptions, in particu-
lar regarding future technological change, migration, and adaptation. I attempt to
provide a margin for adaptation, both past and future, in the second and third exer-
cises. With that in mind, these estimates suggest large changes in hedonic state due
to climate change. Returning to the calibration exercise, for some areas this change
would be the equivalent of replacing every Saturday and Sunday in a year with a
Monday. Given the strong assumptions required to obtain this estimate, I instead
focus on the regional differences in the projected outcomes produced by varying ag-
gregation levels and allowances for adaptation. This setting is likely not the only
area in which these regional differences are important, and suggests the importance
of both accounting for these differences and using them to infer adaptation behavior.

1.7.5 Estimating a willingness-to-pay for temperature

The evidence provided thus far demonstrates a clear relationship between hedonic
state and temperature. However, to compare the magnitude of these cost of changes
in hedonic state to the magnitude of costs in other sectors, it is necessary to con-
vert the changes in hedonic state into monetary damages.24 Following prior work,
I present a highly preliminary method for this conversion. I emphasize that this
method relies on strong assumptions and should be interpreted as a back-of-the-
envelope calculation at best.

The technique I use follows Train (2002) and Levinson (2012), the latter of which
implements it to estimate the monetary cost of changes in air quality on reported
life satisfaction. I estimate the following model:

Egd = βT bgd + γIb + φsm + εgd (1.5)

The major addition to the model is Ib, Census Block Group median income in thou-
sands. β can be interpreted as the change in hedonic state induced by a one ◦F
change in temperature, while γ is the change in hedonic state associated with a
$1,000 dollar increase in the income of an individuals Census Block Group.

I estimate and totally differentiate the above, holding dE = 0 → ∂I
∂T

= − β̂
γ̂
.

This estimate can be interpreted as the willingness to substitute between a degree
of temperature change and $1,000 increase in median income. The results of this
regression are displayed in Table 1.5. Computing the willingness to substitute across
all four measures yields estimates of $548, $875, $2096, and $816 for the Expert,

24Conversion into a monetary cost is also important for inclusion in Integrated Assessment Mod-
els (Hope 2006; Nordhaus and Sztorc 2013; Antoff and Tol 2014) or the social cost of carbon
(Interagency Working Group on Social Cost of Carbon 2013).
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Crowd-Sourced, Emoticon, and Profanity measures, respectively. These estimates
are largely driven by the size of the denominator γ, and constitute a 1-2% change
in income relative to the median in my sample, which is in line with other results
estimated in the locational choice literature.

Table 1.5: Estimating a WTP for temperature

Expert Crowd-sourced Emoticon Profanity
Mean temperature -0.000492* -0.000746* -0.000784* 0.000607**

(0.000227) (0.000297) (0.000296) (0.000186)
Income ($1,000) 0.000897*** 0.000853* 0.000374 -0.000744**

(0.000136) (0.000331) (0.000288) (0.000236)
Grid cell-days 17,986,266 15,059,391 18,460,020 18,460,020

Notes: Each column contains coefficients from a regression of a measure
of hedonic state on temperature and median Census block group income.
Measures of hedonic state described in section 1.4 and are standardized
to have mean zero and unit standard deviation. All regressions include
state by month fixed effects and are weighted by the number of tweets in
a grid cell-day. 95% confidence intervals estimated using two-way cluster
robust standard errors on county and day-of-sample.
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I emphasize that this procedure requires two strong assumptions. First, it requires
that dE = 0 ⇒ dU = 0, or that holding hedonic state constant is equivalent to
holding utility constant. Second, it requires that within state, between-Census Block
Group differences in income are as good as random. The results of this exercise should
be interpreted with appropriate caution.

1.8 Discussion
This paper explores the relationship between temperature on hedonic state as a way
to understand preferences for day-to-day temperature. The existing literature es-
timates large costs due to the change in amenity value driven by climate change,
but does so by relying on cross-sectional variation. In this paper, I document a
method that allows researchers to estimate preferences over nonmarket goods while
accounting for a wide range of unobservable variation across both space and time.
I accomplish this by constructing a dataset of text updates from the social media
platform Twitter, which I code using human and machine-trained sentiment analysis
algorithms from computational linguistics. I combine this geographically and tem-
porally detailed measure of hedonic state with finely gridded weather data to flexibly
estimate the effect of weather on mood. I find that hedonic state is unaffected by
cooler temperatures, but declines sharply above 20◦C. In terms of magnitudes, I es-
timate a difference of about 0.01σ between a day with mean temperature of 20-25◦C
(68-77◦F) and a day with 30-35◦C (86-95◦F), which is roughly the average difference
between observed hedonic state on Sundays relative to Mondays. These results are
net of short-term adaptation, e.g. air conditioning. Since my data are from the
United States, where air conditioner penetration rates are among the highest in the
world, it is likely that the relationship between temperature and hedonic state may
be even more pronounced in other countries.

The negative effects of warm temperatures strongly resemble qualitative results
documented using other approaches. However, the lack of a similar distaste for ex-
tremely cold temperatures, even in winter, remains a puzzle. I speculate that this
apparent contradiction may illuminate a key difference between ex ante preferences
for temperature and ex post hedonic responses to different temperatures. One impor-
tant factor may be the relative margins for adjustment to low and high temperatures:
cold days can be easily adapted to through additional clothing, but no such margin
exists for hot days. Similarly, the greater penetration of heating equipment, relative
to air conditioning, could play a role.

The results obtained in section 3.5 should be interpreted with some caution.
First, users of Twitter are a selected sample, though a large one. Moreover, users
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who choose to enable geolocation services may be yet different from the Twitter
user-base at large. The adaptive nature of hedonic state could also imply that the
costs of climate change could be overstated by this analysis, though section 1.7.4
accounts for this possibility and negative impacts remain. Finally, the nature of the
results presents challenges to monetary conversion: how much social welfare does the
loss of one standard deviation of hedonic state represent? The preliminary method
I demonstrate in section 1.7.5 provides one view, but relies on strict assumptions.

Nevertheless, this paper makes several contributions to the literature. It intro-
duces a new methodology and data source to estimate preferences over nonmarket
goods while accounting for possible unobservable cross-sectional and seasonal vari-
ation. It demonstrates how an appropriate use of sentiment analysis and machine-
learning algorithms can enhance the econometric analysis of large datasets, estimates
the relationship between temperature and hedonic state across multiple dimensions
of heterogeneity, and suggests a psychological channel through which other impacts
of climate change may operate. Additionally, this paper is one of the first to employ
social media data in a rigorous causal framework. The projection exercise I conduct
is unique in the literature in that I use both aggregated and disaggregated response
functions to project future damages, showing that the use of disaggregated response
functions and allowing areas to adapt over time substantially modifies the qualita-
tive implications of the projection exercise. Broadly, this work provides supporting
evidence that changes in the amenity value of climate are an important component
of the overall costs of climate change.
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Chapter 2

Climate is projected to have severe
impacts on the frequency and
intensity of peak electricity demand
across the United States

Joint work with Maximilian Auffhammer1 and Catherine Hausman2

2.1 Introduction
Integrated Assessment Models (IAMs) used to estimate the United States govern-
ment’s social cost of carbon include large costs due to changes in electricity demand
resulting from climate change (Nordhaus and Boyer 2000; Diaz 2014). The Climate
Framework for Uncertainty, Negotiation, and Distribution (FUND), for example, es-
timates the majority of the costs of climate change to result from the additional
cost of cooling (Antoff and Tol 2014). However, FUND and the other IAMs rely
on a highly simplified estimate of the relationship between rising temperatures and
heating and cooling costs. At the same time, future capital investments in genera-
tion capacity require accurate, region-specific forecasts of future electricity demand.
Many aspects of these forecasts are well-understood: electricity demand tends to rise
with population, income, and the presence of energy-intensive industries (Davis and

1UC Berkeley (207 Giannini Hall, Berkeley, CA 94720) and National Bureau of Economic Re-
search.

2University of Michigan (735 South State Street, Ann Arbor, MI 48103) and National Bureau
of Economic Research.
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Gertler 2015b). However, since electricity usage by residential and commercial cus-
tomers is also strongly correlated with temperature, climate change-induced changes
in temperature are likely to significantly affect future generation, transmission, and
distribution requirements relative to a world with a stationary climate.

Prior work has examined the relationship between electricity load, i.e., the quan-
tity of electricity demanded, and temperature. Cost estimates to date have focused
primarily on generation impacts, using state-level monthly averages of electricity load
(Deschênes and Greenstone 2011; Barreca 2012). We contribute to this literature by
considering capacity and transmission impacts, driven by variability in impacts across
space and time. Franco and Sanstad (2008) show that peak demand, or load could
respond differently than average load, but their analysis focuses on California. Other
California-focused papers include Miller, Hayhoe, Jin, and Auffhammer (2008) and
Auffhammer and Aroonruengsawat (2011), but no papers have estimated peak im-
pacts for the United States as a whole. Jaglom et al. (2014) examine average and
peak load across the United States using a structural model of electricity generation
and data from 32 U.S. regions. In sum, our paper is the first to combine spatially and
temporally disaggregated data on regional electricity load and temperature across the
United States with regional climate predictions, to simulate disaggregated changes
in future electricity demand due to climate change.

Specifically, we construct the first dataset that combines fine-scaled electricity
load data and comprehensive sectoral coverage with daily weather patterns. We use
this dataset to estimate separate temperature response functions for 165 distinct
load zones and exploit the richness of our data to document non-linearities in the
response functions. We also introduce a method that allows us to forecast beyond
the support of the temperature distributions we observe, focusing on the “tails” of the
temperature distribution in order to properly estimate changes due to the increases
in extreme temperature expected as a result of climate change.

Since electricity cannot currently be cost-effectively stored at scale, hour-to-hour
variability in demand significantly impacts production costs. Because electricity
providers often require a 20% reserve margin for capacity, the response of peak
load to climate change will translate directly into increases in capital costs, even
if the average generation impacts are not large. Noting that a significant of the
levelized cost of electricity generation is composed of capital costs,3 we again use the
high frequency of our time series data to estimate separate response functions and
predictions for both average and peak load. We find that peak load responds more
strongly to increases in temperature, suggesting that required increases in generation

3In the EIA’s 2015 Annual Energy Outlook, capital costs make up 19% of the levelized cost for
combined cycle plants, 29% for combustion turbine plants, and 64% for coal-fired plants.
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(or storage) capacity investments may be larger than previously thought.
Next, we combine these results with projections of future temperature change

from a set of downscaled climate projections under two Representative Concentra-
tion Pathways (RCPs) to estimate the change in both average and peak load due
to climate change. We demonstrate how these predictions vary spatially as a re-
sult of regional temperature response curves and climate projections. Section 2.2
describes methods, including the dataset we construct and the estimation and simu-
lation strategies, section 3 documents estimation and simulation results, and section
4 concludes.

2.2 Methods

2.2.1 Estimation of temperature response functions

Data

The electricity load data used in this paper come from the Federal Energy Regu-
latory Commission (FERC) Form 714 - Annual Electric Balancing Authority Area
and Planning Area Report (for short, FERC 714) and from individual Independent
System Operator (ISO) reports, where available.

Specifically, we gather hourly energy usage from 2006-2014 for every balancing
authority area and planning area. Our sample covers most of the balancing author-
ities4 in the FERC 714 data, although we exclude areas that overlap with data we
obtain directly from the ISOs (see below). To link the FERC 714 data to the geo-
graphic areas they serve, we create a mapping from each respondent to county FIPS
codes using data from EIA Form 8615. Additionally, some ISOs provide load data

4A balancing authority is defined by FERC as “[t]he area operator that is responsible for match-
ing generation and load, responsible for maintaining scheduled interchange with other balancing
authority areas, and that is responsible for maintaining the frequency in real-time, of the electric
power systems.” A planning area is defined as “[t]he electric system wherein an electric utility is
responsible for the forecasting of system demands and has the obligation to provide the resources
to serve those demands.” (FERC 714 Instructions).

5We map from FERC respondents to their served areas as follows. The FERC 714 data provides
a crosswalk to the each entity’s corresponding EIA identification number. With it, we link the
81 respondents that distribute electricity directly to customers to their service areas in the EIA
861 data. Second, we link the 57 respondents (with some overlap between this group and the 81
above) whose identification numbers link to balancing authority identification numbers in the EIA
861 data, which in turns links them to their constituent distribution utilities’ service area. For the
remaining respondents (22), we use a string matching routine to link between their constitutent
distribution utilities and the EIA service territories. In total, we are able to link 122 FERC 714
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independent of the FERC 714 system. Where available, we use ISO data instead of
the FERC data to obtain more disaggregated estimates6. In total, our data contain
165 distinct load zones. Figure 2.1 displays the sample area, with distinct colors for
each zone. Coverage gaps indicate areas where load data are either missing or could
not be linked to a geographic zone.

Figure 2.1: Sample area

Notes: Map depicts sample coverage for the data by county. Shading represents different load
zones, though more than one zone can serve customers within the same county.

Detailed maps for all zones are plotted in Figure 2.2.

respondents to their service territories.
6We obtain zone-level data from the Electric Reliability Council of Texas (ERCOT), ISO New

England (ISO-NE), the New York Independent System Operator (NYISO), and PJM Interconnec-
tion LLC (PJM). In total, we use load data from 43 sub-zones across all four ISOs.
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Figure 2.2: Zone maps
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For expositional clarity, we use the generic phrase “load area” to refer to the
balancing authorities, planning areas, and ISO zones in our data. We define average
hourly load as the total daily load divided by 24, and peak load as the maximum
hourly load in a given calendar day.

We obtain daily data on minimum temperature, maximum temperature, and
precipitation from the PRISM Climate Group’s AN81d dataset. These data are
created from more than 10,000 weather station observations, interpolated to 4km x
4km grid cells using the Parameter-elevation Relationships on Independent Slopes
Model (Daly et al. 2002). This method accounts precisely for weather variation
induced by topological features that may be inappropriately captured by more basic
interpolation algorithms (Auffhammer, Hsiang, Schlenker, and Sobel 2013).

Table 2.1 displays summary statistics for both the load and weather data.

Table 2.1: Descriptive statistics

Statistic N Mean St. Dev. Min Max

Daily load (MWh) 453,468 60,114 76,070 0 542,416
Peak load (MWh) 453,468 2,980 3,793 0 25,626
Minimum temperature (C) 453,468 8 10 −35 31
Maximum temperature (C) 453,468 20 11 −26 45
Daily precipitation (mm) 453,468 3 7 0 207

Notes: Each observation represents a single zone-date between 2006 and
2014. Daily load is the sum of total load that day divided by 24. Peak
load is the maximum hourly load that day. Weather covariates are in-
sample daily interpolated measurements from PRISM.

Estimation

To estimate the response function of average and peak load to weather, we estimate
a set of time series models, one for each load zone:

Loadt = α +
∑
b

βbT
b
t + γTt × 1[Tt > 21] + Pt + f(t)t + φdow + φmon + εt (2.1)

where t is day of sample, Loadt is either average or peak load for t, T bt is a dummy for
daily average temperature falling within a given temperature bin b, 1[Tt > 21] is daily
average temperature when greater than 21◦Celsius, Pt is total daily precipitation,
f(t) is a sixth-order Chebychev polynomial in day of sample, and φdow and φmon are
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dummies for day of week and month of year. The coefficients of interest are β and
γ, representing the impact of temperature below and above 21◦C, respectively.

For the β coefficients, we use three degree Celsius temperature bins to capture
nonlinearities in the response function, omitting the 15 to 18 degrees C bin, which
tends to be the minimum load in our data. This semi-parametric function is com-
monly used in the literature to capture non-linearities in the response. However,
we depart from the literature by imposing a linear response above 21 degrees Cel-
sius. That is, the bins are used for temperatures below 21, and a linear response
thereafter. We impose this restriction to project responses for projected temperature
realizations about the historical support. Otherwise, we would be unable to simulate
electricity demand for temperatures not observed historically in our data. Below, we
provide empirical evidence to support this assumption. We note also that it accords
with models of electricity demand for space heating and cooling.

The coefficients are identified under the assumption that changes in temperature
are as good as random after controlling for seasonal variation and time trends. We
include precipitation as a covariate in order to isolate the effect of temperature on
electricity demand, while the day of week dummy is included in order to increase
precision, since load varies predictably by day of week. Standard errors are estimated
using Newey-West standard errors that account for up to 15 days of serial correlation.

2.2.2 Climate simulations

After estimating the temperature response functions for each load zone, we combine
those response functions with regional predictions of temperature change to produce
zone-specific projections of changes in both average and peak load due to climate
change.

Climate projections

In order to create region-specific predictions of end-of-century changes electricity
load due to climate change, we use a set of climate projections from the Coupled
Model Intercomparison Project 5 (WRCP 2011) downscaled using the Multivari-
ate Adaptive Constructed Analogs method (Abatzoglou and Brown 2012). These
projects combine output from disaggregated climate predictions with historical data
on regional climate variations to predict changes in climate that vary by region.
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Simulation

Following the recommendations in Auffhammer, Hsiang, Schlenker, and Sobel (2013),
we predict end-of-century climate by taking the monthly average difference between
model projections in 2000-2020 and 2086-2099 and adding that difference to a his-
torical baseline of weather variation. This method gives us a simulated time series
of data for each load zone, adjusted for changes in the mean of the temperature
distribution but retaining representative daily variance in temperatures7.

We then apply the coefficients from our estimated model to predict future average
and peak electricity demand under different climate change scenarios. To estimate
percentage changes, we compare estimates of average and peak load under a given
climate change scenario and under a baseline scenario in which no warming occurs.

2.3 Results
We estimate separate temperature response functions for average and peak load sep-
arate for every load zone in the data. We first focus on the two largest ISOs in our
data: the Electricity Reliability Council of Texas (ERCOT) and PJM Interconnec-
tion. ERCOT can be thought of as more representative of warmer regions, and PJM
of colder regions.

2.3.1 Temperature response functions

We estimate temperature response functions for average and peak load. Figure 3.2
documents response functions for ERCOT and PJM, where we initially do not impose
a linear response function above 21 degrees C8. The height of the blue lines at each
temperature represents the differences in average load (in MWh) for that temperature
relative to the omitted category, a day with average daily temperature between 15
and 18 C. The height of the red lines represents the same differences for peak load.
We also plot a histogram of the temperature distribution for these ISOs on the same
graph.

7Because climate model predictions remain unsettled on the question of changes in day-to-day
climate variance, we do not incorporate estimates of additional daily variance into our projections.
Our results suggest that additional variance in daily temperature would induce yet higher peak
loads than we project.

8Note that ERCOT and PJM are large, aggregated areas in our data, and that these estimates
do not account for within-load zone temperature variation. We focus on them primarily as repre-
sentative examples for two large populations of electricity consumers, but emphasize that in general
our load zones cover fewer people and a smaller geographic area.
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Temperature responses are predominantly driven by the extent to which an area
heats or cools with electricity. ERCOT, which exclusively serves Texas, has nearly
symmetric response functions for both average and peak load across both high and
low temperatures. Whereas half of Texas residences use electricity for space heating,
only 12 percent of homes in the Northeast use electricity - far more use natural gas
or fuel oil9. By contrast, we document an asymmetric temperature response curve
for PJM, with higher average and peak loads resulting from cooling loads. While the
heat response is similar to ERCOT, the difference in response in cooler temperatures
is due to the prevalence of natural gas heating.

We also note the linear shape of response function above 21◦C for both average
and peak loads. This finding supports our early supposition that imposing a linear
function over 21◦is well justified as a method to obtain out-of-sample predictions for
high temperatures.

The difference in the shape of these regional response functions has particular
implications for climate change. For nearly all regions, increases in the mean of the
temperature distribution will increase average and peak loads in higher temperatures.
However, this increase in average load in some areas (such as ERCOT) will be partly
compensated by the reduction in the number of heating degree days. Other areas
(such as PJM), which show relatively little load response to cooler temperatures,
will not experience a substantial compensating reduction in average loads due to the
reduction of cool days. Figures 2.4 and 2.5 plot responses by zone for FERC zones
and the ISOs, respectively.

9RECS 2009 data from the EIA, available at http://www.eia.gov/consumption/residential/
data/2009.

51



Figure 2.3: Daily electricity temperature response functions, average and peak
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Notes: Average (total hourly load / 24) and peak (max hourly load) electricity load response to
temperature in blue and red, respectively. Each point estimate represents the effect of replacing a
day with average temperature in the omitted category (15-18 C) with a day of the relevant average
temperature. Regressions include precipitation, day of week fixed effects, month of year fixed effects,
and a 6th-order Chebychev polynomial in time. 95th percentile confidence intervals estimated using
Newey-West standard errors.
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Figure 2.4: FERC zonal temperature responses
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Figure 2.5: ISO zonal temperature responses
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In the next section, we conduct a series of climate simulations to demonstrate
the heterogeneity in regional responses.

2.3.2 Climate simulations

Combining results from our empirical model and future predictions of climate change,
we estimate end-of-century percent changes in average load, daily peak load, the
95th/99th percentiles of load, and in the counts of days over the 95th/99th per-
centiles. For visual display, we aggregate the load zone results to five groups: ER-
COT, ISO-New England (ISONE), New York ISO (NYISO), PJM, and all other load
zones. Table 2.2 shows the summary of results under the RCP4.5 scenario. In line
with prior estimates, we find that end-of-century results predict 2.1 to 3.1% increases
in average hourly generation across all regions as a result of climate change, which
aligns with previous findings. We also note that daily peak electricity demand rises
2.5 to 3.6% across regions, indicating that effects of peak demand are more pro-
nounced than effects on average demand. Column 3 documents the average shift
in the 95th percentile of daily peak load, capturing the upward movement of the
right tail of the distribution. This shift is between 4.8 and 7.9 percent across zones,
reflecting that the upper end of the distribution will “stretch” farther outward than
the middle. Columns 4 and 5 estimate the percent change in the number of days
with peak load greater than the current 95th and 99th percentiles, respectively. We
project 88-105% and 210-265% increases for the 95th and 99th percentile, respec-
tively. That is, levels of demand that are currently considered unusually high will
become much more common, even absent changes in population or income.

Table 3 estimates results for the higher emissions scenario, RCP8.5. As in Table
2, percentage increases in peak load exceed percentage increases in average load.
Because RCP8.5 reflects a higher emissions trajectory and, on average, more pro-
nounced increases in temperature, we find larger percentage changes in all categories.
Of particular note are increases of over 600% in the number of days over the current
99th percentile of electricity consumption.

To better understand why peak load increases more than average load, we again
focus on ERCOT and PJM as representative regions. Figure 2.6 plots predicted
end-of-century changes in peak electricity demand obtained by combining our em-
pirical model with an ensemble of climate predictions. We plot three distributions.
First, we plot (in blue) the distribution of peak load under present-day temperature
distribution. This bimodal distribution in ERCOT shows two peaks in the peak
demand distribution: one with relatively low usage and one with relatively high
usage. On the same figure, we also plot predictions from the ensemble of climate
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Table 2.2: Increases in peak demand dwarf increases in average demand (RCP4.5)

(1) (2) (3) (4) (5)

FERC 3.8 4.7 8.9 212 583
ERCOT 5.2 6 8.4 228 709
ISONE 2.1 2.6 9.1 138 388
NYISO 3.7 4.4 11.1 170 453
PJM 3 4 10.8 178 539
Total 3.7 4.6 9.3 203 578

Notes: Column 1 is the projected % change in average load, column 2 is the projected
% change in peak load, column 3 is the projected % change in the 95th percentile
of daily peak load, and columns 4 and 5 is the projected % change in the number of
days with peak load greater than the present-day 95th and 99th percentiles, respec-
tively. Each projection is based on the average projected change in temperature for
19 independent climate models, each using the RCP4.5 scenario.

Table 2.3: Increases in peak demand dwarf increases in average demand (RCP8.5)

(1) (2) (3) (4) (5)

FERC 9.2 11.2 19.3 447 1,815
ERCOT 12 13.7 17.7 484 2,099
ISONE 5.8 6.9 19.7 317 1,187
NYISO 9.2 10.6 23.9 379 1,437
PJM 7.9 10 23.4 401 1,635
Total 9.2 11.1 20.2 436 1,780

Notes: Column 1 is the projected % change in hourly generation, column 2 is the pro-
jected % change in daily peak load, column 3 is the projected % change in the 95th
percentile of daily peak load, and columns 4 and 5 is the projected % change in the
number of days with peak load greater than the present-day 95th and 99th percentiles,
respectively. Each projection is based on the average projected change in temperature
for 19 independent climate models, each using the RCP4.5 scenario.

models under RCP4.5 (green) and RCP8.5 (orange). Note that the low usage mode
does not shift substantially for either ERCOT and PJM; this is because the number
of days with moderate heating needs decreases even as the number of days with
moderate cooling needs increases. However, because most of the high-peak days are
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generated by warmer temperatures, the upward shift of the temperature distribution
has a corresponding effect of the distribution of peak load days, driving the second
mode higher under RCP4.5 and higher still under RCP8.5. PJM shows a similar but
less pronounced effect, with a second mode beginning to emerge under the RCP8.5
scenario.

Figure 2.7 documents by-county changes in peak load under RCP8.5. The south-
ern United States experiences the greatest increases in load as a result of climate
change, while the Northwest actually sees decreases in load. These regional differ-
ences are driven by the combination of the estimated temperature response curves
and the shift in the temperature distribution predicted by the climate models. The
temperature response functions include, among other factors, the difference between
areas with primarily electricity and natural gas heating, air conditioning penetration,
and the proportion of load required for heating and cooler relative to that required
for industrial processes.

These results are indicative of a need for regionally distinct strategies to adapt
to climate change. Some areas, particularly in the southern United States, will
experience substantial increases in the “peakiness” of electricity demand, while others,
such as the Northwest, may actually see decreases in average and peak loads as a
result of climate change. Some regions, such as the Northeast, currently have “winter
peaks”: most energy is consumed during the coldest hours of the year, since much of
the heating load is borne by electricity. These changes imply shifts in the need for
new transmission and generation (or storage) capacity in particular. If the US had
faced, over the past decade, the warmer climate that scientists predict for the future,
our results show that much greater generation capacity would have been needed.
As such, even absent population and income changes, climate change will demand
significant changes to the electric grid.

We caution that these results are meant to illustrate change in electricity demand
as a result of climate change, and that the end-of-century predictions we render are
meant to be illustrative rather than directly predictive of future grid demand. Impor-
tantly, the reduced-form model we estimate holds technology, adaptation, economic
growth, and current infrastructure constant.

2.4 Discussion
Overall, we find that peak load, at both the daily and annual level, is impacted by cli-
mate change far more than is average load. Moreover, the impacts on peak load vary
substantially across space, driven by differences in the distribution of heating and
cooling degree days as well as differences in heating and cooling technologies. These
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Figure 2.6: Climate change shifts the distribution of peak electricity demand upwards
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Notes: Figures compare kernel density plots of the observed peak load, predicted peak load under
RCP4.5 by end of century, and RCP8.5 by end of century for ERCOT and PJM zones.
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Figure 2.7: Projected change in intensity of peak load (RCP 4.5)
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Notes: Map depicts geographic heterogeneity in projected changes to peak electricity load by end
of century. Coloring reflects projected increases in the average of the maximum hourly load due to
temperature rise.

results imply that the average generation impacts found to date in the literature
could substantially underestimate the total cost of climate change in the electric-
ity sector. In particular, adaptation could require additional expenses in terms of
capacity or storage or transmission investments, not simply generation costs.

Calibrating the impact of temperature changes on capital costs remains an im-
portant area for future work. Our results imply that the ratio of peak load to average
load will increase under climate change, implying that the mix of power plants on
the grid will likely change. Simulations of the grid that incorporate these peak and
average responses, as well as heterogeneity across space, will be valuable for grid
planners as well as integrated assessment modelers.
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Chapter 3

Go for the silver? Comparing
quasi-experimental methods to the
gold standard

Joint work with Peter Cappers1, Ling Jin1, Anna Spurlock1, and Annika Todd1

3.1 Introduction
In this paper we scrutinize the effectiveness of several methodologies commonly used
in the evaluation of electricity Demand Response (DR) and pricing programs. We
compare them to the gold standard randomized, controlled trial (RCT) experimental
evaluation methodology and find systematic evidence of selection and spillover effects
that bias the non-experimental estimates.

Most empirical analysis in economics is conducted using observational data. Be-
cause these data are collected from complex real-world processes, conducting causal
inference using ordinary least squares requires the maintenance of untestable as-
sumptions regarding the data generating process. To relax these assumptions and
to provide more credible estimates of causal effects, empirical social scientists are
turning with increasing regularity to RCTs, a method that has been more typically
used in fields such as public health and psychology.

1Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720. The work de-
scribed in this paper was funded in part by the Office of Electricity Delivery and Energy Reliability,
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through Lawrence
Berkeley National Laboratory.
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RCTs are considered to be the “gold standard” research design in empirical social
science because the randomization process holds potential confounding factors equal
across control and treatment groups, allowing the researcher to isolate the treatment
effect of interest. For this reason, estimates obtained using properly implemented
experimental designs are correctly viewed as reflecting the “true” estimate. However,
the gold standard comes at a price: RCTs can be expensive, time-consuming, and
challenging to implement correctly. They can be limited to settings where an ex-
perimental intervention is feasible, and are subject to concerns regarding external
validity.

Meanwhile, a long history of empirical work has used an array of quasi-experimental
research designs intended to simulate the experimental process, such as match-
ing, propensity score weighting, regression discontinuity, and within-unit estimators.
These research designs, because they rely on observational data, are less expensive
and difficult to implement compared to RCTs, and can often be applied after a
program has taken effect, which can disincentivize the need to plan for evaluation
carefully at the program implementation stage. However, because they lack the ran-
domized component of experimental designs, selection concerns and other forms of
classical omitted variable bias can generate bias in the results obtained from these
quasi-experimental methods. Without an experimental comparison, it is usually im-
possible to definitively ascertain whether the research design reflects the true estimate
or these unobserved biases.

This paper builds on prior work in the peer-reviewed literature that compares
results obtained using non-experimental research designs with experimental results.
Much of the seminal work in this area was conducted in the labor literature. LaLonde
(1986) conducts such a comparison in the context of an employment training pro-
gram, finding that the non-experimental estimates frequently fail to align with the
experimental results. Heckman, Ichimura, and Todd (1997) analyze a separate pro-
gram and find that non-experimental estimates can perform well so long as the com-
parison samples are drawn from a similar sample. Dehejia and Wahba (2002) find
that propensity score estimates can outperform traditional econometric estimators,
although Smith and Todd (2001) note that the former finding may be due to the
sample selection imposed.

Some recent work has extended this type of analysis to data from the electricity
industry, which is the setting we use in this paper. A recent working paper by Jessoe,
Miller, and Rapson (2015) examines the possibility of using high-frequency electricity
data to recover causal effects without an experimental comparison group.

An advantage of our approach beyond the previous work comparing experimen-
tal to non-experimental methodologies is that we use an experiment with multiple
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treatment arms to validate trends in our results. Whereas most prior work has relied
on a single treatment arm within a single experimental setting, we use the multi-
ple treatment arms to look for evidence of trends in the results2. The results from
implementing the quasi-experimental estimators across all treatment arms allow us
to ascertain in which cases there are consistent biases relative to the experimental
estimates across all treatment arms, and quantify these biases on average. In partic-
ular, we provide strong suggestive evidence that selection biases and spillover effects
drive the observed biases in the quasi-experimental results within the program we
evaluate.

3.1.1 Empirical context: electricity pricing programs

In this paper we focus on a case from the electricity industry. Accurate evaluation of
Demand Response (DR) and pricing programs in the electricity industry is important
for several reasons. First, settlement and payment of incentives for incentive-based
programs (such as peak time rebates) require an accurate evaluation of how con-
sumption for a specific household changed on a single critical day relative to their
baseline (or counterfactual) consumption. In these programs, customers are paid for
the amount of electricity they saved on a given critical day relative to this baseline.
Second, utilities often claim savings and recover costs from ratepayers as authorized
by regulators, and these savings need to be accurately measured through a program
impact evaluation. Third, an assessment of how well a program is working is cru-
cial for future program and portfolio planning, so that ratepayer dollars are spent
on programs that achieve the highest savings at the lowest cost. Fourth, accurate
short- and long-term grid-level energy and capacity forecasts are necessary for main-
taining reliability. These forecasts enter into resource planning efforts that inform
the need for future infrastructure investment. Accurately predicting the effects of
time-based rates and incentive-based programs on energy and peak demand can help
with planning for that investment.

There are a variety of evaluation methods and protocols used by the electricity
industry that differ by the type of rate or program being evaluated, budget con-
straints, and historical experience. Up to now RCTs have been met with substantial
resistance. Concerns that have been raised include: they require substantial plan-
ning up front at the program implementation phase, rather than quasi-experimental
techniques which typically require analysis only ex-post; they are seen as difficult
to implement; and they are sometimes described as unfair because they restrict
program participation to exclude the control group. As such, the majority of the

2Future versions of this work will incorporate multiple settings.
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evaluation methods used historically have been quasi-experimental. The specifics of
these methods will be outlined later in the paper.

However, there has been a recent increase in interest in the application of ran-
domized3 evaluation methods in the electricity industry. This trend was spurred
forward with the increased visibility and popularity of behavior-based programs,
such as Opower’s Home Energy Reports, e.g., Allcott (2011b). The average effect
sizes are quite small for behavior-based programs, and so regulators required a higher
bar for accurate and reliable evaluation to claim savings than had been applied to
other types of programs historically. The discussion around RCTs in the context
of behavior-based programs, however, facilitated the expansion of these methods
beyond these programs alone.

In the context of time-based pricing programs, in 2009, the United States De-
partment of Energy issued a funding opportunity announcement for its Smart Grid
Investment Grant (SGIG) that requested proposals from utilities seeking funding to
expand their smart meter infrastructure. It was required that these utilities include
randomized pricing experiments to be enabled by this investment in advanced me-
tering infrastructure in their proposal. Many in the industry were skeptical that
utilities would be willing to propose such activities due in part to concerns that
utilities would be unable to obtain local regulatory approval to implement pilots us-
ing randomization. However, ten utilities were ultimately funded under SGIG and
undertook Consumer Behavior Studies (CBS) that utilized randomized evaluation
methodology for their pricing pilots.

There is a long history from both inside and outside of economics documenting
the effects of time-varying pricing on customer behavior. Academic researchers have
typically focused on the fairly small set of experiments that have been conducted
on time-varying pricing. Aigner (1984), Train and Mehrez (1994), and Jessoe et
al. analyze the effect of separate time-of-use (TOU)4 experiments. Allcott (2011a)
analyses a real-time pricing (RTP)5 experiment. Wolak (2007) examines the response
to a critical peak pricing (CPP)6 program. The fact that past instances of randomized
experiments are relatively limited is indicative of the resistance we’ve mentioned to
these methods in this industry historically.

3Either through RCTs or Randomized Encouragement Designs (REDs), which are similar but
allow for selection into treatment within a randomized encouragement context.

4With a TOU price structure the price for peak hours is higher than off-peak hours, and the
definition of peak hours (e.g., 4-7pm on non-holiday weekdays) is fixed.

5With an RTP price structure, the price varies continuously over time to better track variation
in wholesale prices.

6With a CPP price structure, the price is much higher during the pre-established peak hours of
a finite set of event days which the utility calls in advance based on predicted grid conditions.
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We use the opportunity offered by the randomized time-based rate pilots under
the SGIG CBS in order to assess the performance of the quasi-experimental designs
most commonly employed to evaluate DR and pricing programs historically. Building
on the pioneering work by LaLonde (1986), we take a set of electricity pricing exper-
iments as the gold standard against which we compare our set of quasi-experimental
estimates. Because electricity consumption is a data-rich context, we are able to im-
plement a wide range of quasi-experimental techniques. Specifically, we estimate two
difference-in-differences designs (DID), a propensity score estimator that reweights
observations by their treatment likelihood, and a regression discontinuity (RD) de-
sign that discontinuously influences treatment likelihood. We compare the estimates
of the average treatment effect obtained using these quasi-experimental techniques
to the correct estimate obtained from the experimental methods.

We document empirical support for three general results. First, RD methods tend
to overestimate the size of the true average treatment effect, underlining the limita-
tion of RD to provide externally valid estimates. Second, difference-in-difference and
propensity score methods tend to underestimate the effect, suggesting the presence
of selection bias when using these methods. Third, biases in non-experimental re-
search designs tend to be more pronounced in opt-in treatments relative to opt-out
treatments, further confirming the selection effect interpretation7.

For policy-makers, this work contributes to our understanding of the usefulness
of quasi-experimental designs as ex-post measurement of changes in consumption as
a result of electricity rate design. Many utilities and public utilities commissions
are considering a broader implementation of time-based pricing of electricity in the
next decade. Policymakers may want to test the effects of these changes, but may
not have the resources to implement a full RCT8. Our results suggest the following:
first, difference-in-differences and propensity-score methods mis-estimate the true
effect by up to 5% of mean peak hour usage. Second, propensity score estimates
resemble difference-in-difference findings, but standard errors tend to be larger and
point estimates are more biased for opt-out models. Third, regression discontinuity
methods can be heavily biased relative to the true average treatment effect. Finally,
we find strong evidence that biases are more pronounced in opt-in vs. opt-out designs.

The remainder of the paper is organized as follows. Section 3.2 describes the
underlying econometric models and identifying assumptions required for the experi-

7The opt-out experimental designs result in much higher enrollment (over 90%) compared to
opt-in (around 20%), which means there is more selection present with an opt-in design compared
to an opt-out design.

8We note that the existence of the present set of RCTs is due to a large DOE grant, which also
funds this study.
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mental and quasi-experimental designs we test in this paper. Section 3.3 describes ex-
amples from the evaluation community that use the previously described approaches,
and 3.4 documents the experimental context in which we test these approaches. Sec-
tion 3.5 presents results and stylized facts, and section 3.6 concludes.

3.2 Econometric background
Any estimation of a causal effect must contend with the fundamental problem of
causal inference: it is impossible to simultaneously observe sample units in both
treated and untreated states. In the context of estimating the effect of electricity
pricing treatments, this means that researchers cannot observe how much electricity a
control customer would have demanded had she been exposed to the treatment or how
much a treatment customer would have demanded had she not been treated. Exper-
imental methods circumvent this problem by randomizing, while quasi-experimental
methods use a variety of techniques to claim that treatment is “as good as random.”
We formalize this relationship using the potential outcomes framework9, writing the
observed outcome for a given unit i as:

yi = y0i + (y1i − y0i)Di

Di is a binary indicator of whether unit i is treated, y0i is the outcome if i is
not treated, and y1i is the outcome if i is treated. Note that the expression y1i − y0i
captures the causal effect of treatment on unit i and is unobservable due to the
fundamental problem of causal inference. Instead, researchers are often interested
in estimating the average treatment effect (ATE), E[yi|Di = 1] − E[yi|Di = 0], the
difference between the average outcome if all units were treated and if all units were
untreated.

In order to estimate the ATE, investigators must assume a set of conditions on
the data generating process that will vary with the setting and research design. In
a randomized experiment, assignment to treatment is random and the estimation
of the ATE requires relatively few assumptions. In a quasi-experiment, assignment
to treatment is non-random but may be plausibly random after conditioning on the
appropriate covariates. We proceed by specifying the assumptions required for the
randomized experiment and for each quasi-experimental design we compare to the
experimental results.

9Otherwise known as the Rubin Causal Model (Rubin 1974). The exposition that follows draws
from Angrist and Pischke (2008a).
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Econometrically, the goal in any evaluation is to ensure that the error term (cap-
turing any and all unobserved forces) is uncorrelated with the independent variable
of interest. For example, in an electricity pricing setting, it must be assumed that
households who participate in a new pricing program are not systematically different
in ways that affect their electricity consumption compared to households that do
not participate. In a randomized setting, this assumption is known to be true, by
virtue of the randomization itself. In quasi-experimental settings, this assumption
cannot be proved, but must be claimed. The following section provides an overview
of the research designs we estimate, with an emphasis on the assumptions required
to overcome the fundamental problem of causal inference10.

3.2.1 Experimental design

The key feature of RCTs is that units are assigned randomly between control and
treatment groups. Proper randomization and sufficient sample size should ensure
that these two groups are similar across both observable and unobservable attributes.
If this is the case, then any differences in the average outcome between the control
and treatment groups should be entirely attributable to the treatment itself. Because
the assignment mechanism is random, we know that the potential outcomes y0i and
y1i are independent from the actual treatment assignment Di. It is useful to proceed
by characterizing the estimation procedure in a regression context:

yi = α + βDi + εi

We can show that

β =

ATE︷ ︸︸ ︷(
E[yi|Di = 1]− E[yi|Di = 0]

)
−

Selection bias︷ ︸︸ ︷(
E[εi|Di = 1]− E[εi|Di = 0]

)
(3.1)

If the potential outcomes y0i and y1i are uncorrelated with treatment status, it can
be shown that the idiosyncratic error term εi is as well, which implies that the
randomization has removed selection bias, as expected.

In our context, we randomly assign customers to treatment and control groups.
To account for statistically insignificant but slight differences in the pre-treatment
consumption of the two groups, we estimate the difference between the average
change in electricity usage in the pre-treatment period and the post-treatment pe-
riod between the treatment and control groups. Because not all customers from the

10For a detailed explanation of different types of impact evaluations, including REDs non-
experimental, see Cappers, Todd, Boisver, and Perry (2013) for energy savings impact evaluations,
and Imbens and Wooldridge (2009) for a comprehensive econometric discussion.
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treatment groups actually enrolled in the program, we are actually using a Random-
ized Encouragement Design (RED), which allows us to estimate the average effect
of taking up the treatment. This design requires the additional assumption that
treatment status (i.e., being encouraged to enroll) did not affect energy usage except
by causing enrollment.

3.2.2 Non-experimental designs

If treatment assignment is nonrandom, we can’t assume that the third and fourth
terms in equation 3.1 are equal to zero, and the straightforward comparison of means
may be biased due to differences between the type of customers who select into
treatment.

Quasi-experimental techniques do not assume that treatment is unconditionally
randomly assigned. Instead, they use different sources of identification to isolate
the treatment effect from other determinants of the outcome variable. We discuss
three common quasi-experimental approaches: difference-in-differences, propensity
score matching, and regression discontinuity designs. In section 3.1.1 we discuss the
implementations of these techniques, which can sometimes combine elements from
more than one approach. We consider the base cases here to capture the range of
possible approaches.

Difference-in-differences

Difference-in-differences estimators compare the difference in pre- and post-treatment
electricity usage between treated and control customers. The identifying assumption
is called the “parallel trends assumption”, which is that the change in the control
group is an appropriate counterfactual for the change the treatment group would
have experienced. To see this, we extend the original setting to include two time
periods, before and after treatment. Every customer i is in a group g ∈ {0,1} and
is observed in each time period t ∈ {0,1}. Again, using the regression context,
researchers estimate the following model:

yigt = α + β0POSTt + β1TREATg + τDgt +

Error term︷ ︸︸ ︷
µgt + εigt (3.2)

Note that Dgt = POSTt × TREATg, where POSTt indicates a post-treatment ob-
servation and TREATg indicates a member of the treatment group. The coefficient
of interest is τ 11. The identifying assumption for τ is that differential changes be-

11Note that τ =
(
E[yPOST

i |Di = 1]− E[yPRE
i |Di = 1]

)
−
(
E[yPOST

i |Di = 0]− E[yPRE
i |Di = 0]

)
.
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tween the two groups in the pre- and post-period are zero in expectation, or that
E[µ11 − µ10] = E[µ01 − µ01].

The validity of this assumption in our setting depends on the construction of
the treatment and control groups. If the treatment group is composed of customers
who selected into treatment and the control group is composed of the remaining
customers, there is a strong possibility that the parallel trends assumption is violated.
Suppose, for example, that treatment group customers are more energy conscious and
are less likely to turn their air conditioners on during hot days. If the post-treatment
period is warmer than the pre-treatment period, then τ will be biased away from
zero.

One way to mitigate selection bias is to choose a control group without access to
the treatment. Although the treatment group will remain selected, the control group
is less likely to be substantially different. If there does not appear to be substantial
selection into treatment, then this could reduce the total bias. Here we note that
there may be important differences between the opt-in and opt-out treatments. Since
the opt-in treatments enrolled at most 20% of treated customers, it is likely that there
is a substantial selection effect. However, since the opt-out treatments enrolled at
least 90%, selection is likely to be more muted in this sample.

Propensity score matching

Our third quasi-experimental technique uses a standard propensity-score matching
approach to account for selection into treatment. We construct estimates of each
customer’s enrollment likelihood based on their pre-treatment electricity usage. We
then estimate a regression that adjusts for differences due to selection into treatment
using the propensity score. There are a variety of ways to use the propensity score
in a regression framework, but all rely the same conditional independence assump-
tion: that treatment assignment is random after conditioning on the covariates. The
propensity score simply provides a tractable way to condition.

The propensity score is a function that determines how likely a unit is to be
treated based on their observables: p(Xi) = E[Di|Xi], typically estimated with a
logit or a probit model to constrain 0 < p(Xi) < 1. A straightforward way to use
the propensity score is to simply include it in the regression:

yi = α + β0p(Xi) + τDi + εi (3.3)

The coefficient of interest here is τ , and the identification assumption is y0i, y1i ⊥⊥
Di|Xi.

In practice, implementations of the propensity score vary widely and can incor-
porate other matching components as well as difference-in-difference techniques.
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Regression discontinuity

Regression discontinuity (RD) designs take advantage of a cutoff c that alters the
probability of treatment but not other factors which might affect the potential out-
comes. Suppose there is some running variable Xi s.t. that when Xi > c, Di = 1.
If Xi <= c ⇒ Di = 0. Researchers can exploit this threshold to estimate the effect
of treatment by confining the sample to units with c − h < Xi < c + h, where h is
some reasonable bandwidth.

yi = α + β0(Xi − c) + β1(Xi − c)×Di + τDi + εi (3.4)

The coefficient of interest is τ , and the identifying assumption is that E[y0i|X = x]
and E[y1i|X] are continuous in x.

In the electricity context, a relevant cutoff might be generated if a program of-
fers time-varying pricing to any customers with total pre-treatment period summer
electricity usage above a given threshold but not to those below. The underlying
assumption is that customers above and below the treatment threshold are similar
except in their ability to join the pricing program. In essence the assumption is that
customers cannot anticipate the cutoff and manage their consumption such that they
are able to orchestrate their qualification, or not, for treatment.

3.3 Use of quasi-experimental methods in the elec-
tricity pricing evaluation literature

The evaluation community has used these quasi-experimental approaches widely. For
each approach used, there are many possible variations in the implementation, the
details of which are determined on a per-evaluation basis and reflect the empirical
context as well as the expertise of the evaluating team. However, the underlying
identification techniques are identical across variations. It is worth noting that the
potential biases associated with these approaches are generally recognized by eval-
uators, but because of the way the program was implemented there is no way to
correct this after program implementation. The following are a few examples of
their application.

3.3.1 Propensity-score methods

Because there are many ways to use propensity scores in evaluation, the approaches
in the evaluation literature vary with context and available data. Propensity score
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matching techniques use p(Xi) as a distance metric to construct matches. These ap-
proaches matches on some combination of load shapes, usage variables, and customer
characteristics (George, Schellenberg, Oh, and Blundell 2014; Bell 2015; Savage and
George 2015; Bell 2015). In particular, we modeled our application of the propensity
score matching method off of the one employed in Savage and George (2015), which
examined the effect of TOU pricing in PG&E.

3.3.2 Difference-in-differences

By contrast, the difference-in-differences techniques in the evaluation literature tend
to be more standard: most studies employ a difference-in-differences approach with
a selected treatment sample compared to a random control sample that was not
offered the treatment (McAuliffe and Rosenfeld 2004; Violette, Erickson, and Klos
2007; Lutzenhiser, Peters, Moezzi, and Woods 2009)

3.3.3 Regression discontinuity

By contrast, regression discontinuity designs are not widely used in the evaluation.
However, we include them here because we believe they represent a low-cost alter-
native to experimental designs. Rather than implementing a full randomized experi-
ment, forward-thinking evaluators could implement treatment thresholds in advance
in order to facilitate ex post evaluation. Jessoe, Rapson, and Smith (2014) offer one
example from the academic literature.

3.4 Overview of field experiment

3.4.1 Random assignment

SMUD’s customer base has approximately 530,000 residential households; some were
excluded from the eligible experimental population. After these exclusions, approx-
imately 174,000 households remained eligible12.

There were two pricing treatments that differed from the standard rate: a time-of-
use (TOU) program where customers faced higher prices 4pm to 7pm on non-holiday
weekdays, and a Critical Peak Pricing (CPP) pricing program where they faced very

12Households were excluded from our experiment if: they did not have interval meters to capture
hourly electricity usage installed prior to June 2011; they were participating in SMUD’s Air Con-
ditioning Load Management program, Summer Solutions study, PV solar programs, budget billing
programs, or medical assistance programs; or if they had master metered accounts.
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high prices during the peak period of twelve critical event days called a day in advance
over the course of each of two summers. Both programs were in effect between June
1 and September 30th for the two summers in the study (2012 and 2013)13. In
addition, there was an enabling technology associated some of the treatment groups
in which customers were offered in-home displays.

Households in the experimental population were randomly assigned into ten
groups; for most of this paper, we examine seven of those groups, seven of which
were encouraged to participate in a TOU or CPP treatment, while the seventh group
was the control group, which received no encouragement and remained on the stan-
dard rate. There were two forms of encouragement: opt-in, where households were
encouraged to enroll in the rate program; or opt-out, where households were notified
that they were enrolled and were encouraged to stay in the rate program, but had
the opportunity to leave the program if they wished14. Figure 3.1 displays the seven
treatment arms we use in this paper.

13During the time period of our study, non-EAPR customers (EAPR refers to Energy Assistance
Program Rate customers. This is SMUD’s low-income rate) on SMUD’s standard rate plan (i.e.,
customers in the control group) paid a $10 monthly fixed charge plus 0.0938 per kWh for the
first 700 kWh of consumption and $0.1765 for consumption above 700 kWh. Under the TOU
program, customers paid $0.2700 per kWh for electricity consumed from 4PM to 7PM on non-
holiday weekdays, plus a monthly fixed charge and $0.0846 per kWh for the first 700 kWh and
$0.1660 for consumption above 700 kWh, where on-peak consumption did not count towards the
700 kWh total. Customers on the CPP plan paid $0.7500 per kWh for consumption between 4PM
and 7PM on twelve “event days” over the course of the summer. Customers were alerted about event
days at least one day in advance. Consumption outside of the CPP event window was charged at
a rate of $0.0851 per kWh up to 700 kWh and $0.1665 beyond.

14Households who were encouraged to participate in an opt-in rate program were solicited through
many channels, including direct mail letters, door hangers, and an outbound calling campaign. The
messages listed generic benefits of participating in rate programs, including saving money, taking
control, and helping the environment. Households who were encouraged to remain in an opt-out
program were notified through a direct mail letter that they had been placed on the rate, and told to
contact SMUD if they wished to drop-out. The TOU Opt-in group received encouragement messages
that were slightly different than the other groups, because they were also part of a recruit-and-
delay randomized controlled trial (which we are no incorporating into this paper). Their messages
contained text that informed them that if they decided to opt-in to the rate program, they would be
randomly assigned to a start date of either 2012 or 2014 (i.e., they may be delayed in experiencing
treatment). The other three groups were told that their participation date would start in 2012 if
they decided to opt-in or not opt-out. This means that while the CPP opt-in group can be directly
compared to the CPP opt-out group, there is a caveat to the comparison between the TOU opt-out
and opt-in groups given the slight different wording in the recruitment materials.
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Figure 3.1: SMUD treatment arms

3.4.2 Data

We use hourly energy consumption data (in kW) for each household in our control
group, as well as for each household in our seven treatment groups, regardless of
whether or not they ended up enrolled on the treatment pricing, and whether or not
they opted out at any point in the pilot period. This was collected for one year prior
to the start of the pilot period (June 1st, 2011 – May 31st, 2012) and two years
during the pilot period (June 1st, 2012 - September 30th, 2013).

A comparison of pre-treatment energy usage documents no statistical difference
between the control group and each of the seven experimental treatment groups
(including average kWh per day, peak hours, and peak to off peak ratio).

We also use hourly weather data, including dry and wet bulb temperature as well
as humidity. There is only one weather station in close proximity to all participants
in the SMUD service area, so the weather data does not vary across households, only
over time.

3.5 Results
Figure 3.2 summarizes the differences between the average treatment effect esti-
mated using the field experiment and those obtained using the quasi-experimental
approaches described in the previous section. For each quasi-experimental approach,
the central dot represents the difference between the experimental estimates and the
corresponding quasi-experimental estimates averaged across the treatment arms, and
expressed as a percent of average hourly electricity consumption. The error bands
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document the average lower and upper 95 percent confidence interval of this value.

3.5.1 Difference-in-differences and propensity-score methods
mis-estimate the true effect by up to 5% of mean peak
hour usage

The difference-in-differences approaches and the propensity-score method mis-estimate
the effect of the treatment relative to the randomized design in all of the opt-in treat-
ment arms. To interpret the result, we recall the design of the difference-in-difference
estimators, which compare the change in average usage for each customer relative to
his or her pre-treatment average across control and treatment groups. Importantly,
the treatment group in this design consists entirely of customers who deliberately
select into time-varying pricing. This group is observationally different from the
control group and is likely to have different electricity usage patterns. We inter-
pret the difference between the DID estimates and the RCT estimates as driven by
this selection effect: customers who actively chose to participate in the time-varying
pricing program are more energy conscious than those who did not and had different
underlying trends, biasing the result downwards. We note that this bias could have
been either towards or away from zero, depending on trends in weather. In the case
of this study, weather in the pre-treatment period was warmer than weather in the
post-treatment period; see figure 3.3.

3.5.2 Propensity score estimates resemble difference-in-difference
results, more biased for opt-out

While the propensity-score results are similar for the opt-in groups, they are more
biased for opt-out. To understand this result, it is useful to consider the construction
of the propensity-score estimator: only control groups whose covariates match closely
to a treatment unit are included in the analysis. In this case, the large size of the
control group may have been an advantage.

3.5.3 RD methods can be heavily biased relative to the true
average treatment effect

As discussed above, the simulated regression discontinuity method that we construct
avoids the selection bias present in the DID designs by design. In contrast to the
DID estimates, the RD estimates can be substantially different (in absolute values)
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Figure 3.2: Comparing RCT and quasi-experimental estimates
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Notes: Each plot compares the set of estimates obtained with a quasi-experimental technique to the
RCT estimate across seven different treatment arms. The top subplot in each quadrant is absolute
value of the treatment effect with standard errors and the bottom subplot is the difference between
the RCT estimate and the quasi-experimental estimate. Blue bars are the quasi-experimental
estimates, yellow bar outlines are the RCT estimates.
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Figure 3.3: Temperature distribution by pre- and post-treatment periods
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the true effect for the opt-in groups. Note that we compare the RD estimates to
their corresponding experimental effect by restricting both samples to the same pre-
treatment period consumption bandwidth. Empirically, the only difference between
these two estimates is that the RD method excludes treated customers below the
threshold and control customers above the threshold, while the RCT method includes
all treatment and control customers above and below the threshold.

3.5.4 Biases are more pronounced in opt-in vs. opt-out de-
signs

In all designs, estimation of the average effect of the opt-out treatments is less biased
than the opt-in treatments. We interpret this finding as strong evidence of a selection
effect: because around 20% of individuals chose to opt-in to treatment when offered,
the sample obtained using an opt-in enrollment method is likely to be more heavily
selected than that obtained using an opt-out enrollment method, which achieved
90% enrollment. Because the difference-in-differences, propensity score, and RD
approaches are potentially subject to sample selection biases, using a less-selected
sample to begin with naturally improves the quality of the quasi-experimental esti-
mate.
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3.6 Discussion
Using a rich set of field experiments designed to test customer response to time-
varying pricing, we estimate and compare a set of established quasi-experimental
designs to their corresponding experimental estimates. By comparing across multiple
treatment arms we are able to provide support for a set of stylized facts, each of which
has important policy implications for ex post estimation of time-varying pricing
programs.

First, we document that DID estimates which compare a self-selected treatment
group with a control group who either did not choose or were not offered the oppor-
tunity to enroll in the program are likely to reflect bias even after including a rich
set of fixed effects. In our setting, weather variation between the pre- and post- pe-
riod likely caused the DID estimate to be biased towards zero. Second, we find that
propensity-score matching techniques do not substantially reduce bias relative to the
DID estimates, but increase standard errors due to the reduction in the effective size
of the control group. Third, we show that even well constructed RD estimates can be
biased away from the treatment estimate due to energy use level differences between
the treatment and control groups. Finally, we observe that selection biases are more
pronounced in all designs under opt-in treatments as compared to opt-out treatments.
This finding strongly suggests that policy-makers should take this into account when
designing the enrollment mechanism for a time-varying pricing program: in addition
to being less costly and more effective at reducing total electricity usage, ex post
estimation of opt-out designs using quasi-experimental designs are less likely to be
unbiased. Our final two stylized facts related to the estimation of individual event
day energy use reductions: we find that comparisons to high temperature non-event
days (a common approach in incentive-based peak time rebate or critical peak pricing
programs) tend to overestimate the actual reduction. We additionally find that es-
timates using a within-customer approach that compares the reduction during event
hours to reductions during non-event hours tend to underestimate savings, likely as
a result of spillover effects.

We caution that our results are limited to a set of treatment arms in a sin-
gle experimental setting, and we emphasize that the direction of the biases in the
quasi-experimental estimates is not necessarily likely to be stable in other contexts.
Instead we suggest our results demonstrate the importance of careful consideration
in research design: where possible, researchers and policy-makers should rely on
true experiments. In other cases, attention should be given to underlying trends in
treatment and control groups when interpreting quasi-experimental results and when
possible opt-out enrollment mechanisms should be implemented.
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