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By 

Shengwei Feng 
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This dissertation introduces a multiscale modeling and simulation framework for studying 

magnetorheological elastomer (MRE) composites, effectively bridging the gap between detailed 

microscopic modeling and experimental findings. Preliminary investigations focus on 

understanding the baseline magneto-mechanical properties of MREs, setting the stage for deeper 

inquiries into specific behaviors. Subsequent simulations integrate viscoelastic and hyperelastic 

properties to examine how the models respond under cyclic loading, with a particular focus on 

behavior that depends on magnetic field strength and strain variations. By scrutinizing 

microstructural influences such as particle distribution and interface conditions, the research 

elucidates how these factors affect MRE responses to magnetic fields and mechanical stresses. 

Modeling and simulations reveal that interface friction and particle dynamics are crucial in 

determining MREs' damping characteristics and overall stability. Notably, the study identifies 

how variations in interfacial interactions under different magneto-mechanical conditions 

significantly impact the performance and reliability of MRE composites. This comprehensive 

analysis deepens our understanding of MRE behavior and paves the way for optimizing the 
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design and application of these smart materials in adaptive systems, potentially transforming 

their use in various industrial and technological sectors. 
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Chapter 1 Scope of Thesis 

 

This dissertation establishes a comprehensive multiscale framework for analyzing 

magnetorheological elastomer (MRE) composites, aimed at bridging the gap between 

microscopic-based modeling and experimental observations. The research begins by validating 

and comparing existing modeling methodologies, focusing on aspects critical to understanding 

MREs, such as magneto-mechanical coupling methods, boundary conditions, particle 

distribution, and homogenization techniques. The thesis progressively develops models that 

encompass increasingly complex particle distributions, integrating viscoelastic and hyperelastic 

properties, and considering non-affine large deformation effects. A particular emphasis is placed 

on detailed interfacial behavior and instability analyses. The models aim to replicate 

experimental results, highlighting the significant role of interface friction in the increase of 

dynamic damping properties under magnetic fields. 

 

The research reveals that differences in interface properties and friction behavior between 

particles and the matrix substantially affect the dynamic responses of MREs, especially damping. 

Moreover, the instability modeling shows that MREs subjected to combined compressive and 

shear forces may exhibit premature buckling. By integrating instability simulations with interface 

models, it is discovered that instabilities develop earlier and are accompanied by distinctive 

friction behaviors under compression, potentially explaining the notable increase in damping 

observed in MREs during such conditions. 

 

This dissertation is organized as follows: 
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Chapter 2 reviews the existing literature on magnetorheological elastomers (MREs), focusing on 

the evolution of experimental validations, modeling methodologies and discusses the motivation 

and objectives of this study. 

 

Chapter 3 delves into the modeling and simulation methodologies applied to MREs, emphasizing 

particle creation algorithms for varying distributions within the elastomer matrix. This chapter 

evaluates different mechanical and magnetic coupling methods, discusses the implementation of 

appropriate boundary conditions, and explores homogenization techniques critical for accurate 

microstructural modeling and simulations. Objectives include demonstrating the effectiveness of 

various modeling and simulation methods and providing guidelines on their appropriate 

application. 

 

Chapter 4 investigates the influence of chain structures and particle distributions on the 

magnetorheological effect under quasi-static conditions. It employs detailed simulations to 

provide a thorough understanding of these phenomena, forming a stable foundation for the 

dynamic analyses in later chapters.  

 

Chapter 5 examines the dynamic responses of MREs, particularly how their properties vary with 

changes in magnetic field strength, strain amplitude, and frequency. The chapter uses finite 

element models incorporating a linear viscoelastic matrix under small deformations to simulate 

these dynamics. Comparisons with experimental results are made to discuss the model’s 

strengths and limitations in replicating observed behaviors. 



 

3 

 

 

Chapter 6 introduces a visco-hyperelastic model designed to capture the complex non-linear 

behaviors of MREs under significant strain amplitudes. It considers large strain effects such as 

magneto-mechanical coupling and Payne’s effect. Model predictions are validated against 

experimental results to evaluate accuracy and applicability in real-world scenarios. 

 

Chapter 7 focuses on the interface behavior within MREs, especially examining debonding 

events and interactions between particles and the matrix under dynamic conditions. It includes an 

in-depth analysis of how interface parameters influence the damping and stiffness properties of 

MREs. A model incorporating adjustable microstructural and interface parameters is presented to 

elucidate these interactions, supported by experimental comparisons. 

 

Chapter 8 explores various instabilities in MREs under different loading conditions, including 

macroscopic, microscopic, and interface instabilities. It assesses how factors like particle 

distribution, material properties, magnetic fields, and interface conditions contribute to these 

instabilities, providing a comprehensive analysis of their implications on the performance and 

reliability of MREs. 

 

Chapter 9 concludes the findings of the thesis, discussing their implications and proposing future 

research directions. 
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Chapter 2 Literature Review 

 

2.1 Introduction 

 

Magnetorheological (MR) materials are a distinctive category of smart materials that 

dynamically adapt their mechanical properties—such as stiffness, damping, and hysteresis—in 

response to external magnetic fields. These composites, comprising magnetically polarizable 

particles embedded within carriers like fluids, elastomers, gels, or foams, showcase 

transformative potential across a range of applications due to their reversible and rapid property 

changes [1]. The inception of MR technology traces back to the pioneering work of Thomas 

Rabinow in 1948, who introduced the concept of magnetic fluids [2]. Rabinow's subsequent 

discovery of the magnetorheological effect in 1951 laid the foundational principles that catalyzed 

further research in this field, highlighting the transformative potential of MR materials in various 

applications, from automotive systems to medical devices. 

 

In their default state, MR fluids consist of randomly distributed magnetic particles suspended in 

a carrier fluid. Upon application of a magnetic field, these particles align into chain-like 

structures, markedly altering the fluid's viscosity and forming a semi-solid that responds in 

milliseconds. While MR fluids offer distinct advantages such as low power requirements and 

significant changes in their mechanical moduli, they encounter challenges like particle 

sedimentation and fluid leakage, which can compromise performance and durability [3]. These 

limitations have spurred developments to refine MR fluid formulations and deployment methods, 

enhancing their application scope and effectiveness. 
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To address the inherent limitations associated with fluid-based magnetorheological systems, 

Magnetorheological Elastomers (MREs) have been developed as a solid counterpart to MR 

fluids. The concept of MREs was first introduced by Rigbi and Jilken in 1983[4], who embedded 

ferrite particles within an elastomer matrix. This pioneering work laid the groundwork for further 

exploration into the properties of MREs. Subsequent significant advancements were made in 

1996 when Jolly et al. [5] began comprehensive studies on MRE behavior. Since then, the 

various properties of MREs have been extensively investigated, contributing greatly to the 

understanding and application of these materials. This configuration prevents issues prevalent in 

MR fluids, such as particle sedimentation and fluid leakage, thereby extending the material's 

functional lifespan and reliability.  

 

MREs are particularly noted for their field-dependent mechanical properties, which can be finely 

tuned by adjusting factors such as the elastomer matrix composition, particle size and 

distribution, and magnetic field strength. The ability to control these parameters allows for the 

customization of MREs' viscoelastic properties to meet specific application requirements, 

ranging from vibration damping systems to adaptive robotics [6]-[8]. 

 

2.2 Fabrication and Experimental Studies of MREs 

 

MREs are engineered composites composed of three fundamental elements: ferromagnetic 

particles, an elastomeric matrix, and various additives that enhance the composite's performance. 

Often, researchers opt for iron particles [9,10]. Particularly favored are Carbonyl Iron Particles 

(CIPs) for their high saturation magnetization, which enables a robust MR effect over a broader 
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range of magnetic fields, making them ideal for diverse MR applications [11,12]. The size of 

these particles is crucial; while many studies utilize particles ranging from 3um to 9um to 

optimize the MR effect, there are variations where sizes as small as 0.5um and as large as 100um 

are employed to meet specific performance criteria [13,14]. 

 

Various types of elastomeric matrices, such as silicone rubber, natural rubber, thermoplastic 

elastomers, and polyurethane, are selected based on the desired properties of the final MRE 

product. These matrices determine the flexibility, durability, and response rate of the MRE under 

magnetic influence [15]. Additives play a significant role in improving the processability and 

stability of the composite. For instance, silicone oil is commonly added as a softening agent, 

which not only decreases the storage modulus of the elastomer but also helps prevent the 

agglomeration of ferromagnetic particles, thereby enhancing the overall uniformity and 

compatibility of the MRE [16,17]. 

 

The manufacturing process of MREs involves a meticulous mixing of these primary components, 

followed by the extraction of air bubbles under vacuum in a controlled environment to ensure a 

flawless matrix. Depending on the desired characteristics of the MRE, the mixture can either 

cure in the absence of a magnetic field to form isotropic MREs where particles are uniformly 

distributed [18] or in the presence of a magnetic field to create anisotropic MREs characterized 

by chain-like structures of particles aligned along the field lines [19]. While some silicone 

rubbers used in MREs cure at room temperature, curing temperatures above 100°C are generally 

recommended to expedite the process and enhance the material's mechanical properties. 
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The MR effect in MREs is intricately linked to the orientation of magnetic particles within the 

matrix. Traditionally, controlling this orientation during the curing process has proven 

challenging due to the difficulty in precisely manipulating the microstructural arrangement. This 

lack of control often leads to variability in the properties of the finished products. Recently, 

however, the advent of 3D printing technology has revolutionized the fabrication of MREs. 

Advanced 3D printing techniques allow for the precise and accurate placement of magnetic 

particles within the matrix materials, ensuring consistent orientation without the necessity of an 

external magnetic field [24-25].  

 

The mechanical properties of Magnetorheological Elastomers (MREs) are known to undergo 

significant changes under the influence of magnetic fields. These changes are typically assessed 

using various testing equipment such as servo-hydraulic material testing machines, dynamic 

mechanical analyzers, and rheometers [26-28]. A breadth of research has been dedicated to the 

experimental characterization of MREs across various excitation modes. Studies have 

documented the response of MREs under conditions of compression [29,30], shear [31,32], 

tensile [33,34], and mixed-mode [35,36] testing. Research highlights the ability of MREs to 

adjust their stiffness and damping properties through the application of magnetic fields. This 

phenomenon, central to the functionality of MREs, has been extensively studied to understand 

the factors that influence the MR effect and the materials' damping capabilities. 

 

Volume fraction and particle size are considered one of the crucial factors influencing the 

properties of MREs. Guan et al. [23] investigated the magnetostrictive properties of MREs 

consisting of carbonyl iron particles embedded within a silicone rubber matrix. Their findings 
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revealed that magnetostriction in MREs increases with the volume fraction of iron particles. 

However, this effect reaches a saturation point at higher magnetic fields, underscoring that the 

interaction between the particles and the silicone matrix is the primary driver of 

magnetostriction. Lu et al. [20] conducted a study on the effects of large particle size carbon 

black (CB) on MREs. They discovered that CB type N990, which has the largest particle size, 

significantly enhances the magnetorheological effects and damping performance, thereby 

improving the viscoelastic properties and structural integrity of MREs. Conversely, Hegde et al. 

[21] indicate that larger particles can decrease the initial shear modulus while increasing the 

saturated magnetic-induced shear modulus to a certain extent, beyond which it begins to decline. 

This research identifies an optimal particle size that maximizes the MR effect. Similarly, an ideal 

particle size for dynamic damping has been identified, as highlighted in another piece of research 

[22]. Furthermore, research conducted by Stepanov et al. [37] has demonstrated that mixing iron 

particles of varying sizes within MRE formulations can enhance the material's properties. 

Specifically, they observed that a blend of smaller and larger iron particles resulted in a higher 

storage modulus and a higher loss modulus compared to formulations with monodisperse iron 

particles. This observation is corroborated by Li and Zhang [38], who also noted improved 

performance in polydisperse samples. The enhancement is possibly attributed to a higher degree 

of iron particle packing within the chain-like aggregates in polydisperse samples compared to 

those in monodisperse samples. 

 

Particle distribution significantly influences the MR behavior of Magnetorheological Elastomers 

(MREs). Varga et al. [39] explored the impact of particle distribution under magnetic fields. 

Their study revealed that isotropic MREs with randomly distributed particles exhibit a moderate 
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increase in elastic modulus when exposed to external magnetic fields. The enhancement is 

uniform across the material without any directional dependency. In contrast, anisotropic MREs, 

which feature aligned particles, demonstrate a notably larger increase in elastic modulus under 

magnetic influence. This increase is particularly marked when the magnetic field aligns parallel 

to the particle chains. The degree of modulus enhancement in anisotropic MREs is strongly 

contingent upon the alignment of the magnetic field relative to the chain-like structures of the 

particles, with the maximum increase observed when the magnetic field direction and the 

direction of particle chains coincide with the applied stress. This phenomenon is further 

corroborated by Khanouki et al. [40], who reported that anisotropic MREs not only exhibit a 

greater increase in stiffness and damping upon exposure to magnetic fields but also achieve 

higher levels of mechanical performance enhancement at lower field strengths. Their findings 

highlight the efficiency of anisotropic MREs in utilizing magnetic fields to optimize their 

mechanical properties, reinforcing the impact of particle orientation on the effectiveness of the 

MR effect. 

 

A multitude of other factors can also significantly influence the mechanical and rheological 

properties of MREs. The shape of the filler is one such factor, with distinct impacts observed 

depending on the particle geometry. For instance, Tong et al. [41] explored the effects of 

irregular flower-like Cobalt particles, while Hapipi et al. [42] investigated the properties of 

MREs incorporating plate-like Carbonyl Iron Particles (CIP). Beyond particle shape, the type of 

particle [43], the matrix material [44], and the type of additives used [45,46] also play critical 

roles in defining the overall behavior of MREs. Additionally, experimental conditions contribute 

substantially to the variability in results. Factors such as temperature [50], strain amplitude [47], 
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frequency [48], and magnetic field strength [49] are crucial in shaping the experimental 

outcomes, leading to diverse findings. While many studies published in refereed journals 

converge on certain aspects, illustrating consistent trends or effects, others present contradictory 

results, underscoring the complexity of accurately predicting MRE behavior. 

 

2.3 Modeling of MREs 

 

Alongside experimental characterization, developing models that can accurately predict the 

response of MREs under varying conditions—such as applied magnetic field, driving frequency, 

strain amplitude, and other operational and environmental factors—is crucial for their effective 

use in adaptive devices. There are three general modeling approaches employed to simulate the 

behavior of MREs.   

 

The first approach is the phenomenological method, which utilizes configurations of spring and 

damper elements to simulate the dynamic stiffness and damping properties of MRE materials. 

This technique is particularly effective in capturing the viscoelastic behavior of MREs under 

different loading conditions, making it a valuable tool for applications requiring dynamic 

response modulation.  

 

Another approach is the magnetoelastic or continuum mechanics method, where the MRE is 

considered a continuous medium. The effects of iron particles are seamlessly integrated into the 

elastomeric matrix. This method enables researchers to examine the macroscopic behavior of the 
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material through coupled equations of elasticity and magnetism, providing deep insights into 

how MREs respond to magnetic influences.  

 

Additionally, microscale predictive models based on micromechanics offer a granular 

perspective by focusing on the microstructure of MREs. These models account for the isotropic 

or anisotropic distribution of magnetic particles within the matrix and assess the magnetic 

interactions between the particles and their influence on the overall mechanical properties of the 

elastomer. This detailed approach is invaluable for understanding and predicting material 

behavior at the microscopic level, where particle interactions play a crucial role in determining 

the performance of MREs. 

 

The phenomenological model is extensively employed to predict the viscoelastic properties of 

MREs, addressing behaviors such as creep, stress relaxation under constant stress, stress-strain 

hysteresis loops under oscillatory loading, and the frequency dependence of the stress-strain 

curve. Li et al. [51] utilized a four-parameter spring-dashpot viscoelastic model to effectively 

simulate the stress-strain hysteresis curve of MREs, as illustrated in Figure 2.1. This model 

adequately captures the linear viscoelastic behavior of MREs under specific loading conditions. 

However, the assumption of linear viscoelasticity becomes insufficient when the loading 

conditions change, a limitation noted by Agirre-Olabide et al. [52]. 

 

To address this nonlinearity, Chen and Jerrams [53] modified the existing model by 

incorporating a variable stiffness spring and a spring-Coulomb friction slider. This enhancement 

aims to better represent the interfacial slippage between the matrix and the particles, further 
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details of which are depicted in Figure 2.2. This model can be divided into three parts to depict 

linear viscoelastic behavior, field-dependent mechanical properties, and interface slip between 

the particles and matrix. Such refinements have been instrumental in simulating more complex 

behaviors, allowing for a nuanced analysis of the interaction dynamics within the composite 

under varied environmental and operational conditions. 

 

Despite these advancements, numerous nonlinear behaviors persist in MREs, especially when 

they are integrated into devices with other materials. In response to these complexities, some 

researchers have turned to the Bouc-Wen model, initially introduced by Bouc [54] and later 

expanded by Wen [55]. Renowned for its capability to emulate a variety of hysteretic cycle 

shapes, this model is well-suited for a broad range of hysteretic systems. It has been adapted to 

analyze the behavior of MREs, with Yang et al. [56] proposing a Bouc-Wen-based 

phenomenological model to characterize phenomena such as strain stiffening and the nonlinear 

force-velocity relationship in MRE devices. In their approach, the original Bouc-Wen model is 

integrated in parallel with a Voigt element to more accurately depict both mechanical behavior 

and hysteresis, as shown in Figure 2.3. 

 

 

Figure 2.1 Four-parameter viscoelastic model for MREs [51]. 

}] 



 

13 

 

 

 

 

 

 

The theoretical foundations for the magnetoelastic response of solids, established in the 1960s, 

began with the pioneering work of Truesdell and Toupin [57], who utilized direct methods from 

the conservation laws of continuum mechanics. Their initial theories were further developed by 

Tiersten [58], who formulated comprehensive field equations specifically for magnetically 

saturated media. Concurrently, Maugin and Eringen [59] delved into the complex interactions 

Figure 2.2 Modified rheological model for MREs [53]. 

}] 

Figure 2.3 MRE isolator model with Bouc-Wen element [56]. 

MRE[51] 

}] 
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between magnetic and mechanical domains, highlighting the coupling between electronic spin 

and lattice continua. 

 

Building on these foundational studies, Kankanala and Triantafyllidis [60] explored the efficacy 

of traditional direct methods alongside energy methods based on the principle of energy 

minimization. Their comparisons revealed that for isotropic distributions of particles, both 

approaches produce equivalent governing equations and boundary conditions. However, they 

noted that the energy minimization method is particularly advantageous for addressing complex, 

nonlinear problems or situations that involve multiple physical effects, offering improved 

flexibility, accuracy, and analytical depth. 

 

Further expanding the theoretical landscape, Dorfmann and Ogden [61] provided a 

comprehensive framework for analyzing boundary-value problems in electro-sensitive 

elastomers capable of undergoing large electroelastic deformations. Their work meticulously 

outlined the governing equations for electroelastic conditions, primarily focusing on static 

scenarios. They clarified the constitutive laws for the Cauchy stress tensor and electric field 

vectors, streamlining the formulation into compact expressions that simplify the resolution of 

complex boundary-value problems. Their analysis included practical examples such as the 

influence of a radial electric field on the azimuthal shear response of a circular cylindrical tube 

and the deformation characteristics of an internally pressurized spherical shell. A 'total' free 

energy function was also defined, integrating mechanical and electrical energy densities to better 

facilitate the understanding of electro-mechanical interactions within these materials. 
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Since these seminal contributions, the framework of magneto-elasticity has become well-

established. However, the mathematical modeling of Magnetorheological Elastomers (MREs) 

continues to present significant challenges, primarily due to the strong nonlinear coupling 

between mechanical and electromagnetic responses. Some researchers in this field are enhancing 

theoretical models, for example, developing implicit constitutive relations and striving towards 

the linearization of existing models [62]. Meanwhile, others are leveraging numerical solutions 

and Finite Element Method (FEM) models [63-65] to circumvent some of the inherent 

complexities of traditional modeling approaches. 

 

While previous models primarily focus on the macroscopic properties of MREs, microscale 

models, which consider the material's microstructure, are pivotal in addressing the distribution of 

particles within the matrix. Pioneering work by Jolly et al. [4] and Davis [66] introduced a two-

particle model that utilizes the interaction between magnetic dipoles to predict the mechanical 

behavior of MREs both with and without the influence of a magnetic field. By calculating the 

magnetic energy between adjacent dipoles, they successfully derived the field-induced shear 

modulus as a function of applied magnetic field density and particle volume fraction. 

While the magnetic point dipole approach may provide essential guidance for the magnetic 

microstructure behavior of MREs, it cannot accurately describe the overall magneto-mechanical 

behavior of MREs. Experimental studies by Danas et al. [67] have highlighted the significant 

impact of microstructural properties on the magneto-mechanical behavior of Magnetorheological 

Elastomers (MREs). Building upon this foundation, subsequent research expanded the basic two-

particle model to more intricate straight-chain models. These models assume that particles, small 

enough to be considered magnetic dipoles, are aligned with the external magnetic field, an 
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arrangement known as the dipole model. Coquelle et al. [68] noted that the relative positioning 

of these particles within the chain critically influences the increase in shear modulus of MREs 

under a magnetic field. 

 

However, while these models effectively predict the MR effect under shear, they fall short in 

explaining the MR effect under tension/compression scenarios, where the MR effect is typically 

negative. Further investigations using Scanning Electron Microscopy (SEM) by researchers such 

as Bobarth et al. [69], Chen et al. [70], and Coquelle and Bossis [71] have provided micrographs 

showing that particle chains in MREs are often wavy rather than strictly straight. This waviness 

is explained by variations in magnetic flux density during the preparation of MREs, which is not 

uniformly distributed across the cross-sectional area of the magnetic conductor, leading to 

irregularly shaped chains. 

 

In response to these findings, Ivaneyko et al. [72] proposed a model where iron particles form a 

rectangular-lattice microstructure, suggesting that wavy chains could account for the observed 

increase in tensile modulus. Building on this idea, Han et al. [73] developed a model to examine 

the MR effect on particle alignment. This model differentiates between three types of chain 

formations: straight, wavy, and finite-length chains, as depicted in Figure 2.4. 
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Their findings indicate that the magnetic interaction energy In MREs depends on the ratio b/h, 

where h is the vertical center-to-center particle spacing and b is the horizontal center-to-center 

particle spacing. Smaller b/h ratios are typically associated with straight particle chains, while 

intermediate b/h values indicate wavy chains. When MREs are subjected to tension or 

compression that aligns with the direction of particle chains, the b/h ratio changes, leading to 

additional stress and a change in tensile modulus.  

 

In addition to chain models, the study of particle arrangement within MREs has also utilized 

regular or periodic structures as idealized spatial dispersions of particles. Various lattice 

structures have been explored to investigate their impact on the field-induced properties of 

MREs[80-82]. Ivaneyko et al. [74,75] analyzed three specific lattice models: simple-cubic (SC), 

body-centered-cubic (BCC), and hexagonal-close-packed (HCP). These models were 

instrumental in studying the behavior of both isotropic and anisotropic MREs under 

homogeneous magnetic fields. Expanding on this approach, Khanouki et al. [76,77] considered a 

Fig 2.4 Schematics of three possible mechanisms of the field-stiffening effect in an MRE: (a) dipolar interaction 

between particles in a straight chain, (b) dipolar interaction in a wavy particle chain, and (c) particle chains of 

finite lengths [73]. 
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broader range of lattices, including edge-centered-cubic (ECC), body-&-edge-centered cubic 

(BECC), face-&-edge-centered cubic (FECC), and body-&-face-&-edge-centered cubic 

(BFECC). Their research aimed to delve deeper into the magneto-mechanical behavior of MREs 

by examining how these complex lattice structures influence material properties. The magnetic 

energy within these structures was defined as a function dependent on the lattice type and 

particle arrangement, with the total energy computed as the sum of the matrix's elastic energy 

and the particles' magnetic energy. The stress and modulus of the MREs were then derived from 

this energy function. Despite most lattice structures contracting in the direction of the applied 

homogeneous magnetic field due to magnetic particle interactions, it was observed that structures 

with a random isotropic particle distribution tended to extend in the direction of the magnetic 

field. Moreover, increases in the magnetic field generally led to an increase in shear modulus for 

most particle distributions. However, it was noted that the BCC and FCC lattices exhibited a 

decrease in shear modulus under magnetic field application, a finding that contradicts 

experimental observations. 

 

Research into the microstructure of MREs has been extensively pursued by various other studies. 

For instance, Galipeau, Evan, et al. [78] applied magnetoelastic theory to develop models that 

include both periodic microstructures, such as rectangular and quasi-hexagonal unit cells, and 

random microstructures. Their research underscores that although magnetic susceptibility might 

be similar across composites, magnetoelastic effects can vary significantly due to differences in 

microstructure, influencing the local fields and effective properties of the materials. In another 

study, Coquelle et al. [79] introduced an analytical model that simulates the progressive breaking 

of polymer-to-particle bonds during mechanical stretching. This model, which focuses on the 
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stress-strain behavior of a two-sphere system, generally aligns with experimental observations 

but tends to overestimate the size of the debonding cavity. This discrepancy indicates that while 

the model effectively captures the initial stages of debonding, it may not fully account for the 

complexities of real material behavior under diverse strain conditions. Further expanding on the 

theme of microstructural influence, Khanuki et al. [83] developed a coarse-grained network 

model using Lagrange's equations to calculate relaxation times. This study emphasizes the 

critical role of microstructure, particularly the arrangement of magnetic particles, in determining 

the material's viscoelastic properties under magnetic fields. Utilizing a cubic network with 

particles connected by elastic springs, the model predicts changes in storage and loss moduli, 

which have been corroborated by experimental data. Theoretical insights from this model 

suggest that debonding or structural failures within MREs could be indirectly inferred from 

analyzing relaxation times and moduli changes under various loading conditions. 

 

2.4 Motivation and Objectives 

 

While considerable research has focused on the phenomenological modeling and magnetoelastic 

properties of MREs, the exploration of their magneto-mechanical properties through 

microstructure-based theories has been less extensive. These theories are essential for addressing 

the particle distribution within MREs and elucidating their intricate microstructural behaviors. 

Recent developments have seen hybrid models that integrate the advantages of different 

modeling approaches, promising more comprehensive analyses. Notable efforts by researchers 

[84-88] have aimed to unify continuum and microstructure theories, creating models that reflect 

both macroscopic and particle-scale phenomena. Furthermore, Nguyen et al. [89] advanced 
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viscoelastic modeling by incorporating two-particle interaction elements into conventional 

phenomenological models, thereby enhancing the depiction of inter-particle dynamics and 

magnetic interactions. 

 

Despite these advancements, current models still exhibit significant limitations. Continuum 

mechanics-based models, while providing clear physical insights, are primarily suitable for 

quasi-static conditions and often fail to capture the complex nonlinear behaviors that occur under 

dynamic loading conditions, including high strains and magnetic field intensities. Moreover, 

these models struggle to accurately represent the intricate interfacial interactions between 

particles and the matrix, which are critical for understanding the real-world performance of 

MREs. Conversely, phenomenological models, adept at predicting nonlinear viscoelastic 

behaviors through sophisticated curve fitting, rely heavily on empirical data. While they 

incorporate elements like friction, magnetic forces, and dampers to mimic physical phenomena, 

these models often lack a genuine representation of the underlying physical mechanisms, leading 

to discrepancies between modeling results and experimental observations. 

 

Our research aims to bridge the gap between microscopic-based modeling and phenomenological 

approaches while aligning closely with experimental data through rigorous finite element 

modelings. Starting with a foundational two-particle dipole model to capture basic linear effects, 

we progressively expand our model to include complex chain structures, viscoelastic and 

hyperelastic properties, non-affine large deformations, and detailed interface behavior. We also 

explore instability phenomena within the material framework. Each enhancement is critically 

evaluated to determine its impact on overall simulation accuracy and robustness, with the goal of 
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developing a versatile and precise model that can match and potentially surpass the capabilities 

of phenomenological models. Ultimately, we aim to not only emulate the accuracy observed in 

experimental setups but also to provide deep insights into the complex nonlinear behaviors noted 

in experiments, which have thus far eluded satisfactory explanation by existing models. 
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Chapter 3 Modeling and Simulation Methodologies for Magnetorheological 

Elastomers (MREs) 

 

3.1 Introduction 

 

In this chapter, we explore the various modeling and simulation methodologies employed to 

study the behavior of MREs. This includes detailed discussions on particle distributions, 

magnetic potential force calculation methods, mechanical and magnetic coupling approaches, 

boundary conditions, representative volume element (RVE) selection, and homogenization 

techniques. These methodologies are critical for accurately modeling the complex interactions 

within MREs, enabling the prediction and optimization of their properties for practical 

applications. 

 

We begin by examining different particle distribution models, followed by the calculation 

methods for magnetic potential forces using both dipole and Maxwell methods. Then, we delve 

into the coupling of mechanical and magnetic responses under both small and finite deformation 

conditions. Subsequent sections cover the selection of boundary conditions and RVEs, 

culminating in an in-depth discussion on homogenization techniques, including the volume 

averaging and boundary traction methods. These foundational concepts and advanced methods 

provide a comprehensive framework for simulating MREs, setting the stage for the detailed 

evaluations presented in the following chapters. 

 

3.2 Modeling of Particle Distribution  
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MREs represent a class of smart materials that have garnered substantial attention for their 

ability to alter mechanical properties in response to magnetic fields. This functionality is 

predominantly influenced by the internal structuring of magnetic particles within the elastomer 

matrix. The manufacturing process of MREs dictates the alignment and distribution of these 

particles, categorizing the elastomers into isotropic and anisotropic types. Isotropic MREs are 

characterized by a uniform distribution of particles without preferential alignment, offering 

consistent properties irrespective of the magnetic field direction. In contrast, anisotropic MREs 

exhibit a directional dependence due to the aligned particles, which enhances their response to 

magnetic fields aligned with the orientation of the particles.  

 

The behavior of MREs under magnetic influence is critically dependent on the particle 

distribution within the matrix. To comprehensively understand the mechanics and dynamics of 

MREs, it is imperative to simulate various particle distributions and evaluate their influence on 

the material properties. This section delves into the modeling setups for three distinct types of 

particle distributions: random distribution, periodic distribution, and chain distribution. 

 

3.2.1 Random Distribution 

 

In the setup for random distribution, particles are randomly scattered throughout the matrix to 

simulate isotropic MREs, though this method can lead to variations in local particle density. We 

have devised two algorithms to construct the microstructure of MREs with such random 

distributions. The primary method is termed 'random placement.' Initially, a matrix is generated, 

and particles are then randomly inserted. Should a particle intersect with existing particles or 
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come into contact with the boundary, it is relocated. This procedure is repeated until the specified 

particle count or volume fraction is reached. Figure 3.1 is a flowchart illustrating this method: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The random placement method effectively generates MREs with random microstructures. Some 

examples of the generated microstructures are shown in Figure 3.2. These structures contain 16 

particles each, with volume fractions ranging from 10% to 40%. 

Figure 3.1 Flow chart of the random placement method for particle distribution in MRE simulations 
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The random placement method tends to become inefficient for higher volume fractions, notably 

those exceeding 50%. This method, while straightforward, requires frequent adjustments to avoid 

particle overlaps, making it increasingly cumbersome and less effective as the volume fraction 

rises. To enhance the efficiency of particle distribution, especially at higher densities, we employ 

an alternative referred to as the 'shaking method.' This technique starts with particles initially 

arranged in a densely packed, periodic pattern within the matrix, corresponding to the desired 

volume fraction. The matrix is then subjected to a process termed 'shaking,' where each particle 

can move randomly within predefined limits, ensuring no overlap with other particles or the 

matrix boundary. Each individual movement of a particle is termed a 'shake,' and achieving a 

genuinely random distribution requires at least hundreds of shakes of each of the particles. 

 

For clarity, the procedural steps of the shaking method are outlined in a flowchart presented in 

Figure 3.3. Furthermore, to demonstrate the effectiveness of this method, Figure 3.4 shows the 

evolution of the particle distribution over several iterations at a 50% volume fraction. After 500 

                  (a)                                          (b)                                             (c)                                         (d) 

Figure 3.2 A sketch of microstructure variations at different volume fractions using the random placement 

method. (a) 10% volume fraction, (b) 20% volume fraction, (c) 30% volume fraction, (d) 40% volume fraction. 
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shakes, the arrangement distinctly diverges from its initial structured configuration, achieving 

randomness comparable to that produced by the random placement method, thus validating the 

efficacy of the shaking method in creating homogeneous and isotropic distributions in MREs. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Flow chart of the shaking method for particle distribution in MRE simulations 
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For modeling high volume fractions, we can utilize initial particle distributions like hexagonal 

periodic distributions that allow more dense packing, effectively handling scenarios with higher 

volume fractions. This approach is particularly beneficial when simulating conditions where 

close packing is crucial, although our current research does not focus on these high-volume 

fraction MREs. Thus, the random placement method, which efficiently meets our requirements, 

is predominantly used throughout our study. 

 

In our simulations, we initially ensured that all particles were fully enclosed within the matrix 

without touching or intersecting the matrix boundaries. This approach simplifies the model's 

construction but may limit the randomness of the particle distribution, potentially affecting the 

simulation's fidelity to real-world MRE behaviors. To enhance the realism of our models, we 

have adapted our methods to allow for particle distributions where particles may intersect with 

the matrix boundaries. This adaptation is demonstrated in Figure 3.5, showing configurations 

where the particles extend to the edges of the matrix, increasing the randomness and potential 

applicability of our simulations in depicting more naturalistic particle arrangements. 

(a)                                                  (b)                                               (c) 

Figure 3.4 Microstructures of MREs generated by the shaking method at 50% volume fraction (a) initial square 

periodic distribution, (b) microstructure after 50 shakes, (c) microstructure after 500 shakes. 
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3.2.2 Periodic Distribution 

 

Periodic particle distributions involve a systematic and repetitive placement of magnetic particles 

within the elastomer matrix, enhancing the predictability and uniformity of the material's 

mechanical properties. In our study, we focus on two specific types of periodic distributions: 

square and hexagonal. The square periodic distribution arranges particles in a grid-like pattern, 

forming a regular square lattice. This configuration allows for uniform spacing between particles 

but does not achieve maximum packing density. It is visually represented in Figure 3.6(a), where 

the simplicity and order of the square lattice are evident. On the other hand, the hexagonal 

periodic distribution, as depicted in Figure 3.6(b), features particles organized in a hexagonal 

lattice. This arrangement is known for its high packing efficiency and is often preferred in 

studies aiming to maximize particle density within the matrix. The hexagonal pattern, due to its 

close packing, potentially enhances the composite's mechanical properties by reducing the 

matrix's influence and allowing for more direct particle-to-particle interactions. 

 

Figure 3.5 MREs featuring randomly distributed particles that intersect the matrix edges, with a volume fraction 

of 30%. 
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3.2.3 Chain Distribution 

 

The chain distribution in MREs is pivotal for understanding their anisotropic behaviors, 

especially under magnetic influence during the curing process. This configuration typically 

manifests in two distinct forms: straight and wavy chains, as illustrated in Figure 3.7, where (a) 

represents wavy chains and (b) depicts straight chains. Straight chain distributions, where 

particles are aligned in uninterrupted linear formations, are known to enhance the material's 

stiffness and magnetic responsiveness along the chain's axis. This alignment optimizes the 

MRE's mechanical properties under magnetic fields, offering pronounced improvements in both 

stiffness and damping capabilities. Conversely, real-world observations and micrographic 

analyses [69-71] often reveal that particle chains within MREs display a wavy rather than 

perfectly straight configuration. This waviness introduces complexities in the material's response 

to mechanical and magnetic stimuli. Simulation studies corroborate these findings, consistently 

demonstrating that wavy chains more accurately replicate the MR effects observed in 

experimental setups under both compression and tension modes. Therefore, while straight chains 

                                                (a)                                                                             (b) 

Figure 3.6 Schematic representation of MRE composites with (a) a square and (b) a hexagonal distribution of 

particles. 
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are ideal for theoretical studies due to their simplicity and enhanced magnetic properties, the 

inclusion of wavy chains in our analysis is essential.  

 

 

 

3.3 Magnetic Interaction of Particles 

 

MREs possess unique properties that encompass both mechanical and magnetic aspects. 

Accurately modeling the behavior of MREs requires correctly applying the magnetic effects, as 

they significantly influence the overall performance of these materials. This section introduces 

the methods used to calculate the magnetic potential forces within MREs. This study employs 

two primary techniques: the Dipole method and the Maxwell method. 

 

                                                                      (a)                                                                         (b) 

Figure 3.7 Schematic representation of MAE composites with (a) a wavy and (b) a straight chain distribution of 

magnetoactive particles in the matrix. 



 

31 

 

3.3.1 Dipole Method 

 

The Dipole method is used to calculate the magnetic potential by modeling each magnetic 

particle in the elastomer matrix as a dipole. This method focuses on the interactions between 

these dipoles, determining the forces that arise from the magnetic fields generated by each 

particle. By assessing the effects of these interactions, the method provides insights into the 

forces exerted on particles within the field. The model considers the mutual influence of dipoles 

on each other, which is crucial for understanding the complex behavior of magnetic particles 

under various magnetic field conditions. A diagram illustrating this setup is shown in Figure 3.8, 

which depicts how the dipoles are positioned and interact within the matrix. 

 

 

 

The dipole method involves treating each magnetic particle embedded in the elastomer as an 

individual magnetic dipole. For spherical particles of the same size, the magnetic moment of 

each particle is given by the following equation: 

𝑚⃗⃗ =
4

3
𝜋𝑟3𝑀⃗⃗  ,                                     (3-1) 

Figure 3.8 A schematic of the dipole interaction model. 
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where 𝑀⃗⃗ = 𝜒𝐻⃗⃗ , 𝑀⃗⃗  is the magnetization, 𝜒 is the susceptibility, 𝐻⃗⃗  is the magnetic field strength, 

and 𝑟 is the radius of particles. 
The magnetic potential energy between the magnetic particles i and j is as follows: 

𝑈𝑖𝑗 = −
1

4𝜋𝜇𝑟𝜇0
[
3(𝑚⃗⃗⃗ 𝑖⋅𝑅⃗ 𝑖𝑗)(𝑚⃗⃗⃗ 𝑗⋅𝑅⃗ 𝑖𝑗)

|𝑅⃗ 𝑖𝑗|
5 −

(𝑚⃗⃗⃗ 𝑖⋅𝑚⃗⃗⃗ 𝑗)

|𝑅⃗ 𝑖𝑗|
3 ] ,                    (3-2) 

where 𝜇0 = 4𝜋 × 107(𝐻/𝑚) is the vacuum permeability, 𝑚⃗⃗ 𝑖 and 𝑚⃗⃗ 𝑗  are the magnetic moments 

of particles 𝑖 and 𝑗, 𝑅⃗ 𝑖𝑗  is the direction vectors from particle 𝑖 to particle 𝑗. 

The magnetic forces can be obtained using the following equation: 

 𝐹𝑖𝑗 = 𝑚⃗⃗ ⋅ 𝛻𝐵⃗  .                                  (3-3) 

In the case of a two-dimensional plane problem, assuming that all the particles have the same 

magnetization intensity 𝑚𝑖⃗⃗ ⃗⃗  = 𝑚𝑗⃗⃗ ⃗⃗  = 𝑚⃗⃗ , the two components of 𝐹𝑖𝑗  can be described using 

equations: 

𝐹𝑖𝑥⃗⃗⃗⃗  ⃗ =
4𝜋𝜇0𝜒

2𝐻2𝑟6

3|𝑅𝑖𝑗|
4 [(1 − 5 𝑐𝑜𝑠2 𝜃) 𝑠𝑖𝑛 𝜃] ,                (3-4) 

𝐹𝑖𝑦⃗⃗⃗⃗  ⃗ =
4𝜋𝜇0𝜒

2𝐻2𝑟6

3|𝑅𝑖𝑗|
4 [(3 − 5 𝑐𝑜𝑠2 𝜃) 𝑐𝑜𝑠 𝜃] .                (3-5) 

  

3.3.2 Maxwell Method 

 

The Maxwell method, in contrast, employs Maxwell's equations to compute the magnetic 

potentials, focusing on solving the magnetic field distribution within the MRE matrix. It then 

determines the forces exerted on each particle by integrating the Maxwell stress tensor over the 
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particle's surface. This approach is grounded in magnetoelasticity theory, which posits that 

magnetic solids and conductors carrying electric currents undergo deformation when subjected to 

magnetic fields. The magnetic body force 𝐹𝑚 can be obtained using the following equation [90]: 

𝐹𝑚 = ∮ 𝜎𝑀 ⋅ 𝑛𝑑𝑆
𝜕𝛺

 ,                                        (3-6) 

where 𝛺 is the boundary of the particle, 𝑛 is the boundary normal, and 𝜎𝑀is the maxwell stress 

tensor, which can be described by the following equation: 

𝜎𝑀 =
1

2
(𝐻𝐵𝑇 + 𝐵𝐻𝑇 − 𝐵𝑇𝐻𝐼) ,                               (3-7) 

where 𝐻 is magnetic field intensity vector, 𝐵 is the magnetic flux density vector and 𝐼 is the 2th 

rank unit tensor. 

 

Both the dipole and Maxwell methods have distinct advantages and limitations. The dipole 

method is computationally simpler and less resource-intensive, making it suitable for systems 

with a low density of magnetic particles. However, its accuracy diminishes as particle 

concentration increases, as it approximates the magnetic interactions between dipoles. In 

contrast, the Maxwell method is more computationally demanding but provides a more detailed 

and accurate representation of the magnetic forces by considering the full magnetic field 

distribution and interactions. This makes it ideal for dense particle systems and more complex 

geometries. 

 

3.3.3 Comparison of the Dipole and Maxwell Methods for Magnetic Interactions 
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We validated and compared the dipole and Maxwell methods using a simplified two-particle 

system to understand their effectiveness under controlled conditions. Calculations using the 

dipole method were carried out in MATLAB, focusing on scenarios with varied inter-particle 

distances to test the method's precision, especially where the dipole approximation might falter. 

Concurrently, the Maxwell method calculations were executed using the FEM software ANSYS, 

which allowed for a detailed analysis of magnetic field distributions and particle interactions. 

This comparative study, illustrated in Figure 3.9, aimed to identify the strengths and limitations 

of each method, particularly examining the dipole method's accuracy at shorter particle 

separations where its assumptions are most challenged. We placed two particles vertically along 

the y-axis and varied the inter-particle relative distance 𝑙 from 2 to 5, where 𝑙 = 𝑟𝑦/𝑟. For each 

value of 𝑙, we calculated the magnetic force using both methods and plotted the results, as 

illustrated in Figure 3.10. 

 

   

 

Figure 3.9 A schematic of the vertical interaction force model. 
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In this simulation, we plotted the normalized magnetic force  𝐹𝑦  in the y-direction against the 

inter-particle distance 𝑙. Notably, the curve representing the Maxwell method begins at 𝑙 = 2.1 

instead of 𝑙 = 2. This adjustment is necessary because when particles are in close proximity, the 

finite element method encounters difficulties in performing accurate calculations. These 

challenges are primarily due to numerical instabilities and limitations in mesh resolution.  

 

A significant discrepancy is observed between the forces calculated using the Maxwell and 

dipole methods when the inter-particle distance 𝑙 ranges from 2 to 2.5. If we consider the 

Maxwell method as the exact solution, it becomes evident that the dipole method is not suitable 

within this range due to its overestimation of the magnetic forces. As the inter-particle distance 

increases beyond 𝑙 = 2.5, the differences between the two methods gradually diminish. This 

convergence suggests that the dipole method provides an effective approximation of the 

magnetic forces when the particles are sufficiently separated. Specifically, for 𝑙 > 2.5, the results 

Figure 3.10 Normalized magnetic forces in the y direction as a function of l, with all forces normalized by 

dividing them by the magnetic force from the dipole model at l=2. 



 

36 

 

from the dipole method align more closely with those from the Maxwell method, indicating its 

utility as a computationally efficient alternative that offers reliable estimates in this expanded 

range. 

 

Building on the previous conclusions, we sought to further evaluate the differences between the 

Dipole and Maxwell methods at an inter-particle distance of 𝑙 = 2.5. To facilitate this 

investigation, we designed a model featuring a rotational particle arrangement, as depicted in 

Figure 3.11. This model allows for a detailed comparison under controlled variations in particle 

positioning, highlighting how each method responds to changes in the geometric configuration. 

 

 

 

We initiated the experiment by positioning two particles along the x-axis, ensuring they were 

horizontally aligned. Subsequently, particle 𝑗 was systematically rotated around particle 𝑖, 

achieving a 90-degree shift until the particles were aligned vertically. During this rotation, we 

maintained a constant inter-particle distance of 2.5r. For each position of particle j during its 

rotation, we meticulously calculated the magnetic forces exerted in both the x and y directions. 

Figure 3.11 A schematic of the rotational interaction force model. 
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These calculations were performed using both the Dipole and Maxwell methods to capture 

comprehensive magnetic interactions at various angular orientations. 

 

 

 

(a) 
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Figure 3.12 displays the outcomes from comparing the dipole and Maxwell methods as applied 

to the rotational model. Some crucial insights emerged from this comparison. Both methods 

yield consistent results when particles are aligned either vertically or horizontally, demonstrating 

the dipole method's reliability in these specific orientations. Nonetheless, notable discrepancies 

arise in the intermediate angles, particularly when the angle α between the particles shifts from 0 

to 90 degrees. Here, the dipole method generally reports lower absolute magnetic forces in both 

the x and y directions when compared to the Maxwell method. The most significant divergence 

in the x-direction occurs at approximately α=60 degrees, where the dipole method 

underestimates the force by around 16%. Conversely, the largest discrepancy in the y-direction is 

Figure 3.12 Normalized magnetic forces as a function of l (a) x component of the magnetic force, (b) y 

component of the magnetic force. All magnetic forces have been normalized by dividing them by the magnitude 

of magnetic force Fx calculated using the dipole model. The positive value indicates attraction, while the 

negative value indicates repulsion. 

(b) 
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seen at α=30 degrees, with a 29% underestimation. Similar phenomena have also been observed 

by other researchers [93, 94]. 

 

These findings underscore the dipole method's limitations in accurately capturing the complex 

dynamics of magnetic interactions at non-aligned angles. Despite these limitations, the method is 

remarkably effective for configurations such as straight or wavy chains where angles remain 

minimal, as well as for square periodic particle distributions. The dipole method offers a 

practical compromise between computational efficiency and accuracy in these scenarios. 

However, it falls short in more complex configurations like hexagonal periodic distributions or 

random particle orientations, where the Maxwell method's superior precision and comprehensive 

analytical approach make it the preferred choice for detailed and accurate magnetic interaction 

modeling. 

 

3.4 Mechanical and Magnetic Coupling Methods  

 

To accurately model MREs, it is crucial to consider the effects induced by both magnetic and 

mechanical fields. We approach this by categorizing strategies into two methods. Partial coupling 

treats the magnetic and mechanical effects as independent, simplifying the analysis but 

potentially overlooking interactions. Full coupling, on the other hand, acknowledges and 

incorporates the interdependence of these effects, ensuring a more comprehensive simulation of 

MRE behavior under various operational conditions. 
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3.4.1 Partial Coupling Method  

 

The partial coupling method calculates the mechanical and magnetic responses independently 

and later combines them to assess the overall behavior of the material. This strategy is 

particularly effective under conditions of small deformations and low magnetic fields, where it is 

assumed that the deformation remains affine—uniform and directly proportional to the applied 

forces—and that the magnetic fields do not significantly alter the mechanical properties of the 

material. Utilizing the dipole method, the magnetic potential energy between each pair of dipoles 

can be expressed as follows: 

𝐸𝑖𝑗 =
𝑚2(1−3𝑐𝑜𝑠2 𝜃)

4𝜋𝜇1𝜇0𝑟
3  .                                      (3-8) 

To accurately capture the changes of 𝜃 in the system, we relate the interparticle distances 𝑟𝑥 and  

𝑟𝑦 based on the affine deformation assumption as shown below: 

𝑟𝑥 = 𝑟𝑥0(1 + 𝜀11) + 𝑟𝑦0(1 + 𝜀22)𝜀12 ,                     (3-9) 

𝑟𝑦 = 𝑟𝑦0(1 + 𝜀22) ,                                (3-10) 

𝑐𝑜𝑠 𝜃 =
𝑟𝑦

√𝑟𝑥
2+𝑟𝑦

2
 ,                                       (3-11) 

where 𝑟𝑥0 and 𝑟𝑦0 are the initial interparticle distances in the x and y direction. According to the 

in compressibility of the matrix 𝜀11 = (
1

1+𝜀22
− 1). The average potential energy over the 

volume can be calculated as follows: 

 𝑈 =
1

𝑉
∑ ∑

1

2

𝑛
𝑗

𝑛
𝑖 𝐸𝑖𝑗  .                                    (3-12) 

The magnetic-induced modulus is therefore given by: 
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𝐺𝑚 =
𝜕2𝑈

𝜕𝜀2
 .                                               (3-13) 

By combining it with the mechanical simulation, we can obtain the coupled magnetic and 

mechanical properties.  

 

In the partial coupling method, the mechanical response of the MRE is calculated based solely on 

the mechanical forces applied, while the magnetic response is assessed independently based on 

the influence of the magnetic field on the particles within the material. The total response is then 

determined by combining these two responses. This method is efficient for computational 

purposes and provides adequate accuracy under conditions of small deformations and low 

magnetic fields. However, its effectiveness decreases with increasing deformation and magnetic 

field strength, where the interactions between mechanical and magnetic effects become more 

significant. 

 

3.4.2 Full Coupling Method  

 

For scenarios involving finite deformations and stronger magnetic fields, the interdependencies 

between the mechanical and magnetic responses of the material become crucial, requiring the 

adoption of a full coupling approach. Under such conditions, the straightforward assumption of 

affine deformations is inadequate as the magnetic field may induce additional deformations. The 

full coupling method addresses these complexities through two main strategies: direct integration 

into finite element modelings and iterative magnetic force updates. Direct integration method 

involves embedding magnetic force calculations directly into the motion equations of finite 
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element models. This allows for a concurrent assessment of both mechanical and magnetic 

effects on the material's behavior. The coupled kinematic equation is shown below: 

[
[𝐾] + [𝐾𝑢𝑢] [𝐾𝑢𝐴]

[𝐾𝑢𝐴]𝑇 [𝐾𝐴𝐴]
] {
{𝑢}
{𝐴}

} + [
[𝐶] [0]
[0] [0]

] {
{𝑢̇}

{𝐴̇}
}   (3-14) 

+ [
[𝑀] [0]
[0] [0]

] {
{𝑢̈}

{𝐴̈}
} = {

{𝐹}

{𝐽𝑆} + {𝐽𝑝𝑚}
} . 

The parameter {𝑢} represents the structural displacements while {𝐴} denotes the magnetic 

potential. The element structural stiffness matrix is denoted by [𝐾].[𝐾𝑢𝑢] =
𝜕{𝐹𝑀}

𝜕{𝑢}
 and  [𝐾𝑢𝐴] =

𝜕{𝐹𝑀}

𝜕{𝐴}
 are the magnetic softening matrix and the magnetic Maxwell force coupling matrix. The 

element mass matrix is denoted by [𝑀], and the element magnetic reluctivity matrix is 

represented by [𝐾𝐴𝐴]. The element structural damping matrix is indicated by [𝐶]. The vector of 

nodal and surface forces is represented by {𝐹}. {𝐽𝑆}and {𝐽𝑝𝑚} are the element source current 

density and element remnant magnetization load vectors. 

 

Alternatively, the iterative magnetic force update method operates by first calculating the 

magnetic response, which is then used to apply magnetic forces on the particles. Following this, 

the deformation of the particles is computed. This deformation data is used to update the 

magnetic forces in a recurrent manner. The process involves recalculating the magnetic forces at 

each time step, based on the latest deformation, and continues until the solutions converge within 

an acceptable error margin. This method is highly dependent on the number of substeps used; if 

nonlinear deformations are significant, any non-convergence in an early substep can adversely 
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affect all subsequent steps. Thus, careful application and rigorous monitoring of convergence are 

critical when using this approach to ensure accuracy and stability in the simulations. 

 

In summary, the choice between partial and full coupling methods depends on the deformation 

magnitude and the strength of the magnetic field. The weak coupling method is suitable for 

scenarios involving small deformations and low magnetic fields, offering computational 

efficiency and simplicity. In contrast, the strong coupling method is necessary for accurately 

modeling MREs under finite deformations and strong magnetic fields, capturing the intricate 

interactions between mechanical and magnetic responses. 

 

3.5 Boundary Conditions and RVE Selection  

 

This section explores the boundary conditions and the selection of the Representative Volume 

Element (RVE) that are fundamental to our simulations. Boundary conditions are categorized 

into magnetic and mechanical types, which are pivotal in relation to the coupling methods 

outlined in the preceding chapter. The choice of RVE is intricately linked to these boundary 

conditions, underscoring their importance in ensuring accurate and relevant simulation results. 

 

The boundary conditions for our simulations are integral to accurately depicting the behavior of 

MREs under various mechanical and magnetic influences. These conditions are divided into 

mechanical and magnetic types, each tailored to align with the coupling methods discussed in the 

previous chapter. Mechanical boundary conditions typically involve the use of periodic boundary 

conditions, which are particularly effective for our purposes. These conditions allow the 
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simulation to emulate a material behaving uniformly in all directions, effectively mimicking an 

infinite material. The periodic boundary conditions (PBC) are applied using the FEM according 

to the following relationships[91]: 

 

        {
𝑢1
𝑅 − 𝑢1

𝐿 = 𝜀𝑥𝑥𝑎1 ,

𝑢2
𝑅 − 𝑢2

𝐿 = 𝜀𝑦𝑥𝑎1 ,
            (3-15) 

        {
𝑢1
𝑇 − 𝑢1

𝐵 = 𝜀𝑥𝑦𝑎2 ,

𝑢2
𝑇 − 𝑢2

𝐵 = 𝜀𝑦𝑦𝑎2 .
                    (3-16) 

           

 

The displacements of the nodes on the left and right faces (𝑢𝐿 and 𝑢𝑅), as well as those on the 

top and bottom faces (𝑢𝑇 and 𝑢𝐵), are coupled to create the periodic boundary conditions. The 

corner node requires careful measurement and the application of coupling equations on both 

faces to which it is attached. 

 

Magnetic boundary conditions vary depending on the coupling method employed. For partial 

coupling, where the mechanical and magnetic responses are calculated separately, it is sufficient 

to select a suitable magnetic boundary condition independently. This flexibility allows for 

simpler simulations where the magnetic effects do not strongly interact with the mechanical 

deformations. However, the choice of boundary condition still needs to be carefully considered 

to avoid introducing artificial effects that could distort the simulation results.  

 

Figure 3.13 Periodic boundary condition of a single-particle RVE 



 

45 

 

In cases of direct integration, where magnetic and mechanical factors are strongly coupled, the 

magnetic boundary condition must be compatible with the mechanical boundary condition to 

accurately capture the interactions between the two fields. For these scenarios, periodic magnetic 

boundary conditions are essential. These conditions ensure that the magnetic field distribution 

remains consistent across the boundaries, similar to the mechanical field, thus preserving the 

integrity of the coupled simulation. To create a uniform magnetic field in the y direction, the 

following periodic magnetic boundary condition needs to be applied [92]: 

{𝑈
𝑇 = 𝑈𝐵 + 𝐻𝑎2

𝑈𝐿 = 𝑈𝑅
 ,                            (3-17) 

where 𝐻 is the effective magnetic density. For simulations using the magnetic force method, the 

magnetic response is treated as a body force applied throughout the volume of the RVE rather 

than as a boundary condition applied at the edges. This approach models the internal forces 

generated by the magnetic particles and their interactions without constraining the field at the 

boundaries. However, this method requires careful RVE selection to minimize boundary effects. 

If the RVE is too small or improperly chosen, edge effects can significantly impact the results, 

leading to inaccurate predictions of the material behavior.  

 

RVE selection is critical in simulations, as it must effectively represent the material's 

microstructure while managing computational complexity. For MREs, the RVE should include a 

diverse arrangement of magnetic particles to accurately reflect the influence of particle 

distribution on the material's properties. For periodic structures, we conducted two examples of 

the same distribution and volume fraction but different sizes as shown in Figure 3.14. 
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We employ a square periodic distribution for the two RVEs under investigation. Periodic 

boundary conditions, coupled with a nominal shear strain of 1%, are utilized to facilitate the 

measurement of the effective shear modulus. The outcome reveals identical results across both 

RVEs, underscoring that variations in size do not influence the mechanical properties of the 

periodic structure. However, this consistency contrasts with the challenges posed by random 

distributions, where the application of periodic boundary conditions necessitates meticulous 

mesh adjustments. 

 

Figure 3.14 RVE with 1% shear strain (a) RVE with quarter particles, (b) RVE with full particles. 

                                                       (a)                                                              (b)                                               
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Figure 3.15 (a) illustrates the initial microstructure after generating an RVE with a random 

distribution. Notice that particle 𝑎 a is located on the left boundary. To satisfy periodic boundary 

condition requirements, an identical particle 𝑎  must be generated on the right boundary to 

maintain a consistent mesh. However, directly copying particle 𝑎to the right would cause it to 

intersect with particle 𝑏. Therefore, a decision must be made to either reassign the position of 

particle 𝑎or remove particle 𝑏. By removing particle 𝑏and copying particle 𝑎, we achieve the 

configuration shown in Figure 3.15 (b). It is apparent that the volume fractions in (a) and (b) 

differ. When a particle intersects a corner, the situation becomes more complex, requiring 

duplication on both adjacent boundaries. 

 

To address the challenges associated with random particle distributions and PBC, we can employ 

a new RVE with a modified boundary condition approach. This method involves selecting a 

larger RVE that maintains the same particle distribution. Within this larger RVE, a smaller RVE 

of interest is delineated for detailed study. All homogenization processes and post-processing 

steps are conducted with reference to the boundaries of this smaller RVE. Since we are not 

                                              (a)                                                                                                                            (b)                                               

 

Figure 3.15 Adjustments to RVE using periodic boundary conditions with boundary-intersecting particles: (a) 

initial random distribution, (b) distribution after spatial correction. 

                                               (a)                                                                                  (b)                                               
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required to apply PBC on the outer boundary of the larger RVE, there is no need for particle 

duplication or cancellation. This approach effectively resolves the issues introduced by manually 

adjusting the mesh, which can lead to disturbances in the material properties. By avoiding these 

modifications, we preserve the integrity of the original particle distribution and the inherent 

properties of the MRE. Prior research suggests that if the distance between the boundaries of the 

smaller RVE and the larger RVE exceeds a characteristic length (typically the average distance 

between the centers of two adjacent particles), the effects of the boundary can be disregarded. 

This ensures the accuracy of the results by minimizing boundary effects. Additionally, this 

method allows for a more straightforward and accurate representation of the material's behavior, 

as it avoids the complexities and potential inaccuracies associated with enforcing PBC on 

random distributions. A more detailed evaluation of this method, including specific examples and 

comparative analyses, will be presented in the next chapter. This evaluation will demonstrate 

how the modified boundary condition approach improves the reliability of simulation results for 

MREs with random particle distributions, providing a more robust framework for analyzing and 

optimizing these materials. 

 

3.6 Homogenization Methods 

 

 In this section, we delve into the concept of homogenization and its application within the 

framework of computational micromechanics. Homogenization is a process used to derive the 

effective properties of a composite material by averaging its microstructural properties. This 

method is essential in computational micromechanics, which involves simulating the behavior of 

materials by considering their microstructure. By applying homogenization techniques, we can 
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bridge the gap between the micro-scale interactions and the macro-scale response, enabling 

accurate predictions of material behavior under various loading conditions. 

 

The basic principle of homogenization can be expressed through the volume averaging method. 

For a given microscopic stress 𝜎𝑖𝑗 and strain 𝜀𝑖𝑗, the effective property  of the composite material 

can be obtained by averaging the property over the volume of the representative volume element 

as shown below: 

𝜀𝑖𝑗 =
1

𝑉
∫ 𝜀𝑖𝑗𝑉

𝑑𝑉 ,                       (3-18) 

𝜎𝑖𝑗 =
1

𝑉
∫ 𝜎𝑖𝑗𝑉

𝑑𝑉 .                            (3-19) 

In the context of mechanical properties, the Hill-Mandel principle of macro-homogeneity is often 

used as a foundational concept. This principle states that the macroscopic work done by the 

average stress on the average strain in a representative volume element is equal to the volume 

average of the microscopic work done by the microscopic stress on the microscopic strain: 

⟨𝜎⟩: ⟨𝜀⟩ =
1

𝑉
∫ 𝜎̃: 𝜀̃𝑑𝑉 ,
𝑉

                              (3-20)  

where 𝜎 and 𝜀 are the macro stress and strain, 𝜎̃ and 𝜀̃ are their microscopic counterparts. The 

angled brackets ⟨⋅⟩ denote the volume average over the RVE. This principle is crucial because it 

ensures that the macroscopic behavior of the material is representative of the microscopic 

interactions within the RVE. The Hill-Mandel principle effectively links the micro-scale and 

macro-scale properties, providing a rigorous basis for homogenization. 
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In the context of considering magnetic forces in the homogenization process, the original 

equation needs to be updated to account for these additional forces. One way to do this is by 

treating the magnetic forces as body forces and adding extra terms in the homogenization 

equation to represent the magnetic forces. The First Piola–Kirchhoff stress tensor 𝑃𝑖𝑗  at the 

macro-scale can be calculated by: 

𝑃𝑖𝑗 =
1

𝑉𝜇
∫ (𝑃𝑖𝑗

𝜇
− 𝑓𝑗

𝜇
𝑥𝑖)𝑑𝑉𝜇

𝑉𝜇  ,                          (3-21)  

where 𝑃𝑖𝑗
𝜇
 is the microscopic First Piola–Kirchhoff stress tensor, 𝑉𝜇 is the volume of the RVE, 𝑓𝑗

𝜇
 

is the magnetic body forces in the j-direction with a distance 𝑥𝑖 to the central axis. 

While this method is straightforward and can be effective for linear, small deformation cases, it 

has several disadvantages. For nonlinear, finite deformation cases, the inclusion of magnetic 

forces requires significant changes to the fundamental finite element method matrices to account 

for the nonlinear interactions between mechanical and magnetic fields. Additionally, this method 

is unable to adequately account for time-history effects, which are critical in dynamic 

simulations where the material response depends on its deformation history. To overcome these 

challenges, we employ an alternative method based on the divergence theorem, using boundary 

tractions to perform homogenization. This method offers precise results while being 

computationally efficient. The homogenization equation using the boundary traction method is 

given by: 

 

 𝑃𝑖𝑗 =
1

𝑉𝜇
∫ 𝑡𝑗

𝜇
𝑥𝑖𝑑𝛤𝜇

𝛤𝜇 ,                                      (3-22) 
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where 𝛤𝜇 is the boundary of the RVE and 𝑡𝑗
𝜇 

is the reactive boundary traction in the j-direction 

with a distance 𝑥𝑖 to the central axis. 

 

This approach simplifies the integration process, especially when dealing with complex 

microstructures and magnetic forces. By focusing on the boundary tractions rather than the 

volume stresses, the method bypasses the need to modify the internal FEM matrices for 

nonlinear effects. However, to ensure the accuracy of the calculations, it is crucial to place more 

nodes on the boundary of the RVE. This increased nodal density helps capture the detailed stress 

distribution along the boundary, ensuring that the computed tractions accurately represent the 

internal forces. 

 

3.7 Conclusions 

 

In Chapter 3, we explored the methodologies essential for accurately simulating MREs, 

beginning with the development of realistic microstructures that replicate the random and 

periodic particle arrangements found in these materials. We examined the role of magnetic 

interactions within these microstructures, comparing different approaches to understand how 

magnetic forces influence the overall behavior of MREs. The chapter also delved into the 

importance of coupling mechanical and magnetic responses, particularly emphasizing the need 

for a full coupling approach when dealing with significant deformations and strong magnetic 

fields. Additionally, we discussed the selection of appropriate boundary conditions and RVEs to 

ensure that simulations accurately reflect bulk material properties while balancing computational 

efficiency. Finally, we addressed the traction-based homogenization method, which is crucial for 
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translating detailed microstructural behavior into effective macroscopic properties for dynamic 

simulation. 
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Chapter 4: Quasi-static Analysis of Magnetorheological Elastomers (MREs) 

 

4.1 Introduction 

 

This chapter is dedicated to validating and comparing various modeling and simulation methods 

for MREs under quasi-static conditions with a linear elastic matrix. Our primary goal is to 

evaluate the effectiveness of different modeling approaches in accurately predicting the behavior 

of MREs across a range of scenarios. Key topics include the initial verification of our 

homogenization process, in-depth comparisons of magnetic coupling methods, and practical 

considerations for selecting between 3D and 2D models. Additionally, we explore the impact of 

chain structures on the MR effect and assess how particle distribution influences simulation 

outcomes. This comprehensive analysis provides valuable insights for optimizing MRE 

simulations and guides the selection of appropriate methods for future research. 

 

4.2 Sanity Check  

 

The sanity check serves as an essential preliminary step to confirm that the homogenization 

process, facilitated by finite element modeling, is implemented accurately. Before diving into 

complex simulations, it's critical to verify that the RVE is constructed correctly and that the 

homogenization process yields valid results. To conduct this sanity check, we adjust the 

properties of the particles within the RVE to match those of the matrix material, effectively 

rendering the RVE homogeneous. This method ensures uniform properties throughout the 

material, simplifying the verification process. If the homogenization is functioning as intended, 
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the effective properties derived from this homogenized RVE should align precisely with the 

known properties of the matrix. We carry out this verification by applying volume averaging and 

other suitable homogenization techniques to determine the effective properties of the material. 

This step is fundamental in establishing a reliable foundation for more detailed and specific 

simulations that follow. 

 

For transversely isotropic materials, the effective stress and strain are related through the 

stiffness tensor as follows: 

      

{
  
 

  
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
  
 

  
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶12 𝐶23 𝐶22 0 0 0

0 0 0 (𝐶22 − 𝐶23)/2 0 0
0 0 0 0 𝐶66 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

{
  
 

  
 
𝜀1
𝜀2
𝜀3
𝛾4
𝛾5
𝛾6}
  
 

  
 

 .  (4-1) 

The coefficient in the C are found by setting up FEM models with different boundary conditions. 

The following boundary conditions are used [95]: 

𝜀1 = 1; 𝜀2 = 𝜀3 = 𝛾4 = 𝛾5 = 𝛾6 = 0 ,                                    (4-2) 

𝜀2 = 1; 𝜀1 = 𝜀3 = 𝛾4 = 𝛾5 = 𝛾6 = 0 ,                                     (4-3) 

𝛾4 = 0; 𝜀1 = 𝜀2 = 𝜀3 = 𝛾5 = 𝛾6 = 0 .                                    (4-4) 

Once these components have been determined, the elastic properties of the homogenized RVE 

can be computed by: 
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𝐸1 = 𝐶11 −
2𝐶12

2

𝐶22+𝐶23
 ,                                       (4-5) 

𝐸2 =
[𝐶11(𝐶22+𝐶23)−2𝐶12

2 ](𝐶22−𝐶23)

𝐶11𝐶22−𝐶12
2  ,                               (4-6) 

𝜐12 =
𝐶12

𝐶22+𝐶23
 ,                                          (4-7) 

𝜐23 =
𝐶11𝐶23−𝐶12

2

𝐶11𝐶22−𝐶12
2  ,                                  (4-8) 

𝐺12 = 𝐶66 ,                                                 (4-9) 

where 𝐸1 and 𝐸2 are the longitudinal and transversal Young's moduli; 𝜐12 and 𝜐23 are the the 

longitudinal and transversal Poisson's ratios; 𝐺12 is the longitudinal shear modulus. After 

acquiring these properties, we conduct a comparison with the initially defined properties of the 

matrix. If the effective properties coincide with those of the matrix, it validates both the 

construction of the RVE and the accuracy of the homogenization process. This sanity check also 

includes verifying that the boundary conditions are appropriately applied and that the finite 

element mesh is sufficiently refined. Ensuring correct boundary conditions and high-quality 

mesh resolution is crucial to prevent numerical errors that might skew the results of the 

homogenization. Although subsequent sections may not explicitly mention it, this sanity check is 

a standard procedure conducted whenever there are modifications to the boundary conditions or 

the material properties of the matrix. This ongoing verification ensures the integrity and accuracy 

of our FEM analyses, thereby supporting the dependability of the modeling outcomes. 

 

4.3 Comparative Analysis of Various Modeling Techniques 

 



 

56 

 

4.3.1 Comparison of Force and Energy Methods  

 

In Chapter 3, we introduced both full and partial coupling methods, which differ primarily in 

whether they account for the interplay between magnetic and mechanical deformations. 

Additionally, there are several approaches to integrating magnetic influences into mechanical 

models, and we will explore two such methods in detail. The Magnetic Body Force Method 

(MBFM) applies magnetic responses directly as body forces on the particles, whereas the 

Magnetic Potential Energy Method (MPEM) calculates the potential energy from the magnetic 

field using small affine deformations, derives the magnetic-induced modulus, and integrates this 

with the mechanical modulus of the composite. 

 

Finite element simulations were conducted using a periodic square distribution RVE to compare 

and validate these methods. Both approaches employed the dipole model to ensure consistent 

magnetic response calculations. A range of shear strains from 1% to 10% was applied to both 

models, allowing for the measurement of the effective shear modulus at various strain levels. The 

influence of the magnetic field on the shear modulus was assessed and is depicted in Figure 4.1. 

The same magnetic fields, material properties, and boundary conditions were maintained across 

both simulations to ensure a fair comparison of the two methods. 
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From the results, it is evident that the relative MR effects of both methods are almost identical at 

a small shear strain of 1%. This agreement at lower strains indicates that both coupling methods 

can accurately capture the initial response of the material. However, as the strain increases, the 

differences between the methods become more pronounced. This discrepancy may be attributed 

to several factors, including the FEM mesh quality or the specific boundary conditions applied.  

In the RVE used, particles are bisected and located on the RVE boundary, causing parts of the 

particles to be constrained by the periodic boundary condition. When applying body forces, it is 

crucial to avoid the boundary regions since they are already constrained. This precaution may 

lead to eccentric effects as the shear strain increases, contributing to the growing difference 

observed between the two methods at higher strain levels.  

Figure 4.1 The effect of shear strain amplitude on relative MR effect for body force method and energy method. 
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Despite these potential issues, the difference between the methods is about 6% at a shear strain of 

10%. This indicates that both methods are reliable and nearly identical for small deformation 

situations, as they are built under the affine deformation assumption. However, as the strain 

increases, the affine deformation assumption becomes invalid, and the accuracy of these methods 

may be compromised. For finite strains, where the deformation is nonlinear and more complex 

interactions occur, other methods need to be employed to accurately predict the material 

behavior.  

 

4.3.2 Comparison of 2D and 3D Models 

 

In this section, we explore the usage of three-dimensional models versus two-dimensional 

models in simulating the behavior of MREs. Due to the presence of particle chains, MREs are 

typically treated as transversely isotropic materials. Unlike fiber-reinforced composites, where 

the reinforcing elements are often elongated fibers, the particles in MREs are spherical. This 

distinction makes it challenging to directly convert 3D models into 2D representations, 

necessitating a detailed comparison between the two modeling approaches. A meshed 3D model 

of the square periodic distribution is shown in Figure 4.2. 
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For 3D modelings, the application of PBCs is more complex. The faces, edges, and corners of 

the RVE need to be paired separately according to the deformation, ensuring that the RVE 

accurately represents the infinite material. Additionally, to prevent rigid body motion, specific 

displacement constraints must be applied to the corner nodes. These constraints are crucial for 

maintaining the stability and accuracy of the simulation. In contrast, 2D models involve simpler 

PBCs, typically applied to the boundaries of the 2D plane. The volume fraction is an important 

consideration due to the spherical shape of the particles. Under the same volume fraction and 

RVE size, the radius of the particles will differ between 3D and 2D models. This difference 

affects both the mechanical and magnetorheological properties of the material. In 3D models, the 

actual spatial arrangement and interaction of the spherical particles can be accurately captured, 

leading to more realistic simulations of the MR effect and mechanical behavior. In 2D models, 

particles are often represented as circles, and the packing density can differ significantly from the 

3D case. This discrepancy can lead to variations in the predicted properties, as the interactions 

are simplified and may not fully capture the complexity of the three-dimensional particle 

network. The mechanical and magnetorheological effects in 3D models are influenced by the full 

Figure 4.2 3D RVE showcasing a square periodic distribution, generated using ANSYS. 
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spatial arrangement of the particles. This allows for a more comprehensive analysis of the stress 

distribution, deformation patterns, and magnetic interactions. The 3D nature of the particles and 

their interactions is critical for accurately predicting the material's response under various 

loading and magnetic field conditions. In 2D modelings, these effects are simplified, potentially 

overlooking important out-of-plane interactions and stresses. 

 

However, given that we are only applying the load on the x-y plane of the model, the out-of-

plane response is not as critical. Our primary objective is to measure the influence of different 

microstructural parameters on the behavior of MREs, rather than achieving highly precise 

simulations. And for this purpose, 2D models are sufficient. This approach significantly reduces 

the meshing requirements and computational time, making the simulations easier to converge. 

While this simplification might not be significant in linear simulations, it becomes crucial for 

later simulations involving interactions, buckling, and finite deformation, where computational 

efficiency is essential. A comparison of 2D and 3D models for hysteresis simulation will be 

presented in the next chapter. 

 

4.3.3 Comparison of Random and Periodic Distribution  

 

In this section, we aim to study the behavior of MREs with different particle distributions under 

a magnetic field. Utilizing the assumption of the partial coupling method, the magnetic response 

and mechanical response can be treated separately. Here, we focus specifically on the mechanical 

response, examining the effective shear modulus. To perform this analysis, we generate 100 

RVEs with random particle distributions, each containing 16 particles with a volume fraction of 
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30%. A 1% shear strain is applied as the boundary condition. The effective shear modulus of 

these RVEs is calculated without applying a magnetic field to isolate the mechanical properties. 

In addition to the random distribution RVEs, the effective shear modulus for two periodic 

particle distribution RVEs discussed previously is also calculated. For reference, we include 

results from two analytical methods: the Hashin-Shtrikman lower bound (HSB-L) and the Self-

Consistent Method (SCM). 

 

The Hashin-Shtrikman lower bound provides a theoretical minimum for the effective modulus of 

composite materials. It assumes an idealized microstructure where the particles are perfectly 

dispersed within the matrix. The HSB-L for the shear modulus is given by [96]: 

𝐺𝐻𝑆𝐵−𝐿 = 𝐺𝑚 +
𝑉𝑝(𝐺𝑝−𝐺𝑚)

1+
𝑉𝑚(𝐺𝑝−𝐺𝑚)

𝐺𝑝+𝐺𝑚

 ,                         (4-10) 

Where  𝐺𝑚 is the shear modulus of the matrix, 𝐺𝑝 is the shear modulus of the particles, 𝑉𝑚 is the 

volume fraction of the matrix, and 𝑉𝑝 is the volume fraction of the particles. For composites with 

hard inclusions like MREs, another method proposed by G. J. Weng [97] is able to yield identical 

results. 

 

The Self-Consistent Method [98,99] is another analytical approach that estimates the effective 

properties of composite materials. It assumes that each phase in the composite behaves as if it 

were embedded in an effective medium whose properties are those of the composite. The 

effective shear modulus 𝐺𝑆𝐶𝑀 is found by solving the following equation: 

𝐺𝑆𝐶𝑀 = 𝐺𝑚 +
𝑉𝑝(𝐺𝑝−𝐺𝑆𝐶𝑀)

1+
𝐺𝑆𝐶𝑀(𝐺𝑝−𝐺𝑚)

𝐺𝑚(𝐺𝑝+𝐺𝑚)

 ,                                   (4-11) 
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The results are summarized in Figure 4.3. According to the results, the effective shear modulus 

of the RVEs with random microstructures falls between the HSB-L and SCM estimates. This 

finding aligns with previous research, as the HSB-L typically provides a lower estimate, while 

the SCM tends to overestimate the effective modulus. 

 

 

 

According to the results, the effective shear modulus of the RVEs with random microstructures 

falls between the HSB-L and SCM estimates, aligning with previous research findings. This 

range indicates that the random distributions offer a realistic representation of the material's 

behavior, reflecting the variability and complexity inherent in actual MRE structures. 

Additionally, the variation of the effective shear modulus due to the distribution is a maximum of 

Figure 4.3 Effective shear modulus comparison for RVEs with random and periodic distribution. 



 

63 

 

10%, which is relatively small and indicates a stable mechanical performance across different 

random configurations.  

 

Interestingly, the two periodic distribution RVEs exhibit significant differences. The hexagonal 

periodic distribution, with a value of 1.13, exceeds the SCM estimate, suggesting an 

overestimation of the modulus due to the idealized arrangement. Conversely, the square periodic 

distribution, with a value of 0.93, falls below the HSB-L estimate. This deviation implies that 

periodic particle distributions may not be representative of the actual behavior of MREs in 

practical applications, where such ordered patterns are unlikely to occur naturally. Consequently, 

it is crucial to carefully consider the particle distribution used in modelings. Relying on periodic 

patterns might not provide an accurate depiction of the mechanical properties of MREs, and 

selecting appropriate microstructural models is essential for accurately predicting their behavior. 

The magnetic response is calculated separately from the mechanical response. While the 

mechanical response, represented by the shear modulus, remains relatively stable across different 

particle distributions, the MR effect in random distributions exhibits considerable instability, 

with significant variations depending on the specific particle arrangements. This variability is 

characterized by both positive and negative MR effects, indicating a wide range of responses to 

the applied magnetic field. Such significant fluctuations suggest that random distributions might 

not be ideal for detailed, consistent studies of the MR effect due to their inherent unpredictability.  

 

Previous research has shown that the MR effect is most pronounced when particles are aligned in 

chain-like structures. These chain structures facilitate stronger magnetic interactions, leading to a 

more substantial and predictable MR effect. Therefore, to achieve more reliable and detailed 
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studies of the MR effect, we focus on using RVEs with chain structures. It allows for a more 

controlled and systematic investigation of the MR effect, providing insights that are more 

applicable to real-world applications where predictable and robust MR behavior is desired. 

 

4.4 Analysis of MREs with Chain Structures 

 

In this section, we delve into modelings leveraging chain structures to examine the MR effect. 

Chain structures significantly amplify the MR effect due to the robust magnetic interactions 

among aligned particles. We discuss various RVEs designed for these structures and adopt the 

body force method to apply magnetic responses as body forces. The modelings consider two 

scenarios regarding chain length: entire chain and partial chain. The entire chain model treats the 

chain within the RVE as isolated, disregarding any interactions with particles outside the RVE. 

This simplifies the analysis but may not capture all realistic interactions. In contrast, the partial 

chain model views the chain inside the RVE as part of a larger continuum within the MRE. This 

requires implementing periodic magnetic boundary conditions to simulate the effects of external 

particles, enhancing the realism of the modelings. 

 

For our detailed analysis, we primarily utilize the entire chain assumption for the body force 

method modelings, ensuring clarity in observing the direct impacts of internal magnetic forces. 

Additionally, we conduct supplementary modelings that explore the magnetic boundary effects, 

confirming the influence and ensuring a comprehensive understanding of the magnetic response 

across different chain configurations.  
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We begin with an RVE containing two particles forming a straight chain and incrementally 

increase the number of particles up to ten while keeping the volume fraction constant. The 

relative MR effects for these configurations are calculated and shown in Figure 4.4. The results 

indicate that the relative MR effect increases significantly when the number of particles in the 

chain is small. Specifically, the MR effect exhibits a steep rise as the chain lengthens from two to 

four particles. However, as the number of particles increases beyond four, the rate of change in 

the MR effect diminishes, and the curve tends to flatten. This suggests that beyond a certain 

number of particles, the additional length of the chain has a reduced impact on the MR effect. 

Based on these observations, we select a chain model with at least four particles for subsequent 

modeling and simulations. This ensures that the model includes enough particles to accurately 

represent the real situation in MREs while maintaining computational efficiency.  

 

Figure 4.4 Relative MR effect for straight chain RVEs with varying particle numbers. 
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Besides, we explore the MR effect using a two-particle interaction model under shear 

deformation. This model allows us to examine the differences in MR effect between straight and 

wavy chains and how the MR effect changes with increasing shear deformation. Additionally, we 

consider the impact of chain-to-chain interactions. We build a two-particle interaction model as 

shown in Figure 4.5. Similar to the previous setup, we initially place two particles vertically 

aligned. Instead of rotating the second particle, we move it horizontally to the right to simulate 

wavy chains or changes in position under shear deformation. Under affine shear deformation in 

the x-direction, the MR effect is primarily influenced by the x-component of the magnetic 

interaction force Fmx. By taking the derivative of Fmx, we can estimate how the MR effect 

changes with the relative distance between the particles. 

 

The results of these simulations are shown in Figures 4.6. The x-values are normalized according 

to the maximum positive value, and the y-axis represents the distance ratio 𝑞, where 𝑞 =
𝑟𝑥

𝑟𝑦
. 

Positive x-values indicate attraction, while negative x-values indicate repulsion. 

 

 

Figure 4.5 A sketch of the 2 particle interaction model under shear deformation. 
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Based on the results, the MR effect is largest when the particles are vertically aligned (𝑞 = 0). 

This suggests that straight chains provide the strongest MR effect, as the magnetic interactions 

Figure 4.6 Normalized magnetic force Fmx vs. distance ratio q. 

Figure 4.7 Normalized MR effect vs. distance ratio q. 
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are maximized in this configuration. As the particles move horizontally, simulating wavy chains 

or changes due to shear deformation, the MR effect changes. At 𝑞 = 0.28, there is a critical 

transition point where the MR effect shifts from positive to negative, indicating a change from 

positive to negative MR effect.  

 

As the distance ratio qqq increases further, the Negative MR effect decreases until reaches its 

peak at 0.53. When 𝑞 is greater than 1.4, the MR effect approaches zero. In such cases, since this 

pair of particles does not significantly influence the MR effect, it suggests that if 𝑞 is greater than 

1.4 for all particles on separate chains, these chains will not influence each other's MR effect. 

This finding provides an important guideline for future simulations of chain structures. When 

considering a single isolated chain, the RVE size should be adjusted based on this result to avoid 

any interference from neighboring chains, which ensures that the MR effect observed is solely 

due to the chain being studied. 

 

4.5 Conclusions 

 

Chapter 4 provided a comprehensive examination of various simulation methods for MREs 

under quasi-static conditions, focusing on both 2D and 3D models to determine their efficacy in 

depicting accurate material behavior. Initial sanity checks validated the homogenization 

processes and ensured the integrity of the RVE setups. Detailed comparisons between the 

Magnetic Body Force Method and Magnetic Potential Energy Method were conducted, 

highlighting their respective capabilities and limitations in capturing the nuanced interactions 

between mechanical and magnetic forces. This analysis also explored the impact of particle 
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arrangements and chain structures on the MR effect, revealing significant insights into how 

microstructural variations influence the overall performance of MREs. 
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Chapter 5 Viscoelasticity Analysis of Magnetorheological Elastomers (MREs) 

 

5.1 Introduction 

 

In this chapter, we delve into the hysteresis behavior of MREs by incorporating a linear 

viscoelastic matrix into our simulations. Understanding the viscoelastic behavior is crucial for 

MRE applications, as it significantly influences the material's damping properties and energy 

dissipation capabilities. Hysteresis simulations provide insights into the dynamic response of 

MREs, particularly under cyclic loading conditions, which are common in practical applications 

such as vibration isolation, damping systems, and adaptive stiffness devices. Our focus in this 

chapter is on the interactions between particles and the matrix, and the resulting MR effect under 

the influence of a viscoelastic matrix. By examining these interactions, we aim to provide a 

comprehensive understanding of the factors that govern the hysteresis behavior in MREs and 

how they can be optimized for specific applications. 

 

5.2 Linear Viscoelastic Model 

 

The linear viscoelastic behavior is characterized by time-dependent stress-strain relationships, 

which are essential for capturing the material's response under cyclic loading. We employ the 

generalized Maxwell model in combination with the Prony series to represent the viscoelastic 

properties of the matrix in our finite element simulations. The generalized Maxwell model 

consists of a series of Maxwell elements, each composed of a spring and a dashpot in series as 

shown in Figure 5.1. 
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The stress in each Maxwell element is governed by the Prony series, which describes the 

relaxation behavior of the viscoelastic material. The Prony series for the relaxation modulus is 

given by: 

 𝐸(𝑡) = 𝐸∞ + ∑ 𝐸𝑖 𝑒𝑥𝑝( −
𝑡

𝜏𝑖
) 𝑛

𝑖=1 ,                      (5-1) 

where 𝐸∞ is the long-term modulus, 𝐸𝑖 are the moduli of the individual Prony series terms,  𝜏𝑖 are 

the corresponding relaxation times, and 𝑛 is the number of terms in the series. In the context of 

FEM simulations, the generalized Maxwell model parameters 𝐸𝑖 and 𝜏𝑖 are input into the 

material model to capture the time-dependent viscoelastic behavior of the matrix. 

 

Since our focus is not to precisely capture the viscous behavior of a specific type of rubber based 

on experimental data, it is unnecessary to use an extensive number of terms in the Prony series. 

Instead, we aim to have a viscoelastic model that demonstrates suitable viscous behavior to 

effectively study the hysteresis effects in MREs. Therefore, we employ a three-term Prony series 

Figure 5.1 Sketch of the generalized Maxwell viscoelastic model. 
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in conjunction with the generalized Maxwell model. The model parameters are shown in the 

following table, where 𝐄𝟎 is the initial shear modulus: 

 

𝐄𝟏/𝐄𝟎 𝐄𝟐/𝐄𝟎 𝐄𝟑/𝐄𝟎 𝛕𝟏 𝛕𝟐 𝛕𝟑 

0.233 0.233 0.233 0.1 0.01 0.001 

 

After determining the viscoelastic model parameters, we proceed to discuss the FEM model 

setup and the homogenization process. The FEM model is subjected to a sinusoidal cyclic shear 

loading defined by the following equation: 

𝛾(𝑡) = 𝛾0 𝑠𝑖𝑛( 2𝜋𝑓𝑡) ,                           (5-2) 

Where 𝛾0 is the amplitude of shear strain and 𝑓 is the frequency. For each period of the cyclic 

loading, we use 80 time steps. These time steps are uniformly divided over the period to ensure 

more points are concentrated around the turning points of the sine wave, facilitating better 

convergence. To eliminate the transient effects that occur at the beginning of the simulation (at 

time 𝑡 = 0), each simulation runs for at least three periods. To obtain the hysteresis curve, the 

stress and strain data at every node of the model are calculated and stored at each time step. The 

homogenization procedure is also performed at each time step. As previously discussed, we use 

the traction method for homogenization, which accounts for the time-dependent effects of the 

viscoelastic material. 

 

5.3 Comparison of 2D and 3D Models Under Sinusoidal Loading 

 

Table 5.1 Parameters for the Prony series model. 
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To further investigate the viscoelastic behavior of MREs, we constructed two models: one in 2D 

and the other in 3D. Both models feature a straight chain containing five particles, with the same 

particle radius, particle distance, and matrix size in the x-y plane. These models were subjected 

to a sinusoidal cyclic loading with an amplitude of 0.1 shear strain amplitude and a frequency of 

10 Hz. No magnetic field was applied in this simulation. Periodic boundary conditions were 

applied to both models. However, due to the difference in geometry, the 2D model inherently has 

a higher volume fraction compared to the 3D model. 

 

The sinusoidal cyclic loading is applied uniformly, with both models undergoing multiple 

loading cycles to reach a steady-state response and eliminate transient effects from the initial 

conditions. The stress and strain data at every node are calculated and stored at each time step, 

and the homogenization procedure is performed to capture the overall material response 

accurately. 
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The results, shown in the following Figure 5.2, highlight the differences in hysteresis behavior 

between the 2D and 3D models. By comparing these loops, we can observe the influence of 

dimensionality and volume fraction on the viscoelastic response. While the absolute values may 

differ due to the differences in volume fraction and geometry, the overall trends and viscous 

behavior are expected to be consistent between the 2D and 3D models. The findings support the 

use of 2D models in later simulations, providing a practical balance between computational 

efficiency and the ability to capture essential viscous behavior. 

 

5.4 Dynamic Modulus 

 

The dynamic modulus characterizes the material's response to oscillatory loading, providing 

insights into its stiffness and damping properties. The dynamic modulus 𝐸∗ is a complex quantity 

Figure 5.2 The comparison of 2D and 3D models. 
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comprising the storage modulus 𝐸′ (elastic behavior) and the loss modulus 𝐸′′ (viscous 

behavior): 

𝐸∗(𝜔) = 𝐸′(𝜔) + 𝑖𝐸″(𝜔) ,                                (5-3) 

by applying a sinusoidal strain 𝛾(𝑡) = 𝛾0 𝑠𝑖𝑛(𝜔𝑡) to the model and measure the resulting stress 

𝜎(𝑡) = 𝜎0 𝑠𝑖𝑛(𝜔𝑡 + 𝛿), where 𝛿 is the phase angle, the storage modulus and loss modulus can 

be obtained using the following equation: 

𝐸′(𝜔) =
𝜎0

𝛾0
𝑐𝑜𝑠( 𝛿) ,                                    (5-4) 

𝐸″(𝜔) =
𝜎0

𝛾0
𝑠𝑖𝑛( 𝛿) ,                                    (5-5) 

the magnitude of the dynamic modulus and the loss factor are given by:  

|𝐸∗(𝜔)| = √𝐸′(𝜔)2 + 𝐸″(𝜔)2 ,                           (5-6) 

𝑡𝑎𝑛( 𝛿) =
𝐸″(𝜔)

𝐸′(𝜔)
 .                                  (5-7) 

Another method to calculate the dynamic modulus involves using the stress-strain data from the 

hysteresis curve. When materials exhibit strong nonlinear behavior, their response to cyclic 

loading is not a perfect sine wave. This nonlinearity makes it challenging to accurately measure 

the energy dissipation using traditional methods that assume a sinusoidal response. To better 

capture the precise energy loss per cycle, we can utilize the area within the hysteresis loop of the 

stress-strain plot. The area enclosed by the hysteresis loop directly represents the energy 

dissipated by the material during each loading cycle. By analyzing this area, we can determine 

the loss modulus, which provides insight into the material's damping characteristics. 
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5.5 Analysis of Factors Influencing the Viscoelastic Behavior of MREs 

 

 

As noted in the literature review, the behavior of MREs is influenced by various factors both 

during fabrication and under loading conditions. In this section, we focus on discussing how the 

viscoelastic behavior of MREs is affected by magnetic field dependence, strain amplitude, and 

frequency. These factors play crucial roles in determining the dynamic properties of MREs, 

making it essential to understand their individual and combined effects to optimize MRE 

performance for specific applications. 

 

5.5.1 Magnetic Field Dependent Behavior 

 

The application of magnetic fields to MREs influences their mechanical behavior by aligning the 

magnetic particles within the matrix, thereby affecting the overall stiffness and energy 

dissipation characteristics. The chain-like microstructure of an anisotropic MRE in a magnetic 

field is in a stable energy state. Altering this structure requires additional energy to overcome the 

magnetic forces between particles, which explains the increased storage modulus. However, the 

effect of the magnetic field on damping is less clear. To further investigate the influence of 

magnetic field strength on the hysteresis behavior of MREs and verify the capability of our 

current model, we apply varying magnetic flux densities and calculate the material response.  
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Figure 5.3 presents the stress-strain hysteresis curves under various magnetic field strengths, and 

Figure 5.4 details the corresponding changes in storage modulus, loss modulus, and loss tangent 

as the magnetic field strength varies. The results depicted in Figure 5.3 align closely with 

experimental observations at lower magnetic flux densities, but significant discrepancies emerge 

as the magnetic field strength increases. Notably, the simulation shows that hysteresis curves for 

different magnetic flux densities converge at a single point when the strain is zero. This contrasts 

with experimental findings where larger magnetic flux densities cause the hysteresis curves at 

zero strain to broaden, increasing the area enclosed by these curves. This variance could be 

attributed to the model's simplification that, at zero shear strain, the magnetic force in the x-

Figure 5.3 Hysteresis loop with magnetic flux densities B = 0 mT, 50 mT, 100 mT, 150 mT, and 200 mT. 
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direction is consistently zero for all particles within the RVE. This assumption overlooks the 

complexities of particle interactions under varying magnetic fields, leading to a failure in 

capturing the shape changes of the hysteresis curves observed experimentally, suggesting a need 

for model enhancement to account for these dynamics. 

 

 
 

 

 

 

 

Figure 5.4 Dynamic modulus for different magnetic flux densities: (a) storage modulus, (b) loss modulus, (c) 

loss factor. 

(a) (b) 

(c) 
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According to Figure 5.4, the storage modulus shows a linear increase with the magnetic flux 

density, aligning with expectations and corroborating previous experimental results. This trend 

indicates that the material's stiffness enhances as the magnetic field strength increases, likely due 

to improved alignment and interaction among the magnetic particles within the matrix. On the 

other hand, the loss factor decreases with increasing magnetic field strength. While this 

observation matches the findings of some studies, it contrasts with others that report an initial 

increase in the loss factor as the magnetic field strength rises, followed by a subsequent decrease.  

 

To further evaluate the simulation capabilities of our current model, we selected two sets of 

experimental data from different studies focused on the magnetic dependency of MREs. These 

datasets were chosen because they were tested under varying conditions of frequency, magnetic 

field strength, and material properties, providing a robust basis for comparison. We constructed 

separate FEM models to align with the specific conditions described in each experiment. These 

simulations incorporated a matrix modeled as linear viscoelastic, applying a small affine 

deformation assumption for simplicity. To closely replicate the experimental setups, the RVE in 

each simulation was configured based on the specified particle distributions and volume fractions 

used in the studies. Material properties of the matrix, particularly Young's modulus, were 

carefully adjusted to match those used in the experimental conditions. 

 

The first experimental dataset, described by Norouzi et al. [100], involved testing an MRE at a 

frequency of 0.1 Hz and a shear strain of 4%. The material composition consisted of 70% 

carbonyl iron particles, 20% silicone rubber, and 10% silicone oil. The magnetic fields tested 

were 0 mT and 272 mT. The second set of experiments, conducted by Dargahi et al. [101], tested 
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an MRE at a higher frequency of 10 Hz and a shear strain of 5%. This material mix included 

40% carbonyl iron particles, 40% silicone rubber, 10% tackifier, and 10% silicone thinner. The 

differences in stiffness and damping properties of the MREs used in these two sets of 

experiments are attributable to variations in material and volume fractions. Consequently, we 

developed two sets of model parameters for them, as presented in Table 5.2. 

 

 𝐄𝟎(Mpa) 𝐄𝟏/𝐄𝟎 𝐄𝟐/𝐄𝟎 𝐄𝟑/𝐄𝟎 𝛕𝟏 𝛕𝟐 𝛕𝟑 

Set 1 0.213 0.176 0.176 0.176 1 10 100 

Set 2 0.256 0.314 0.314 0.314 0.1 0.01 0.001 

 

The results are plotted in Figure 5.5 and Figure 5.6. For both experiments, the hysteresis loops 

without a magnetic field were simulated accurately by our model. It managed to replicate most 

behaviors of the loops effectively, indicating that the basic dynamic properties of the MREs were 

well-captured. However, despite using a linear viscoelastic model, some minor nonlinear effects 

observed in the experimental results could not be fully simulated. This discrepancy suggests that 

while the model is robust in handling standard viscoelastic behavior, it may fall short in 

capturing more complex nonlinear interactions. 

 

 

Table 5.2 Material properties of the FEM model for comparison with experimental data. 
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(a) 

(b) 

Figure 5.5 Comparison of the hysteresis loop in Norouzi’s experiment with simulation results: (a) B = 0 mT, (b) 

B = 272mT. 
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(a) 

(b) 

Figure 5.6 Comparison of the hysteresis loop in Dargahi’s experiment with simulation results: (a) B = 0 mT, (b) 

B = 150 mT. 
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For both experiments, the hysteresis loops without a magnetic field were simulated accurately by 

our model. It managed to replicate most behaviors of the loops effectively, indicating that the 

basic dynamic properties of the MREs were well-captured. However, despite using a linear 

viscoelastic model, some minor nonlinear effects observed in the experimental results could not 

be fully simulated. This discrepancy suggests that while the model is robust in handling standard 

viscoelastic behavior, it may fall short in capturing more complex nonlinear interactions. 

 

When a magnetic field was applied, our model successfully captured the MR effect associated 

with changes in the storage modulus. However, significant differences were noted in the area 

enclosed by the hysteresis loops. Our simulated loops had a smaller area compared to those in 

the experimental results. This difference indicates that our model has a reduced energy 

dissipation capability, which is primarily associated with the loss modulus and loss factor. 

Additionally, the application of the magnetic field altered the shape of the curves at the extremes 

of the loops, demonstrating stress-stiffening behavior that our linear viscoelastic model, forming 

elliptical-shaped loops, failed to replicate. 

 

These findings lead us to conclude that although our model effectively predicts the hysteresis 

curves without magnetic fields and accurately captures the MR effect, it does not adequately 

predict changes in damping due to the magnetic field. The observed discrepancies, particularly in 

energy dissipation and stress-stiffening behavior under magnetic influence, highlight the need for 

a more sophisticated modeling approach. In subsequent chapters, we will explore the 

development of a new model that incorporates these nonlinear behaviors and better accounts for 

the dynamic changes induced by magnetic fields.  
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5.5.2 Strain Dependent Behavior 

 

Strain amplitude, which refers to the maximum extent of deformation an MRE undergoes during 

cyclic loading, is a crucial factor that influences these smart materials' mechanical properties and 

energy dissipation characteristics. By systematically adjusting the strain amplitude in our 

simulations, we aim to uncover the underlying mechanics that dictate how MREs respond under 

varying operational stresses. 

 

To investigate the influence of strain amplitude on the hysteresis behavior of MREs, we first 

conducted the hysteresis curves without the magnetic field for different shear strain amplitudes: 

2.5%, 5%, 10%, and 20% using the FEM model, and compared with Dargahi's experiment as 

shown in Figure 5.6. In our examination of the hysteresis behavior of MREs at a zero magnetic 

field, both the experimental and simulated models initially exhibit similar responses under small 

strain amplitudes. However, significant discrepancies between the experimental results and 

simulation predictions become apparent as the strain amplitude increases. The experimental data 

reveal a notable decrease in the slope of the hysteresis loops with increasing strain amplitude. 

This trend indicates a reduction in the storage modulus of the MREs, which decreases 

substantially as the strain amplitude increases. This behavior suggests that the material's ability 

to store energy diminishes under more significant deformations, reflecting a nonlinear 

viscoelastic response. Notably, the shape of the hysteresis loops evolves from nearly elliptical at 

low strain amplitudes to distinctly non-elliptical under higher strain conditions. This 

transformation underscores the MRE's nonlinear characteristics, particularly under high strain 

amplitudes, where the viscoelastic properties become more pronounced. 
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Contrary to the nuanced behavior captured in the experimental data, our simulation models, 

which are based on linear viscoelastic assumptions, did not show any variation in the slope of the 

hysteresis curves across different strain amplitudes. The simulated curves maintained a uniform 

elliptical shape regardless of the amplitude, indicating a consistent predicted storage modulus 

even at higher strains. This discrepancy highlights the limitations of the linear viscoelastic model 

employed in our simulations, which fails to account for the material's nonlinear response as 

observed experimentally. 

 

The inability of our current simulation model to replicate the nonlinear viscoelastic behavior 

observed in experiments, especially at higher strain amplitudes, points to a critical gap in our 

modeling approach. The linear viscoelastic model's assumption leads to predictions of elliptical 

hysteresis loops, which significantly diverge from the non-elliptical shapes seen under actual 

material testing. This discrepancy suggests that the model's assumptions are overly simplistic and 

do not capture MREs' complex interactions and mechanical responses under varied loading 

conditions. To address these discrepancies and improve the accuracy of our predictions, it is 

imperative to integrate nonlinear viscoelastic modeling approaches into our simulations. 
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(a) 

(b) 

Figure 5.7 Hysteresis loop subjected to different strain amplitudes at B = 0 mT: (a) model prediction, (b) 

Dargahi’s experiment. 
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5.5.3 Frequency Dependent Behavior 

 

Frequency dependence in MREs primarily manifests through changes in their viscoelastic 

properties under different loading rates, which can alter the material's response under cyclic 

loading, affecting the overall energy dissipation and storage capabilities. The matrix's properties, 

such as variable stiffness and damping, are highly responsive to changes in frequency, leading to 

different hysteresis behaviors under varied operational conditions. However, the magnetic 

particles and their interactions within the matrix are relatively invariant with respect to the 

frequency of the external stimuli. The core of our research is based on the premise that the 

magnetic effects—induced by the field-aligned interactions of particles—are critical to the 

functionality of MREs and do not strongly depend on the frequency.  

 

Given the focus on particle-matrix interactions, we assume that any influence of frequency on 

the hysteresis behavior of MREs primarily affects the matrix, while the interactions between the 

particles and the matrix remain consistent across the frequency spectrum. This approach 

simplifies the complexity involved in dissecting the independent effects of frequency on the 

viscoelastic matrix from the magneto-mechanical interactions that are central to our study. 

 

While this focused approach limits the scope of frequency investigation, it sharpens our analysis 

of the magnetic interaction dynamics, providing targeted insights that are vital for optimizing the 

design and application of MREs in various technological fields. Future studies could expand on 

this foundational work by integrating a comprehensive examination of frequency effects, 

especially to assess scenarios where the matrix properties significantly influence the performance 

outcomes in dynamic environments. 
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5.6 Conclusions 

 

In this chapter, we delve into the significant differences observed between the experimental 

results and the predictions from our current simulation model concerning the hysteresis behavior 

of magnetorheological elastomers under various conditions. We explore the underlying causes of 

these discrepancies and propose strategies to enhance the accuracy of our modeling approach. 

Experimental results indicate that with an increase in strain amplitude, the storage modulus 

decreases, accompanied by a change in the curve shape to a more nonlinear and strain-softening 

behavior at both ends of the hysteresis loops. This decrease in storage modulus is largely 

attributed to the Payne effect, where the presence of filler particles within the matrix contributes 

to a reduction in modulus with increasing strain amplitude. The change in curve shape is 

influenced by multiple factors, including the material properties and dynamic interactions 

between the matrix and the particles. Additionally, as the magnetic field strength increases, the 

experimental hysteresis loops become substantially larger, suggesting an enhancement in the 

damping properties of the MREs. This increase in damping is often linked not just to the 

viscoelastic behavior of the matrix but also to increased friction at the interface between the 

particles and the matrix, which intensifies as magnetic forces bring the particles closer together. 

To better replicate these behaviors in our simulations, we propose transitioning from a purely 

viscoelastic model to a visco-hyperelastic model that can capture the nonlinear behaviors 

observed under higher strain amplitudes.  

 

 

 



 

89 

 

Chapter 6 Modeling of Visco-hyperelastic Behavior of Magnetorheological 

Elastomers (MREs) 

 

6.1 Introduction 

 

In Chapter 6, we address critical issues identified in previous analyses concerning the simulation 

of hysteresis curves under varying strain amplitudes. The existing models have revealed certain 

limitations, particularly in accurately reflecting the nonlinear responses observed in experimental 

studies of MREs. To resolve these discrepancies and enhance the fidelity of our simulations, we 

have adopted a visco-hyperelastic modeling approach. This model effectively captures the 

complex interactions within the MRE matrix, accounting for factors such as the dynamic curve 

shapes, magnetic-mechanical coupling, and the Payne effect, which are critical for understanding 

the material's response under practical operational conditions. 

 

6.2 Hyperelastic Model 

 

Hyperelastic materials are characterized by their ability to undergo large elastic deformations 

reversibly. In the context of MREs, incorporating hyperelastic behavior is crucial as it allows the 

simulation to more accurately reflect the real-world mechanical properties of the matrix under 

large deformations. Hyperelastic models are particularly adept at handling the finite strain 

behaviors where traditional linear elastic models fail, making them invaluable for simulating the 

complex interactions within MREs. For our simulations, we adopt the three-parameter Mooney-

Rivlin model combined with the general Maxwell viscoelastic model to form a comprehensive 

hyper-viscoelastic model. The three-parameter Mooney-Rivlin model is a phenomenological 

model that extends the capabilities of the Neo-Hookean model by adding an additional term to 
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better accommodate the mechanical response at larger deformations. The model is defined by the 

following strain energy function 𝑊: 

   𝑊 = 𝑐10(𝐼1 − 3) + 𝑐01(𝐼2 − 3) + 𝑐11(𝐼1 − 3)(𝐼2 − 3) +
1

𝑑
(𝐽 − 1)2 ,               (6-1)   

where 𝑐10 and 𝑐01 are material constants characterizing the deviatoric deformation of the 

material; 𝐼1 and  𝐼2  are the first and second invariant of the isochoric left or right Cauchy-Green 

deformation tensor; 𝑑 is the material incompressibility parameter; 𝐽 is the determinant of the 

elastic deformation gradient 𝐹. 

The initial shear modulus μ is defined by: 

𝜇 = 2(𝑐10 + 𝑐01) ,                               (6-2) 

𝐾 =
2

𝑑
 ,                                        (6-3) 

where 𝐾 is the initial bulk modulus. To account for the time-dependent behavior of MREs, the 

Mooney-Rivlin hyperelastic model is coupled with the viscoelastic component based on the 

generalized Maxwell model we proposed in Chapter 5. The choice to combine the Mooney-

Rivlin model with viscoelastic elements is driven by the need to accurately represent both the 

immediate and long-term behaviors of MREs under dynamic loading conditions. The choice of 

the Mooney-Rivlin model over simpler models like the Neo-Hookean model is motivated by its 

superior capability to handle complex loading conditions and provide a more realistic 

representation of the nonlinear stress-strain relationships. While more complex and highly 

nonlinear models exist, employing them may obscure the specific effects of matrix-particle 

interactions that are central to our study. By using a moderately complex model like Mooney-

Rivlin, we strike a balance between accurately modeling the matrix properties and maintaining 
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focus on the interactions between the matrix and embedded magnetic particles. 

 

6.3 Strain Amplitude Dependent Behavior 

 

After updating our simulation model to incorporate visco-hyperelastic properties of the matrix, 

we conducted a series of tests to compare its predictions with the experimental data from 

Dargahi's study. The results, presented in Figure 6.1, span strain amplitudes of 2.5%, 5%, 10%, 

and 20%. The integration of hyperelastic properties into our model has introduced a level of 

nonlinearity to the predicted hysteresis curves, enhancing the accuracy of our simulations. At 

strain amplitudes of 2.5% and 5%, our model shows a strong alignment with the experimental 

results, suggesting that the visco-hyperelastic model effectively captures the material behavior 

under mild deformation conditions.  

 

However, as the strain amplitude increases to 10% and 20%, discrepancies between our model 

predictions and the experimental observations become more pronounced. Notably, the 

experimental hysteresis curves exhibit a less sharp slope at these higher strain levels, indicating a 

significant decrease in the storage modulus. This behavior, which is indicative of the material's 

nonlinear stress-strain response, is not as clearly replicated in our simulation. In our model, this 

decrease in storage modulus under higher strain amplitudes is not as apparent, suggesting that 

while the visco-hyperelastic model enhances our simulation's responsiveness to strain changes, it 

may still be insufficiently sensitive to the more extreme nonlinear behaviors exhibited by the 

MREs at higher deformations. 
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(a) 

(b) 
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(c) 

(d) 

Figure 6.1 Comparison of hysteresis loops from Norouzi’s experiment with model prediction at different strain 

amplitudes, B = 0 mT: (a) 2.5% strain, (b) 5% strain, (c) 10% strain, (d) 20% strain. 
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6.4 Modeling the Payne Effect 

 

 

Numerous studies have delved into the Payne effect within MREs, providing various 

explanations and phenomenological models. These models generally attribute the effect to 

changes in the microstructure of composites, particularly the breakdown and subsequent 

reagglomeration of particle clusters during deformation [102-104]. However, in the context of 

this research, our focus narrows specifically to the impact of the Payne effect on the matrix only. 

For our purposes, the Payne effect is primarily observed as a degradation of the matrix's filler 

network under cyclic loading. This degradation leads to a pronounced decrease in the storage 

modulus as the strain amplitude increases. By isolating this aspect, we aim to examine the direct 

implications of the matrix's response to cyclic strain without the confounding influence of 

particle aggregation dynamics typically seen in more complex composite materials. To 

effectively model the Payne effect and its impact on the matrix, we use empirical models that 

directly relate the storage modulus (G') to the strain amplitude (γ) as shown below: 

𝐺 ′(𝛾) = 𝐺0
′ −

𝛥𝐺′

1+(
𝛾

𝛾𝑐
)𝑛
 ,                                      (6-3)  

where 𝐺′(𝛾) is the storage modulus at strain amplitude 𝛾 ; 𝐺0
′  is the initial storage modulus; 𝛥𝐺′ 

is the maximum decrease in storage modulus due to the Payne effect; 𝛾𝑐 is a characteristic strain 

amplitude at which the modulus drops to half of 𝛥𝐺′; 𝑛 is a fitting parameter that describes the 

sharpness of the modulus drop. With these adjustments, we conducted simulations at a 20% 

strain amplitude again to compare with experimental results. The empirical modeling of the 

Payne effect allowed for a much more accurate prediction. The revised simulations show that the 
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storage modulus values now align closely with those observed experimentally, and the shape of 

the loading curves matches perfectly with the experimental data. 

 

However, at the turning points of the unloading curves, a small discrepancy persists, exhibiting 

more pronounced strain-softening behavior than observed experimentally. This difference may 

stem from the limitations of the hyperelastic model used in our simulations. The parameters of 

the hyper model might not be optimally configured for capturing highly nonlinear behaviors, 

suggesting that a more complex nonlinear model could be required. Additionally, other factors 

inherent to the matrix's behavior under high strain conditions could also be contributing to this 

observed discrepancy. 

 

 

 

 

 

Figure 6.2 Comparison of the hysteresis loop from Norouzi’s experiment with model prediction at 20% strain 

amplitude considering the Payne effect. 
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While our modifications to incorporate the Payne effect within the matrix have significantly 

improved the fit of our model, particularly in terms of capturing the stiffness changes under 

varying strain amplitudes, it's important to acknowledge the simplifications made in this 

approach. In our model, we have isolated the Payne effect to the matrix component of MREs, 

effectively disregarding the potentially more significant Payne effects stemming from particle-

matrix interactions. In real MRE systems, these interactions can introduce additional nonlinear 

behaviors that are more pronounced than those observed in the matrix alone. 

 

This simplification may lead to a form of overfitting where our model, while accurately 

predicting certain behaviors, might not fully account for all the complexities involved in MRE 

dynamics. The interaction between the magnetic particles and the matrix likely contributes to a 

more complex Payne effect, which could significantly influence the material's overall properties. 

Ignoring this aspect might limit the applicability of our findings, particularly under conditions 

where particle-matrix dynamics play a critical role. To address this limitation and build a more 

comprehensive understanding of MRE behavior, future research should focus on developing new 

models that explicitly simulate the Payne effect arising from particle-matrix interactions.  

 

6.5: Strain-Dependent Behavior of the Model with Magnetic Field 

 

In this section, we explore the strain-dependent behavior of MREs when subjected to a magnetic 

field. Specifically, we examine how the model performs under a consistent magnetic field of 75 

mT across varying strain amplitudes: 2.5%, 5%, 10%, and 20%. The strain-dependent curves 

obtained from these simulations are illustrated in Figure 6.3. For this series of tests, we 
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deliberately chose not to include the Payne effect in order to simplify the variables and focus 

solely on the influence of the hyperelastic properties and the magnetic field.  

 

 

 

 

From the simulations, it is evident that the introduction of hyperelastic properties into the model 

allows us to capture some of the nonlinear changes that occur in response to both the applied 

strains and the magnetic field. These nonlinearities become more pronounced as the strain 

amplitude increases, reflecting the hyperelastic model's capacity to handle large deformations 

more realistically. Despite these improvements, the analysis of the loop area under different 

strain conditions reveals no significant changes. This observation suggests that while the 

hyperelastic properties of the model do contribute to capturing the nonlinear behavior of the 

MREs, they are not the primary drivers of increased damping observed in experimental setups 

when a magnetic field is applied. The lack of clear changes in the loop area indicates that other 

Figure 6.3 Model prediction of hysteresis loop at different strain amplitudes with B = 75 mT. 
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factors, likely related to the microstructural interactions between the magnetic particles and the 

matrix, play a more crucial role in influencing the damping characteristics. 

 

6.6 Comparative Analysis of Full Coupling and Partial Coupling Models 

 

In this section, we delve into additional nonlinearities that may arise not just from material 

properties or the Payne effect, but also from the complex interactions between magnetic forces 

and mechanical deformations. As previously discussed, under conditions of small magnetic fields 

and deformations, our models typically rely on the affine deformation assumption, which 

presupposes that particle positions remain unaffected by magnetic influences. However, this 

assumption does not hold under scenarios involving larger deformations and magnetic fields, 

where particle rearrangement during the cyclic loading process is significant and influences the 

material's behavior. 

 

To better understand and simulate these complex interactions, we compare two different coupling 

methods: full coupling and partial coupling. We simulated the hysteresis curves at strain levels of 

2.5%, 5%, 10%, and 20%, with a consistent magnetic field strength of 75 mT. The results of 

these simulations are illustrated in Figure 6.4. 
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(a) 

(b) 
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(c) 

(d) 
Figure 6.4 Comparison of hysteresis loops simulated using full coupling and partial coupling methods at 

different strain amplitudes, B = 75 mT: (a) 2.5%, (b) 5%, (c) 10%, (d) 20%. 

 

 

 

(d) 
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While the general fit of the model remains satisfactory across both methods, a detailed 

examination of the hysteresis curves reveals key differences that underscore the impact of more 

complex modeling. With the full coupling approach, the hysteresis curves consistently exhibit 

smaller loop areas during the unloading phases across all tested strain levels. This characteristic 

points to a more pronounced nonlinearity in the material's response when both magnetic and 

mechanical effects are fully integrated. Notably, at higher strains (10% and 20%), the full 

coupling method shows lower peak values at the maximum strain points, indicating a subtle 

decrease in storage modulus. This behavior is particularly evident in the higher strain simulations 

and may be attributed to the interaction between magnetic forces and the hyperelastic properties 

of the matrix. The observed decrease in storage modulus and MR effect at higher strains could be 

explained by the dynamics of particle reallocation influenced by magnetic attraction. As the 

matrix becomes stiffer at larger strains, the responsiveness of particles to magnetic forces 

diminishes slightly, leading to larger inter-particle distances and consequently, reduced magnetic 

force. This phenomenon results in a minor decrease in the MR effect, which is primarily 

noticeable at higher strains. 

 

6.7 Conclusions 

 

In this chapter, we have systematically explored the hysteresis behavior of MREs under various 

conditions, focusing on the integration of visco-hyperelastic properties into our modeling 

framework. Our investigations revealed that while the visco-hyperelastic model provides a robust 

simulation of MRE behavior under mechanical loading alone, it falls short when magnetic fields 

are applied. The model accurately predicts the changes in storage modulus and the shape of 

hysteresis curves under non-magnetic conditions, demonstrating enhanced fidelity in capturing 
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the nonlinear elastic responses of the matrix. However, the critical challenge remains in 

adequately simulating the increased damping effects—manifested as larger loop areas in 

hysteresis curves—when magnetic fields are introduced. This increase in damping, a key 

characteristic observed experimentally, is not sufficiently predicted by the current model. To 

address these shortcomings, there is a crucial need to develop our simulation approach further to 

include detailed modeling of the interface effects. 
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Chapter 7 Modeling of Interface Behaviors of Magnetorheological Elastomers 

(MREs) 

 

 

7.1 Introduction 

 

In this chapter, we explore the critical aspects of interface behavior in MREs , focusing 

particularly on debonding behavior, the dynamics of particle and matrix interaction during cyclic 

loading, and the influence of interface-related parameters on the material's performance. These 

elements are pivotal in determining the hysteresis curves and the inherent nonlinearity of MREs 

under operational conditions. We will examine the mechanisms of debonding at the particle-

matrix interface, which can significantly impact the durability and functionality of MREs, 

especially under repeated mechanical stress. Additionally, the chapter will address how relative 

movements between the particles and the matrix during cyclic loading affect the material's 

mechanical integrity and damping capabilities.  

 

7.2 Debonding Analysis with Cohesive Zone Models (CZM) 

 

In our exploration of the interface behavior of MREs, understanding particle debonding under 

various loading conditions is crucial. While we anticipate minimal debonding during low shear 

amplitude loading, compressive and magnetic forces can significantly contribute to particle 

debonding. To analyze these phenomena, we utilize the Cohesive Zone Model (CZM), 

particularly focusing on its application within the context of MREs. 
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The interfacial separation in the CZM is defined by the displacement jump 𝛿, which quantifies 

the difference in displacement between adjacent surfaces of the interface. This separation is 

considered in two primary orientations: normal separation 𝛿𝑛, represented by the local direction 

𝑛, and tangential 𝛿𝑡 , denoted by the local direction 𝑡. For the purposes of this study, we employ 

the Bilinear Cohesive Zone Model, which is articulated through three main variants. The Mode I 

dominated bilinear CZM posits that the separation of material interfaces is primarily influenced 

by the displacement jump perpendicular to the interface. The Mode II dominated bilinear CZM 

suggests that the separation is chiefly governed by the displacement jump parallel, or tangent, to 

the interface. Meanwhile, the mixed-mode bilinear cohesive zone material model considers both 

behaviors, accounting for interface separations influenced by displacement jumps that are both 

normal and tangent to the interface. The equations for these behaviors can be written as: 

𝑃 = 𝐾𝑢(1 − 𝑑) ,                   (7-1) 

𝑑 = (
𝑢−𝑢̄

𝑢
) (

𝑢𝑐

𝑢𝑐−𝑢̄
) ,                        (7-2) 

where 𝑃 is the contact stress, 𝐾 is the contact stiffness, 𝑢 is the contact gap, 𝑢̄ is the contact gap 

at the maximum contact stress, 𝑢𝑐 is the contact gap at the completion of debonding and 𝑑 is the 

debonding parameter.  

 

To delve deeper into the dominant debonding mechanisms under compressive strain, we 

conducted finite element simulations applying the three modes of CZM. In these simulations, 

MRE models were subjected to a compression up to a strain of 0.25, using specific CZM 

elements tailored to each mode. After the initial compression, a very small shear strain was 

introduced to measure the effective shear modulus. The results, illustrated in Figure 7.1, show 
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different behaviors between the CZM modes: Both Mode I and the Mixed Mode exhibited 

identical patterns, where the shear modulus experienced a sharp drop at a shear strain of 0.04 and 

complete debonding occurred at 0.05, indicating a sudden reduction in load-bearing capacity. 

Contrarily, Mode II begin to debond at the same initial point but displayed a more gradual 

decrease in shear modulus, extending to a strain of 0.14 with a smoother and less steep curve.  

 

 

 

The distinct debonding behavior observed with Mode II suggests that tangential interactions, 

represented by Mode II, play a significant role in the debonding process under compressive and 

subsequent shear forces. Post-debonding behavior was similar across all modes, confirming 

uniform material properties once the interfaces had fully deboned. Given these findings, and to 

simplify further calculations, we will use Mode II CZM model in subsequent simulations.  

Figure 7.1 Analysis of Dominant CZM Modes in Debonding Behavior of MREs through Effective Shear 

Modulus Curves under Increasing Compressive Strain. 
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Exploring the impact of interface stiffness on the debonding is crucial for optimizing their 

performance in dynamic environments. This section investigates how different levels of interface 

stiffness influence the debonding process under mechanical stress. We utilize four distinct CZMs, 

each designed to represent varying degrees of interface stiffness. These models range from 

relatively flexible to nearly rigid, mirroring conditions from loosely bonded particle interfaces to 

almost fully bonded scenarios. We assign the parameters with CZM1 establishing the base level 

of stiffness. Subsequent models increase in stiffness, with CZM2 having double, CZM3 four 

times, and CZM4 fifty times the stiffness of CZM1. CZM4 essentially simulates a nearly bonded 

interface, serving as a comparative benchmark for maximum interface rigidity. Each model is 

subjected to a predefined compression up to a strain of 0.25, followed by a minor shear strain to 

measure the effective shear modulus. 

 

 

 

Figure 7.2 Debonding behavior with CZMs of different stiffness under compression. 
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The simulation results, illustrated through Figure 7.2, depict the debonding process across 

different stiffness settings. With increasing stiffness, there is a noticeable delay in the onset of 

debonding, corroborated by higher strain thresholds required to initiate interface failure. 

Moreover, stiffer interfaces exhibit a more rapid progression to complete debonding, 

characterized by sharper drops in shear modulus, indicating a sudden release of stored energy. 

Post-debonding analysis reveals that although the general pattern of the shear modulus curves 

remains consistent, the absolute values vary. Models with stiffer interfaces show higher residual 

shear modulus values post-debonding, suggesting that these interfaces retain more of their 

structural integrity and load-bearing capacity even after failure. 

 

Besides compression, we have extended the analysis to include the effects of magnetically 

induced forces on debonding patterns, particularly focusing on straight chain models. Similarities 

between debonding behaviors under magnetic fields and those observed under compressive 

strains highlight the significant role of mechanical and magnetic forces at the particle interfaces. 

FEM simulations of a single particle model reveal typical particle interface statuses before and 

after debonding as shown in Figure 7.3. These visualizations show that debonding predominantly 

initiates at the left and right tips of the particle interface, where stress concentrations are most 

likely exacerbated by both compressive and magnetic forces. This pattern suggests a uniform 

stress distribution that progressively extends to the upper and lower regions of the particle, 

leading to full interface failure.  
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While the simulation results offer valuable preliminary insights, the real-world behavior of 

interfaces in MREs is considerably more complex. Several factors can influence and potentially 

exacerbate debonding, including initial material defects, the effects of temperature fluctuations, 

and creep under prolonged stresses. These elements can initiate debonding in areas that 

simulations predict to be stable and can cause debonding to propagate in unpredictable ways, 

complicating the prediction of material behavior under operational conditions. The use of the 

CZM in our simulations, while invaluable for detailed analysis of interface mechanics, brings 

significant computational challenges. The accuracy of CZM heavily depends on the quality of 

the mesh used in FEM simulations. Which results in a longer computation time. Furthermore, 

when CZM is integrated with other modeling approaches to capture different aspects of material 

behavior, it often complicates the FEM models, leading to difficulties in achieving convergence. 

Therefore, there's a need for building new models that account for these challenges. 

 

 

 

Figure 7.3 Illustration of interface debonding process using FEM model. 
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7.3 Modeling of MREs with Various Initial Debonding States 

 

Predicting the real interface conditions in MREs is inherently challenging due to the diverse 

material combinations and varying manufacturing conditions. To better simulate the range of 

possible interface behaviors and account for uncertainties, we have developed three distinct types 

of interface models that reflect different degrees of bonding between the particles and the matrix. 

The fully bonded (FB) model assumes an ideal bonded surface where the interface between the 

particle and matrix is very strong, representing conditions where no debonding occurs due to 

optimal adhesion achieved through superior material choice or manufacturing processes. 

Conversely, the fully debonded (FDB) or weakly bonded interface model considers a scenario 

where the particles and matrix have completely separated prior to the simulation, assuming 

interactions are purely frictional—a situation that might arise from poor processing or inherent 

material weaknesses. Additionally, we introduce two partially bonded (PB) interface models to 

capture more complex and realistic scenarios. The first of these models reflects debonding 

occurring only at the left and right sides of the particle, informed by stress concentration points 

identified in previous simulations using the CZM. The second partially bonded model 

incorporates initial defects, allowing debonding to potentially occur at any point around the 

particle, and is suitable for materials with known imperfections affecting interface integrity. 

 

To effectively simulate the two debonding behaviors described, we employ a schematic model as 

illustrated in Figure 7.4. The model depicts a particle sectioned into four distinct regions through 

cuts along the top, bottom, left, and right sides. These divisions are designed to isolate sections 

of the particle interface, allowing for differential treatment of each segment. The perpendicular 

distances from the cut lines to the particle's center, denoted as 𝑎𝑡, 𝑎𝑏, 𝑎𝑙, and 𝑎𝑟, serve as crucial 
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parameters in defining the interface conditions. Each region is equipped with contact elements 

that can be either bonded or debonded, with debonded regions incorporating interface friction to 

simulate physical interactions. 

 

To manage the interface conditions, the parameters as 𝑎𝑡, 𝑎𝑏, 𝑎𝑙, and 𝑎𝑟 are adjusted. For models 

simulating debonding solely on the left and right sides, 𝑎𝑡 and 𝑎𝑏 are set equal to the particle 

radius, effectively keeping the top and bottom regions bonded. Conversely, 𝑎𝑙, and 𝑎𝑟  are 

adjusted to represent the debonding status along the sides of the particle. In the scenario where 

debonding is randomized, a total debonding ratio, 𝑑𝑟, is employed. This ratio is calculated as 

𝑑𝑟 = 𝑐𝑜𝑠(𝑎𝑡) + 𝑐𝑜𝑠(𝑎𝑏) + 𝑐𝑜𝑠(𝑎𝑙) + 𝑐𝑜𝑠(𝑎𝑟), distributing the debonding status across each 

particle interface region based on this cumulative measure. This method allows for the 

simulation of varied debonding patterns, reflecting more complex, real-world conditions where 

debonding might not uniformly affect all sides of a particle. By controlling these parameters, we 

can finely tune the interface model to reflect different levels and patterns of debonding. 

 

 

 Figure 7.4 A sketch of the interface debonding status model with four regions. 
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We conducted detailed simulations to examine hysteresis loops under different interface 

conditions: fully bonded, weakly bonded, and partially bonded interfaces, specifically at the left 

and right sides with parameters 𝑎𝑙 = 𝑎𝑙 = 0.5𝑟. Each model was subjected to a consistent testing 

protocol of a 5% shear strain amplitude at a frequency of 10Hz and an interface friction 

coefficient of 0.4. To investigate the effects of magnetic influences, these simulations were 

initially performed without a magnetic field and subsequently with a small magnetic field of 

B=10mT.  

 

The fully bonded interface model demonstrated a robust hysteresis loop, indicative of high 

energy storage and dissipation capabilities. This suggests that strong bonding at the interface 

effectively transmits mechanical loads across the MRE, enhancing its functional properties under 

cyclic loading. In contrast, the weakly bonded interface exhibited a much thinner loop, reflecting 

a significant reduction in both the storage and loss modulus. The curve was notably more 

nonlinear, highlighting how complete loss of bonding can degrade the material's response to 

mechanical stresses. The partially bonded model showed a hysteresis loop that was slightly 

thinner and shorter than the fully bonded case but maintained a shape with reduced nonlinearity. 

This observation suggests that partial debonding, specifically at the sides of the particle, 

minimally impacts the overall mechanical behavior compared to complete debonding, preserving 

much of the material's inherent properties.  

 

When a magnetic field of 10mT was introduced, the fully bonded model did not exhibit any 

significant change in damping behavior, typically evident at zero strain. However, the weakly 

bonded model displayed slight changes. The loop became more linear on the loading curve, 
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possibly indicating that the friction behavior, which predominantly occurs at the top and bottom 

regions of the particle in fully bonded cases, is not a significant factor in our debonding setup 

where these regions remain fixed. This aligns with some experimental findings and supports the 

hypothesis that in debonding conditions where friction is absent, the magnetic field does not 

enhance damping as expected. 

 

We also explored the effects of random initial defects on the interface through a series of 

simulations. These simulations employed varying debonding ratios and statuses to mimic the 

unpredictable nature of material defects. The results from these simulations were notably 

inconsistent, displaying a wide array of values for the hysteresis curves. This variability 

underscores the complex influence that random defects have on the mechanical behavior of 

MREs. Despite the unpredictability, the resultant curve values consistently fell within the range 

observed between fully and weakly bonded cases. This observation suggests that while the 

debonding status at different regions of the interface significantly impacts the overall response of 

the MREs, the extreme cases of fully bonded and weakly bonded provide boundaries for the 

possible behaviors. Given the high variability and the extensive computational resources required 

to accurately simulate each possible defect scenario, we have decided not to focus in detail on 

this aspect of the study. Instead, to achieve more consistent results and understand the maximum 

potential for damping behavior changes, we are opting to use the weakly bonded model in 

subsequent simulations.  
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7.4 Interface Analysis 

 

 

Our prior simulations have revealed that interface friction significantly impacts the hysteresis 

curves, leading to unusual loss modulus characteristics and greater nonlinearities. To delve 

deeper into the origins of these phenomena, we are now focusing on how interface behaviors are 

influenced by magnetic fields and cyclic loading, particularly observing how magnetic forces 

affect particle alignment and interface status within a vertically oriented chain. Building on the 

foundational work of previous researchers who considered simple interface conditions [105,106], 

we aim to develop and integrate more detailed interface models into our simulations. 

 

Figure 7.5 The influence of magnetic field on the hysteresis behavior of models with different debonding 

conditions. 
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7.4.1 Modeling of Interface Condition Under Magnetic Field 

 

For this detailed examination, we have constructed a model with five particles arranged in a 

straight chain, serving as an illustrative tool to demonstrate the interaction dynamics under 

magnetic influences without any applied shear strain. As depicted in the figure(, different 

particles within the chain exhibit varied interface statuses when subjected to a magnetic field. 

The outside particles, numbers 1 and 5, are attracted towards the center of the chain by the 

magnetic field, resulting in only one part of each particle—facing towards the center—remaining 

in contact with the matrix, a scenario we refer to as "Interface 1." The third and fifth particles 

experience a combination of magnetic attraction and mechanical compression from the chain, 

ensuring that both the top and bottom regions of these particles are in contact with the matrix, a 

condition labeled as "Interface 2." The middle particle, number 3, experiences no direct magnetic 

force due to its symmetrical position within the chain but the compressive forces exerted by its 

neighboring particles cause both of its vertical sides to touch the matrix, and we call it "Interface 

3." 
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The potential for these interface conditions to change or transition between each other during the 

loading process depends on the strength of the magnetic field and the interface friction 

coefficient.  

 

To systematically describe the evolving interface behavior under cyclic loading within MREs, 

we have identified a progression through several distinct stages: 

1. Initial Sliding Stage: At low magnetic fields, most parts of the particle surface 

experience relative sliding due to cyclic loading. This initial stage is marked by 

substantial nonlinear energy dissipation as the particles are less constrained, allowing for 

significant movement at the interfaces, which increases the system's overall energy loss. 

Figure 7.6 FE model illustration of different interface conditions within a chain under the magnetic field. 
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2. Partial Bonding Stage: As the magnetic field strength increases, the energy dissipation 

capability of the MRE also rises, albeit at a varying rate. When the magnetic field reaches 

a certain threshold, a portion of the particles becomes bonded to the matrix due to 

magnetic forces, effectively eliminating relative movement at that interface. The particles 

are then considered partially bonded. Energy loss during this stage primarily results from 

friction between the unbonded surfaces and the matrix. Despite further increases in 

magnetic field strength, the rate of energy dissipation begins to plateau, and the damping 

behavior becomes more linear. 

3. Increased Bonding Stage: At higher magnetic field strengths, the chain length 

compresses due to the force exerted by the side particles in the chain, causing more than 

one region of the particles to bond with the matrix through increased friction. This stage 

resembles previously simulated conditions where particles with both top and bottom 

regions fixed exhibit partial bonding, resulting in a stable damping behavior. Further 

increases in magnetic field strength primarily enhance the storage modulus, with 

diminishing effects on damping properties due to reduced areas available for energy-

dissipating interface slippage. 

 

To verify our assumptions and gain a deeper understanding of the described stages, we 

constructed a model similar to that depicted in the earlier figure() to track the friction energy of 

each particle during the cyclic process. This measurement serves as an indicator of the energy 

dissipation capability and interface behavior within the system. To accurately measure the 

friction energy, we coupled each interface node with its closest matrix node, calculating both the 

tangential and vertical relative displacements and reaction forces at every timestep. The friction 
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energy 𝑈 at one node at the end of time step 𝑛 + 1can be estimated using the formula 𝑈 =

𝐹𝑛(𝑑𝑛+1 − 𝑑𝑛), where 𝐹𝑛  is the tangential reaction force at timestep 𝑛, and 𝑑 represents the 

tangential relative displacement at certain time steps. The total friction energy for one particle at 

a given time point is then calculated by summing the energy contributions from each node on 

that particle. 

 

The results of this simulation are depicted in Figure 7.7. We considered three types of initial 

interface conditions—Interface 1 (a), Interface 2 (b), and Interface 3 (c)—which correspond to 

particles 1, 2, and 3, respectively.  

 

 
 

 

 

(a) 



 

118 

 

 
 

 

 
 

 

 

 

Figure 7.7 Friction energy of different interface conditions: (a) interface 1, (b) interface 2, (c) interface 3. 

 

 

(b) 

(c) 
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For all the interface conditions analyzed, the friction energy versus shear strain hysteresis curves 

exhibit a generally similar "butterfly" shape, indicative of distinct friction behaviors at each stage 

of cyclic loading and highlighting the highly nonlinear nature of these interactions. A key 

observation is that during the loading phase from zero to maximum shear amplitude, the friction 

energy is higher than during the unloading stage, resulting in the characteristic hysteresis 

behavior. Upon closer examination, the curves for different interface conditions reveal notable 

variations.  

 

For Particle 1, with the application of a small magnetic field, there's an overall increase in 

friction energy, alongside noticeable changes in the curve shape at strain=0, there's a significant 

increase in value. However, as the magnetic field strength is further increased, the trend of 

change diminishes, and the zero-strain point shows little alteration, suggesting that during 

loading, when a magnetic field is applied, the particle adheres to the matrix at the bottom due to 

the magnetic force, hence the marked change at zero strain. However, further increasing the 

magnetic field doesn't affect the already bonded bottom part but only increases friction around it, 

hence the minimal change with higher magnetic fields. 

 

Particle 2 appears to go through the three stages we previously hypothesized at low magnetic 

fields, the curve is highly nonlinear, indicating a complex interface behavior transitioning 

between static and dynamic friction. As the magnetic field increases, the curve begins to exhibit 

partially linear behavior, and further increases in the magnetic field result in value changes but 

no significant shape alterations, suggesting that the interface behavior has settled into Stage 2. At 

high magnetic fields, the increase in friction energy with magnetic field strength diminishes, 
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indicating that the particles are nearing a partially fixed state where further increases in magnetic 

field have little effect on energy loss.  

 

Particle 3, being symmetrically loaded, as the magnetic field increases, the increase in friction 

energy appears linear and does not diminish with further increases in the magnetic field. This 

unique behavior could be indicative of the symmetrical load distribution, allowing continuous 

linear increases in friction energy without the reductions observed in other particles. In Figure 

7.8. we plot the total friction energy per cycle for these three cases by adding up the value at each 

time step. 

 

        

 
(a) (b) 
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Figure 7.8 provides a comprehensive overview of the energy dissipation capabilities associated 

with particles exhibiting different interface behaviors under magnetic field influence. Particle 1 

shows a minimal increase in friction energy with the application of a magnetic field and quickly 

reaches a plateau at a relatively low magnetic field strength. This indicates that Particle 1 has a 

limited ability to lose energy, suggesting that its interface condition does not significantly 

contribute to the overall damping properties of the MRE.  

 

Particle 3 presents an interesting case; although it starts with a low initial friction energy value, it 

demonstrates a linear increase in friction energy relative to the magnetic field strength, 

continuing even at higher field strengths. However, this behavior is specific to the symmetrically 

loaded position of Particle 3 within the chain, making it a rare occurrence in practical scenarios. 

Consequently, while interesting, Particle 3's behavior does not typically represent common 

conditions in real-world applications of MREs, and thus does not require extensive focus in our 

modeling efforts.  

Figure 7.8 Friction energy per cycle of different interface conditions: (a) interface 1, (b) interface 2, (c) interface 

3. 

 

 

(c) 
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Particle 2, on the other hand, is critical to our analysis. It is a common occurrence in chains and 

exhibits the highest friction energy among the particles. The friction energy for Particle 2 

initially increases linearly with the application of a magnetic field but shows a reduction at 

higher strains. This behavior indicates that Particle 2's interface condition plays a significant role 

in influencing the damping properties of the MRE, particularly in how the MRE behaves under 

various magnetic field strengths and mechanical strains. 

 

7.4.2 Modeling of Particle Rotation 

 

We further extended our investigation by constructing a model to analyze particle rotation during 

the loading process, specifically focusing on Particle 2. We monitored the position of the middle 

node and the boundary nodes of Particle 2, calculating the rotation angle at every time point 

throughout the cyclic loading process. In Figure 7.9, the simulation results are displayed without 

a magnetic field, and different friction coefficients are considered. It's evident that while the 

curves are linear near the ends of the particle, there is a distinct loop curve in the middle region 

close to zero strain. This loop indicates the transition between static and dynamic friction 

experienced by the particle during the loading cycle. As the friction coefficient increases, this 

behavior intensifies, resulting in a larger and flatter loop in the middle region. Additionally, 

higher friction coefficients correlate with a decrease in the maximum rotation angle of the 

particle. 
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Figure 7.10 compares the rotation angle results with and without the application of a magnetic 

field at a 0.3 friction coefficient. The results demonstrate that the application of a magnetic field 

reduces the particle's rotation angle and introduces more nonlinearity in the curve's shape. 

However, the magnetic field restricts the transition between different friction behaviors during 

loading, resulting in less abrupt changes compared to scenarios with no magnetic field. 

These findings indicate that particle rotation occurs only at very small values during the loading 

process. Moreover, with the increase of both magnetic field strength and friction coefficient, the 

particle becomes increasingly difficult to rotate, exhibiting even smaller rotation angles. In 

previous chapters, we noted that during simulations using the dipole method, the dipole moment 

is assumed to be perpendicular to the magnetic field, thus producing no torque. In this chapter, 

considering interface rotation necessitated a reevaluation of this behavior. However, our 

simulation results confirm that the rotation induced by shear loading is minimal, suggesting it 

does not significantly influence our overall simulation outcomes. Therefore, we conclude that it 

is unnecessary to consider this minor rotation in our broader analysis of MRE behavior under 

typical operational conditions. 
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Figure 7.9 Rotation angle of particle 2 with different interface friction coefficients under cyclic loading. 

 

 

Figure 7.10 Rotation angle of particle 2 (f = 0.4) with and without magnetic field under cyclic loading. 
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7.5 Impact of Interface-Related Parameters on the Dynamic Behavior of MREs 

 

In this section, we examine the impact of interface behavior on the dynamic modulus of MREs 

and explore how adjustments to model parameters can effectively control the predicted 

outcomes. We begin by analyzing how magnetic flux density and friction coefficient influence 

the dynamic modulus of MREs. Simulations are conducted with magnetic fields ranging from 0 

mT to 70 mT, and friction coefficients set at 0, 0.1, 0.2, 0.4, and 0.8. The resulting data on 

storage modulus, loss modulus, and loss factor are presented in Figure 7.11 (a), (b), and (c), 

respectively. 

 

In Figure 7.11 (a), the storage modulus for all friction coefficients displays a consistent linear 

increase as the magnetic field strength increases. Notably, a higher friction coefficient 

corresponds to a higher storage modulus, suggesting that the interface becomes stiffer with 

increased friction. This behavior is expected as the interface's resistance to shear deformation 

enhances the overall stiffness of the MRE. 

 

Figure 7.11 (b) shows trends similar to those of the storage modulus but with notable distinctions 

at higher magnetic field strengths. For lower friction coefficients (0.1 and 0.2), the loss modulus 

curve flattens earlier, around 50 mT, and then maintains a linear behavior. In contrast, for higher 

friction coefficients (0.4 and 0.8), the loss modulus continues to increase even beyond 70 mT. 

This indicates that higher friction coefficients enhance the MRE's ability to dissipate energy, and 

this capacity continues to grow with increasing magnetic field strength, reaching saturation at 

higher levels. 
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Figure 7.11 (c) reveals a unique pattern for the loss factor. Unlike scenarios with fully bonded 

particles, the curve initially increases, reaches a maximum at a certain magnetic flux density, and 

then exhibits a linear decrease as the magnetic field continues to grow. This pattern reflects the 

cumulative effect of all interface types. As the magnetic field increases, the interfaces initially 

exhibit higher damping due to the magnetic force. However, at a certain point, the interface 

behavior transitions, leading to a smaller increase in loss modulus and a subsequent reduction in 

damping. 

 

Furthermore, with increasing friction factor, the peak of the loss factor curve occurs at higher 

magnetic fields. The slope after reaching the peak also varies; higher friction coefficients result 

in a slower rate of decline. This behavior likely stems from the differential contributions and 

sensitivities of various interface types. While Interface 2 predominantly influences damping at 

lower magnetic fields, Interface 3 becomes more significant at higher fields because its energy 

loss capacity does not saturate with increasing magnetic field strength. Additionally, the energy 

loss ability of Interface 3 is linearly related to the friction coefficient, contributing to the trends 

observed in Figure 7.11 (c). 
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(a) 

(b) 
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Based on the current results, while our models effectively capture the overall behavior, they 

exhibit certain limitations. Notably, the total increase in damping capacity is relatively modest, 

and the enhancement in damping tends to saturate at lower magnetic fields than desired. To 

enhance our model's ability to simulate higher energy loss over a broader operational range, 

several adjustments are considered. Increasing the friction coefficient has shown that it does not 

significantly enhance damping capacity, though it may contribute marginally to overall energy 

loss. Expanding the number of particles in the model increases the interface area, inherently 

boosting the potential for energy dissipation. We can further optimize the model by adjusting the 

ratio of particles with different interface conditions, specifically increasing particles with 

Interface 2 and reducing those with Interface 1. Additionally, reducing the size of each particle 

Figure 7.11 The influence of interface friction coefficient and magnetic flux density on (a) storage modulus, (b) 

loss modulus, (c) loss factor. 

 

 

(c) 
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decreases the magnetic force exerted on individual particles, thereby delaying the saturation of 

the damping curve at higher magnetic fields. 

 

To implement these strategies, new models that include more particles arranged in parallel chains 

while maintaining the same volume fraction are being developed. This setup not only increases 

interface areas but also moderates the magnetic force exerted on each particle due to the reduced 

size. Adjusting the number of particles allows for fine-tuning the proportion of different interface 

conditions, which optimizes the overall simulation results. To evaluate the efficacy of this new 

model, we simulated a scenario using two chains of five particles each and compared the loss 

factors with a single chain of the same volume fraction. The results shown in Figure 7.12 

indicate that with two chains, the peak of the curve occurs at a significantly higher magnetic 

field. Moreover, the relative increase in loss factor from no magnetic field to the peak changes 

from 5% (single chain) to 10% (two chains), demonstrating a notable improvement in the 

model's ability to modulate the curve. These findings affirm our model's enhanced capability to 

adjust parameters effectively, giving us confidence in fine-tuning our simulations to better 

replicate experimental observations and achieve more accurate predictions of MRE behavior 

under varied conditions. This adaptable approach ensures our models remain robust and relevant, 

providing valuable insights for developing and optimizing MRE applications. 
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7.6 Comparison of Model Predictions with Experimental Data 

 

 

In this section, we utilize our previously developed model to compare with experimental 

findings. Our model is unique in its ability to capture the variation in damping ratio as magnetic 

field strength increases, exhibiting a peak in damping effectiveness. However, this peak is not 

commonly observed in most experimental studies. We find corroboration in the work of Li Jian-

feng and Gong Xing-long [106], who also observed this behavior in their experiments. Their 

work is shown in Figure 7.13. 

 

Figure 7.12 Impact of microsture on the loss factor in MREs. 
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Their findings indicate that the dynamic damping of MREs significantly responds to the 

magnetic field strength, increasing up to a magnetic field of 200 mT and then decreasing beyond 

this point, creating a peak in damping at about 200 mT. This behavior is mainly attributed to the 

friction between iron particles and the rubber matrix, with larger test strain amplitudes leading to 

greater dynamic damping enhancements. 

 

Further supporting our model's assumptions, experiments by Miao Yu et al. [107] with two types 

of MREs, one composed of pure carbonyl iron particles (CIPs) and the other using polyaniline-

modified carbonyl iron particles (PANI-MRE) with enhanced interface bonding, provide 

additional insights. The results, shown in Figure 7.14, particularly in how the damping behavior 

varies with magnetic flux density, align with our predictions. In their experiments, while the loss 

factor for both types of MRE decreases with increasing magnetic flux, the PANI-MRE 

consistently shows a lower loss factor than the PURE-MRE. Notably, the PURE-MRE displays a 

Figure 7.13 Variation of dynamic damping in MREs with applied magnetic field: Data from Li’s experiment. 
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small initial increase and peak in loss factor before dropping, a pattern absent in the PANI-MRE, 

where the curve directly decreases from the start. 

 

 

 

This differential behavior between the two MRE types can be explained by our simulation, 

which suggests that an increase in damping ratio primarily occurs in situations with poor 

interface conditions. Well-bonded particle interfaces, such as those in PANI-MRE, do not exhibit 

this peak behavior, likely due to a lack of significant interface behavior change. 

 

Combining insights from both experiments raises important questions about material and 

structural differences in MREs. The first experiment, likely using an orthotropic MRE where the 

magnetic field is applied during the curing process, shows more pronounced changes in damping 

behavior compared to the isotropic MRE used in the second experiment. Isotropic MREs are less 

likely to form long straight chains and hence tend to have more of what we've classified as 

Interface 1 conditions, which contribute minimally to peak damping behavior. Additionally, 

Figure 7.14 Dependence of the shear storage modulus (a) and loss factor (b) on the applied magnetic flux 

density: Data from Yu’s experiment. 
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orthotropic structures, with initially applied strong magnetic fields and a stronger 

magnetorheological effect, are more prone to interface defects. Using our model, we postulate 

that the major differences in experimental outcomes can also be attributed to the alignment and 

structure of the MREs, with isotropic MREs displaying different interface dynamics compared to 

orthotropically aligned MREs.  

 

We adjust our model parameters to align our predictions closely with the experimental results 

obtained from the studies we mentioned earlier. The results of these adjustments are displayed in 

Figure 7.15 (a) and (b), where we have carefully controlled the magnetic flux density not to 

exceed 500 mT to avoid effects from magnetic saturation. This parameter tuning has enabled 

both curves from the model to align well with the experimental data, demonstrating a good fit 

across the range tested. 

 

 

 
(a) 
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The behavior of the curves before reaching the peak is primarily influenced by interface-related 

parameters such as friction coefficient, type of interface, and the extent of interface areas. These 

factors play a crucial role in shaping the initial increase in damping characteristics as they 

directly impact how the particles interact with the matrix and each other under varying magnetic 

field strengths. After the peak, the loss modulus tends to stabilize, and the slope of the curve 

becomes more dependent on material properties rather than interface dynamics. This transition 

indicates that beyond a certain point, the intrinsic properties of the materials—such as their 

elastic and viscoelastic characteristics—become more significant in determining the overall 

dynamic response of the MRE. This change underscores the dual influence of interface 

mechanics and material properties in MRE behavior, highlighting the need for a nuanced 

Figure 7.15 Comparison of model predictions with experimental results on loss factor: (a) Li’s experiment, (b) 

Yu’s experiment. 

 

 

(a) 
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understanding of both to accurately predict and control the performance of MRE systems in 

various applications. 

 

7.7 Conclusions 

 

In Chapter 7, a comprehensive analysis was conducted on the interface behaviors of MREs using 

various simulation strategies. Several algorithms were employed, like the Cohesive Zone Model 

for simulating debonding dynamics and a detailed friction energy model that captured distinct 

friction behaviors of particles at different locations within a chain structure. By categorizing 

particles into three specific interface conditions, the study effectively elucidated the damping 

behavior changes observed at low magnetic fields—a phenomenon not thoroughly explained by 

prior research. Furthermore, the simulations were able to mirror experimental results closely, 

offering a robust model replete with physically based parameters that can be fine-tuned. This 

model not only clarifies underlying physical mechanisms but also holds significant potential to 

refine and enhance existing phenomenological models, providing a solid foundation for future 

explorations aimed at optimizing MRE technology in practical applications. 
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Chapter 8 Instability Analysis of Magnetorheological Elastomers (MREs) 

 

8.1 Introduction 

 

In this chapter, we focus on the instability analysis of MREs, particularly under compression, as 

they are commonly used as isolators in various applications. While previous chapters have 

primarily addressed MRE behavior under cyclic shear loading, it is crucial to understand how 

these materials perform under compressive loads due to their heterogeneous nature, which can 

lead to various types of instability. We categorize the potential instabilities into three types: 

macroscopic, microscopic, and interface instabilities. 

 

8.2 Modeling of Macroscopic Instability 

 

Macroscopic instabilities, often referred to as long-wave instabilities, are typically examined 

through the lens of the effective behavior resulting from various homogenization schemes. These 

instabilities are particularly significant in nonlinear fiber composites, where the mechanics of 

nonlinear composites have demonstrated that macroscopic instabilities arise when the 

homogenized properties lose strong ellipticity. A general criterion for the onset of macroscopic 

instability of the MREs was proposed by Rudykh and Bertoldi [108] based on the general 

criterion of the theory of bifurcation and stability. We employ a sextic polynomial equation to 

analyze such instabilities[109], as shown below.  

𝛤6𝜉
6 + 𝛤5𝜉

5 + 𝛤4𝜉
4 + 𝛤3𝜉

3 + 𝛤2𝜉
2 + 𝛤1𝜉 + 𝛤0 = 0 ,              (8-1) 
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The onset of macroscopic instability along a magneto-mechanical loading path is indicated by 

the existence of a non-trivial real solution to this polynomial equation. The factors 𝛤𝑖 can be 

obtained using the following equations: 

𝛤0 = ℳ121
2 −ℳ2121𝜉11 ,             (8-2) 

𝛤1 = 2(−ℳ2121𝜉12 + (ℳ1121 −ℳ2122)𝜉11 +ℳ121(ℳ221 +ℳ122 −ℳ111)) ,                 (8-3) 

𝛤2 = −ℳ2121𝜉22 + 4(ℳ1121 −ℳ2122)𝜉12 −          (8-4) 

(ℳ1111 − 2ℳ1122 − 2ℳ1221 +ℳ2222)𝜉11 

−2ℳ121(ℳ112 +ℳ121 −ℳ222) + (ℳ122 +ℳ221 −ℳ111)
2 , 

𝛤3 = −2(ℳ1112 −ℳ1222)𝜉11 + (ℳ1111 − 2ℳ1122 − 2ℳ1221 +ℳ2222)𝜉12      (8-5) 

+(ℳ2122 −ℳ1121)𝜉22𝑛 + (ℳ121ℳ122 −ℳ221(ℳ112 +ℳ121 −ℳ222)) , 

𝛤4 = −(ℳ1111 − 2ℳ1122 − 2ℳ1221 +ℳ2222)𝜉22 − 4(ℳ1112 −ℳ1222)𝜉12      (8-6) 

−ℳ1212𝜉11 + (ℳ112 +ℳ121 −ℳ222)
2 + 2ℳ122(ℳ111 −ℳ122 −ℳ221) , 

𝛤5 = 2((ℳ1222 −ℳ1112)𝜉22 −ℳ1212𝜉12 +ℳ122(ℳ112 +ℳ121 −ℳ222)) ,      (8-7) 

𝛤6 = ℳ122
2 −ℳ1212𝜉22 .             (8-8) 

To obtain all necessary parameters for these equations, we implement specific mechanical and 

magnetic boundary conditions in our model, detailed as follows: 

 𝑭̄[1] = 𝜆̄𝑒1⊗𝑒1 + 𝛿𝛾̄𝑒1⊗ 𝑒2 + 𝜆̄
−1𝑒2⊗𝑒2 + 𝑒3⊗𝑒3 ,                  (8-9) 

𝑭̄[2] = 𝜆̄𝑒1⊗𝑒1 + 𝜆̄
−1𝑒2⊗𝑒2 + 𝛿𝛾̄𝑒2⊗ 𝑒1 + 𝑒3⊗𝑒3 ,          (8-10) 

𝑭̄[3] = (𝜆̄ + 𝛿𝜆̄)𝑒1⊗𝑒1 + (𝜆̄ + 𝛿𝜆̄)
−1𝑒2⊗𝑒2 + 𝑒3⊗𝑒3 ,         (8-11) 

𝑯̄[1] = (𝐻̄1 + 𝛿𝐻̄)𝑒1 + 𝐻̄2𝑒2 ,                         (8-12) 

𝑯̄[2] = 𝐻̄1𝑒1 + (𝐻̄2 + 𝛿𝐻̄)𝑒2 ,                         (8-13) 



 

138 

 

where 𝜆̄ is the average stretch in the x direction,  𝑯̄ is the average magnetic field intensity. And  

𝛿𝛾̄, 𝛿𝜆̄ and 𝛿𝐻̄ are the unit increments. By applying these incremental changes to the boundary 

conditions, we can obtain the homogenized response of the MRE models and determine the 

following magnetoelastic moduli: 

ℳ𝑖𝑗𝑘𝑙 = 𝐹̄𝑗𝑗
[0]
𝐹̄𝑙𝑙
[0] 𝑃̄𝑖𝑗(𝐹

[𝑚],𝐻[0])−𝑃̄𝑖𝑗(𝐹
[0],𝐻[0])

𝛿𝛾
, 𝑘 ≠ 𝑙, 𝑚 = 1,2 ;           (8-14) 

ℳ𝑖𝑗𝑘 =
𝑇̄𝑖𝑗(𝐹̄

[0],𝐻̄[𝑛])−𝑇̄𝑖𝑗(𝐹̄
[0],𝐻̄[0])

𝛿𝐻̄
, 𝑛 = 1,2 ;               (8-15) 

ℳ𝑖𝑗 =
𝐵̄𝑖(𝐹̄

[0],𝐻̄[𝑛])−𝐵̄𝑖(𝐹̄
[0],𝐻̄[0])

𝛿𝐻̄
, 𝑛 = 1,2 ;             (8-16) 

By utilizing Eqs. (8-14) through (8-16), we can determine all the components of the magneto-

elastic tensors necessary for calculating the coefficients 𝛤𝑖. We utilize our previously developed 

straight-chain models for the instability simulation, which consists of six particles. To induce 

instability behaviors, we adjust the model to have larger inter-particle distances and smaller 

particle radii. A unit cell of this configuration is depicted in the accompanying Figure 8.1. In this 

model, 𝑚 represents the height of the unit cell, 𝑛 its length, and 𝑟 the particle radius. We have 

selected a height-to-length ratio (𝑚/𝑛) of 0.5 and a radius-to-height ratio (𝑟/𝑚) of 0.333. 

 

 

 

Figure 8.1 Sketch of a unit cell. 
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We conducted an examination of our model's response under various conditions. The following 

analysis, shown in Figure 8.2, explores the relationship between the critical compressive strain—

which indicates the onset of macroscopic instability—and the applied magnetic field strength. 

We intentionally limited the magnetic field strength to a lower range of 0-400 mT to minimize 

the effects of magnetic saturation and to simplify the analysis of nonlinear behaviors. 

 

 

 

Our findings reveal that within this controlled range of magnetic field intensity, the magnetic 

field's impact on instability behavior is relatively subtle yet significant. Initially, the magnetic 

field acts to stabilize the MRE system by slightly increasing the critical strain threshold. This 

suggests that the presence of the magnetic field reinforces the material's structure, making it 

more resistant to deformation and instability at low magnetic flux densities. However, as the 

magnetic field strength approaches the middle of our testing range, a reversal in behavior occurs. 

Figure 8.2 Critical compressive strain vs. applied magnetic field strength. 
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The MRE begins to show signs of destabilization, with a reduction in the critical strain required 

for the onset of instability. This pivotal behavior, where the magnetic field transitions from a 

stabilizing to a destabilizing factor, aligns with observations from other research, particularly in 

studies that extend the magnetic field strength beyond our tested range. These studies indicate 

that at very high intensities, the magnetic field significantly contributes to destabilizing the 

MRE, underscoring the dual role of magnetic fields depending on their intensity.  

 

8.3 Modeling of Microscopic Instability 

 

In this section, we delve into microscopic instability. While macroscopic analyses can predict 

critical values based on homogenized properties, instabilities can also manifest at smaller scales 

comparable to the microstructure's characteristic lengths. To explore these local instabilities and 

potential post-buckling behaviors, we conduct simulations that focus on the positional changes of 

particles within the structure. 

 

To induce post-buckling patterns, we introduced small amplitude geometrical imperfections by 

perturbing the initial geometry, specifically the locations of the inclusion central points. These 

initial displacement amplitudes were implemented randomly to prevent the induction of 

predetermined buckling patterns. For each particle in the chain, we calculate their relative 

horizontal displacement to the center of the chain during the deformation process. Monitoring 

these displacement changes allows us to identify the onset of instabilities and determine the 

corresponding critical strain values. 
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Figure 8.3 illustrates the results for the top three particles within an RVE characterized by a ratio 

of m/n=0.5 and r/m=0, specifically identifying (a) particle 1, (b) particle 2, and (c) particle 3. The 

horizontal central displacement of the particles is normalized by dividing the radius r to obtain 

the displacement ratio q. It can be observed that for all particles, the displacement initially grows 

linearly with the strain with tiny changes, then at a critical point, marked by a sudden change in 

the rate of displacement around 0.33, instability sets in, as indicated by the red dashed line. 

Beyond this point, the displacement continues to change linearly but at a much steeper rate. 

 

 

(a) 
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(a) 

(a) 

Figure 8.3 Critical strain detection using the first three particles of a six-particle chain model: (a) particle 1, (b) 

particle 2, (c) particle 3. 
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Additionally, the slight variance in critical strain values among the particles highlights the impact 

of local positioning and interaction within the chain. This variance suggests that the mechanical 

response of MREs can be highly localized, with specific regions within the material exhibiting 

different thresholds for instability based on their microstructural configuration. To further 

validate these findings, the strain distribution graph near the critical point is shown in Figure 8.4. 

The strain distributions at 0.32 and 0.33 are nearly symmetric, but a significant change in 

distribution is evident at 0.34, suggesting that the critical strain lies between 0.33 and 0.34. The 

dramatic shift in strain distribution at a strain of 0.34 compared to more symmetric distributions 

at lower strains illustrates how rapidly material behavior can change as it approaches and 

surpasses critical thresholds. 

 

 

 

We further explore the relationship between particle radius and critical strain as depicted in 

Figure 8.5. It's important to note that to accurately determine the critical strain, analyzing the rate 

of change rather than displacement provides a clearer indication due to a distinct peak observed 

Figure 8.4 Strain distribution (𝜀𝑦𝑦) in the MRE model, with compressive strain at (a) 0.32, (b) 0.33, (c) 0.34. 
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in the data. However, this method might slightly overestimate the strain since it necessitates a 

specific load step for accurate calculation. Therefore, we employ both methodologies to ensure 

the accuracy of our findings. In this simulation, we utilize the normalized radius factor r/m 

instead of the absolute radius r. The analysis indicates a clear correlation between particle radius 

and critical strain, showing that an increase in particle size leads to a decrease in the critical 

strain required for buckling.  

 

 

 

This phenomenon can be attributed to the mechanical dynamics within the matrix. As particle 

size increases, the matrix area between particles diminishes, resulting in higher localized strains 

within these narrower matrix sections under the same compression strain. This creates significant 

stress concentrations, which are particularly pronounced due to the hyperelastic model used in 

the simulations. The characteristics of the hyperelastic model employed significantly influence 

Figure 8.5 Dependence of critical strain on particle radius. 
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the susceptibility of the system to buckling. Depending on their parameter settings, different 

hyperelastic models can have varying impacts on the results. Models that exhibit a larger 

increase in stiffness at higher strains tend to contribute more to the onset of instability. 

Studying the critical strain alone is not comprehensive enough to understand the behavior of 

MREs under compressive loading. To delve deeper, we simulate the changes in shear stiffness 

throughout the progression of compressive loading. Initially, we simulate the compression 

process to capture the buckling behavior, storing all historical data. Subsequently, for each 

compression loading strain, treated as a timestep, we apply a unit shear deformation to the 

original model to obtain the effective shear modulus at the corresponding compressive strain 

level. To ensure that the additional shear does not prematurely trigger buckling, we verify these 

results by applying varying increments of shear deformation. 

 

 

 

Figure 8.6 Effective shear modulus vs. compressive strain of MRE with a straight chain. 
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The results, illustrated in Figure 8.6, highlight a particular behavior where the effective shear 

modulus of the MRE initially increases with compressive strain due to the hyperelastic properties 

of the matrix. However, this modulus reaches a peak at approximately 0.25 strain and then 

begins to decrease, continuing until about 0.34 strain, where it starts to increase again. Notably, 

the critical strain where buckling occurs is at 0.34, as indicated by the red dashed line 

representing the central displacement method. This suggests that the MRE undergoes a reduction 

in shear stiffness prior to buckling and that stiffness begins to slightly increase at post-buckling. 

 

Our interpretation of this phenomenon elucidates the interplay between compressive and shear 

strains in MREs. Initially, as particles are aligned in straight chains, applying a minor 

compressive strain will enhance the shear modulus due to the hyperelastic nature of the matrix. 

As strain levels increase, areas within these particle chains endure higher stresses compared to 

the surrounding matrix, leading to unbalanced stress concentrations. When a small shear strain is 

subsequently introduced to measure the effective shear modulus, this accumulated stress attempts 

to alleviate itself by extending the matrix along the shear direction. This action precipitates a new 

buckling behavior induced by coupling compressive and shear strains, which we call shear 

buckling. This buckling leads to stress relaxation and a rearrangement of particles, reducing the 

shear modulus. This buckling phenomenon primarily occurs after an initial shear is applied. If 

further compression is applied at this stage, it intensifies the stress concentration solely in 

compression conditions. After the unit shear application, the release of stress and subsequent 

particle movement becomes more pronounced, leading to an even greater reduction in shear 

modulus. 
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After buckling due to compression, stress redistribution occurs as particles rearrange and form 

new structural patterns. Since the stress has already been released during the initial buckling 

phase, subsequent shear strains will not cause further buckling in the microstructure. As a result, 

additional increases in compressive strain do not introduce more unbalanced stress within the 

matrix. This behavior indicates that shear buckling occurs earlier than compressive buckling in 

MREs with straight chains, which should be a focal point for further study and consideration in 

material design and simulation strategies. 

 

To gain further insight into the behavior observed previously, we conducted simulations with 

particles arranged in wave-like chains. A diagram of this arrangement is shown in Figure 8.7, 

where v is the vertical distance between adjacent particles, and h is their perpendicular distance. 

With v fixed according to our experimental setup, we use the normalized parameter p=h/r to 

characterize the shape of the wavy chains. The results of these simulations are detailed in the 

accompanying Figure 8.8. 

 

 

Figure 8.7 Geometry of the particle wavy chain: An illustration. 
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The result confirms our previous interpretations. When p is small, indicating that the chains are 

nearly straight, the phenomenon of shear buckling—where shear stiffness decreases with 

compression—can still be observed. Moreover, as the magnetic field strength increases, this 

behavior becomes less pronounced but remains noticeable. For configurations with higher p 

values, the curve exhibits a uniform increase akin to that of pure rubber, displaying no 

decreasing behavior. At even higher p values, differences in the curve become minimal. 

This behavior is attributed to the particle distribution within the chains. When horizontal 

distances between particles are sufficient, under compression, the particles in the wavy chain can 

shift naturally without resulting in stress concentration behavior. 

 

Figure 8.8 Effective shear modulus vs. compressive strain of MRE with wavy chains. 



 

149 

 

These findings also indicate that buckling behavior is closely linked to stress concentrations 

within the matrix inside the chains. Additionally, to mitigate the risk of instability, it is advisable 

to employ MREs with wavy chains. This configuration reduces the likelihood of stress 

concentrations that lead to instability, making wavy chains a more stable choice in applications 

where maintaining structural integrity under compression is critical. 

 

Our next focus is on the stability of MREs under the influence of a magnetic field. Figure 8.9 

illustrates how the critical strain varies in relation to the strength of the magnetic field. 

Observations from the graph reveal that, although microscopic instability tends to manifest 

earlier than macroscopic instability, both exhibit a similar trend in response to changes in 

magnetic field strength. 

 

Initially, as the magnetic field strength increases, it acts to stabilize the MRE by increasing the 

critical strain, thereby enhancing the material's resistance to deformation. This initial 

stabilization phase indicates that the magnetic field effectively reinforces the structural integrity 

of the MRE. However, a turning point is reached at a certain magnetic field strength where the 

trend reverses; beyond this point, further increases in the magnetic field begin to destabilize the 

MRE, resulting in a decrease in the critical strain. Interestingly, the total change in critical strain 

over the range of magnetic field strengths tested is relatively small. This suggests that while the 

magnetic field has a noticeable impact on the stability of MREs, the overall susceptibility of 

these materials to magnetic-field-induced changes in stability is somewhat limited.  
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Figure 8.10 presents the variation in effective shear modulus during compression, comparing 

scenarios with and without an applied magnetic field. Notably, the curve representing the 

scenario with a magnetic field starts with a higher shear stiffness, attributable to the MR effect, 

which enhances the material's initial stiffness. Both curves generally follow the same trend; 

however, discrepancies become apparent at specific points. When each curve reaches its peak 

value, the one with the magnetic field demonstrates a more rapid decline, signaling a reduction in 

the absolute MR effect. This sharper drop continues until it reaches a second critical point—

corresponding to the onset of buckling. Beyond this point, the curve with the magnetic field 

exhibits a slightly steeper increase compared to the curve without the magnetic field, indicating a 

marginal rise in the absolute MR effect. 

 

Figure 8.9 Influence of magnetic flux density on critical strain. 
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This behavior suggests that while the magnetic field initially boosts the shear stiffness of the 

MRE, contributing positively to its structural integrity, it also leads to a faster reduction in MR 

effectiveness once the material's load-bearing capacity is maximized. The subsequent slight 

increase post-buckling could be due to the reorientation or redistribution of the magnetic 

particles within the matrix, possibly enhancing the interaction between the magnetic field and the 

material, thereby slightly increasing the MR effect under post-buckling conditions.  

 

 

 

To further investigate the mechanisms underlying the effects observed previously, we analyzed 

models with wavy chains of different p values. The absolute MR effects calculated from these 

models are depicted in the accompanying Figure 8.11. 

 

 

Figure 8.10 Effective shear modulus vs. compressive strain with and without the magnetic field. 
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. 

Results show that chains with smaller p values, which are straighter, exhibit a higher initial MR 

effect due to tighter alignment and interaction between particles. As p increases, indicating more 

wave-like configurations, the MR effect initially rises rapidly at low compressive strains but 

begins to plateau at higher strains. For models with smaller p values that are prone to buckling, 

there is a sharp and sudden drop in the MR effect. This drop aligns with the peak stiffness 

observed in models without magnetic fields and continues until a critical strain is reached, after 

which the MR effect stabilizes. This pattern indicates a critical transition point in the structural 

integrity of the material, consistent across different p values. 

 

To elucidate the phenomena observed, we propose that the onset of buckling is due to the stress 

concentration within the matrix between the particles of a chain. As the strain within this chain 

reaches a specific threshold, further increases in strain will trigger the shear buckling, resulting in 

Figure 8.11 Effective shear modulus vs. compressive strain with and without the magnetic field for MRE with 

wavy chains. 
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a reduction in the modulus. This understanding of the mechanics is supported by our analysis of 

the magnetic interactions between particles, which can be divided into two primary components: 

the vertical and horizontal forces. Our research indicates that only the horizontal force 

significantly contributes to the MR effect when no compressive strain is applied. During shear 

deformation, this horizontal attraction opposes the direction of the shear, enhancing the MR 

effect. At smaller strains, compressive forces narrow the distances between particles, intensifying 

the both of the magnetic forces; however, at this stage, the vertical forces are less influential, and 

the increased horizontal force dominates the MR effect. 

 

As compressive strain increases beyond a certain point, the continued compression leads to a 

reduction in shear stiffness. During this phase, the vertical magnetic force exacerbates the 

compression, further reducing shear stiffness, while the horizontal force continues to exert a 

positive MR effect. These two forces interact within the material, and as additional strain is 

applied, the sensitivity to vertical strain increases, leading to a predominant negative MR effect 

from the vertical forces, resulting in a decline in the absolute MR effect. However, upon reaching 

the buckling threshold, particle rearrangement alleviates the stress concentration, and further 

strain or vertical magnetic force no longer reduces shear stiffness, resulting in stabilized material 

behavior. 

 

This mechanism also helps explain the influence of varying magnetic field strengths on the 

critical strain for instability. At lower magnetic fields, the stabilizing effect of the horizontal 

magnetic force predominates, increasing the critical strain and stabilizing the material. 

Conversely, at higher magnetic fields, the vertical force becomes dominant, compressing the 
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matrix within the chain and enhancing stress concentration similarly to mechanical compression. 

This more substantial effect at higher fields leads to a decrease in the critical strain, illustrating 

the dual role of magnetic forces in influencing material stability and the MR effect. 

 

8.4 Modeling of Interface Stability 

 

In the section on interface stability, we delve into how interface friction influences instability 

issues within MREs. We utilize a fully debonded interface model with friction to understand its 

impact compared to fully bonded models. Figure 8.12 illustrates the model configuration at 

various stages: pre-buckling (a), at the onset of buckling (b), and post-buckling (c), 

corresponding to compressive strains of 0.25, 0.30, and 0.35, respectively. Additionally, the 

displacement ratio q of particle three relative to compressive strain is also depicted in Figure 8.13 

using the third particle from the top with the largest vertical displacement. 

 

 

Figure 8.12 FEM model illustration of interface conditions at strain: (a) 0.25, (b) 0.3, (c) 0.35. 

(a) (b) (c) 
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Our observations indicate that models accounting for interface effects exhibit earlier debonding 

compared to fully bonded models. With the same radius factor of 0.333, the critical strain for 

buckling in the fully bonded model occurs around 0.335, while the debonded model shows a 

reduced critical strain of approximately 0.28. This earlier onset of instability in the debonded 

model is due to less constraint within the particle chains, leading to decreased structural stability. 

A noteworthy behavior observed post-buckling is the pattern of horizontal displacement, which 

initially increases linearly, then slows, and finally stabilizes near a strain of 0.34. This pattern 

differs from that in bonded cases and can be elucidated by the interface conditions visualized in 

Figure 8.12(b). As buckling commences, particles begin to rearrange; however, unlike in bonded 

scenarios, they first compress towards the sides of their containment, facilitated by the interface 

friction, which promotes a rapid, linear increase in displacement. Subsequently, as particles reach 

the boundary limits of their movement, the geometrical constraints halt further lateral 

Figure 8.13 Critical strain detection with the weakly bonded model of straight chain. 
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displacement, slowing the displacement rate. This dynamic is particularly intriguing as it 

signifies a phase of high relative friction during debonding, indicative of significant energy 

dissipation. This behavior is not exclusive to MREs with straight chain configurations; it also 

manifests in MREs with wavy chains. Figure 8.14 illustrates the FEM models of an MRE 

subjected to varying compressive strains, ranging from 0.15 to 0.3. The corresponding critical 

strain curve is shown in Figure 8.15.  

 

 

Figure 8.14 FEM model illustration of interface conditions of wavy chains at strain: (a) 0.15, (b) 0.2, (c) 0.25, 

(d) 0.3.  

(a) (b) (c) (d) 
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Compared with the straight chain model, particles in the wavy chain model do not experience the 

abrupt vertical displacement typically seen in buckling. Instead, displacement increases steadily 

with compressive strain. However, as observed in the interface figures, wavy chains exhibit 

similar interface friction behavior to straight chains, where particles are squeezed towards the 

edges as strain increases. This squeezing occurs suddenly and briefly in straight chains while it 

unfolds gradually and smoothly in wavy chains. Notably, although their behaviors differ at 

smaller strains, once the particles are squeezed to the edges, their distributions become similar, 

making further movement challenging, which makes them have similar microstructural 

distribution at higher compression. Additionally, various particle distribution patterns emerge 

under these conditions. While not the primary focus of this study, these patterns suggest 

underlying mechanisms that warrant further investigation. 

 

Figure 8.15 Critical strain detection with the weakly bonded model of wavy chain. 
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8.5 Conclusions 

 

In Chapter 8, we conducted a thorough analysis of the instabilities in magnetorheological MREs 

under compression. We explored macroscopic, microscopic, and interface instabilities, each 

influenced by complex interactions within the MRE structure. Our study integrated detailed 

modeling strategies, such as the use of a sextic polynomial for macroscopic instability, which 

highlighted how the magnetic field can alternatively stabilize or destabilize the MRE depending 

on its intensity. Microscopically, we observed how slight imperfections in particle positioning 

could precipitate instability, emphasizing the sensitivity of MREs to their microstructural 

configuration. The introduction of interface friction models further enriched our understanding, 

illustrating how debonding processes could influence mechanical behavior significantly. These 

models helped identify the critical strains at which instabilities occur, showcasing the intricate 

balance between magnetic and mechanical forces within MREs. The findings from this chapter 

lay a solid foundation for refining MRE models, enhancing their predictive capabilities, and 

tailoring them for specific applications where instability might affect performance. 
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Chapter 9 Conclusions and Future Works 

 

9.1 Conclusions 

 

This dissertation is committed to bridging the gap between microscopic-based modeling and 

phenomenological approaches, ensuring a precise alignment with experimental findings through 

detailed finite element simulations. The primary objective is to develop a robust, physics-based 

model that accurately simulates and elucidates the complex nonlinear stiffness and damping 

behaviors of materials under dynamic loading conditions. The key contributions of this 

dissertation are summarized as follows: 

 

Our simulations reveal that the FEM model, when assuming all particles are bonded, fails to 

capture the dynamic damping behavior of MREs. It is essential to consider the effects of 

interface friction. By analyzing the affine local deformation using an RVE with a complete 

chain, we observed distinct interface behaviors of particles at various positions along the chain 

under the influence of a magnetic field, each contributing differently to the damping effects of 

MREs. Further investigation into these behaviors and measuring the response under each type of 

interface condition has allowed us to construct a FEM model that can simulate and clarify 

distinct experimental findings. We have successfully explained the varied damping behaviors of 

MREs with isotropic and orthotropic distributions, as well as with strong and weak interface 

bondings. This research paves the way for advancements in the simulation of interface friction 

and offers significant potential for future enhancements in the phenological models. 
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Building on prior research, we have expanded the instability analysis to consider the effects of 

shear stiffness, varying initial particle distributions, and the magnetorheological (MR) effect. Our 

simulations indicate that as compressive strains increase before the onset of instability caused by 

compression, the shear stiffness of MREs decreases at an earlier stage due to premature buckling 

under the combined effects of compression and unit shear. This reveals that MREs subjected to 

simultaneous compression and shear forces might buckle earlier than anticipated. Furthermore, 

we have detailed the influence of the magnetic field on instability by dividing it into horizontal 

and vertical components, each contributing uniquely to buckling phenomena. This concept also 

comprehensively explains the impact of the magnetic field on critical strain. Additionally, by 

integrating the instability simulations with the interface model, we discovered that instability 

develops earlier, accompanied by a unique friction behavior under compression, which could 

potentially explain the significant increase in damping observed in MREs during compression. 

 

9.2 Future Works 

 

The suggestions for future research are listed below: 

 

Enhancing the stability and predictive capabilities of the instability models through the 

incorporation of advanced friction models, such as the LuGre friction model, appears promising. 

This improvement could significantly enhance the convergence of simulations involving cyclic 

compressive loading, where pronounced interfacial friction behaviors are observed. As a final 

remark, the two major achievements in this dissertation are summarized below: 
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Developing a more refined friction energy model could significantly enhance our ability to 

capture and quantify energy losses during loading. This model would enable precise calculations 

of energy dissipation, differentiating between losses attributed to friction and other factors. Such 

a model would provide a detailed quantitative analysis, offering insights into the relative 

contributions of various mechanisms to the overall energy loss in the system.  

 

The inclusion of nonlinear ferromagnetic behavior, demagnetization, and magnetic saturation 

effects would expand the model's applicability and accuracy over a broader range of magnetic 

field strengths, thereby enhancing its practical relevance for engineering applications. 

Furthermore, the adaptation of our models to encompass larger magnetic fields and more 

complex loading scenarios could bridge the gap between theoretical predictions and 

experimental observations. There's also the potential to develop a detailed categorization of how 

physical parameter variations affect the model's behavior and how these modifications align or 

diverge from phenomenological predictions. Such an analysis could lead to a more nuanced 

understanding of the underlying mechanisms and foster the development of physically 

interpretable and practically applicable models. 

 

A gap remains in experimentally verifying the proposed different interface debonding types 

under magnetic influences. Utilizing advanced imaging techniques, such as NanoCT, could 

provide invaluable insights into the microstructural changes at the interface before and after 

magnetic field application, thereby validating the simulation models. 
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Expanding the model to include macroscopic applications is another avenue for research. By 

maintaining the microscale model's predictive accuracy and simplifying it into homogenized 

material properties, it could be effectively integrated into larger structural analyses. This process 

could involve developing physically-based phenomenological models or applying machine 

learning techniques to distill complex micro-interactions into usable forms for engineering 

applications. These advancements would push the boundaries of how MR materials are modeled 

and applied, aligning simulation closer to real-world phenomena. 
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