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NuMERICAL SOLUTION OF THE 
NONLINEAR MAGNETOSTATIC-FIELD EQUATION 

. IN TWO DIMENSIONS>:< 

Paul Concus 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

December 6, 1965 

ABSTRACT 

The numerical solution of the second-order, elliptic, quasi-linear, 

partial-differential equation arising in a two -dimensional ma'gnetostatic-

field problem, where the magnetic permeability varies with the field, is 

considered. A set of nonlinear difference equations approximating the 

original differential equation is derived, and in solving a test problem 

the method of nonlinear successive overrelaxation is shown to be superior 

'both to Newton's method and to a commonly used method based on a small-

magnetic -field approximation. 

This method, as here presented, could also be used to numerically 

solve similar equations, such as those for Plateau's problem or for 

irrotational compressible fluid flow. 
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NUMERICAL SOLUTION OF THE 
NONLINEAR MAGNETOSTATIC-FIELD EQUATION 

IN TWO DIMENSIONS 

1. Introduction. 

>l< 
Paul Concus 

December 6, 1965 

In this paper, the numerical solution of the 

second -order, elliptic, quasi -linear, partial differential equation arising 

in two -dimensional magneto static field problems is discus sed. The type 

of problems considered are those arising, for example, in the design of 

particle accelerators where the desired magnetic field strength is so large 

as to be principally in the domain of nonlinear behavior of the magnetic 

material. For such a problem, the usual successive -approximation methods 

[ 1) based on the technique of linearizing about small magnetic fields may be 

inadequate, and a technique involving the more essential nonlinear features 

should be used. 

A numerical method of the latter type is presented, which is based 

on the iterative solution, by nonlinear successive overrelaxation, of a set of 

nonline~r difference equations approximating the differential equation. Non-

linear successive overrelaxation was recently investigated by Ortega and 

Rockoff (or, as they more specifically describe it, extrapolated-Gauss-

Seidel-Newton iteration), and they found that the method compared favorably 

to other methods in solving a mildly nonlinear elliptic equ.ation [2). The 

method presented here for a quasi -linear equation is similar to those pro-

,,. '-;\ posed by Lieber stein [3), Schechter [4], and Greenspan [5 J, but the approx.-

imating difference equations are set up differently. The performance of the 

method in numerically solving a sample problem is compared to those of the 

·'fZ; 
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usual smal~-magnetic-field approach and of Newton's method. The results 

show that the method described here is superior in solving the sample 

problem. The method could be used to numerically solve other problems 

governed by a similar quasi-linear differential equation, such as Plateau's 

problem, or that of irrotational compressible fluid flow. 

2. Formulation. Consider a two-dimensional simply connected 

region R in the x-y plane with boundary r. Let a current density in the 

z direction :!:_ {x, y) = J {x, y) ~ be given in R; then the magnetic vector poten­

cial ~{x, y) = A{x, y)!: satisfies 

{ 1) "V • { y ~A) = -4 ir J in R, 

and the magnetic field B is given by B = "V X A = ( o A/o y) i - { o A/8 x)j. - - - ..,. -
The quantity y is the magnetic reluctivity (reciprocal of the magnetic per­

meability fJ.) of the material occupying R, and is a given function of ~~ 1
2

• 

Since in two dimensions, I Bl2 
= I "V X A 1

2 
=A 

2 
+A 

2 
= I "VA 1

2
, y is a function 

NY<~- X y-

of ~~A !2, so that when the differentiations in Eq. ( 1) are performed, the 

equation becomes 

( 1a) [y+2y' A 2) A + 4y' A A A + (y+2y' A 2 ) A = -4'1fJ, 
X XX " X y xy y yy 

\ 

where the prime denotes differentiation with respect to ~~A !2, and the 

subscripts denote partial differentiation. The reluctivity for ideal materials 

satisfies 

M ~ y ~ m > 0 and M' ~ y + 2y' ~~A !2 ~ m' > 0 

uniformly 
and hence Eq. ( 1) is quasi-linear and/elliptic. The boundary conditions for 

A are normally that A equals A
0

, a constant, {no flux leakage) along a 

' )' ... 

··rz; 
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portion or all of r, and that aA/an, the normal derivative of A, is zero 

(symmetry condition) along the remainder of r. 

The problem may ~.lso be formulated in variational terms. Find a 

function A(x, y), twice differentiable in R satisfying the boundary condi-

tions on r, that minimizes the integral, 

(2} I = f f [g (IV' A [2 ) - 8 1T J A] dx dy. 
R -

The given function g (~~A 12) is proportional to the magneto static energy 

and is related to the reluctivity by 

( 3) y = dg 

Equation ( 1) is the Euler equation corresponding to Eq. (2). 

In accelerator-design problems, R is usually divided into two 

regions, R
1 

and R
2

, by. a curve r
1

, and Eq. ( 1) [or Eq. (2)] holds 

separately for each region. The regions are characterized by different 

permeability functions. For region R
1

, which is the region occupied by 

the ferromagnetic material, y varies with I~ A [
2

, whereas for region R
2

, 

which is not occupied by ferr.omagnetic materials, y is identically 1. In 

region R
2

, Eq. ( 1) simplifies to the Poisson equation, and correspondingly~ 

g([~A[2 ) in Eq. (2) simplifies to [~A[2 • The appropriate matching con­

dition along r
1 

is that y (a A/an) and A be continuous. In the usual case, 

one has J = 0 in r~gion R
1 

and J :f. 0 in region R
2

. 
;Y; 

The numeridtl solution of Eq. ( 1) inside of region R
2 

presents 

r,.- l".l little problem, sine~ standard finite -difference methods for the Laplace 

':; 
operator can be usetl. The main difficulty arises in region R

1
, where 

Eq. ( 1) is not linear. Methods commonly in use today for solving Eq. ( 1) 

• A.,.....,.,.--_.~, ····-·----·~ 
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are based upon obtaining the succession of linear approximating equations 

for A n+f, the {n+i)th approximation to A, 

{ 4) 

where yn denotes y as calculated from the nth approximation to A. Such 

methods, however, can be slowly converging or unstable when the range of 

A is such that y differs significantly from a constant over R
1

; this is the 

case when the current density J in region R
2 

is large enough to partly 

saturate the magnetic material in R
1 

[6]. 

In this paper another method of solving Eq. ( 1) is investigated which 

takes into account variations of y with I~ A 12• The method essentially 

corresponds to Newton's method, which obtains A n+ 1, the (n+1)th approx-

imation to A, by solving the equation 

{5) " . [ n { n ( n ( n n] y ~A +e)+2 ~A • ~e) y )'~A = -4 Tr J 

for the quantity e, subject to the appropriate boundary conditions,· and 

adding it to An, 

2 Equation{5) is derivedfromEq. {1) by neglecting all terms O(e ). Notice 

' •' 

that Eq. (4) lacks the term containing (yn)' in Eq. (5). Thus, it is a special 

case of Eq. ( 5) when the term containing ( yn) 1 is negligible in comparison 

to the other retained terms, which is the case when the magnetic field is 

small and y is nearly constant. 

In the following sections, a set of nonlinear difference equations is 

derived to approxi;~ate Eq. { 1), and methods of solution using successive 

approximations analogous to Eqs. ( 4) and ( 5) are compared for a sample 

problem. 

J .. 
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3. Finite -difference equations. The finite -difference equations 

corresponding to Eq. ( 1) for a rectangular mesh are given in this section, 

and these equations are the only ones explicitly discussed in the remainder 

of the paper. The· same method of solution may be applied to other mesh 

configurations as well [6]. 

Let the region R be covered with a rectangUlar mesh (not necessar-

ily uniformly spaced) parallel to the x and y directions, and, to avoid the 

additional c'omplications of boundary interpolation, let the lines intersect 

r and r
1 

only at mesh points. Replace any curved portion of r. and r
1 

with a polygonal one consisting of the chords joining adjacent mesh points. 

The region R is thus divided into rectangular mesh cells in its interior and 

either rectangular or right triangular mesh cells at the boundary and inter-

faces, with each cell lying entirely in either R
1 

or R
2 

[7, Sec. 6. 3]. Let 

tne x and · y mesh spacings be denoted by 

( 6) h..- =X. -X. 
1 1 l l-

and k.,.... = y. - y. 1 ' 
J J J-

respectively. The difference equations satisfied by A. ., the discrete 
1, J 

approximation to A(x, y), can be derived by first considering a discrete 

analog to the variational form of the problem, Eq. {2). From this (Ritz 

method), a set of nonlinear difference equations can then be obtained corre-

spending to Eq. ( 1). 

Approximate the integral in Eq. ( 2) by taking the integrand to be 

constant over each mesh cell. Then the integral is replaced by the sum 

( 7) I ::= L [~.~~I~ A 12) - 8 'IT J A] r X 
r . 

area 
r 

where the sum is taken over all cells into which R has been divided. The · 
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specific form of each term in the sum will depend upon whether the corre-

sponding cell is rectangular or triangular. 

if the rth cell is rectangular, the appropriate value of the integrand 

to use is its value at the center of the cell {midpoint rule). The explicit 

expression for the term corresponding to cell ..,... ....- [the one with center at 
' 1, J 

(xi_ 1 + hi/2, yi_ 1 + kr/2 ), see Fig. 1] that i(S used here is 

( 8) [g ( I 'i7 A j2) - 8 TT J A J .,.... ..- = g ( I 'i7 A 1
2 

..... .,.... ) - 8 'IT J .,- ~ A-r- .,... , 
- 1, J - 1, J 1, J l, J 

where '\ 

1 
{

. ( A. · - A. 1 · = 1, J 1- , J 
2 h..--

1 
) 

2 ( A. . 1 - A. 1 . 1 ) 2 + 1, J- hll- ', J-

(9) 

(
A. . -A. . 1 ) 2 ( A. 1 . -A. 1 . 1 ) 2} . + 1, J kr 1, J- + 1- • J r 1- • J- , 

an approximation giving 
2 ' 2 2 

j_'VAj at the center of the cell to O{h..- + k..- ), 
1 J 

A-:-.,.... 
1, J 

1 
= 4 (A. . + A. 1 . + A. . 1 + A. 1 . 1) 

1, J 1- , J 1, J- l- , J- J 

and J.,..... ..- is the given value for the average current density J crossing 
1, J 

cell-:-..-. The area of the cell is 
1, J 

area..-...- = h..- k..- • 
l, J 1 J 

If the x and y differences of A. . are denoted by 
l, J 

0..-. = 
1, J 

A .. -A. 
1 

. 
1, J l- , J 

h.,-
1 

and TJ • .,.... = 
1, J 

then Eq. ( 9) ·can be written more simply as 
:1' 

A .. -A.' . 
1 l,J l,J-

k..-
J 

t/ 

I.J ·• 

... 

'~? 



( 10) l~Al2.,....,... = _21{oJ .. + 
- 1, J 1, J .. 
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+ .,. 21 .,...l . 
1- , J f 

If the rth cell is right triangular, the corresponding explicit expres­

sion in Eq. ( 7) depends upon the orientation of the triangle. For example, 

, . for cell-.- ....... III (the one with its right angle in the third quadrant of rectan-
. ., 1, J' 

gular celL-,..., see Fig. 2) the expression is 
1, J 

( 11) 

where 

( 12) 2 2 
O-:- . 1 + .,. 1 .,... 1,J- 1- ,J 

( 13) 1 1 
A.,-~ III = -2 A. 1 . 1 + 4 {A. 1. • + A .. 1) ' 1,J, 1- ,J- . 1- ,J 1,J-

and J ...--:-III is the given value for the average current density crossing 
1, J' 

cell..-...- III . The area of the cell is 
' 1, J, 

area ..-.,...III = 1/2 h,- k..-. 
1, J. 1 J 

The choice for A-r -r TTT is made so that the formulas for the triangular and 
•JJJ L.A..&. 

rectangular ·regions are consistent. The formula for I~ A 12 for the triangle 

is in general only first order, however, since it is determined by t;hree, 

rather than four, values of A. 

The difference equations corresponding to Eq. { 1) are then obtained 

<J by requiring that the partial derivative of I with respect to each of the 

unknown values of A.. in Eq. ( 7) be zero. The resulting equation obtained 
.• \;) 1J 

. ·~' 
for a general inten~r mesh point surrounded by four rectangles is 

.. , l 

\ <f ·~· 
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f .. = y..-T"' < &..-. k..,.... + .11 ...... h ..... ·) + y..-+ 1 .,... < -o..-+ 1 . k..,.... + , . .,... h...-+ 1> 
1J 1 J 1 J J 1 J '' 1 1 , J 1 , J J l, J l 

- 2
'1T <3i,f hi kr + Ji+1.r hi+1 kr + Jr.r+1 hi kf+1 + Ji+i,j +1 hi+1 kf+1) = o. 

{ 14) 

where Eq. {3) was used to substitute for dg/d(!~AI2 ). Here y ...... ..,_ denotes 
l J 

the reluctivity evaluated for cell-:-..- with the use of Eq. ( 10). 
l J 

Equation ( 14) 

is, in general, a nonlinear one relating each A.. to its eight neighbors, 
lJ 

A. 
1 

. 
1 

A. . 
1 

and A. 
1 

. • When y is a constant, the equation reduces 
l± 'J ± , 1, J± ' l± • J 

to that derived from the usual five -point difference approximation to the 

Poisson equation. 

For points along an interface or boundary bordered by triangular 

regions, the resulting equations are slightly more complex. For example, 

the equation for A.. in Fig. 3 is 
lJ 

f .. = 
lJ 

( 15) 

- 2 '1T (J..,.... ..- h-r- k.,... + 1/ 2 (J...-+1 ..-- III + J.,...+1 .,... I] h...-+1 k.,... + 1/ 2 [J.,....,... 1 III + J..- .,...+1 I] 
l, J 1 J l 'J • l • J, l J l, J + ' l, J ' 

This equation also relates A .. to its eight neighbors, and reduces to the 
1J 

usual five -point formula when y is ~ constant. 

For boundary points along which o A/on = 0, the obtained finite 

difference equatio~~' automatically correspond to this boundary condition, 

because it is the natural one for the variational problem. For boundary 

points along which A = A 0, a constant, an additional nonlinear finite 

. I 
v 
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difference equation may be obtained for A
0 

by considering it to be unknown. 

This equation would correspond to the application of Ampere's law to the 

entire region R, and it may be used during the iterative solution of the 

problem to improve convergence by adjusting A
0 

to correspond to the 

current approximate solution for A [8]. 

Because Eq. ( 10) or Eq. ( 12} was used to approximate I;:_ A j2, the 

same finite difference equations as those derived above could have been 

derived by using the line -integral equivalent to Eq. ( 1) obtained by the 
auxiliary 

application of Green's theorem (in this case, Ampere's law) to each;fnesh 

region, and approximating the normal derivatives by central ~ifferences 

[7, Sec. 6. 4]. This method would be equivalent to the variational one used 

above, and in some cases may be algebraically more convenient. The two 

main features to note here are that y is a function of the unknown A values, 

making Eq. ( 14} and alterations such as Eq. ( 15) nonlinear in general, and 

that the use of Eq. ( 10) or ( 12) yields difference equations that have a sym-

metric Jacobian. Although in general, the Jacobian is not diagonally domi­

nant>its positive -definiteness follows from Schechter's arguments ( 4, Sec. 9] 

when they are applied to the differencing scheme used here. 

4. Solution of difference equations. The task of solving the simul-

taneous nonlinear difference equations- -Eq. ( 14) for general interior points 

and possible alterations such as Eq. ( 15) for points near interfaces and 

boundaries--is approached by the commonly used small-~agnetic-field 

method by taking y to be a known function at each iteration, as calculated 

from A atprevio~,s iterations, 
,;:'!'" 
~ c : 1 

( 16) '.n· n-1 w
1 

[y-n..: 1 _ Y <.I.., An 12 _ ..... ) ]·. 
Y(J = Yr, f . - i, j ;: i, J 
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This method, which is the discrete analogue to Eq. (4), then solves (or .. . 
approximately solves) the resulting set of linear equations to obtain the 

next approximation for A. The comparison methods of interest here are 

based essentially on Newton's method, the discrete analogue to Eq. (5), 

which linearizes the equations taking _into account the dependence of y on 

the unknown A values. 

N I h d f 1 . f 0 . Ak .. +1, ewton s met o or so v1ng .. = g1ves 
lJ lJ 

approximation to A .. , as 
lJ 

A~.+1 = 
lJ 

k k 
A .. + E •• 

lJ lJ 

k 
where the· e.. satisfy the set of linear equations 

lJ 

( 17) \ (a f .. /8 AA t E~ = -tc .. 
1 L.. lJ .r. m .r. m lJ 
'm 

the (k+ 1)th 

Equation ( 17) is a nine-point difference approximation to Eq. (5), having a 

coefficient matrix that is positive-definite, symmetric, and block tridiagonal, 

each block of which is itself tridiagonal. It need be solved only approximately 

at each step before computing the next Newton's iterate. 

The computational scheme of special interest is that of nonlinear 

successive overrelaxation, which is [2, 3, 4, 5 J 

( 18) A~.+ 1 =A~. 
lJ lJ 

- w 

k+1 k+1 
f .. [A11 • .•• ' A. 1 ., 
lJ 1- ' J 

k+1 
8 f .. /8 A.. [A 11 , · · ·, 

lJ lJ 

k A .. ,•o•t 
lJ 
k+1 

A. 1 ., 
1- 'J 

k· 
A. J 

n,n-1 
k 

A .. , .•. • 
lJ 

Ak J 
n, n-1 ' 

and is equivalent to performing one sweep with successive point overrelax-

ation on Eq .. ( 17) w~en the second derivatives of fij do not vary much. 
~:-~·. !' 

Notice that only the\diagonal coefficients of Eq. ( 17) need be computed with 

this scheme, but that these and f must be updated each time a new A value 
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is calculated. The method is equivalent to performing one Newton's iteration 

on each equation f .. = 0, successively, considering A .. to be the only un-
1J . 1J 

known and using the latest available values for the other values of A. 

Kronrod has suggested a variation of the method, in which one Steffensen's 

iteration rather than one Newton's iteration is performed on each equation 

[9]; his method may be a useful substitute when a f. ./a A.. cannot be easily 
1J 1J 

calculated. 

The explicit expression for a f. ./o A.. for an interior mesh point 
1J 1J 

surrounded by four rectangles is obtained by differentiating Eq. ( 14), and is 

a f. . ( k...... h..- ) ( k.,... h.,...+ 1 ) 1J J 1 1 = + - y-r-..- + + --"2JA:: n;: k...- 1 J h~+ 1 k..- ( ~f+1 + hr ) 
y..-+1 .,.- + h ;:-- y...- .... +1 

1 ,J l KJ+1 1,J 

( 19) 

where 

1J 1 . J 1 J 

I 

'Y..,... ...-
+ 1+1, J 

h...-+1 k-:-
1 ' J 

2 
(-o...-+

1 
. k..- + ,., . ...- h..--+

1
) 

1 , J J 1J 1 

(6...-. k..- +,., ...... h..- )
2 

1 J J 1J 1 

I 
yv-...-

1 J 
denotes the derivative of y with respect to !;:_A!

2 
evaluated 

for cell..-..-. Corresponding expressions for points along an interface or 
l J 

boundary bordered by triangular regions are of the same form but, in general, 

may contain fewer or more terms. 

5. Comparison and results. The above methods were compared for 
:·,/~ 

the solution of a test problem having some of the essential features encoun-

tered in the ferromagnetic region R
1 

of an actual accelerator -design problem. 
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Let the square region 0 ~ x ·~ 1, 0 ~ y ~ :1 be entirely occupied by a ferro­

magnetic substance with reluctivity 'Y ( w} = ( 10-4 + w)/( 1 + w), where 

w = l: A 12 (Fig. 4). Let the current density J be identically zero and the 

boundary conditions on A be that A= 0 for x = 0 and y = 1; A= 0.05 sin(lTx/2) 

for y=O; and (oA/ox)=O for x='1. The number 0.05 is chosen so that 

. -2 w 1s of the order of 10 , so that -y, in turn, varies significantly over 

the rectangle, and the ratio of the second to the first term on the left of 

Eq. ( 5) is maximized. Finally,- let the region be covered with a uniform 

square mesh so that h = k = 1/n. 

The results of the various numerical methods for solving this test 

problem are shown in Table I for the case where the initial approximation 

to A was the solution to the linear problem (constant -y), 

The calculations were performed on the IBM 7094 by means of a FORTRAN IV 

program. Two meshes were considered: one containing 90 unknown points 

(n= 10} and the other containing 870 unknown points (n = 30). The convergence 

criterion in the former case was that the sum of the squares of the residuals 

-13 . 1 . h -12 be less than 10 , and 1n the atter that 1t be less t an 10 • These corre-

spond to an average residual at each point of the order of 10-6 of the maximum 

value of A. The iteratiotl.s were ordered by letting i increase through all 

its values for each successively larger value of j. For each method, an 

optimal value of the relaxation factor was found for fastest convergence. 

Two columns of Table I are for Newton's method, Eq. ( 17). Succes-

sive-point overre~<;txation was used in the first, and successive-block over-
;~~ 

~i ~ 

relaxation in the se~ond, with the relaxation factor w. It was found that 

(j -
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•,; u 

-13- UCRL-16287 Rev 

taking more than one overrelaxation sweep per iteration did not improve the 

convergence, signifying it was not worth solving each Newton's iteration too 

well • 

Another column is for the nonlinear successive -over relaxation method, 

Eq. ( 18). The time per iteration is greater than for Newton's method, be­

cause one must compute new values of 1 ;;::_A 1
2 

for each point. The iteration 

behaved quite stably with respect to changes in w and in the initial approxi-

mation for A. It was found also that the symmetric difference formula for 

l'ilAI2
...---r-, Eq. (10), gave better results than the lower-order, one-sided 

- 1 J 

formulas suggested elsewh~re [3, 4, 5]. 

The last column is for the small-magnetic -field approximation, Eqs. 

(4) and ( 16), for which the difference equations can be obtained by setting 

y' = 0 in a f. ./8 A .. in Eq. ( 18). It was found that in order for the process 
. lJ lJ 

to converge, one must under relax the new values of y by choosing w1' the 

relaxation parameter in Eq. ( 16), less than one, and that it is sufficient to 

perform one Gauss-Seidel iteration (i.e., w= 1) on the resulting linear 

equations. The method did not behave as stably as the other methods with 

respect to changes in the initial approximation or in the relaxation parameter. 

Examination of the results shows that the methods based on the non-

linear difference equations perform~d better than the small-magnetic -field 

approximation, especially for the problem with the larger number of mesh 

points. Among the former methods, nonlinear successive overrelaxation 

performed the best. Although it required more calculations per iteration 

because new values of y and y' were calculated each time a new value of 
,•; 

A was, the numbe.if. of iterations required for convergence was significantly 
't;•! 
:). 

smaller than that required by Newton's method, and the total computer time 
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used was less. From these results, and from the fact that the method is an 

easy one to program, nonlinear successive overrelaxation shows itself to be 

a promising tool for solving this type of elliptic equation. 
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Comparison of numerical methods. 
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FIGURE CAPTIONS 

Fig. 1. General rectangular cell. 

Fig. 2. Triangular cell. , 
1-; 

Fig. 3. Interface bordered with triangular cells. 

Fig. 4. Test problem. 

' -

. ,_ .. 



y 

k-=­
J 

A. . 
I -1, J -1 

X 

h":"' 
I 

A .. 
I, J 

A . . 1 
I , J- . 

MUB-8847 



y 

k~ J 

A i- 1, j 
--- I A ------ I .. --- -o-- I' J 

Cell7 ~ 
I ' J ' I 

A. hT 
1-l,j-1 

X 

I 
I 
I 
I 
I 
I 
I 
I 
I 

MUB-8848 

\. 



~' 

'" 'I 

y 

X 

I .· I . Fig. 3 
'-~-· 

. 
A ·1 1 J + t 

k-:­
J 

MUB-8849 

' ··r:z.:: 



;.: 
I 

. + 

A= 0 (1,1) 

A=O I +I\7AI 2 

p.. = 10-4 + \?A 12 
y 

., 

(0,0) x A=0$05 sin (-rrx/2) 

MUB-7273 

•. ·-·~ 



q 
/.~ 

.. • ~ 

This report was prepared as an account of Government 
sponsored work. Neither the United States, .nor the Com­
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 

or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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