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RESEARCH ARTICLE
10.1002/2014WR016650

Enhanced fixed-size parallel speedup with the Muskingum
method using a trans-boundary approach and a large
subbasins approximation
C�edric H. David1,2, James S. Famiglietti1,2,3, Zong-Liang Yang4, and Victor Eijkhout5

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, 2University of California Center for
Hydrologic Modeling, University of California, Irvine, California, USA, 3Department of Earth System Science, University of
California, Irvine, California, USA, 4Department of Geological Sciences, Jackson School of Geosciences, The University of Texas
at Austin, Austin, Texas, USA, 5Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas, USA

Abstract This study presents a new algorithm for parallel computation of river flow that builds on recent
work demonstrating the relative independence of distant river reaches in the update step of the Muskin-
gum method. The algorithm is designed to achieve enhanced fixed-size parallel speedup and uses a mathe-
matical approximation applied at the boundaries of large subbasins. In order to use such an algorithm, a
balanced domain decomposition method that differs from the traditional classifications of river reaches and
subbasins and based on network topology is developed. An application of the algorithm and domain
decomposition method to the Mississippi River Basin results in an eightfold decrease in computing time
with 16 computing cores which is unprecedented for Muskingum-type algorithms applied in classic
parallel-computing paradigms having a one-to-one relationship between cores and subbasins. An estimated
300 km between upstream and downstream reaches of subbasins guarantees the applicability of the algo-
rithm in our study and motivates further investigation of domain decomposition methods.

1. Introduction

The global network of rivers is the primary mechanism for terrestrial water transport in the Earth system.
Rivers sustain the health of humans, terrestrial ecosystems, transport of nutrients to the oceans; and their
extreme variations during floods and droughts result in billions of dollars of damage annually. Given the
natural and human significance of global river networks, the understanding of river dynamics at
continental-to-global scales is essential. River gauges are of essence to terrestrial hydrology despite their
declining availability [The Ad Hoc Group et al., 2001], and the expected Surface Water and Ocean Topogra-
phy (SWOT) mission [Alsdorf et al., 2007a, 2007b; Durand et al., 2010] promises to further enhance the study
of the global terrestrial water cycle. While the combination of in situ and remotely sensed observations will
remain key to research in water resources, continental-to-global scale river network models [e.g., Miller
et al., 1994; Olivera et al., 2000; Oki et al., 2001; Lohmann et al., 2004; Yamazaki et al., 2011, 2012] will still be
required to interpolate between space-time acquisitions of observations, to better understand process inter-
actions, to support water management decisions, for climate simulations, and for prediction. However, the
development of river transport models having the ability to simulate the past, present, and future states of
surface water bodies at continental-to-global scales is progressing slowly compared to the advances in the
oceanic and atmospheric sciences [Arrigo, 2011; Famiglietti et al., 2011].

The ever-increasing availability of massively parallel super-computers has fostered the application of parallel
computing in many fields of geosciences. Examples of such applications include global climate models [e.g.,
Bamzai, 2012], regional models of the atmosphere [e.g., Michalakes et al., 2005] and of the oceans [e.g.,
Wang et al., 2005], and one-dimensional (vertical) modeling of the land surface [e.g., Peters-Lidard et al.,
2007]. The use of parallel computing for modeling horizontal transfers on the land surface (including flow of
water within river networks) and underneath the land surface is, however, still limited in comparison to
other fields of geoscience. Of particular note are efforts related to the development of hydrologic models
that are parallel from inception [e.g., Ashby and Falgout, 1996; Wang et al., 2007] and others focusing on par-
allel enhancements to existing models [e.g., Neal et al., 2009; Vivoni et al., 2011; Hwang et al., 2014].
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One of the key aspects of high-performance programming is the decomposition and orchestration of the
work load to several computing cores [Culler et al., 1997a]. When modeling horizontal water dynamics on
parallel computers, decomposition generally focuses on the study domain (i.e., domain decomposition) and
involves classifying the subbasins of a large river basin (or the reaches of a large river network); and orches-
tration consists of instructing a given computing core to address a subset of all subbasins (or all river
reaches) [e.g., Kollet and Maxwell, 2006; Neal et al., 2009; Li et al., 2010; David et al., 2011b, 2013a; Vivoni
et al., 2011; Hwang et al., 2014]. Interestingly, decomposition methods that are suitable for parallel comput-
ing of the horizontal movements of water differ from the traditional hydrological approaches to codifying
subbasins [e.g., Seaber et al., 1987; Verdin and Verdin, 1999] or classifying river reaches [e.g., Horton, 1945;
Strahler, 1952] as further developed in this study.

David et al. [2013a] demonstrated that the relative influence of a given river reach on its downstream
reaches, when updating simple Muskingum routing computations, decreases with increasing distance until
it becomes too small to be accounted for by floating-point arithmetic. Hence, downstream reaches can be
updated without waiting for prior update of upstream reaches, which is rather counterintuitive. This result
allows for the design of new parallel-computing algorithms that take advantage of the relative independ-
ence, even with connected river reaches. This relative independence in turn has impacts on decomposition
options for large river networks.

The goal of this study is to present a new algorithm for calculating flow in large river networks within a
parallel-computing environment and a new domain decomposition method. This paper builds on a brief
background (section 2) on classification and sort techniques for hydrologic features, on domain decomposi-
tion approaches for parallel computing of horizontal water transfers, and on existing methods for studying
parallel speedup. The new algorithm (section 3) based on a trans-boundary approach to the Muskingum
method is designed in hope for substantial savings in computation time, and uses a simple technique for
balanced decomposition of large river networks. The largest river basin of the United States, the Mississippi
River Basin (Figure 1) is used in this study (section 4) because the main assumption of the algorithm is based
on basin size. The parallel performance of the new routing algorithm and domain decomposition method is
then presented (section 5), followed by a conclusion (section 6). Supporting information concerning the
analysis of flow hydrographs in our modeling system is also given (Appendix A) to merely illustrate some of
the challenges of continental-scale river network routing.

2. Background

2.1. Classifying and Sorting Hydrological Subdomains
The most well-known method for classification of river basins is perhaps the Hydrologic Unit Codes (HUCs)
of Seaber et al. [1987] in which boundaries match with topographic divides; and which was developed to
facilitate the work of U.S. water resources agencies in inventorying, storing, and exchanging hydrologic
data. Another typical approach is that of the Pfafstetter codification system [e.g., Verdin and Verdin, 1999]
which—similarly to HUCs—uses topographic divides for its boundaries, but also has a numbering system
that recognizes upstream/downstream positions, hence accounting for the topology of river basins.

The traditional hydrological approaches to classifying the reaches of river networks are the stream ordering
methods introduced by Horton [1945] and adapted by Strahler [1952]. These stream orders were designed
to better understand erosion processes and hence increased downstream: a value of one is assigned to the
headwater reaches and the largest value occurs at the outlet of a river network. Note that several river
reaches can hence have the same stream order.

Around the same period, computer scientists interested in the scheduling of large projects involving a series
of interdependent tasks introduced the concept of topological sorts [e.g., Lasser, 1961; Kahn, 1962]. In a top-
ological sort, each task is given a unique integer value. By organizing tasks in increasing or decreasing value
of their topological sort, a sequence of all tasks for completion of the entire project can be determined.

A related concept of classification of river reaches is the topological path length that was first brought from
mathematics and computer science to the study of channel networks by Werner and Smart [1973]. A path
along the river network is defined as the shortest route between the outlet point of a river network and the
upstream point of a river reach. The topological path length is then defined as the number of river reaches
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(the links of the network) traversed in a path. As in the Strahler stream order (but unlike topological sorts),
two different river reaches can have the same topological path length. However, unlike the Strahler stream
order, consecutive reaches on a river stem have different topological path lengths even without the pres-
ence of confluences. Despite being easy to compute, the topological path length is advantageous in this
study because it provides a direct way to calculate the topological distance between two connected
upstream/downstream reaches, as will be of importance in section 3.

Because water mainly flows downstream, many studies organize hydrologic features with a topological sort,
and such a topological sort is often generated based on the topological path length. Various types of topo-
logical sorts have recently been used for river network routing: that of the SIM-France modeling system
[Habets et al., 2008; David et al., 2011a] and the hydrologic sequence number [USEPA and USGS, 2010] for
river network routing in U.S. river basins [David et al., 2011b, 2013a, 2013b]. Topological sorts are also valua-
ble for domain decomposition in parallel computing, as further developed below.

2.2. Existing Approaches for Horizontal Hydrologic Transfers Within a Parallel-Computing
Environment
As mentioned in section 1, the development of a parallel-computing model is concerned in part with two
interconnected goals: partitioning the problem and orchestrating computations. Partitioning involves split-
ting the problem into small tasks and combining the tasks into groups of tasks. Orchestration involves

Figure 1. The HydroSHEDS representation of the Mississippi River network includes 102,229 river reaches (blue) although only the 10% with largest contributing catchments are shown
here for clarity. Fourteen USGS gauges (black) are used in this study for calibration and validation. Eight of the 15 largest U.S. lakes and reservoirs (red) are located in the Mississippi River
Basin.
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allowing synchronization of the groups of tasks and communication among them. Readers are referred to
Culler et al. [1997b] for further details on the parallelization process. Existing studies of horizontal hydrologic
transfers involve these two interconnected aspects of parallel computing.

Neal et al. [2009] adapted the version of the LISFLOOD model that is capable of computing floodplain
inundation (LISFLOOD-FP) [Bates and De Roo, 2000] to run in a parallel environment. In Neal et al. [2009],
the entire computing domain is partitioned in rectangular subdomains that are then each addressed
simultaneously by different computing cores. Note that while floodplain inundation processes are paral-
lelized in Neal et al. [2009] river routing processes are not. A similar approach to domain decomposition is
applied in papers by Kollet, Maxwell, and collaborators [Kollet and Maxwell, 2006; Kollet et al., 2010] who
use the Parallel Flow simulator (ParFlow) [Ashby and Falgout, 1996]. ParFlow allows for the movement of
water underneath the land surface and therefore differs from LISFLOOD-FP, and the computations for sur-
face and subsurface flows in ParFlow are both parallelized [Kollet and Maxwell, 2006]. Despite these differ-
ences, an approach for domain decomposition that uses rectangular boxes as subdomains is used in
ParFlow and LISFLOOD-FP studies. Hwang et al. [2014] modified HydroGeoSphere [Therrien et al., 2006] for
parallel computations of coupled surface-subsurface flow in which domain decomposition is made of sli-
ces in the North-South direction and subdomains are not necessarily rectangular. Vivoni et al. [2011]
adapted the TIN-based Real-time Integrated Basin Simulator (tRIBS) of Ivanov et al. [2004] for use on paral-
lel computers. Like ParFlow and HydroGeoSphere, tRIBS simulates coupled surface/subsurface interac-
tions. The study of Vivoni et al. [2011] emphasizes domain decomposition the most because three
different techniques are used: one based on the relative upstream/downstream position of subbasins,
and two using a classic graph partitioning software called METIS [Karypis and Kumar, 1999]. One impor-
tant road block in the methods of Vivoni et al. [2011]—compared to the studies of Neal et al. [2009], Kollet
and Maxwell [2006], and Hwang et al. [2014]—is that computing loads remain unbalanced in all methods
tested. One valuable advantage though, is that the decomposition of Vivoni et al. [2011] follow natural
topographic divides and hence limits intercore communications. Note that the aforementioned orchestra-
tion techniques are all static, i.e., each computing core addresses a unique subdomain and all computa-
tions are simultaneous.

A different orchestration paradigm is used in the Digital Yellow River Model (DYRIM) of Wang et al. [2007]
which was developed to study erosion processes. DYRIM uses the domain decomposition of Li et al. [2010]
that is based in part on the topological path length. A dynamic orchestration paradigm based on the algo-
rithm of Li et al. [2011] is used in DYRIM. Once subbasins are determined, computations are carried from
upstream to downstream with less computing cores than subbasins, and any core is allowed to address any
subbasin as soon as it becomes available for computation. Such a dynamic algorithm allows for valuable
gains in time. More information on the significant capabilities of dynamic algorithms is given in an unre-
lated study by Wang et al. [2012] which also provides notable theoretical background on the limitations of
dynamic parallel algorithms.

2.3. Parallel Speedup in Horizontal Terrestrial Hydrology
One valuable advantage of parallel computers is their ability to save their users’ time. These temporal sav-
ings are typically quantified using a metric called parallel speedup. Two approaches are generally used to
compute speedup. The first investigates if parallel computers can reproduce a given simulation in less time.
The parallel speedup for these fixed-size problems with increasing computing power is known as fixed-size
speedup (or ‘‘strong’’ speedup) and is governed by Amdahl’s law [Amdahl, 1967]. The study of fixed-size
speedup is the most prevalent in the aforementioned hydrologic literature [Neal et al., 2009; David et al.,
2011b, 2013a; Li et al., 2011; Vivoni et al., 2011; Wang et al., 2012; Hwang et al., 2014]. The second approach
to quantifying temporal savings is based on a different paradigm in which parallel computers are used to
address problems one would not otherwise tackle because simulations times would be prohibitive on regu-
lar computers. In other words, one can solve bigger problems in a given amount of time with more comput-
ing power [e.g., Ashby and Falgout, 1996; Kollet and Maxwell, 2006; Kollet et al., 2010]. The corresponding
temporal savings are measured in studies where computing power increases linearly with the number of
unknowns using a quantity referred to as scaled-size speedup (or ‘‘weak’’ speedup) and governed by the
Gustafson-Barsis Law [Gustafson, 1988]. Despite their seeming similarities and equal maximum (ideal) value,
the upper practical limits for fixed-size and scaled-size speedup approaches are quite different, the latter
often leading to larger values [e.g., Gustafson, 1988].
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Recent work by David et al. [2013a] demonstrated the rather counterintuitive fact that the relative
upstream/downstream influence within a river network can become smaller than floating-point precision if
river basins are large enough, hence motivating the development of alternative algorithms for parallel com-
puting of river flow, which is the main purpose of this paper. Because such relative independence entails a
virtual decoupling of connected river reaches (section 3), it also permits the use of an increased number of
computing cores for a given study domain, therefore justifying a fixed-size speedup approach in this paper.

3. Theoretical Approach

The theoretical approach presented in this study is directly motivated by the overarching goal to develop
simple routing algorithms that can be applied at scales ranging from continents to the full globe and at
high-spatial resolutions (1–10 km) while efficiently using parallel computing. For this reason, focus is made
here on a classic river routing scheme called the Muskingum method [McCarthy, 1938] acknowledging that
many efforts have since its inception focused on enhanced hydraulics of Muskingum-type algorithms [e.g.,
Cunge, 1969; Miller and Cunge, 1975; Koussis, 1978; Ponce and Yevjevich, 1978; Todini, 2007]. Despite its sim-
plicity, the Muskingum method allows for downstream propagation of flow waves, and hence provides a
good test case for studying means of addressing wave propagation in large networks of rivers and streams
within a parallel-computing environment; with potential applications to more advanced river routing
schemes.

3.1. The Muskingum Method as a Linear System of Equations
Adapting the Muskingum method [McCarthy, 1938] using a matrix notation, David et al. [2011b] showed
that this method can be represented by equation (1), and solved on parallel computers by splitting the vec-
tors and matrices on multiple cores and allowing for intercore communication:

I2C1 � Nð Þ � Q t1Dtð Þ5C1 � Qe tð Þ1C2 � N � Q tð Þ1Qe tð Þ½ �1C3 � Q tð Þ

5b tð Þ
(1)

In equation (1), t is time and Dt is the routing time step. The bold notation is used for vectors and square
matrices which are all of size m the total number of river reaches in a river network. I is the identity matrix.
N is the network matrix in which—assuming a maximum of one downstream river reach being allowed for
each river reach—a value of one is used at row i and column j if reach j flows into reach i and zero is used
elsewhere. C1, C2, and C3are diagonal matrices composed of the classic Muskingum parameters C1j , C2j , and
C3j , respectively. The vector Q is made of elements Qj corresponding to the river flow rate at the down-
stream point of each river reach j. The vector Qe is made of elements Qe

j corresponding to the flow rates
from outside the river network that are estimated using a land surface model and added upstream of each
river reach j. The derivation of equation (1) assumes the partial temporal uniformity of Qe in order to sim-
plify the mathematical formulation, to limit the quantity of input data, and to facilitate the coupling with
land surface models. Such an assumption is valid if land surface model data are made available less often
that the river routing time step as in this study. All elements on the right-hand side of equation (1) are taken
at time t and can be combined into a single vector b tð Þ to highlight the difference between the data and
the unknown Q t1Dtð Þ. One can hence solve for Q t1Dtð Þin equation (1) by providing the highly sparse
matrix I2C1 � N and the right-hand side b tð Þ to a linear system solver.

Equation (1) is valid regardless of how river reaches are sorted. However, sorting in an upstream-to-
downstream manner allows that N is strictly lower triangular (i.e., all elements on and above the diagonal
are zero) which will be assumed in the following. Such sorting hence makes the linear system matrix of
equation (1) a lower unit triangular matrix (i.e., a lower triangular matrix for which all diagonal elements
have a value of one) and therefore simplifies the solving procedure [David et al., 2011b, 2013a]. More infor-
mation on the derivation and parallel performance of this matrix-based Muskingum method can be found
in David et al. [2011b, 2013a].

3.2. Introduction of a Parallel Trans-Boundary Matrix in the Matrix-Based Muskingum Method
On parallel computers with N cores, a matrix is usually split so that each core addresses one of N subsets of
consecutive rows of the initial matrix. These rows are then further divided in one square submatrix, the
diagonal of which coincides with that of the initial matrix; and one rectangular submatrix containing the
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remaining elements of the subset. The elements in the off-diagonal submatrix correspond to places where
intercore communication is necessary for operations in a parallel-computing environment.

In the case of a river network in a basin, a subset of consecutive rows of the network matrix N corresponds
to the river network of a given subbasin although there is no a priori necessity for the subbasins to be con-
tiguous in this context of parallel matrices as there is generally in hydrology. Once consecutive subsets of
the network matrix are selected, the elements of an off-diagonal submatrix of N correspond to places where
water flows across the boundaries separating the corresponding subbasin from others. Isolating the off-
diagonal submatrices from the network matrix therefore allows highlighting the trans-boundary flows
among subbasins in the river network. Let T be such a parallel trans-boundary matrix in which the elements
of the off-diagonal submatrices are those of N and the elements of the diagonal submatrices are all null.
Like N, T and N2T are both strictly lower triangular. Also, by construction, T is strictly lower triangular by
blocks, and N2T is diagonal by blocks. Introducing the matrix T into equation (1) leads to

I2C1 � N2Tð Þð Þ � Q t1Dtð Þ5b tð Þ1T � C1 � Q t1Dtð Þ (2)

The comparison of equations (1) and (2) leads to two remarks. First, in addition to being a lower unit trian-
gular matrix (like I2C1 � N) the matrix I2C1 � N2Tð Þ is also diagonal by blocks, which allows for faster reso-
lution in a parallel-computing environment because intercore communication is not required within the
linear system solver. Second, equation (2) is implicit in time because its right-hand side includes the
unknown vector Q t1Dtð Þ. However, the number of elements of the unknown Q t1Dtð Þ that are included in
the product T � C1 � Q t1Dtð Þ is very limited because T � C1 is sparse. Therefore, the estimation of the few
nonzero elements in T � C1 � Q t1Dtð Þ could allow for taking advantage of potentially faster parallel compu-
tations in equation (2) compared to equation (1).

3.3. The Limited Spatial Propagation of Flow Waves During Each Time Step of the Muskingum
Method
David et al. [2013a] showed that the relative influence of one given river reach on another during the
update step of the Muskingum method decreases with increasing distance separating the two reaches until
it becomes smaller than can be accounted for by floating-point arithmetic. The minimum distance above
which the flow of a given river reach does not influence the update of the distant downstream reach is
referred to as the ‘‘radius of downstream influence’’ in David et al. [2013a] and this quantity varies in space
and time. David et al. [2013a] provided a conservative estimate of the maximum value of this topological
distance (i.e., a distance expressed as a number of river reaches) for each reach of a large network over an
entire year of simulation. In the study herein, we will focus on the maximum value of the radius of influence
in time but also in space—for simplicity—and use Rdown

max to denote such quantity.

Let Dk be the minimum topological distance separating any two connected upstream and downstream
boundary reaches of a given subbasin k. Assuming that a type of domain decomposition can be designed
assuring that Dk is always greater than Rdown

max , the downstream-most river reach in each subbasin (at least)
can be calculated exactly without having to account for intercore communication. One could therefore
neglect the term T � C1 � Q t1Dtð Þ in equation (2) to compute Q̂ , an estimate of Q:

I2C1 � N2Tð Þð Þ � Q̂ t1Dtð Þ5b tð Þ (3)

In the case of large subbasins, Q̂ is an accurate estimate of Q only for the downstream-most river reaches of
each subbasin, all other reaches being inaccurate. Fortunately, the downstream-most reaches are the only
ones involved in the computation of T � C1 � Q t1Dtð Þ, and the following equality ensues

8k 2 1;N½ �;Dk > Rdown
max

T � C1 � Q t1Dtð Þ5T � C1 � Q̂ t1Dtð Þ
(4)

Again, such equality is only valid when subbasins are large enough with regards to the radius of influence.

3.4. A Trans-Boundary Muskingum Method With Large Subbasins Approximation
While T � C1 � Q t1Dtð Þ is neglected above when solving for the downstream-most reaches, it cannot be
neglected when computing all other reaches. To obtain a valid computation of all river reaches in the net-
work, the substitute T � C1 � Q̂ t1Dtð Þ of equation (4) must be reinjected into equation (2). Combining
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equations (2–4), one obtains what will be referred to here as a trans-boundary Muskingum method with
large subbasins approximation:

8k 2 1;N½ �;Dk > Rdown
max

I2C1 � N2Tð Þð Þ � Q̂ t1Dtð Þ5b tð Þ

I2C1 � N2Tð Þð Þ � Q t1Dtð Þ5b tð Þ1T � C1 � Q̂ t1Dtð Þ

8<
:

(5)

When computing Q̂ and Q sequentially, equation (5) is explicit in time, and can therefore be solved with lin-
ear system solvers. One must note here again that equation (4) will fail and hence equation (5) will not pro-
duce accurate results if the subbasins are not sufficiently large when compared to the radius of influence.
Therefore, this method must be used with caution.

Finally, equation (5) is derived here for parallel-computing environments, but collapses into equation (1)
repeated twice when using one unique computing core because T becomes a null matrix in which case no
approximation is made. Equation (5) can therefore be used on one or multiple cores although using it on
one core only is unnecessarily inefficient.

3.5. Fixed-Size Speedup of Computations
As mentioned earlier, the ability to solve a mathematical problem faster by increasing the number of com-
puting cores is generally referred to as fixed-size speedup. Given s Nð Þ, the time needed to solve a mathe-
matical problem on N cores, the fixed-size speedup S Nð Þ is defined by

S Nð Þ5 s 1ð Þ
s Nð Þ (6)

Ideal speedup is obtained when Sideal Nð Þ5N, i.e., when computing time decreases exactly with the number
of cores used. Because simple routing schemes such as the Muskingum method are updated in an
upstream-to-downstream manner, topological constrains make it a challenge to achieve ideal fixed-size
speedup [David et al., 2013a]. However, assuming balanced computing loads and accounting for the limited
spatial propagation of flow waves during the update step of the Muskingum method, David et al. [2013a]
hypothesized that one could design computing algorithms allowing for a fixed-size speedup S2 Nð Þ5N=2,
although the method they used failed to achieve such a feat.

All matrices and vectors of equation (5) are of the same size as those in equation (1). Since equation (5) con-
sists of twice the number of systems of linear equations as equation (1), one should expect the resolution of
equation (5) to require approximately twice the amount of time necessary to solving equation (1) when
using one unique computing core for resolution. However, in both systems of linear equations used in
equation (5), the linear system matrix is diagonal by blocks. Hence, when solving on multiple cores, the
resolution of these two linear systems can be done independently among all computing cores (i.e., without
intercore communication); and equation (5) will likely reach high fixed-size speedup capabilities. The only
place where communication among cores is necessary is in the computation of T � C1 � Q̂ t1Dtð Þ, so the
number of elements in T should be kept small to guarantee best-possible fixed-size speedup. In cases
where equation (5) is valid, it can therefore be expected that fixed-size speedup will be close to S2 Nð Þ5N=2
if loads are balanced. Accounting for the initial overhead of a factor of two due to the mathematics of equa-
tion (5) compared to equation (1) and for potential load imbalance LN , one can therefore hope that the pro-
posed trans-boundary Muskingum method with large subbasins approximation will achieve the following
fixed-size speedup:

S Nð Þ5LN �
N
2

(7)

In order to do so, careful decomposition into subbasins must be undertaken.

3.6. Sorting and Decomposing the River Network Using the Topological Path Length for Eased
Computations and Comparisons
The proposed work is concerned with evaluating a new method for parallel computations and hence com-
parisons among results obtained with various numbers of computing cores are valuable. Such comparisons
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are eased if a unique global pattern is used for sorting all river reaches—regardless of the number of cores
used for resolution—because such guarantees similarity among output files.

The choice of a unique sorting method partly enforces how the basin is decomposed into subbasins
because parallel matrices are split so that each computing core addresses consecutive rows of the initial
matrix (section 3.2). The number of river reaches in each subbasin, however, remains to be chosen and load
balancing is of importance (section 3.5). In order to keep the load imbalance minimum (LN51), each core
should be assigned m=N river reaches. Note here that an attempt at using a classic domain decomposition
based on topographic divides failed to provide balanced subbasins (see section 5.4) as was previously expe-
rienced by Vivoni et al. [2011] hence motivating the development of an alternate method in this study.

Sorting river reaches in an upstream-to-downstream manner makes linear system matrices lower triangular
and decreases the resolution time in linear system solvers [David et al., 2011b, 2013a]. Such is true at the
basin level (global sorting) and at the subbasin level (local sorting).

A direct way to allow for such sorting—both globally and locally and regardless of the size chosen for each
subbasin—is to arrange river reaches in decreasing value of their topological path length. However, there
are multiple ways to do so because two or more river reaches can have the same topological path length,
but one can enforce a unique sorting method by further sorting reaches with the same topological path
length in increasing value of their unique identifying integer.

In this study, river reaches are therefore sorted in decreasing value of their topological path length and
reaches with equal topological path length are further sorted in increasing value of their unique identifier.
Each computing core is then assigned m=N river reaches to keep the computing loads balanced.

Again, one has to check that the proposed method for decomposing the river network allows for subbasins
that are large enough with regards to the radius of influence (i.e., 8k 2 1;N½ �;Dk > Rdown

max ) otherwise equa-
tion (5) might fail to provide accurate results. Additionally, the corresponding amount of trans-boundary
flows needs be calculated in order to quantify intercore communication.

3.7. Precision Expected From Computer Implementations of the Muskingum Method
Applying the formulation of Higham [1990] to equation (1), an estimate of the numerical precision to be
expected from computations obtained using the Muskingum method, regardless of what algorithm is used
for resolution, can be obtained by relating small variations of b and small variations of I2C1 � N to small var-
iations of Q [David et al., 2013a]:

kDbk2

kbk2
� e;
kD I2C1 � Nð Þk2

kI2C1 � Nk2
� e;

kDQk2

kQk2
�

2 � e � jkk2
I2C1 � Nð Þ

12e � jkk2
I2C1 � Nð Þ

(8)

where e is a small real number, kk2is the two-norm, and jkk2
I2C1 � Nð Þ is the two-norm condition number

of I2C1 � N computed using

jkk2
I2C1 � Nð Þ5 rmax

rmin
(9)

where rmin and rmax are, respectively, the minimum and maximum singular values of I2C1 � N.

4. Application to the Mississippi River Basin

We test our theoretical approach in a 10 year simulation of discharge in the largest river basin of the United
States, the Mississippi River Basin. At the core of this application is a river network routing model called
RAPID [David et al., 2011b] simulating discharge in all river reaches of the Mississippi River Basin as
described in a near-global hydrographic data set called HydroSHEDS [Lehner et al., 2008]. Estimates of sur-
face and subsurface runoff were derived from second phase of the North American Land Data Assimilation
System (NLDAS2), [Xia et al., 2012a, 2012b] and estimates of river discharge from in situ observations were
obtained from the U.S. Geological Survey. The temporal range of this study is chosen as 1 January 2000 to
31 December 2009. Each component of the simulation is further described in the following sections.
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4.1. RAPID
The Routing Application for Parallel computatIon of Discharge (RAPID) [David et al., 2011b] is a river network
routing model based on a matrix version of the Muskingum method given in equation (1). The principal
modification made to RAPID compared to previous studies [David et al., 2011a, 2011b, 2013a, 2013b] is the
addition of the trans-boundary Muskingum method with large subbasins approximation given in equation
(5). Additional information on RAPID—including download links for the source code corresponding to this
study [David, 2013] as well as versions corresponding to previous studies—is available at http://rapid-
hub.org.

4.2. Using HydroSHEDS in RAPID
HydroSHEDS [Lehner et al., 2008] is a near-global hydrographic data set that was derived based on the digi-
tal elevation model (DEM) obtained from the Shuttle Radar Topography Mission (SRTM). Of particular inter-
est for this study are the HydroSHEDS files that contain vectorized river networks including the cumulative
drainage area contributing to each river reach. These river network files are available on a per continent
basis and the highest existing available resolution (derived from the 15 arc sec DEM) is used in this study.
One of the valuable attributes of the network file is the cumulative catchment area for each river reach.
HydroSHEDS also includes a preliminary basin file focusing on basins corresponding to the outlet points
and the outline of the Mississippi Basin used here is extracted from this basin file. This study focuses on the
Mississippi River Basin which corresponds to 102,229 river reaches of the 467,820 available for North Amer-
ica in HydroSHEDS (Figure 1).

The current version of HydroSHEDS does not include connectivity information among river reaches, nor
does it provide the noncumulative contributing catchment area or the length corresponding to each river
reach. These three pieces of information are needed in RAPID and were therefore built here.

To determine the connectivity among reaches of the river network, a two-step process was used. First, the
latitude and longitude of the start and end points of each reach were determined using a geographic infor-
mation system (GIS) called ArcGIS. Second, a Fortran program was written to identify that reach j flows into
reach i when the geographic coordinates of the end point of reach j match those of the start point of
reach i. This two-step process showed that, in the HydroSHEDS representation of the Mississippi River Basin,
each river reach has a maximum of one downstream reach and a maximum of four upstream reaches. From
a graph theory perspective, this network is a connected graph with 102,229 vertices (i.e., river reaches) and
102,228 edges (i.e., connections) and is therefore a tree [Berge, 1962]. From a hydrology perspective, this
means that the water in every river reach of the domain will eventually flow to a unique outlet. The topolog-
ical path length that is useful for domain decomposition and sorting of river reaches (see section 3.6) was
determined based on this network connectivity and its value ranges between 1 and 1044.

The catchment area contributing to each reach was estimated with a Fortran program using the connectiv-
ity information derived above and the native HydroSHEDS field called ‘‘UP_CELLS’’ that gives the maximum
flow accumulation (in number of 15 arc sec grid cells) of each reach. The maximum flow accumulation of all
upstream reaches was subtracted from the maximum flow accumulation of each given reach to compute
the number of 15 arc sec grid cells in any given catchment (Figure 2). The area of a 15 arc sec grid cell
located at the downstream end of each reach was then computed assuming a spherical Earth with radius
the arithmetic mean radius [see e.g., Moritz, 1980, for definition] of the WGS84 spheroid [NIMA, 2000] that
serves as the geographic coordinate system of HydroSHEDS. Finally, the catchment area was computed by
multiplying the number of grid cells by the area of one local grid cell. Based on this series of calculations,
the sum of all contributing catchment areas in the entire Mississippi River Basin is 3,179,875.9 km2 which is
within 0.01% of the 3,179,517.1 km2 provided in the preliminary basin layer of HydroSHEDS and is therefore
deemed satisfactory. The benefit of this procedure is that an estimate of the noncumulative catchment area
for every river reach is provided—which is useful for river routing—instead of the overall basin area cur-
rently included in HydroSHEDS. Based on these computations the contributing catchments vary in size from
0.14 to 542.78 km2 (mean: 31.11 km2, median: 24.79 km2, standard deviation: 25.66 km2). The probability
density function and the cumulative distribution function of contributing catchment sizes are shown in Fig-
ure 3a).

The length of each river reach in the network was computed in ArcGIS through a projection from the native
geographic coordinate system used in HydroSHEDS (WGS84) to a projected coordinate system adapted to
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North America (an Albers Equal Area Conic Projection with standard parallels 208N and 608N and based on
NAD83). It was determined that the 102,229 river reaches of the Mississippi River Basin vary in size from
0.29 to 101.50 km (mean: 6.20 km, median: 4.79 km, standard deviation: 5.29 km). The probability density
function and the cumulative distribution function of river reach sizes are shown in Figure 3b).

4.3. Inflow From Land to HydroSHEDS Rivers
An estimate of the water flowing on and underneath the land surface into the river network was obtained
using data generated with the VIC model [Liang et al., 1994; Wood et al., 1997] and of which outputs from
version 4.0.3 were obtained from NLDAS2 [Xia et al., 2012a, 2012b]. Three hourly inflows of water into
HydroSHEDS river reaches were estimated from the sum of VIC surface and subsurface runoff in a way simi-
lar to that used by David et al. [2013a, 2013b] and in which the runoff value corresponding to a single point
in the catchment is multiplied by the catchment area. The single point used here is not the catchment cent-
roid as in previous studies because catchment layers are not available in HydroSHEDS. Instead, the down-
stream point of each reach was picked as the single point of reference for consistency with the location
used in the estimation of the catchment area (see section 4.2). This conversion method between the
gridded environment of NLDAS2 and the vector environment of HydroSHEDS effectively assumes that each

Figure 3. Probability density function and cumulative distribution function of (a) catchment area and (b) river reach length.

Figure 2. (a) The cumulative drainage area of each reach of the HydroSHEDS river network is available in number of 15 s grid cells as part of the data set. (b) The noncumulative drainage
area is computed in this study based on network connectivity. Also note the USGS Gauge located on the Red River at Spring Bank, AR does not exactly match that of the nearest reach.
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catchment is located in a single NLDAS2 grid cell which is a valid approximation if catchments are much
smaller than grid cells as is mostly the case in the domain considered. As in previous studies [David et al.,
2011b, 2013a, 2013b], the time lag between runoff generation and inflow to the river network is assumed
null. Such neglecting of the horizontal routing time for transport of water on and underneath the land sur-
face outside the river network could be challenged with the larger catchment sizes used here (approxi-
mately 30 km2) compared to previous studies (approximately 3 km2). A single land surface model was used
here (VIC) following a previous comparative study of the four NLDAS2 land models used with RAPID [David
et al., 2013b]. Note that land-river coupling is done in a one-way sense in this study although RAPID can be
used within a coupled surface-subsurface modeling system [e.g., David et al., 2011a] if the land model has
such capability. One might expect that the inclusion of surface routing processes and river-aquifer interac-
tions could contribute to the betterment of simulations in some parts of the Mississippi River Basin. How-
ever, the main focus of this study is on parallel speedup of computations within the river network so these
simplifications were kept, for simplicity of the modeling approach.

4.4. Observations of Discharge and Relation to HydroSHEDS River Reaches
Estimates of river discharge from in situ observations were obtained from the U.S. Geological Survey National
Water Information System (USGS NWIS). Because the HydroSHEDS river networks are derived from a DEM, the
reach locations do not exactly coincide with those of mapped rivers. Hence gauges must be virtually moved
from their actual location to the closest river reach with similar drainage area (e.g., Figure 2) in order to accu-
rately relate gauges and their corresponding HydroSHEDS reach. This procedure is often referred to as ‘‘snap-
ping’’ in GIS software and requires manual checking. Therefore, a limited number of gauging stations is used
in this study for calibration of model parameters and validation of model simulations.

Three criteria were chosen for selection of which gauging stations to use in this study. The first criterion was
that stations capture the main hydrologic features across the Mississippi River and its main tributaries. Focus
was therefore made on gauges located on the Missouri River, the Tennessee River, the Ohio River, the Red
River, the Arkansas River, and the Mississippi River itself. It was attempted to capture the flow before and after
the main confluences, and before and after the main lakes and reservoirs, when possible. A variety of gauging
stations with mean discharge spanning from 400 to 8000 m3/s (approximately) were hence selected. The sec-
ond criterion for selecting stations was to—when possible—use gauges that have already been chosen in
existing hydrologic studies of the Mississippi Basin or its subbasins [i.e., Abdulla et al., 1996; Wood et al., 1997;
Lohmann et al., 1998, 2004; Maurer et al., 2001; David et al., 2013a]. The third criterion for selection was the
availability of daily data every day throughout the temporal range of this study. The stations used in the pub-
lished literature were often initially selected for their hydrologic significance and are therefore likely still func-
tioning today. If such stations had been decommissioned prior to or during the study period, alternative
stations in their vicinity and that captured similar flows were used here instead. If two or more stations located
on the same river measured comparable flow magnitudes, the station with the longest record was picked.

Table 1 shows the list of stations used in this study and includes their name, USGS code, geographic coordi-
nates, drainage area, and a summary of the two initial criteria used for selection of each station. Figure 1
shows the location of these stations in the study domain. Note that no station of the main stem of the Ten-
nessee River fit the aforementioned selection criteria.

5. Results

5.1. Time Step of RAPID
The river routing time step used for RAPID is determined based on the smallest of the mean and the
median reach length (i.e., the median length of 4.79 km in this study) and an overestimated flow wave
celerity (here 2.5 m/s) leading to 1916 s. In order to keep an integer conversion factor between the routing
time step and the period of time at which inflow data are obtained, the value of Dt51800 s was chosen.

5.2. Calibration of RAPID
As in previous studies [David et al., 2011b, 2013a, 2013b], an optimization procedure designed to minimize
the square errors between observations and simulations at the daily time step was used to determine the
parameters of RAPID simulations. The optimal set of parameters was chosen by determining the values of
two scalars kk and kx such that
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8j 2 1; 102229½ �

ka
j 5ka

k �
Lj

c0

xa
j 5ka

x � 0:1

(10)

where ka
j (time) and xa

j (nondimensional) are the traditional parameters of the Muskingum method for each
river reach j and used to compute the elements C1j , C2j , and C3j . Lj is the reach length. c051 km3h2150:28
m3s21 is a constant flow wave celerity. The year 2008 was chosen as the optimization period because it is
the wettest year out of the proposed simulation period. In each experiment, six sets of initial values for
ka

k ; ka
x

� �
were used ( 2; 3½ �, 4; 1½ �, 1; 1½ �, 0:3; 3½ �, 0:5; 3½ �, and 0:7; 3½ �), and only the values that had a physical

meaning (i.e., ka
k > 0 and ka

x 2 0; 5½ �) [Cunge, 1969] obtained throughout the search were retained. Finally,
the couple ka

k ; ka
x

� �
leading to the smallest value of the square error cost function was kept as optimal.

An initial optimization using all available gauging stations led to

8j 2 1; 102229½ �

ka;0
k 50:406250; ka;0

j 5ka;0
k �

Lj

c0

ka;0
x 50:296875; xa;0

j 5ka;0
x � 0:1

(11)

This corresponds to a flow wave celerity of ca;05c0=0:40625050:68 m3s21 which is comparable to the
results of previous studies also using the VIC model for runoff production [David et al., 2013a, 2013b].

As in David et al. [2013b], a second optimization using only the stations leading to a positive value of the
efficiency [Nash and Sutcliffe, 1970] was performed, and led to

8j 2 1; 102229½ �

ka;1
k 50:210876; ka;1

j 5ka;1
k �

Lj

c0

ka;1
x 50:341400; xa;1

j 5ka;1
x � 0:1

(12)

Here the flow wave celerity of ca;05c0=0:21087651:32 m3s21 is about twice as fast as in previous studies.

Because faster flow waves lead to better timing (Appendix A), and because the speed of computations is
more crucial for emergency management when flow waves are moving faster, the remainder of the study
will focus on the parameters ka;1

k ; ka;1
x

� �
corresponding to the faster flow wave.

5.3. Radius of Influence
Following David et al. [2013a], a conservative estimate for the radius of downstream influence Rdown

j for
each river reach was computed using the worst-case values corresponding to the data b tð Þ and to the
unknown Q t1Dtð Þ for any 30 min time step during the 10 year simulation. Figure 4 shows the spatial distri-
bution of Rdown

j which varies between 0 and Rdown
max 550. Multiplying the radius of downstream influence by

the mean river reach length leads to a distance of 320 km. A previous estimate of the radius of downstream
influence was 155 reaches for the Upper Mississippi Basin at a 15 min time step, with a mean river reach
length of 1.87 km, and using a flow wave celerity of 0.78 m/s [David et al., 2013a]. Note that despite different
values for the flow wave celerity and for the routing time step in the previous study, multiplying the radius
of downstream influence by the mean river reach length leads to approximately 290 km. The similarity of
these two distances is striking although it is not clear whether such resemblance is due to the common
geographical location, a yet-to-be-determined physical quantity, or chance.

Regardless, one can expect that simulations in this study using the trans-boundary Muskingum method
with large subbasins approximation will provide accurate results—at least—when the topologic distance
separating any two connected boundary reaches of any subbasin is greater than 50 (i.e., Dk > Rdown

max ).

5.4. River Network Decomposition for Parallel Computing
The methods presented in section 3.6 for sorting and decomposing the river network into subbasins were
applied on the HydroSHEDS representation of the Mississippi River Basin to 1, 2, 4, 8, 16, and 32 computing
cores.
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For each domain decomposition and for each subbasin k, a conservative estimate of the topological dis-
tance Dk was obtained by subtracting the minimum topological path length of any reach of k that has a
connection with any upstream subbasin from the maximum topological path length of any reach of k that
has a connection with any downstream subbasin. This simplified estimate allows avoiding the need for trac-
ing connectivity among all reaches of a given subbasin which is computationally demanding. A value of
Dk51 was used if a subbasin has no upstream connection, or if a subbasin has no downstream connection.
The conservative estimate of the topological distance corresponding to each given decomposition was
then obtained by taking the minimum of all estimated values of Dk .

Table 2 shows the load imbalance, the conservative estimate of the topological size Dk , and the number of
elements in the trans-boundary matrix T; for all domain decompositions used in this study. Figure 5 shows
the domain decomposition obtained for 4, 8, 16, and 32 computing cores.

Given the conservative estimates for Rdown
max and Dk presented above, one should expect that the trans-

boundary Muskingum method with large subbasins approximation will provide accurate results when run-
ning on 1, 2, 4, and 8 computing cores because Dk > Rdown

max (Table 2). Note that the proposed sorting and
domain decomposition schemes lead to Dk51 on 1 and 2 computing cores because no single subbasin
has both upstream and downstream connections with other subbasins. Simulations run on 16 or 32 cores
may lead to accurate computations but such cannot be guaranteed given that the estimated Dk is larger
than the estimated Rdown

max .

Figure 4. The radius of downstream influence varies between 0 and 50 river reaches.
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Note that Table 2 also shows that the total number of elements in T increases almost linearly with the num-
ber of computing cores until it becomes greater than the number of river reaches in any subbasin when
running on 32 computing cores. One can therefore expect (see section 3.5) that intercore communication
might limit fixed-size speedup capabilities with the domain decomposition used here. Such limitation
should become particularly overwhelming when the total number of river reaches involved in intercore
communication (the trans-boundary reaches) becomes greater than the computing load addressed by any
given core. An alternative way to avoid this large amount of intercore communication while keeping

Table 2. Information Related to the Domain Decomposition Over 1–32 Computing Cores Corresponding to the HydroSHEDS River Net-
work of the Mississippi River Basin

Number of
Cores Used (N) Heaviest Load Lightest Load Load Imbalance (LN)

Conservative Estimate of
Minimum Topological

Size (Dk) in Any Subbasin
Number of

Elements in T

1 102,229 102,229 1.00 1 0
2 51,115 51,114 1.00 1 199
4 25,558 25,557 1.00 133 483
8 12,779 12,778 1.00 59 1029
16 6,390 6,389 1.00 27 2282
32 3,195 3,194 1.00 12 4424

Figure 5. In this study, the domain decomposition for reaches in the HydrosHEDS river network of the Mississippi River Basin is based on the topological path length and, is balanced.
Each color represents a different computing core for each decomposition on (a) 4 cores, (b) 8 cores, (c) 16 cores, and (d) 32 cores.
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subbasins as large as possible in order to satisfy constrains related to the radius of influence would be to
enforce contiguous subbasins in the domain decomposition. Such was attempted using METIS [Karypis and
Kumar, 1999] as part of this study. However, the resulting domain decompositions are heavily unbalanced
(LN51:53) as was previously encountered by Vivoni et al. [2011], hence justifying the approach used here.

Finally, Figure 5 shows that in all decompositions of the Mississippi River Basin used, all subbasins have con-
nections with upstream reaches except the upstream-most subbasin. This upstream-most subbasin is
addressed by the first computing core and is the only one that could be solved in one unique iteration with
the algorithm proposed. Idling—or in our method: unnecessary duplicate operations (see section 3.4)—is
therefore limited to only one core here.

5.5. Comparison Among Parallel Computations
The minimum and maximum singular values of the linear system matrix of equation (1) and built with the
Muskingum parameters of equation (12) were obtained using the Scalable Library for Eigenvalue Problem
Computations (SLEPc) [Hernandez et al., 2005] and allow computing the condition number of I2C1 � N:

jkk2
I2C1 � Nð Þ5 rmax

rmin
� 1:8655

0:4302
� 4:34 (13)

Applying the concepts presented in section 3.7 to double-precision floating-point operations (e51:11310216),
relative errors in kbk2 and kI2C1 � Nk2on the order of e will lead to relative differences in flow rate computa-
tions on the order of kDQk2=kQk252 � j � e= 12j � eð Þ � 9:63310216. Differences of such magnitude among
results obtained with various resolution schemes are hence also to be deemed expected and acceptable.

Table 3 shows the differences obtained among 3 hourly averaged output files for a series of resolution
schemes including the traditional Muskingum method on one core [McCarthy, 1938], the matrix-based Musk-
ingum method of equation (1) solved directly on one core [David et al., 2011b], the matrix-based Muskingum
method solved iteratively on 1–32 cores [David et al., 2011b, 2013a], and the trans-boundary Muskingum
method with large subbasins approximation solved with two iterations on 1–32 cores (this study).

As expected, the trans-boundary Muskingum method with large subbasins approximation provides results
within the acceptable accuracy on 1–8 cores. In addition, Table 3 shows that the results obtained on 16
cores are also within the expected range. This suggests that the combined conservative estimates of Rdown

max

and Dk provide a safe approach to determining whether or not subbasins are large enough to warrant the
use of the proposed trans-boundary Muskingum method. However, the differences in results obtained on 1

Table 3. Differences in 3 Hourly Averaged Results Among Computing Methods Used

Method 1 Method 2 Maximum Value of Relative Differ-
ence in the Flow Rate Vector Using
the Two-Norm Between Method 1

and Method 2, for Any 3 Hourly
Average During Entire Simulation

(Dimensionless)

Maximum Value of Absolute Differ-
ence in Flow Rate Between Method

1 and Method 2, for Any River Reach
and for Any 3 Hourly Average During

Entire Simulation (m3/s)Method Name

Number of
Computing
Cores Used Method Name

Number of
Computing
Cores Used

Matrix-based Muskingum 1 Traditional Muskingum 1 1.83E-15 2.76E-10
Matrix-based Muskingum 1 Iterative Matrix-based Muskingum 1 0.00E100 0.00E100
Matrix-based Muskingum 1 Iterative Matrix-based Muskingum 2 2.05E-15 2.76E-10
Matrix-based Muskingum 1 Iterative Matrix-based Muskingum 4 1.95E-15 2.76E-10
Matrix-based Muskingum 1 Iterative Matrix-based Muskingum 8 1.95E-15 2.76E-10
Matrix-based Muskingum 1 Iterative Matrix-based Muskingum 16 2.08E-15 2.91E-10
Matrix-based Muskingum 1 Iterative Matrix-based Muskingum 32 1.77E-09 9.88E-05
Matrix-based Muskingum 1 Trans-boundary Muskingum with large

subbasins approximation
1 0.00E100 0.00E100

Matrix-based Muskingum 1 Trans-boundary Muskingum with large
subbasins approximation

2 1.04E-15 9.46E-11

Matrix-based Muskingum 1 Trans-boundary Muskingum with large
subbasins approximation

4 8.22E-16 1.46E-10

Matrix-based Muskingum 1 Trans-boundary Muskingum with large
subbasins approximation

8 8.04E-16 1.60E-10

Matrix-based Muskingum 1 Trans-boundary Muskingum with large
subbasins approximation

16 8.80E-16 2.04E-10

Matrix-based Muskingum 1 Trans-boundary Muskingum with large
subbasins approximation

32 1.77E-09 9.88E-05
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and 32 cores is six orders of magnitude higher than differences obtained among other simulations suggest-
ing that the subbasin sizes are no longer large enough with regards to the radius of downstream influence.
Even then, the maximum value of the absolute error made on any river reach is on the order of 1026m33s21

which is much smaller than the model bias or the accuracy resolved by gauging stations. Note that, surpris-
ingly, the proposed trans-boundary method also leads to smaller differences with the matrix-based Muskin-
gum method than the iterative matrix-based method.

Addressing concerns related to the precision of results is crucial in this study because the proposed algorithm
is developed based on the assumption that subbasins are large enough with regards to the radius of influence.
The experimental differences obtained here among multiple simulations are always within the magnitude pre-
dicted by floating-point arithmetic as long as this assumption is satisfied. It can therefore be concluded that
the algorithm developed in this study conserves mass and can be used safely. Even when the large subbasin
assumption fails, the differences among results are several orders of magnitude smaller than the model bias
and the accuracy of observations. The risks of failing mass conservation are hence inexistent when the assump-
tion of the algorithm is verified, and are very limited when the assumption fails. We also expect that such preci-
sion of results will persist even if replacing modeled flows by observed flows at a few locations within the river
network—as done in David et al. [2011a]—because the upstream-to-downstream connectivity would purposely
be broken at these selected locations hence further relaxing the assumption of the algorithm.

5.6. Fixed-Size Speedup
The computing times related to each experiment of Table 3 are shown in Figure 6. Times corresponding to
three theoretical curves are also included in Figure 6: a null fixed-size speedup resulting from not accounting
for the existence of radii of downstream influence [David et al., 2013a], the fixed-size speedup of equation (7),
and a hypothetical ideal fixed-sized speedup. For full disclosure [e.g., Bailey, 1992], all simulations share the fol-
lowing features: double-precision floating points were used, all results presented are from actual numerical
experiments (no projections were made except for theoretical values), only the times corresponding to the
slowest of all cores (not the average times) are reported, compiler optimization options were always the
same, and a unique but shared 32 core computer was used with null to minimal impact from other users. As
in our previous studies [David et al., 2011b, 2013a] all computing times in Figure 6 correspond exclusively to

Figure 6. Computing time as a function of the number of computing cores for four algorithms all based on the Muskingum method and
for three theoretical curves.
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solving the routing equations—i.e., the focus of this study—and do not include initial model setup, although
a common setup program is used in all experiments. Finally, note that in order to provide fair comparisons, all
theoretical and experimental fixed-size speedup values reported in this study are calculated against the com-
puting time of the traditional Muskingum method with no parallel overhead.

As in previous studies [David et al., 2011b, 2013a], the traditional Muskingum method and the matrix-based
Muskingum method can be solved in comparable times (Figure 6). Also like in our previous research, the
iterative matrix-based Muskingum method suffers from an initial handicap factor of approximately 2 (Figure
6) from an added iteration and from the computation of the initial error necessary in automated iterative
methods; and shows limited fixed-size speedup from 1 to 16 cores after which communications likely
become overwhelming [David et al., 2011b].

As expected, the trans-boundary Muskingum method is more computationally expensive than the matrix-
based Muskingum method when running on one unique computing core (Figure 6) although experimental
results show a factor of 1.5 (not 2) in computing time. This suggests that the added burden from doubling the
number of linear systems to be solved in the trans-boundary Muskingum method therefore does not lead to
a doubling in computation time, which is advantageous compared to our theoretical estimate of equation (7).

More importantly, Figure 6 shows that the factor of 1.5 is mostly stable as the number of cores increases, and
the computing time of the trans-boundary Muskingum method decreases almost linearly going from 1 to 16
computing cores until it reaches a fixed-size speedup of 8.3. Despite being inferior to a hypothetical ideal
speedup, the experimental results of the trans-boundary approach consistently outperform the theoretical esti-
mate of equation (7). One must emphasize here that the Muskingum method is in its defining equation heavily
serialized, which is why Muskingum-type computations have traditionally been solved in sequence from
upstream to downstream. This topological limitation in turn has direct consequences on fixed-size speedup
capabilities unless alternative algorithms are used. In this study, the largest number of subbasins (i.e., comput-
ing cores) crossed—out of all possible paths going from upstream to downstream—in the entire river network
is always equal to the total number of cores. If one were to solve the Muskingum equations separately on each
subbasin with the static domain decomposition developed here, each core would have to wait for all upstream
computations to be completed prior to starting its task resulting in no gains in time at all. The reader is referred
to David et al. [2013a] for further information on this topological limitation. The mere fact that experimental
fixed-size speedup is observed in this study can hence be considered a success. Additionally, our experimental
fixed-size speedup results outperform the theoretical estimates of equation (7) over 1–16 cores.

To the best of our knowledge, such values obtained for fixed-size speedup with the Muskingum method
over 1–16 cores using a static domain decomposition over a fully interconnected river basin are unprece-
dented. There remains, however, a strong limitation to this study. Despite providing balanced subbasins,
the domain decomposition approach used here triggers an increasing need for intercore communication
(related to the number of elements in T) when the number of cores increases (Table 2). The increasing pop-
ulation size of the trans-boundary matrix might be responsible for the slope of the trend being less than
one. Starting at 32 cores, the fixed-size speedup of the trans-boundary Muskingum stalls (in addition to
being inaccurate) which is likely due to the large number of elements in the trans-boundary matrix T com-
pared to the computing load of each core (see sections 3.5 and 5.4). The investigation of balanced domain
decomposition methods allowing for large subbasins and for limited connections among subbasins would
therefore be valuable as they should alleviate the flattening on the speedup curve.

Finally, the main characteristics of the matrices I2C1 � N and I2C1 � N2Tð Þ, that are used, respectively, in
the matrix-based Muskingum method and in the trans-boundary matrix-based Muskingum method, do not
change with the problem size. Their lower unit triangular shape, the total number of nonzero elements per
row, and their ability to be solved in a few iterations has been stable in all existing RAPID studies [David
et al., 2011a, 2011b, 2013a, 2013b]. One could therefore expect that the mathematical approaches used in
this study would behave well from a scaled-size speedup perspective, although such investigation is admit-
tedly beyond the scope of this study.

5.7. Implications for the Study of Riverine Water Resources
The flow of water in rivers is a causal phenomenon that mostly goes downstream and many river routing
schemes—including the Muskingum method—update a given river reach partly based on the prior update
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of all upstream river reaches [David et al., 2013a]. The most intuitive way to solve such schemes is hence to
proceed sequentially from upstream to downstream (as done traditionally) because the equations suggest
that upstream river reaches must be updated prior to downstream reaches. This topological constraint lim-
its one’s ability to achieve any fixed-size parallel speedup when using traditional solving methods. In fact,
attempting to obtain fixed-size parallel speedup for static orchestration paradigms in which each comput-
ing core is assigned a unique subbasin was until recently thought to be an unworthy endeavor for the
Muskingum method [David et al., 2011b, 2013a]. This study avoids the perceived topological constraint by
building an iterative method informed by the limited upstream-to-downstream propagation of flow waves.
The results obtained here not only show experimental fixed-size speedup; they also outperform the theoret-
ical speedup of equation (7) when applied from 1 to 16 cores (Figure 6). Further, the theoretical speedup of
equation (7) is much beyond what was previously thought achievable [David et al., 2013a]. This implies that
new paradigms can be developed for solving other similar flow wave propagation algorithms in order to
obtain results faster.

The only assumption of the solving algorithm is that subbasins are large enough when compared to
the radius of downstream influence. The domain decomposition method presented here satisfies this
condition and is also advantageous because only one computing core ever idles (corresponding to the
upstream-most subbasin) and its idling only lasts for half of the simulation. Despite admitted limita-
tions due to increasing communication that seems to limit performance starting at 32 cores, the
domain decomposition method used here allows demonstrating the validity of the solving algorithm.
Note however that, while their joint use in this study allows for a proof of concept, the computational
algorithm and the domain decomposition method are independent. Further study of decomposition
approaches could therefore help alleviating the limited performance starting at 32 cores obtained
here.

The work presented in this study uses a 10 year study of the Mississippi River Basin. The timing of numerical
experiments demonstrates that the new computation method allows saving a factor of 8, i.e., almost an
order of magnitude, while conserving expected numerical precision. This suggests that substantial gains in
simulation time can be obtained when performing retrospective studies of the world’s largest river basins.
Additionally, such temporal gains promise to be valuable for time-critical operational flood forecasting
efforts such as the National Flood Interoperability Experiment [Maidment, 2015] in which ensembles of
RAPID simulations are used (A. D. Snow et al., A new high-resolution national-scale ensemble hydrologic
forecast model and dataset, submitted to Journal of American Water Resources and Association, 2015). The
research in this paper therefore has implications on the study of the world’s largest river basins both for ret-
rospective studies and for large ensemble predictions.

6. Conclusion

The main purpose of this study is to develop and assess a new algorithm for river routing with the Musk-
ingum method that allows for large gains in computing time when run on parallel computers. The
method presented builds on recent work demonstrating that the flows in distant upstream reaches have
an influence on the Muskingum update of flow in a given river reach that is so small it cannot be
accounted for by floating-point operations in computers [David et al., 2013a]. To the best of our knowl-
edge, the fixed-size speedup performance of the proposed trans-boundary Muskingum method is
unprecedented for a fully interconnected river basin with static orchestrations, and should allow large
gains in computing time when studying the world’s largest river basins retrospectively as done here or
for real-time flood forecasting [e.g., Maidment, 2015]. Our mathematical approach uses a matrix-vector
notation because such allows easily describing the trans-boundary flows using what is referred to here as
a trans-boundary matrix. However, a similar concept can be applied to the traditional algorithm used in
the Muskingum method or to the many other routing algorithms in which flow rates are updated sequen-
tially from upstream to downstream.

The foundation of the proposed trans-boundary approach to the Muskingum method lies in the
assumption that a large interconnected network of river reaches can be decomposed into subbasins
that are large enough with regards to the radius of downstream influence. Such constraints on
domain decomposition need be considered with two other crucial aspects of parallel computing:
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load balancing and intercore communication. This study uses the topological path length to sort
and decompose large river networks into subbasins of balanced size. However, the resulting subba-
sins have a small topological size which limits the number of computing cores that can effectively
be used for resolution with the trans-boundary approach. Additionally, the large number of trans-
boundary reaches generates much intercore communication which also likely limits fixed-size paral-
lel speedup capabilities. Our work therefore only provides an initial step towards understanding
best-suited river network decomposition methods and suggests that more advanced techniques
may lead to further fixed-size speedup performance. Such advanced domain decompositions can be
expected to be valuable to other river routing algorithms.

Our quantitative comparison of estimated values for the radius of downstream influence and for the topo-
logical distance separating consecutive subbasins sheds some light on when and why the proposed trans-
boundary method works. However, the calculation of such quantities is computationally intensive, and
remains approximate. Future studies may consider instead a trial-and-error method in which results
obtained among various domain decompositions are compared to determine when subbasins become too
small to warrant the use of the trans-boundary Muskingum method.

This research also presents a similarity in the numerical value of a distance (300 km)—obtained by
multiplying the radius of downstream influence (a number of river reaches) by the mean length of
the river reaches—in this study and a previous study [David et al., 2013a], despite different spatial
and temporal resolutions. It may be of interest to further study the meaning of this distance to see
if hard limits exist in parallel computing of river flow based on a physical distance that does not
depend on resolution.

Appendix A: River Flow Simulations

Table A1 shows the statistics of the simulations obtained with the two sets of parameters given in equations
(11) and (12) and includes the mean observed flow, the mean simulated flow, the root-mean-square error
(RMSE) and the efficiency [Nash and Sutcliffe, 1970] for both sets of model parameters used. The statistics of
Table A1 were computed using daily data for the entire period of simulation (1 January 2000 to 31 Decem-
ber 2009). Figure A1 shows daily hydrographs for the driest year (2000) of the 10 year study and corre-
sponding to the seven stations with the highest observed mean flow; and Figure A2 shows the same
hydrographs for the wettest year (2008).

The flow statistics (Table A1) obtained for the gauging stations located on the main stem of the Mis-
sissippi River in the northern part of the Upper Mississippi River Basin (i.e., St. Paul, MN, Keokuk, IA,
and Grafton, IL) show good agreement with observations when the slower flow wave celerity is used.

Table A1. Statistics of Flow Simulations Obtained For the Gauges of Table 1 With Two Sets of Parameters Used in RAPID

Name
Mean Flow

(Observation)

Initial Optimization (ka;0
k and ka;0

x ) Subsequent Optimization (ka;1
k and ka;1

x )

Mean Flow
(Model) RMSE E

Mean Flow
(Model) RMSE E

Missouri River at Bismarck, North Dakota 466.9 907.3 843.4 255.32 908.5 885.8 261.14
Missouri River at Omaha, Nebraska 755.6 1,919.2 1809.9 250.45 1,921.8 2000.6 261.87
Missouri River at Hermann, Missouri 2083.1 4,969.0 4048.3 27.23 4,976.8 4276.9 28.19
Mississippi River at Saint Paul, Minnesota 401.5 477.0 380.0 0.24 477.1 520.3 20.42
Mississippi River at Keokuk, Iowa 2188.4 2,974.8 1299.4 0.26 2,977.9 1539.4 20.04
Mississippi River at Grafton, Illinois 3417.3 4,439.1 1678.7 0.46 4,445.6 1962.6 0.27
Mississippi River at Saint Louis, Missouri 5546.1 9,504.1 5381.2 21.37 9,520.4 5617.9 21.58
Mississippi River at Thebes, Illinois 6078.5 10,237.9 5669.8 21.20 10,257.4 5788.0 21.30
Ohio River at Sewickley, Pennsylvania 989.5 1,002.6 573.9 0.53 1,003.3 457.1 0.70
Ohio River at Louisville, Kentucky 3622.7 4,357.8 2695.2 0.28 4,369.3 2170.3 0.54
Ohio River at Metropolis, Ohio 8127.9 10,375.1 4580.0 0.42 10,413.0 3577.2 0.64
Arkansas River near Haskell, Oklahoma 303.4 1,019.5 997.3 26.49 1,020.3 1030.7 27.00
Arkansas River at Murray Dam near

Little Rock, Arkansas
1294.1 2,986.1 2355.2 21.77 2,990.0 2442.9 21.98

Red River at Spring Bank, Arkansas 588.4 1,418.0 1195.6 21.73 1,420.0 1310.5 22.28
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The corresponding efficiencies range between 0.24 and 0.46 and the mean flow is well captured by
the modeling system. The faster flow wave celerity leads to poorer results. The comparison of hydro-
graphs (Figures A1 and A2) at the nearby stations of Keokuk, IA (upstream) and Grafton, IL (down-
stream) show that the downstream flow is much more diffused in the observations than in the model
results. Such is particularly apparent during the high flows of June 2008 (Figure A2). The station
located on the Mississippi River at Grafton, IL is located just downstream of the confluence of the Illi-
nois River and the Mississippi River. Hence, such enhanced diffusive processes may be related to back-
water flows at the confluence, but such backflows cannot be represented by the traditional nor the
variable-parameter Muskingum methods [Todini, 2007].

The stations on the main stem of the Missouri River (Bismarck, ND, Omaha, NE, and Hermann, MO)
consistently show poor flow statistics (Table A1) regardless of which wave celerity is used. The value
of the mean modeled flow is approximately twice that of the mean observed flow for these three
locations. As a consequence, the efficiencies are always substantially negative, hence suggesting poor
simulations. The study of all corresponding hydrographs (Figures A1 and A2) shows that the flow is
much more dampened in the observations than in the simulations. Such dampening suggests that
long residence times are present in the Missouri River Basin. Figure A3 focuses on the Missouri River
Basin and shows that four of the fifteen largest man-made reservoirs of the U.S. (Lake Sakakawea,

Figure A1. Comparison of daily averaged observed hydrographs with those obtained by RAPID with the two sets of parameters used in this study, for the year 2000 (dry year), and for
the seven stations with highest 10 year average flow.
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Lake Oahe, Fort Peck Lake, and Lake Francis Case) are located upstream of the Missouri River at
Omaha, NE and five are upstream of Hermann, MO (Truman Reservoir added to the above list). The
lack of representation of storage processes in reservoirs within the modeling system used in this study
can therefore partly explain the poor dynamics of simulations in the Missouri River Basin. Additionally,
enhanced evaporation from large open water bodies may reveal potential causes for the wide overesti-
mation of the mean flow in the model compared to observations. The examination of the timing of
observed and modeled peaks (Figures A1 and A2), however, suggests that the faster flow wave celerity
is the most appropriate for the Missouri River at Hermann, MO.

Approximately, 40% of the flow measured downstream of the confluence of the Mississippi River and the
Missouri River (at St. Louis, MO) is coming from the Missouri River (Table A1). Therefore, the poor model sim-
ulations of the Missouri River have a direct impact on the modeled hydrographs (Figures A1 and A2) and
corresponding statistics (overestimated mean and negative efficiencies in Table A1) for the Mississippi River
at St. Louis, MO and at Thebes, IL.

The simulations of the Ohio River appear to be the best in the study domain. Efficiencies for the Ohio River
at Sewickley, PA, Louisville, KY, and Metropolis, IL (Table A1) are all positive regardless of which of the two
values of wave celerity is used here, although higher efficiencies are obtained with the faster wave (Table
A1) and better hydrograph dynamics (Figures A1 and A2).

Figure A2. Same as Figure A1 but for 2008 (wet year).
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The flow statistics (Table A1) for the Arkansas River (Haskell, OK and Little Rock, AR) and Red River (Spring
Bank, AR) show that the simulated mean flow is approximately 3 times higher than the observed mean flow
leading to poor efficiencies of simulations. Here again, one must note the presence of enhanced evapora-
tion and storage capacity in surface water bodies such as Lake Dardanelle (Arkansas River) and Lake Texoma
(Red River) that could explain the poor simulations.

Therefore, the examination of flow statistics (Table A1) and flow hydrographs (Figures A1 and A2) sug-
gests that the modeling system has some skill in reproducing the daily variability of observed river flow
despite significant limitations in locations where storage in surface water reservoirs—currently lacking
from the modeling system—has strong impacts on surface water dynamics. Additionally, a key contribu-
tor to reproducing the observed hydrograph is the runoff generated by the land surface model. No
attempt is made here to improve the parameterization of runoff in land models [e.g., Famiglietti and
Wood, 1994; Niu et al., 2011; Cai et al., 2014] as this is far beyond the scope of the current paper, which is
strictly focused on improving the computational efficiency of the routing model. Note that, contrary to
previous work [David et al., 2013b], the optimization of the Muskingum parameters focusing only on the
stations where positive efficiency had been obtained did not lead to overall improvement of metrics.
However, the faster flow wave celerity obtained through such focused optimization generally seems to
be leading to better timing in hydrograph peaks (Figures A1 and A2) than the slower wave although the
statistics of flow are hence deteriorated (Table A1).

Figure A3. Five of the 15 largest U.S. lakes and reservoirs are located in the Missouri River Basin.
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