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The X chromosome, being hemizygous in males, is exposed one-third of the time increasing the visibility of new mutations to natural 
selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective 
sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila mel
anogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns 
across 6 commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and ele
vated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, 
we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background 
selection, hard sweeps, and soft sweeps and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our 
findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a 
significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
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Introduction
The X chromosome has long been a subject of substantial interest 
in evolutionary biology due to its unique features that set it apart 
from the autosomes. Notably, the X harbors genes responsible for 
speciation, fertility, sexual dimorphism, and brain function (Rice 
1984; Turelli and Orr 1995; Coyne and Orr 1998; Saifi and 
Chandra 1999; Skuse 2005; Payseur et al. 2018), highlighting its bio
logical importance. Moreover, previous work suggests that the X 
chromosome may serve as a potential target of sexually antagon
istic selection (Dean and Mank 2014; Patten 2019; Glaser-Schmitt 
et al. 2021), further emphasizing its significance in evolution. 
Consequently, studying adaptation on the X chromosome, and 
how it differs from that of autosomes, can provide insights into 
the mechanisms driving genetic diversity, sexual selection, and 
speciation, thereby deepening our understanding of the broader 
processes that shape genetic variation across populations.

Adaptation on the X may differ from that of the autosomes due 
to 2 key differences. First, the X is expected to have a lower effect
ive population size (NeX) compared to autosomes (NeA), leading to a 
decreased influx of new mutations. Second, due to male hemizyg
osity, new mutations on the X of males are immediately exposed 
to natural selection. This increased exposure to selection may 
lead to a higher probability of fixation of new recessive beneficial 
mutations (“Faster-X” effect; Charlesworth et al. 1987) and a more 
efficient purging of deleterious variation on the X compared to 
autosomes, leading to lower levels of standing genetic variation 

on the X. Thus, as a consequence of these 2 factors, at the onset 
of positive selection, there will be a lower adaptive mutational 
supply on the X, resulting in more gradual rates of adaptation, 
or in other words, fewer haplotypes rising to high frequency bear
ing the adaptive allele (Orr and Betancourt 2001; Vicoso and 
Charlesworth 2006, 2009; Charlesworth et al. 2018).

Adaptation leaves behind distinct signatures in the genome. 
The classic signature, referred to as a hard selective sweep, occurs 
when a single adaptive mutation rises in frequency, resulting in 
deep dips in diversity in the vicinity of the adaptive locus (Smith 
and Haigh 1974; Kaplan et al. 1989). By contrast, a different signa
ture known as a soft selective sweep occurs when multiple 
adaptive mutations on distinct haplotypes sweep through the 
population simultaneously, not necessarily causing dips in 
diversity (Hermisson and Pennings 2005, 2017; Pennings and 
Hermisson 2006a; Messer and Petrov 2013). Recently, we found 
evidence of an enrichment of hard sweeps on the X chromosome 
compared to autosomes in a North American population of D. mel
anogaster (Harris and Garud 2023), suggesting that the X chromo
some is subject to different evolutionary dynamics than the 
autosomes. Whether an enrichment of hard sweeps on the X is 
a universal feature of molecular evolution has yet to be deter
mined, as only a few species have been shown to have a higher 
prevalence of hard sweeps on the X compared to the autosomes 
(Nam et al. 2015; Harris and Garud 2023). Quantifying the preva
lence of hard vs soft sweeps in natural populations has been of 
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great interest and debate (Peter et al. 2012; Assaf et al. 2015; 
Schrider et al. 2015; Schrider and Kern 2016; Harris, Sackman, 
and Jensen 2018; Feder et al. 2021; Garud et al. 2021). Thus, under
standing the prevalence of hard and soft sweeps more broadly is 
crucial as it can shed light on common mechanisms that underlie 
adaptation in natural populations.

To understand if the X is generically enriched for hard sweeps 
in many species, we analyze population genomic data from 6 
Drosophila species. By leveraging whole-genome samples from 
multiple species and populations (Arbiza et al. 2014; Nam et al. 
2015; McGrath 2022), we can identify trends that are the norm 
across species, as well as exceptions that are indicative of the un
ique biology of individual species. However, four of the popula
tions we analyze in this study have small sample sizes (n = 7–23 
samples), making it difficult to conduct the same haplotype-based 
scan used in our previous work (Garud et al. 2015; Harris and 
Garud 2023). Additionally, each of these species has a unique 
demographic history for which we do not have accurate models, 
rendering our previous simulation-based approach for classifying 
putative sweeps as hard and soft challenging (Harris and Garud 
2023). To overcome these challenges, we use a combination of 
single-nucleotide diversity and haplotype homozygosity statistics 
to analyze the patterns of diversity on the autosomes and the X 
chromosome across species, specifically looking for evidence of 
hard sweeps on the X that is inconsistent with other neutral and 
selective forces including demography, background selection 
(BGS), and soft selective sweeps. Our empirical and simulation 
analyses show evidence that hard sweeps have played a signifi
cant role in shaping diversity patterns on the X chromosome in 
multiple Drosophila species suggesting that hard sweeps on the X 
are the norm rather than the exception.

Methods
Data
We analyzed data from 6 Drosophila species from 7 populations 
[D. melanogaster from Zambia (ZI), D. melanogaster from Raleigh 
(RA), Drosophila simulans, Drosophila sechellia, Drosophila mauritiana, 
Drosophila santomea, and Drosophila teissieri], which we downloaded 
and processed as follows:

For both D. melanogaster populations, data are publicly avail
able as part of the Drosophila Genome Nexus data set (Lack 
et al. 2015) and can be downloaded from www.johnpool.net. We 
downloaded 205 Drosophila Genetic Reference Panel (DGRP) gen
omes from RA, North Carolina and 197 DPGP3 genomes from ZI. 
For our analysis, we used 100 genomes from each population, pre
viously processed (Harris and Garud 2023) to remove individuals 
having high IBD with one another, as well as residual heterozygos
ity, and high levels of missing data.

For D. simulans, we downloaded data from 170 inbred lines from 
a North American population (Signor et al. 2018) available at 
https://zenodo.org/record/154261#.YzMzty2z3jC. For the remain
ing 4 species, we obtained genomes from NCBI’s RefSeq and short- 
read data from NCBI’s Short Read Archive (Garrigan et al. 2014; 
Turissini and Matute 2017; Meany et al. 2019; Serrato-Capuchina 
et al. 2021) (Supplementary Table 1).

For D. mauritiana, D. sechellia, D. teissieri, and D. santomea, variant 
calling was performed with the NVIDIA Clara Parabricks pipeline 
v4.0.0 (https://docs.nvidia.com/clara/parabricks/4.0.0/index.html), 
a reimplementation of variant calling tools including BWA-mem 
(Li 2013) and GATK4 (Van der Auwera and O’Connor 2020) opti
mized for running on NVIDIA graphics processing units. 
Following the GATK best practices for germline variant calling 

(https://gatk.broadinstitute.org/hc/en-us/sections/360007226651), 
we mapped each sample’s reads to the appropriate reference gen
ome, sorted and removed PCR duplicates, generated single- 
sample Genomic Variant Call Format (GVCF)s, and then per
formed joint genotyping with HaplotypeCaller. From this initial 
set of variant calls, we removed sites with quality scores QUAL  
< 30.0 to obtain a bootstrap set of high-confidence calls for an
other round of variant calling (https://gatk.broadinstitute.org/ 
hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration- 
BQSR-). We performed base quality score recalibration on the 
mapped reads using the bootstrap set then once again gener
ated single sample GVCFs that were used for joint genotyping 
with HaplotypeCaller to ultimately generate a VCF file for 
each species.

To remove any low-quality variant sites, we applied GATK 
recommended hard filters (https://gatk.broadinstitute.org/hc/en- 
us/articles/360035890471-Hard-filtering-germline-short-variants), 
summarized as follows: FS > 60, QD < 2.0, MQ < 4, MQRankSum <  
−12.5, QUAL < 30.0, SOR > 3.0, and ReadPosRankSum < −8.0. 
Additionally, we excluded sites that were not uniquely mappable 
(Supplementary Fig. 1). We also filtered out sites lying within repeti
tive elements as predicted by RepeatMasker (Smit et al. 2013-2015). 
Only biallelic SNPs were considered in our analysis.

Next, we excluded invariant sites of poor quality. To do so, we 
filtered entire regions, which included both variant and invariant 
sites, with poor depth and quality statistics. We used banded 
GVCF files, where sites of similar quality get concatenated into a 
band. We excluded intervals that failed to meet the depth and 
quality criteria: (‘MIN(FMT/DP) > 10 & MIN(FMT/GQ) > 30’). Next, 
we combined the results from the GATK hard filters applied to 
variant sites with the resulting regions—comprising both variant 
and invariant sites—that passed the filter applied to the banded 
GVFC files. This gave us the total number of callable sites in the 
genome. When computing statistics using a sliding window ap
proach (see section below), we excluded windows that overlapped 
50% or more with low-quality intervals.

High-density repeat regions are often associated with centro
meric regions, which consist of highly homogeneous tandem re
peats and are known to experience low rates of recombination 
(Mather 1939; Levine 1955; Vincenten et al. 2015). Consequently, 
these regions tend to exhibit reduced diversity and increased 
homozygosity, which can lead to false positive signals of selection. 
To mitigate potential confounding effects of repeats on selection 
inferences, we calculated the proportion of base pairs identified 
as repeats within 50-kb windows. In addition to removing individ
ual sites masked as repeats, we removed entire windows in which 
20% or more of the sites were marked as repeats by RepeatMasker.

Diversity statistics and haplotype homozygosity 
measured from data
We annotated which SNPs lie in exon, intron, or intergenic regions 
using RefSeq (O’Leary et al. 2016) annotations. The corresponding 
assembly accession numbers for each species are as follows: 
GCF_004382145.1 (D. mauritiana), GCF_004382195.2 (D. sechellia), 
GCF_016746235.2 (D. teissieri), GCF_016746245.2 (D. santomea), 
and GCF_000001215.2 (D. melanogaster). For D. simulans, we used 
the reference genome and corresponding gff file provided by 
Rebekah Rogers and Peter Andolfatto (Rogers et al. 2014). We 
used BEDtools v.2.3.0 (Quinlan and Hall 2010) to separate the 
data into exon, introns, or intergenic regions. If any position could 
be included in multiple categories, we annotated the position pri
oritizing exons followed by introns and finally intergenic regions. 
Additionally, we excluded regions less than 40 bp long.
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To understand the influence of selection across genomic re
gions on the X chromosome vs autosomes, we calculated nucleo
tide diversity in autosomes (πA) and the X chromosome (πX) in each 
of the exons, introns, and intergenic regions. We next computed 
the ratio of X to autosomal diversity (πX/πA) by running 1,000 boot
strap replicates in which we sampled exons, introns, and inter
genic regions at random, computing the mean πX, mean πA, and 
mean(πX)/mean(πA) in each sample. We approximated π by π ≍ 
2pq, with p the frequency of the major allele at a given site and 
q = 1 − p.

To identify regions of the genome that may have exceptionally 
low diversity due to selection, we also computed π/bp in nonover
lapping windows of 10, 20, and 50 kb (Supplementary Fig. 2) across 
the autosomes and the X chromosome of all species. We then de
fined a low diversity threshold as X% of the π/bp average of each 
chromosome with X = 20 or 30%. We labeled windows with π/bp 
below this threshold as low diversity windows, further investi
gated as putative sweep regions. For the main analysis of this 
work, 20-kb windows and a threshold of 20% of the average π/bp 
were used. To test for differences in quality in windows below 
and above the defined threshold, we computed the proportion of 
missing data and quality score per site and found similar distribu
tions across these categories (Supplementary Fig. 3).

Additionally, we computed haplotype or multilocus genotype 
homozygosity in windows of 20 SNPs long on the X chromosome, 
with the expectation that haplotype homozygosity should be ele
vated in selective sweeps but not BGS (Wall and Pritchard 2003; 
Enard et al. 2014; Garud et al. 2015; Schrider 2020). In species for 
which we had phased data (D. melanogaster, D. simulans, and D. 
mauritiana), we computed the expected haplotype homozygosity 
(Garud et al. 2015) defined as H =

􏽐n
i=1 p2

i , where pi is the frequency 
of the ith most common haplotype in a sample with n distinct hap
lotypes. For the remaining species, we computed the expected mul
tilocus genotype homozygosity (Harris, Garud, and DeGiorgio 2018) 
defined as G =

􏽐n
i=1 q2

i , where qi is the frequency of the ith most 
common multilocus genotype in a sample with n distinct haplo
types. In contrast to a phased haplotype, where the allelic state 
for each site is known, a multilocus genotype is a string that repre
sents the diploid state of the individual where each site is labeled as 
either homozygous for the reference allele, homozygous for the 
alternate allele, or heterozygous. A high recombination rate is ex
pected to break haplotypes and thus decrease both H and G, where
as with a low recombination rate, haplotypes may drift to high 
frequency and thus increase H, and by extension G.

In addition to measuring H and G in 20 SNP windows, we tested 
windows of length 50 and 10 SNPs long. However, due to the small 
sample size of most species, the probability of observing the same 
multilocus genotype twice becomes small with longer window 
sizes, making it difficult to capture any signal in the 50 SNP win
dow case. With 10 SNP windows, we also found an elevation of 
homozygosity in low diversity windows. However, we opted for 
20 SNP windows as smaller window sizes may increase homozy
gosity due to genetic drift.

Simulation analysis
To understand the evolutionary processes responsible for the pat
terns of π/bp and haplotype homozygosity observed in the data, 
we simulated a variety of evolutionary models for the X chromo
some and autosomes using SLiM 3.7 (Haller and Messer 2019). 
The scenarios simulated included neutrality, sex bias, low recom
bination rate, mutation rate bias, bottlenecks, BGS, hard sweeps, 
and soft sweeps as described below.

For all models with a fixed population size (excluding bottle
neck models), we simulate a constant Ne = 106 population. An Ne 

of this order of magnitude is reasonable for most of the species 
analyzed given mean nucleotide diversity levels, with exception 
of D. sechellia, which has been shown to have a lower Ne ∼ 105 

(Legrand et al. 2009). SLiM is a forward-in-time simulator, which 
makes simulating populations with Ne > 5 × 105 unfeasible due 
to memory requirements. As in our previous work (Harris and 
Garud 2023), we rescaled our simulations using a constant factor 
of Q = 50.

In all our simulations, we modeled a 20-kb region with a recom
bination rate of r = 5 × 10−7 cM/bp (unless otherwise specified) and 
a neutral mutation rate of µ = 1 × 10−9, both rescaled by Q = 50. For 
the simulations that include selection, we assumed that muta
tions on the X of males experience the same fitness effect as 
that of a homozygous female (i.e. dosage compensation). We ran 
a total of 100 simulations for each model and ran a 10Ne burn-in 
for every simulation.

Neutral models
We first simulated a completely neutral model with a female-to- 
male ratio of 1 and equal mutation rates between the sexes. 
Next, we introduced scenarios that can differentially impact 
X-linked and autosomal diversity. We simulated female and 
male sex bias varying the sex ratio as 2:1, 5:1, and 7:1 for each 
scenario, as well as a model with a lower X-linked mutation rate 
reducing the X-linked mutation rate such that the ratio µX/µA 

was equal to 0.1, 0.5, 0.75, or 0.9. We also tested the effect of re
gions of low recombination by running simulations with recom
bination reduced to 1, 10, 20, and 50% of the original r.

The expected lower population size of the X can result in stron
ger drift that can be exacerbated in a bottleneck. For this reason, 
we considered 2 bottleneck models that were fit to π/bp and 
S/bp in short introns from DGRP data set (Garud et al. 2015, 
2021): (1) a severe and short bottleneck with a bottleneck Ne of 
0.002Ne, ancestral for 0.0002 ∗ 2Ne, ancestral generations and (2) a shal
low and long bottleneck with a bottleneck Ne of 0.4Ne, ancestral for 
0.056 ∗ 2Ne, ancestral generations.

Background selection
BGS can result in stronger dips in diversity on the X compared to 
autosomes (Charlesworth et al. 1993, 1995; Stephan 2010). To con
sider this scenario, we simulated a constant Ne = 106 model with 
deleterious variation. The selection coefficients for deleterious 
mutations were gamma distributed with mean and shape param
eter of −0.000133 and 0.35, respectively (Huber et al. 2017). We var
ied the percentage of deleterious mutations such that 10, 50, or 
80% of incoming mutations were deleterious. Additionally, we si
mulated BGS and varied the X-linked mutation rate in both bottle
neck models described previously to test whether the effect of 
both processes can produce the patterns in the data. We did this 
for r = 2.5e−7 and r = 5e−7 cM/bp. Furthermore, we simulated 1-Mb 
chromosomes varying the recombination rate (r = 0, 1e−8, and 
5e−7 cM/bp) to assess the effect of a higher mutation load and re
combination rate in the context of BGS.

Selective sweeps
To understand the effects of positive selection on patterns of di
versity on the X chromosome and autosomes, we simulated 
hard and soft sweeps. To model hard sweeps, we introduced a sin
gle adaptive mutation to the center of the haplotype (θa = 0.01) and 
restarted the simulation if the adaptive mutation was lost. We 
conditioned on fixation of the sweep and sampled 100 haplotypes.
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To simulate soft sweeps, we introduced adaptive mutations re
currently to the center of the haplotype at a rate defined by 
θa = 0.1, 1, and 10, where θa = 4Neµa with µa the adaptive mutation 
rate. We conditioned our simulations on the fixation of the sweep, 
after which we took a sample of n = 100 haplotypes. We verified 
that our simulation represented a soft sweep by only including 
samples with 2 or more mutational origins in our analysis. For 
both hard and soft sweeps, we varied the strength of selection 
such that Nesb = 20, 200, or 2,000.

Identification of shared genes under selection  
in multiple species
To investigate whether similar functions are selected for on the X 
in multiple species, we obtained the genes intersecting windows 
below and above the low diversity threshold using BEDtools 
v.2.3.0 and the annotation files from the reference genome for 
each species in our study. Next, we used the gene IDs and matched 
them to their corresponding ortholog IDs in orthoDB v11 
(Kuznetsov et al. 2023). We then looked for overlapping orthologs 
across species and obtained the proportion of orthologs that over
lap over 2, 3, or 4 species in low vs high diversity windows.

To understand whether there were more shared regions under 
selection in low vs high diversity regions across species, we ob
tained 100 random samples of n orthologs from high diversity re
gions with n the number of orthologs in low diversity regions per 
species. From this, we computed the mean proportion of shared 
orthologs under selection as well as the 95% confidence interval 
in high diversity regions.

Results
We analyzed population genomic data of 6 different Drosophila 
species from 7 populations, including D. melanogaster (n = 100 ZI, 
n = 100 RA), D. simulans (n = 170), D. sechellia (n = 23), D. mauritiana 
(n = 15), D. santomea (n = 7), and D. teissieri (n = 11) (Supplementary 
Table 2). To understand not only how selection varies across spe
cies but also across populations within a species, we included a 
derived D. melanogaster population from RA as well as a population 
from ZI that is presumed to be within the ancestral range of the 
species (Pool et al. 2012). To investigate whether hard sweeps are 
enriched across these species, we first compare the patterns of nu
cleotide diversity (π) between the autosomes and the X chromo
some in the data. Next, we analyze haplotype homozygosity in 
low diversity regions on the X compared to the rest of the chromo
some. Finally, we simulate a variety of models, both without and 
with selection, to test whether any of these can generate the pat
terns observed in the data.

Patterns of X vs autosomal diversity across the 
genomes of 6 Drosophila species
When a population is not subject to any selective forces, has the 
same mutation rate across sexes, a male-to-female ratio of 1, 
and a constant effective population size (Ne), the diversity on the 
X chromosome (πX) is expected to be 3/4 of the autosomal diversity 
(πA) (Vicoso and Charlesworth 2006). However, such a simple mod
el rarely captures the complex dynamics of natural populations, 
rather, it is likely that different evolutionary forces affect the X 
and autosome differently, leading to deviations from the πX/πA =  
0.75 expectation. Across the 7 populations studied, we observed 
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a significantly lower diversity on the X compared to autosomes 
with 5 out of 7 populations showing πX/πA below 0.75 (Fig. 1). 
The other 2 populations [D. melanogaster (ZI) and D. teissieri] also 
deviated from the πX/πA = 0.75 expectation but in the opposite dir
ection, with πX/πA > 0.75. This trend has been previously reported 
for African populations of D. melanogaster and has been attributed 
to other evolutionary forces such as female sex bias (Kauer et al. 
2002; Singh et al. 2007; Pool et al. 2012).

Functionally important regions of the genome, such as exons, are 
expected to be subject to selection, positive or negative (McVicker 
et al. 2009; Arbiza et al. 2014; Nam et al. 2015). Hence, to investigate 
the influence of selection across species, we divided the data into 3 
regions: exons, introns, and intergenic regions and computed the ra
tio of X to autosomal diversity (πX/πA) for each region. We found a 
stronger reduction in diversity in exons compared to introns and in
tergenic regions for most species (Fig. 1), pointing to the functional 
importance of exons (Nam et al. 2015). Moreover, we found that 
πX/πA was consistently below 0.75 for all regions for most species 
(Fig. 1), suggesting more directional selection on the X compared to 
autosomes. However, we noted an exception in D. sechellia, where 
exons exhibited higher levels of diversity than introns and intergenic 
regions. This behavior could be explained by the high levels of intro
gression from D. simulans to D. sechellia (Garrigan et al. 2012; Matute 
and Ayroles 2014; Schrider et al. 2018). Introgression tends to be high
er in nonfunctional regions of the genome and is generally higher on 
the autosomes than on the X due to the involvement of sex chromo
somes in hybrid incompatibilities (Muirhead and Presgraves 2016; 
Turissini and Matute 2017; Fraïsse and Sachdeva 2021). This could 
lead to a greater difference between X and autosomal diversity in in
tergenic regions compared to exons, potentially explaining the pat
terns observed in D. sechellia’s data.

To identify potential regions under selection, we calculated 
π/bp in 20-kb windows across each chromosome for every species. 
Next, we labeled the analysis windows as low diversity windows if 
they fell below a diversity threshold set as 20% of the chromosom
al π/bp average. Importantly, we computed this threshold for each 
chromosome separately to normalize for variance in coalescence 
time across chromosomes. We found that, for all species, the X 
chromosome showed a higher proportion of windows below the 
low diversity threshold compared to the autosomes (Fig. 2; 
Supplementary Fig. 4). Remarkably, these low diversity windows 
often exhibited π/bp values significantly lower than the defined 
threshold with values as low 0.5% of the chromosomal average 
(Supplementary Table 3; Supplementary Fig. 5). Furthermore, 
we observed multiple instances of consecutive low diversity win
dows extending up to 200 kb, shown as the yellow shaded regions 
of Fig. 2a. To validate our findings, we repeated this analysis using 
10- and 50-kb analysis windows as well as 2 different low diversity 
thresholds. In all cases, we observed an increased proportion 
of low diversity windows on the X compared to autosomes 
(Supplementary Fig. 2).

Elevated homozygosity can arise from different processes such 
as positive selection or population bottlenecks (Wall and Pritchard 
2003). Therefore, to gain deeper insights into the potential me
chanisms responsible for the dips in diversity on the X, we com
puted haplotype homozygosity (H) across windows below and 
above the low diversity threshold (see Methods; Fig. 3) in species 
with phased genomes (D. melanogaster, D. simulans, and D. mauriti
ana). For species with unphased genomes, we computed multilo
cus genotype identity (G) (Harris, Garud, and DeGiorgio 2018; see 
Methods). We found that in all populations, windows below the 
low diversity threshold showed a significantly elevated homozy
gosity compared to the rest of the chromosome (1-sided 

Wilcoxon rank-sum test P < 0.05; Fig. 3). Below, we examine the 
role of selection in generating these differential patterns between 
the X and the autosomes.

Neutral models cannot recapitulate diversity 
patterns observed in the data
The differing diversity patterns on the X vs autosomes could be 
the result of distinct population genetic forces including (1) sex- 
biased demography, (2) differences in mutation rates between 
males and females, (3) lower recombination rates, (4) stronger 
drift on the X given its smaller Ne, and/or (5) more efficient natural 
selection on the X due to male hemizygosity (Betancourt et al. 
2004; Vicoso and Charlesworth 2009; Arbiza et al. 2014; Nam 
et al. 2015). To gain a better understanding on how these different 
evolutionary processes influence the relative X to autosomal di
versity, we quantified πX, πA, and haplotype homozygosity across 
a wide variety of scenarios simulated with the population genetics 
simulator SLiM (Haller and Messer 2019).

Sex bias
Our simulations show that female bias can increase πX/πA above 
the 0.75 expectation (Fig. 4a), recapitulating the patterns observed 
in the Zambian population of D. melanogaster and consistent with 
evidence of female bias in African D. melanogaster populations pre
viously reported in the literature (Kauer et al. 2002; Dieringer et al. 
2005; Thornton and Andolfatto 2006; Singh et al. 2007; Pool et al. 
2012) (Figs. 1 and 4a). D. teissieri also has πX/πA > 0.75, which could 
also be consistent with female bias. However, none of our female 
bias models produced elevated haplotype homozygosity com
pared to neutrality (Fig. 4b).

Additionally, we found that male sex bias can decrease πX such 
that πX/πA < 0.75, which could potentially explain low πX values ob
served in some species (Fig. 1). However, only the most extreme 
case of male bias (1:7 female–male bias) can marginally increase 
haplotype homozygosity compared to neutrality (Fig. 4b). To the 
best of our knowledge, such an extreme male–sex bias in the spe
cies studied has not been reported in the literature and therefore 
seems unlikely.

Recombination rate variation
Another possibility is that regions with a low recombination rate 
produce dips in diversity and high haplotype homozygosity as ob
served in the data. The footprint of a hard selective sweep is in
versely proportional to the recombination rate (∼s/r), due to high 
recombination rates breaking linkage and impeding the formation 
of long haplotypes at high frequency (Smith and Haigh 1974; 
Gillespie 2004). Consequently, it is reasonable to anticipate lower 
recombination rates in our putative hard sweep regions when 
compared to the overall genomic landscape. For D. melanogaster, 
where there is a detailed recombination map available, we find 
that, on average, recombination rates are 37 and 48% lower in 
the low diversity regions of the RA and ZI populations, respective
ly (Supplementary Fig. 6; Comeron et al. 2012). To understand if a 
lower recombination rate can explain all the signatures in the 
data, we simulate windows with reduced recombination rates 
(rlow), such that rlow/r = 0.5, 0.2, 0.1, and 0.01. We found that while 
a low recombination rate can elevate haplotype homozygosity, it 
cannot generate dips of diversity below the low diversity threshold 
(Fig. 4; Supplementary Fig. 7).

Mutation rates
Lower X-linked mutation rates could result in stronger dips in di
versity on the X compared to autosomes. A lower X-linked 
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mutation rate is expected when there are a higher number of 
germline cell divisions in males than females (Drost and Lee 
1995; Kirkpatrick and Hall 2004). However, in Drosophila, the num
ber of cell divisions in the male and female germlines has been 
shown to be similar (Drost and Lee 1995), suggesting that there 
should be no significant difference in the mutation rate between 
the sexes. Nevertheless, other factors may differentially affect 

X-linked and autosomal mutation rates such as the selection on 
codon usage on the X given a higher level of codon usage bias 
and GC content on the X across many Drosophila species (Singh 
et al. 2005a, 2005b, 2008; Vicoso et al. 2008; Campos et al. 2013; 
Schrider et al. 2013; Keightley et al. 2014). Past studies on D. melano
gaster have not shown a statistically significant difference be
tween X-linked and autosomal mutation rates (Keightley et al. 
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2009, 2014; Schrider et al. 2013). For other species, evidence of a 
lower X-linked mutation rate is inconclusive, with few species 
showing evidence of lower X mutation rates (Garrigan et al. 2014); 
however, more studies are needed to better understand X-linked 
vs autosomal mutation rate differences.

Nonetheless, we performed simulations to test the impact of a 
lower mutation rate on the X and whether this could, on its own, 
explain the patterns observed in the data. Simulations show that 
only the most extreme case of lower X-linked mutation rates (µX =  
0.1µA) can decrease diversity below the 20% of πX, Neutral, where πX, 

neutral is the average π/bp from neutral X chromosome simula
tions. However, none of our low X-linked mutation rate simula
tions significantly elevated haplotype homozygosity. In fact, the 
only case that can considerably reduce πX, µX = 0.1µA, shows the 
lowest haplotype homozygosity across all models (Fig. 4c). This 
is due to longer windows in terms of base pairs for the same 
SNP window size used across all scenarios. The longer windows 
lead to a lower probability of sampling 2 identical haplotypes 
and hence a lower haplotype homozygosity. From the above, we 
conclude that it is unlikely that the low diversity windows on 
the X are uniquely explained by a lower X-linked mutation rate.

Demography
Next, we tested the effects of demography on X vs autosome diver
sity, as population bottlenecks can have different effects on the X 
vs autosomes due to differences in Ne. We tested 2 variations of a 
bottleneck model: a severe and short bottleneck and a shallow 
and long bottleneck (see Methods). Both models were fit to π/bp 
and S/bp in short introns from the DGRP data set (Garud et al. 
2015, 2021). Short introns, known to evolve almost neutrally, 
were defined as introns shorter than 86 bp with the first 16 bp 
and last 6 bp removed (Clemente and Vogl 2012; Lawrie et al. 
2013). Our simulations revealed a πX/πA slightly below 0.75 as 
well as a significant increase in haplotype homozygosity in both 
bottleneck scenarios (Fig. 4a and b). To test whether the higher 
variance on the X, expected from its smaller Ne, could result in lo
cal strong dips in diversity, we looked at whether the distribution 
of πX could achieve values below 20% of the average πX for each 
model. In Fig. 4d, we see that the 20% of the average πX is well be
low the tail of the distribution of πX, suggesting that bottlenecks 

are unlikely to generate the strong local dips in π that we observe 
in the data (Fig. 2).

Finally, inbreeding is another process that could result in local 
depletion of diversity. However, if this were the case, we would ex
pect to see similar reductions in diversity across the autosomes, 
which we do not observe. Nonetheless, removal of closely related 
individuals in the D. melanogaster populations (see Methods) still re
sults in depleted nucleotide diversity on the X relative to 
autosomes.

The effect of BGS on nucleotide diversity  
and haplotype homozygosity
Having investigated neutral evolutionary scenarios, we next ex
amined whether selection can generate the patterns observed in 
the data. Both BGS and selective sweeps can decrease genetic di
versity at linked sites, either through the purging of neutral alleles 
that are linked to deleterious mutations or through hitchhiking, in 
which a beneficial mutation and its genetic background spread 
rapidly through the population (Tajima 1989; Charlesworth et al. 
1993, 1995; Stephan 2010). However, BGS is not known to increase 
haplotype homozygosity (Enard et al. 2014; Schrider 2020).

To test whether BGS can, on its own, give rise to values of πX/πA 

< 0.75, decrease π/bp below the low diversity threshold, and ele
vate haplotype homozygosity, we simulated a population (Ne = 
1 × 106) in which a fraction (d = 0.1, 0.5, and 0.8) of mutations 
are deleterious. The selection coefficient (sd) for the deleterious 
mutations followed a gamma-distributed distribution of fitness 
effects (DFE) with mean and shape parameter of −0.000133 and 
0.35, respectively (Huber et al. 2017). Our simulations show that 
(1) BGS does not decrease πX such that πX/πA is considerably below 
0.75 (Fig. 5a), (2) diversity does not dip below the 20% of πX, neutral 

threshold (Fig. 5b), and (3) none of the BGS models considered 
can elevate homozygosity (Fig. 5c).

The combined effect of BGS, demography, 
X-linked mutation rates, and recombination rate 
variation on nucleotide diversity and haplotype 
homozygosity
Separately, each of the variables we have examined thus far (sex 
bias, low recombination rates, reduced µX, bottlenecks, and BGS) 
cannot produce strong dips in diversity and elevated haplotype 
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homozygosity. However, in combination, these variables may be 
able to generate the patterns observed in the data. To test this, 
we simulated the full combination of variables, including BGS, 
bottlenecks, reduced µX, and low recombination rates, which indi
vidually showed some, but not all, of the signatures observed in 
the data. We did not simulate sex bias because female bias ele
vates diversity on the X (opposite trend of what is observed in 5 
of 7 populations), and male bias is not reported to be a dominant 
process influencing the populations under study.

Figure 6 shows the result of combining BGS, bottlenecks, and 
low µX for r = 5e−7 cM/bp, while Supplementary Fig. 8 shows these 
results for a lower recombination rate (r = 2.5e−7 cM/bp). We found 
that when r = 5e−7 cM/bp and 80% of new mutations are deleteri
ous, less than half of the simulations displayed dips in diversity 
below the designated low diversity threshold. Moreover, none 
of these scenarios showed elevated haplotype homozygosity. 
With a lower recombination rate of r = 2.5e−7 cM/bp, although 
haplotype homozygosity was elevated in some scenarios 
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(Supplementary Fig. 8), diversity was not sufficiently reduced to be 
consistent with the data.

Finally, to test whether the effect of BGS is stronger when a lar
ger number of deleterious mutations reside on the same chromo
some, we simulated longer chromosomes of 1 Mb instead of 20 kb 
(Supplementary Fig. 9). As before, when r = 5e−7 cM/bp, we do not 
observe any of the patterns from the data. Only with a 5-fold re
duction in the recombination rate (r ≤ 1e−8 cM/bp), we observe 
that diversity dips below 20% of πX, neutral and haplotype homozy
gosity is elevated. In this scenario, recombination is not effectively 
breaking linkage, leading to an elevation of haplotype homozygos
ity and strong reductions in diversity compared to πX, neutral. 
However, in this scenario, πX/πA does not dip below 0.75, 
which is inconsistent with 5 of 7 populations in the data 
(Supplementary Fig. 9). Additionally, only 15% of low diversity 
windows in the D. melanogaster genome have a recombination 
rate below r = 1e−8 cM/bp, making low recombination rates un
likely to be the primary force-generating dips in diversity.

Hard sweeps can generate the patterns observed 
on the X across species
Our results indicate that the patterns observed in the data are un
likely to be generated by sex bias, low recombination rates, low 
X-linked mutation rates, demography, or BGS, either individually 
or in combination. Next, we tested the effect of positive selection 
in generating dips in diversity and elevated haplotype homozygos
ity on the X chromosome. To do so, we simulated hard and soft 
sweeps (see Methods), varied the strength of selection (Nesb = 20, 
200, and 2,000), and computed πX/πA, πX/πX, neutral, and haplotype 
homozygosity in a 20-kb window for each scenario.

Our simulations show that selective sweeps can decrease πX/πA 

below 0.75 and elevate haplotype homozygosity (Fig. 7a and c), but 
only hard sweeps can reduce diversity below 20% of πX, neutral 

(Fig. 7b) as long as selection is sufficiently strong (Nesb = 2,000). 
Moreover, compared to the scenarios that we have simulated 
thus far, we observe a much stronger elevation in haplotype 
homozygosity when there is positive selection. This is indicative 
of a more substantial effect size, which aligns better with observa
tions in D. melanogaster and D. simulans, the species with sample 
sizes comparable to those from simulations.

We note, however, that it is also possible for a strong soft sweep 
that is not too soft (Nesb = 2,000, θa = 0.1 corresponding to approxi
mately two sweeping haplotypes; Supplementary Fig. 10a) to 
reach levels of diversity below the low diversity threshold. 
However, in this regime (θa = 0.1), only slightly more than half 
(∼62%) of the sweeps simulated with θa = 0.1 are soft 
(Supplementary Fig. 10), and, among those that are soft, 48% of 
the simulations show πX below the low diversity threshold com
pared to 82% for the hard sweep model (Supplementary Fig. 11), 
making hard sweeps a more likely explanation of the data. 
Thus, the patterns of reduced diversity and elevated haplotype 
homozygosity on the X chromosome of the species analyzed are 
less likely to be solely the result of soft sweeps; rather, they align 
more consistently with the characteristics of hard sweeps.

Discussion
A classic question in evolutionary biology is how the evolution of 
the X chromosome differs from that of autosomes given the X 
chromosome’s central role in speciation, brain function, fertility, 
and sexual dimorphism (Rice 1984; Saifi and Chandra 1999; 
Skuse 2005; Dean and Mank 2014; Payseur et al. 2018). Past work 
has suggested that the X chromosome may exhibit different evo
lutionary dynamics from the autosomes due to its unique inherit
ance pattern and increased exposure to selection through male 
hemizygosity (Vicoso and Charlesworth 2006; Nam et al. 2015; 
Charlesworth et al. 2018; Muralidhar and Veller 2022; Harris and 
Garud 2023). Recently, we found evidence in a North American 
D. melanogaster population that the X chromosome experiences 
an enrichment of hard selective sweeps compared to autosomes 
due to the increased visibility of new deleterious mutations to nat
ural selection on the hemizygous X of males and reduced effective 
population size on the X (Harris and Garud 2023). However, it is 
unclear whether this pattern of enrichment of hard sweeps on 
the X is a universal feature across all heterogametic species.

To understand if the enrichment of hard sweeps on the X is 
common across species, we analyzed multiple whole-genome se
quences from 6 Drosophila species and found evidence that sug
gests that hard sweeps are in fact more common on the X 
chromosome than autosomes across these species. Additionally, 
we found that the observed patterns of diversity are inconsistent 
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with BGS, differences in mutation rate, population bottlenecks, or 
sex bias, both independently and when combined. Furthermore, 
we found that soft sweeps generally cannot generate the patterns 
observed in the data, except for when soft sweeps are not too soft 
(e.g. there are only 2 sweeping haplotypes). However, in this 

scenario (θa = 0.1), only 62% of the simulations led to soft sweeps, 
and of those, only 48% generated dips in diversity falling below the 
low diversity threshold, whereas 82% of hard sweeps reached be
low this threshold. Therefore, we acknowledge that it is possible 
that other factors other than hard sweeps could be responsible 
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for generating some of the low diversity windows observed in the 
data. However, our results suggest that these forces are unlikely to 
be the dominant processes driving the patterns in the data. Future 
work will be important for disentangling the effects of these forces 
on diversity on the X.

The finding that hard sweeps are a likely explanation for the pat
terns observed on the X chromosome aligns with recent theoretical 
work predicting harder sweeps on the X chromosome (Muralidhar 
and Veller 2022; Harris and Garud 2023), as well as empirical work 
in apes (Nam et al. 2015) and D. mauritiana (Garrigan et al. 2014). In 
our analysis, we employed a wide range of statistics, including 
single-site (e.g. π/bp) and multisite (e.g. haplotype homozygosity) 

statistics that are sensitive to signatures of selection and also lever
age the additional resolution that whole-genome sequences pro
vide over genotype data. Combining single-site and multilocus 
statistics is still a relatively novel area of work that has the poten
tial to reveal patterns of evolution that cannot be detected by either 
type of statistic alone (Lin et al. 2011; Schrider and Kern 2016; 
Sheehan and Song 2016; Ragsdale and Gutenkunst 2017; Johri 
et al. 2020; Garud et al. 2021). Our approach allows us to disentangle 
the effects of positive selection from other forces, such as BGS and 
demographic processes, and rule out inconsistent models.

Comparative population genetics, in which multiple genomes 
from several species each are considered simultaneously, is also 

0

1

2

3

Neu
tra

l

SS, N
e
s b

 =2
0

SS, N
e
s b

 =2
00

SS, N
e
s b

 =2
00

0

HS, N
e
s b

 =2
0

HS, N
e
s b

 =2
00

HS, N
e
s b

 =2
00

0

X
 / 

A

(a)

0.00

0.25

0.50

0.75

1.00

1.25

Neu
tra

l

SS, N
e
s b

 =2
0

SS, N
e
s b

 =2
00

SS, N
e
s b

 =2
00

0

HS, N
e
s b

 =2
0

HS, N
e
s b

 =2
00

HS, N
e
s b

 =2
00

0

X
 / 

X
 , 

N
eu

tr
al

(b)

**** **** **** **** **** ****

0.00

0.25

0.50

0.75

1.00

Neu
tra

l

SS, N
e
s b

 =2
0

SS, N
e
s b

 =2
00

SS, N
e
s b

 =2
00

0

HS, N
e
s b

 =2
0

HS, N
e
s b

 =2
00

HS, N
e
s b

 =2
00

0

H

(c)

Neutral Hard Sweep Soft Sweep

Fig. 7. Effect of hard and soft selective sweeps on diversity and haplotype homozygosity. The models considered include a neutral scenario with no sex 
ratio or mutation rate biases, 3 soft sweep (SS) and 3 hard sweep models (HS). We simulated soft sweep (blue) and hard sweep (red) models (see Methods) 
varying the selection strength of the adaptive mutation (Nesb = 20, 200, and 2,000). For each model, we computed a) πX/πA, where the red dashed line 
corresponds to the expected πX/πA = 0.75 value in a completely neutral case; b) πX/πX, neutral where πX, neutral is the π in the baseline neutral model and the 
solid gray line is 20% of πX, neutral; and (c) haplotype homozygosity. The asterisks represent a significant elevation in haplotype homozygosity relative to 
complete neutrality using a 1-sided Wilcoxon rank-sum test.

Enrichment of hard sweeps on the X chromosome | 11



a relatively new area of work given the paucity of deep population 
genetic samples from multiple species. Population genetic studies 
have traditionally focused on analyzing multiple genomes from a 
single species (Arbiza et al. 2014; Garud and Rosenberg 2015; 
Signor et al. 2018) with few examining more than 2 population gen
etic whole-genome data sets from different species simultaneously 
(Nam et al. 2015; Chen et al. 2018; Nadachowska-Brzyska et al. 2019; 
Latrille et al. 2023; Rodrigues et al. 2023 with Latrille et al. 2023 re
stricted to exomes), leaving open numerous avenues of inquiry 
on the commonalities and idiosyncrasies of population genetic 
processes.

Now, with the increasing availability of deep population genet
ic sequences from multiple species, we can examine population 
genetic processes across many species. In this study, the ability 
to compare multiple species reveals that the extent of positive 
selection on the X chromosome may not be equal across all spe
cies. For example, we observed few low diversity windows on 
the X in D. teissieri, while in D. santomea, we observed a low diver
sity region extending up to ∼200 kb (Fig. 2). Additionally, this com
parative approach reveals deviations from the trend in individual 
species. One species that in particular looked very different was 
D. sechellia. This species showed a unique trend in which πX/πA 

was the highest in exons and lowest in intergenic regions, even 
after stringent filtering of the data (see Methods; Fig. 1). A potential 
explanation for this behavior could be abundant introgression 
from D. simulans to D. sechellia, as previously reported (Garrigan 
et al. 2012; Matute and Ayroles 2014; Schrider et al. 2018). 
Interestingly, introgression appears to be less common on the X 
chromosome, potentially due to the involvement of sex chromo
somes in hybrid incompatibilities (Maroja et al. 2015; Turissini 
and Matute 2017; Schrider et al. 2018). Moreover, functional re
gions of the genome are less likely to exhibit evidence of introgres
sion, with exons being the least susceptible and intergenic regions 
having higher rates of introgressed regions (Sankararaman et al. 
2014). As a result, if introgression is abundant, the difference in di
versity between the X chromosome and autosomes should be 
more pronounced in intergenic regions and least in exons, poten
tially driving the observed trend in the data.

Despite individual species showing deviations from the trend, 
some species exhibited commonalities. For example, the species 
analyzed in this study all had a higher proportion of low diversity 
regions on the X chromosome compared to the autosomes. 
Additionally, we found some targets of selection to be shared 
across species; however, they were generally few in number 
(Supplementary Figs. 12–14; Supplementary Text 1). Instead, 
most genes found in low diversity windows were found in a single 
species only, indicating that while hard sweeps might be common 
on the X, different functions may be under selection in different 
species. We note that this finding is distinct from that of primates 
(Nam et al. 2015) where there appears to be more overlap across 
species. This suggests that the underlying mechanisms of selec
tion in Drosophila vs primates may differ.

Our paper is a clear demonstration of how comparative popu
lation genetic analyses can reveal new insights into the forces 
that shape genetic variation within and across species, which 
we expect to serve as a useful example as new high-resolution 
population genomic data sets from multiple species become in
creasingly available in the coming years. While our study did 
not examine the prevalence of soft sweeps in autosomes and 
the X chromosome due to limited sample sizes per species, future 
research with larger sample sizes could provide the relevant data 
needed to be able to detect soft sweeps with haplotype homozy
gosity statistics, thereby providing a more comprehensive 

understanding of the tempo and mode of adaptation across spe
cies (Pennings and Hermisson 2006b). Ultimately, our study high
lights the significance of hard sweeps in shaping the diversity 
patterns of the X chromosome across species and suggests an 
important evolutionary mechanism that may be widespread 
among all species. Future work may reveal the potential role of 
these hard sweeps in driving sexual dimorphism and speciation 
given the X chromosome’s significant involvement in these im
portant processes.

Data availability
Sequence data for D. melanogaster are available at www.johnpool. 
net, where the DGRP and DPGP3 seq files are available for down
load. For D. simulans, the vcf file can be downloaded from 
https://zenodo.org/record/154261#.YzMzty2z3jC. For the remain
ing species, sequence data are available at NCBI’s Short Read 
Archive with accession numbers given in Supplementary 
Table 1. Code used for simulations as well as to process and ana
lyze the data is available online (https://github.com/garudlab/ 
DrosCrossSpecies_XchrHardSweeps).

Supplemental material available at GENETICS online.
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