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ABSTRACT OF THE DISSERTATION

On the User-Scheduler Relationship in High-Performance Computing

by

Cynthia Bailey Lee

Doctor of Philosophy in Computer Science

University of California, San Diego, 2009

Professor Allan Snavely, Chair

Professor Amin Vadhat, Co-Chair

To effectively manage High-Performance Computing (HPC) resources, it is es-

sential to maximize return on the substantial infrastructure investment they entail. One

prerequisite to success is the ability of the scheduler and user to productively interact.

This work develops criteria for measuring productivity, analyzes several aspects of the

user-scheduler relationship via user studies, and develops solutions to some vexing bar-

riers between users and schedulers. The five main contributions of this work are as

follows.

First, this work quantifies the desires of the user population and represents them

as a utility function. This contribution is in four parts: a survey-based study collect-

ing utility data from users of a supercomputer system, augmentation of the Standard

Workload Format to enable scheduler research using utility functions, and a model for

synthetically generating utility function-augmented workloads.

Second, a number of the classic scheduling disciplines are evaluated by their

xii



ability to maximize aggregate utility of all users, using the synthetic utility functions.

These evaluations show the performance impact of inaccurate runtime estimates, con-

tradicting an oft quoted prior result [55] that inaccuracy of estimates leads to better

scheduling.

Third, a scheduler optimizing the aggregate utility of all users, using a genetic

algorithm heuristic, is demonstrated. This contribution includes two software artifacts:

an implementation of the genetic algorithm (GA) scheduler, and a modular, extensible

scheduler simulation framework that simulates several classic scheduling disciplines and

is interoperable with the Standard Workload Format.

Fourth, the ability of users to productively interact with this scheduler by pro-

viding an accurate estimate of their resource (run time) needs is examined. This contri-

bution consists of formalizing a frequent casual assertion from the scheduling literature,

that users typically “pad” runtime estimates, into an explicit Padding Hypothesis, and

then falsifying the hypothesis via a survey-based study of users of a supercomputer sys-

tem. Specifically, absent an incentive to pad–and including incentives to be accurate–the

inaccuracy of runtime estimates only improved from an average of 61% inaccurate to

an average of 57% inaccurate. This contribution has implications not only for the pro-

posed genetic algorithm scheduler, but for any scheduler that asks users for an estimate,

which currently includes virtually all parallel job schedulers both in production use and

proposed in the literature.

Fifth, a survey of users of a supercomputer system and associated simulations

explore the feasibility of removing one of the defining constraints of the parallel job

scheduling problem–the non-preemptability of running jobs. An investigation of users’

current checkpointing habits produced a workload labeled with per-job checkpoint infor-

mation, enabling simulation of a checkpoint-aware GA scheduler that may preempt run-

ning jobs as it optimizes aggregate utility. Lifting the non-preemptability constraint im-

proves performance of the GA scheduler by 16% (and 23% compared to classic EASY

algorithm), including overhead penalties for job termination and restart.
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Chapter 1

Introduction

1.1 High-Performance Computing

The focus of this dissertation is the scheduling of scientific computing applica-

tions on high-performance computing (HPC) systems, also known as supercomputers.

The pace of improvement in performance of computer technology complicates

any effort to formulate a constant, meaningful definition of supercomputer. Qualitative

differences in hardware that used to exist between, for example, the Cray-2 [4] super-

computer and its contemporary Macintosh personal computer [7], are no longer always

evident as commodity PC parts are commonly used in supercomputers and vice-versa.

However, the “Top 500” [54] semiannual listing of the 500 fastest computers in the

world has become a useful de facto definition of supercomputer [29, 23, 82, 53, 22].

A single system on the Top 500 list typically costs millions or tens of millions of

dollars, and supports a large user population consisting of self-interested parties com-

peting for its use. The significant financial investment that supercomputers entail has

motivated a long history of scrutiny and innovation in how these resources should be

allocated among users, with a wide variety of approaches.

Cluster and massively parallel processor (MPP) architectures1, the focus of this

1The term cluster is generally understood to refer to a system comprised of nodes, “each of which
is a system in its own right, capable of independent operation and derived from products developed and

1
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work, constituted the majority of the Top 500 since 1994, and have continued to increase

since then, now numbering 498 as of November 2008 [54]. Significantly for this work,

both cluster and MPP supercomputers consist of hundreds or thousands of processors

connected by a communication network to form a single system [24, 6]. This hardware

configuration is well suited to parallel scientific codes that use a message-passing pro-

gramming paradigm such as MPI [78]. These workloads characteristically rely on fre-

quent, time-sensitive communication between processors. This workload requirement

distinguishes cluster and MPP from more federated architectures such as cloud and grid

(though there is some overlap in compatability), and motivate various constraints and

assumptions about how the problem of scheduling these systems is approached in this

and related work.

1.2 Problem Definition Overview

HPC workloads may consist of hundreds of jobs each day, and each job has

unique resource requirements. How to best organize the running of these jobs is a mature

yet active research area. The problem is to map jobs submitted by users onto blocks of

time on subsets of the systems’ processors. This domain of scheduling is known as

parallel job scheduling, or parallel batch scheduling. Comprehensive reviews of the

domain can be found in surveys by Feitelson et al. done in 1995 [33], and again in 2004

[31]. The problem is often abstracted as a two-dimensional bin-packing problem. Jobs

are modeled in two dimensions, the number of processors required and the amount of

time required on those processors. These rectangular-shaped jobs must be arranged on

a plane representing the system, with the processors on one axis and time on the other.

marketed for other stand-alone purposes” [24]. By contrast, the term MPP usually refers to a system
comprised of nodes, which, while they contain the components associated with a stand-alone system
(e.g., CPU, memory, network interface), were designed and manufactured with a massively parallel, high-
performance deployment in mind. Due to the increasing overlap in design and use of components between
low-end and high-end systems, some have argued that there is no meaningful distinction between the terms
[6]. In any case, the properties shared by both architectures are conducive to being scheduled according
to the constraints and assumptions used in the domain of scheduling under consideration here.
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Figure 1.1: Share of Top 500 systems by machine architecture type.
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The assumptions these models entail are consistent with parallel scientific codes using

a message-passing paradigm.

This task of arranging the jobs belongs to the scheduler. HPC schedulers exist

primarily to maximize user satisfaction, on the assumption that system owners’ needs

are best met when users are most satisfied. Most commonly user satisfaction is consid-

ered in terms of a job’s turnaround time, the elapsed time between the submit time, when

the user enters a request for the job to run (also called the release time), and completion

of the job. In addition to speed of job turnaround, there are many other aspects to user

satisfaction including predictability of job turnaround times, interface ease-of-use and

availability of auxiliary services such as data storage and visualization infrastructure.

Throughout this work, the term processor will be used for the smallest unit of

compute resource to be scheduled. On some systems, this unit might in fact be a several

tightly coupled processors, especially if they share memory or other important resources.

To reflect this grouping of processors, the term node is sometimes used in the literature,

in place of processor, as the smallest assignable unit.

Some systems whose machine architecture consists of nodes of several proces-

sors each allow the node’s processors to be scheduled individually. On others, only

whole nodes may be assigned. For example, the Bassi system [57] at the National En-

ergy Research Scientific Computing Center (NERSC) has 111 compute nodes of eight

processors and a shared 32GB of memory, and is scheduled at the node level of granular-

ity. NERSC’s two-processor-per-node Franklin system [58], and the 32-processor-per-

node Cheetah system at Oak Ridge National Laboratory (ORNL) [63], are also sched-

uled at the node level. The DataStar [71] system at the San Diego Supercomputer Center

consists of both 8-processor and 32-processor nodes. The 8-processor nodes are sched-

uled at the node granularity while the 32-processor nodes are scheduled at the processor

granularity.

Where to draw this abstraction will vary based on machine architecture. Jobs

running on the same node typically share some resources (e.g., disk), and contention

for these shared resources can lead to unpredictable and poorer performance. To pre-
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vent these contention problems, scheduling at the node level is the most common. Since

neither the term node nor the term processor is free from potential confusion, for sim-

plicity, this work will in all cases use processor to denote the granularity of hardware

assignable by the scheduler.

Treatment of parallel job scheduling as a static global optimization problem has

been discussed in the literature [35, 25, 40]. Here it will be examined as an online

scheduling problem, meaning that jobs arrive over time as a stream of input and the

scheduler lacks knowledge of the future (jobs that have not arrived yet). Each time a

running job terminates or a new job arrives in the queue, the scheduler is invoked to

make a decision about which job(s) to start next, if any.

Optimization entails an objective. Defining the objective that should guide the

scheduler’s decision-making is not trivial. A wide variety of metrics for assessing suc-

cess of schedulers have been proposed in the literature. Not all purport to be the ultimate

objective in scheduling, but each reveals something about the priorities and beliefs of

those who use them. A brief review of common metrics follows in Section 1.4.

1.3 Classic Approaches to Scheduling

To fully define the batch scheduling problem, it will be helpful to briefly review

a few of the classic approaches to solving it. The most elementary is First-Come First-

Serve (FCFS).

1.3.1 First-Come First-Serve

FCFS works as follows. Let J0 be the first job in a FCFS queue, and let I

be the number of currently available processors. The number of processors required

by job Ji is denoted Ji.p. If J0.p ≤ I , the scheduler signals that J0 should begin

running. If J0.p > I , then J0 cannot begin running, and furthermore all the other

jobs behind J0 must also wait (because the queue is only accessed at its head), and the I
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processors remain idle. Note that in this formulation, a FCFS scheduler does not require

the user to specify the requested runtime of the job. Jobs are simply run until their

natural completion, and then the next job is started when possible. The idleness caused

by this blocking approach can lead to significant wasted resources in the wake of wide

(many-processor) jobs.

1.3.2 Backfilling

Growing concern about poor utilization of resources [42] gave rise to backfilling

algorithms. Backfilling is a policy of strategically allowing jobs to run out of order. In

particular, if a job J0 is blocked due to a lack of sufficient resources, then another job

behind it may run if the available resources are sufficient for that job. Formally, this

means allowing a job Ji for some i ≥ 0, to “skip ahead” if Ji.p < I .

Experience has shown that backfilling improves utilization by about 20% on

most systems and workloads, and greatly improves the response time for the small jobs,

which are most likely to be able to backfill [39]. It is reported that over 90% of short,

narrow (few processor) jobs are typically able to backfill; in particular the year-long

CHPC workload trace shows over 90% of small jobs backfilling [39]. This is all while

often providing moderate improvement for even the largest jobs and others that were not

backfilled, because increased utilization of the resource causes the entire workload to be

processed more quickly. As a result, backfilling has been described as “something for

nothing,” a benefit without a tradeoff, made possible because of the previous inefficiency

of the system [39].

1.3.3 EASY Backfilling

The first explicitly documented use of backfilling is in the Extensible Argonne

Scheduling sYstem (EASY), developed by Lifka for Argonne National Laboratorys 128-

node IBM SP system. Eventually integrated with IBMs LoadLeveler administration

software, EASY was “used by many MPP sites throughout the world and is known for
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its efficient scheduling, simplicity, and robustness.” [75]

The EASY scheduler orders jobs by arrival. Scheduling decisions are made

when a new job arrives or a currently running job ends. If the job at the head of the

queue can run on the available processors, it is started. Otherwise, EASY determines

the earliest time at which the first job can begin running (according to the requested

runtime for each running job) and scans the queue for a smaller job. The smaller job

must fit both width-wise, on the available processors, and length-wise, i.e. its requested

runtime is such that it would not delay the scheduled start time of the first job in the

queue. This method of backfilling does not delay the first job in the queue, but it may

delay subsequent jobs, which are still ahead of the candidate backfilling job.

1.3.4 Conservative Backfilling

Mualem and Feitelson [55] compare EASY to an approach they aptly term con-

servative backfilling, in which candidate backfill jobs are checked against every job

ahead of them in the queue to see if the backfilling action will delay them. This is

achieved by giving each job a reservation at the time it is submitted. New jobs may

backfill as long as they fit in the cracks between the existing reservations.

One concern would be that following this more restrictive policy would give less

efficient scheduling than the more aggressive EASY. But results show that for many

workloads, conservative backfilling does not result in a loss in performance compared

with the EASY algorithm [55].

Performance being equal, conservative backfilling is preferred because users are

able to know their (worst-case) start time at the time the job is submitted. Then, like the

EASY creators they corrected, the authors make the claim that conservative backfilling

“guarantees that future arrivals do not delay previously queued jobs” [55]. However, the

authors of the Maui scheduler [39] in turn proved this claim to be incorrect as well.

Although the reservation system in conservative backfilling guarantees that a job

will never start later than its originally reserved time, backfilling jobs ahead of it may
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Figure 1.2: Pseudo-delay in Conservative backfilling.

still cause it to start later than it might have otherwise. This delay-by-stolen-opportunity

is called pseudo-delay; perhaps not the best name because the effects of pseudo-delay

are quite real. This seemingly contradictory situation arises because jobs may not, and

most often do not, end up using the full time they request (unreliable user input will be

discussed in more detail in Chapter 5). Thus when the scheduler checks that a backfill

candidate job will finish no later than other critical-path jobs, it is relying on information

that is most often not correct.

Figure 1.2 shows an example scenario, in three steps. In the first step, jobs

J0, J1, J2, queued in that order. The y-axis represents the machine’s processors, and

the x-axis represents time, with the current time marked by a vertical heavy black line.

J0 will begin running immediately, but there are not enough free processors to start

J1. However, there are enough free processors to start J2, and according to J2’s re-

quested time, J2 will complete soon enough that backfilling J2 will not interfere with

J1’s planned start time. Then, according to conservative backfilling algorithm, J2 is

started (step 2 of Figure 1.2). But a moment later (step 3), J0 ends before its full re-

quested runtime has elapsed. Had we not started J2, then J1 could have started as soon

as J0 ended. But according to our non-preemption assumption, the decision to start J2
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is irrevocable now that J2 has begun running. Although J1 has not been delayed past its

scheduled start time, it has still been prevented from running as soon as it could have,

by a job that was behind it in the queue.

1.3.5 Priority FIFO

Chun and Culler [17] give the name PrioFIFO to fourth classic scheduling al-

gorithm that approximates systems used in many supercomputer centers. FIFO stands

for First-In, First-Out (essentially the same meaning as FCFS). Users assign their job to

one of a handful of different priority categories. The job wait queue is partitioned into

separate queues for each of these categories. The scheduler first attempts to schedule the

job at the head of the highest priority queue that is non-empty. If there are not enough

idle processors, other jobs may backfill. For backfilling, the scheduler considers all jobs

in a given queue before considering any jobs from a lower priority queue.

1.4 Overview of Common Scheduler Metrics

At a very high level, the scheduler should be a proxy for the supercomputer’s

owner, and make decisions reflecting the owner’s goals and values. Typically the owner’s

primary concern is satisfying the users, who in turn want their jobs to be completed as

soon as possible. Most scheduling metrics reflect this by incorporating turnaround time

of jobs in some way (perhaps weighting by various factors, e.g., job size).

The following is a brief overview of several classic scheduling metrics:

Wait Time Number of seconds a job waited in the queue.

Expansion Factor Ratio of turnaround time (wait time plus runtime) to runtime.

Average Bounded Slowdown Defined in [55]. Similar to Expansion Factor, but in-

cludes two measures aimed at reducing noise in the result. First, runtimes are

bounded at 10 seconds minimum to limit the impact of extremely short runtime
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jobs on the average. Second, startup and shutdown effects are avoided by not

including all N jobs in the workload in the calculation; specifically, the first N

divided by 101 and last N modulo 100 are not included.

Makespan Number of seconds between the arrival of the first job and the completion

of the last job.

Utilization At a given point in time, utilization is the percent of the machine’s proces-

sors that are currently assigned a job as opposed to idle. For an entire workload,

utilization can be calculated as the sum of the node-hours of each job, divided

by the Makespan.

Aggregate Utility Sum, over all jobs, of the utility of the job. Utility is a function

specific to each job, and could be a function of many things, but is commonly

discussed as a function of turnaround time.

Although Utilization and Makespan are two of the oldest and most frequently

cited metrics, [34] argues that they are not useful (and thus should not be reported) for

comparing schedulers via workload-based simulation studies. This is because a simula-

tion with a given workload covering weeks, months, or even years of history gives the

scheduler comparatively little control over the difference between when the simulation

begins and ends (the Makespan). The first job’s submit time fixes the beginning, and the

simulation can not end any sooner than the submit time of the last job plus its runtime.

As an example, if the first job in a trace is submitted on January 1, 2000, and the last job

in the trace is submitted on January 1, 2009, and is queued even as long as 3 days, that

is just 3 days (or 0.09%) difference from the theoretical minimum Makespan for that

workload.
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1.5 User–Scheduler Communication

Resource scheduling typically involves a dialogue between a prospective user of

a resource and a scheduler to determine when the resource can be used, and for how

long. Part of this dialogue may also determine how urgently the user needs the resource,

or, in other words, how the value of the resource depends upon when it becomes avail-

able. Intuitively, schedules formed in the absence of exact information in each of these

categories may be suboptimal.

To understand what is meant by a dialogue between the user and scheduler,

it will be helpful to examine the first supercomputer scheduler, the scheme of Tennis

Court Scheduling. This scheme was used on most early supercomputers, for example

it was the first scheduler on San Diego Supercomputer Center’s Touchstone Delta (as

described in a personal interview by an SDSC researcher [66]; for comparison, a con-

temporary Delta system, belonging to the Concurrent Supercomputing Consortium is

documented in [52]). This “scheduler” was in fact a set of human system operators who

were responsible for managing phoned-in job requests from users.

While on one level, Tennis Court scheduling is the height of unsophistication,

and suffers the fatal flaw that it does not scale well to the large and busy systems of

today, it can still provide an important perspective from which to judge software-based

schedulers. Human beings possess creativity, flexibility and nuance of analysis that out-

class proposed scheduling algorithms, if not in terms of bin-packing algorithmics, at

least in terms of the total user interface. One can imagine a lengthy negotiation be-

tween user and operator over job parameters and schedule availability to achieve the

most satisfying result for all parties concerned. Operators, knowing the habits, person-

alities and relative importance of their users could assess the urgency of each job and act

accordingly: backfilling, rearranging already scheduled jobs and perhaps even stopping

already running jobs. It is this complex and nuanced negotiation process that is here

considered the gold standard of a dialogue between user and scheduler.

Current (software) schedulers have not re-attained the state-of-the-art in “user-
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friendliness” of the Tennis Court scheduler times in terms of dialogue with the user.

Modern scheduler communication takes the form of a user-provided job script that typ-

ically contains a requested runtime, a priority, the number of processors and other re-

sources needed and essential information for executing the job.

This is crude communication and is also only one-way. Most schedulers provide

no feedback, such as suggested modifications to the job to improve its wait time, which

could be provided in Tennis Court scheduling. Often the only communication the user

will receive is a notification that the job has started running, and that it has ended.

Most systems do allow the user to inquire about the state of the queue, for ex-

ample how many other jobs are waiting and running, their sizes and their priorities. But

the listings returned from these inquiries are often overwhelming and confusing. Even

relatively savvy users are unable to use this data to determine an expected wait time for

their job, or how they might alter their job to better fit the schedule.

One recent effort to remove the opacity in this process is the QBETS queue

wait time prediction system [8, 62, 61]. QBETS and associated tools offer probabilistic

queue wait time predictions and probabilistic advance reservations. Users are thus able

to query the system regarding a variety of possible job configurations (scaling from

longer runtimes on one or few processors, to shorter runtimes on larger numbers of

processors) and determine, with real-time-adjusting feedback, which configuration is

the most advantageous.

The remainder of this dissertation consists of further examination of the user–

scheduler relationship: existing work on the matter, and novel explorations of–and so-

lutions to–some of the most vexing problems therein.

1.6 Organization

The remainder of the dissertation is organized as follows.

In Chapter 2, the desires of the user population are quantified and represented as

a utility function. This contribution is in three novel parts: a survey-based study of users
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of a supercomputer system, an augmentation of the Standard Workload Format to enable

scheduler research using utility functions, and a model for synthetically generating said

utility function-augmented workloads.

In Chapter 3, a scheduler optimizing the aggregate utility of all users, using a

genetic algorithm heuristic, is demonstrated.

In Chapter 5, the ability of users to productively interact with this scheduler by

providing an accurate estimate of their resource (run time) needs is examined. This

contribution consists of the formalizing a frequent casual assertion from the scheduling

literature into an explicit Padding Hypothesis, and then falsifying the hypothesis via a

survey-based study of users of a supercomputer system. This contribution has impli-

cations not only for the proposed genetic algorithm scheduler, but for any scheduler

that asks users for such an estimate, which currently includes virtually all parallel job

schedulers both in production use and proposed in the literature.

In Chapter 6, the feasibility of removing one of the defining constraints of the

parallel job scheduling problem–the non-preemptability of running jobs–is explored via

a survey of users of a supercomputer system. This contribution consists of a investigat-

ing users’ current checkpointing habits, which data informs a simulation of a scheduler

that may preempt jobs.

Parts of Chapter 1 are reprints of the material as it appears in the dissertation

author’s research exam (Comprehensive Exam) for the Department of Computer Sci-

ence and Engineering, University of California, San Diego, 2005. [45] The dissertation

author was the sole author of this paper.



Chapter 2

Job Turnaround Utility Functions

2.1 Introduction

High-performance computing (HPC) batch schedulers exist primarily to max-

imize user satisfaction, and system owners’ needs are best met when users are most

satisfied. There are many aspects to satisfaction, including speed of job turnaround, pre-

dictability of job turnaround times, interface ease-of-use and even aesthetics, and others.

This chapter focuses on the value users associate with their jobs’ turnaround time, and

quantifying that as a utility function.

2.2 Related Work

2.2.1 Priority

Commonly used metrics such as response time, bounded slowdown and expan-

sion factor (see Section 1.4) are all designed to capture the users’ desires to not be kept

waiting. Users’ desire to not be kept waiting is axiomatic in the scheduling literature,

and is also taken as given in this work. This section examines mechanisms by which

users may communicate more detail about their desires to not be kept waiting.

HPC users have limited opportunities to communicate information about their

14
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scheduling preferences to schedulers. One mechanism for communication between the

user and scheduler is a user-selectable priority describing the relative urgency of a job.

This mechanism is available on many past and current production systems. Priorities are

typically selected from a short list of discrete options, e.g., High, Normal, Low. These

may not provide enough granularity for users to adequately express themselves. Using

an analogy to mailing a package, postal patrons have a wide range of choices ranging

from paying as little as 0.42 USD for slow ground shipping, to 30 USD or more for

FedEx to deliver the package early the next morning.

Ironically, users’ freedom to express priority has decreased over the years. More

fine-grained priority choices were commonplace on SMP architecture supercomputers

of the 1980’s and 90’s. For example, jobs on the Cray XMP were assigned a floating-

point priority value between 0 and 2 by their owners. Users could change a job’s priority

at any time and as often as they pleased, whether the job was being held or running. A

system administrator recalls some users becoming absorbed in this activity as one would

a computer game. They continuously monitored and fine-tuned their priority values

throughout the workday, and even wrote small software tools to assist these efforts [66].

The real-time nature of these vintage systems’ priority scheme hints at a richer

context to the interplay between users and the completion of their jobs than is captured

with any static priority measure. A simple but ubiquitous piece of evidence for this time-

dependent context is that virtually all HPC workload traces show diurnal patterns. That

is, on average, more and smaller (presumably debugging) jobs are submitted during the

day, and very infrequent new job submissions are made at night. If a scheduler sacrifices

utilization in favor of very good response time for a particular job at 2 a.m., the effort

is most likely wasted–the user will not even check the job until morning–but such a

tradeoff could be highly desirable during peak business hours.

Users have both their own daily schedules and preferences (for example, sleep-

ing and eating), and externally imposed schedules and preferences (for example, con-

ference paper submission deadlines and national holidays). Along these lines, Feitelson

et al. take a significant step in enriching our understanding of the user-scheduler dia-
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logue by contextualizing users’ scheduling desires in terms of their day-to-day activities.

While most previous work studied scheduling at the scope of the digital world within

the confines of computer systems’ plastic cases, Feitelson et al. place the job in context

of aspects of the users’ lives that aren’t even related to computers at all. The following

thought experiment scenario exemplifies this:

Assume that a job...needs approximately 3 hours of computation time. If
the user submits the job in the morning (9am) he may expect to receive
the results after lunch. It probably does not matter to him whether the job
is started immediately or delayed for an hour as long as it is done by 1pm.
Any delay beyond 1pm may cause annoyance and thus reduce user sat-
isfaction, i.e., increase costs. This corresponds to tardiness scheduling.
However, if the job is not completed before 5pm it may be sufficient if
the user gets his results early next morning. Moreover, he may be able to
deal with the situation easily if he is informed at the time of submission
that execution of the job by 5pm cannot be expected. Also, if the user is
charged for the use of system resources, he may be willing to postpone
execution of his job until nighttime when the charge is reduced [32].

In a Tennis Court scheduling scheme, the user in the example scenario would be

able to convey in full the relevant details of his schedule and preferences to the system

operator during the course of their dialogue. But, as noted above, the user-scheduler

dialogue on current systems either allows no discussion on this topic, or, most often,

allows the user to choose from 2 or 3 priority categories (e.g., High, Normal, Low).

2.2.2 An Economics Approach

Although users of production systems have limited opportunity to express pri-

ority and preferences, proposed schedulers in the research literature have taken steps to

allow more flexibility. Many of these generalize and unify the communication of pref-

erences under an economic scheme. Stoica, Abdel-Wahab and Pothen [81] proposed

a Microeconomic Scheduler that allows users to create expense account for each job,

thereby expressing the job’s priority. The system, in turn, can implement incentives for

desirable behaviors from users, such as charging users not just for the time a job uses,
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but for the idle time created in the job’s wake, thus enlisting users in the effort to de-

crease fragmentation in the schedule. Feitelson and Rudolph [30] have postulated that

the diverse sub-research-areas of batch job scheduling (e.g., gang scheduling, dynamic

partitioning) can converge under a framework with a flexible economic-based philoso-

phy, and the work of Wolski et al. [96] and Buyya [10, 11] also point to an economic

model. Singh et al. developed a method for adaptive pricing of making a reservation in

a batch scheduled system, where the price depends on the cost imposed on other queued

jobs by the reservation [74]. There are a number of projects in the Grid realm that are

also approaching compute resource management from a microeconomic angle, such as

Mirage [16], Tycoon [43] and Spawn [90].

Chun and Culler [17] allow users to express a willingness to pay for differ-

ent turnaround times by way of a function, u(t), where independent variable t is the

turnaround time for the job. The function is expressed in units of some currency. In

this dissertation, the currency is usually a system-specific “SU” as discussed in Sec-

tion 2.5. In Chun and Culler, as well as subsequent related work [17, 2, 15, 38], this

willingness-to-pay function is called a utility function, and this dissertation retains the

terminology.1

2.2.3 Aggregate Utility

Utility functions can be used as the basis for a scheduling metric. Classic schedul-

ing metrics such as average wait time, expansion factor or bounded slowdown, and, to

a lesser extent, makespan, all strive to represent the notion that a good scheduler max-

imizes user happiness, i.e., minimizes users’ frustration due to being made to wait for

results. Average wait time, expansion factor, and bounded slowdown all implicitly as-

sume a plain linear decrease in value to each user over time, with all users and jobs

1In Microeconomics, utility is not simply willingness to pay but the difference between the willingness
to pay and the charge the user is ultimately required to pay. These are treated interchangeably in Chun
and Culler, and the convention is retained here. To the extent that the scope of using the ‘utility’ functions
is to compare the relative efficiency of different schedules (allocations of the resource), the distinction
does not significantly affect the analysis.
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having the same start value and rate of decrease. As noted in Chun and Culler [17]

(also [2, 15, 38]), when armed with workloads bearing job-specific utility functions, we

can directly compute the total value delivered to users as the sum of each user’s utility

function, evaluated at their job’s turnaround time:

Aggregate utility =
∑
jεJobs

uj(turnaround timej)[17] (2.1)

In microeconomics terms, the aggregate utility metric is essentially a purely util-

itarian approach to social welfare. That is, it encodes an assumption that the supercom-

puter’s society’s greater good is best served when total utility is maximized, without

regard to the outcomes for individual users (apart from their contribution to the sum). If

we assume that utility equates to revenue for the supercomputer center, it is clear why

the maximizing revenue by maximizing aggregate utility is a reasonable representation

of the goals of the center’s managers. But is the satisfaction of individual users also

maximized? This is a more nuanced question.

The aggregate utility metric necessarily gives more weight to the outcome for

some jobs, namely those with higher associated willingness to pay, over other jobs.

These jobs may tend to come from users whose initial endowments were the greatest.

However, relying on our assumption that the allocation of initial endowments was done

correctly, this cannot be considered an undesirable preference. The goal is simply to

reach toward Pareto efficient outcomes, given the initial endowments. Again, these

efficient outcomes are also conditional on users’ truthfulness in their specification of

their utility functions, which is in turn conditional on an assumption that truthfulness

is incentivized and enforced by a price charged against their finite budget (an incentive

compatible price mechanism).
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Figure 2.1: Utility model used in prior work [38].

2.2.4 Expressiveness of Utility Function Model

In Chun and Culler, the utility function is modeled as a simple linear utility

functions with customizable maximum (starting) value and slope, as shown in Figure

2.1. Users may set the maximum value to an arbitrary positive number, and the slope

to be an arbitrary negative number, greatly increasing expressiveness from the fixed

priority category scheme. The form used in [38] also allows for a penalty for “late”

completion of jobs, with the decay in value continuing on the same trajectory (even

after it passes u(t)=0).

In this formulation, the utility function is essentially not defined during the time

the job is running–although a value nominally exists here (the starting value), the loss

of value that occurs during this time is not represented. This distinction is meaningless

when narrowly considering scheduling on a single fixed system with consistent runtimes

because the passage of time due to running the job is unchangeable and unavoidable.

However, users experience loss in value during the running time. Representing

this loss in value due to running time would enable inquiries such as quantifying the

value delivered to users of, for example, processor upgrades that reduce running time

(even if queue time were to remain constant due to increased workload). Upgrades of

HPC systems can cost millions of dollars, so calculating this utility impact for users may
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be quite important. Another application would be quantifying the tradeoff in user utility

of scheduling jobs to share processors or other resources, thus decreasing wait time but

increasing runtime (such a scheduler has been proposed in [91]).

Considering again Feitelson et al.’s thought experiment scenario, the utility func-

tion u(t), implied by the scenario is not a simple linear function. There are discontinu-

ities (see at 1 p.m.) and periods where the slope is zero (see between 5 p.m. and the

following morning). Furthermore, it is likely that every (user, job) pair will have a func-

tion with a different pattern.

This leads to the question of whether actual users could and would express

complex job valuations available with an unconstrained utility function formulation, or

whether the simple two or three category priority system or simple linear utility function

is adequate to capture as much as they are willing to provide. This question is addressed

Section 2.3 in the form of a survey experiment of users on the San Diego Supercomputer

Center’s IBM Power3 system, Blue Horizon [70].

2.3 Survey Experiment Design

Blue Horizon was a 1,152-processor IBM SP2 system installed at the San Diego

Supercomputer Center (SDSC) [70]. Resource management was handled by IBM’s

LoadLeveler software [37], augmented with a scheduling program called Catalina [97]

that was developed in-house at SDSC. Users of the Blue Horizon system submit jobs

by using the command llsubmit, passing as an argument the name of a file called the

job script. The script contains vital job information such as the location and name of

the executable, the number of nodes and processors required, a requested runtime and a

priority.

During the survey experiment period, the llsubmit program was modified so that

before performing its usual functions, it administered a brief survey. The survey was

only invoked in one of every five job submissions, selected randomly. Users were noti-

fied of the study, by email and newsletter, a week prior to the start of the survey period,
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Figure 2.2: Sample user utility curve survey and response.

and could opt out ahead of time, or at any time when presented with the survey.

The moment of job submission was chosen because it is the most timely, and

therefore most realistic, moment to measure the user’s true valuations of their job.

Specifically, in a scenario where users would be asked to participate in a market-based

scheme of job scheduling, it would be at this moment that information from their utility

function would need to be summoned and revealed.

The text of the survey is as follows. First, the user is reminded of requested

number of nodes, time and priority queue. An estimate of the total turnaround time for

the job (queue time and run time) is generated using historical data for similar jobs. The

total cost for the job is also calculated (this is a function of nodes, runtime and priority).

The user is presented with the turnaround time and cost, and also a hypothetical scenario

in which the turnaround time is a factor of n times faster or slower, where n is varied

according to a set pattern dictated by how many times the user has previously responded

to the survey. The sequence is: 2, 1/2, 3, 1/3, 4, 1/4.... The questions are posed in that

order for each user, with a log tracking which questions each individual user has already

answered. A sample of the survey output is shown in Figure 2.2.
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2.3.1 Truth of Users’ Survey Responses

The stated preference methodology of this survey, while suited to collecting data

for simulation-based research, is not suited to use in a production environment.

Here, the reported willingness to pay information (utility functions) are con-

nected neither to how much users will ultimately be charged for their jobs, nor how

those jobs will be prioritized and scheduled by the system. Consequently, users have no

direct incentive to understate nor overstate, respectively, their willingness to pay. There

may indirect causes of untruthfulness at work (habitual tendency to understate willing-

ness, recklessness with hypothetical scenarios that promotes overstating, etc.), but this

lack of direct incentives constitutes an adequate assurance of truth for the purposes of

the survey.

The problem of fostering truthful revelation of utility functions (willingness to

pay) in a production environment where the information will affect scheduling decisions

will be addressed in Section 3.4.

2.4 Survey Results

It is commonplace among HPC users to have a pattern of work that consists of

running the same code many times, using slightly varying input parameters each time.

The nature of numerical simulation of physical phenomenon, from weather to fluid dy-

namics, is that the pattern of conducting experiments, or workflow, involves many re-

peated simulations with only slightly varying initial conditions. Since the purpose of

the survey is to examine the complexity of valuation expressiveness users could pro-

vide, only the results for users who responded to the survey more than once per job are

analyzed. For the purposes of analysis, a re-run of the “same job” is defined as any any

job with the same user, processor count and requested runtime as a previous job. This

definition potentially results in both false positives and false negatives in identifying a

given set of jobs as being the same.



23

Figure 2.3: User utility curve.

Obviously many users do not have a workflow that entails repeatedly running the

same job with the same processor/time configuration many times, and thus a majority

of the survey responses were unfortunately discarded because they lacked additional

survey data points. One way to avoid this would have been to collect several data points

from the user at one moment in time. However, in order to secure permission to collect

this information, the amount of time and effort an instance of the survey require of the

user was constrained.

All the (t, u(t)) pairs for a given job are joined together into a single utility

function. This is admittedly an imprecise interpretation of the data. Indeed, it is expected

that users will have different needs and desires at different times, even for the same job.

Thus, because the responses were elicited on different occasions, possibly spanning days

or weeks during the month-long duration of the survey, it is possible to have different

values of u(t) for the same value of t. It is also possible to have points where the value of

the job seems to have increased over time. Some exemplary utility functions are shown

in Figures 2.3 through 2.9, one user per graph (some users have more than one job).

The first significant finding from looking at these utility functions is that none of

them is linear. Further, many of the complex traits listed above in connection with the

example narrative scenario are indeed observed in these actual user-provided functions.

There are periods of time where the slope is zero (Figures 2.3, 2.5, 2.6, 2.7 and 2.9), a
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Figure 2.4: User utility curve.

Figure 2.5: User utility curve.

Figure 2.6: User utility curve.
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Figure 2.7: User utility curve.

Figure 2.8: User utility curve.

Figure 2.9: User utility curve.
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very steep drop in value in the moments after job submission with a leveling off later

(Figures 2.4, 2.5 and 2.8), and a deadline-like utility function where the value is constant

until the deadline nears, causing a sharp decline in utility (Figures 2.5, 2.6 and 2.7).

While these results represent just a small sampling of users and jobs, they pro-

vide clear evidence that users not only have complex needs and desires regarding the

scheduling of their jobs, but also that they are able to express themselves when given

the opportunity. It is significant that these functions were elicited on a purely voluntary

basis, from users who had little to gain by participating, and whose jobs were unaffected

by their responses. Perhaps users would be even more willing to provide thoughtful de-

tail if they were engaged in an actual dialogue with the scheduler and their input would

have an impact on the scheduling of their job.

2.5 A New Utility Function Representation

Given this evidence that users are able to express their desires regarding the

scheduling of their jobs, might a new and more complex utility function representation

be justified?

There is a legitimate concern that users may not be willing to provide this level

of detail in a real-life job submission setting. They already struggle to provide the

information currently asked of them, such as job runtime estimates [46]. Colloquially,

one might say that people may not be good at talking about their jobs, but if there is one

topic everyone loves talking about, it is themselves. A utility function is not a property

of the software; it is a property of the user. More concretely, previous work shows that

such information is obtainable. Our future work involves detailed human factors studies

to fine-tune the details of an agreeable interface for eliciting the utility function in a real

job submission setting.

It is therefore proposed to use a continuous piecewise linear utility function rep-

resentation, that allows users to specify the location of each data point, and even the

number of points to provide. This format is both rich in descriptive power, and simple
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Figure 2.10: Demonstration of flexibility of proposed formulation.

to understand. Some of the possibilities for user self-expression afforded by this format

are demonstrated in Figure 2.10.

Notice, in Figure 2.10, some of the features this formulation allows to be ex-

pressed: periods of zero slope (0 ≤ t ≤ 5 and 9 ≤ t ≤ 10), approximated jump

discontinuities (5.0 ≤ t ≤ 5.001 and 15.0 ≤ t ≤ 15.001), a finely approximated curve

(5 ≤ t ≤ 7) and a pattern perhaps more crudely drawn (7 ≤ t ≤ 15). The placement of

points is user-determined both in terms of the x−dimension and the y−dimension. The

number of points to include is also user-determined (minimum two).

A main goal of this work was to allow a high level of detail in specifying the

utility function. This format achieves that; in particular, it is much more powerful than

the purely linear (height and slope adjustable) formulation used in some previous work

(shown in Figure 2.1). On the other hand, one must be mindful that obtaining a job’s
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utility function places a time and energy burden on users, who must stop to reflect on

their desires and then enter the information.

Although many HPC users are trained in the sciences and would be familiar

with various standard function shapes (linear, exponential, hyperbolic, etc.), it would

be unwise to rely on this knowledge by requiring users to input formula parameters

for these shapes. First, submitting a job should not require a mathematics glossary

or formula reference. Second, the format should not impose a predetermined function

shape on the user. Thus, this formulation meets the two essential requirements: it is easy

for any user to input and flexible.

Piecewise linear formulation also has an intuitive mapping to the type of typical

daily routine-linked changes in value seen in Feitelson et al.’s example scenario and in

the survey of real users.

Finally, this formulation has the benefit that users can make as much or as little

effort as they please. From a single line segment of two points, to a finely approximated

curve composed of many segments, users can tailor their level of effort to the benefit

they perceive can be extracted from the scheduler.

The function is stored as a series of (time, value) tuples. The time in the first

tuple must always be set to zero, and this represents the time at which the job was

submitted. The value in the first tuple is the initial (maximum) value for the job if it

were completed instantaneously. The units of value depend upon the system. Allocation

units or service units (SU) are already in use at many HPC center, but in commercial and

other settings, it may be units of real currency (e.g., US Dollars). The domain for both

times and values is the set of non-negative real numbers. Reading the series from start

to finish, times must be strictly increasing, while values are decreasing (non-strictly, i.e.,

periods where the slope is zero are allowed). Jump discontinuities are approximated by

using two different times t and t+ ε, with some very small ε.

The value at any time greater than the last time listed in the sequence is defined

to be zero (the sequence may also explicitly contain time(s) at which the value is zero).

Using simple linear interpolation between the user-provided data points, the se-
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quences of tuples are interpreted as continuous piecewise-linear functions.

Thus all well-formed function specifications represent functions that are defined

over the domain of all times t, 0 ≤ t ≤ ∞. (Note that since t = 0 is the submit time

of the job in question, times must be normalized to some absolute clock for comparison

amongst different jobs.)

2.6 Synthetically Generating Utility Functions

The following is a proposed model of generating synthetic utility functions that,

to the extent possible, incorporates knowledge and research about real user preferences.

A software implementation of the utility function generation methods described here is

available; please direct inquiries to the authors.

Tsafrir [86, 85] and others [83] have elucidated the many subtle attributes of

real workloads and how they can have unexpectedly significant impact on performance.

Tsafrir’s work underscores the need to rely on actual data as much as possible. Antici-

pating a time when workload traces including users’ own utility functions are available,

it is necessary to propose this statistical model in the interim, in order to perform the

simulations necessary to justify asking them of an entire user population.

2.6.1 Input Data for Synthetic Functions

Workloads in the Standard Workload Format (SWF) form the basis of the syn-

thetic workload generation. Many logs of actual HPC workloads are available in this

format from the Parallel Workloads Archive [13, 28]. Each line of the file represents

one job. Standard job description data such as number of processors, submit time, run-

time, priority, and so on, are provided. The Standard Workload Format was extended by

appending the list of tuples that define ourthe utility function to the end of each line.

There are three sources of information to draw on when forming a model for

generating utility functions: 1) each job’s actual user-assigned priority and completion
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time, 2) data on utility function shapes from the previous study [47], and 3) the distribu-

tion of actual wait times from the log, which gives guidance about user expectations.

The priority found in the workload data is the main clue as to how the user

values a specific job. However, this is at best a loose guide to the initial value of the

utility function and none at all to its overall shape. The user has the equivalent of a

utility function in mind simply by virtue of being a human with needs and desires. In

selecting a priority for the job, the user was forced to project that utility function curve

onto a single dimension, one with a severely limited domain at that (for example, just 2

or 3 choices). It is not clear exactly how this projection of the function was or should be

carried out. If a user’s job has a high maximum value, indicating importance, but retains

the value for a long duration, indicating lack of urgency, would that user have assigned

it a Low or High priority? There is no obvious answer, and probably different users

have different methods of doing this mapping. Some may effectively have no method

at all–they may not see an appropriate choice for expressing their needs and wants, and

just arbitrarily select one of the options. Details of how this data is used are in the next

section, but it should be emphasized here that this method does not claim to perform the

reverse of this projection in a way that is historically accurate in any individual case.

This would be impossible. The goal is merely to generate utility functions that do not

contradict the available data about the general shape of utility functions from other real

users.

The model also incorporates data about utility function shapes from the study

previously mentioned. Again, this information is a loose guide. Each system, user and

job are unique, and data only exists for a certain group at one site. But the synthetic

utility function model attempts to incorporate commonly seen traits from the collected

curves.

Each workload has a different priority scheme: number of different priorities,

restrictions on eligibility of jobs for different priorities (commonly, a limit on number

of processors or time), etc. These reflect policy choices by the administrators of the

various systems. In the SWF format, priority is encoded as an integer, with header com-
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ments giving meaning to the values. Some human interpretation of this will be needed

for each different workload. This model currently incorporates a generalized version

of commonly seen priority systems where the different priorities have a strict lowest-

to-highest ordering that makes sense according to the semantics given in the header

comments of the SWF file. It is also assumed that the step between each increasing

priority is of equal distance in terms of value to the user. The representation of the pri-

ority choices is normalized to be natural numbers 0, 1, , Npriorities− 1, where 0 signifies

the highest priority and Npriorities − 1 the lowest (Npriorities is the number of different

priorities in the system). For example, Low, Medium, High would be normalized to

Low = 2,Medium = 1, High = 0.

2.6.2 Generating the Starting (Maximum) Value for Jobs

First, the maximum (starting) value for the job is determined. This is based on

the priority for the job and its size (number of processors times requested time).

The space between zero and globmax (an arbitrary global maximum value) is di-

vided intoNpriorities bins of equal size, whereNpriorities is the number of priority choices

available on the system in the input workload. The model should reflect that, in gen-

eral, higher priority jobs should have higher start values than lower priority ones. So the

starting value for the job, startvalueunscaled, is randomly selected using a Normal dis-

tribution centered over the bin corresponding to the job’s priority (as shown below in the

formula for mean). This causes most, but not all, jobs to have a start value proportional

to their priority.

mean =
priority + 0.5

Npriorities

∗ globmax (2.2)

This randomly selected starting value for the job is the value per processor-

minute requested. So to compute the value for the entire job, the start value is scaled to

reflect the job size:
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Figure 2.11: Three models of decay in utility.

startvalue = startvalueunscaled ∗ processors ∗ time (2.3)

2.6.3 Modeling Decay Patterns

The first tuple in the utility function is (0, startvalue), as described above. To

generate the remaining tuples, three different models of decay in value are used: ex-

pected linear, expected exponential, and step (see Figure 2.11). These represent roughly

the three categories of patterns observed in the survey of actual user utility functions.

Expected linear represents users whose utility value decays mostly linearly over

time. Expected exponential represents users whose jobs have high initial urgency (a

much more precipitous initial decline); however, after some time has passed, additional
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delay causes a diminishing marginal decay in utility. In both cases, expected refers to

the possibility of some “bounce” or random out-of-pattern behavior. Step represents

users whose jobs remain at their peak value for some amount of time, then experience a

step-function-like immediate drop in value, then after another flat period, lose all their

value.

The first step in generating these decay patterns is to select the time at which

the job will finally lose all of its value, called the deadline. The deadline should reflect,

as closely as possible, real user expectations for wait times for their jobs. Wait time

expectations are dependent on the priority chosen, but also heavily dependent the job’s

size (number of processors and duration). To capture the nature of this dependency and

real expectations of distribution of wait times, we base the deadline on the actual time,

from the log, that the job originally waited, setting deadline to be twice this time (or 10

seconds, whichever is greater).

Now, with the first and last times and values of the sequence selected, the inter-

mediate times and values are selected. For expected linear and expected exponential,

randomly select a predetermined number of unique times between zero and deadline.

For step, randomly select one intermediate deadline between zero and deadline. The

times are then sorted in increasing order. The values corresponding to this sequence of

times are selected as follows. For expected linear, values are selected randomly between

zero and startvalue, inclusive. For expected exponential, values are iteratively selected

randomly between the last value selected (or startvalue) and zero, inclusive. Values do

not need to be unique. Values are sorted in decreasing order and matched to the sequence

of times to complete the tuples.

2.7 Conclusion

Utility functions are widely used in economics as a means of expressing possibly

complex changes in the value of a completed job over time. To discover if users of HPC

systems had more complex feelings about their jobs than can be expressed in the simple
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and discrete High, Normal and Low priority choices available on most systems, a sur-

vey was conducted. At the time of job submission, a software program asked how much

more or less they would be willing to pay for earlier or later job completion, respec-

tively. In the survey, users did indeed express a wide variety of valuations and function

shapes. Even for the same user, valuations vary from project to project, and from day

to day on the same project. This is evidence that overly simplistic formulations cannot

capture the nuances of real users’ preferences. This dissertation exhibited a method that

can capture those nuances without being overly complicated, and provides a tool that

scheduling researchers can use to generate realistic utility functions for the purposes of

augmenting job logs. Whole user happiness is no doubt a function of more variables

than just turnaround time of jobs. It could include for example, predictability of wait

times, friendliness of staff, ease of use of storage systems, availability of debuggers and

other auxiliary tools, and so on. Utility functions are a tool that can be extended to cover

these variables as well.

Parts of Chapters 2 and 5 are reprints of the material as it appears in International

Journal of High Performance Computing Applications, 2006. Lee, Cynthia B.; Snavely,

Allan E., 2006. [47] The dissertation author was the primary investigator and author of

this paper.



Chapter 3

Genetic Algorithm Scheduler

3.1 Introduction

This chapter introduces a novel approach to scheduling that uses a genetic al-

gorithm (GA) heuristic to evolve a priority queue ordering of the jobs seeking to max-

imize aggregate utility. One purpose in developing this algorithm was simply as a way

to explore the question, “How well is it possible to do?” In other words, what is the

opportunity-space to maximize aggregate utility under realistic assumptions about users’

utility functions? Testing of a prototype implementation of the algorithm suggests it is

also suited to use in real-time, production supercomputer scheduling.

Classic approaches to scheduling, exemplified by EASY and Conservative back-

filling (described in Section 1.3), consist of two components: an ordered list of jobs, and

a defined procedure for transforming that list into a schedule in two dimensions (proces-

sors and time). In the case of EASY and Conservative backfilling, the procedure consists

of ordering the jobs by arrival (traditional queue) and of waiting for enough processors

to become idle so that the first job in the queue may be started. EASY and Conservative

backfilling differ in their criteria for allowing jobs further back in the queue to fill in

gaps.

While EASY and Conservative backfilling seek to refine the procedures for

35
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transforming the ordered list (queue) into a schedule, other approaches to scheduling

have instead (or additionally) addressed the queue itself, through the mechanism of a

priority calculation. For instance, the Maui scheduler [39] uses a priority queue sorted

according to a single priority number. That number is calculated from a weighted combi-

nation of a complex set of interconnected factors, configurable for each system, includ-

ing: what auxiliary resources were requested by the job, how long the job has already

been queued (“aging” factor), how many jobs have bypassed the job due to backfilling,

how much of the fiscal year’s total allocation the user (or group) has already consumed,

quality of service (QoS, i.e., priority) request from the user and the difference between

the job’s current wait time and a target wait time set for that user by the system admin-

istrators.

The Genetic Algorithm (GA) scheduler also takes the approach of addressing

the list itself, by using evolutionary refinement to optimize the ordering of the (priority)

queue such that, when provided as input to a classic scheduling discipline like EASY, it

produces a schedule that optimizes the desired metric.

3.2 Algorithm

In each scheduling iteration, the GA scheduler produces a planned mapping of

jobs to processors from now into the foreseeable future, and suggests which job(s) to

start immediately. Foreseeable future in this case means that all jobs that are currently

in the queue are scheduled. It does this by speculatively testing out many possible

schedules. These schedules are selected in a process that has a stochastic element, but

is guided by the goal dictated by a given objective function. However, rather than trying

to evolve a schedule directly, the GA algorithm actually evolves an ordering of the jobs.

One might ask, why not directly optimize the schedule itself? To do this, a

fundamental requirement is that one have a process for enumerating possible schedules,

from which one could select the best, according to a given metric. In the case of two-

dimensional HPC system schedules, there does not seem to be a straightforward way
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to do this, given the constraints on jobs not overlapping, and having arbitrary widths

(processors) and lengths (runtime).

Fortunately, the analogy with biology provides a useful abstraction for separat-

ing the hard-to-enumerate two-dimensional schedule forms from an easy-to-enumerate

underlying specification that can be transformed into a schedule. In biology, a distinc-

tion is made between an organism’s present manifestation in terms of form, development

and behavior, or its phenotype, and the organism’s DNA that gave rise to that manifes-

tiation, the genotype. Observing and describing, much less enumerating, all possible

aspects of an organism’s phenotype is generally intractable. However, the DNA code

constitutes a concrete and manageable piece of data. Similarly, the GA scheduler distin-

guishes between the schedule (phenotype) and the priority queue ordering (genotype) in

order to sidestep the enumeration problem.

3.2.1 Individual Genotype

This priority ordering can be thought of as the genotype of the individual. Then

the phenotype, in this analogy, is the schedule derived from presenting the jobs, in the

genotype order, to some scheduling algorithm.

After the genotype (queue ordering) is rendered as a phenotype (a schedule),

the measure of the schedule’s fitness can be taken. The fitness function could be any

scheduling metric. In the experiments provided here, the fitness function is the aggregate

utility of the schedule (see Equation 2.1 in Section 2.2.3).

Thus, the individual in the population’s genotype is modeled as an ordered list

of the job identifiers for all jobs currently in the queue (i.e., currently available for

scheduling). The model of an individual is diagrammed in Figure 3.1. A population is

seeded with random permutations of the job identifiers. In experimental results given

here, the population also includes a few special seed individuals whose jobs are sorted

by, variously: arrival time, priority (secondarily by arrival time), current utility per node-

hour, and absolute current utility.
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Figure 3.1: Modeling an individual in the population.

Figure 3.2: Modeling point mutation.

3.2.2 Point Mutation

Point mutations are simulated by selecting two jobs in the list at random, and

swapping their places, as shown in Figure 3.2. Point mutations occur on each individual

with a customizable probability φ.

Thus far, the GA scheduling algorithm consists of a straightforward application

of the genetic algorithm optimization method widely used in a variety of application

areas of computer science. However, the GA scheduling algorithm deviates somewhat

from the traditional model in how it simulates reproduction.

3.2.3 Reproduction

Traditional genetic algorithms model sexual reproduction by randomly selecting

a location on the “DNA” string, and copying everything up to and including that location

from one parent, and everything after that location from the other parent. This presents a

problem for the way the genotype is represented in the model described above. Namely,
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Figure 3.3: Modeling sexual reproduction.

the resulting child will not have a permutation of the job queue, but will have a list

that is missing some jobs and contains duplicates of other jobs. Rather than change the

model of the individual so that it functions correctly when using the traditional method

of reproduction, a novel method of reproduction will be introduced.

Sexual reproduction is modeled in the GA scheduler by combining the two par-

ent queue orderings in a way analogous to a clothing zipper. Specifically, one of the two

parents is chosen at random. The first job in this parent’s queue is popped and becomes

the first job in the child queue. Then a parent is again chosen at random, the first job

of that parent is popped, and becomes the second job in the child queue, and so on. If

the popped job to be added to the child’s queue is already present in the child’s queue,

one must continue popping jobs from that parent’s queue until a non-duplicating job is

found. This ensures that the child’s list includes each job identifier exactly once.

Reproduction is illustrated in Figure 3.3. Jobs are popped from the parent queues

into the child queue, alternating between Parent A and Parent B. When popping J3 from

Parent A, it is discovered that J3 is already present in the child queue and the next job

from Parent A, J2, is used instead. A black ’X’ denotes a job duplicate job that is

skipped (e.g., Parent A’s J3).

Reproduction happens in the context of one generation of a population, con-
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sisting of individuals with different values according to the fitness function. The GA

scheduler follows the traditional genetic algorithm approach to selecting which individ-

uals’ genes will propagate to the next generation. That is, individuals with higher fitness

are more likely to mate and produce offspring than individuals with lower fitness. A

predetermined number of individuals exist in each generation, and this number is con-

stant from generation to generation. To generate each individual of the next generation,

two parents are selected at random.

If the population set is P , then probability of selecting an individual x as the first

parent of a child is given by:

Pr[select x as parent] =
fitness(x)∑

i∈P

fitness(i)
(3.1)

Selection of the second parent is done without replacement, in other words, a

child must have two distinct parents. Selection of parents for different children is done

with replacement; in other words, an individual may have more than one offspring (with

the same partner or a different partner).

3.3 Prototype Implementation Details

This section describes a particular sample implementation of the GA scheduler

algorithm described above in Section 3.2.

The GA scheduler was written in the Python programming language [88, 89],

adapting Python code provided in conjunction with Artificial Intelligence: A Modern

Approach, by Russell and Norvig [60, 69].

All the results presented in this dissertation, for the GA scheduler and com-

parison algorithms were generated on using Python implementations within a common

framework that was also written in Python.

The framework runs a discrete event simulation to process the stream of incom-

ing jobs, manages the simulated compute resources, and performs scheduling metric
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Figure 3.4: Design of the scheduler simulator framework.

bookkeeping. The scheduler component is abstracted so the various algorithms to be

tested may be substituted within the framework. The abstract scheduler takes as input

the entire set of queued jobs, and a list of compute resources, each noted as either avail-

able or with the time when the currently running job’s requested time will expire. This

design is similar to that of, e.g., the Portable Batch Scheduler (PBS) [36].

One drawback to using an optimization approach like a genetic algorithm is that

it is not deterministic. However, results show that the performance of GA was highly

consistent across runs. For example, in 10 repeated trials using the same workload,
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aggregate utility ranged from 1.32 × 109 to 1.38 × 109, with a standard deviation of

1.72× 107, or 1.27%. Because variation is possible, results for GA presented hereafter

are the average of two runs of GA per synthetic utility function augmentation of the

workload in question (also done twice), for a total of 4 trials per test or configuration.

Of course, the major drawback to using a heuristic optimization instead of an

efficient deterministic algorithm is the (potentially) much longer execution time. The

GA scheduler can be run for any length of time, with the fitness score of the schedule

tending to increase the longer it is run. (It separately stores the best individual seen

thus far in any generation, so it is not possible for the fitness of the returned schedule

to decrease over time, even if all individuals in later generations do manage to become

inferior to one in a previous generation.) In a production environment, the scheduler is

required to reach a decision in a small, relatively fixed amount of time. Thus the number

of individuals in each generation is fixed, as is the number of generations to calculate.

Unless indicated otherwise, the number of generations of reproduction was lim-

ited to 100, with 20 individuals in the population of each generation. With this config-

uration, GA took an average of 8,900 seconds (measured on a desktop PC) to process

an entire workload of 5,000 jobs, representing three weeks of operation of the super-

computer. Comparing to the following classic scheduling algorithms, it was just 110

seconds for conservative backfilling (Section 1.3.4), 35 seconds for Prio-FIFO (Section

1.3.5) and 30 seconds for EASY (Section 1.3.3).

Although slower than other algorithms, performance of the GA scheduler is well

within a the time requirements of the task of real-time scheduling of a contemporary

HPC system. In that environment, the scheduler must select which job(s) to start when-

ever a new job arrives or a running job terminates. The GA scheduler takes less than

two seconds to do this calculation (8900s/5000 decisions = 1.8s/decision). According

to SDSC system logs, approximately 90 seconds elapses between jobs as the system

“cleans up” and does other tasks. Thus the two-second latency of GA’s decision cal-

culation is insignificant. Furthermore, the calculation could be performed much faster

than two seconds if even just one processor of the HPC system were to be used for this
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purpose, as opposed to the desktop PC used to produce these timings.

3.4 GA Scheduler as a Market

To this point, we have assumed that the user utility functions (willingness to pay)

associated with each job were obtained by the GA scheduler essentially via omniscience.

This section examines how the utility functions could be truthfully elicited, including

how users should be charged for their usage of the system.

3.4.1 Auction Model

The problem of allocating processors to jobs in exchange for a fee can be framed

as a combinatorial auction problem. Combinatorial auctions are auctions in which many

goods are simultaneously available for sale. Finding Pareto-optimal allocations in com-

binatorial auctions is complicated by the presence of complementarity and substitutabil-

ity in users’ preferences. Complementarity means that a customer would prefer to con-

sume one good with (an)other good(s). For example, a user bidding on a left shoe is

most interested in winning the auction if he also wins the auction for the complemen-

tary right shoe. Substitutability means that more than one good may fill a customer’s

desire, and the user would be happy to bid on any or all of them, but the customer only

wants to ultimately win the auction for one (or some number less than all) of them.

Complementarity is seen in parallel job scheduling, because the user (typically)

needs all of their requested processors at the same time in order for the job to run at

all. Complementarity also exists on the time dimension, in that the user would like to

occupy the processors continuously until the job completes1. Substitutability is seen

in parallel job scheduling because the processors are homogenous and the user doesn’t

have reason to prefer any one subset of them to another, given equal size and start time.

The “gold standard” of combinatorial auction design is the Generalized Vick-

1There are some technical workarounds for this constraint, which will be discussed in Chapter 6.
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rey Auction (GVA) [49], using the Vickrey-Clark-Groves (VCG) pricing scheme, where

each winner pays the opportunity cost imposed on all other participants by their presence

as a winner. This is an incentive-compatible generalization of the standard Vickrey auc-

tion (or sealed-bid, second-price auction) for a single good, where the 1st-place bidder,

the winner, pays the amount of the 2nd-place bid.

Lehmann et al. [49] analyze parallel job scheduling as a combinatorial auction

and show that we cannot rely on the guarantees of VCG in the case where the alloca-

tions are only approximately optimized. This is a critical issue because the parallel job

scheduling optimization problem is known to be intractable [35], and inexact optimiza-

tion algorithms must be employed. They propose a system for clearing combinatorial

auctions for parallel job scheduling markets where truth revelation is a dominant strat-

egy, but this property only holds for a “severely” restricted class of users.

Mirage [16] is an actual deployment of auctions for compute cycle scheduling,

on a grid environment as opposed to supercomputer environment. Mirage uses an iter-

ative sealed-bid, first-price auction. The mechanism is not strategy-proof, and although

one might hope that users would be too naive or unsophisticated to realize this, Ng et

al. [59] observed strategic user behavior on the Mirage system. Related work by Munk

et al. [56] uses an Expected Externality Mechanism for parallel batch queue systems

that only accepts single-processor jobs, in which truthfulness is a Nash-optimal strategy

(optimal if one assumes other users are also following the strategy). However, the vari-

able number of processors (parallel) job case remains an open problem, and this is a key

requirement for supercomputer environments.

The GA scheduler can be viewed as an algorithm for clearing combinatorial auc-

tions for processor time. Because it relies on heuristic optimization, the GA scheduler

does not guarantee to find the schedule that perfectly optimizes Aggregate Utility (total

willingness to pay). It also doesn’t readily provide an opportunity cost figure for each

successful bid, a barrier to using VCG pricing. This is because the variety of job sizes,

in processors and time, doesn’t allow for a straightforward analysis of what would have

happened to the schedule in the absence of a particular job. The effects could cascade
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across the whole schedule in unexpected ways. The lack of guaranteed optimization and

direct calculation of shadow price are challenges in the design and analysis of a price

mechanism for the GA scheduler.

Section 3.4.3 will further discuss the issues around possible price mechanisms

and propose a solution. First, an exploration of the analogy with electric grid markets,

in Section 3.4.2, will suggest the feasibility of a similarly structured solution.

3.4.2 Power Grid Market Analogy

Using the GA scheduler to calculate a schedule, taking into consideration com-

peting user desires and associated willingness to pay data, forms a hybrid between a cen-

tralized, planned economy and a pure decentralized auction between individual buyers

and sellers (processors, anthropomorphized). Such a scheme does not fit neatly into an

analytical category that provides desirable properties like guaranteed Pareto-optimality.

However, it is not without precedent in the real world. The electric grid market in the

United States, as documented by Wilson [95], also functions with elements of auctions

combined with central planners responsible for ensuring feasibility of allocations.

Electric power grid market clearing and processor scheduling are problems that

share several key traits. For example, the high cost of storing power is analogous to

the impossibility (infinite cost) of storing computer cycles. Because both electric and

compute cycle demands vary over time, capacity planning becomes an issue. Power

market supply and demand must be balanced at all times, necessitating ample reserve

capacity to avoid extreme responses to spikes in demand, for example rolling blackouts.

The drawback is that they suffer from low average load factors. In parallel processor

scheduling, queues are a ubiquitously employed mechanism for managing variation in

demand.

Both power markets and processor scheduling feature users of varying degrees

of sophistication. Unsophisticated users have less willingness and ability to respond to

rapid price signals, less ability to forecast demand, and less information about their own
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demand even ex post. Other users may be experts in the very technology and algorithms

used to schedule the processors and thus able to devise and deploy gaming techniques

[59], if the system is vulnerable to any. Similarly, some power market users, notably

many households, put little thought into their patterns of consumption of electricity,

while others are highly sophisticated, even generating, and selling the excess of, their

own power.

3.4.3 A Price Mechanism

Chapter 5 details the challenge of eliciting accurate runtime requests from users.

As will be seen in Section 4.6, inaccurate runtime requests can have a detrimental effect

on scheduling results. There is a second piece of possibly-inaccurate data furnished to

the GA scheduler by users–the utility function. Inaccurate utility functions can likewise

be detrimental to the performance of the scheduler. Recent work by AuYoung et al. [3]

empirically analyzes effects on utility-based scheduling systems when inaccurate utility

information is provided due to user uncertainty, and finds that performance is tolerant to

some inaccuracy. But malicious gaming of utility function reporting must be addressed.

Careful design of a price mechanism, or system for setting how much users pay for their

use of the system, can incentivize users to provide truthful utility functions.

GA within a Single-Price Framework

Under the current scheduler on, for example, an SDSC system, users are charged

a fixed price regardless of eventual turnaround time of the job. This standard price is

1SU per processor-hour.

What would happen if the GA scheduler were to be dropped into such a system,

requiring users to provide a utility function, determining the schedule based on the utility

functions, then charging everyone a fixed 1SU per processor-hour price? Chaos would

quickly ensue as self-interested users claim higher and higher utility functions in order to

bypass others in the schedule. Users would have no reason to limit their reported utility
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functions because they are not penalized for over-reporting. The utility value required

for a job to run would be limited only by the maximum integer value. Even assuming

that users’ innate sense of morality prevents dishonest utility function over-reporting in

every case, this system still suffers from another problem. Users who might be interested

in contributing to the smooth operation of the system by allowing their jobs to run only

in very low-load times–in exchange for a discount from the 1SU fee–are unable to do

so because the fee is fixed. They will truthfully indicate their flexibility, only to unfairly

pay the same price as everyone else.

This rigid price scenario is obviously pathological, but in fact even traditional

SDSC systems operate under a more flexible system.

GA within a Multiple-Queue, Multiple-Price Framework

On SDSC systems such as Blue Horizon [70] and Datastar [71], users may have

the option to submit to a High priority queue, which purports to offer shorter turnaround

time, and for which they will be charged 2SUs per processor-hour. At various times,

SDSC has also offered a Low and Express queues at 0.5 and 1.7 SUs per processor-hour,

respectively.

This system has drawbacks: the price is not directly connected to outcome, and

users have no way of knowing if the High priority queue offers better service for any

given job–even after the fact. But it contains the rudiments of a well-designed price

mechanism, namely, users’ desire for priority service is tempered by their limited bud-

gets and the surcharge for the High priority queue. Would this also help temper the

pathology seen in the previous scenario using the GA scheduler?

Such a system would require a way to map utility functions to the set of queue

choices {Low, Normal, Express and High}. The effectiveness of the price in controlling

users’ behavior depends in part on the accuracy of this mapping, but there is an inherent

loss of fidelity. A first-order approximation would be to bin users based on the starting

(maximum) utility value, but this ignores other urgency signals such as the deadline.
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Another problem is that users who are willing to pay the rate for the High category

have no disincentive to wildly overstate their utility function, because the charge will

never be greater than the High rate no matter how high they bid. Similarly, users in

other categories would bid up to the maximum for their bin. Each category would then

degenerate into a competition decided by the timing of their submissions. AuYoung

[3] and Chun [15] studied scheduling schemes with binning elements and noted similar

problems.

This system, though simple and vulnerable to problems, may be feasible in some

settings. For example, environments where a degree of collegiality and extra-price-

motivated “good behavior” can be assumed.

GA as an Approximate First-Price Auction

A further refinement would be to charge users based on their individual utility

functions and turnaround times. The simplest of this type of system would be to charge

users their willingness to pay, in other words, to evaluate their utility function at the

turnaround time actually achieved in the schedule. The advantages are that it is very

simple to calculate, parallels the value the GA scheduler uses internally, and provides

direct pressure on users not to overstate their willingness to pay. It establishes a quasi-

first-price auction. First price auctions are known to suffer from a truthful-revelation

problem, which is that users are more “gun-shy” about revealing their true maximum

willingness to pay.

GA as an Approximate VCG Auction

To mimic a VCG auction, we need to calculate the opportunity cost the running

of each job imposed on the system. As noted above, directly calculating this value

for parallel job scheduling is an open problem. However, the opportunity cost of the

decision to schedule a given job Ji can be approximated after the fact by re-using the

GA schedule optimization engine to simulate schedules with Ji removed. The procedure
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is as follows:

1. After Ji completes, collect the workload history for the set of all jobs in the

queue at the time Ji was submitted, union the set of jobs that arrived while Ji

was running. This set of jobs is denoted {J0, ..., Ji, ..., Jn}.

2. Calculate the Aggregate Utility for {J0, ..., Ji, ..., Jn}, evaluating each job’s util-

ity function at the turnaround time that actually occurred in the workload history.

Call this AUtrue,all.

3. Subtract the utility of job Ji from AUtrue,all and call this AUtrue.

4. Simulate the GA scheduler on jobs {J0, ..., Ji−1, Ji+1, ..., Jn}, to produce an (ap-

proximately) optimized schedule with just those jobs (job Ji is not present).

5. Evaluate the Aggregate Utility of the schedule in (4) and call it AUalt.

6. The differenceAUtrue−AUalt is the approximate opportunity cost of the decision

to schedule Ji.

This procedure needs to be done separately for each job, and is computationally

expensive (relative to first-price auction prices). Fortunately, this calculation is not time-

sensitive like the schedule calculation, and can be done offline as part of a periodic

billing cycle. Note that, assuming one calculates the same number of generations of

evolution as is done in the actual scheduling decisions, this calculation takes the same

amount of time. Namely, about two seconds per job for which to calculate a price, or

about 3 hours to do the billing for a whole month’s worth of jobs.

For a more accurate approximation, the window of the workload history exam-

ined could be extended further into the future by letting Jn be the last job to arrive in the

queue within a 24 hours, a week, or two weeks after Ji finished running. Setting Jn to

be the last job submitted while Ji was running is a first-order approximation including

only those jobs that could be directly impacted by Ji’s run. Even if the time horizon
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were to extend infinitely far into the future, the opportunity cost calculation would still

only be approximate, because GA is not guaranteed to find the optimal schedule.

It is possible that the approximate opportunity cost calculation would result in a

negative number. This could indicate that the GA scheduler happened to find a better

schedule during its price calculation simulations than it had managed to find during

its scheduling optimization, or that uncertainty about the future (arrival of new jobs

and inaccurate runtime requests) impaired its ability to find the most efficient schedule

originally. In this case, the price should revert to a default value, say zero.

3.5 Conclusion

The GA scheduler evolves an ordering of the jobs and runs the EASY scheduling

algorithm on the resulting priority queue in order to obtain a decision about which job(s)

to start in each round of online scheduling.

Each individual in the population to which “evolution” is applied represents a

possible way of scheduling the currently available jobs. The individual’s genes con-

sist of an ordering of the available jobs. Evaluating the fitness of each individual, and

thereby how many offspring it will produce, is done by estimating the aggregate utility

of the resulting schedule (including all jobs scheduled out indefinitely into the future).

As a heuristic optimization approach to scheduling, the GA scheduler is non-

deterministic and can be run for any length of time, with the estimated quality of the

schedule increasing over time. With caps on the number of different schedules to ex-

plore as currently configured, the GA scheduler runs in an amount of time that is well

suited to a production HPC environment.

Several pricing schemes of varying complexity and effectiveness in promoting

truthful utility function revelation were proposed for the GA scheduler.

Though it has been shown that the GA scheduler has acceptable performance

in terms of runtime, it remains to be shown how it compares to other scheduling algo-

rithms in terms of the quality of the resulting schedule. Simulation experiment results
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addressing this question are presented in Chapter 4.

Parts of Chapters 3 and 4 are reprints of the material as it appears in the pro-

ceedings of International Symposium on High Performance and Distributed Computing

(HPDC), 2007. Lee, Cynthia B.; Snavely, Allan E., 2007. [48] The dissertation author

was the primary investigator and author of this paper.



Chapter 4

Scheduler Evaluation Results

4.1 Introduction

The following experiments were conducted using a workload with utility func-

tions generated using the synthetic utility function generation methods described in Sec-

tion 2.6. The base workload is SDSC-Blue [26], available from the Parallel Workloads

Archive [13, 28]. SDSC Blue has 1,152 processors and six main priority categories.

Only jobs 5,000 through 10,000 are used, thus avoiding the atypical patterns at the be-

ginning of the trace when the machine was first being opened to users and utilization

was very low. The real-time duration of the time period (jobs 5,000 through 10,000)

being simulated is three weeks. It therefore includes cyclical changes in workload and

job arrival rates that occur on both diurnal and weekly bases.

The schedulers to be compared are several of the classic scheduling algorithms:

EASY backfilling, Conservative backfilling, and Priority-FIFO (simple supercomputer

scheduler policy where all jobs from a higher priority queue are considered before any

in a lower priority queue and EASY backfilling within these constraints). These are

compared against the utility-function-aware GA scheduler.

Generation of synthetic utility functions, as described above, relies in part on

pseudorandom selection of parameters; even for the same base input workload, result-

52
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ing utility functions will differ each time they are generated. Thus all results reported

in this paper are the average of the result on two different workloads (same base work-

load, augmented with utility functions two different times). Recall that GA has its own

variability, and is run four times, twice on each of these two workloads.

The metrics used in the following were defined in Section 1.4. Examining the

impact of the scheduler on the full population of jobs, not just an average, gives much

richer insight. Therefore in this work, results are presented for several of the metrics as

percentile ranges (for example, 75% of jobs had a Wait Time of 73,881s or less using

the Conservative backfilling algorithm).

4.2 Comparison of Schedulers by Various Metrics

In addition to metrics defined in Section 1.4, a metric used here is Percent of

Job’s Start Value Earned, which is simply the ratio (percent) of the job’s earned utility

and the maximum (starting) value for the job (or, u(Tcomplete) where Tcomplete is the

complete time of the job).

Of the classic algorithms (all but GA), Priority-FIFO performed the best on all

workloads, and on all metrics except expansion factor. Priority-FIFO and GA have

made an explicit choice to favor some jobs over others, using the priority information

associated with the job. Priority-FIFO and GA significantly outperform Conservative

and EASY for aggregate utility. This is not surprising since they are the only algorithms

that can take priority or utility into account. GA outperforms Conservative, EASY, and

Priority-FIFO on aggregate utility by 53%, 14%, and 6% respectively.

According to several of the metrics shown in Table 4.1, the GA scheduler not

only delivered better performance for the highest-priority, “elite” jobs, but also spread

the improved performance out to a broader set of jobs. For example, GA scored 96.0%

of start value earned at the 25th percentile, compared to 93.3% for Priority-FIFO. At

the same time, the very worst-off jobs, at the 98th percentile, GA scored almost 2.84%

of start value earned, with just 1.04% for Priority-FIFO. A small improvement in per-
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Table 4.1: Comparison of Schedulers by Various Metrics
Wait Time Expansion Average % of Job’s Aggregate

(s) Factor Bounded Start Value Utility
Slowdown Earned

25%ile 25%ile 25%ile
50%ile 50%ile 50%ile
75%ile 75%ile 75%ile
98%ile 98%ile 98%ile

100%ile 100%ile 100%ile
Cons 0 1.0 131 78.9% 8.77e08

1,375 1.30 11.5%
16,746 2.25 0%
73,881 34 0%

112,103 146 0%
EASY 0 1.0 76 90.4% 1.16e09

0 1.0 40.8%
5,372 1.55 0.055%

59,067 28 0%
116,552 131 0%

Prio 0 1.0 73 93.3% 1.27e09
0 1.0 53.1%

2,733 1.30 1.04%
72,403 22 0%

319,822 353 0%
GA 0 1.0 148 96.0% 1.35e09

0 1.0 59.1%
822 1.12 2.84%

62,758 34 0%
1,355,885 2261 0%
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centage points, but it shows that GA is not delivering better “elite” performance at the

expense of the majority of jobs.

GA does result in severe starvation of less than 2% of jobs (see the 100 percentile

wait time in Table 4.1). Supercomputer centers would have to carefully consider, at a

policy level, whether or not this is acceptable. If the schedule, turnaround times of all

jobs, and ultimately overall user satisfaction, are significantly negatively impacted by

just a small number of jobs, it may make sense to consider whether they should be, for

example, asked to move to a different and more suitable venue.

4.3 Comparison of Schedulers by Utility Decay Type

The default behavior of the synthetic utility function generator is to generate ap-

proximately one-third of the workload using each of the three decay patterns: expected

linear, expected exponential, and step. If one has reason to believe that a particular

workload of interest would be more heavily populated by one of these types, it would be

useful to know if certain schedulers perform better on that type. Figure 4.1 shows this

comparison using the aggregate utility metric.

Of the three types of decay models, the expected exponential decay model re-

sulted in the lowest score for each algorithm (this is to be expected). Jobs simply lose

value too quickly to complete all of them before some lose much (or all) of their value.

This is also the decay model on which the GA scheduler’s performance is highest rela-

tive to the other algorithms, an improvement of 40% over the average of the others and

20% over Priority-FIFO.

4.4 Comparison of Schedulers by System Load

The most difficult test of a scheduler may be its performance in heavy load con-

ditions. When it simply isn’t possible to run all jobs in a reasonably timely manner,

what should be done? Schedulers perform a balancing act–triage of the importance of
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Figure 4.1: Scheduler performance by decay type.

Figure 4.2: SDSC Blue’s load variation by time of day.
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Figure 4.3: Scheduler performance by job load.

each job and how long it has already waited, while keeping an eye on how each action

might impact the global good. Perhaps an important job’s dimensions (processors and

duration) are such that it cannot be fit in without doing an amount of damage to the

scheduling of the rest of the jobs that outweighs the benefits.

The SDSC Blue workload already has variation in load, sometimes reaching

quite heavy loads, according to local time of day and day of the week (load by time of

day shown in Figure 4.2, graph from the SDSC-Blue workload [26] documentation in

the Parallel Workloads Archive [28], used with permission.). This load is exacerbated

by scaling the inter-arrival times of jobs in the log by varying factors, as shown in Figure

4.3.

Priority-FIFO and GA perform extremely well in high load conditions. The

greater the load, the greater the difference in performance between these algorithms and

those that do not consider priority or utility. Priority, expressed through a queue choice

or a utility function, is a powerful tool to help schedulers manage heavy load.
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Figure 4.4: Scheduler performance by deadline urgency.

4.5 Comparison of Schedulers by Job Deadline Urgency

Another way to stress a scheduler is to scale the deadlines of the utility functions

down, so that jobs are more urgent. Recall that deadline is set to be twice the actual wait

time for that job recorded in the workload trace. New workloads are generated where

this factor is one or three, as shown in Figure 4.4.

Naturally, all schedulers perform better when they have more time to schedule

jobs (deadline factor = 3). Under deadline factor = 1, EASY proves more resilient with

this method of stressing a scheduler than it was when load was increased by scaling

inter-arrival times (Section 4.4, Figure 4.3). This is probably because one thing EASY

does well is aggressively backfilling small jobs, resulting in a large percentage (even the

majority) of jobs having no wait time whatsoever (see Table 4.1). Thus no matter how

soon the deadline of these jobs is moved, provided it is nonzero, EASY will still earn

their full utility.
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4.6 Comparison of Schedulers by Sensitivity to Runtime

Accuracy

For the algorithms EASY and Conservative backfilling, there is a well known

and yet surprising result that they perform as well or better with inaccurate requested

runtimes (relative to actual runtimes) than with completely accurate ones [55]. This re-

sult is surprising in that it goes against the “garbage in, garbage out” mantra of computer

programming; typically, poor quality input results in poor quality results. In this case,

the claim is that a noisy input signal is beneficial to scheduler performance.

Extending this idea, [98] showed that with more and more inaccuracy (larger and

larger multipliers on the real runtime), EASY and Conservative degenerate into approx-

imating the Shortest Job First algorithm, which is the optimal algorithm for minimizing

average wait in uniprocessor settings. So, according to [98], inaccurate requested run-

times serve to transform a less-than-ideal algorithm into a nearly ideal one. This raises

the question of whether a algorithms that do not suffer from this issue initially would

still follow the “garbage in, garbage out” law.

As we explore the aggregate utility metric, and a new algorithm, GA, it is prudent

to validate or invalidate the inaccuracy result of [55] as it might apply to these.

Figure 4.5 compares each scheduler’s performance on the aggregate utility met-

ric when using inaccurate requested runtimes (the actual user-provided requested run-

times), versus using completely accurate requested runtimes. All schedulers except

EASY had marked improvement in performance, according to this metric, when us-

ing the accurate requested runtimes. EASY’s slight decline in performance is consistent

with the prior result of [55] when using the average bounded slowdown metric (though

it contradicts the result for this workload, as will be seen in Figure 4.6).

Table 4.2 shows the comparison of schedulers using a variety of metrics, all run

using completely accurate requested runtimes (i.e., requested runtime = actual runtime).

These results should be compared to results with real–inaccurate–runtime requests, in
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Figure 4.5: Scheduler performance with real user runtime estimates and fully accurate

requests.

Table 4.1). The key comparisons between inaccurate and accurate results (combining

columns of Tables 4.1 and 4.2) are shown in Figure 4.6.

Figure 4.6 can be summarized in two main points. According to the Aggre-

gate Utility (AU) metric, all schedulers–except EASY backfilling–improve when pro-

vided with accurate runtime requests. On the other hand, according to the Average

Bounded Slowdown (ABS) metric, all schedulers–except Conservative backfilling–get

worse when provided with accurate runtime requests.

There are several interesting aspects to these results. First, that EASY gets worse

with accurate runtime requests, according to to the Average Bounded Slowdown metric,

differs from the prior result of [55]. This can be attributed to the experiments using

different workloads, but shows that EASY’s improvement in the ABS metric with in-

accurate runtime requests is not a universal property of EASY. It is also notable that,

although ABS and AU agree in their ranking of algorithms in virtually all experiments

reported here, they produce opposite movement when comparing accurate and inaccu-
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Table 4.2: Comparison of Schedulers by Various Metrics With Fully Accurate Runtimes
Wait Time Expansion Average % of Job’s Aggregate

(s) Factor Bounded Start Value Utility
Slowdown Earned

25%ile 25%ile 25%ile
50%ile 50%ile 50%ile
75%ile 75%ile 75%ile
98%ile 98%ile 98%ile

100%ile 100%ile 100%ile
Cons 0 1.0 116 73.9% 1.03e09

3,621 1.76 0.02%
27,009 5.28 0%

246,923 78.2 0%
307,491 393 0%

EASY 11 1.0 164 68.2% 1.14e09
7,666 2.0 0%

35,657 6.62 0%
198,790 99.2 0%
252,240 353 0%

Prio 0 1.0 97 89.5% 1.36e09
383 1.1 30.4%

6,592 1.98 0%
159,417 42 0%
775,694 861 0%

GA 0 1.0 224 91.2% 1.41e09
140 1.02 40.6%

3,483 1.52 0.003%
381,516 105 0%

1,153,529 1,923 0%
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Figure 4.6: Scheduler performance by runtime accuracy, comparison of two metrics.

rate runtime requests.

The problem of inaccurate user runtimes will be further investigated in Chapter

5.

4.7 Conclusion

The results of these simulations illuminate several important points. First, the

aggregate utility metric, in combination with synthetically-generated utility functions to

augment the workload trace, are useful tools for evaluating and comparing scheduling

algorithms of any variety.

Second, the notion that inaccurate requested runtimes are beneficial to schedul-

ing is shown to be false in most cases. These experimental results are bolstered by the

methodological criticism by Tsafrir and Feitelson [86]. The original result was in part

an artifact of an overly “clean” model of user inaccuracy, which consisted of multiply-
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ing all the actual runtimes by the same factor f to generate inaccurate ones. Of course

with real user estimates, f will vary with each job. This methodological problem under-

mines the original result. Further discussion of this debate, and other related work on

the problem of inaccurate user runtimes is found in Section 5.1.1.

Third, the GA scheduler was shown to provide not only more “attentive” pref-

erential treatment to the highest-priority jobs, but did this while also improving the

scheduling results for the majority of jobs. In other words, the GA scheduler did not

serve the few at the expense of the many.

Parts of Chapters 3 and 4 are reprints of the material as it appears in the pro-

ceedings of International Symposium on High Performance and Distributed Computing

(HPDC), 2007. Lee, Cynthia B.; Snavely, Allan E., 2007. [48] The dissertation author

was the primary investigator and author of this paper.



Chapter 5

User-Provided Runtime Estimates

5.1 Introduction

5.1.1 Inaccuracy: Characterization, Effects, and Causes

As noted in Section 4.6, is well-documented that user-provided runtime esti-

mates are inaccurate. Characterizations of this error in various real workload traces can

be found in several classic and recent papers. Cirne and Berman [19] showed that in

four different traces, 50 to 60% of jobs use less than 20% of their requested time. Ward,

Mahood and West [94] report that jobs on a Cray T3E used on average only 29% of

their requested time. Chiang, Arpaci-Dusseau and Vernon [14] studied the workload of

a system where there is a 1-hour grace period before jobs are killed, but found that users

still grossly overestimate their jobs’ runtime, with 35% of jobs using less than 10% of

their requested time (includes only jobs requesting more than one minute). Similar pat-

terns are seen in other workload analyses [55, 79, 44]. Figure 5.1 shows the discrepancy

between requested time and actual runtime jobs on SDSC’s Blue Horizon system (where

the survey described in the following sections was conducted (N=2,870)).

One might ask what impact user inaccuracy has on scheduler performance–why

worry if user estimates are inaccurate? Indeed, Mu’alem and Feitelson have shown

the surprising result that if workloads are modified by setting the requested times to

64
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Figure 5.1: Comparison of actual runtime and requested runtime for all jobs on Blue

Horizon during the survey period.

R ∗ actualruntime, average slowdown for the EASY and conservative backfilling al-

gorithms actually improves when R = 2 or R = 4, compared to R = 1 (total accuracy)

[79, 98]. Similar results have been shown when R is a random number with uniform

distribution between 1 and 2, or 1 and 4, etc. [55, 98].

But simply taking the accurate time and multiplying it by a factor does not mimic

the “full badness of real user estimates” [55], leading some–including a co-author of

the original paper–[86] to call this result into question. Using real user-provided times

[55, 79], some scheduling algorithms did still perform equivalently or slightly better,

compared to the same workload with completely accurate times. However, other algo-

rithms experienced significant performance degradation as a result of user inaccuracy

[14, 44]. The key point here is that Mu’alem and Feitelson’s result only applies to the

specific algorithms they studied, and it is necessary to re-prove (or disprove) their result

for each new algorithm individually. Also, even for an algorithm such as conservative

backfilling, which shows some mild improvement of average slowdown with inaccurate

estimates, it is at the cost of less useful wait time guarantees at the time of job submis-
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sion, and causing an increased tendency to favor small jobs over large jobs (which may

or may not be desirable) [14, 98].

Many factors contribute to the inaccuracy of user estimates. All workloads show

a significant portion of jobs that crash immediately upon loading. This is likely more in-

dicative of users’ difficulties with configuring their job to run correctly, than difficulties

with providing accurate runtime estimate [55]. However, a job’s runtime may also vary

from run to run due to load conditions on the system. In an extreme example, Nitzberg

and Jones [41] found that on an Origin system where different jobs on the same node

share memory resources, job runtime varied 30% on a lightly loaded system, to 300%

on a heavily loaded system.

Mu’alem and Feitelson [55] note that because many systems kill jobs after the

estimated time has elapsed, users may be influenced to “pad” their estimates, to avoid

any possibility of having their job killed. Users may also be insufficiently motivated

to provide accurate runtime estimates. Many users are likely unaware of the potential

benefits of providing an accurate request, such as higher probability of receiving quicker

turnaround (because of an increased likelihood of backfilling), or this motivation may

not be strong enough to elicit maximum accuracy.

5.1.2 Requested Runtimes vs. Estimated Runtimes

With regard to this padding, it is important to be precise about what users are

typically asked to provide, which is a time after which they would be willing to have

their jobs killed, and to distinguish this from the abstract notion of an estimate of their

jobs’ runtime. This leads us to prefer the term, requested runtime for the former, re-

serving the term estimated runtime for a best guess the user can make without any kill

penalty (and possibly even with an incentive for accuracy).
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5.1.3 The Padding Hypothesis

This experiment seeks to affirm or falsify the following hypothesis, which is

implicitly or explicitly assumed in many of the papers in the literature:

The Padding Hypothesis: Users know the runtime of their jobs; the error observed in

requested runtimes is a result of users adding padding to an accurate runtime

estimate they have in mind.

This study tests this hypothesis by asking users of the Blue Horizon system [70]

at the San Diego Supercomputer Center (SDSC) for a non-kill-time estimate of their

jobs’ runtime, and offering rewards for accuracy.

5.2 Survey Experiment Design

Blue Horizon was a 1,152-processor IBM SP2 system installed at the San Diego

Supercomputer Center (SDSC) [70]. Resource management was handled by IBM’s

LoadLeveler software [37], augmented with a scheduling program called Catalina [97]

that was developed in-house at SDSC. Users of the Blue Horizon system submit jobs by

using the command llsubmit, passing as an argument the name of a file called the job

script. The script contains vital job information such as the location and name of the

executable, the number of nodes and processors required, and a requested runtime.

During the survey period, users were prompted for a non-kill-time estimate of

their jobs’ runtime by the llsubmit program, randomly one of every five times they sub-

mit. The question was asked at the moment of job submission because this is the most

timely and realistic moment to measure the user’s forecasting abilities. The traditional

requested runtime is not modified in the job script, but merely reflect that value back to

the user and the user is asked to reconsider it, with the assurance that their response in

no way affects this job.

Users were notified of the study, by email and newsletter, a week prior to the

start of the survey period. The notification included information about prizes to reward
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Figure 5.2: Sample runtime estimate survey and response

the most accurate users (with consideration given also to frequency of participation),

specifically one MP3 player and several USB pen drives. The prizes were intended to

provide a tangible motivation for accuracy and thus to elicit the most accurate estimates

users are capable of providing.

The text of the survey is as follows. First, the user is reminded of the requested

runtime (kill time) provided in their script. The user is then queried for a better estimate.

Finally, the user is asked to rate their confidence in the new estimate they provided, on a

scale from 0 to 5 (5 being the highest). This question was designed to test if users could

self-identify as good or poor estimators. The survey does not provide default values. A

sample of the survey output is shown in Figure 5.2.
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5.3 Results

5.3.1 User Accuracy

Over the 9-week period of the survey, 2,870 jobs ran on the system (note that

there were more job submissions than this, since many jobs are withdrawn while still

waiting in the queue). Only one in five job submissions (selected pseudorandomly)

triggered an attempt to administer the survey. Automated submissions (81) were not

surveyed due to the lack of human respondent. At the request of system administra-

tors who wished to minimize disturbance of users in the debugging process, jobs that

requested less than 20 minutes of runtime (172) were excluded. There were 21 time-

outs, where there was no response to the survey for more than 90 seconds; and 59 jobs

submitted by the 11 users who decided not to take part in the survey. The number of

completed surveys was 143.

Of these 143 surveys, 20 had actual runtimes that were equal to the requested

runtime. This situation could possibly indicate that the user was precisely accurate

or, more likely, that the scheduler killed the job once it reached its requested runtime.

These survey entries were discarded since it was not possible to determine whether the

job was completed or killed from the information collected. In 16 other responses, the

estimated runtime given in response to the survey was higher than the original requested

runtime in the script. Taken at face value, this means that upon further reflection, the

user thought the job would need more time than they had requested for it, in which case

the job is certain to be killed before completing. Some of these responses appeared to

be garbage (e.g., “99:99:99”) from users who perhaps did not really want to participate

in the study or just hoped a random response had some chance of winning a prize. In the

analysis that follows, all of these higher responses were discarded, as well as a survey

response indicating an expected runtime of 0 seconds. Henceforth, discussion of the

survey results refers only to these 107 complete and valid surveys.

The 107 responses are divided into two categories. First, those where the esti-
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Figure 5.3: Histogram of percent decrease from the requested time to the estimate pro-

vided in response to the survey.

mated time (the survey response) was the same as the requested runtime (from the job

script), numbering 56, and second, those where the user provided a reduced estimate in

response to the survey, numbering 51. (See Figure 5.3. Note that Figure 5.3 includes

only responses that were different from the requested time–56 responses had a 0% de-

crease. Categories represent a number of respondents up to the label, e.g., 20% rep-

resents 7 responses that were between 10% (exclusive) and 20% (inclusive) decreased

from the requested time in the script.) Of the 51 responses where users provided a tighter

estimated runtime, users cut substantially–an average of 35%–from the requested time.

The average inaccuracy in this group decreased from 68% to 60%. Inaccuracy means

the percent of requested or estimated time that was unused, as given in the following

formulas:

inaccuracy of requested time =
|runtimerequested − runtimeactual|

runtimerequested
(5.1)

inaccuracy of estimated time =
|runtimeestimated − runtimeactual|

runtimeestimated
(5.2)
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Again, the requested time is from the job script and the estimated time is the sur-

vey response. So, for example, an estimated time inaccuracy of 68% means either that

32% of the estimated runtime was actually consumed by the running job, or that 168%

of the estimated time was consumed. Note that it is possible for the actual runtime to

exceed the estimated time, though that was very unusual in the survey. A requested time

inaccuracy of 68% means that 32% of the estimated runtime was used (168% inaccuracy

doesn’t apply to requested times because overruns are not possible).

Including both categories of responses (same as requested time, and different),

the overall the inaccuracy decreased from an average of 61% to 57%. Those users who

did not tighten their estimate were notably more on target than those who did revise it;

their initial inaccuracy was 55%. To fully understand the two metrics it is helpful to

understand an example: A not atypical user requested their job to run for 120 minutes,

revised (estimated) the runtime at 60 minutes in response to the survey, and the job

actually ran for 50 seconds (!). In this example the user tightened their estimate by

50%. But the inaccuracy of the request is 99%, and the inaccuracy of the estimate is

improved only 1% down to 98%. Intuitively, many users are substantially improving

extreme overestimates, still without making the bounds very tight.

Figure 5.1 shows the comparison between the requested runtime in the script,

and the actual runtime for all jobs on Blue Horizon during the weeks when the survey

was being conducted. The results are similar to those seen in Figure 5.4, where we

see the same information, but for only the jobs for which survey responses exist. The

results in Figure 5.1 are also similar to those seen in the literature, in particular see

[55]. Figure 5.5 shows the results if the estimate provided in the survey is used, instead

of the requested runtime in the script. Note that no job’s actual runtime can exceed

the requested runtime, but because the survey responses were unconstrained in terms

of being a kill time, the actual runtime can be either more or less than this estimate.

This can be seen in the presence of points above the diagonal line. The great majority

of survey responses were still overestimates of the actual runtime (below the diagonal).
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Figure 5.4: Comparison of actual runtime and requested runtime jobs in survey sample.

One could speculate that this may be a lingering tendency due to users having been

conditioned to overestimate by system kill-time policies.

Little improvement can be seen in the pattern of error from Figure 5.4 to Figure

5.5. Notably, users still tend to round their times to 12, 24 and 36 hours in the survey,

but not quite as heavily.

5.3.2 User Confidence

It is likely that even the most motivated of users will not always be able to pro-

vide an accurate runtime request or estimate. But it may be useful if users can at least

self-identify when they are unsure of their forecast. In this study, users were asked to

rate their confidence in the runtime estimate they provided in response to the survey on

a scale from 0 (least confident) to 5 (most confident). Figure 5.6 shows the distribution

of responses. In a majority (70%) of the responses, users rated themselves as most con-

fident or very confident (5 or 4 rating) in the estimate. This is in spite of the fact that,

overall, the accuracy of the requested runtimes and runtime estimates was poor (though

typical, as observed in other workloads). It may be that users did not significantly adjust

their forecasts of their jobs’ runtime to account for possible crashes and other problems
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Figure 5.5: Comparison of actual runtime and requested runtime jobs in survey sample.

[51, 9].

The responses are divided by category–those users who provided a revised esti-

mate in response to the survey, and those who reiterated the requested runtime in their

script. Figure 5.7 shows that in 60% of responses that were the same as the requested

runtime, users rated themselves as most confident (5), with another 22% rated very con-

fident (4). No users rated themselves as low or very low confidence (1 or 0). In contrast,

of those responses that were a different estimate (right graph of Figure 5.8), most users

rated themselves somewhere in the middle (4 or 3).

Psychologists Kruger and Dunning have observed that people who are least

knowledgeable or skilled in a subject area are more likely to overestimate their own

abilities than those who are most knowledgeable or skilled. This result was shown in

studies of students enrolled in university psychology classes, who were given tests in

logic, grammar and humor [51]. Initially, the confidence score results in this experiment

might seem to be an instance of the same phenomenon. Specifically, perhaps users re-

iterated the same requested runtime from the job script out of ignorance, and were then

very self-confident, as predicted by Kruger and Dunning.

However, it appears that users who did not change in response to the survey,

and had high confidence, did on average have more accurate estimates (as seen in Fig-
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Figure 5.6: Distribution of user confidence scores.

Figure 5.7: Distribution of user confidence scores, users who revised their estimate.
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Figure 5.8: Distribution of user confidence scores, users who revised their estimate.

ure 5.9). For both changed and unchanged responses, there is a pattern of decreasing

average inaccuracy as the confidence increases. There seems to be a strong correla-

tion between these users’ confidence and the accuracy of the estimates they gave in the

survey, indicating that users are largely able to self-identify as accurate or inaccurate.

5.4 Other Approaches to Estimate Improvement

Asking the user for a more accurate time, as was done in this study, is not the

only approach to mitigating inaccuracy. One suggestion is to weed out some inaccurate

jobs through speculative runs, in order to detect jobs that immediately crash [44, 65]. Or,

the system could generate its own estimates [84]. For jobs with a regular loop structure,

this could be done via extrapolation from timings of the first few iterations [14]. Another

proposal [81] is to charge users for the entire time they requested, not only the time they

actually used. This idea, meant to discourage users from “padding” their estimates,

may seem unfair to users because the fact that runtime may vary from run to run due to

system load conditions necessitates a certain amount of padding.
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Figure 5.9: Average percent inaccuracy of survey responses.

5.5 Conclusion

Sound design of any software–including schedulers–must not ignore the human-

computer interaction (HCI) component of the system. In the case of schedulers, a suc-

cessful submit-time dialogue between the user and the scheduler lays the foundation for

optimal scheduling outcomes. Asking one party in the dialogue to provide information

that he or she can not provide, or does not wish to furnish, is a substantial barrier to

successful dialogue.

Are users are capable of providing more accurate runtime estimates? To an-

swer this question, users were surveyed at the time the job is submitted, asking them to

provide the best estimate they can of their job’s runtime, with the assurance that their

job will not be killed after that amount of time has elapsed. The results of the survey

demonstrate that some users will provide a substantially revised estimate but that the

accuracy of their new estimates was only slightly better than their original requested

runtime–from an average of 61% inaccurate to 57% inaccurate.

Thus the Padding Hypothesis is false–even absent a reason to pad, users do not

demonstrate knowledge of a highly accurate estimate, so padding cannot be the sole

cause of estimate inaccuracy. However, it is clearly one of several major causes, as
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nearly half of users showed an awareness that they do pad by reducing their estimates,

by an average of 35%. Another useful outcome of the survey was the observation that

many users were able to correctly identify themselves as more or less accurate in their

estimating than other users.

Parts of Chapter 5 are reprints of the material as it appears in the Proceedings

of the 10th Job Scheduling Strategies for Parallel Processing, 2004. Lee, Cynthia B.;

Schwartzman, Yael; Hardy, Jennifer; Snavely, Allan, 2004. [46] The dissertation author

was the primary investigator and author of this paper.

Parts of Chapters 2 and 5 are reprints of the material as it appears in International

Journal of High Performance Computing Applications, 2006. Lee, Cynthia B.; Snavely,

Allan E., 2006. [47] The dissertation author was the primary investigator and author of

this paper.



Chapter 6

Increasing Schedule Flexibility Using

Checkpointing

6.1 Introduction

Decades of work by numerous researchers, including work presented here, has

addressed the challenge of how to squeeze more utilization and shorter job wait times

from supercomputers, all while operating within a rigid set of assumptions and con-

straints. Among these assumptions and constraints are that jobs have fixed width (num-

ber of processors) and length (in time), that we know the job’s length when it is submit-

ted, that jobs should not share processors, and that the scheduling decision is irrevocable.

Each of these was adopted by the research community with good reason and

each remains useful. Nevertheless, valuable innovations have been brought about by

challenging many of these assumptions. Questioning the fixed length and width of jobs

yielded moldable job scheduling [80, 21, 18, 20, 50]. Questioning that jobs should not

share processors yielded symbiotic scheduling [76, 77, 91, 93, 92]. Work presented

in Chapter 5 examines the problem of not knowing the length of the job when it is

submitted.

In this chapter, the assumption that scheduling decisions are irrevocable is ques-

78
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tioned.

6.2 Checkpointing

Checkpointing is a means of saving interim results of a computation so that not

all work is lost in the case of job failure. Typically, checkpointing is done at static inter-

vals throughout the duration of job execution. In the event of an unexpected failure, such

as hardware or system crash, the job may be restarted from the information contained

in the most recent checkpoint. Only the work between that checkpoint and the failure

is lost, thus saving computation time compared to starting from the beginning. This

savings must be weighted against the overhead of performing the checkpoints. In the

case of parallel jobs, the checkpoint must be performed on each process in a coordinated

fashion [5, 27, 73, 64].

There are two main approaches to checkpointing: system-level checkpointing

and user-level checkpointing.

System-level checkpointing saves the state of the entire process, including all

memory and processor state. It is done at the operating system level and can be per-

formed on any process at any time [67, 72]. Its advantages are that no customization of

the checkpointing procedure to the application is required, and no cooperation with or

modification of the application is required. In fact, the operating system could unilater-

ally decide to checkpoint any application, and restart it.

Precisely because it is not coordinated with the application, this type of check-

pointing must err on the side of safety and save the entire state, which may be wasteful

in terms of the amount of the data saved and, consequently, the amount of time needed

to perform the checkpoint.

User-level checkpointing is potentially less wasteful because it may be cus-

tomized to the application [1]. This customization could include only saving those

data structures or parts of data structures that are of interest. Often, checkpointing is

performed at times when the computation has reached a natural break where less data



80

needs to be saved, such as iterations of an outer loop of a computation. This results in

lower overhead associated with performing the checkpoint, both in the amount of data to

save and time spent checkpointing. Loop-based checkpoints may be only approximately

periodic but for simplicity are described with a static interval length, as in [64].

The primary disadvantage of user-level checkpointing is that it requires effort to

add this functionality to applications. Users are seldom the authors of their software,

and may lack the necessary expertise to edit the code. In the case of software the user

has licensed from a vendor, it may not be possible to make modifications. In any case,

doing so would require significant expense of engineering labor.

6.3 Using Checkpoints in Scheduling

As discussed above, checkpointing is typically used as insurance against unex-

pected failures such as hardware failures. If jobs are already incurring the overheard of

performing periodic checkpoints for this purpose, it may make sense for the scheduler

to leverage this in order to improve system-wide scheduler performance. Schedulers

could rely on checkpoints in order to strategically relax the classic scheduling constraint

that a decision to start running a job is irrevocable. By opening up the possibility of

intentionally causing jobs to fail (terminating them), the scheduler greatly increases its

flexibility in decision-making.

A scenario where this might be a beneficial strategy would be the following.

All jobs in the queue and currently running have low urgency (alternatively, have util-

ity functions with near-zero slope), and all processors on the system are being utilized.

A very high urgency job arrives. Under the standard assumptions, the scheduler is not

permitted to consider terminating a currently running low urgency job in order to accom-

modate the high urgency one. Although the delay would result in some loss in value for

the terminated job (it would have to be restarted later), the decision may be result in

higher aggregate utility because it would be offset by the much greater utility earned by

running the high urgency job immediately.
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There are many factors to consider in making such a decision. What is the dif-

ference in value and urgency between the affected jobs? How much time would they

need to complete if not interrupted? How long would they be delayed if interrupted?

Checkpoints are relevant in this situation because the penalty of terminating a job will

be mitigated if it would lose a only small amount of work and not have to be restarted

from the beginning.

A scheduler could initiate a system-level checkpoint of a job it wants to termi-

nate, just prior to terminating it. This would result in almost no work lost. However,

the overhead of performing a system-level checkpoint is high. If the scheduler knows

that the job performs its own system-level or user-level checkpoints at regular intervals,

and knows little time has passed since the most recent checkpoint, it could terminate

the job and plan on relying on that checkpoint information. Even knowledge of just

the checkpointing interval would allow the scheduler to determine the probabilities of

various amounts of work lost to the job.

In order to evaluate the effectiveness of schedulers employing such strategies, it

is necessary to have a workload for simulation which includes information about users’

checkpointing habits. This chapter describes a survey of supercomputer users designed

to collect information about their habits and annotate the workload trace including their

jobs with this information. This will enable investigations into the checkpointing ques-

tion that are grounded in real-world data.

6.4 Survey Experiment Design

This survey follows a similar structure as those described in Section 5.2 and Sec-

tion 2.3. The survey was conducted over approximately three weeks in Spring of 2008

on the Blue Horizon system installed at the San Diego Supercomputer Center (SDSC)

[70]. Users of the Blue Horizon system submit jobs by using the command llsubmit,

passing as an argument the name of a file called the job script. The script contains vital

job information such as the location and name of the executable, the number of nodes
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and processors required, and a requested runtime.

During the survey period, users were prompted to respond to a survey question

by the llsubmit program. Unlike the two previous surveys, where users were surveyed

only one of every five times they submit (chosen at random), this survey was adminis-

tered on every submission from every user. The only exceptions were submissions from

users on the opt-out list. Users were notified of the study, by email and newsletter, a

week prior to the start of the survey period. They could opt out at that time by email, or

at any time when the survey was administered.

A sample of the survey output is shown in Figure 6.1. Following a brief consent

message (not shown in Figure 6.1), users are asked to respond to a single multiple-choice

question about whether or not the job being submitted will perform checkpointing, in-

cluding restart capability. The “no” response (checkpointing will not be done) is divided

into several categories according to various explanations for why checkpointing might

not be done. An “other” response choice was provided for users who felt none of the

provided explanations were applicable. Users were constrained to providing exactly one

response; thus users who felt that more than one explanation was applicable would need

to select only the most applicable explanation. In the case of a “yes” response (check-

pointing will be done), users were then asked to provide the frequency interval of the

checkpointing, in minutes. For both the initial question, and follow-up, if any, an empty

or invalid response would result in the user being asked to try again. Users always had

the option to decline to participate by selecting that choice from the provided options.

This results not only in exiting the current instance of the survey, but in being added to

a permanent “do-not-disturb” list.
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Figure 6.1: Sample checkpoint survey and response

6.5 Results

6.5.1 Prevalence of Checkpointing

There were 1,356 responses to the survey, which ran from April 11, 2008 to

April 29, 2008. Table 6.1 summarizes the responses. Only 16% of jobs were reported to

be configured to perform checkpointing, while 80% were reported to be without check-

pointing, and 4% of survey responses were “opt-out.” Note that data is lacking for

substantially more than 4% of the total number of jobs submitted during the time the

survey was being conducted, due to the “opt-out” being permanent for that user. The

fact of only one user having selected “other” (choice 5) provides some assurance that

the selection of explanations for why checkpointing was not being performed provided

adequate coverage of users’ circumstances.

Among only the “no” responses, half (50%) indicate that the job was a de-

bug/trial run (choice 1). Another 39% believed that job failure was unlikely (choice

2), and the rest cited logistical and performance problems (choices 4 and 5). Debug/trial

run jobs are smaller on average than other jobs in terms of processors and runtime. Thus

the large percentage they represent here, in terms of number of jobs surveyed, greatly

overstates their contribution to the overall consumption of resources on the HPC system.

In fact, although 40% of jobs were debug/trial run jobs, only 3% of the total node-hours
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Table 6.1: Summary of checkpoint survey results
Number of Percent of Choice

Choice Responses Responses Meaning
0 219 16% YES: performs checkpointing
1 540 40% NO: debug/trial run
2 426 31% NO: will probably end successfully
3 29 2% NO: isn’t available for this program
4 94 7% NO: incurs a slowdown
5 1 0% Other
6 56 4% Decline to participate

Total 1365 100%

of all jobs surveyed were consumed by debug/trial run jobs.

Importantly for the purposes of this work, although only 16% of the jobs reported

using checkpointing, these jobs comprise a majority of the surveyed workload, in terms

of node-hours (57%).

Table 6.2 shows the percent of the total node-hours of surveyed jobs that is rep-

resented by each response category. Node-hours reported in Table 6.2 use the actual

runtime consumed by the job, not the requested time.

6.5.2 Frequency of Checkpointing

Of the 16% of jobs (57% of the workload by node-hour) reported by users to

use checkpointing, we would like to know how often the checkpoints are taken. Users

who reported using checkpointing received a follow-up question asking them to report

this interval, in minutes. Figure 6.2 shows the cumulative distribution function (CDF)

of reported checkpoint intervals.

The median checkpoint interval was 15 minutes. The most commonly reported

intervals were 5 minutes (36 responses), 10 minutes (38 responses) and 30 minutes (34

responses), collectively accounting for half of the 219 survey responses. Another way

to consider the checkpoint interval is as a fraction of the runtime of the job, indicating

how many checkpoints are taken per run. Figure 6.3 shows a CDF of the ratios of each
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Table 6.2: Breakdown of workload by checkpoint survey results
Number of Node-Hours Percent of Choice

Choice Responses of Jobs Total Node-Hours Meaning
0 219 37,397.65 57% YES: performs

checkpointing
1 540 2173.71 3% NO: debug/

trial run
2 426 18,668.29 28% NO: will probably

end successfully
3 29 2,086.38 3% NO: isn’t available

for this program
4 94 255.9 <1% NO: incurs a

slowdown
5 1 35.89 0% Other
6 56 5335.9 8% Decline to

participate
Total 1365 65953.72 100%

Figure 6.2: Cumulative distribution of users’ reported checkpoint intervals.
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Figure 6.3: Cumulative distribution of users’ reported checkpoint intervals.

job’s reported checkpoint interval to its actual runtime. (Runtimes are available for 120

of the 219 jobs for which users reported checkpoint intervals.) A majority (67 of 120)

of the checkpoint intervals are less than or equal to 1/50th of the runtime of the job, or

about 50 checkpoints per run. A full 96% (115 of 120) have ratios of less than 1/4th.

6.5.3 Representativeness of the Survey Respondents

There were 4,203 jobs submitted during the the three-week survey period. Of

these, survey results (not including responding by selecting “opt out”) were collected

for 1,010 jobs. Note that the distribution of in-survey and out-of-survey jobs is not uni-

form across the two weeks of the survey. In the first two days of the survey, survey

responses were collected for the majority of jobs, after which the percent declined as

users who had already responded–some several times–opted out. The number of pro-

cessors and minutes of runtime of each job are used to verify representativeness of the

survey sample. The average number of processors in the overall job mix is 7.0 (stan-

dard deviation of 17.7), compared to an average of 8.5 (standard deviation of 21.4) for

jobs with survey responses. The average runtime in the overall job mix is 208 minutes
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Figure 6.4: Cumulative distribution of jobs’ runtimes.

(standard deviation of 412), compared to 212 for in-survey jobs (standard deviation of

317). Figures 6.4 and 6.5 compare the mix of jobs in the survey with the overall mix of

jobs, in terms of runtime and number of processors, respectively. Figure 6.5 shows that

1-processor jobs are under-represented in the survey, while 2- through 8-processor jobs

are over-represented in the survey. By runtime, the survey respondents are well matched

with the overall job mix.

6.5.4 Summary of Results

The findings of the survey are that 16% of jobs in the survey are configured to

perform checkpointing, comprising most of the total node-hours of jobs in the survey

(57%). Of jobs in the survey that perform checkpointing, most do so with fine granu-

larity. This is true whether one defines fine granularity to mean a frequency of at least

every 15 minutes, or to mean at intervals that are at most 1/50th of the job’s runtime.

These findings constitute a baseline level of participation in checkpointing. An-

other approximately 30% of the surveyed workload (38% of surveyed jobs, or 29% in

terms of node-hours) could possibly be persuaded to implement checkpointing if it were
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Figure 6.5: Cumulative distribution of jobs’ processor counts.

strongly encouraged or required by the supercomputer center. These are the jobs that do

not currently perform checkpointing because they “will probably end successfully,” or

because it “incurs a slowdown.”

The greater the prevalence of checkpointing and the finer the granularity of

checkpointing, the more conducive a workload is to flexible scheduling via selective ter-

mination of running jobs. Thus these results indicate that such an approach to scheduling

could be promising. The next sections will discuss using the full workload trace of the

system from the period when the survey was conducted to perform simulation trials of

such a scheduler.

6.6 Workloads with Checkpoint Information

In order to more fully explore the results in Section 6.5, workload traces aug-

mented with information about the checkpointing behavior each job were produced.

These augmented workloads will enable simulation-based scheduler experiments that

are grounded in real-world data.

For more information on the contents and format of existing workload traces, to
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which this work adds, see the description of the Standard Workload Format in Section

2.6.1. The information added to the trace this time will be: first, does the job performs

checkpointing, and second, if yes, what is the checkpoint interval. Unlike the workload

trace augmentation (with utility functions) described in Section 2.6.1, the workloads

produced here attempt to be historically accurate.

Two workloads were produced. The first simply uses the actual survey results

for each job in question. For jobs where no data exists (no survey response exists), the

conservative assumption was made, i.e., that they do not perform checkpointing.

The second workload attempts to be as historically correct as possible, while

also filling in those gaps in the data where reasonable inferences can be made.

What are these inferences? In order to produce the most complete augmented

workload data set possible, the checkpoint survey was administered every time a batch

job was submitted to the system, excepting users who had previously chosen to opt out.

Users very often responded with the same information each time because they were, for

example, resubmitting the same code with different input data, or rerunning a Monte

Carlo simulation1.

Consider those users who responded to the survey repeatedly, and consistently,

before eventually opting out. It is likely that had additional instances of the survey not

been suppressed, their responses would have continued to be be consistent with earlier

responses. For other users, variability in their responses may coincide with observable

differences between the jobs, and their responses become consistent once these differ-

ences are accounted for. Again, one can guess that responses following the opt-out

would have been consistent with earlier matching jobs’ responses. This is the rationale

behind constructing an expanded workload.

The expanded workload was created by pooling all survey responses of like user

and number of processors, then selecting randomly from that pool to fill in missing data.

In the case of jobs that lack matching user and processor count data, the conservative

1Monte Carlo simulations involve many repeated trials using different pseudorandomly generated con-
figurations each time [87].
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assumption is made–that they were not performing checkpointing.

The first workload represents a lower bound on the amount of checkpointing.

The second workload represents a better guess at the actual amount of checkpointing.

The second could overstate the amount of checkpointing if inferences were incorrect.

It could also understate the amount of checkpointing if jobs for which there was not

adequate data for inferences do in fact perform checkpointing.

6.7 A Checkpoint-Aware Scheduler

6.7.1 Implementation

This section introduces a novel checkpoint-aware scheduler. The scheduler is a

straightforward extension of the GA scheduler described in Chapter 3, and illustrates

the flexibility and extensibility of the GA scheduler. Added to the space of possible

schedules to be considered by the GA algorithm are schedules where currently running

jobs have been removed, to be restarted at a later time. The GA algorithm will evaluate

the fitness of these schedules alongside the traditional scheduling options.

To implement this feature, both the GA scheduler (Chapter 3) and the scheduler

simulator framework (Section 3.3) required modification.

In the GA scheduler, possible schedules are hypothetically considered by sim-

ulating removing currently running jobs from their assigned processors and requeuing

them as seemingly new jobs. Thus running jobs recompete for their resources at each

scheduling round.

When simulating the requeuing of a job inside the GA scheduler, the requested

time of the job must be adjusted to account for three factors:

1. The amount of time the job has already been executing.

2. The amount of work lost, i.e., the time elapsed between the time of the last

checkpoint and when the job was terminated.
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3. The overhead involved in restarting from the checkpoint.

If the scheduler decides to schedule a running job immediately, it is in effect

deciding to not terminate it in the first place. Thus no adjustment is required. In cases

where the scheduler supplants a previously running (requeued) job with another job, the

requeued job’s requested time should be adjusted to reflect the work completed, lost

work and the restart overhead. The work completed is the amount of time the job had

executed prior to requeuing. The adjustment for the amount of lost work is dictated by

the checkpointing latency that was reported for that job in the survey (or, in the case of

the expanded workload, the guessed latency; see Section 6.6). Models for estimating or

predicting restart overheard have been studying elsewhere [64]; here the cost is assumed

to be proportional to the processor count.

In the scheduler simulator framework, the interface between the scheduler and

the framework had to be modified to allow the scheduler to communicate the fact that

it had chosen to terminate and requeue jobs. The simulator framework then frees the

processors in question. Recall that the simulator framework operates as a discrete event

simulator, and that an event has been enqueued for each running job, representing a timer

to mark the expiration of the job’s actual runtime. This is separate from the expiration

of the job’s requested time, as jobs typically spontaneously terminate well before the

requested time has expired. For jobs that the scheduler decides to terminate and requeue,

these timer events must be invalidated in the discrete event simulator’s event queue. New

timer events will be enqueued when the job is subsequently restarted. These timer events

will reflect the lost work and checkpoint restart overhead adjustments.

The GA scheduler only makes adjustments to the requested time, whereas the

simulator framework makes adjustments to both runtime and requested time. This is

because the actual runtime of a job is never visible to the scheduler during simulations,

replicating real-life scheduling conditions.

Left unchecked, the checkpoint-aware GA scheduler suffered from excessive
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requeuing and restarting of jobs, resulting in starvation of jobs and lack of progress in

the simulator. Three damping measures are used to prevent thrashing. First, after a

requeued job is restarted, it may not be requeued again (a limit of one bump per job).

Second, when assessing the fitness of possible schedules and calculating the utility of

a job’s prospective turnaround time, the utility of currently running jobs is increased to

give them an advantage and make them less likely to be bumped. The amount of the

boost is equal to the starting value of the job. Third, is the airline policy, which takes

inspiration from the policy of many airlines to bump passengers but then guarantee that

they will be seated on the very next flight. Recall that the GA scheduler evolves an

ordering of jobs in the queue (see Section 3.2). Under the airline policy, bumped jobs

have a reserved place at the front of the queue, while GA may only evolve an ordering

for the remaining jobs. Limiting to a single bump is always done, while the boosting

and airline options may be added separately or together.

6.7.2 Policy Considerations

The requested runtime of jobs that are terminated by the scheduler and restarted

from checkpoint is adjusted for work already completed, for time lost, and for restart

overhead. In the simulation, restart overhead is estimated and for the purposes of

simulation, it is assumed that the estimates are correct. This assumption could prove

problematic in a production environment because the overhead cost to restart from the

checkpoint may vary widely from job to job. Overhead of user-level checkpointing is

particularly difficult to predict, and can vary from near-instantaneous to as long as a

system-level checkpoint that saves the entire processor and memory state. Unless the

scheduler has information about checkpoint overhead that is specific to a particular job,

it is forced to guess.

For jobs where the requested time closely approximates the natural (uninter-

rupted) runtime, underestimating the restart overhead could cause a restarted job to

overrun its requested time and thus be killed by the scheduler (in this case, perma-
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nently). On the other hand, an overly generous requested time policy that essentially

allows restarted jobs to run forever would undermine the meaning of the requested time.

The implications of this include potentially motivating users to deceitfully set the re-

quested time to be too small, hoping the job will be bumped and then face no sanction

for underestimating but could benefit by fitting into short backfill spaces.

Another policy consideration is that to the extent that checkpointing is useful to

system-wide optimization of aggregate utility, administrators might consider providing

incentives to users to perform user-level checkpointing.

6.7.3 Checkpoint-Aware Scheduler Simulations

In 2007, DataStar had 272 nodes, each node consisting of either 8 or 32 proces-

sors, for a total of 2,344 processors [71]. The effective machine size for batch queue jobs

is reduced by a partition set aside for interactive jobs. Interactive jobs bypass the batch

queue submission program used to administer the checkpointing survey and are not in-

cluded in the workload. For simplicity, in these simulations the machine is modeled as

having 260 homogenous nodes.

Figure 6.6 shows the results of running the checkpoint-aware GA scheduler on

the checkpoint workload. Each value shown in the graph is the average of 6 simulation

trials (utility functions were added to the workload 6 different times). Performance

of the standard (non-checkpoint-aware) version of GA, as well as classic scheduling

algorithms, are shown for reference. These algorithms do not consider checkpointing

nor allow for interruption of jobs.

The checkpoint-aware GA scheduler clearly benefits from measures to curb the

tendency to starve jobs via excessive thrashing. Performance is highest–16% improve-

ment over standard GA and 23% improvement over CONS) in the version with the most

aggressive damping (a single bump limit, airline policy and boosting; please refer to

Section 6.7.1 for a detailed description of the damping methods).
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Figure 6.6: Performance of the checkpoint-aware GA scheduler compared to standard

algorithms, according to aggregate utility metric.

6.8 Conclusion

A survey of supercomputer users shows that 16% of jobs are configured to per-

form checkpointing, comprising most of the total node-hours (57%). Of jobs in the

survey that perform checkpointing, most do so relatively frequently (at least every 15

minutes, or at intervals at most 1/50th of the job’s runtime). Of users who report not

using checkpointing in their jobs, about half say it is due to the job being a debug run or

the job will probably end successfully. These jobs are very small, comprising just 3%

of the total node-hours, as expected for debug runs.

The greater the prevalence of checkpointing and the finer the granularity of

checkpointing, the more conducive a workload is to flexible scheduling via selective

termination of running jobs. The GA scheduler presented in Chapter 3 was modified to

implement this flexibility by allowing the GA scheduler to access the checkpoint sur-

vey data for each job. The checkpoint-aware GA scheduler may opt to terminate and

requeue running jobs, relying on the most recent checkpoint for later restart.
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With these changes, aggregate utility performance was improved by 15% over

standard GA, and by 34% over the classic EASY algorithm. This includes penalties

for work lost since the last checkpoint and overhead involved in restart. Damping mea-

sures are required to prevent excessive thrashing (terminating and requeuing) by the GA

scheduler when it is allowed the freedom of terminating jobs. Of the tested damping

policies, the more aggressive the damping, the better the performance.



Chapter 7

Conclusion

7.1 Summary

This dissertation identifies and addresses several key issues in the scheduling of

scientific computing applications on high-performance computing (HPC) systems, also

known as supercomputers. HPC workloads consist of hundreds of jobs each day, and

each job has unique resource requirements, including number of processors and runtime.

How to best organize the running of these jobs is a mature but active research area. The

problem is to map jobs submitted by users onto blocks of time on subsets of the systems’

processors. This domain of scheduling is known as parallel job scheduling, or parallel

batch scheduling.

If the scheduling task is viewed as, at its core, the task of maximizing satisfaction

of the users, then an important prerequisite to scheduling is having information about

user satisfaction. In Chapter 2, the desires of the user population were quantified and

represented as a utility function, u(t), whose independent variable t is turnaround time.

A survey-based study of users of a supercomputer system was conducted, showing that

the shape of the utility functions was heterogeneous across users and jobs. A model for

synthetically generating utility functions to accompany existing workload logs was pre-

sented. The model includes three main model subtypes: expected linear decay, expected

96
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exponential decay and step. Applying the synthetic generation model to a standard

workload from the Parallel Workloads Archive allowed for evaluation of several clas-

sic scheduling algorithms according to the metric aggregate utility (Chapter 4). These

results include finding that Priority-FIFO, using a crude approximation of user utility,

outperforms Conservative and EASY flavors of backfilling (that do not consider utility)

on the aggregate utility metric by 18% average.

In Chapter 3, a scheduler optimizing the aggregate utility of all users, using a

genetic algorithm heuristic, is demonstrated. Taking a priority queue ordering (a per-

mutation of the list of queued jobs) as an individual in a population, the GA scheduler

evolves a queue ordering with the goal of optimizing the aggregate utility of the sched-

ule that results when the fittest individual is input into the EASY scheduling algorithm

to produce a scheduling decision. Fitness is defined as an estimate of the aggregate

utility of scheduling jobs in that order. The results in Chapter 4 show that the GA sched-

uler computes scheduling decisions well within the real-time performance constraints of

production supercomputers, and outperforms classic scheduling algorithms according a

variety of schedule quality metrics including aggregate utility. As noted above, Priority-

FIFO outperforms Conservative and EASY flavors of backfilling by 18% average under

realistic conditions. The GA approach outperforms Priority FIFO by an additional 13%

average.

According to the study in chapter 2, users are willing and able to provide much

richer information about their utility than is asked of them by current scheduling sys-

tems. In Chapter 5, we find an example of the reverse, namely, scheduling systems

universally asking users for data they are unable or unwilling to provide in an accurate

manner. It is widely known that users’ jobs often use much less time than was requested.

The results in Chapter 5 indicate that users do not provide accurate runtime estimates,

even absent incentives to add “padding” to their estimates, thus they do not appear able

to reliably and accurately provide this information. This suggests the need to design

scheduling algorithms so that they do not require accuracy, or find sources of informa-

tion other than the users themselves (e.g., empirical observation). On the other hand,
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users’ self-identification of their confidence in their estimates was somewhat predictive

of estimate accuracy. This suggests the possibility of designing a tiered system in which

some user runtime requests are considered more reliable than others by the scheduling

system.

Finally, Chapter 6 raises the possibility of lifting one of the defining constraints

of the parallel job scheduling problem–the non-preemptability of running jobs. In order

to do this without needing to start the job from scratch, the state of the job needs to be

saved in a checkpoint. Many users already save checkpoints periodically for other rea-

sons. To investigate the feasibility of relying on these existing checkpoints for preemp-

tive scheduling, it is necessary to know how widespread the practice of checkpointing is,

and, when used, how frequently checkpoints are saved. The prevalence and frequency

of checkpointing on a major supercomputer system is explored via a survey of users. A

workload augmented with this data is used as input to a modified version of the sched-

uler presented in Chapter 3, that is able to terminate and re-queue running jobs. This

checkpoint-aware scheduler balances the overhead of lost work since the checkpoint

and the cost of restarting, with the benefits of allowing more urgent jobs potentially

immediate access to the resource.

Associated with these contributions was the production of several software and

workload artifacts of use to the scheduling research community at large; indeed, some

have already been distributed and used by colleagues. These include the following:

1. Script for augmenting workloads with synthetically-generated utility functions

2. Canonical workloads augmented with synthetically generated utility functions

(a consequence of 1)

3. Modular scheduler simulator framework compatible with the Standard Workload

Format (SWF) file format (python language)

4. Genetic Algorithm based heuristic scheduler (python language, compatible with

3)
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5. Checkpoint-aware scheduler (python language, compatible with 3)

6. SWF supercomputer workload for the DataStar system, years 2006 through 2008,

prepared for inclusion in the Parallel Workloads Archive (joint effort with Dan

Tsafrir), including script for converting IBM LoadLeveler proprietary log format

to SWF

7. Subset of the DataStar workload (6) with associated user checkpoint survey re-

sponses

8. Subset of the DataStar workload (6) with associated user checkpoint survey re-

sponses, and with extrapolation over some jobs not covered in the survey

7.2 Future Work

7.2.1 Genetic Algorithm Scheduler

Offline Optimization Between Iterations

One open question with the GA scheduler is how much efficiency (both in terms

of runtime, and quality of the result) is lost due to restarting its optimization from scratch

in each scheduling iteration.

The software model employed by the GA scheduler is shared with other super-

computer schedulers, namely the scheduler is invoked each time one of the following

three events occurs: a running job terminates, a running job’s requested time expires, or

a new job is enqueued. Schedulers are stateless between these decision-making itera-

tions. The explanation for this software model is that decision-making cannot begin until

all the relevant facts are known, else work would need to be discarded when the facts

change due to one of the three events. In the case of the GA scheduler, it may be that

previous optimization work retains some value, even in the face of some perturbation to

the queue and system conditions, such as the arrival of a new job.
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Carrying a small amount of state between scheduling iterations could preserve

some of value of previous work. The scheduler could remember the best individual

from the previous iteration, in order to minimally modify and re-introduce it into the

next iteration of optimization.

Extending this idea, the scheduler could be run continuously between iterations,

further optimizing based on the last known state of the system. When called in connec-

tion with one of the three scheduling events, it would incorporate the changes in state

into this offline-optimized schedule, and do a fixed amount of further optimization be-

fore returning. After returning, it would continue by again optimizing based on the last

known state. This would possibly increase the quality of the schedule obtained from the

fixed amount of immediate optimization in each iteration.

Incorporation of Other Independent Variables into Utility Function

The flexibility of the GA scheduler lends itself to extension to consideration of

a variety of concerns that users and site administrators might have. Currently, aggre-

gate utility is only a function of turnaround time of the job. Other factors that could

be considered include fairness (minimize variance of turnaround time or expansion fac-

tor), predictability (minimize difference between a turnaround time presented to the user

when the job is enqueued and the actual turnaround time), or administrator preference

for large jobs (suggests a weighting of the aggregate utility).

7.2.2 Job Utility Functions

User Interface Study

In the utility function survey presented in Chapter 2, utility functions were so-

licited a single point at a time by presenting hypothetical scenarios in interactive prose

format. Rethinking this user interface would be an important part of turning the GA

scheduler into a production-ready system. Some alternatives include providing the util-

ity function as numeric (time, value) pairs in the job script (just as they are stored in
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the extended SWF format), a graphical user interface (GUI) that allows users to click to

specify each point on the curve, or allowing users to build up their utility functions over

time by specifying a single point each time as in the survey. These should be evaluated

through ethnographic user interface studies.

7.2.3 Checkpointing

Ethnographic Study

The survey presented here provides useful data on current habits, but would ben-

efit from more insight into the circumstances and causes of the reported behavior. An

ethnographic study into the details of users’ checkpoint habits, such as the threshold at

which users determine overhead to be too costly, and whether they possess the program-

ming skills and legal access necessary to add checkpoint capability, could inform further

work in area of checkpointing.

It would also be helpful to survey a wide sample of systems at different super-

computing centers to snapshot the current practices in checkpointing. This would pro-

vide context for interpreting the representativeness of the DataStar data relative to other

systems. Although the survey of user runtime estimate accuracy was similarly limited to

a single center and system, data on inaccuracy of user runtime requests is available for

many systems worldwide and shows a consistent pattern. This provides some support

to the applicability of the results in most cases. No corresponding widely-available data

exists for checkpointing.

Non-Uniform Distribution of Hardware Failures

Looking to the future of HPC systems, the demand for ever-increasing paral-

lelism is expected to continue, if not accelerate, due to limitations on further increases

in clock speeds. Multi-teraflop systems have processor counts in the tens of thousands,

and future petaflop systems are likely to contain hundreds of thousands of nodes [68].

Under these conditions, the frequency of occurrences of a hardware failure somewhere
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on the system increases to a rate that can no longer be ignored by scheduling systems

[68].

Under current MPI [78] style programming paradigms, simultaneous hardware

failures on any subset of a job’s processors are equivalent to a failure on all. We assume

that any one hardware failure results in needing to restart the entire job from the most

recent checkpoint. Using fault-tolerant versions of the MPI software infastructure could

result in only the processes on affected processors needing restarting. However, for

parallel scientific codes, which require frequent inter-processor communication, these

are nearly equivalent because unaffected processes quickly exhaust productive work

that can be accomplished until communication with affected processors resumes.

It is the case that the probability of a hardware failure occurring on a subset of

size S of the processors may not be equal across all possible subsets of of size S. This is

a function of how much non-processor underlying hardware infastructure is shared by

the processors. For example, all processors sharing a power supply would be affected by

a failure of the power supply. It follows that a job whose S processors all share the same

power supply is less likely to experience a failure than one whose processors are spread

over many power supplies. Therefore, the cost of restarting from checkpoint, and proba-

bility of incurring that cost, are potentially important input data for the scheduler. When

does it make sense to start a job immediately on a more failure-prone subset of the pro-

cessors, and when would delaying the job until a less failure-prone subset of processors

becomes available better optimize aggregate utility? An extension of the checkpoint-

aware GA scheduler could incorporate failure rate data to answer those questions.
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