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Artificial neural networks (ANNs) trained using backpropagation are powerful learning

architectures that have achieved state-of-the-art performance in various benchmarks.

Significant effort has been devoted to developing custom silicon devices to accelerate

inference in ANNs. Accelerating the training phase, however, has attracted relatively little

attention. In this paper, we describe a hardware-efficient on-line learning technique for

feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is

performed in parallel with inference in the forward pass, removing the need for an explicit

backward pass and requiring no extra weight lookup. By using binary state variables in

the feedforward network and ternary errors in truncated-error backpropagation, the need

for any multiplications in the forward and backward passes is removed, and memory

requirements for the pipelining are drastically reduced. Further reduction in addition

operations owing to the sparsity in the forward neural and backpropagating error signal

paths contributes to highly efficient hardware implementation. For proof-of-concept

validation, we demonstrate on-line learning of MNIST handwritten digit classification on

a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small

degradation in test error performance compared to an equivalently sized binary ANN

trained off-line using standard back-propagation and exact errors. Our results highlight

an attractive synergy between pipelined backpropagation and binary-state networks in

substantially reducing computation and memory requirements, making pipelined on-line

learning practical in deep networks.

Keywords: binary neural networks, pipelined backpropagation, hardware accelerators, supervised learning, online

learning

1. INTRODUCTION

The immense success of artificial neural networks (ANNs) is largely due to the use of efficient
training methods that can successfully update the network weights in order to minimize the
training cost function (LeCun et al., 2015). Backpropagation (Rumelhart et al., 1986), or gradient
descent in multi-layer networks, has become the training method of choice as it provides a
conceptually clear approach to minimizing the cost function that works very well in practice.
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Training ANNs using backpropagation, however, is still a
computationally demanding task as successful learning requires
several presentations of the training data to allow the
backpropagation algorithm to slowly adjust the network
parameters. ANN accelerators developed for deployment in
low-power systems therefore typically do not implement the
lengthy and power-hungry training phase and only implement
the computationally cheaper forward/inference pass (Himavathi
et al., 2007; Cavigelli et al., 2015; Chen et al., 2016; Han
et al., 2016; Aimar et al., 2017; Ardakani et al., 2017). These
ANN accelerators can thus only implement pre-trained networks
with fixed parameters. While this approach is appropriate for
ANNs that process data from sources whose statistics are known
beforehand and from which large amounts of training data have
been gathered in the past in order to pre-train the network, it
is inappropriate in situations where the device has to interact
with unexpected or new sources of data and has to build its own
classification or inference model on the fly.

Typical approaches for implementing large-scale ANN
accelerators with learning capabilities (Gomperts et al., 2011;
Ortega-Zamorano et al., 2016) are based on ANNs with smooth
activation functions and high precision weights and neuron
values. This necessitates the use of Multiply and Accumulate
(MAC) operations as well as hardware implementation of
activation functions such as the hyperbolic tangent and logistic
sigmoid. This makes the hardware implementation of the
accelerator costly in terms of logic resources and memory. We
make use of recent developments that show that ANNs with
binary neurons nearly match the performance of ANNs with
smooth activation functions (Hubara et al., 2016). In a binary
(−1,+1) neural network, the implementation of the activation
function reduces to a comparator and the forward pass involves
no multiplications. In an unsigned (0, 1) binary neural network,
the number of operations is further reduced owing to the sparse
neural representation, with additions only for the non-zero
activations. However, the backward pass in which the error from
the top layer is backpropagated to deeper layers still involves
multiplications. To avoid these multiplications, we describe an
approximation to the backpropagation algorithm that truncates
the error signal to a ternary (−1, 0,+1) variable. This yields a
training algorithm that performs well in practice and that does
not require any multiplications, beside affording further savings
in addition operations owing to sparsity in the backpropagated
error signal.

State of the art ANNs typically have millions of parameters.
Optimizing the movement of these parameters between memory
and the computational elements is a key step to improve
the power-efficiency and speed of ANN accelerators. This is
especially true if the network parameters or weights are stored
off-chip as off-chip memory traffic could easily become the
bottleneck limiting the accelerator speed. A straightforward
implementation of online backpropagation on custom hardware
would typically need to look up each network weight twice,
once during the forward pass and once during the backward
pass. The backward pass lookup is needed so that the weight
can be used to backpropagate the errors and for the updated
weight then to be written back into memory. Pipelined

backpropagation is a technique that can be used to eliminate
the extra weight lookup in the backward pass (Petrowski et al.,
1993). In pipelined backpropagation, the backward learning
pass used to push the errors from the network output to
the network input and to update the weights is performed
in parallel with the forward inference pass. This is achieved
by maintaining a history of the network state and using this
history to update the weights based on delayed errors. The
length of this history, however, grows with the network depth.
Previously proposed hardware implementations of pipelined
backpropagation (Gironés et al., 2005; Bahoura and Park, 2011;
Savich et al., 2012) therefore incur large memory overheads
as the network depth increases. We show that the network
history can be compactly represented in binary-state networks
(BSNs) which drastically reduces thememory overhead needed to
implement pipelined backpropagation, making it a viable option
when training deep networks.

In Section 2.1, we provide some background on
the backpropagation algorithm and the architecture
of BSNs. In Section 2.2, we describe our version of
pipelined backpropagation, the learning algorithm, and the
hardware architecture implementing approximate pipelined
backpropagation in BSNs. We present experimental results
demonstrating the learning architecture embedded on an FPGA
platform in Section 3 and present our conclusions and directions
for future work in Section 4.

2. MATERIALS AND METHODS

2.1. Background
2.1.1. Feedforward Networks and Backpropagation
Multi-layer fully-connected feedforward neural networks are
typically arranged in layers. In a network with L hidden layers,
the activation vector, hi, for hidden layer i is given by

hi = σ (Wihi−1 + bi) i = 1, .., L (1)

whereWi is the weight matrix connecting neurons in layer i − 1
to neurons in layer i and bi is the bias vector for layer i. σ is
a non-linear activation function that is applied element-wise on
the argument vector. x ≡ h0 is the input layer. The top layer in
the network aggregates input from the last hidden layer to yield
the network output. We use the vector z to denote the top layer
activity. The forward pass computation from network input to
network output for a network with two hidden layer is depicted
along the upward arrow in Figure 1.

Network training involves updating the weightsWi and biases
bi so as to minimize an error cost function E. The cost function
quantifies the error in the network output and it is minimized
when the network output approaches the desired output for the
presented input. This cost function is almost always differentiable
with respect to the network output. To minimize the cost
function, gradient descent could thus be applied to move the
network parameters along the negative direction of the cost
function gradient with respect to the parameters. This yields the
backpropagation algorithm which is illustrated in Figure 1 for
the two-hidden layer network. To simplify the figure, the biases
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FIGURE 1 | The backpropagation algorithm in a feedforward network with two

hidden layers. The biases in each layer are omitted for clarity. η is the positive

learning rate. error(z, target) is the loss function and target refers to the desired

network output or the class of the presented input.

have been omitted. A layer bias vector can be implemented by
having an extra neuron in the layer below that has no input and
whose output is fixed at 1.

During the backward pass depicted in Figure 1, the error

derivative at the top layer, dE
dz
, is pushed down through the

network. The backward pass needs access to two sets of vectors:
the activation vectors (x, h1, and h2 in Figure 1) and the vectors
containing the derivative of the activation function in the hidden
layers at the operating point of the network during the forward
pass (σ ′(W1x) and σ ′(W2h1) in Figure 1). The first set of vectors
is needed to update the weights through a cross product with the
error vectors and the second set of vectors (the derivative vectors)
are needed to push the error from the top layer down through the
layer stack.

2.1.2. Binary-State Networks
One of the surprising properties of neural networks is
the resiliency of the backpropagation procedure to various
deviations from the ideal algorithm depicted in Figure 1. One
hardware-oriented modification of the ideal backpropagation
algorithm aims at training networks with binary activation
functions (Hubara et al., 2016). The neuron’s binary output
could be either −1/1 or 0/1. The latter choice (0/1), which is
equivalent to the bipolar binary representation (−1/1) through
a linear transformation h ← 2 h − 1, is preferable in
application settings that benefit from greater sparsity in neural
activity. We investigate the performance of both formats and
the implementation in Section 2.2 supports both formats. The
use of binary neurons considerably simplifies the forward pass
through the hidden layers as the multiplications are replaced by
sign change circuits (−1/1 format) or AND gates (0/1 format).
The neuron’s activation function can be either σ−1/1 or σ0/1,
which are given by:

σ−1/1(x) =

{

1 if x ≥ 0

−1 otherwise.
(2)

σ0/1(x) =

{

1 if x ≥ 0

0 otherwise.
(3)

The derivatives of σ−1/1 and σ0/1, however, are zero almost
everywhere which would stop errors from backpropagating. A
virtual derivative which was found to work well in practice is
the saturating straight-through estimator (Bengio et al., 2013;
Hubara et al., 2016):

σ ′−1/1(x) = σ ′0/1(x) =

{

1 if −1 ≤ x ≤ 1

0 otherwise.
(4)

If the input layer activity is also binarized, then the entire forward
pass from input layer to output layer is free from multiplications.
The backward pass, however, still involves multiplications when
pushing the error down by one layer (the WT

3 ez and WT
2 e2

operations in Figure 1). In Section 2.2, we describe how these
multiplications can be avoided.

A closely related development for reducing the computational
and memory requirements of ANNs aims at training ANNs with
low-precision weights (Courbariaux et al., 2015; Stromatias et al.,
2015; Rastegari et al., 2016; Zhu et al., 2016). During training,
a high-precision version of the weights is typically stored and
updated based on the errors calculated in the network. During the
forward and backward passes, a low-precision quantized version
of the weights is used. After training, the network operates using
the low-precision weights. Since high-precision weights are still
maintained during training, this approach can not reduce the
ANN memory requirements during training. However, the use
of quantized weights reduces the complexity of the logic used to
compute the forward and backward passes.

2.2. Learning Algorithm and Hardware
Architecture
2.2.1. Learning Algorithm
Our goal is to use binary fully connected feedforward networks,
also known as multi-layer perceptrons, to solve classification
tasks. The top layer has as many neurons as the number of
classification classes. We impose a cost function on the activity
of the top layer neurons that is minimized when the activity of
the top layer neuron corresponding to the correct input class
is the highest among the top layer neurons. Note that the top
layer neurons are not binary. Two of the most popular cost
functions used in classification settings are the cross entropy loss
and the square hinge loss. Cross entropy loss, however, involves
exponentials and logarithms while the square hinge loss requires
multipliers to implement the squaring operations. Therefore we
use a simpler loss function, the hinge loss. Let z be the vector of
top layer activity and z[i] be the ith element of z. If p is the index
of the correct class and C is the number of classes (also the length
of z), then the hinge loss is given by:

Ehl =

C
∑

i = 1
i 6= p

max(0, z[i]+H − z[p]) (5)
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where H ≥ 0 is the hinge hyper-parameter. The gradient of Ehl
with respect to z is thus given by:

dEhl

dz[i]
=















ϑ(z[i]+H − z[p]) i 6= p

−
C
∑

j=1
j 6=p

ϑ(z[j]+H − z[p]) i = p (6)

with the Heaviside operator ϑ(·) defined as:

ϑ(x) =

{

1 if x > 0

0 otherwise.
(7)

The gradient ez =
dEhl
dz

can thus be efficiently computed using
comparators and adders. Note that all elements of ez are in the
range [−(C − 1), 1].

As shown in the example in Figure 1, the backward pass in a
binary-state network (BSN) involves multiplications in order to
compute WT

3 ez and WT
2 e2. Since at most one element in ez can

have a value other than zero or one, and the absolute value of
this element is at most (C − 1), we can use repeated additions
across at most (C − 1) cycles to calculate the product of this
element with a weight. Computing the second term, however, is
more challenging as e2 can take a broad range of values. Thus,
we modify the backpropagation scheme illustrated in Figure 4 so
that all errors below the top layer are truncated to -1, 0, or 1. In
our running example in Figure 1, e2 and e1 are modified so that

e2 = sgn(h′2 ◦W
T
3 ez)

e1 = sgn(h′1 ◦W
T
2 e2)

(8)

where the signum operator sgn(·) is defined as:

sgn(x) =











1 if x > 0

−1 if x < 0

0 otherwise.

(9)

The sgn operation only yields zero if its argument is exactly zero.
The forward pass of course only involves multiplications with
binary values.

In the hardware architecture described in the next section,
we use limited precision fixed point weights during training
and testing. We are interested in quantifying the effects of
limited precision weights, error ternarization, and the choice of
activation function (Equation 2 or Equation 3) on the network
performance. Throughout this paper, we always use networks
with two hidden layers and 600 neurons in each layer. The
MNIST dataset contains 70,000 28 × 28 grayscale images of
handwritten digits (LeCun et al., 1998). The training set of
60,000 labeled digits was used for training, and testing was done
using the remaining 10,000 digits. All grayscale images were first
binarized to two intensity values. The 784 neurons in the input
layer thus have a binary output. In all trials in this section we
used standard stochastic gradient descent with a mini-batch size
of 100.

The only hyper-parameter we tuned was the hinge hyper-
parameter H used in the evaluation of the L1 loss (Equation 5).

We trained on 50,000 training examples while varying H and
chose the value of H that minimized the error on the held-
out remaining 10,000 training examples. We observed that this
optimal value of H did not depend on the activation function
used (bipolar activation or unipolar activation), so we kept it fixed
in all experiments. No knowledge of the test set was thus allowed
to contaminate the hyper-parameter choice (Nowotny, 2014).
The held-out set of 10,000 training examples was then added
back to the training set. In the rest of the paper, we compare the
performance of different networks configurations and learning
methods to find the configurations with best accuracy and lowest
memory and computational overhead. We use the test set error
as a comparison metric. This should not be construed as allowing
knowledge of the test set to influence the network configuration,
as our goal is not to set a new accuracy record but to contrast the
performance of different network configurations.

Before using binary networks, we first establish an accuracy
baseline for conventional ANNs using Rectified Linear Units
(ReLUs) (Nair and Hinton, 2010) and 32-bit floating-point
weights. We train such a conventional ANN with two hidden
layers and 600 neurons in each hidden layer on the binarized
MNIST training set. We used standard stochastic gradient
descent and the L1 loss and apply dropout between all layers
to reduce overfitting. The conventional ANN achieves a test
set error of 1.31 ± 0.04% (mean and standard deviation from
20 training trials). We retrained the same network in 20 trials
using real-valued MNIST images (i.e., without binarization) and
obtained a test set error of 1.11±0.05. The binarization ofMNIST
digits thus hurts accuracy. However, in order to maintain a
multiplier-free design, we use binarized input images throughout
in our binary state networks.

We first investigate network performance using the activation
function in Equation (2), i.e., using the −1/1 bipolar format.
Figure 2A shows the effect of error ternarization (Errors coming
from the top layer are not ternarized) and limited precision
(8-bit) weights on the network performance. The four lines
depict the evolution of the test error in the 4 combinations of
exact/ternary errors and 8-bit fixed-point/32-bit floating point
weights. In all four cases, the network’s error on the training
set reached zero. In the 8-bit case, we used a learning rate of 1
which is the smallest possible learning rate. In the 32-bit (high-
precision) case, we used a real-valued exponentially decaying
learning rate. The networks severely overfits on the training
data which explains why using low-precision weights and error
ternarization barely affect test accuracy.

To combat overfitting, we applied dropout (Srivastava et al.,
2014) to the output of each layer (including the input layer).
The training results are shown in Figure 2B. Networks with
high-precision weights clearly outperform networks with 8-
bit weights once the networks are regularized using dropout.
Error ternarization slightly degrades accuracy in the regularized
networks. However, the performance loss is small compared to
the loss incurred when switching to 8-bit weights. In the 8-bit
weights case, a weight update can not be smaller than 2−8 of
the full weight range. Networks with 8-bit weights thus have
a large effective learning rate. Small learning rates, however,
are instrumental in allowing neural networks to gradually
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FIGURE 2 | MNIST test set errors during 250 training epochs in a network with two hidden layers and binary −1/1 activations. Each hidden layer has 600 neurons.

Each line in the plots is an average across 20 training trials. Error figures in the legend are the final test error figures after epoch 250, together with the test error

standard deviation across the 20 training trials. (A) Test errors for the four combinations of exact/ternarized backpropagated errors and 8-bit/32-bit (high precision)

weights. No dropout was used. (B) Same as (A) but using a dropout probability of 0.2 between all layers during training. (C) Networks trained using 8-bit weights,

dropout, and stochastic weight updates for two different values of weight commit probability, pcommit. Results for ternarized and exact backpropagated errors are

shown. (D) Networks trained using 16-bit fixed point weights and dropout. Results for ternarized and exact backpropagated errors are shown.

accumulate information from the entire training set. To achieve a
small effective learning rate with large minimum weight updates,
we tried using stochastic weight updates where the update of each
individual weight is committed to memory with a probability
pcommit . Weights thus change more slowly since weight updates
are stochastically discarded. Performance of the network with 8-
bit weights and two different commit probabilities, pcommit =

0.5 and pcommit = 0.125, is shown in Figure 2C. Stochastically
discarding weight updates did not appreciably improve network
performance.

In order to approach the performance of networks with 32-bit
floating point weights, we turn to networks with 16-bit fixed-
point weights. We used a learning rate of 16. Using this learning
rate, the size of the smallest weight update is thus 2−12 of the full

weight range. The performance of networks with 16-bit weights is
shown in Figure 2D. Networks with 16-bit weights significantly
outperform networks with 8-bit weights and their performance
comes very close to that of high precision networks when using
networks with−1/1 bipolar activation functions (Equation 2).

We switched the hidden layer activation function to the 0/1
unipolar activation function in Equation (3) and repeated the
training experiments with 8-bit and 16-bit fixed point weights.
The size of the smallest weight update when using 16-bit weights
is 2−12 of the full weight range, and 2−8 of the full weight
range when using 8-bit weights. We applied dropout between all
layers. The results are shown in Figure 3A. The performance gap
between 16-bit weights and 8-bit weights decreases significantly
when using 0/1 unipolar activations compared to −1/1 bipolar
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FIGURE 3 | MNIST test set errors on a similar network to the one used in Figure 3 except that binary unipolar 0/1 neural activations are used instead of bipolar −1/1

activations. A dropout probability of 0.2 was used between all layers. Mean and standard deviations are from 20 training trials. (A) Test set accuracy when using

ternary errors and limited precision weights (8 bits and 16 bits). Legend shows final test set error and its standard deviation. (B) Sparsity (fraction of zeros ) of the

activations of each of the two hidden layers when using 8-bit weights and 16-bit weights. Sparsity was evaluated on the test set after each training epoch. Sparsity

figures in the legend refer to sparsity on the test set after the last training epoch.

activations. We conjecture that this is due to the reduced number
of weight updates committed during each training iteration:
when using unipolar activations, many neurons will have 0
activations which stops all their outgoing weights from being
updated. This leads to slower learning compared to−1/1 bipolar
activations where weights are always updated when there are
errors coming from higher layers. Slower learning allows the
network to better accumulate evidence from the entire training
set. To support this conjecture, we investigated the activation
sparsity in the hidden layers. The results are shown in Figure 3B

and they indicate the majority of neurons have 0 activations.
Sparsity increases during training and is more pronounced when
using 8-bit weights. As we show in Section 3, activation sparsity
also has the beneficial effect of significantly reducing memory
traffic during learning.

2.2.2. Pipelined Backpropagation
A straightforward implementation of backpropagation would
carry out the forward pass (upward arrows in Figure 1) followed
by the backward pass (downward arrows in Figure 1). That is
because the computation in the backward pass depends on the
error at the top layer and this error is only available at the end of
the forward pass. Carrying out the forward and backward passes
in a strict sequence, however, has the disadvantage that each
network weight will usually have to be fetched twice: once during
the forward pass to calculate the target neuron’s activation, and
once during the backward pass so that the new weight value can
be calculated by incrementing/decrementing the current value
before writing the new weight value to memory.

Pipelined backpropagation addresses this problem by
reducing the number of redundant weight fetches and removing

the need for an explicit backward pass. We reuse the notation
and 2-hidden layer example from Figure 1. Let x(i) and target(i)

be the ith input pattern and target presented to the network,

respectively, and h
(i)
1 , h

′(i)
1 , h

(i)
2 , h

′(i)
2 , z(i) and e

(i)
z be the network

state after processing the input x(i) and target(i) using the latest
network weights. As weights are fetched in order to propagate
x(i) upward through the network, the network does not yet have
access to the weight updates associated with input pattern x(i).
However, it can have access to the network states associated
with previously presented patterns and use these network states
to carry out delayed weight updates associated with previously
presented patterns.

Pipelined backpropagation is illustrated in Figure 4 for the

same example network from Figure 1. During PASS 1, the
first input and target, x(1) and target(1), are presented to the

network and a complete forward pass is carried out, including

the calculation of the top-level error e
(1)
z . No weight updates are

carried out during PASS 1. The network maintains a history of its
state during PASS 1 when processing the second input in PASS 2.
During PASS 2, as the network is fetching the weights in W3 in

order to calculate z(2), it can use the values from the previous pass

h
(1)
2 , h

′(1)
2 , and e

(1)
z to carry out a delayed weight update for W3

and delayed calculation of the error at the second hidden layer,

e
(1)
2 , from e

(1)
z . Similarly during PASS 3, as the network is fetching

the weights in W2 the error e
(1)
2 is available and the network can

updateW2 as well as push down the error by one layer to obtain

e
(1)
1 . It is only during PASS 4 that all the weight updates associated

with the first example, x(1) can be completed using x(1) and e
(1)
1 .

The pipeline is now full and during all subsequent passes, each
weight that is fetched to compute the forward pass for the current
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FIGURE 4 | Illustration of pipelined backpropagation for the two-layer network of Figure 1, showing network history and storage requirements. The upward arrows

indicate the order in which the weight updates are carried out, in the same order of weight lookups in the forward pass. Each additional layer in the network incurs for

each lower layer additional delay in the error computation and the weight updates, which also requires additional history of the hidden unit states to be stored.

Previous errors (shown in red) are overwritten by the newly backpropagated errors (shown in green) at the end of each pass. Hence only one error value is stored

per layer.

input will also be updated using an old network state and the
delayed errors that are gradually pushed down from the top layer.
This is illustrated in PASS 5. Note that each layer can discard its
old error (shown in red) as soon as it has enough information
to calculate the new error (shown in green). That is because the
old error has already been used by the preceding layer and is no
longer needed. The two errors in each layer thus never have to be
simultaneously stored.

Due to the delayed weight updates, pipelined backpropagation
does not yield the exact same results as standard
backpropagation. For example, in PASS 3, the input x(3)

sees the initial values of W1 and W2 but the updated value of
W3. In standard backpropagation, the weights are all updated
after a training example or a training minibatch. In pipelined
backpropagation, the weights in higher layers are updated based
on more recent input compared to the weights in deeper layers.
For large datasets such as MNIST, these slight differences in the
timing of the weight updates over the course of long training
epochs have negligible impact on performance in practice.

It is clear from Figure 4 that pipelined backpropagation incurs
extra memory overhead in order to store old network states that
are needed for carrying out the delayed weight updates. Let Ninp,
Nhid, and Nerr be the number of bits needed to store the activity
of a neuron in the input layer, the activity (binary values of the
activation and its derivative) of a neuron in the hidden layer,

and the backpropagated error, respectively. In a network with
L hidden layers, the extra memory needed in the input layer
to carry out the pipelined backpropagation scheme shown in
Figure 4 is (L + 1) × Ninp bits per neuron. This is the extra
memory compared to implementing backpropagation without
pipelining. In the hidden layers, the extra memory requirements
are largest in the deepest layer as this is the hidden layer which
has to wait the longest to get the backpropagated error and
requires L×Nhid+Nerr extra bits per neuron. The extra memory
requirement per neuron successively decreases by Nhid bits for
each layer above the deepest layer.

When using smooth activation functions, the derivative of
the activation value does not need to be explicitly stored as it
can be inferred from the activation value itself. However, for
BSNs, the derivative needs to be stored as it can not be inferred
from the neuron’s binary value. Thus the neuron’s activity can
be compactly represented as just 2 bits, as the neuron’s output
and the gradient of the activation function are both binary
(Equations 2, 3, and 4). Since we also use dropout while training
the BSN, we need an extra bit to indicate whether the neuron was
dropped in the forward pass bringing the total number of bits
needed to store the neuron’s state to 3: Nhid = 3, and Ninp = 2
if the input variables are also binary. Note that we do not need
to store the derivative information for the input layer neurons.
Implementations of conventional networks on custom hardware
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often use 16 bits of precision for the activation values, i.e., 16
bits are needed to store the neuron state (Nhid = 16) if we
assume ReLUs (Nair and Hinton, 2010) are used. The memory
overhead of implementing pipelined backpropagation in BSNs
is thus ∼5.3x smaller compared to conventional networks.
The reduction in memory overhead becomes significant when
implementing deep networks that incur a larger memory
overhead to support pipelined backpropagation.

2.2.3. Hardware Architecture
We developed a proof-of-concept hardware architecture to
illustrate the viability and classification accuracy of the proposed
pipelined backpropagation scheme illustrated in Figure 4. This
proof-of-concept architecture targets an FPGA platform where
the weights are externally stored in DRAM. The architecture thus
has very little parallelism since the central bottleneck is fetching
weights from the external memory. The proposed architecture
is shown in Figure 5A. The architecture supports either 16-bit
or 8-bit signed fixed-point weights and can implement neurons
with −1/1 bipolar activations (Equation 2) or 0/1 unipolar
activations(Equation 3). The neurons are distributed across
sixteen cores where each core implements 256 neurons. Each core
can only contain neurons belonging to one layer. Multiple cores
can be assigned to the same layer. Each core communicates with
a central controller. The states of the 256 neurons in a core are
stored in internal memory that is local to the core. Each neuron
has a 15-bit history field divided into 5 3-bit slots which can
store the neuron’s state (binary output, binary derivative, and
dropout state) for up to 5 passes in the past, a 32-bit accumulator
field used to both accumulate forward propagating input and
backward propagating error, and a 2-bit field used to store the
ternary error at that neuron. Each core receives a 1-bit dropout
signal from the Pseudo Random Number Generator (PRNG).
The PRNG is implemented using two counter-propagating linear
feedback shift registers with differing feedback length following
the scheme in Cauwenberghs (1996). The dropout signal from
the PRNG decides whether the currently updating neuron should
be dropped for the current input. The central controller sends the
update signal to each core in succession.When a core receives the
update signal, it sequentially updates the states of its 256 neurons.
A neuron update involves the following steps:

1. The neuron compares its local accumulator value to zero to
decide its binary output value. It also decides the value of the
binary virtual gradient by checking whether the accumulator
value is in the range [−216, 216] for 16-bit weights, or in the
range [−28, 28] for 8-bit weights (corresponding to the range
[−1, 1] in Equation 4). The neuron shifts the new binary value,
virtual gradient, and dropout state into the 15-bit history field.
The oldest 3-bit state in the history field is thus discarded. The
neuron then resets the accumulator to zero.

2. The neuron communicates its new binary output value to the
controller together with its dropout state. The neuron also
communicates its delayed output value and delayed dropout
state from K passes in the past. These delayed quantities are
fetched from the history field. K is different for neurons in
different layers and is larger for neurons in deeper layers. K

is the same for neurons in the same core as each core contains
neurons from the same layer so K is stored in a central core
register instead of in the neuron.

3. If the current dropout state of the source (updating) neuron
is deasserted and the neuron’s output is not 0: The controller
fetches the updating neuron’s outgoing weights from the
external memory. For each fetched weight, it multiplies the
weight by the source (updating) neuron’s current binary value
and dispatches the result to the target neuron. The target
neuron updates its accumulator using the incoming data and
outputs its current error value.

4. If the delayed-input dropout state of the source (updating)
neuron is deasserted, the controller checks the source neuron’s
delayed output and delayed binary gradient. If either is non-
zero: The controller fetches the updating neuron’s outgoing
weights from the external memory (if they had not been
fetched in the previous step). The controller reads the error
from the target neuron. If the error is ternary, the controller
multiplies this error by the weight and sends the result to
the updating (source) neuron. The neuron accumulates the
incoming value into the accumulator field. If the error is
not ternary, i.e., it is coming from a top layer neuron, then
it will have an absolute value of at most C − 1. Denote
this error by ez[i]. Instead of multiplying the weight by the
error, the controller dispatches the weight with the appropriate
sign ez[i] times to the target neuron in order to implement
multiplications through repeated additions. The controller
multiplies the delayed output of the updating neuron (which
is binary) by the delayed error from the target neuron to
calculate the weight update, then writes the updated weight
to memory if the weight update is non-zero.

5. After all the outgoing weights of the updating neuron
have been processed, the updating neuron fetches the
binary gradient value from K passes in the past from the
history field. This binary gradient is then multiplied by the
accumulator value (which now contains the weighted sum of
the backpropagated delayed errors from all the target neurons)
to obtain the new high precision error in the neuron. This
error is directly ternarized according to Equation (8) and
stored in the error field. The accumulator is then reset.

Note that the neuron accumulator which is used to accumulate
the incoming neuron input coming from the layer below is also
reused for accumulating the errors coming from the layer above.
Neurons in the output layer are special. Updating these neurons
is done internally in a special neuron core (core 15) based on the
current input label. The core spendsC cycles to obtain the current
classification result by finding the neuron with the maximum
value among the C output neurons. During these C cycles, it also
calculates the new top layer errors using Equation (6).

The input layer neurons are implemented the same way as
the hidden layer neurons. At the beginning of each pass, the
accumulators of the input neurons are set to +1/-1 to encode
the binary-valued input vector. This is wasteful in terms of
memory resources as the extra 31 bits of the accumulator and
the 2-bit error field are not needed for the input neurons but
it leads to a more uniform implementation. A pass consists
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FIGURE 5 | (A) Block diagram of the FPGA architecture implementing pipelined backpropagation. Sixteen neuron cores with 256 neurons each are sequentially

updated to realize the pipelined backpropagation scheme illustrated in Figure 4. Each core uses 256 × 49 = 12,544 bits of internal memory to store the states of the

256 neurons. A Pseudo Random Number Generator (PRNG) supplies the dropout signal to the core. The probability that the dropout signal is asserted is controlled by

a configurable register in the PRNG. (B) Layout of weights in the external memory.

of setting the input neuron values then updating all the cores
in succession which implements the pipelined backpropagation
scheme depicted in the example in Figure 4. For the first few
initial passes, the backpropagation pipeline will not be full (PASS
1 and PASS 2 in Figure 4 for example). Special registers in the
controller handle this initial phase by only committing weight
updates calculated using valid error and delayed neuron output
values. Since the network has to be updated from bottom to top
(see Figure 4), neurons belonging to one layer should occupy a
core with a lower index than neurons belonging to a higher layer.

Each core has a flag that indicates how the binary value of the
neuron should be interpreted: either as −1/1 or 0/1. This flag
is communicated to the controller and influences how the target
neurons and the weights are updated. In the 0/1 interpretation,
no weight is sent to the target neuron if the updating (source)
neuron value is low (as opposed to sending the negative of the
weight in the −1/1 interpretation). Moreover no weight update
is carried out if the delayed neuron value is low as multiplying
this delayed value by the target neuron’s error would yield zero.
The virtual gradient calculated using Equation (4) is independent
of the binary interpretation.

Figure 5B shows the structure of the data in the external
memory. To fetch a neuron’s outgoing weights and targets, the
neuron’s address is used as an index in the green region to
fetch the location of the neuron’s outgoing weights list, and to
fetch the number of target neurons and the address of the first
target neuron. Since a neuron always targets a consecutive set
of neurons, only the starting neuron and the number of targeted
neurons are needed. A neuron’s weights list is an ordered list of
weights specifying the outgoing weights to all the target neurons.
Each 32-bit word in memory will contain either 4 weights or 2
weights depending on whether 8-bit weights or 16-bit weights are
being used. While full-indexing in weight lookup could be used
to provide greater flexibility in sparse reconfigurable synaptic
connectivity (Park et al., 2016), the implemented lookup scheme

is more compact, incurring only a small memory overhead
(the green region) when storing the weights. In our particular
implementation, this overhead is 64 bits per neuron.

3. RESULTS

We implemented the proposed architecture on a Spartan6-LX150
FPGA. The external memory is a DDR2 memory. Each core
stores the states of its 256 neurons in two 9-kb block RAMs.
Due to the little parallelism in the architecture, the FPGA
implementation takes up a small fraction of the FPGA resources.
A breakdown of the FPGA resource utilization per block is shown
in Table 1. We ran the FPGA core (which does not include the
DDR2 memory controller or the USB interface) at a frequency
of 78MHz. The critical path occurs between the block RAM
output data pins in one neuron core and the block RAM input
address registers in another. This critical path is active during
the backpropagation of the ternary error from a target neuron
to a source neuron. The ternary error affects the address pins as it
determines whether the error accumulator in the source neuron
needs to be updated (if the ternary error is non-zero) or not.
We configured the FPGA to implement a 2-hidden layer network
with 600 neurons in each hidden layer, and to train the network
on the MNIST dataset. The input layer of 784 neurons occupied
4 neuron cores and was configured as a unipolar 0/1 layer. Each
hidden layer occupied 3 neuron cores and was configured either
as a −1/1 bipolar layer or 0/1 unipolar layer. The output layer
was implemented on a special core (core 15) designed to calculate
the error based on the hinge loss from Equation (5). The weights
in the DDR2 memory were initialized using the initialization
scheme in (Glorot and Bengio, 2010) . The MNIST images were
binarized and stored in the DDR2 memory together with their
labels. Each MNIST image/label pair takes up 784 + 4 = 788
bits. The controller fetches the training images/labels sequentially
frommemory to configure the input layer (using the pixel values)
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TABLE 1 | Register and LUT resources needed for the implementation of the

architecture in Figure 5A on Spartan6-LX150 FPGA.

Block name Registers LUTs 18-kb block

RAM

elements

Neuron core/top layer (×1) 520 915 0

Neuron core/input and hidden layer (×15) 35×15 225×15 1×15

PRNG (×1) 58 19 0

Central controller (×1) 627 1413 0

DDR2 memory controller (×1) 263 411 0

USB monitor and setup (×1) 2778 2999 1

Total 4,771 (1%) 9,123 (3%) 16 (6%)

The percentage utilization for each resource is shown in the bottom row.

and the output layer (using the label). Evaluation of the test set is
also done on FPGA after switching off learning.

The FPGA trained on MNIST training set digits for 50
epochs. We trained using four different network configurations
corresponding to the four combinations of 8-bit/16-bit weights
and unipolar/bipolar activations. The FPGA implements a
dropout probability of 0.2 between all layers in all network
configurations. When using 8-bit weights, the weight update
magnitude is 1. When using 16-bit weights, a weight update
magnitude of 1 (2−16 of the full weight range) results in
very slow learning. For 16-bit weights, we instead use a
learning rate (update magnitude) adjustment scheme that is
analogous to the exponentially decaying learning rate schemes
used to train conventional ANNs with floating point weights:
we start with an update magnitude of 128 and halve this
update magnitude every 10 epochs. The test errors after each
training epoch are shown in Figure 6A for the four network
configurations. The results in Figure 6A are consistent with the
accuracy figures obtained usingmini-batch training and standard
backpropagation (Figures 2, 3) where bipolar activations slightly
outperform unipolar activations when using 16-bit weights.
When using 8-bit weights, the situation is reversed with bipolar
activations resulting in worse performance.

We inserted monitoring logic into the FPGA to count the
number of DDR2 memory read and write operations while
training. Figure 6B shows the number of 32-bit words written
to memory during each training epoch. Note that the number of
updated weights can not be exactly inferred from this plot as each
32-bit word can contain either 4 weights or 2 weights, and a full
32-bit word will be written to memory whenever one or more of
the weights it contains have been updated. In all configurations,
the volume of words written to memory per epoch drops as
training proceeds; as the network makes fewer mistakes, fewer
errors are generated by the top layer and fewer weight updates are
performed. The use of unipolar 0/1 activations results in sparser
weight updates and less weight write volume. Even when using
16-bit weights, unipolar activations result in less weight write
volume compared to using 8-bit weights with bipolar activations.

Figure 6C shows the number of 32-bit words read from
memory during each training epoch. In addition to the network

weights, this read volume includes the overhead needed to read
a source neuron’s target address range and the location of its
weight table in memory (This is the data in the green region in
Figure 5B). For bipolar activations, this read volume does not
change during training as the outgoing weights for each hidden
layer neuron always need to be fetched for the forward pass.
For unipolar activations, this read volume drops slightly at the
beginning as activity in the hidden layers becomes sparser and
no weights are fetched for neurons with 0 current output and 0
delayed output. This is consistent with the increase in sparsity
during training which is observed in Figure 3B. Since a neuron’s
outgoing weights are stored in contiguousmemory positions, this
allows us to access the memory more efficiently by using long
read bursts to read these outgoing weights. The maximum read
burst size is 64 words. Figure 6D shows the number of read bursts
during each training epoch. It is clear unipolar activations result
in significantly less read traffic. Unipolar activations with 8-bit
weights result in the smallest DDR2 read/write volume.

All the results shown in Figure 6 were obtained when the
FPGA was implementing the pipelined backpropagation scheme
in which the forward and backward passes are carried out
simultaneously. In order to quantify the reduction in read
memory traffic due to the use of pipelined backpropagation,
we inserted extra logic into the central controller to predict the
memory traffic that would arise if pipelined backpropagation was
not used. This prediction is straightforward as the controller
has access to the updating neuron’s current state and delayed
state and can use this information to predict whether standard
backpropagation would have needed to look up the same weight
twice when training one example, once in the forward pass and
once in the backward pass. Standard backpropagation might not
need to look up a weight in the forward pass (if the source
neuron’s value is 0 or if it has been dropped out), or it might not
need to look up the weight in the backward pass (if the source
neuron’s value is zero and its activation derivative is zero so there
is no weight update and errors can not backpropagate through
the neuron). The prediction logic takes all these situations
into account when predicting standard backpropagation read
memory traffic. Table 2 summarizes the total DDR2 read/write
volume summed across all 50 training epochs, in addition to the
reduction in read traffic realized by pipelined backpropagation
and the average training time per example. This training time
is the time needed for a full forward pass interleaved with a
delayed backward pass and weight updates. The training time
figures in the table were obtained by dividing the total training
time, comprising 50 epochs and 60, 000 examples per epoch, by
50× 60, 000.

As shown in Table 2, even though unsigned binary 0/1
activations lead to overall lowest read volumes and shortest
training times, the reduction in memory read volume due to
pipelined backpropagation ismore significant when using bipolar
binary -1/+1 activations. That is because in the case of bipolar
activations, it is more likely that a weight fetched to execute the
forward (backward) pass will also be needed for the backward
(forward) pass of the previous/delayed (later) input, allowing
pipelined backpropagation to reduce read access by fetching the
weight once compared to standard backpropagationwhich would
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FIGURE 6 | Test-set error and memory access statistics when training four different network configurations corresponding to the four combinations of 8-bit/16-bit

weights and unipolar/bipolar activations for 50 epochs. Training and testing were conducted on the FPGA using a 784-600-600-10 network. (A) Test set errors on the

MNIST dataset. The error figures in the legend refer to the final error figures after epoch 50. (B) Number of 32-bit words written to DDR2 memory during each training

epoch. (C) Number of 32-bit words read from DDR2 memory during each training epoch. (D) Number of read bursts during each training epoch. Each burst can be

up to 64 words long.

TABLE 2 | Performance metrics for four different network configurations, and reductions in memory read volume realized by pipelined backpropagation.

Network configuration Write volume

(Gwords)

Read volume

(Gwords)

Percentage reduction in read

volume due to pipelined

backpropagation

Average training time

per example (ms)

16-bit weights. 0/1 hidden activations 3.24 314 15% 15.0

8-bit weights. 0/1 hidden activations 1.63 135 12% 12.0

16-bit weights. -1/1 hidden activations 6.03 663 36% 32.8

8-bit weights. -1/1 hidden activations 4.90 337 36% 32.5

have needed to fetch the weight twice. The reduction is not
50% for bipolar activations due to the use of dropout which
sometimes obviates the need to look up a weight in the forward
and backward passes. Moreover, we always use a unipolar input

layer; in some cases, the current value of an input layer pixel can
be 1 and the delayed value 0. In pipelined backpropagation, this
pixel’s outgoing weights would need to be looked up to execute
the current forward pass (since the pixel’s value is 1) but they will
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FIGURE 7 | Distribution of weights after training for four different network configurations. Significant weight clipping is observed for the weights between the second

hidden layer and the output layer in all configurations. Weight clipping is more pronounced for 8-bit weights.

not be used in the backward pass since no weight updates are
needed (since the pixel’s delayed value is zero). In such situations,
standard backpropagation would also need to look up the pixel’s
outgoing weight only once for the current example (since these
weights are not needed for the forward or backward pass of the
delayed example).

Figure 7 shows the post-training distribution of weights in
each of the three weight matrices in the network and for each of
the four network configurations. As expected, weight clipping is
more apparent when using 8-bit weights. The distribution of the
output weights (W3) is markedly more skewed toward the weight
limits compared to the other two weight matrices. This could
be due to the fact that these weights are the only weights that
can be incremented/decremented by more than the learning rate
for each training example because they see the non-ternarized
error from the top layer whose magnitude could be as large as
C− 1 = 9. Weights in the other two weight matrices always see a
ternarized backpropagated error so they can not change by more
than the learning rate for each training example.

4. CONCLUSIONS AND DISCUSSION

We presented a scheme for the efficient implementation of
pipelined backpropagation to train multi-layer feedforward
networks. Due to the use of binary-state networks, the scheme
is highly efficient in terms of logic and memory resources.
We developed a proof-of-concept hardware architecture and

implemented the architecture on FPGA to validate the proposed

approach for pipelined training of BSNs. Due to error
ternarization, the core operation in the forward and backward
passes is fixed-point addition/subtraction. This is an equivalent
operation to the synaptic operation (SynOp) which is the basic
operation in spiking neuromorphic systems. SynOps can be up
to two orders of magnitude more efficient than conventional
MAC operations (Merolla et al., 2014; Neftci et al., 2015). Perhaps
the biggest advantage of pipelined backpropagation is that it
reduces the number of weight fetches compared to sequential
forward and backward passes. In state of the art networks where
the weights are too many to fit into the accelerator memory,
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reducing the off-chip weight traffic can lead to significant energy
and performance gains. Moreover, no reverse lookup of weights
is needed and weights can be stored in a way that only optimizes
lookups using the source neuron address.

Pipelined backpropagation enables layer-level parallelism. A
layer can begin processing a new input vector from the layer
below as soon as it has finished processing the previous input
vector and fetching the weighted errors from the layer above.
We did not implement layer-level parallelism as it would require
each layer to have access to its own weight memory in order
to operate independently from the other layers. One of the
main shortcomings of pipelined backpropagation is the extra
memory needed to store the delayed errors and network state.
Through the use of binary activation functions in the forward
inference pass and ternary errors in the backward learning pass,
this extra memory is kept to a minimum which makes pipelined
backpropagation a feasible option for training deep networks.

The performance on the MNIST dataset was adequate but
not state of the art. A natural extension of the presented
architecture and algorithm would be the implementation of
convolutional feedforward networks which achieve superior
performance on learning tasks with a spatial structure such as
vision-related tasks. When training BSNs,or binarized neural
networks (Hubara et al., 2016), normalization techniques such as
batch-normalization (Ioffe and Szegedy, 2015) are used to center
and normalize the variance of the input to each neuron. This is
particularly important for BSNs due to the hard non-linearity
used and the fact that the gradient only flows back when the
input to the neuron is around zero. This is clearly useful when
learning static datasets using mini-batches. In an online setting
with continuous learning (effective minibatch size of 1) and
continuously changing inputs, it is unclear how normalization
should be applied. An online normalization technique has to
take into account that the input statistics could change quickly
during online learning in a real-world environment, hence
a normalization technique with weak history dependence is
preferred (Ba et al., 2016). A hardware-efficient normalization
technique that can be applied online is thus a clear next step to
allow the proposed architecture to train deep networks online.

Spiking neural networks are an alternative network paradigm
that is similar in many respects to BSNs in terms of required
hardware resources; both types of networks can be built
using adders and comparators and require no multipliers.
Spiking networks have been used to solve various classification
tasks (O’Connor et al., 2013; Cao et al., 2015; Diehl et al., 2015;
Esser et al., 2016; Lee et al., 2016). Even though they require
very similar computational resources, the energy, memory access
patterns, and time needed to carry out the inference/forward
pass in spiking networks and BSNs can be significantly different.
Spiking networks are often used in the rate-based mode where
the output value of a spiking neuron is encoded in its average
firing rate. Multiple lookups of the same weights are thus
needed to dispatch multiple spikes from the same neuron
which could significantly raise energy consumption. The weight
lookups are also more irregular compared to BSNs since neurons
spike in an asynchronous manner. This reduces the ability
to pipeline memory accesses. Spiking networks are dynamical
systems which are emulated using time-stepped dynamics in

digital implementations (Khan et al., 2008;Merolla et al., 2014) or
using native analog dynamics (Schemmel et al., 2010; Benjamin
et al., 2014; Park et al., 2014; Qiao et al., 2015) in analog/mixed-
signal implementations. The dynamic nature of spiking networks
results in an irregular computational load as there could be
intervals where the network is quiescent and intervals where
many neurons spike simultaneously or in rapid succession. This
makes it difficult to consistently achieve optimal utilization of
computational and memory access resources, unlike BSNs where
data movement and computations are much more predictable.

The computational and weight lookup overhead in a BSN
using bipolar activations is roughly equivalent to that of a
spiking network where each neuron spikes exactly once. When
using unipolar activations, we observe that hidden layer activity
becomes quite sparse (see Figure 3B) which is reflected in the
greatly reduced memory traffic when using unipolar activations
instead of bipolar activations. To match the low memory traffic
of unipolar BSNs, a spiking network would need to have
sparse activity where 80–90% of the neurons do not spike
(see Figure 3B) for each classification decision. We thus obtain
sparsity-induced power savings in the synchronous setting as
used with ReLU activations (Han et al., 2016) with BSNs having
unipolar (0, 1) rather than bipolar (−1,+1) activations. Spiking
networks, however, have a decisive advantage when processing
dynamic and sparse event-based data such as the event trains
coming from neuromorphic sensors (Lichtsteiner et al., 2006; Liu
et al., 2010; Liu and Delbruck, 2010) as the networks can scale
their spiking activity in response to the dynamically changing
input event stream. The spiking network could thus effectively
shut down during intervals when there is no input activity, saving
power.

One of the main advantages of BSNs is that they are
effectively trainable using backpropagation. Training of spiking
networks is often done indirectly in an offline manner by first
training a conventional ANN then mapping the weights to
the spiking network (O’Connor et al., 2013; Cao et al., 2015;
Diehl et al., 2015; Hunsberger and Eliasmith, 2015). Recently,
several approaches based on approximations to backpropagation
have been proposed that can allow online training of spiking
networks (Lee et al., 2016; Neftci et al., 2016). These approaches,
however, are based on spiking networks with rate coding, which
typically require more memory accesses and longer processing
time for each training pattern compared to BSNs. An alternative
training approach based on exact backpropagation and temporal
coding in spiking networks (Mostafa, 2016; Mostafa et al.,
2017) has been shown to lead to highly sparse spiking activity
during training and inference, and could potentially be more
energetically efficient than training BSNs using the approach
presented in this paper.

In summary, the implementation of binary networks using
the proposed architecture uses virtually the same computational
resources as a spiking network architecture, while offering
significant benefits by reducing memory access and by speeding
up learning and inference. BSNs have the attractively low
computational overhead of spiking networks, while still being
efficiently trainable using backpropagation. They do not incur
the increased computational and weight lookup overhead of rate-
based spiking networks. Through the use of the approximate
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pipelined backpropagation scheme outlined in this paper, BSNs
can be trained using significantly reduced weight lookup
overhead while incurring a modest overhead in the neuron
complexity.
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