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ABSTRACT OF THE DISSERTATION

The Good, the Bad and the Fitting: A Bayesian Hierarchical Model for Patient Preferences

Elicited through Discrete Choice Experiments
by

Anna Liza Malazarte Antonio
Doctor of Public Health
University of California, Los Angeles, 2017
Professor Catherine Crespi-Chun, Co-chair

Professor Robert Erin Weiss, Co-chair

In discrete choice experiments, patients are presented with sets of health states described
by various attributes and asked to make choices from among them. Discrete choice ex-
periments allow health care researchers to study the preferences of individual patients by
eliciting trade-offs between different aspects of health-related quality of life. However, many
discrete choice experiments yield data with incomplete ranking information and sparsity due
to the limited number of choice sets presented to each patient, making it challenging to esti-
mate patient preferences. Moreover, methods to identify outliers in discrete choice data are
lacking. We develop a Bayesian hierarchical random effects rank-ordered multinomial logit
model for discrete choice data. Missing ranks are accounted for by marginalizing over all
possible permutations of unranked alternatives to estimate individual patient preferences,
which are modeled as a function of patient covariates. We provide a Bayesian version of
relative attribute importance, and adapt the use of the conditional predictive ordinate to
identify outlying choice sets and outlying individuals with unusual preferences compared to
the population. The model is applied to data from a study using a discrete choice experi-
ment to estimate individual patient preferences for health states related to prostate cancer

treatment.
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CHAPTER 1

Introduction

1.1 Motivation

Discrete choice experiments (DCEs) have been increasingly used in health applications to
characterize the preferences of individual patients for various health care interventions and
services (Lancsar et al., 2013; DeBekker-Grob et al., 2012). In a typical health care DCE,
patients are presented with sets of health states described by various attributes and asked to
make choices from among them (Ryan et al., 2008). For example, a patient might be asked to
choose between a health state with long life expectancy and poor quality of life and a health
state with shorter life expectancy and high quality of life. By asking individuals to make
choices between health states, they are forced to make trade-offs that reveal information

about their preferences for different aspects of health-related quality of life.

Historically, in a DCE, patients provided their most preferred health state or a full
ranking of a set of possible health states. However, continued research in discrete choice
experiments has led to the development of best-worst designs in which patients indicate
their most preferred and least preferred choices from a set (Lancsar and Louviere, 2008;
Louviere et al., 2008). While reducing patient burden compared to full rankings, best-worst
discrete choice experiments pose new statistical challenges. In such data, incomplete ranking
information occurs when choosing best and worst from among four or more health states,
and patient-level data are often insufficient to estimate individual-level preferences using

maximum likelihood methods.

A number of models have been developed for discrete choice data. The multinomial

logit model has been used for best choice data (McFadden, 1974), while the rank-ordered

1



logit model has been used for full ranking data (Allison and Christakis, 1994). Mixed logit
models include random effects that vary across individuals to account for heterogeneity in
preferences (Revelt and Train, 1998; McFadden and Train, 2000). More recently, Hernandez-
Alava et al. introduced a model for ranked and partially ranked data that includes random
effects, and estimated the random effects using Monte Carlo maximum likelihood methods
(Hernandez-Alava et al., 2013). Although the model introduced by Hernandez-Alava et al.
accommodates partially ranked data, it is not uncommon to obtain coefficient estimates in
the wrong direction when using maximum likelihood estimation with sparse data (Rao, 2008).
Moreover, their model does not include individual-specific covariates although inference on
covariate effects is often of interest and it has been shown that including covariates can
improve preference estimates for the mixed logit (Crabbe and Vandebroek, 2011; Orme and

Howell, 2009; Greene et al., 2006; Allenby et al., 2005).

In many studies a key purpose of the DCE is to obtain an individual’s ranking of various
attributes relative to each other. The concept of relative attribute importance is widely used
in the marketing research literature to provide rankings of features of consumer products
(Paul E. Green, 1978; Halbrendt et al., 1995; Orme, 2010). Recently, this concept has been
extended into the health care domain (Dowsey et al., 2016; Kruk et al., 2016; van Dijk et al.,
2016). In this context, the purpose of the DCE is to obtain an individual’s ranking of various
attributes of health care or health-related quality of life, so that this information can be
used as part of the health care decision-making process. For example, how a prostate cancer
patient values full sexual functioning, long lifespan and no urinary incontinence relative to
each other may inform which treatment options are a better match for the patient. While
discrete choice data are now routinely analyzed using Bayesian hierarchical models with
random effects to accommodate preference heterogeneity (McFadden and Train, 2000; Train,
2001; Allenby et al., 2005; Train, 2009), methods to compute relative attribute importance

for such models are not fully developed.

Methods to identify outliers for such models are also lacking. Using the means of the
individual-specific parameter distributions, Campbell and Hess (2010) classified individuals
in the upper and lower percentiles as outliers. Farrel et al. (2012) proposed a graphical

2



method to identify outliers by plotting standardized random effects against their expected
values for a Bayesian hierarchical logistic regression model. Several approaches for outlier
detection in Bayesian models have been explored. For example, using the posterior distribu-
tion of the residuals of a regression model, Chaloner and Brant (1988) and Chaloner (1991,
1994) define an outlier as an observation with a large random error and calculate the pos-
terior probabilities that observations are outlying. Other approaches for outlier detection
are based on the predictive distribution. The conditional predictive ordinate (CPO), first
suggested by Geisser (1980), is a diagnostic measure used to detect observations discrepant
with the proposed model (Geisser, 1980, 1987, 1989, 1993; Dey et al., 1997; Pettit, 1990).

To our knowledge, CPO has not been used to identify outlying random effects.

1.2 Our Approach & Contributions

We develop a Bayesian hierarchical model for best-worst discrete choice data. Incomplete
rankings are handled by marginalizing over all possible permutations of unranked health
states in a model that includes random effects to model individual-specific preferences.
Bayesian methods are used to overcome the problem of sparse data to obtain estimates
of individual preferences. To understand how patient characteristics are related to prefer-
ences, we model individual-specific preferences as a function of individual-specific covariates.
We also define Bayesian versions of relative attribute importance for individuals and for the
population that include random effects and covariates. To identify outliers in DCEs, we
adapt the CPO in two ways: we adapt it to include random effects to identify patients who
are unusual in their preferences for specific attributes or combinations of attributes, and we
adapt it to handle vector outcomes to identify choice sets that are outlying with respect to

individual preferences.

The development of best-worst discrete choice designs reduces patient burden compared
to full rankings while posing new statistical challenges. By accounting for missing rank-
ing information, patient covariates, and the sparse nature of the individual-level data in

a Bayesian framework, our model extends current methods and provides individual-level

3



preference estimates. Our CPO measures provide some of the first diagnostic techniques
for discrete choice models. Our model coupled with our measures of relative importance
and outlyingness provide practical methodology for discrete choice modeling applications,
in which parameter estimation at the individual-level is desirable, but observed data at the

individual-level are limited.

1.3 Overview of the Dissertation

The dissertation is organized as follows. Chapter 2 defines various types of discrete choice
experiments. Chapter 3 describes the PROSPECT study. Chapter 4 provides current meth-
ods used to analyze discrete choice data. Chapter 5 presents preliminary analyses. Chapter
6 presents the Bayesian hierarchical model for best-worst choice data with random effects
and patient covariates, defines measures of relative importance, presents CPO-based mea-
sures for outlier detection, and demonstrates application of our methods to data from the
PROSPECT study. Chapter 7 presents sensitivity analyses evaluating prior assumptions.
Finally, Chapter 8 describes estimation of patient preferences using an adaptive best-worst
conjoint method and ordinary least squares regression, and compares the estimated rela-
tive attribute importance scores to those obtained using the Bayesian hierarchical model of

Chapter 6.



CHAPTER 2

Discrete Choice Experiments

This chapter briefly discusses the history of discrete choice experiments, sets a common
nomenclature for discrete choice experiments in this dissertation and describes three common

experimental designs for discrete choice experiments.

2.1 Origins

The origin of DCEs can be traced to a family of techniques called conjoint analysis, which
grew out of the mathematical area of conjoint measurement (Luce and Tukey, 1964). In
the 1930’s and 1940’s researchers were interested in whether psychological attributes could
be quantified, and conjoint measurement provided a means to investigate this. In conjoint
measurement, the joint effect of independent variables on a dependent variable is quantified.
These variables need not be known quantities and can include psychological attributes, such
as attitudes, cognitive abilities, etc. The conjoint measurement model is a deterministic
mathematical model and not a statistical one. This distinguishes conjoint measurement
from conjoint analysis, where the model is a statistical model with an error term and where
the goal is to estimate the parameters of this model. In 1971, Green and Rao introduced
conjoint methods to marketing research (Green and Rao, 1971). Its introduction was well

received and research in this area continues to this day (Orme, 2010).



2.2 Nomenclature

Carson and Louviere (2011) discuss the need for a common nomenclature for stated pref-
erence elicitation approaches. DCEs are a rapidly growing field of research and conjoint
analysis has become a blanket term for many variations of the orginal methods. Carson
and Louviere (2011) argue that the term conjoint analysis is vague and should no longer
be used because it fails to convey information regarding data collection, the experimental
design and what statistical procedures were used for analysis. In their paper, they provide
suggestions to improve clarity in the communication of research results. In alignment with
this sentiment, this dissertation will use discrete choice experiments or best-worst discrete
choice experiments in lieu of conjoint analyses. In addition, we make the following definitions

for use throughout this dissertation:

e An attribute is a variable that describes a characteristic of a health state. For example,
urinary functioning is one attribute of a health state. Sexual functioning and expected

lifespan are also attributes of health states.

e An attribute level is a category of an attribute. For example, short term urinary issues

is an attribute level of the attribute urinary functioning.

e A profile is a combination of attribute levels that together describe a health state. For
example, a decreased sex life, short term urinary issues, live your expected lifespan,
having doctor and family support, taking immediate action, and no surgery describe

one health state profile.

e A choice set is a set of profiles from which choices are made. For example, if A, B, C'

and D represent four health state profiles, the set {A, B, C, D} is a possible choice set.

e An alternative is a profile within a choice set. For example, A, B, C' and D are each

alternatives in the choice set {A, B,C, D} .

In the context of this dissertation, the attributes are categorically defined variables de-

scribing characteristics of health states which could result from prostate cancer treatment.
6



A combination of attribute levels constitutes a health state profile. Profiles are assigned to
choice sets according to an experimental design. Patients select choices from various choice

sets which contain health state profiles as alternatives.

2.3 Traditional Full Profile Conjoint Analysis

Traditional full profile conjoint analysis has been a mainstay of the conjoint community.
Individuals view full profiles (all attributes at once) and are asked to either rank order all
profiles (if given as a set of profiles) or provide a metric rating, for example, a rating be-
tween 0 and 100, of each profile (if viewing a single profile). Based on rankings and ratings,
regression coefficients for the attributes (also called partial utilities or partworths) are calcu-
lated through regression techniques (for example, ordinary least squares) or through linear
programming techniques (for example, Linear Programming Technique for Multidimensional
Analysis of Preference (LINMAP)) for each individual or at the population level. This ap-
proach is simple in design and execution and all profiles are evaluated in the context of all

other alternatives.

2.4 Discrete Choice Experiments

Discrete choice experiments, also known as choice-based conjoint analyses or discrete choice
conjoint analyses, have become a popular method for measuring preference (Taneva et al.,
2008). In a typical DCE, individuals indicate their best choices from among sets of exper-
imentally designed profiles (Louviere, 1998). In contrast to traditional full profile conjoint
analyses, DCEs allow for better representation of actual respondent behavior. Individuals
are generally not asked to rate or rank alternatives based on preferences. They simply choose
their most preferred alternative from a choice set. The probability of choosing a preferred

alternative from among a set of alternatives is generally modeled using a multinomial logit

(MNL) model.

Although DCEs reflect actual choice behavior, they are not without disadvantages. DCEs

7



require a more complicated experimental design in which more choice sets are presented to
the respondent. In addition, compared to traditional full profile conjoint analyses, each choice
task in DCEs reveals less information since little information is gained about alternatives

which were not chosen.

2.5 Best-Worst Discrete Choice Experiments

A special type of DCE is the best-worst discrete choice experiment (BWDCE), in which indi-
viduals are shown a set of alternatives and asked to indicate their most preferred alternative
(best) and least preferred alternative (worst). Louviere et al. (2008) orginally developed the
BWDCE (also referred to as multi-attribute best worst scaling tasks) to elicit additional
preference information per choice set. In their version of the BWDCE, individuals are asked
to indicate their best choice and their worst choice compared to best choice only, first in
the entire choice set and then in each successively smaller subset of unranked profiles until
a full ranking is attained. Parameters in models for ranked items have been estimated using
the rank ordered logit or exploded logit model (Chapman and Staelin, 1982) or the sequential

best worst multinomial logit model introduced by Lancsar and Louviere (2008).

In the PROSPECT study, patients are presented with choice sets containing four profiles
describing treatment related outcomes and asked to indicate their best and worst choices
within each set. The two mid-ranked profiles are unranked with respect to each other. To
handle ties or incomplete rankings, Allison and Christakis (1994) suggested marginalizing
over all possible permutations of unranked items. This idea was implemented by Hernandez-
Alava et al. (2013) who introduced a model for partially ranked data that includes random
effects estimated using Monte Carlo maximum likelihood methods. We develop a method of
implementing this idea and incorporate it into the analysis of the PROSPECT study data

using Bayesian methods.



CHAPTER 3

Data Set

This chapter describes the data set, the development of the health state profiles, and the

experimental design of the applied study.

3.1 Description of the Data

To understand people’s preferences, two types of data reflecting individuals’ choices may
be elicited: revealed preference data and stated preference data. Revealed preference data
reflect actual choices made by individuals in a real-world setting while stated preference
data are collected in experimental settings and are elicited as responses to hypothetical, but
realistic, choice senarios as presented in a DCE. Stated preference data were collected for

the prostate cancer project and this data was analyzed in this dissertation.

The PROSPECT study data originates from a randomized trial designed to compare
three methods for assessing preference for health states after prostate cancer treatment:
discrete choice experiment, time trade-off, and rating scale. The dataset that we use for
this proposal comprises data from 121 men recruited from the West Los Angeles Veteran’s
Administration Medical Center (WLA VA), the Veteran’s Administration Sepulveda Ambu-
latory Care Center and Olive View-UCLA Medical Center. All men had negative prostate
biopsies within one month of enrollment and were randomized into two arms; either the
DCE and rating scale arm or the DCE and time trade-off arm. In both arms, patients were
presented with tasks for both preference assessments methods, where the order of prefer-
ence assessment methods was random. Patients who could not read or speak English were

excluded from the study. Table 3.1 describes the sample of 121 men. Approximately half



of the sample were at least 65 years old, and more than half of the sample were non-white,
partnered, unemployed, non-smokers or had at least some college education. The majority

of the sample made at least $10,000 dollars per year.

Table 3.1: Patient characteristics for 121 men in the PROSPECT study

Patient Characteristic ~Category N (%)
Age

GTE 65 years old 59 (0.49)

LT 65 years old 62 (0.51)
Race

White 51 (0.42)

Black 43 (0.36)

Other 27 (0.22)
Partnered

Yes 81 (0.67)

No 40 (0.33)
Employed

Yes 42 (0.35)

No 79 (0.65)
Smoker

Yes 18 (0.15)

No 103 (0.85)
Education

At least some college 97 (0.80)

At most high school 24 (0.20)
Income

LT 10k USD 18 (0.15)

10k-30k 53 (0.44)

GT 30k 50 (0.41)

The discrete choice method for the PROSPECT study is a best-worst discrete choice
experiment where a choice task for an individual involves choosing their best choice and
their worst choice from a set of four hypothetical health states. In the time trade-off method,
patients are presented with a single profile describing a hypothetical current health state and
a number line and are asked to indicate the number of years of life in better or perfect health
that would be equivalent to the number of years of life in the current hypothetical health
state. The rating scale method involves presenting a linear rating scale ranging from 0 (worst
possible outcome equivalent to death) to 100 (perfect health) on which individuals indicate

their rating for a given health state.
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The data used for analysis in this work will pertain only to the discrete choice applica-
tion and consist of choices from among hypothetical health states which could result from
various cancer treatments. Since the study is currently recruiting subjects, the data used in
preliminary work for this proposal are only a portion of the data that will be gathered by

the conclusion of data collection.

3.2 Development of Health State Profiles

Profiles for health states were developed using the Voice of the Patient Process with a group
of seventeen men with localized prostate cancer recruited from the WLA VA for in-person
interviews (Saigal and Dahan, 2012). The Voice of the Patient Process is a multistep ap-
proach which begins by eliciting important issues from patients regarding their prostate
cancer treatments (Dahan and Saigal, 2012). Quotations from patient interviews were tran-
scribed and narrowed by researchers into a smaller set of quotations. Each patient then
grouped the quotations into piles that he perceived as similar. For example, “Take charge of
your body, take charge of the situation” and “Cancer kills...Do something about it” might be
grouped in the same pile. Following the interviews, groupings were evaluated across patients

by investigators, who developed the final set of treatment related attributes and levels.

Seven attributes and levels were defined. These are presented in Table 3.2. The attributes
include sexual functioning, urinary incontinence, bowel issues, lifespan, others’ support, ac-
tive and cutting. Active refers to taking immediate action towards treatment. All attributes
were defined by two levels except for sexual functioning and urinary incontinence which were
defined by three levels. Hypothetical health state profiles were derived by varying the levels

of the seven attributes.

3.3 Experimental Design

The computer-based survey instrument designed for the DCE was developed in Excel by

Ely Dahan, PhD, MBA (Dahan and Saigal, 2012). The DCE application was designed to

11



JUDUIYeDI) DI0JO( S dUIeS dJI XOG PoseaIap I XoF Xos Ul 93edue 0} a[qeu )
SONSST ATRULIN ON SONSST WLI9Y }I0YS SONSST W19} SU0T

JIoUIRaI) JUOUI)RIIY ST} JOAR]
sty jroddns Afrurey pue 10300p AN J0U Op AIUIR} pue 10300p AN
JUOUW) BT}

A[oyerpowrtul uorjor Surse) we [ [earpel © ojut surdwmn( jou wre |
ouI}

[e11dsoy] pue SYSLI oWOS M

A1081ns o1mbol jou soop Juowyeal], A1931ns soambol jusuryeal],

SITOWOAOW [oMO( Juanboj
SONSST [oMO( ON pue JuesIn uLIe)} 1I10Yg

uedsojI] pajoodxo
uedsoj] pojoodxo Aur oAl AW ey} I0MdJ SIRIA G OAT]

suruorjoun, [enxag

9OUAUIIUOIU] AIRULI[)

jroddng s10130

uonOy Jume,

Sunny
SONSS[ [emoyg

uedsoji|

¢ [040] g [040] I [0407]

SoINqLIYIY

Apn3S LOASOU U} WO S[OAS] IR PUR SOIAUIY (¢ ¢ O[qRL

12



A B C D

Doctor and Sex: Decreased Doctor and Sex: Decreased Doctor and Sex: Decreased Doctor and Sex: Decreased
Family do not compared to Family compared to Family compared to Family compared to
favor this before Support this before Support this before Support this before
treatment treatment treatment treatment treatment treatment treatment treatment
S Treatment C Troatment
Treatment Urinary: Long- gives me Urinary: Short Treatment Urinary: No gn:os — Urinary: Long-
requires action term issues . term issues requires action problems : term issues

months or months or

within weeks within weeks

longer to decide longer to decide

No Cutting:

Cutting: Treatment Cutting: Bowel: Short Cutting:
Surgery with Bowel: No does NOT Bowel: No Surgery with term urgent & Surgery with Bowel: No
some risks and problems. coes BEC problems some risks and | | frequent bowel | |some risks and problems
hospital time require any hospital time movements hospital time
surgery
Lifespan: Live Lifespan: Live Lifespan: Live Lifespan: Live
my expected 5 years fewer 5 years fewer my expected
lifespan than expected than expected lifespan

Figure 3.1: Example of a choice set from the PROSPECT study. Patients choose their most
and least preferred health state from among the four health states.

present each patient with a series of choice sets each consisting of four health state profiles.
Individuals were then asked to identify their best choice and their worst choice in the set
presented. No profile was repeated within a choice set and no choice set was repeated in the
experiment. Individuals were not given the option to opt out of identifying best and worst

choices. A representative screen from the survey is shown in Figure 3.1.

With five 2-level attributes and two 3-level attributes, there are 2° x 32 = 288 possible
health states in a full factorial design. Sixteen profiles were selected for creation of choice sets
because they formed an approximately orthogonal array. These sixteen profiles described
by their attribute levels are presented in Table 3.3. In an orthogonal experimental design,
the coded attribute levels of the experiment form a set of mutually orthogonal non-zero
vectors which are statistically independent. This property is desirable because it allows for

an independent determination of each attribute’s influence upon the observed choices.

Choice sets of size four were formed using these sixteen identified profiles. The first
four choice sets presented were the same for all patients. The selection of subsequent choice
sets, determined by the software’s algorithm, was dependent on the patient’s prior responses.
Choice set 5 was constructed by comparing the best choices selected from the first four choice
sets while choice set 6 was constructed by comparing the worst choices from the first four
choice sets. Choice sets 7 and 8 compared the unranked profiles from the first four choice

sets. The remaining choice sets were formed by randomly pairing profiles which had not yet
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Table 3.3: Sixteen health state profiles described by attribute levels and utilized in the
PROSPECT study where lower attribute levels indicate more side effects, less support, not
taking action or surgery.

Profile Lifespan Bowel Issues Cutting Action Support Urinary Sex

1 2 2 2 2 2 3 3
2 2 2 2 1 2 2 2
3 2 1 2 2 2 1 1
4 2 1 2 1 2 2 2
5 2 1 1 2 1 2 3
6 2 1 1 1 1 3 2
7 2 2 1 2 1 2 1
8 2 2 1 1 1 1 2
9 1 2 2 1 1 1 3
10 1 2 2 2 1 2 2
11 1 1 2 1 1 3 1
12 1 1 2 2 1 2 2
13 1 1 1 1 2 2 3
14 1 1 1 2 2 1 2
15 1 2 1 1 2 2 1
16 1 2 1 2 2 3 2

been compared. Pairs of cards which had been ranked relative to each other or for which
a ranking could be inferred were considered a resolved pair. In addition to pair resolutions
made directly by the individual, pairs are also resolved by an algorithm using transitivity of
preference. For example, if A > B and B > C then A > C, where > indicates the better
choice. The algorithm for choice set creation stopped when all possible paired comparisons
were resolved. The men were presented with a total of 10-17 choice sets each consisting of 4
health state profiles. The number of choice sets presented varied across patients because of

the adaptive design of the DCE.
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CHAPTER 4

Current Models for Discrete Choice Data

This chapter reviews current models that are commonly fit to discrete choice data and

describes two methods used to estimate model parameters.

4.1 The Random Utility Model

In economics, discrete choice models are based on the theory of utility maximization, where
utility is defined as the total satisfaction received from consuming a good or service. In the
context of our project, we assume that patients choose among alternative health states to

maximize their utility.

The analytic framework for discrete choice modeling is based on Lancaster’s theory of
value, where utility is derived from the underlying characteristics or attributes (Ryan et al.,
2008), and on the Random Utility Model, where utility has a systematic and a random
component (Lancsar and Louviere, 2008). Although utility is not directly observable, it can
be estimated from observed choices. The random component may result from unobserved

attributes, variations in tastes, or measurement error (Viney et al., 2002).

We begin by describing the modeling framework for best choice. For exposition, we
assume that each attribute has two levels coded using dummy coding. Suppose that we have
N respondents. Further suppose that each respondent ¢, + = 1,..., N, has to make a choice
from a single choice set containing J alternatives. Index the .J alternatives by 7 = 1,..., J.

Let Y; represent individual ¢’s preferred (best) choice among the J alternatives. Then the
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basic problem is the estimation of a utility function
Ui = fij(@ij, - wijm) (4.1)

where U;; denotes the utility of alternative j for individual 4, (241, ..., ;i) denotes the levels
of the H attributes of alternative j presented to individual ¢ and f;; indicates that the utility
Uij is a function of the H attribute levels (x;;1, ..., ;i ), that in the most general case could
be specific to individual 7 and alternative j. The random utility model assumes that utility
can be partitioned into a systematic component and a random component. Thus, the utility

of alternative j for individual ¢ can be written as
Uij == ‘/z’j + Eij (42)

where V;; represents the systematic component and ¢;; represents the random component.

If we model the systematic component of utility as a linear function of parameters
Vi =), (4.3)

where x;; is the H x 1 attribute vector of the jth alternative for individual ¢ and 3 is the
H x 1 coefficient vector of the fixed attribute effects in the valuation of alternative j across

all individuals, then we can write the utility function of alternative j for individual 7 as

4.2 Best Choice & Fixed Effects: The Multinomial Logit Model

4.2.1 The Gumbel Distribution

The random component of the random utility model is commonly assumed to be independent
and identically distributed (iid) with a Gumbel distribution, also called the Extreme Value

Type I distribution. Extreme value distributions arise as the limiting distribution for an
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extreme value (maximum or minimum) of a sample of iid random variables. The Gumbel
distribution has been used in engineering and hydrology to measure annual flood flows (Kotz

and Nadarajah, 2000).

If X has a Gumbel distribution with location parameter ;z and scale parameter 7, then

the probability density function is given by

Fx(elum) = %exp (- ) e (—ew (- 2)) (4.5)

and the cumulative distribution function is given by

Fy(alpu,m) = exp (= exp - "”;“)) (4.6)

where z,  and n are real-valued (z € R, p € R, n € R) and 7 > 0. The mean of the Gumbel

distribution is
EX)=p+ M (4.7)

where A is the Euler-Mascheroni constant ~ 0.5772, the mode is p and the variance is

71'2’]’]2

Var(X) = 5

(4.8)

where m ~ 3.1416. Using the standard Gumbel distribution with location parameter u = 0
and scale parameter 17 = 1, the probability density function and the cumulative distribution

function are given by

fx(z) = exp(—x) exp(— exp(—z)) (4.9)

and

Fx(x) = exp(—exp(—x)), (4.10)
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respectively, F(X) = X and Var(X) = 72/6. We now derive the logit model choice probabil-
ity, the probability respondent ¢ chooses alternative j as best from a choice set containing J

alternatives.

4.2.2 Derivation of the Logit Model Choice Probability

If we assume that the random components of utility, the ¢;;’s, are iid with a standard Gumbel
distribution, then the probability that alternative j is selected by individual ¢ as the best

choice in a choice set is

p(Y; = j) = p(Ui, < Uy, for all k # j) (4.11)
= p(Vik + €, < Vij + €5, for all k # j) (4.12)
= (ezk V;] ‘/zk + €ijs for all & 7£ j) (413)

Suppose that ¢;; is given. Then the conditional probability of alternative j being selected as

best by individual 7 given e;;

p(Y; = jleij) = plew < Vij — Vi + €, for all k # j) (4.14)

is the cumulative distribution for each €, evaluated at V;; — Vi, 4 €;;. Because the €;;’s are
assumed to be independent, the cumulative distribution over all k£ # j is the product of the

individual cumulative distributions,

p( - j|€l] - H p €ik < ‘/1] ‘/;k; + 67,]) (415)
k=1,k#j
J
[T exp{—expl-(Vij — Vit + )]} (4.16)
k=1,k#j
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Because the ¢;;’s are not given, the marginal choice probability is the integral of p(Y; =

over all values of ¢;; weighted by the density, f(e;;). Thus

p(Yi=j) = /_OO p(Y; = jleij) f(€ij)des

o0

~ [ TI ewl-expl(v — Vit e}

 k=1,k#j

- exp(—e€;;) exp[— exp(—e;;)|de;;.

Let u = exp(—e¢;;). Then du = — exp(—e¢;;)de;; and the limits change from €;; =

u =00 and ¢; = 0o to u = 0. Now we have that

0 J

p(Y = j) = — / [T [ee{-ueso(~(Viy = Vi) }] exp(—u)du
O k=1,k#j
= h ﬁ [exp{—u exp(Vir, — Vz’j)}] exp(—u)du
0 k=1k#j
~ J
— / exp [—u{ Z exp(Vix V;j)}] exp(—u)du
0 k=1,k+#j
— /°° exp [_u{l + i exp(Vi, — V;J)Hdu
0 k=1,k+£j

Finally, if we let w — —u{l + 300y exp(Vi — mj)}, then

jleij)

(4.17)

—0o0 to

(4.18)

(4.19)

(4.20)

(4.21)

dw = —{1 + Zgzl’k# exp(Vig — Vij)}du and the limits of integration change from u = oo
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tow = —0o0 and v =0 to w = 0. We now have that

1 0
p(Yi=j)= / exp(w)dw (4.22)
L+ Zgzl,k;éj exp(Vig — Vij) J-o0
_ B (4.23)
L+ i gy exP(Vie — Vi)
- B (4.24)
L+ ety exP(Vie — Vi)
= op(Vy) (4.25)
exp(Vij) + exp(Vij) 2oiei gy €xP(Vie — Vi)
= p(Viy) (4.26)
exp(Vy;) + Zk:l,kyﬁj exp(Vik)
exp(Vy) (4.27)

TS exp(Vie)

Thus, the logit model choice probability, the probability respondent i chooses alternative j

as best from a choice set containing J alternatives, is calculable in closed form as

: exp(Vi;
p(Yi=Jj) == 0h) (4.28)
> i1 exp(Vir)
If we model the systematic component of utility as a linear function of parameters
Vi =, (4.29)

where @;; is the H x 1 attribute vector of the jth alternative for individual ¢ and 3 is the
H x 1 coefficient vector of unknown fixed attribute effects in the valuation of alternative j

across all individuals, then

eXp(CIZ;I;» )

TS ep(@l8)

p(Yi =) (4.30)

From our derivation, we see that the Gumbel distribution leads to the logit choice prob-
ability which forms the basis of the multinomial logit model, a model often chosen for its

mathematical convenience.
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We will model the best choice as the most preferred choice among the four alternatives
in a choice set and we will model the worst choice as the least preferred choice among the

four alternatives in a choice set.

Define §;; = 1 if individual ¢ chooses alternative j and d;; = 0 otherwise and let p;; =
p(Y; = j) be the probability that individual i chooses alternative j as their best choice, then

the likelihood contribution for individual ¢ choosing from a single choice set is given by
Li(Bly:) = pii'pist-p5 (4.31)

where J indicates the total number of alternatives and y; is the observed choice for individual
7. Assuming that all individuals are selecting a best choice from a single choice set, the

likelihood for a sample of N individuals is

N

L(Bly) = [ [ L:(Blv:) (4.32)

i=1
where y is the set of observed choices across all patients. The log-likelihood is given by
N
log L(Bly) =D, D dijlog(pi) (4.33)

1 5=1

iia 2= xp(@) )). (4.34)

i=1 j=1 Zk 1exp( z}3

%

4.2.3 The Multinomial Logit Model for Panel Data

In the PROSPECT study, each patient was presented with multiple choice sets from which
to make choices. Because each choice task completed by a patient contributes a single
observation, the data are a collection of repeated observations for each patient. This type of
data is sometimes called panel data (Hsiao, 2003). Because the design of the experiment was
adaptive, as described in Chapter 3, the total number of choice sets presented to a patient
differed for each respondent. Let T; be the total number of choice sets presented to individual

7 in the course of the experiment. With the exception of the first four choice sets, the choice
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set presented at a specific time also differed for each respondent. Thus, the J alternatives in
a choice set presented at a specific time differed across all patients. If we index choice sets
by t, where t = 1,2,3,...,T;, then Uy, the utility of alternative j for individual 7 in choice

set t, is given by

Uity = Vitg + €itj (4.35)

where Vj;; is the systematic component of utility and €;; is the random component of utility
for alternative j presented to individual ¢ in choice set t. If ¢;; is iid with a standard
Gumble distribution for all ¢, j and ¢, then using a similar derivation as in Section 4.2.2,
the probability respondent ¢ chooses alternative j as best from a choice set ¢ containing J

alternatives is given by

. exp( Vit
p(th — j) _ p( tj)

N Z,}]:l eXp(Vitk)' (4.36)

Finally, if we model the systematic component of utility as a linear function of parameters

where x;; is the H x 1 attribute vector of the jth alternative for individual ¢ in choice set ¢
and B3 is the H x 1 coefficient vector of unknown fixed attribute effects in the valuation of
alternative j for all individuals, then the probability of individual 7 choosing alternative j in

choice set t as best choice can be written as

_ eXP(mljﬁ)
>y exp(@],8)

p(Yie = j) (4.38)

where Y, is the observed best alternative in choice set ¢ for individual 7. Define d;;; = 1
if individual ¢ chooses alternative j in choice task t and d;;; = 0 otherwise and let p;; =

p(Yis = j) be the probability that individual i chooses alternative j in choice set ¢ as their
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best choice. Then the likelihood function for individual 7 choosing in choice set ¢ is given by

Li(Blyi) = plispligz...phy (4.39)

where J is the total number of alternatives in choice set ¢t and y;; is the observed choice for
individual 7 in choice set t. Because each respondent is presented with a varying number of
choice sets, the likelihood contribution for individual ¢ making their choices in the course of

the experiment is given by
T;
Li(Bly:) = H L (Blyit) (4.40)

t=1

where y; is the set of observed choices for individual ¢ across all choice sets. The likelihood

for the full sample of N individuals is

L(Bly) = HL (Bly:) (4.41)

where y is the set of observed choices and the log-likelihood is given by

log L(B|y)

SN duslog(pay) (4.42)

=1 t=1 j=1

S35 o P ) e

i=1 t=1 j=1 Zk L exp(z ztk/B

N T J

T;

.

4.2.4 The Property of Independence of Irrelevant Alternatives

A property which results from deriving the multinomial logit choice probabilities as de-
scribed in (4.38) is the property of independence of irrelevant alternatives (IIA). For any two

alternatives j and k, the ratio of the logit probabilities is

p(Y;t = ]) eXp(wztj
p(Yie = k) exp(z},B

; = exp[(mitj — CCZ'tk)T},B. (444)
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This implies that the choice of one alternative over another does not depend on any remaining
alternatives included in the set. In other words, choosing j over k is independent of the set
that contains j and k& and the remaining alternatives are irrelevant in the choice between

them.

The property of ITA has been identified as a limitation of the MNL model. In cases where
choice sets contain similar alternatives or alternatives with a natural order, the property of
ITA can be violated (Hernandez-Alava et al., 2013). One well-known example where the
property of ITA is inappropriate is called the red-bus, blue-bus paradozr and involves a choice

set that contains two similar alternatives.

Suppose that an individual needs to choose a mode of transportation from a choice set

containing two choices:

A = {car, red bus}

and that pa(Y; = car) = 0.7 and pa(Y; = red bus) = 0.3. Now suppose that a blue bus is

introduced as a new mode of transportation. Then we now have the choice set:

A" = {car, red bus, blue bus}

Assuming that color does not influence choice of transportation,

pa(Y; = red bus) = pa/(Y; = blue bus) (4.45)

and intuitively we would think that pa/(Y; = car) = 0.7, pa(Y; = red bus) = 0.15 and
par(Y; = blue bus) = 0.15. But because of the ITA property, the odds of selecting the
car over the red bus does not depend on whether the blue bus is in the choice set or not.

According to the ITA property,

(Y = Y, = :
palVi=car) _ palYi=car) 07 _, . (4.46)
pa(Y; =red bus)  pa(Y; =red bus) 0.3
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Because

par(Y; = car) + pa (Y; = red bus) + pa (Y; = blue bus) =1 (4.47)

equations (4.45) and (4.46) imply that

2.33 - par(Y; = red bus) + 2 - pa(Y; = red bus) = 1, (4.48)

and pa(Y; = red bus) = 0.23 = pa/(Y; = blue bus) and p4/(Y; = car) = 0.54. We summarize

the results in the following table.

Table 4.1: Illustrative results for the red-bus, blue-bus paradox
Mode of transportation Intuition IIA

Car 0.7 0.54
Red Bus 0.15 0.23
Blue Bus 0.15 0.23

If one considers the situation where a choice is made between a car and a red bus, and
then a blue bus is introduced, because the blue bus is functionally like the red bus, its
introduction should draw commuters from primarily the red bus and not from the car. But,
as we can see in Table 4.1, assuming that the ITA property holds in the situation where we
have similiar alternatives in a choice set we can mis-predict the probability of choice for each
of the alternatives. Formal tests have been developed by Hausman and McFadden (1984) to
test the ITA property, but Cheng and Long (2007) have shown in a simulation study that
the Hausman-McFadden test performs rather poorly, even in large samples and conclude
that the test is unsatisfactory for applied work. The IIA property has the potential to be
violated in the PROSPECT study, however, in the absence of a well performing test of the
ITA property and becasue MNL-based models are commonly fit to discrete choice data, we

fit a MNL-based model to the data from the PROSPECT study.
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4.3 Best Choice & Random Effects: The Mixed Logit Model

The Mixed Logit (MXL), also sometimes called the Mixed Multinomial Logit Model or the
Random-Parameters Logit Model, extends the MNL model by including random effects. It
was first described for revealed preference data by Boyd and Mellmand (1980) and Cardell
and Dunbar (1980) and later introduced for discrete choice responses by McFadden and Train
in 2000 (McFadden and Train, 2000). Increased application of the MXL model occurred with
the development of simulation methods which allowed for better estimation of the model.
In the mid-1990’s, such methods were integrated into software packages and the application
of the MXL model increased (Hensher and Greene, 2003). Following its introduction, the
MXL model has been applied in a variety of areas, some of which include: transportation
(Ben-Akiva and Bolduc, 1996; Brownstone and Train, 1999), willingness to pay (Giergiczny
et al., 2012), multiparty elections and food choices (Righy and Burton, 2006).

Like the MNL model, a MXL model assumes that the error terms are iid according to
a Gumbel distribution. However, a MXL model relaxes the restriction that the coefficient
vector be fixed for all individuals, which allows one to model heterogeneity or variation in
taste by allowing coefficients to vary across individuals (Revelt and Train, 1998). In the MXL
model, each individual has their own coefficient vector, 3,, meaning that each individual has
different regression coefficients, also called partial utilities or part-worths, for each attribute.
Because the MXL model assumes that differences across patients have some influence on the
selection of best choice, the MXL model is a random effects model where 3, is the coefficient

vector of random attribute effects.

4.3.1 The Mixed Logit Model for Panel Data

The MXL model can be applied to panel data where multiple observations are collected for
each individual. In the MXL model, the utility of alternative j for individual ¢ in choice task

t is

Uij = 33;],31 + €itj (4.49)
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where x;;; is the H x 1 attribute vector for alternative j in choice set ¢, 3, is the H x 1 vector
of unknown coefficients for respondent ¢ and €;; is a random error term that is iid Gumbel
and independent of 3;. The coefficients vary in the population with density f(3,|0) where
0 are the parameters of this population distribution. This model specification is similar to
the MNL model for panel data except in this model, the coefficient vector is now allowed to
vary over respondents rather than being fixed. Thus, conditional on 3,, the probability that
respondent ¢ chooses alternative 7 as the best alternative in choice set ¢ is
eXp(mz‘thIBi)

Yi=7jlB;) = . 4.50
4 710 ZZ:I eXP(wiTtkﬁz‘) ( )

4.4 Full Ranking & Fixed Effects: Rank Ordered Logit Model

Because of the limited amount of data collected from individuals in a traditional discrete
choice experiment, where a single alternative is identified as the preferred choice, individual
level models were considered inestimable in the past (Finn and Louviere, 1992). Recently,
Louviere et al. (2008) showed that individual models could be estimated using a best-worst
discrete choice experiment type method with a more efficient experimental design, instead
of relying on only best choices collected from a large number of choice sets (Lancsar and
Louviere, 2008). We call the model Louviere et al. (2008) to model full ranking the sequential
best-worst (SBW).

In a SBW, the goal is to obtain more information from a single choice set without
increasing the total number of choice sets presented to an individual. More information
is elicited from the respondent by obtaining a full ranking of the alternatives in each choice
set. For a given choice set in Louviere’s SBW, the respondent is asked to choose the best and
the worst preferred choice. Once identified, these selected alternatives are removed from the
choice set and the best-worst task is repeated again on the set of the remaining alternatives.
This process continues until a full ranking of alternatives is obtained. An advantage of this
method is the increased ability to fit individual-level models. In their paper, Lancsar and

Louviere were able to estimate individual level models involving three to five alternatives in
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a choice set and six to ten attributes (Louviere et al., 2008). Under the same assumptions as
the MNL model, it is possible to define a multinomial logit model on ranked alternatives, also
called the rank ordered logit (ROL) model, the sequential multinomial logit or the exploded
logit model. Under the ROL model, the probability of observing a ranking is defined as the
product of multinomial logit probabilities of selecting a best choice from successively smaller
choice sets. We compare the probability of a full ranking under the ROL model and SBW
model in Appendix C, Statement 3.

4.4.1 Complete Ranking, 1 Individual, 1 Choice Set

Let pc(j) denote the probability that an alternative j is chosen as best from a set C' =

data is a set of permutations, 7 : C' — C, mapping alternatives to their ranks (Sun et al.,
2012). For permutation 7, m(j) is the rank assigned to item j € C and 7w~ '(j) is the jth
most preferred alternative in C. For example, if 7(2) = 1, then alternative 2 is assigned
rank 1. Similarly, if 77!(1) = 2 then the first ranked alternative is alternative 2. Now, let
Rc be the set of all possible permutations of the elements in C' and let 7 € Rc denote the
complete ranking 7—1(1) > 77(2) > ... > 7~ (J). Here the notation, i > j, indicates that

alternative i is preferred over j. Finally, let pc(7) equal the probability of the ranking .

According to Louviere et al. (2008), Bergland (1994) and Chapman and Staelin (1982),
the probability of a ranking of alternatives can be written as the probability of a sequence of

choices. Applying this approach to the random utility model, for an individual 7 and ranking
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of alternatives m; = (1 > 2 > ... > j > ... > J), the probability of observing the ranking 7; is

po(m) =pc(1>2>..>75>..>J) (4.51)
=po(r ' (1) > 77 H2) > ... > 7 1(J)) (4.52)
= pc(Uil > Uy > ... > UZJ) (453)
J
= [[pc(Ui; > Ui, for all k > j) (4.54)
j=1
= pC(Uil > Uik, for all & > 1) p(UlQ > Uik, for all £ > 2) c . (455)

~p(UZ-(J_1) > Uy, for all &k > (J — 1))
= pc(alternative 1 is best) - po(alternative 2 is 2nd best) - ... (4.56)

-pc(alternative J is last)

where Uj; is the utility of alternative j for individual ¢ (Velandia et al., 2011). This equation
is derived from the Luce-Suppes Ranking Choice Theorem which decomposes the joint prob-
ability pc(U;y > U > ... > U,y) into a series of successive and independent events where Uj;
represents the utility of the most preferred alternative at each stage of decision (Chapman
and Staelin, 1982). According to Velandia et al. (2011), the right hand side of (4.54) can
be described as the product of the probability that alternative 1 is preferred over all other
choices given the entire choice set, times the probability that alternative 2 is preferred over
all other choices given that alternative 1 was already chosen and removed from the choice

set, and so on.

In general, let m; be a permutation in R¢, the set of all permutations of alternatives in
the choice set C, for individual 7 where m; '(1) > 7; 1(2) > ... > m; !(J) is a ranking of the

alternatives in the choice set, C'. Then

po(m) = po <7r;1(1) > 774 2) > .. > n{l(J)> (4.57)

J—1
- Hp{frfl(j) ..... n;l(J)}(Wi_l(j)) (4.58)
j=1
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where 7;'(j) represents the jth preferred alternative in the choice set, C. Because the
probability of choosing one alternative as the least preferred given that all others were already
chosen equals one, the last term, p;, -1 J)}(ﬂ'i_ 1(J)), equals one and is implicitly included in

the equation above.

4.4.1.1 Example: The PROSPECT Study

Consider a ranking, 7;, for individual ¢ of four health states in choice set C' = {1,2,3,4},

such that 4 > 3 > 2 > 1. Because p(j) equals the multinomial logit probability of choosing

j from C| if
. exp(Vi;)
pc(j) = 7 (4.59)
Zkec exp(Vix)
then
p(mi) = pp1,2,3,43(4)Pg1,2,33 (3)Pg1,2 (2) (4.60)
exp(Via) exp(Vi3) exp(Viz) (4.61)

B Zke{1,2,3,4} exp(Vir) Zke{1,2,3} exp(Vik) Zke{l,Q} exp(Vik)

where Vj; is the linear function from the choice model (Vi; = x; 3) defined in (4.3).

4.4.2 Complete Ranking, N Individuals, T; Choice Sets for Each Individual

Now suppose that we have N individuals each stating preferences about more than one choice
set. Let m; represent the complete ranking of the choice set ¢, made by individual ¢, where

i (1) > 7,1 (2) > ... > 7, (J), i =1,..,N, t = 1,..,T; and each choice set t contains
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exactly J elements. Then the probability of observing the ranking m;; is

mwmww@ﬂm>mﬂm> > () (4.62)

—HmM» ..... oy (T () (463

J-1

_ eXP(V;w;tl(j))
i ZJ>k>j eXp(V;w;tl(k))
J-1

_ eXp( *1(3)1[3)
j=1 2ok OXP(T m;tl(k)ﬁ)

(4.64)

(4.65)

where 7, (j) represents the jth preferred alternative for individual 7 in choice set ¢, )
is the H x 1 attribute vector of the jth ranked alternative for individual ¢ in choice set t and

B is H x 1 the coefficient vector of the fixed attribute effects.

Now, let m; = (m;1, ™0, T3, ..., Tir,) Tepresent the sequence of rankings made by the re-
spondent over the course of the experiment, where T; is the total number of choice sets
presented to individual . Then the probability that respondent ¢ makes this sequence of

rankings is the product

.

T
p(m;|B) = p(mit|B) (4.66)
-1

t=
T;

B ety
t=1 j=1 ZJ>I<:>] eXp( (k)ﬂ)

.

(4.67)

4.5 Full Ranking & Random Effects: Rank Ordered Mixed Logit
Model

A mixed logit model can also be estimated on ranked data. Let 3, be the coefficient vector
of random attribute effects. If we assume that 3, is random and distributed with den-

sity f(3,;|0), where @ are the parameters of the distribution, then conditional on 3,, the
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probability of observing the ranking of choice set ¢ by individual i, 7, is

T
exp(cc. _t (j)/Bz)

p(mi| B;) H LS ey oxp(a] _1(k)ﬁ )

(4.68)

where 7;,'(j) represents the jth preferred alternative for individual 7 in choice set ¢, Ti1)
is the H x 1 attribute vector of the jth ranked alternative for individual ¢ in choice set ¢ and

B, is the H x 1 coefficient vector of the random attribute effects for individual i.

Let m; = (w1, T2, T3, .., T, ) Tepresent the sequence of rankings made by the respondent
over the course of the experiment, where T; is the total number of choice sets presented to
individual 7. Then conditional on 3,, the probability that respondent ¢ makes this sequence

of rankings is the product

p(mi|B;) Hp mit|B;) (4.69)

TZ Il X p( iy (])/61)

- EH ZJ>k>] eXp( ; _l(k)ﬁ )

(4.70)

For a study where J = 4 and conditional on 3;, the probability of observing a ranking, say
4 >3 >2>1, by individual 7 is given by

(Tt B;) = pp123.43 (412,31 (3) 1,23 (2) (4.71)

_ eXp(mz‘Tmﬁi) eXp(IBZ&Bi) eXp(szzﬁi)
Zke{1,2,3,4} eXP(wiTtkﬁi) Zke{1,2,3} eXP(wiTtkﬁi) Zke{1,2} eXP(‘BiTtkﬁi)

(4.72)

where X;;; is the attribute vector for the jth alternative in choice set ¢ presented to individual

1, B3, is the coefficient vector of random attribute effects for individual i. Then

p(m;|6;) Hp Titl3;) (4.73)
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and the unconditional probability is the integral of this product over the density of 3,

pls) = / p(wil3,)£(B:]0)dB. (4.74)

4.6 Partial Ranking & Fixed Effects

Thus far we have only considered the situation where we elicit a best choice or a full ordering
of alternatives. However, it is possible to obtain a partial ordering. The respondent might
have difficulty ranking alternatives and thus, leave some alternatives unranked, or the design
of the experiment may lend itself to partial rankings. If we consider the data collected in the
PROSPECT study, only the best and worst choices from a choice set of four alternative health
states are elicited from a respondent. Let C' = {1,2,3,4} represent a choice set containing
four alternative health states presented to a single individual. Suppose that health state 1
is identified as the best choice in the set and health state 4 is identified as the worst choice
in the set, which we denote by 1 > {2,3} > 4. In this case, the middle alternatives, 2 and
3, are unranked relative to each other. The likelihood function for the rank ordered logit
model requires data with rankings starting from the most preferred to least preferred choices
in a sequential order. Allison and Christakis (1994) proposed an alternative likelihood for
ties and incomplete rankings. They assumed that respondents have a preference among
the unranked items, e.g., 2 > 3 or 2 < 3, and these unobserved events are necessarily
mutually exclusive. To handle incomplete or partial rankings, Allison and Christakis (1994)
suggest marginalizing over all possible permutations of unranked items. We generalize their
discussion below. Hernandez-Alava et al. (2013) published a general version of the model
presented below, however did not implement the model on a real dataset in the Bayesian

setting.

4.6.1 Partial Ranking, 1 Individual, 1 Choice Set

We begin this section with an example. We first consider the situation where we have a

single individual presented with a single choice set. For simplicity, we suppress the indices
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representing individuals, ¢, and choice sets, t. We replace the indices later when generalizing

the example to multiple individuals and choice sets.

4.6.1.1 The PROSPECT Study: 4 Alternatives, 1 Best, 1 Worst

Let 77*"* = (1 > {2,3} > 4) be a partial ranking of a choice set containing four health
state profiles for an individual such that 1 is chosen as best and 4 is chosen as worst. In
this example, it is unknown how 2 and 3 rank relative to each other. We have two possible
cases: one where 2 > 3 and one where 3 > 2. Thus, 7% implies two possible rankings:
m=1>2>3>4and 7, =1>3 > 2 > 4. Because the two cases are mutually exclusive
events, the probability of one event or the other occurring is the sum of the probability of

each event, i.e., p(m; or my) = p(m1) + p(ms). Thus

p(rP") = p(my or ) (4.75)
= p(m1) + p(m2) (4.76)
=p(1>2>3>4)+p(1>3>2>4) (4.77)
_ exp(z{3) exp(zq3) exp(x] B3) (4.78)

Zke{1,2,3,4} exp(wgﬁ) Zke{2,374} exp(wzﬁ) Zke{3,4} exp(wgﬁ)
. ew(@lp) exp(e]f)
Zke{2,3,4} exp(zy 3) Zke{2,4} exp(z} B)

where x; is the H x 1 attribute vector of the jth alternative, j = 1,2, 3,4, for the individual

and 3 is the H x 1 coefficient vector of the fixed attribute effects across all individuals.

4.6.1.2 General Discussion: J Alternatives, b Best, w Worst

In the example above, we described the case in which we had an incomplete ranking of the
alternatives in the finite choice set, C' = {1, 2, 3,4}, where the best alternative and the worst

alternative were chosen leaving two mid-ranked alternatives in the entire choice set unranked
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with respect to each other

——————

Tpare = (71 (1) | > 1 {3 > 771 (4) ). (4.79)

Let 7 :{1,2,3,...5.... J} — {1,2,3,...7..., J} be a mapping of the set of alternatives to
the set of their ranks. Then 7(j) is the rank assigned to item j and 7~ 1(j) is the jth
most preferred alternative in the choice set. Now, suppose an incomplete ranking of the
alternatives of the finite choice set, C' = {1, 2, ..., J} exists, where the b best alternatives and
the w worst alternatives are chosen leaving the mid-ranked J — w — b alternatives unranked

with respect to each other. We now have the partial ranking

= (7 (1) > o>l ) | > b+ D) (J —w)}
””””””””””” ;’ (4.80)

where the middle J —w —b alternatives, {7~!(b+1)...7 ! (J —w)}, are unranked with respect
to each other. If we assume that a preference order among choice set alternatives exists, then

there are (J — w — b)! possible full rankings which are consistent with the partial ranking.

4.6.1.3 General Discussion: Bests, Worsts and Some Middles Ranked

R = N == I >
n N2 o Nm
unranked unranked unranked

Figure 4.1: A General Partial Ranking

More generally, if we consider the case where we have a more general partial ranking
for a single individual and a single choice set (the bests, the worsts and some of the middle
alternatives are ranked), then we have the situation illustrated in Figure 4.1, where ranked
alternatives are depicted by solid boxes and unranked alternatives are depicted by dashed
boxes. If we suppose that there are m sets of unranked middle alternatives and if we let ny be

the number of alternatives in unranked set k, k = 1,2, 3...m, then there are (n;!)(na!)-...-(n,,!)
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possible full rankings which are consistent with the partial ranking described in Figure 4.1
T1,72,y..., TR (481)

where R = (n1!)(na!) - ... - (ny!), the total number of possible full rankings which agree
with the partial ranking. If we assume a preference ranking exists and that only one can
hold, the R full rankings which agree with the partial ranking are mutually exclusive events
and the probability of any event occurring is the sum of the probability of the individual
events. If we have an incomplete ranking, 7%, of the alternatives of the finite choice set,

C=1{1,2,...,J}, then

R

p(rPert) = Zp ) (4.82)
_ Z (H exp(:c *1(]‘)'3) ﬁ)) (483)
(k)

ZJ>k>] eXP(

where R is the total number of possible full rankings which are consistent with the partial
ranking, @, -1 () 18 the H x 1 attribute vector of the jth ranked alternative in the rth full
ranking which is consistent with partial ranking 7?*"* and 3 is the H x 1 coefficient vector

of fixed attribute effects.

4.6.2 Partial Ranking, N Individuals, 7; Choice Sets for Each Individual

Suppose that we have N individuals each stating preferences about more than one choice set.
Let wP®™ = (af" by aby™, .., 7hi") represent the sequence of incomplete rankings made
by individual 7 over the course of the experiment, where T; is the total number of choice
sets presented to individual . Then the probability that individual ¢ makes this sequence of

incomplete rankings is the product
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p(y™) = ] [ o(=l™) (4.84)

(4.85)

J-1 ex CBT —1:
(H p( wtrm,. (])B) > (486)

=
ey ZJszj exp(mitrﬂfl(k)'@)

I
&
=
3
g
S~—

I
M=

where 75" is the partial ranking of choice set t presented to individual i, 7y, is the full

ranking r of the alternatives in choice set t presented to individual ¢« which is consistent with

75" R is the total number of possible full rankings consistent with the partial ranking,

part

Tt Tigent(y) 18 the H x 1 attribute vector of the jth ranked alternative in the full ranking

7 which is consistent with 72" and 3 is the H x 1 coefficient vector of fixed attribute effects.

4.7 Partial Ranking & Random Effects

A model with random effects can also be fit to partially ranked data. Let 3; be the coefficient
vector of random attribute effects. If we assume that 3, is random and distributed with
density f(3;|0), where 6 are the parameters of the distribution, then conditional on 3,,
the probability of an individual’s partial ranking of alternatives is given in (4.86) with 3,
substituted for 3.

t t t t t . .
Let w)*"" = (ny"", 7}y, miy ", ..., mhy, ) represent the sequence of partial rankings made

by the respondent over the course of the experiment, where T; is the total number of choice

sets presented to individual ¢. Then conditional on 3,, the probability that respondent @
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makes this sequence of rankings is the product

o)

p(wf™|8,) p(xly™|8;) (4.87)

w
=
—

R
> vl "
( f[ eXp(witrwfl(j)ﬁi) ) (489)

1 2z P Bi)

~

50

—_

R

t=1 r=1

where Wﬁa” is the partial ranking of choice set t presented to individual i, 7, is the full

ranking r of the alternatives in choice set ¢ presented to individual ¢ which agrees with Wﬁart,

part

R is the total number of possible full rankings implied by the partial ranking, 7}, ", Titrn=1 ()

is the H x 1 attribute vector of the jth ranked alternative in the full ranking » which agrees

with 77" and B, is the H x 1 coefficient vector of random attribute effects.

Then the unconditional probability is the integral of this product over the density of 3;
pm) = [ (mlB)F(B10)aB. (4.90)

4.7.1 Special Case: The Rank Ordered Logit Model for Full Rankings

Suppose that for individual ¢ that have partial rankings of a choice sets t = 1,...,T; with
no unranked middle cards, i.e., a full rankings. Then R = 0! = 1 and (4.89) reduces to the
probability of observing the full ranking ;. defined in (4.70).

4.7.2 Special Case: The Multinomal Logit Model

Suppose now that for individual 7 that have partial rankings of a choice sets t = 1,...,T;
with only best choices ranked. Then (4.89) reduces to the probability of observing the best
choices defined in (4.50).

38



4.8 Methods of Estimation

A challenge to researchers that has arisen when trying to account for heterogeneity in re-
spondents’ preferences is the difficulty of obtaining sufficient data to estimate individual-level
parameters. With discrete choice experiments, there is difficulty in calculating individual
utilities because each respondent provides only a small amount of information. In construct-
ing choice sets for evaluation, a tradeoff is made between the need for a large number of
choice sets and the need to minimize respondent fatigue. In typical surveys, respondents
make choices from as little as eight to twelve choice sets and it has been documented that
increasing the number of choice sets can affect the accuracy in responses (Hauser and Rao,

2002).

While some methods aim to collect more data by making changes to the experimental de-
sign to derive individual-level estimates (Louviere et al., 2008; Lancsar and Louviere, 2008),
Bayesian methods can also be used to obtain individual-level estimates in the presence of
sparse data (Rossi and Allenby, 1993; Allenby, 1995, 1994; Allenby and Rossi, 1999). We
first discuss a classical method for estimating individual-level preferences before describ-
ing a Bayesian approach. We illustrate the methods using the MXL model to define the
choice probability, but we note that the methods are not specific to this model and can be

implemented using any of random effects models described in Chapter 4.

4.8.1 Approximate Likelihood Methods

One way to fit mixed logit models is by using maximum simulated likelihood. Maximum
simulated likelihood methods involve integration over the distribution of the individual-level
preference parameter. If the integral has no closed form solution, one can use simulation
and maximize a simulated likelihood. In this method, draws are made from the distribution
of the individual-level preference parameter. The likelihood is calculated for each draw and

averaged over all draws. This simulated likelihood is then maximized.

In the PROSPECT study, respondents were presented with 10 to 17 choice tasks. Let

yi = (J1,J2,J3,---, 1) represent the sequence of preferred choices made by the respondent
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over the course of the experiment, where T; is the total number of choice sets presented
to individual ¢. Conditional on @; and because the €;;’s are independent over time, the

conditional likelihood that respondent ¢ makes this sequence of choices is the product

14@wn:ﬂww»:fd2;fggﬁi”] (4.91)

where y; is the observed choices for respondent 7 in the course of the experiment and C} is the
tth choice set presented to individual i, t = 1,2,3,...,T;. A distribution for the coefficients,

f(B,]0), is then specified and the parameters, 6, of the coefficient distribution are estimated.

In many studies f(3,;]/0) has been specified to be normal or lognormal (Mehndiratta,
1996; Ben-Akiva and Bolduc, 1996; Revelt and Train, 1998; Johnson, 2000). Triangular and
uniform distributions have also been used (Revelt and Train., 2000; Hensher and Greene,
2003). In moving away from finding point estimates of a parameter vector to analyzing the
distribution of parameters, the problem of specifying the functional form for the distribution
arises. Recent studies have attempted to address this issue (Rigby and Burton, 2006). In
this dissertation, we will begin by specifying 8, to be normally distributed with parameters

6 = (B, Xg), which we denote by 3, ~ N(8,Xg).

The likelihood function for individual ¢ making their choices in the course of the exper-
iment is the unconditional probability of making that sequence of choices, the integral of

L;(B;|y;) over all values of 3,,

uwwzpm:wmz/uwmwwmwz (4.92)

where y; is the observed choices for respondent ¢ in the course of the experiment. Then the

log-likelihood function is

1(6y) = Z log(Li(6ly:)) (4.93)

where y is the observed choices across all choice sets and respondents. Although there is no
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closed form solution for the integral in (4.92), L;(0|y;) can be estimated through simulation.
A draw of 3, for all i is taken from the density f(3,|60) and L;(0]y;) is calculated. This is
repeated many times and the results are averaged to approximate the likelihood function for

individual %, using

R
SLOlys) = 35 > PUYi = wild") (4.99)

r=1

where R is the number of draws, BET) is the rth draw from f(3,|0) and SL;(8|y;) is the sim-
ulated likelihood function for individual ¢ given their sequence of choices, y;. The simulated
log-likelihood function is constructed by summing over the log of the simulated probabilities

over all individuals
N
SUOly:) = 3 log(SLi(Olys)). (4.95)
i=1

The maximum simulated likelihood estimator (MSLE) is the estimate of 8 that maximizes

SU(Bly:)
Ovisip = argrgle%(Sl(O\yi). (4.96)

So, for example, if we assumed that 3, ~ N(3,Xg), then the MSLEs are the values B and
3.5 that maximize SI(0|y;).

4.8.2 Hierarchical Bayes Approach

In using classic methods of estimation with sparse data, it is not uncommon to obtain
estimates of the coefficients in a direction inconsistent with the true values (Rao, 2008).

Hierarchical Bayes (HB) provides a method to overcome the problem of sparse information.

Bayesian ideas for MXL models with normally distributed coefficients were introduced
by Allenby and Lenk (1994) and Allenby (1994). Allenby and Rossi (1999) showed how

Bayesian procedures could be used to obtain estimates for individual parameters within a
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random coefficient model and Train (2001) extended the procedures for the MXL model
to allow for non-normal distributions (e.g., uniform and lognormal distributions) of the

coefficients. For convenience, we will assume that the coefficients are normally distributed.

Consider the utility, Uy, of alternative j for individual ¢ in choice task ¢
Uitj = 932;3,81 + €itj (497)

where x;;; is the attribute vector for alternative j presented to individual ¢ in choice set ¢,
€;t; is iid Gumbel and 3; is the coefficient vector of random attribute effects for respondent
i, and is normally distributed, 8, ~ N'(3,X3). Then the posterior distribution of B and X5

18

N

P(B,3a|Y) o [ P(Y: = iIB.Zp)p(B, Sp) (4.98)

i=1

where p(8,X3) is the prior distribution on 3 and Xg. If 3 and ¥g are independent, then
p(B,35) = p(B)p(Xg). Typically, p(8) is assumed to be multivariate normal, N (p, ), and
p(Xg) is assumed to be Inverse Wishart with prior degrees of freedom w and prior precision
W. The Inverse Wishart distribution is often used in Bayesian modeling because it is a
proper conjugate prior for an unknown covariance matrix in a multivariate normal model

(Gelman, 2006).

If X has an Inverse Wishart distribution with scale matrix W and degrees of freedom
parameter w (denote this by X ~ inverseWishart(w,W)), then the probability density

function is given by

| ’ w

Fx () = X |5 exp s OV (4.99)

29T, (%)

where X and W are p x p positive definite matrices, I', is the multivariate gamma function,

tr is the trace function, w is real-valued (w € R) and w > p 4+ 1. The mean of the Inverse
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Wishart distribution is
EX)=———. (4.100)

where w > p+1 and w € R.

The conditional posteriors can be shown to be

N
(8IS, B; for all i) o N(Zﬁi/]\/, Eg/N) (4.101)
i=1

and

wW+NG>

p(Xg|83, B, for all i) oc inverseWishart <w + N, TN

(4.102)

where N is the number of individuals and G = 2N (8, — 8)(8; — B)'/N (Train, 2001).

Using Gibbs sampling we can draw from p(3, ¥X3|Y) in three steps (Train, 2001):

1. Take a draw of 3 conditional on Xz and 3, for all 7.

2. Take a draw of X3 conditional on B and 3; for all 7.

3. Take a draw of 3, for all ¢ conditional on values of 3 and 3.

The posterior for each person’s coefficient vector, 3;, conditional on their choices and the

population mean, 3, and variance, ¥g, of 3;, is

p(B;|B, Xs, Y =j) o P(Y; = ilB:) f(B;10) (4.103)

where we have assumed that 8, is normally distributed with mean B and variance ¥5. The
three steps above are repeated for many iterations and the resulting values converge to
draws from the joint posterior of 3, ¥3 and B, for all ¢ individuals. The mean and standard
deviation of these draws can then be calculated to obtain estimates and standard errors of

the parameters.
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CHAPTER 5

Preliminary Analyses

This chapter presents the results of early analyses conducted using data from the first 44
patients while patient recruitment was ongoing. First, using only best choices, a multinomial
logit model using maximum likelihood and a mixed logit model using simulated maximum
likelihood were fit to the data and compared. Then two hierarchical Bayes models (one
using best choices only and another using best and worst choices) were fit to the data and
compared. Relative attribute importance was then calculated using Bayesian methods and
finally, principal components analysis was used to identify attribute groupings which may

inform us about possible underlying choice processes.

5.1 Best Choice: Fitting the Multinomial Logit and Mixed Logit
Models Using Maximum Likelihood and Simulated Maximum

Likelihood in R

We fit three models for best choice to the PROSPECT study data. For the analyses in this
section, we ignore the additional information gained by asking for the worst alternatives.
Attributes were included as dummy variables in the models. The models include the multi-
nomial logit (MNL) using maximum likelihood estimation and two mixed logit models based
on different specifications for the covariance matrix of the random coefficients using simu-
lated maximum likelihood (MXL1 and MXL2). In the MNL model, the attribute coefficients
are considered fixed for all patients. The coefficients for the mixed logit, on the other hand,
are considered to vary randomly in the population. In the first model MXL1, it is assumed

that each coefficient is independently distributed according to a normal distribution. In
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model MXL2, all coefficients are normally distributed and allowed to be correlated. Monte
Carlo simulation for the likelihood of the mixed logit models was performed using 500 draws

for each participant. Analysis was performed using the mlogit package in R.

Table 5.1 presents the estimated population parameters for the three models. For the
MNL model, all coefficients are significantly different from zero except for Tuking Action
(taking action immediately vs not jumping into a radical treatment). Similar results are
found for the two mixed logit models MXL1 and MXL2. Except for Taking Action, the signs

and significance of the coefficients are consistent with a priori expectations.

For MXL1, the estimated standard deviations of the random effects for all attributes,
except for active, decreased urinary function and decreased sexual function, are significant.
The estimated standard deviations vary in the population, which implies that there is consid-
erable heterogeneity in patients’ preference for a full lifespan, bowel issues, surgery, others’
support, same urinary functioning and same sexual functioning. By allowing the parameters
to vary, the log likelihood increases. From Table 5.3, the likelihood ratio test comparing the
MNL model to the MXL1 is significant, indicating that the mixed logit model provides a
better fit for the data.

The random coefficients are specified to be independently distributed in MXL1, but
it is possible that the coefficients are correlated. For example, patients concerned about
urinary functioning might also be concerned about sexual functioning. Thus, for MXL2, the
coefficients are specified to be normally distributed with a covariance matrix with possibly
non-zero off-diagonal entries. From Table 5.1, we see that the MXL2 yields similar estimates
compared to MXL1. However, from Table 5.3, we see that the likelihood ratio test comparing
the MXL1 to MXL2 is significant indicating that the mixed logit model where the coefficients
are allowed to be correlated provides a better fit. Table 5.2 presents the estimated covariance
matrix and estimates for the correlation matrix. Seventeen covariances were found to be

significantly different from zero.

The coefficient for full lifespan is negatively correlated with the coefficient of no bowel

problems and positively correlated with the coefficient of no cutting. This implies that pa-
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tients who value a full lifespan tend to value no cutting and tend not to value no bowel issues.
The coefficient of no cutting is negatively associated with the coefficients of active, others
support and sexual functioning. This implies that the patients who value no cutting also
tend to not value taking an active role in treatment, others support and sexual functioning.
The coefficient of others’ support is negatively associated with the coefficients for urinary
functioning and sexual functioning, and the coefficients for urinary functioning are positively

correlated with the coefficients for sexual functioning.

5.2 Best Choice and Best-Worst Choices: Fitting the Multinomial
Logit and the Rank Ordered Logit Model for Best and Worst

Choices Using Bayesian Methods

We fit a MNL model with random effects for best choice and a rank-ordered logit (ROL)
model with random effects for best-worst choices to the PROSPECT study data using
Bayesian methods. The models are defined in more detail in Section 6.3. The estimates
were obtained using Gibbs sampling using JAGS software. The JAGS model specifications

can be found in Appendices A.1 and A.2.

Table 5.4 presents the results for our best and best-worst models. For these patients,
the most valued attributes (and most variable) in both models were full lifespan, urinary
functioning and sexual functioning. For these analyses, we considered those coefficients with
high posterior probabilities of being non-zero to be those whose 95% posterior credible inter-
val did not contain zero. All estimated coefficients for the population means and standard
deviations are considered significantly different from zero under both models except for the
posterior mean estimates of taking action. In addition, because the 95% credible intervals
for these posterior mean estimates overlapped we find that there is no significant difference

between these mean estimates.

Compared to the MNL for best choice with random effects, the estimated coefficients

for the model incorporating worst choices are slightly higher across nearly all attributes.
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Table 5.3: Likelihood Ratio Tests

Model df LogLik Chisq Chisq df P-value
Multinomial Logit 9 -616.69
Mixed Logit with independent coefficients 18 -558.95 115.49 9 <0.0001

Mixed Logit with independent coefficients 18 -558.95
Mixed Logit with correlated coefficients 54 -528.79  60.31 36 0.01

In addition, by incorporating worst-choices, the standard deviations of the mean estimates

decrease. We see a similar results for the estimated standard deviations of the random effects.

Table 5.5 presents the correlation matrix for the random effects. Under the MNL model
for best choice, the estimated mean correlation between short term urinary issues and full
lifespan is positive and the 95% credible interval does not contain zero (highlighted), which
implies that an average patient who values full lifespan may be willing endure short term
urinary issues. Under the ROL model for best and worst choices, patients who tend to value
urinary functioning also tend to value sexual functioning. The negative correlations in the
table describe the trade-offs in attribute preferences. For example, patients who tend to

value full lifespan may be willing to undergo surgery.

5.3 Classification of Health State Attributes Using Principal Com-

ponents Analysis

The principal aim of this analysis was to ascertain if an underlying structure could be identi-
fied to assist with classification of the health state attributes in the population. Classification
of the health state attributes may assist the clinician and the patient in an initial discussion
regarding treatment, which may prompt the patient to begin exploring their own personal

preferences.

Correlations among the nine attributes were examined using principal components anal-
ysis (PCA). PCA examines the correlations among measured variables to determine if there
are groups of variables that are correlated. It is a tool used to extract components that

simplify the data, while retaining as much information as possible. PCA initially generates
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the same number of components as the number of variables, but most of the components
will explain very little variance. Components that explain much of the variance in the data
are identified on a scree plot as those above the elbow and/or those with eigenvalues greater
than one. The eigenvalues measure the amount of variance accounted for by each principal
component. The sum of the eigenvalues equals the total number of principal components
and the proportion of variance accounted for by each principal component is calculated by
dividing the eigenvalue corresponding to the principal component by the total number of

principal components.

Interpretation of the principal components relies on the factor loadings, which are the
correlations between the original variable values and the extracted components. Components
are considered to represent those variables with which they have moderate to high correla-
tions. For this analysis, the variables were the estimate individual-level random effects. A
cutoff of 0.4 was used and attributes with factor loadings of 0.4 or greater were considered
to load highly on the component. The value of using PCA lies in the fact that attribute
groupings may inform us about possible underlying choice processes. For example, if lifes-
pan, bowel issues, cutting, sexual and urinary functioning were grouped together (loaded
highly on the same component), then these might be interpreted as issues that patients tend

to be considered together.

The estimated individual-level random effects from the Best-Worst model, which has
results in Table 5.4, are presented in Table 5.6 and a scatterplot matrix of the estimated
random effects is depicted in Figure 5.1. From Figure 5.1, we observe that nearly all pairs

of attributes appear to have some degree of correlation.

Principal components analysis was conducted using the posterior mean estimates for each
of the components of the correlation matrix presented in Table 5.5. The PCA results are
presented in Table 5.7. The eigenvector with the highest eigenvalue is the first principal
component of the data. In Table 5.7, the highest eigenvalue is 3.78. If the data are projected
onto the line defined by the eigenvector, this line describes the direction where the variability
is maximized. Comp.l accounts for 42% (3.78/9) of the total variation in the data and

Comp.2 accounts for 20%.
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To reduce dimensionality in the data, we could use the scree plot in Figure 5.2 to identify
components with variances above the elbow. Following this rule of thumb, we may decide to
keep the first four components. Another rule of thumb recommends that we keep components
whose eigenvalues are > 1 (Afifi et al., 2003). Since the eigenvalue corresponding to the
fourth component is approximately equal to one, using this rule we would keep the first four
components. Together, these first four components explain 88% of the total variance of the

data.

To interpret the components we look at the attributes corresponding to the highest vector
components (loadings) in absolute value. Factor loadings with absolute value greater than
or equal to 0.4 are highlighted in red. We could characterize the first principal component
as a vector describing urinary and sexual functioning. The second principal component
focuses on treatment issues: surgery, support & action, while the third principal component
reflects bowel functioning. The fourth component reflects expected lifespan. PCA clarified
choice processes in the population by identifying meaningful groups of health state attributes.
The results suggest that health state attributes related to prostate cancer treatment can be
summarized by four components related to urinary and sexual functioning, treatment issues,
bowel functioning, and expected lifespan. These components are useful for future research

and my have implications for treating patients.

5.4 Remarks

These early analyses helped with the iterative process of model development. We moved
forward with the mixed logit where all coefficients are assumed to be normally distributed
and allowed to be correlated. We did not directly use the PCA approach in subsequent

analyses; this could be an area for future research.
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Table 5.6: Individual-Level Random Effects

Full No Bowel  Short Term  Full Urinary  Short Term  Full Sexual No Taking Others’
Patient ID Lifespan Issues Urinary Issues Functioning Sexual Issues Functioning Cutting Action Support

1 1.35 1.49 1.16 1.73 2.31 3.69 0.38 0.34 0.35
2 0.79 0.61 0.61 0.99 0.72 1.24 247 -0.11 0.67
3 0.67 0.88 1.08 1.64 1.30 1.89 1.11 0.17 1.07
4 0.93 1.89 0.15 0.30 -0.04 -0.09 2.01 -0.07 0.73
5 2.50 0.77 0.78 1.00 1.41 2.31 1.53 -0.11 0.29
6 0.86 1.14 0.87 1.25 1.09 1.71 1.05 0.28 1.29
7 1.15 0.39 0.91 1.25 1.20 2.00 1.12 -0.05 1.20
8 1.91 1.90 0.36 0.45 0.61 1.17 1.78 0.03 0.15
9 1.40 1.21 0.73 0.96 0.66 0.93 0.80 0.05 1.38
10 2.69 0.08 1.25 1.78 2.58 4.25 0.58 0.05 0.66
11 2.36 0.02 0.74 1.15 1.19 1.82 1.68 -0.20 0.84
12 -0.40 1.76 0.51 0.87 0.45 0.95 2.62 -0.07 0.29
13 0.86 0.93 1.16 1.75 1.95 2.96 0.97 0.22 0.59
14 3.21 0.90 0.77 0.85 1.09 1.39 0.64 0.10 0.93
15 0.09 0.78 0.92 1.53 0.38 0.30 0.60 0.27 2.45
16 0.74 0.98 0.78 1.16 0.34 0.18 0.56 0.35 2.26
17 1.09 0.97 0.46 0.82 0.67 1.11 2.66 -0.14 0.19
18 3.22 0.57 0.93 1.10 1.51 2.14 0.47 0.07 1.03
19 1.86 0.36 1.33 2.17 3.45 5.99 0.91 0.06 -0.21
20 2.06 1.27 1.07 1.41 2.31 3.71 0.53 0.15 0.12
21 1.63 0.86 1.15 1.64 1.93 3.04 0.53 0.25 0.85
22 0.08 1.21 0.33 0.71 0.15 0.28 2.55 -0.12 0.91
23 1.59 0.45 0.83 1.19 1.28 2.13 1.61 -0.12 0.75
24 4.76 0.32 1.06 1.34 247 3.90 0.14 0.11 0.45
25 4.20 0.70 0.98 1.16 1.91 2.92 0.01 0.15 0.78
26 2.06 0.92 0.98 1.64 2.44 3.97 0.53 0.16 0.41
27 3.21 0.39 0.75 0.99 0.74 0.76 0.45 0.09 1.78
28 1.39 1.27 0.47 0.74 0.86 1.48 2.26 -0.02 0.16
29 0.54 1.42 0.53 0.89 0.15 0.02 1.65 0.16 1.35
30 0.77 2.07 0.56 0.87 0.77 1.22 1.18 0.20 0.77
31 0.34 0.50 0.94 1.60 0.98 1.44 1.04 0.17 1.85
32 2.44 0.16 0.84 1.30 1.92 3.24 1.49 -0.08 0.44
33 1.49 2.88 0.50 0.61 0.72 1.01 0.72 0.36 0.37
34 2.00 1.39 0.66 0.80 0.44 0.43 0.69 0.25 1.31
35 3.05 0.52 0.64 0.94 1.67 2.75 1.50 -0.06 0.29
36 3.27 0.95 0.62 0.86 1.15 1.52 0.62 0.10 0.99
37 0.34 1.25 0.76 1.27 2.00 3.58 2.12 -0.07 -0.20
38 2.48 0.82 1.14 1.59 2.38 3.62 0.44 0.21 0.54
39 3.66 1.61 0.69 0.62 1.03 1.47 0.47 0.19 0.50
40 2.05 1.45 0.86 1.12 1.39 1.97 0.51 0.26 0.87
41 1.71 0.91 1.22 1.77 2.53 4.25 0.65 0.15 0.23
42 1.82 1.96 0.81 1.10 1.69 2.58 0.64 0.28 0.28
43 2.70 0.99 1.10 1.38 1.60 2.29 0.21 0.19 1.00
44 1.14 0.55 0.88 1.42 1.46 2.05 1.03 -0.03 1.09
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Figure 5.1: Scatterplot of Random Effects
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Table 5.7: Results of the principal components analysis using Bayesian estimates for corre-
lation matrix

Eigenvalues 3.71 1.72 1.31 1.16 0.47 0.30 0.17 0.12 0.03
Eigenvectors Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
FullLife 0.227  -0.022  -0.387 0.687  -0.075  -0.296  -0.408 0.256  -0.018
Bowel1l00  -0.238 0.043  -0.569  -0.440 0.493 0.013  -0.201 0.375 0.008
Urinary50 0.418 0.168 0.186  -0.151 0.358  -0.723 0.291 0.063  -0.020
Urinary100 0.404 0.139 0.327  -0.309 0.041 0.119  -0.768  -0.094  -0.002
Sex50 0482  -0.185 -0.104  -0.067  -0.065 0.277 0.208 0.263 0.724
Sex100 0.464 -0.254 -0.092 -0.111  -0.104 0.286 0.206 0.306  -0.686
NoCutting  -0.288  -0.463 0.306  -0.223  -0.384  -0.359  -0.154 0.506 0.060
Active 0.081 0.510 -0.369  -0.327  -0.674  -0.178 0.050  -0.031  -0.002
Support  -0.129 0.614 0.368 0.205 0.064 0.239 0.084 0.601  -0.013
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CHAPTER 6

A Hierarchical Bayes Model for Discrete Choice Data

in Health Care

This chapter presents the Bayesian hierarchical model for best-worst choice data with random
effects and patient covariates, defines measures of relative importance, presents CPO-based
measures for outlier detection, and demonstrates application of our methods to data from

the PROSPECT study.

6.1 Introduction

Discrete choice experiments (DCEs) have been increasingly used in health applications to
characterize the preferences of individual patients for various health care interventions and
services (Lancsar et al., 2013; DeBekker-Grob et al., 2012). In a typical health care DCE,
patients are presented with sets of health states described by various attributes and asked to
make choices from among them (Ryan et al., 2008). For example, a patient might be asked to
choose between a health state with long life expectancy and poor quality of life and a health
state with shorter life expectancy and high quality of life. By asking individuals to make
choices between health states, they are forced to make trade-offs that reveal information

about their preferences for different aspects of health-related quality of life.

Historically, in a DCE, patients provided their most preferred health state or a full
ranking of a set of possible health states. However, continued research in discrete choice
experiments has led to the development of best-worst designs in which patients provide only
their most preferred and least preferred choices (Lancsar and Louviere, 2008; Louviere et al.,

2008). While reducing patient burden compared to full rankings, best-worst discrete choice
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experiments pose new statistical challenges. In such data, incomplete ranking information
occurs when choosing best and worst from among four or more health states, and patient-level
data are often insufficient to estimate individual-level preferences using maximum likelihood
methods as it is not uncommon to obtain estimates of the coefficients in the wrong direction

with sparse data (Allenby et al., 2005; Rao, 2008).

A number of models have been developed for discrete choice data. The multinomial logit
models the probability of observing best choices (McFadden, 1974), while the rank-ordered
logit models the probability of full rankings (Allison and Christakis, 1994). Mixed logit
models include random effects that vary across individuals to account for heterogeneity in
preferences (Revelt and Train, 1998; McFadden and Train, 2000). More recently, Allenby
et al. (2005) developed a Bayesian hierarchical model for best choices with random effects
and individual-level covariates and Hernandez-Alava et al. (2013) introduced a model for
ranked and partially ranked data that includes random effects, and estimated the random
effects using Monte Carlo maximum likelihood methods. Although the model introduced by
Hernandez-Alava et al. accommodates partially ranked data, it is not uncommon to obtain
coefficient estimates in the wrong direction when using maximum likelihood estimation with
sparse data (Rao, 2008). Moreover, their model does not include individual-specific covariates
although inference on covariate effects is often of interest and it has been shown that including
covariates can improve preference estimates for the mixed logit (Crabbe and Vandebroek,

2011; Orme and Howell, 2009; Greene et al., 2006; Allenby et al., 2005).

In many studies a key purpose of the DCE is to obtain an individual’s ranking of various
attributes relative to each other. The concept of relative attribute importance is widely used
in the marketing research literature to provide rankings of features of consumer products
(Paul E. Green, 1978; Halbrendt et al., 1995; Orme, 2010). Recently, this concept has been
extended into the health care domain (Dowsey et al., 2016; Kruk et al., 2016; van Dijk et al.,
2016). In this context, the purpose of the DCE is to obtain an individual’s ranking of various
attributes of health care or health-related quality of life, so that this information can be
used as part of the health care decision-making process. For example, how a prostate cancer

patient values full sexual functioning, long lifespan and no urinary incontinence relative to
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each other may inform which treatment options are a better match for the patient. While
discrete choice data are now routinely analyzed using Bayesian hierarchical models with
random effects to accommodate preference heterogeneity (McFadden and Train, 2000; Train,
2001; Allenby et al., 2005; Train, 2009), methods to compute relative attribute importance

for such models are not fully developed.

Methods to identify outliers for such models are also lacking. Using the means of the
individual-specific parameter distributions, Campbell and Hess (2010) classified individuals
in the upper and lower percentiles as outliers. Farrel et al. (2012) proposed a graphical
method to identify outliers by plotting standardized random effects against their expected
values for a Bayesian hierarchical logistic regression model. Several approaches for outlier
detection in Bayesian models have been explored. For example, using the posterior distribu-
tion of the residuals of a regression model, Chaloner and Brant (1988) and Chaloner (1991,
1994) define an outlier as an observation with a large random error and calculate the pos-
terior probabilities that observations are outlying. Other approaches for outlier detection
are based on the predictive distribution. The conditional predictive ordinate (CPO), first
suggested by Geisser (1980), is a diagnostic measure used to detect observations discrepant
with the proposed model (Geisser, 1980, 1987, 1989, 1993; Dey et al., 1997; Pettit, 1990).

To our knowledge, CPO has not been used to identify outlying random effects.

In this paper, we develop a Bayesian hierarchical model for best-worst discrete choice
data. Our model extends previous approaches. Incomplete rankings are handled by marginal-
izing over all possible permutations of unranked health states in a model that includes ran-
dom effects to model individual-specific preferences. Bayesian methods are used to overcome
the problem of sparse data to obtain estimates of individual preferences. To enable anal-
ysis of how patient characteristics are related to preferences, we model individual-specific
preferences as a function of individual-specific covariates. We also define Bayesian versions
of relative attribute importance for individuals and for the population that handle random
effects and covariates. To identify outliers in DCEs, we adapt the CPO in two ways: we
adapt it to include random effects to identify patients who are unusual in their preferences for
specific attributes or combinations of attributes, and we adapt it to handle vector outcomes
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to identify choice sets that are outlying with respect to individual preferences.

The paper is organized as follows. Section 6.2 describes the motivating dataset and
defines terms used throughout the remainder of the paper. Section 6.3 presents the Bayesian
hierarchical model for best-worst choice data with random effects and patient covariates.
Section 6.4 defines measures of relative importance, while Section 6.5 presents CPO-based
measures for outlier detection. Section 6.6 demonstrates application of our methods to data

from the PROSPECT study. This is followed by a discussion in Section 6.7.

6.2 Motivating Example: The PROSPECT Study

The methods are motivated by the PROSPECT (PROState cancer PrEferenCes for Treat-
ment) study, which used a DCE to understand patient preferences for aspects of health-
related quality of life associated with prostate cancer treatment outcomes (Saigal and Dahan,

2012). The 121 patients were men with negative prostate biopsies.

We make the following definitions. An attribute is a characteristic of a treatment or a
health state resulting from a treatment. For simplicity of discussion, we define an attribute
as a characteristic of a health state. Attributes are defined by at least two attribute levels.
For example, sexual functioning is an attribute with three attribute levels, no sexual func-
tioning, decreased sexual functioning and full sexual functioning. Investigators identified
seven attributes important for prostate cancer treatment decision making using a Voice of
the Patient process (Saigal and Dahan, 2012). In addition to sexual functioning, these were
urinary incontinence, bowel issues, expected lifespan, others’ support for the proposed treat-
ment, cutting and taking immediate action towards treatment. Table 3.2 presents the seven
attributes with their attribute levels. Health state attribute variables are dummy variables
for health state attributes with the lowest attribute level as the reference group. A health
state is defined by specifying attribute levels for each of the seven attributes. Sets of health
states from which patients make choices are called choice sets and a health state contained

in a choice set is called an alternative. An example of a choice set is shown in Figure 3.1.

In the PROSPECT study, Patients were presented with choice sets comprised of four
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hypothetical health states that could result from various cancer treatments, and asked to
choose their most and least preferred health state from each set, leaving two health states
unranked. Sixteen health states were selected by investigators for creation of choice sets.
These sixteen health states described by their attribute levels are presented in Table 3.3. The
first four choice sets were the same for all patients and consisted of health states {1,3,9,15},
{2,4,10,14}, {5,6,11,12} and {7,8,13,16}. An algorithm was used to create the remaining
choice sets for each patient. The algorithm composed subsequent choice sets in a manner
that achieved an implicit ranking of the sixteen states using the minimum of choice sets.
As a result, the number of choice sets as well as the choice sets presented to each patient

differed. The number of choice sets per patient ranged from 10 to 17.

6.3 Bayesian Hierarchical model for Best-Worst Choice Data

Our model includes a probability model for best-worst choice data with incomplete rankings,
a hierarchical prior distribution, and individual-specific covariates predicting an individual’s

preference scores for attributes.

6.3.1 Probability Model

Let ¢ = 1,..., N index patients, t = 1, ..., T; index choice sets within patient ¢, and 7 =1, ..., J;;
index the health states within choice set ¢ presented to patient ¢, where N is the total number
of patients, T; is the total number of choice sets presented to patient ¢, and J;; is the total

number of health states in choice set ¢ presented to patient 7.

Let Y;; be a J; x 1 vector describing an observed full ranking of a choice set, where
element y;;; of Y, is the observed jth ranked health state in choice set ¢ presented to
individual 7. For example, suppose patient i gives a full ranking D > A > C' > B of
choice set t = {A, B,C, D} where D is most preferred and B is least preferred. Then
Yir = (Yirr, Yira, Yiss, Yira)' = (D, A,C, B)T.

We use a linear predictor to relate choices to the attribute levels of health states (Hauber
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et al., 2016). Let x;;; be an H x 1 vector encoding the attribute levels of the jth ranked health
state in choice set t presented to individual i, where H is the total number of health state

attribute variables. Let B, be an H x 1 unknown vector of preference scores for individual <.

Suppose that individual ¢ provides only a most preferred health state for choice set t.
Then the probability that individual z chooses the jth health state as the best state in choice

set t 1s

exp( zt]/B )

: (6.1)
Zkltl exp(zf,0;)

(yztj |/3 )

where the summation is over the health states in the choice set (McFadden, 1974).

Patient 7 is presented with T; choice sets, each of size J; = 4. Eliciting best and worst
choices from a choice set of size four yields a partial ranking of the choice set. Two possible
full rankings are consistent with each partial ranking. For example, the full rankings A >
B>C>Dand A > C > B> D are consistent with the partial ranking A > {B,C} > D,
where A is most preferred and D is least preferred. We can model the probability of observing
a full ranking of health states as a product of probabilities, where each factor in the product
is the probability of observing a best choice from a subsequently smaller choice set. For
example, the probability of observing the full ranking A > B > C' > D is the product of
the probability of choosing A as best from the choice set {A, B, C, D} times the probability
of choosing B as best from the choice set {B,C, D} times the probability of choosing C' as
best from the choice set {C, D}. The probability of choosing D from {D} is one.

Let r = 1,..., R;; index the full rankings consistent with an elicited partial ranking of
choice set t for patient ¢, where R;; is the total number of possible full rankings consistent
with the partial ranking. Then the probability of observing Y ,;;, a full ranking consistent
with the partial ranking Y, is written as the probability of a sequence of choices (Louviere

et al., 2008; Bergland, 1994; Chapman and Staelin, 1982),

Jir—1

rzt‘/B H ZJ

7

eXp mt]/6 )
>k>j eXp( T"Ltk/ﬁ)

(6.2)
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Because the set of R;; full rankings consistent with Y is a set of mutually exclusive
events, marginalizing over all possible permutations of unranked health states amounts to
summing over all possible full rankings, and the probability of observing a partial ranking

Yit is

r=1 it>k>j exp( mtle)

7

. _Zn ( H - exp(a],8) ) 63)

If a patient is asked to provide their most preferred and least preferred health states from
a choice set t containing fewer than four alternatives or if choice set t is fully ranked, then
Equation (6.3) simplifies to Equation (6.2). Moreover, if we observe only best choices, then
Equation (6.3) simplifies to Equation (6.1).

Let Y; = {Y1,..., Y1} represent the set of partial rankings made by patient i over
the course of the experiment. Then assuming that each set of rankings Y ;; is conditionally

independent given (3,, the likelihood contribution for individual ¢ is given by
T;
p(Yi18,) = [[ (Y ulBs). (6.4)
t=1

6.3.2 Hierarchical Prior Distributions

Let z; be a @) x 1 vector of patient covariates for individual 7 including an intercept. For
example, suppose we want to include an indicator for patient age greater than 65 years in
the model. Then we could let z; = (1, z;1)T where z;; = 1 when patient age is greater than
65 and z;; = 0 otherwise. To model patient preferences as a function of patient covariates,

we model random effect 3, as a linear function of z; plus error as
B; =Tz + €, (6.5)

where I is an unknown H x () matrix of fixed regression coefficients and €; is an H x 1 mean

zero random effect vector that allows patients with the same covariates to have different
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values for 3,. We model ¢; as

€;|% ~ Normaly(0,X), (6.6)

a multivariate normal distribution with mean vector 0 and H X H covariance matrix 3. Let
h =1, ..., H index health state attribute variables, and ¢ = 1, ..., () index patient covariates.
Then each element 7, of I' describes the effect of covariate ¢ on patient preference for

attribute variable h. We set the prior for the 7,4 as

Yhq ~ Normal(0, 1), (6.7)

and the prior for X as

3 ~ inverseWishart(w, W), (6.8)

an inverse Wishart distribution with w degrees of freedom and scale matrix W. We set the
prior mean of the inverse Wishart distribution equal to the identity matrix. If no covariates
are included, then Equation (6.5) reduces to 8; = p + €;, where pp = (u) is the H x 1
unknown population mean vector of the distribution of 3,. In this case, we set a prior for
p as p ~ Normaly(0,15), where 0 is the H x 1 zero vector and Iy is the H x H identity

matrix.

6.4 Relative Attribute Importance

An attribute may be represented using two, three or more levels. When using dummy variable
coding, this yields one, two or more coefficients where the coefficient for the reference level
is defined to be zero. In market research, the difference between the estimated maximum
and minimum attribute-level coefficients has been used as a measure of attribute importance
(Paul E. Green, 1978; Halbrendt et al., 1995; Orme, 2010). Relative attribute importance is

calculated by normalizing attribute importance measures to sum to one, so that the relative
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importance of an attribute is a proportional contribution to the importance of all attributes
jointly (Soofi et al., 2000). Although model coefficients can be estimated using maximum
likelihood or Bayesian methods (Orme, 2010), current methods only provide point estimates
of relative importance. We extend current measures by defining relative attribute importance
as a function of the random-effects 3,, and describe Bayesian versions of relative atribute

importance.

Let a = 1, ..., A index health state attributes, where A is total number of health state
attributes and let £k = 1, ..., K, index the attribute levels of attribute a, where K, is the
total number of attribute levels for attribute a. In the PROSPECT study, we consider
seven health state attributes. Urinary functioning and sexual functioning each have three
attribute levels, while the other attributes have two levels. The importance of attribute a

for individual 7 is defined as

m]?JX ﬁiak - mkin ﬁiaka

where B;q, is an unknown preference score for the k' attribute level within attribute a for
patient i. Using Equation (6.5), we define the relative importance (RI) of attribute variable
a for individual ¢ as the proportional contribution of attribute variable A to the sum of all

attributes’ importance,

RIL, — maxy (Y] 2; + €iar) — ming (Y] 2i + €iax) (6.9)

Sopy max(yF 2 + i) — ming (Y2 + i)

where «/, is the row of T' corresponding to attribute level k within attribute a, and €;.x
is the random effect for the k' attribute level within attribute a for individual 7. If no
patient covariates are included in the model, then 4T z; reduces to gk, the k'™ attribute

level population preference score within attribute a for attribute a.

We can define the average relative importance (ARI) of attribute a for the population as

the arithmetic average of Equation (6.9) over all patients,

N
1
ARIL, = — La. 1
RI, N;Rw (6.10)
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For a specific set of patient covariates z, we define the relative importance of attribute a for

the population as

R — () = ming(72)

S — - ok (6.11)
Zf:l maxk('ysz) - mmk(')’sz)

where the summation is over all attributes. This formulation can be used to, for example,
compute marginal predictions at specific patient covariate values. If no patient covariates are
included in the model, then ~/, z reduces to . and we get estimates of relative importance

at the population level.

Equation (6.11) differs from Equation (6.10) in that relative importance is calculated

from population parameters, rather than as an average of the individual preference scores.

The posterior means and standard deviations of Equations (6.9), (6.10), and (6.11) are
estimated as the means and standard deviations of the MCMC samples of relative importance
scores, calculated using randomly sampled draws from the posterior distributions of the

relevant parameters.

6.5 Outlier Statistics for Choice Sets and Preferences

We use the conditional predictive ordinate (CPO) (Geisser, 1980, 1987, 1989, 1993; Dey
et al., 1997; Pettit, 1990) to identify outliers in discrete choice data. In general, suppose we
have a set of observations Y = (Y3,...,Ys) which we model using parameters 8. Let Y
be the vector Y after omitting Y;. The CPO for observation Y; is the predictive density of

Y, conditional upon the model and all other observations Y (5, (Geisser, 1980)

CPO, = p(Y,|Y (s) (6.12)

_ / (Y30, Y ()p(8]Y (,))d6. (6.13)

where p(Y;]0,Y () is the distribution of Y, given @ and Y (,). Small values of CPO indicate

that observation Y; is a poor fit to a given model.
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We can use CPO to identify outlying choice sets as follows. If welet Y = (Y,..., Y )T
be the vector of S = Zf\il T; observed choice set rankings across all IV patients and let Y ()
be the vector after omitting choice set s, we can use Equation (6.13) to calculate CPO for
the observed ranking of choice set s, Y . To find outlying choice sets inconsistent with a

patient’s preferences, we can calculate and compare the CPOs for each of their choice sets,

CPO-SET}1, ..., CPO-SET1,.

Gelfand et al. (1992), Dey et al. (1997), Gelfand (1996), Pettit (1990), and Weiss (1994,
1996) observed that

CPO, = {Egy [m] }1, (6.14)

and showed that Monte Carlo integration can be used to estimate CPO (Gelfand et al., 1992;
Gelfand, 1996) using a posterior sample from p(@|Y"). Drawing an MCMC sample 6*, ..., 6
of size G, where g = 1, ..., G indexes iterations of the Gibbs sampler, from the full posterior
density after the burn-in period allows us to obtain a Monte Carlo approximation of CPO

for choice set s as

G
1 1 =
CPO-SET, ~ {E ;21: AT (S))} . (6.15)

We also use CPO to identify patients with outlying preferences with respect to the pop-
ulation. To do so, we define several varieties of the conditional predictive ordinate for
preferences. Suppose we want to identify patients with outlying preferences on a single at-
tribute variable h. Let L, = (0,...,0,1,0,...,0)T be an H x 1 indicator vector for attribute
variable h, where the single 1 in L}TL corresponds to the A*™™ component of LZ and all other
components are zero. Then L} 3; = B, where i, the unknown preference score for individ-
ual 7 and attribute variable h. Let 6;,) be the vector of model parameters 6 after omitting
L;B;. Then the CPO for individual i and attribute variable h, which we denote CPO-UVP

(univariate preference), is defined as the inverse of the posterior mean of the inverse prior
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density of L} 3, from equation (6.6),

CPO-UVP} = p(L; B;|0¢n)) (6.16)
1 -1
- oY )deo 6.17
{/p(Lz/Biw(ih),Y)p( ) } (6.17)
1 -1
B {EG‘Y [P(LZBZ"G(M), Y)}} ’ (6.18)

where p(Lj, 3|60 ), Y) is the distribution of L} B; given 0y, and Y.

More generally, suppose we want to identify patients with outlying preferences on a
combination of attribute variables. For example, in our application, urinary functioning and
sexual functioning are represented by two attribute variables and thus two component 3.
To do so, we can define an appropriate H x M indicator matrix L. in which each row selects
one of the desired attribute variables. For example, to select the 8% and 9*" elements of the
attribute vector corresponding to short term sexual issues and full sexual functioning, we

can use
0000O0OO0OO0OT1@O0

000O0O0OO0O0OGO0T1

LT =

Then the CPO for individual 7 and combination of attribute preferences ¢, which we could

here denote as CPO-BVP (bivariate preference), is defined using Equation (6.18)

1 -1

CPO-BVP¢ = {Egy[ ” , (6.19)
| p(LI/Bi|0(ic)> Y)

where 0 ;) is the vector of model parameters @ minus L!B,. CPO-BVP can also be computed

for other combinations of attributes, for example, full lifespan and others’ support. Drawing

an MCMC sample of size G, 0',...,0%, from the full posterior density after the burn-

in period allows us to obtain the following Monte Carlo approximations of CPO-BVP for

individual 7 and list of attributes ¢

e 1 -1
CPO-BVP? ~ {5ZP(LI@|9“”’ Y)} . (6.20)

g=1 (ic)’
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We can also compute a more global outlier statistic for preferences. Identifying patients
with outlying preferences on all attributes is a special case in which L. is the identity matrix

of size H. We call this statistic CPO-MVP;.

6.6 Results

We fit the Bayesian hierarchical model of Section 6.3 to data from the 121 patients in the
PROSPECT study. Dummy variables for three patient covariates were included in the model.
These were: age (> 65 years vs. age < 65 years), race (black vs. white, other race vs. white),
and partnered (vs. unpartnered). We chose a proper prior distribution (Gelman, 2006) for
>~ as Wishart(9, %Hg), where Iy is the 9 x 9 identity matrix, and we used Gibbs sampling
implemented in JAGS (Plummer, 2003) to obtain posterior samples. Three Markov chains
were run, each with a burn-in of 20,000 iterations, followed by 100,000 iterations keeping
every 10" draw of the chain. The final posterior sample consisted of 30,000 iterations (3

chains x 10,000 iterations).

The last two columns of Table 6.1 present the posterior means and standard deviations
of the population mean preferences p for the model without patient covariates. Attribute
variables were considered significant if the posterior probability that the parameter is greater
than zero was at least 95% or at most 5%. Preferences for all attributes were nonzero except
for taking action. Sexual functioning appeared to be the most important attribute affecting
health state preference followed by full lifespan, urinary functioning, no bowel issues, no
cutting, and others’s support. For comparison, we also fit the model for best choices to our
data (first and second columns of results in Table 6.1). The comparison shows that, by using
all available information (best and worst choices), we gain precision in our estimates (smaller
posterior standard deviations). From Table 6.1, we see that our model for best-worst choices
consistently provides more precise estimates than does the model for best choices, while
providing similar results. Table 6.1 also presents the standard deviations of the attribute-
specific random effects, which describe the between-subject variation. For both models, we

can see a relatively high standard deviation of the random effect for full life, indicating
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substantial heterogeneity in preference between patients. Full sexual functioning also had
high variance. In contrast, the random effects for taking action and others’ support have

relatively low standard deviations indicating less heterogeneity.

Table 6.2 presents the correlation matrix of the random effects. The correlation between
short term urinary functioning and full urinary functioning is 0.84, as might be expected,
since they measure the same attribute. We find the same relationship between short term
sexual functioning and full sexual functioning. No cutting is negatively correlated with each
of the other attributes implying that patients who prefer no cutting place less value on all

of the other attributes.

Table 6.3 presents the posterior means and standard deviations of the regression coeffi-
cients I" for the model including patient covariates and thus shows how preferences vary with
age, race, and partnership status. The column labeled Intercept contains the posterior means
and standard deviations corresponding to younger (<65 years old), white, and unpartnered
patients. For this particular group, preferences for all attributes except taking action were
nonzero. Older men (>= 65 years old) appeared to favor full lifespan and urinary function-
ing more than younger men. For older men, each of these attributes were associated with
approximately a 0.7 and 0.6 (respectively) higher estimated patient preference score than
younger men. Differences in preferences were also found by partnership status. Partnered

men favored full lifespan more than unpartnered men by 0.98 points.

Figure 6.1 presents the posterior mean average relative importance scores for each health
state attribute for the population and the posterior mean relative importance scores for
fourteen sample patients. To select the fourteen patients in Figure 6.1, patients were sorted
by decreasing relative importance score on full lifespan and every 10*" ranked patient was
selected. This figure shows the heterogeneity of preferences for health state attributes in
the sample. Greater heterogeneity in preference for full lifespan and lower heterogeneity in

preference for taking action were apparent.

Table 6.4 presents the posterior mean relative importance scores for each health state

attribute for the population and for three sample patients. In general, the standard devia-
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Figure 6.1: Posterior mean relative attribute importance scores for each health state attribute
for fourteen men and for the population.

Posterior Mean Relative Importance (%)
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Table 6.4: Posterior mean (standard deviation) of relative attribute importance scores for
three men and for the population.

Attribute Patient 115 Patient 13 Patient 108  Population
Full Life 0.41 (0.05) 0.07 (0.04) 0.22 (0.05) 0.201 (0.005)
No Bowel Issues 0.22 (0.03) 0.09 (0.04) 0.11 (0.05) 0.143 (0.004)
No Cutting 0.07 (0.03) 0.07 (0.04) 0.07 (0.04) 0.094 (0.004)
Taking Action 0.02 (0.02) 0.07 (0.03) 0.04 (0.03) 0.044 (0.004)
Others Support 0.07 (0.03) 0.04 (0.03) 0.07 (0.05) 0.082 (0.004)
Urinary Functioning 0.10 (0.04) 0.31 (0.05) 0.16 (0.06) 0.189 (0.006)
Sexual Functioning  0.12 (0.04) 0.35 (0.06) 0.34 (0.07) 0.245 (0.006)
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tions of the relative importance scores are small relative to the posterior means, suggesting
that the posterior means provide a reliable ranking of attributes by relative importance.
At a population level, sexual functioning, urinary functioning and full lifespan appear to
be the three most important attribute variables, whereas taking action appears to be the
least important. Patient 115 clearly placed highest importance on full lifespan, moderate
importance on bowel issues, and low importance on all other attributes. Patient 13 placed
highest importance on urinary functioning and sexual functioning. Patient 108 has posterior

mean estimates similar to those of the population.

All Attributes Full Lifespan
178315 57 24 54
| f————®e¢0 . . . . .
12.5 15.0 17.5 20.0 225 0 50 100 150 200
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Figure 6.2: Plot of the -log(CPO-MVP)s on all health state attributes, the -log(CPO-UVP)s
for specific attributes, and the -log(CPO-BVP)s for the bivariate combinations of attributes
for urinary and sexual functioning for 121 patients. Patients with values of the outlier
statistic in the upper 2.5"" percentile are labeled with ID numbers.

Figure 6.2 presents boxplots of CPO-MVP values for the set of all attributes, CPO-
UVP values for specific attributes, and CPO-BVP values for the two bivariate combina-
tions of attributes for urinary and sexual functioning for the 121 patients. A negative log-

transformation was applied to the CPOs to better visualize small values. High values of
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negative log-transformed CPOs indicate possible outliers (low CPO). Patients 15, 83, and
17 are multivariate outliers on the set of all attribute variables by CPO-MVP. Patient 83
is also outlying on the bivariate CPO for urinary functioning and the bivariate CPO for
sexual functioning. Patient 15 had highest negative log-transformed CPO-UVP values on
others’ support. Patient 17 is an example of a multivariate outlier that cannot be detected
by looking at outliers on specific health state attributes, while patient 54 is an example of a

patient with outlying preferences on a single attribute who is not a multivariate outlier.

Figure 6.3 presents time series of the negative log CPO values for choice sets presented
to eight patients. DCEs require patients to evaluate a number of different choice sets and
some patients may undergo a learning effect where accuracy in responses improves with
time. Conversely, some patients may become fatigued and accuracy of their responses may
degrade as the number of questions increases (Bradlow et al., 1998; Hauser and Rao, 2002).
By examining these time series, we can gain insight as to an individual’s performance on
discrete choice tasks, and observe possible learning effects or fatigue effects, and whether
they made choices on specific sets that were inconsistent with their preferences. High values
of negative log-transformed CPO indicate possible outlying choice sets. Patient 115 is an
example of a patient with consistent responses and no outliers. In contrast, patient 52 shows
highly variable responses, which might indicate more difficulty with the choice tasks. Patient
10 has an outlier on the first choice set, which may indicate a cognitive error early in the
exercise. Patient 109 shows an upward trend suggesting a possible fatigue effect and an
especially inconsistent choice on the second to last choice set. For patient 74, we observe
a downward trend suggesting a learning effect where patient performance on choice tasks

improves over time.

We conducted sensitivity analyses on the prior assumptions Wishart(w, W) for the ran-
dom effects precision matrix £ by comparing the posterior results over variations of the
prior. With degrees of freedom parameter w and scale matrix W we explored the following
Wishart specifications: w = 9 and W = %I, w=9and W = 1—18], w =18 and W = %I,
w=18 and W = %I . There was little change in the posterior estimates for the elements of
the correlation matrix or the population preference parameters with different specifications,

7



Figure 6.3: Plot of the -log(CPO-SET)s calculated for each choice set presented to eight

patients.
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indicating that the results were fairly robust to changes in the hyperprior specifications. The

details of this analysis are given in Chapter 7.

6.7 Discussion

We developed a Bayesian hierarchical model for best-worst discrete choice data that accounts
for incomplete rankings and includes patient covariates. The model can handle sparse data
and is particularly useful when discrete choice experiments involve relatively few choice sets
per patient. Although our application had choice sets of size four, the model can be applied

to studies with larger choice sets.

The main goal of our discrete choice experiment was to identify health state attributes
that are most important to individual patients to guide that individual’s treatment; thus, we
presented Bayesian versions of a commonly used measure of relative attribute importance.
The estimates of relative attribute importance include posterior standard deviations that
reflect uncertainty; in the literature, many studies only provide point estimates which may
give false confidence about how the patient ranks the attributes. Our method for computing
relative attribute importance is not specific to best-worst DCE and can be applied to other
DCE designs. The concept of relative attribute importance is akin to the concept of variable
importance in regression and prediction modeling. We have not explored other possible
measures of variable importance that might be applied to DCE. The measurement of relative
variable importance is an active area of research (Kruskal and Majors, 1989; Retzer et al.,

2009; Johnson and Lebreton, 2004; Bi, 2012; Grémping, 2015; Harris and Burch, 2005).

We have shown how the conditional predictive ordinate can be adapted to identify out-
lying choice sets and outlying patients with unusual preferences in discrete choice data. Our
CPO for identifying preference outliers finds outliers in the random effects. Random effects
are a common feature of Bayesian models, and this new application of the CPO could have
broader application in Bayesian modeling. The method is quite flexible and general, and can
even identify outliers on sets of multiple random effects. We have shown how the method can

be applied to identify outliers on categorical attributes modeled using two coefficients. The

79



CPO for identifying outlying choice sets utilizes a vector outcome and is also an important

extension of the CPO that could be used in other applications.

Our application includes two attributes, sexual functioning and urinary functioning,
whose attribute levels are naturally ordered; the levels of sexual functioning are none, de-
creased and full, and the levels of urinary functioning are long term issues, short term issues
and full functioning. One approach to estimating the corresponding coefficients would be
to impose order constraints, such that the coefficient for decreased functioning must be less
than or equal to the coefficient for full functioning. This could be accomplished by specify-
ing a truncated multivariate prior density on the vector of random effects and the vector of
population effects (Gelfand et al., 1992). However, we obtained satisfactory results without

imposing such constraints.

Experimental design for DCEs is an area of active research (Johnson et al., 2013; Jaynes
et al., 2016); however, there is little consensus on the optimal design of choice experiments,
including how to generate choice sets (Lusk and Norwood, 2005; Louviere et al., 2011). A
recent report described alternative approaches to experimental design for DCEs (Johnson
et al., 2013), but did not recommend any specific approach as best practice. The choice of
alternatives for each choice set and the choice sets presented to each patient are important
with regard to statistical efficiency. Random selection of profiles to choice sets may result in
choice sets for which little information is gained on relative preferences because the attributes
are not varied sufficiently. In addition, increasing the number of choice sets presented to
patients can increase cognitive burden, jeopardizing the quality of patient responses. When
creating a DCE, a trade-off is made between maximizing statistical efficiency and maximizing
respondent efficiency (measurement error related to the quality of responses). A direction
for future research would be to formally evaluate the impact of the experimental design on

estimation of preferences.

Our DCE uses factors with different numbers of levels. Studies have shown that there
is a positive association between the number of attribute levels and attribute importance
scores (Wittink et al., 1982, 1990). Designing a study with the same number of attribute

levels for each attribute may not be acceptable for some applications. In our study, all of
80



our attributes have either two or three levels. We think it reasonable that a priori important
variables, such as urinary and sexual functioning, would be modeled using more levels. We
fit the model after collapsing the two highest categories of urinary functioning and sexual
functioning into a single category and obtained similar posterior means. Hence we surmise

that the different numbers of levels did not appreciably affect our results.

The development of best-worst discrete choice designs reduces patient burden compared
to full rankings while posing new statistical challenges. By accounting for missing rank-
ing information, patient covariates, and the sparse nature of the individual-level data in
a Bayesian framework, our model extends current methods and provides individual-level
preference estimates. Our CPO measures provide some of the first diagnostic techniques
for discrete choice models. Our model coupled with our measures of relative importance
and outlyingness, provide practical methodology for discrete choice modeling applications,
in which parameter estimation at the individual-level is desirable, but observed data at the

individual-level are limited.
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CHAPTER 7

Sensitivity Analyses

This chapter presents sensitivity analyses to evaluate the prior assumptions of the Bayesian

hiearchical model developed in Chapter 6.

7.1 The Wishart Distribution for the Between-Attribute Precision

Matrix

For the multivariate normal distribution of the random attribute effects vector of Chapter
6, the conjugate prior distribution for the between-attribute precision matrix is a Wishart

distribution,
>~ ~ Wishart(w, W), (7.1)

with inverse-scale matrix W and w degrees of freedom where w is at least the length of
the random attribute effects vector. The prior mean of the precision matrix is w %« W™,
and smaller values of w imply a less informative distribution. The least informative, proper
Wishart prior is obtained by setting w equal to the length of the random attribute effects

vector.

We conducted sensitivity analyses for the specification of the Wishart(w, W) prior for
the random effects precision matrix 7' by comparing the posterior results for different
specifications of the prior. With degrees of freedom parameter w and scale matrix W
with prior mean w * W', we explored the following Wishart specifications: w = 9 and

W = (1/9) x Iy, w = 9 and W = (1/18) x Iy, w = 18 and W = (1/9) x Iy, w = 18 and
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W = (1/18) % L,.

Tables 7.1 and 7.2 summarize the posterior results for important parameters. Resulting
changes in the posterior estimates for the elements of the correlation matrix (Table 7.2) as
well as for the population preference parameters (Table 7.1) were relatively small, indicating

that the posterior results were fairly robust to changes in the hyperprior specification.

Table 7.1: Sensitivity analyses for the specification of the Wishart prior for the random
effects precision matrix ¥'. The table provides posterior means and standard deviations of
the components of the vector of population mean preferences p and the standard deviations
of the random effect ¢;;, for the model without patient covariates. The posterior probability

that the parameters are greater than zero is also provided for each parameter.
Wishart(9, (1/9)Iy) Wishart(9, (1/18)Ig) ~ Wishart(18, (1/9)Iy)  Wishart(18, (1/18)I)
Parameter Mean SD Pr(>0) Mean SD Pr(>0) Mean SD Pr(>0) Mean SD Pr(>0)

i 220 0.17 1.00 232 0.18 1.00 2.09 0.15 1.00 222 0.17 1.00
o 1.47 0.13 1.00 1.55 0.14 1.00 1.39 0.12 1.00 148 0.13 1.00
3 1.22 0.13 1.00 128 0.14 1.00 1.16 0.12 1.00 1.23 0.13 1.00
144 1.83 0.16 1.00 1.93 0.18 1.00 1.75 0.15 1.00 185 0.16 1.00
s 1.55 0.15 1.00 1.63 0.16 1.00 148 0.14 1.00 1.57 0.15 1.00
e 247 0.21 1.00 2.60 0.22 1.00 236 0.19 1.00 250 0.20 1.00
% 0.79 0.11 1.00 0.85 0.12 1.00 0.75 0.10 1.00 080 0.11 1.00
18 0.08 0.08 0.85 0.08 0.09 0.84 0.07 0.07 0.85 0.08 0.08 0.84
o 0.69 0.10 1.00 0.73 0.11 1.00 0.66 0.09 1.00 0.70 0.10 1.00
SD of €;; 1.68 0.16 1.82 0.17 1.48 0.14 1.63 0.15
SD of €9 1.25 0.12 1.38 0.12 1.11 0.10 1.24 0.11
SD of €3 1.21 0.12 1.34 0.13 1.06 0.11 1.19 0.11
SD of €4 1.53 0.15 1.67 0.16 1.34 0.14 1.48 0.14
SD of €5 1.47 0.14 1.61 0.15 1.29 0.12 1.43 0.13
SD of € 2.03 0.19 2.19 0.20 1.79 0.17 1.95 0.18
SD of e 0.97 0.10 1.11 0.10 0.85 0.08 0.99 0.09
SD of €4 0.61 0.06 0.74 0.06 0.55 0.05 0.68 0.06
SD of €9 0.82 0.08 0.96 0.09 0.73 0.07 0.87 0.08
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Table 7.2: Sensitivity analyses for the specification of the Wishart prior for the random
effects precision matrix £7'. The table provides posterior means and standard deviations
of the elements of the correlation matrix of the random effect €; for the model without
patient covariates. The posterior probability that the parameters are greater than zero is

also provided for each parameter.
Wishart(9,(1/9)19)  Wishart(9,(1/18)19)  Wishart(18,(1/9)I9)  Wishart(18,(1/18)I9)
Parameter Mean SD Pr(;0) Mean SD Pr(;0) Mean SD Pr(;0) Mean SD Pr(;0)

P12 0.15 0.11 091 0.15 0.11 092 0.15 0.11 091 014 0.14 0.91
P13 0.28 0.11 0.99 027 0.11 0.99 028 0.11 0.99 0.27 0.11 0.99
P14 0.26 0.11 099 025 0.11 099 025 0.11 098 024 0.11 0.98
P15 0.16 0.11 092 0.15 0.11 092 015 0.11 091 0.15 0.15 0.91
P16 0.18 0.11 095 0.19 0.11 0.96 0.18 0.11 095 0.17 0.17 0.95
P17 -0.22  0.12 0.03 -0.19 0.11 0.06 -0.24 0.12 0.02 -0.20 0.11 0.04
P18 0.004 0.13 0.51 0.01 0.12 0.52 0.01 0.13 0.51 0.01 0.01 0.51
Pl9 -0.02 0.13 042 -0.01 0.12 045 -0.03 0.13 0.40 -0.02 0.12 0.43
P23 0.29 0.11 0.99 027 0.11 0.99 030 0.11 0.99 0.27 0.11 0.99
P24 0.36 0.11 1.00 034 0.11 1.00 0.37 0.11 1.00 0.34 0.10 1.00
P25 0.02 0.12 0.56 0.02 0.11 0.56 0.01 0.12 052 0.01 0.01 0.54
P26 -0.04 0.12 0.37 -0.03 0.11 039 -0.05 0.12 032 -0.04 0.11 0.36
par -0.09 0.12 024 -0.06 0.12 0.30 -0.11 0.12 0.20 -0.08 0.11 0.25
Pos 0.18 0.13 091 0.15 0.12 0.89 0.19 0.13 093 0.15 0.15 0.90
P29 -0.09 0.13 0.24 -0.07 0.12 0.27 -0.09 0.13 0.23 -0.07 0.12 0.26
P34 0.84 0.04 1.00  0.79 0.05 1.00 0.82 0.04 1.00 0.78 0.05 1.00
P35 0.26 0.11 0.99 025 0.11 0.98 0.27 0.12 0.99 025 0.11 0.98
P36 0.24 0.24 098 022 0.22 097 024 0.24 098 023 0.23 0.97
P37 -0.22  0.12 0.04 -0.19 0.11 0.05 -0.24 0.12 0.03 -0.20 0.11 0.04
P38 0.12 0.13 0.82 0.09 0.12 0.78 0.14 0.13 0.85 0.10 0.10 0.81
P39 -0.18 0.12 0.08 -0.15 0.12 0.10 -0.19 0.12 0.06 -0.15 0.12 0.10
P45 0.29 0.11 099 027 0.11 099 029 0.11 099 027 0.11 0.99
P46 0.26 0.11 099 025 0.11 099 026 0.11 099 025 0.11 0.98
Paz -0.24 0.12 0.03 -0.21 0.12 0.04 -0.27 0.12 0.02 -0.22 0.11 0.03
P48 0.15 0.13 0.86 0.12 0.12 0.83 0.16 0.13 0.89 0.13 0.13 0.85
P49 -0.15 0.13 0.11 -0.12 0.12 0.15 -0.16 0.13 0.10 -0.13 0.12 0.14
P56 0.88 0.03 1.00 0.85 0.03 1.00 0.87 0.03 1.00 0.84 0.04 1.00
P57 -0.28 0.11 0.01 -0.24 0.11 0.02 -0.29 0.11 0.01 -0.25 0.11 0.01
P58 0.05 0.13 0.66 0.04 0.12 0.64 0.05 0.13 0.66  0.04 0.04 0.64
P59 -0.15 0.12 0.12 -0.11 0.12 0.16 -0.16 0.12 0.11 -0.12 0.12 0.14
Pe7 -0.24 0.12 0.02 -0.21 0.11 0.03 -0.26 0.12 0.02 -0.22 0.11 0.02
Pes 0.03 0.13 0.58 0.02 0.12 0.57 0.02 0.13 0.58 0.02 0.02 0.58
P69 -0.21 0.12 0.04 -0.17 0.11 0.07 -0.22 0.12 0.04 -0.18 0.11 0.06
P8 -0.11 0.13 0.21 -0.09 0.12 024 -0.11 0.13 0.20 -0.09 0.12 0.22
P79 -0.06 0.13 0.31 -0.04 0.12 0.36 -0.06 0.13 0.30 -0.04 0.12 0.35
P89 0.07 0.13 0.71  0.07 0.12 0.72 0.06 0.13 0.69 0.06 0.06 0.70
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CHAPTER 8

Comparing models of patient preference: the

PROSPECT study

This chapter describes estimation of patient preferences using an adaptive best-worst conjoint
method and ordinary least squares regression. We present and compare estimated relative
attribute importance scores for patients obtained using adaptive best-worst conjoint and the

Bayesian hierachical model of Chapter 6.

8.1 Dahan’s Adaptive Best-worst Conjoint method: Using Ordi-

nary Least Squares Regression

Dahan’s Adaptive Best-worst Conjoint method is a method for discrete choice experiments
developed by Ely Dahan that elicits discrete choice data using the experimental design
described in Chapter 3 and uses ordinary least squares regression to estimate patient pref-
erences. The development of the method was motivated by the need for preferences to be
quickly estimated immediately after a patient completed the DCE module and then used

during a discussion regarding a patient’s treatment plan with the patient’s physician.

In the PROSPECT study, the DCE module used to collect best-worst choices monitors
which pairs of health states have been resolved. Resolved health states are pairs of health
states that have been ranked relative to each other or for which a ranking can be inferred.
For example, if A > B and B > C, then it is inferred that A > C'. Sixteen health states were
used in the PROSPECT study. In Dahan’s method, an ordinary least squares regression was

perfomed for each patient using only that patient’s data. The outcome for each individual-
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level regression is a vector of length 16 in which each component ¢ corresponds to one of the
16 health states and indicates the number of the remaining health states that ranked lower

than c.

For a specific patient i, let y; = (yi1, ..., ¥i16) ' be a 16 x 1 vector where each component
yie represents the number of the remaining health states ranked lower than health state ¢ for

individual 7. Let X denote the 16 x 9 covariate matrix of attribute information for the 16

T

health states where each row x_

corresponds to the covariate vector of attribute information

for health state c. The regression model is

Yin 1 @ xa2... @19 Bi1 €i1
Yi2 1 @o1 xo2... @29 Bi2 €i2
— X +
| yae | |1 ®ien T2 Tieo| | B || €6

Using matrix notation, this is represented by

Y, =
16x1  16X9  gy7  16x1

To estimate relative attribute importance for each patient, Dahan’s used ordinary least
squares regression to estimate the elements of the parameter vector 3; of unknown patient
preference scores. We use the abbreviation LinEST to refer to this method and we use HB to
refer to our Bayesian method and we compare the relative importance scores estimated using
the LinEST method with the relative importance scores estimated using our method. Point
estimates of relative importance for the both methods are calculated using the definition in

Chapter 6.

8.2 Comparing Methods: Relative Importance Scores

Figure 8.1 presents the posterior mean estimates of relative attribute importance +1 SD
for the Bayesian hiearchical model without patient covariates and the point estimates of

relative attribute importance using the LinEST estimates for 10 randomly selected men. For
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many men, it appears that the methods provide similar results; using the posterior mean
relative importance scores provides a ranking of attributes for each patient similar to that
obtained using the LinEST point estimates of relative importance. Using the LinEST point
estimates for patient 3, urinary functioning followed by sexual functioning appear to be most
important and second most important attributes affecting health state preference followed
by cutting, bowel issues, lifespan, others’ support and, lastly, taking action. Using the HB
point estimates for patient 3, we obtain a similar ranking where bowel issues appears to be

ranked more favorably over cutting.

Although the point estimates give a ranking of attributes by importance, the Bayesian
results suggest that some attributes maybe similarly ranked. From Figure 8.1, we see that
for patient 3 the error bars for lifespan, bowel issues, cutting, active role and others support
appear to overlap indicating that the posterior mean estimates of relative importance for
these attributes may not be significantly different, and thus maybe similarly ranked. More-
over, the methods can provide wildy different results for some patients. Patient 121 is an
example of a patient who did not have similar rankings according to the HB and LinEST
methods. For patient 121, the HB method ranked sexual functioning as the most important

attribute, while the LinEST method ranked sexual functioning as the least important.

Table 8.1 summarizes the LinEST point estimates, the HB point estimates, and the
differences between the LinEST and HB point estimates across all patients. While the mean
differences are close to zero, the minimum and maximum differences show that the methods

can disagree by over 0.3 points and are frequently over 0.1 points discrepant.

8.3 Mean Squared Difference

We use the root mean squared difference (RMSD) to measure the degree of dissimilarity
between our HB model estimates of relative importance and the LinEST estimates. The
RMSD measures the average absolute difference in relative attribute importance between
the LinEST and HB estimates. Lower values of RMSD indicate less discrepancy and the

RMSD has the same units as the estimates of relative importance (%).
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Figure 8.1: Posterior mean estimates of relative importance + 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7R Sexual Functioning.
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We define the root mean squared difference as

1
N

=1

1/2

N
(RZB . RiLamEST)2 (82)

RMSD = [
where N is the number of patients in the sample and RB is the relative attribute importance
of attribute a for individual i for the HB method and RL™FST is the relative attribute

importance of attribute a for individual ¢ for the LinEST method. The RMSD was calculated

for each of the seven health state attributes.

Table 8.2: Root mean square difference in relative importance scores between the HB method
and the LinEST method by attribute

Attribute RMSD
Lifespan 0.0477
Bowel Issues 0.0508
Cutting 0.0497
Taking Action 0.0397
Others’ Support 0.0480

Urinary Functioning 0.0580
Sexual Functioning  0.0650

Table 8.2 presents the RMSDs for each attribute. The RMSD ranged from a minimun of

0.0397 for taking action to 0.0650 for sexual functioning.

8.4 Remarks

Dissimilarity in estimated relative importance scores was greatest for lifespan, bowel issues,
urinary functioning and sexual functioning, which are attributes determined to be most
important in the population under the HB model. One potential problem in fitting a multiple
linear regression model to observations which are essentially vectors of rankings is that for
pairwise samples of {z;, y,}Y, are not independent, thus violating the assumption that the
errors €; are independent. Comparison of the LinEST and HB methods should be more
formally investigated via a simulation study. This is a direction for future research. The

code provided in Appendix B can be used to simulate the observed data from our specific
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discrete choice experiment.
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Appendix A

JAGS Code

A.1 Bayesian Hierarchical Model for Best Choices With No Pa-

#
#
#
#

#
#
#

#

H OH B OH OH O H OH H HHHH

tient Covariates

Purpose: To fit the Bayesian hierarchical model for best choices with no
patient covariates

Author: Anna Liza Malazarte Antonio

Developed using JAGS version 4.2.0

Assumptions:
1) Each choice set contains 4 health states
2) Nine health state attribute variables

User input:

N (total number of choice sets)

nsubj (total number of patients

mean.mu.b (mean of the hyperprior distribution for the population
mean vector of preference scores mu.b)

prec.mu.b (precision matrix of the hyperprior distribution for the
population mean vector of preference scores mu.b)

df (degrees of freedom parameter of the hyperprior distribution for
the precision matrix of the prior distribution of the vector of
patient preference scores prec.b)

Omega (scale matrix of the hyperprior distribution for the precision
matrix of the prior distribution of the vector of patient
preference scores prec.b)

Data description:

X (an N by 36 matrix where each row corresponds to a unique
patient-choice set combination and contains the attribute
information for each of the four health states in that specific
choice set)

X[,1:9] (attribute information for the best health state)

X[,10:18] (attribute information for one of the mid-ranked health
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#
#
#
#

data {

model {

states)
X[,19:27] (attribute information for the remaining mid-ranked
health state)
X[,28:36] (attribute information for the worst health state)

for (j in 1:N) {
ones[j] <- 1

}
for (i in 1:N){ # Loop over choice sets
for (j in 1:4){ # Linear predictor

muli,jl<-inprod(betalid[i],1:9],X[i, (9*(j-1)+1):(9%j)]1)
expmu[i,jl<-exp(muli,j])

}
L[i] <- expmul[i,1]/sum(expmuli,]) # Best choice probability

# Ones trick

phil[i] <- LI[i]

ones[i] ~ dbern(phil[i])
}

# Prior for the random effects
for(n in 1:nsubj){

beta[n,1:9] 7 dmnorm(mu.b,prec.b)
}

# Hyperpriors
mu.b[1:9] ~ dmnorm(mean.mu.b, prec.mu.b)
prec.b[1:9,1:9] ~ dwish(Omega,df)

# Convert precision to covariance matrix
sigma.b[1:9,1:9] <- inverse(prec.bl[,])

# Standard deviations

for(k in 1:9){

sd.b[k] <- sqrt(sigma.blk,k])

}

# Correlations

for(p in 1:9){

for(q in 1:9){

corr.b[p,q] <- sigma.blp,ql/sqrt(sigma.b[p,pl*sigma.blq,ql)

}
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A.2 Bayesian Hierarchical Model for Best-Worst Choices With

No Patient Covariates

# Purpose: To fit the Bayesian hierarchical model for best-worst choices with no
# patient covariates

# Author: Anna Liza Malazarte Antonio

# Developed using JAGS version 4.2.0

# Assumptions:
# 1) Each choice set contains 4 health states

# 2) Nine health state attribute variables

# User input:

# N (total number of choice sets)
# nsubj (total number of patients
# mean.mu.b (mean of the hyperprior distribution for the population
# mean vector of preference scores mu.b)
# prec.mu.b (precision matrix of the hyperprior distribution for the
# population mean vector of preference scores mu.b)
# df (degrees of freedom parameter of the hyperprior distribution for
# the precision matrix of the prior distribution of the vector of
# patient preference scores prec.b)
# Omega (scale matrix of the hyperprior distribution for the precision
# matrix of the prior distribution of the vector of patient
# preference scores prec.b)
# Data description:
# X (an N by 36 matrix where each row corresponds to a unique
# patient-choice set combination and contains the attribute
# information for each of the four health states in that specific
# choice set)
# X[,1:9] (attribute information for the best health state)
# X[,10:18] (attribute information for one of the mid-ranked health
# states)
# X[,19:27] (attribute information for the remaining mid-ranked
# health state)
# X[,28:36] (attribute information for the worst health state)
data {
for (a in 1:N) {
ones[a] <- 1
b
b
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model {

for (i in 1:N){
for (j in 1:4){

mu(i,jl<-inprod(betalid[i],1:9],X[1, (9*x(j-1)+1):(9*j)]1)

expmu[i,jl<-exp(muli,j])

3

pli,1]<-expmuli,1]/sum(expmuli,])
pli,2]<-expmuli,2]/sum(expmuli,2:4])
pli,3]<-expmuli,3]/sum(expmuli,3:4])
pli,4]l<-expmuli,3]/sum(expmuli,2:4])
summand [i,1]<-expmu[i, 2]

summand [1i,2]<-expmu[i,4]
pli,5]l<-expmuli,2]/sum(summand[i,])

# Best-worst choice probability

# Best choice

# 1st factor in
# 2nd factor in
# 1st factor in

# 2nd factor in

L[i] <- pl[i,1]*p[i,2]*p[i,3] + pli,11*pli,4]*pl[i,5]

# Ones trick

phil[i]l <- LI[i]

ones[i] ~ dbern(phil[i])
}

# Prior for the random effects
for(n in 1:nsubj){

betal[n,1:9] ~ dmnorm(mu.b,prec.b)
}

# Hyperpriors

mu.b[1:9] ~ dmnorm(mean.mu.b, prec.mu.b)

prec.b[1:9,1:9] ~ dwish(Omega,df)

# Convert precision to covariance matrix
sigma.b[1:9,1:9] <- inverse(prec.bl[,])

# Standard deviations

for(k in 1:9){

sd.blk] <- sqrt(sigma.blk,k])
}

# Correlations

for(p in 1:9){

for(q in 1:9){

# Loop over choice sets
# Linear predictor

first summand
first summand
second summand

second summand

corr.b[p,q] <- sigma.blp,ql/sqrt(sigma.blp,pl*sigma.blq,ql)

b
}
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A.3 Bayesian Hierarchical Model for Best-Worst Choices With

Patient Covariates

# Purpose: 1) To fit the Bayesian hierarchical model for best-worst choices

# with patient covariates

# 2) To calculate the inverse CPO-SET for each unique patient-choice
# set combination, and the inverse CPO-MVP and inverse CPO-MVP for

# each patient

# Author: Anna Liza Malazarte Antonio
# Developed using JAGS version 4.2.0

# Assumptions:
# 1) Each choice set contains 4 health states

# 2) Nine health state attribute variables

# User input:

# N (total number of choice sets)

# nsubj (total number of patients

# ncov (total number of patient covariate variables)

# pie (number pi)

# mu.b (mean of the hyperprior distribution for the residual effect

# epsilon[n,1:9] of the vector of preference scores)

# df (degrees of freedom parameter of the hyperprior distribution for
# the precision matrix of the prior distribution of the vector of
# patient preference scores prec.b)

# Omega (scale matrix of the hyperprior distribution for the precision
# matrix of the prior distribution of the vector of patient

# preference scores prec.b)

# Data description:

# X (an N by 36 matrix where each row corresponds to a unique

# patient-choice set combination and contains the attribute

# information for each of the four health states in that specific
# choice set)

# X[,1:9] (attribute information for the best health state)

# X[,10:18] (attribute information for one of the mid-ranked health

# states)

# X[,19:27] (attribute information for the remaining mid-ranked

# health state)

# X[,28:36] (attribute information for the worst health state)

# zeta (an nsubj by ncov matrix where each row corresponds to a unique
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# patient and contains the patient’s covariate information)

data {
for (a in 1:N) {
ones[a] <- 1
}
}
model {
for (i in 1:N){ # Loop over choice sets
for (j in 1:4){ # Linear predictor

muli,jl<-inprod(betalid[i],1:9],X[i, (9*(j-1)+1):(9%j)1)
expmuli,jl<-exp(muli,jl)

}

pli,1]<-expmuli,1]/sum(expmuli,]) # Best choice
pli,2]<-expmuli,2]/sum(expmuli,2:4]) # 1st factor in first summand
pli,3]<-expmuli,3]/sum(expmuli,3:4]) # 2nd factor in first summand
pli,4]<-expmuli,3]/sum(expmuli,2:4]) # 1st factor in second summand

summand [i,1]<-expmu[i,2]
summand [i,2]<-expmu[i,4]
pli,5]l<-expmuli,2]/sum(summand[i,]) # 2nd factor in second summand

# Best-worst choice probability
L[i] <- pli,11*p[i,2]*p[i,3] + pli,1]*pl[i,41*p[i,5]

# Ones trick

phil[i] <- LI[i]

ones[i] ~ dbern(phil[i])
}

# Calculate 1/CPO-SET to identify choice sets which are outlying
# with respect to patient prefereces

for (b in 1:N){ # Loop over choice sets

invcpo.set[b] <- 1/L[b]

b

for(n in 1:nsubj){

# Prior for the random effects

mu.betaln,1:9] <- zetaln,1:ncov]%*%Gammal[l:ncov,1:9]
betal[n,1:9] <- mu.beta[n,1:9] + epsilon[n,1:9]
epsilon[n,1:9] ~ dmnorm(mu.b,prec.b)

# Calculate 1/CPO-MVP to identify patients with outlying preferences
# on all attributes
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ppo.beta[n] <-sqrt(exp(logdet(prec.b[1:9,1:9])))/sqrt(pow((2*pie),9))
*xexp (-0.5%*%t (beta[n,1:9]-mu.b[1:9])
Jxlprec.b[1:9,1:9]1%*%(beta[n,1:9]-mu.b[1:9]))

invcpo.beta[n] <- 1/ppo.betaln]

# Calculate 1/CPO-UVP to identify patients with outlying preferences
# on individual attributes

for (r in 1:9){ # Loop over attributes

ppo.beta.marg[n,r] <-dnorm(beta[n,r], mu.b[r], sigma.b[r,r])
invcpo.beta.marg[n,r] <- 1/ppo.beta.marg[n,r]

b
+

for(l in 1:ncov){ # Loop over columns of Gamma
for (m in 1:9){ # Loop over rows of Gamma
Gamma[l,m] ~ dnorm(0,1)

}

}

# Hyperpriors
prec.b[1:9,1:9] ~ dwish(Omega,df)

# Convert precision to covariance matrix
sigma.b[1:9,1:9] <- inverse(prec.bl[,])

# Standard deviations

for(k in 1:9){

sd.b[k] <- sqrt(sigma.blk,k])

}

# Correlations

for(p in 1:9){

for(q in 1:9){

corr.b[p,q] <- sigma.blp,ql/sqrt(sigma.b[p,pl*sigma.blq,ql)

}

}
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Appendix B

R Code

B.1 Code to Generate Discrete Choice Data

B.1.1 (001) Simulate Data - Functions.R

# Author: Anna Liza Malazarte Antonio
Developed using R version 3.3.1
# Contingencies: None

=+

# Program Description --————-—-—-"---——"""--———————————————— - ———————————
# The purpose of this code is to:
# Define functions to be used in the script "(003) Simulate Data.R"

# prob.vest ---------\-------——""""""""""""""""—"—"—"—"———————————

Purpose: To calculate the probabilities of best choice in a choice set
Arguments:

M = covariate matrix

b = beta vector

nalts = size of the choice set

nsets number of choice sets

H OH H H H H

# Output: Matrix of probabilities

prob.best<-function(M,b,nsets,nalts){
# Numerators
Xbeta=My*%b
expXbeta=matrix(exp(Xbeta) ,byrow=TRUE,ncol=nalts)

# Denominators
denom=as .matrix (rowSums (expXbeta))
denominvmat.b=matrix(rep(denom~-1,each=nalts), byrow=T, nrow=nsets, ncol=nalts)

# Probabilities: Best Choice
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# element-wise multiplication; by row, each element/rowsum
bprob=expXbeta*denominvmat.b

# Purpose: Draw Y as a multinomial response by applying the random multinomial
# function to each row of the probability matrix (Will identify best

# in choice set)

# Arguments:

# M = covariate matrix

# p = probability matrix

# nalts = size of the choice set

# nsets = number of choice sets

draw.y <-function(M,p,nsets,nalts){

y = matrix(data=NA,nrow=nsets,ncol=nalts) # define a null matrix
y = apply(p,1,function(M){rmultinom(1,1,M)}) # draw multinomial response
y =t(y) # transpose to row vectors
}
# id.best ---------——H—7—171"7- -4+-+-+-——"-—47">"7""+""+""-"—""""""""""""""""""""“""""-""""-"-"-"———

# Purpose: To identify the cards (by label) chosen as best

# Arguments:

# S = matrix of cards (labels); each row represents a choice set
# y = observation matrix
#
#

nalts size of the choice set
nsets number of choice sets

id.best <-function(S,y,nsets,nalts){

bchoice = matrix(data=NA, nrow=1, ncol=nsets)
for (i in 1:nsets) {

for (j in 1:nalts) {

if (y[i,jl==1){bchoicel[i]=S[i,j]}

}
}
bchoice

# remove.choicesX ———————==—---— o — oo

# Purpose: To remove covariate data for past choices within a choice set
# Arguments:
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matrix of observations
covariate matrix

#y
# M

remove.choicesX <-function(y,M){
y.vec = as.vector(t(y))
subset = subset(cbind(M,y.vec), y.vec==0,-c(y.vec)); subset

# remove.choicesS —————————————-— - oo m oo

Purpose: To remove cards(labels) for past choices within a choice set
Arguments:

y = matrix of observations

S = card (labels) matrix

#
#
#
#

remove.choicesS <-function(y,S){
y.vec = as.vector(t(y))
cards.sets.sub = subset(cbind(as.vector(t(S)),y.vec), y.vec==0,-c(y.vec))
cards.sets.sub = matrix(cards.sets.sub, nrow=nrow(S), ncol=ncol(S)-1, byrow=T)

# id.bestworst -------------------- - -----\\\\D----- -

# Purpose: To identify the cards (by label) chosen as best and worst
# Arguments:

# Yb = observed matrix of best choices

# S = card (labels) matrix by choice set

# w = vector of worst choice cards (labels)

id.bestworst <- function(Yb,S,w){
Y.bw = Yb
for (i in 1:nrow(S)) {
for (j in 1:ncol(S)) {
for(k in 1:ncol(w)){
if (S[i,jl==wl1,kDD{Y.bwli,jl = -1}

# resolvedpairs.counts.setup —————-—-----——--- - - —-—————— oo oo

# Purpose: To count the number of times of a card beats (count>0) another card
# Winners along x-axis and losers along y-axis
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# Example: if card j beats card j n times,

# then count[i,j] = n, n an integer, n>0
# Arguments:

# ncards = number of unique cards presented to subjects

resolvedpairs.counts.setup <-function(ncards){
counts = matrix(data=NA, nrow = ncards, ncol = ncards)
for (i in 1:ncards){
for (j in 1l:ncards) {
if (j>i | i>j){counts[i,j] = 0}

+

X

counts
+
# resolvedpairs.setuyp ——————""""""""""""""""—————————————————————————————————
# Purpose: To identify which card pairs have been resolved
# Winners along x-axis and losers along y-axis
# Example: if the card pair (i,j) has been resolved , then ind[i,j] =1
# Arguments:
# ncards = number of unique cards presented to subjects

resolvedpairs.setup <-function(ncards){
ind = matrix(data=NA, nrow = ncards, ncol = ncards)
for (i in 1:ncards){
for (j in 1l:ncards) {
if (j>i){ind[i,j] = 0}

ind

# resolvedpairs.counts.update ———————---—————---——-—————— oo

# Purpose: To update counts which describe the number of times card pairs have

# been resolved

# Winners along x-axis and losers along y-axis

# Example: if the card pair (i,j) has been resolved , then ind[i,j] =1
# Accounts for 5 comparisons for each choice set

# Note: Loop operates on each choice set

# Arguments:

# R = matrix of ranked cards (row is a choice set)
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resolvedpairs.counts.update <-function(R){

for (i in 1:nrow(R)){

print(R[i,])

# work with best

for (j in 2:4){
resolvedpairs.counts([R[i,j],R[i,1]]

}

# work with worst

for (k in 2:3){
resolvedpairs.counts[R[i,4],R[i,k]]

}

resolvedpairs.counts([R[i,j],R[i,1]] + 1

resolvedpairs.counts[R[i,4],R[i,k]] + 1

}

resolvedpairs.counts

by

# resolvedpairs.update - —-—————————————————————————————— - ——————————

# Purpose: To update the indicator matrix which describes which card pairs have
# been resolved

# Winners along x-axis and losers along y-axis

# Example: if the card pair (i,j) has been resolved , then ind[i,j] =1
# Accounts for 5 comparisons for each choice set

# Arguments:

# Mc = matrix which describes the number of times card pairs have been resolved
# Mi = matrix which describes which card pairs have been resolved

resolvedpairs.update <-function(Mc,Mi){
# Keep track of what has been compared
for (i in 1:16){
for (j in 1:16){
# in lower triange of paircounts
if (Mc[i,j] > 0 & i>j){Mi[j,i]=1}
# in upper triange of paircounts
if (Mc[i,j] > 0 & j>i){Mil[i,jl=1}

Mi

# listunresolvedpairs ——————-—————————————————--—-————-—-————————————————————————

# Purpose: To output a list of unresolved pairs
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# Arguments:
# M = indicator matrix describing which card pairs (described by row and col
# indices) have been resolved

listunresolvedpairs <- function(M){

n = 16

index = which(M==0) # gives indices of matrix (by column) where ==
columnlist = ceiling(index/n)

rowlist = index%%n; rowlist # vector index mod 16

pairs = as.list(data.frame(t(cbind(rowlist, columnlist)))); pairs

# newchoiceset ---------------------------- - : \i} !} b\ i i i i

# Purpose: To form a new choice set using a list of unresolved pairs
# Arguments:
# 1 = list of unresolved pairs

newchoiceset <- function(1){

# Permute list of unresolved pairs
perm = sample(l)

# Select first two pairs to create a new choice set

# If there is a duplicate card in the set, resample a new pair
# duplicated(v) outputs a indicator vector for input vector v,
# where a component = 1 identifies a duplicate

# Example:

# if pairs 1 and 2 have duplicates then pick pairs 1 and 3

# if pairs 1 and 3 have duplicates then pick pairs 1 and 4...

# repeat until a set of four unique cards are found

for (i in 2:length(perm)){
cset = c(rbind(as.vector(unlist(perm[1])),as.vector(unlist(perm[i]))))
if (sum(duplicated(cset))==0) {break}
}
cset

by

# transitivity --—-———-———----"-""""""""—————
# Purpose: To account for card ’wins’ derived from observed ’wins’ using

# the property of tramnsitivity, e.g., if 1>2 two times and 2>3 one time

# then 1>3 three times

# Arguments:
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# R = 16x16 matrix of resolved pair counts
transitivity <- function(R){

# Remove "NAs" from count matrix diagonal for arithmetic
for (j in 1:16){

R[j,j1 =0
+

# Update resolved pair counts
for (i in 1:16){
for (j in 1:16){
for (k in 1:16){

if(il=k & R[i,j] '= 0 & R[j,k] != 0){
R[i,k] = R[i,k] + R[i,j] + R[j,k]
}

# Replace "NAs" in count matrix
for (m in 1:16){

R[m,m] = NA

b

return(R)
+
# create data —————-- T T mo oo
# Purpose: To generate data which replicates the adaptive choice elicitation
# process created by Ely Dahan
# Function creates data using the random effects for each patient
# Arguments:
# betavec = random effects vector for one patient
# Output:
# Let Nchoicesets be total number choice sets presented to a single patient
# in a DCE
# Y = NchoicesetsX4 matrix indicating best and worst choices; each row
# corresponds to a choice set; within a row, 1 = best choice in choice
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set, -1 = worst choice in choice set and O = mid-ranked choices in
choice set
cardsets = NchoicesetsX4 matrix which describes the cards presented in
a choice set by label; each row corresponds to a choice set
X = (NchoicesetsX4)X9 matrix that describes the attribute information for
each card in the DCE; each row corresponds to a card; row order is
determined by the choice set and the order in which it is presented in
the choice set, e.g., the first row corresponds to the first card
displayed in the first choice set
beta = random effects vector for one patient
ranked = NchoicesetsX4 matrix which describes the cards ranked in a choice
set by label; each row corresponds to a choice set
Ycounts = 1x16 vector where Ycounts[i] is the number of times card i ’beat’
the other 15 cards by majority vote

HOH O H OH OH OH OH H OH R R HH R

createdata <- function(betavec) {

# Count all the paired comparisons (1v2,...1v16,2v3,...,2v16,...,15v16)
# Winners along x-axis; Losers along y-axis
resolvedpairs.counts = resolvedpairs.counts.setup(16)

# Keep track of resolved pairs
resolvedpairs <- resolvedpairs.setup(16)

# Subset the data ------------------------------------------—— 66010

cards.setsl_4.1 = matrix(data.matrix(attribdatal,3], rownames.force = NA)
,byrow=TRUE ,,ncol=4)

X.1_4.1 = data.matrix(attribdatal,4:12], rownames.force = NA)

beta = data.matrix(betavec, rownames.force = NA)

# beta dataset above loads with an extra column ("X" = obs num)

# Code below excludes the first variable/column

beta = betalc(-1)]

# Best Choices ---——1—1————"—"—H——"H—""H—"H—""-"""-""""" """ """

# Construct Linear Predictor and Probabilities
prob.1_4.1 = prob.best(X.1_4.1,beta,4,4)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
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Y.1 4.1 = draw.y(X.1_4.1,prob.1_4.1,4,4)

# Identify Best Choices
bchoice.1_4.1 = id.best(cards.sets1_4.1,Y.1_4.1,4,4)

# Remove best choices (Y.b_vec==0 for other than best choices)
# Convert obs matrix to a vector by row (use t())

X.1_4.2 = remove.choicesX(Y.1_4.1,X.1_4.1)

cards.setsl1_4.2 = remove.choicesS(Y.1_4.1,cards.sets1_4.1)

# 2nd Best Choices --———-------------—————————————————

# Construct Linear Predictor and Probabilities
prob.1_4.2 = prob.best(X.1_4.2,beta,4,3)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.1 4.2 = draw.y(X.1_4.2,prob.1_4.2,4,3)

# Identify Best Choices
bchoice.1_4.2 = id.best(cards.sets1_4.2,Y.1_4.2,4,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.1_4.3 = remove.choicesX(Y.1_4.2,X.1_4.2)

cards.sets1_4.3 = remove.choicesS(Y.1_4.2,cards.setsl1_4.2)

# 3rd Best Choices ——————""————1—"H—""+7"—H—H—m"m"m"""n"Hrn—"Hm—mm"o-m-——H—--—————"\"""""""0

# Construct Linear Predictor and Probabilities
prob.1_4.3 = prob.best(X.1_4.3,beta,4,2)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.1 4.3 = draw.y(X.1_4.3,prob.1_4.3,4,2)

# Identify Best Choices
bchoice.1_4.3 = id.best(cards.sets1_4.3,Y.1_4.3,4,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.1_4.4 = remove.choicesX(Y.1_4.3,X.1_4.3)

cards.setsl_4.4 = remove.choicesS(Y.1_4.3,cards.sets1_4.3)

# Worst Choices - ——————————-—-"—--"-""""""""""""""""-"""" """\ ————



bchoice.1_4.4=t(cards.setsl1_4.4)
# RESULTS — === m e e oo e e

# Display cards in order presented by choice set ---—————-"---"-"""""""""""""""--
cards.setsl_4.1

# Identify cards in order presented by choice set ~--—-——-"----""""""""""""""""--
Y.bw.1_4 = id.bestworst(Y.1_4.1,cards.setsl_4.1,bchoice.1_4.4)

# Display cards in ranked order by choice set -----—-——-"-"7""-"-"-""""""""""""""""--
cards.ranked.1_4 = t(rbind(bchoice.1_4.1,bchoice.1_4.2,bchoice.1_4.3
,bchoice.1_4.4))

# ACCOUNTING: Resolved Pairs ————-————=—————————————————— - —— oo ———

# Update resolved pair counts
resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.1_4)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs
# which(): gives indices of matrix (by column) where ==
unresolvedpairs_num = length(which(resolvedpairs==0))

# "Best" choices from choice sets 1-4
cards.setsb5.1 = bchoice.1_4.1

# Attributes of best cards

X.5.1 = data.matrix(subset(data.frame(attribdatal,3:12])
, (Card == bchoice.1_4.1[1,1])|(Card == bchoice.1_4.1[1,2])
| (Card == bchoice.1_4.1[1,3])|(Card == bchoice.1_4.1[1,4])
,—c(Card)) ,rownames.force = NA)

# Best Choices —-—————————-———————————————————

# Construct Linear Predictor and Probabilities
prob.5.1 = prob.best(X.5.1,beta,1,4)
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# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.5.1 = draw.y(X.5.1,prob.5.1,1,4)

# Identify Best Choices
bchoice.5.1 = id.best(cards.sets5.1,Y.5.1,1,4)

# Remove best choices (Y.b_vec==0 for other than best choices)
# Convert obs matrix to a vector by row (use t())

X.5.2 = remove.choicesX(Y¥.5.1,X.5.1)

cards.sets5.2 = remove.choicesS(Y.5.1,cards.sets5.1)

# 2nd Best Choices ————————1———H—""—"H—rm—"H—m""—"Hm—m-—H———

# Construct Linear Predictor and Probabilities
prob.5.2 = prob.best(X.5.2,beta,1,3)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.5.2 = draw.y(X.5.2,prob.5.2,1,3)

# Identify Best Choices
bchoice.5.2 = id.best(cards.sets5.2,Y.5.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())
X.5.3 = remove.choicesX(Y.5.2,X.5.2)

cards.sets5.3 = remove.choicesS(Y.5.2,cards.sets5.2)

# 3rd Best Choices ——————-————————————————————————

# Construct Linear Predictor and Probabilities
prob.5.3 = prob.best(X.5.3,beta,1,2)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.5.3 = draw.y(X.5.3,prob.5.3,1,2)

# Identify Best Choices
bchoice.5.3 = id.best(cards.sets5.3,Y.5.3,1,2)

# Remove best choices
# Convert obs matrix to a vector by row (use t())
X.5.4 = remove.choicesX(Y¥.5.3,X.5.3)
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cards.setsb.4 = remove.choicesS(Y.5.3,cards.setsb5.3)

# Worst Choices -------—-———-"+-"—-—-"—-"-"—--"—-"H—""-"""-""""—"—""""—"——"" """\
bchoice.5.4=t(cards.setsb.4)

# RESULTS ———mmmmmmm o oo oo oo

# Display cards in order presented by choice set --———-----""""""""""""""""—-
cards.setsb.1

# Identify cards in order presented by choice set ------——7-"--—"""""-"""""""-"""--
Y.bw.5 = id.bestworst(Y.5.1,cards.sets5.1,bchoice.5.4)

# Display cards in ranked order by choice set ---—-—--—"-"-""-"-"""""""""""">"-"""—
cards.ranked.5 = t(rbind(bchoice.5.1,bchoice.5.2,bchoice.5.3,bchoice.5.4))

# ACCOUNTING: Resolved Pairs --------------------- - - - - - - - - -\ —\—\—(—(—(——(——(———(————————

# Update resolved pair counts
resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.5)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY —————mm oo m oo oo oo oo oo oo o

# To account for card ’wins’ derived from observed ’wins’ using the property of
# transitivity, e.g., if 1>2 two times and 2>3 one time then 1>3 three times
resolvedpairs.counts <- transitivity(resolvedpairs.counts)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs
# which(): gives indices of matrix (by column) where ==
unresolvedpairs_num = length(which(resolvedpairs==0))



# "Worst" choices from choice sets 1-4
cards.sets6.1 = bchoice.1_4.4

# Attributes of best cards

X.6.1 = data.matrix(subset(data.frame(attribdatal,3:12])
, (Card == bchoice.1_4.4[1,1])|(Card == bchoice.1_4.4[1,2])
| (Card == bchoice.1_4.4[1,3])|(Card == bchoice.1_4.4[1,4])
,—c(Card)) ,rownames.force = NA)

# Best Choices ————————————————————————— -

# Construct Linear Predictor and Probabilities
prob.6.1 = prob.best(X.6.1,beta,1,4)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.6.1 = draw.y(X.6.1,prob.6.1,1,4)

# Identify Best Choices
bchoice.6.1 = id.best(cards.sets6.1,Y.6.1,1,4)

# Remove best choices (Y.b_vec==0 for other than best choices)
# Convert obs matrix to a vector by row (use t())

X.6.2 = remove.choicesX(Y.6.1,X.6.1)

cards.sets6.2 = remove.choicesS(Y.6.1,cards.sets6.1)

# 2nd Best Choices ---——-—---"----""""-""""""""""""""""""""""""""""

# Construct Linear Predictor and Probabilities
prob.6.2 = prob.best(X.6.2,beta,1,3)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.6.2 = draw.y(X.6.2,prob.6.2,1,3)

# Identify Best Choices
bchoice.6.2 = id.best(cards.sets6.2,Y.6.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())
X.6.3 = remove.choicesX(Y.6.2,X.6.2)

cards.sets6.3 = remove.choicesS(Y.6.2,cards.sets6.2)

# 3rd Best Choices —————1—""#———1—"Hm"+""—H—H—"—"nm"-"—"Hm—rHm"Hom"-"n—H—"r—-—————\"



# Construct Linear Predictor and Probabilities
prob.6.3 = prob.best(X.6.3,beta,1,2)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.6.3 = draw.y(X.6.3,prob.6.3,1,2)

# Identify Best Choices
bchoice.6.3 = id.best(cards.sets6.3,Y.6.3,1,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())
X.6.4 = remove.choicesX(Y.6.3,X.6.3)

cards.sets6.4 = remove.choicesS(Y.6.3,cards.sets6.3)

# Worst Choices ——————=————————————————— -
bchoice.6.4=t(cards.sets6.4)
# RESULTS — === == oo oo o e o e

# Display cards in order presented by choice set ~---—-———1"7"""-"-""""""""""""""""--
cards.sets6.1

# Identify cards in order presented by choice set ----—------"-"-"-"-"-""""---———
Y.bw.6 = id.bestworst(Y.6.1,cards.sets6.1,bchoice.6.4)

# Display cards in ranked order by choice set - ——"-"—""-"-"-""""""""""""""""""--
cards.ranked.6 = t(rbind(bchoice.6.1,bchoice.6.2,bchoice.6.3,bchoice.6.4))
# ACCOUNTING: Resolved Pairs ——————-——=——-————————————————————————————————————

# Update resolved pair counts
resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.6)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY —— = m o m oo oo oo oo oo o

# To account for card ’wins’ derived from observed ’wins’ using the property of
# transitivity, e.g., if 1>2 two times and 2>3 one time then 1>3 three times
resolvedpairs.counts <- transitivity(resolvedpairs.counts)
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# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs
# which(): gives indices of matrix (by column) where ==
unresolvedpairs_num = length(which(resolvedpairs==0))

# "Middle" choices from choice sets 1 and 2
cards.sets7.1 = matrix(cards.ranked.1_4[1:2,2:3], nrow=1, ncol=4)

# Attributes of best cards

X.7.1 = data.matrix(subset(data.frame(attribdatal,3:12])
, (Card == cards.sets7.1[1,1])|(Card == cards.sets7.1[1,2])
| (Card == cards.sets7.1[1,3])]|(Card == cards.sets7.1[1,4])
,—c(Card)) ,rownames.force = NA)

# Best Choices —————------—————————————————

# Construct Linear Predictor and Probabilities
prob.7.1 = prob.best(X.7.1,beta,1,4)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y. 7.1 = draw.y(X.7.1,prob.7.1,1,4)

# Identify Best Choices
bchoice.7.1 = id.best(cards.sets7.1,Y.7.1,1,4)

# Remove best choices (Y.b_vec==0 for other than best choices)
# Convert obs matrix to a vector by row (use t())

X.7.2 = remove.choicesX(Y.7.1,X.7.1)

cards.sets7.2 = remove.choicesS(Y.7.1,cards.sets7.1)

# 2nd Best Choices --——-----—---——————————————————

# Construct Linear Predictor and Probabilities
prob.7.2 = prob.best(X.7.2,beta,1,3)
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# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y. 7.2 = draw.y(X.7.2,prob.7.2,1,3)

# Identify Best Choices
bchoice.7.2 = id.best(cards.sets7.2,Y.7.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())
X.7.3 = remove.choicesX(Y.7.2,X.7.2)

cards.sets7.3 = remove.choicesS(Y.7.2,cards.sets7.2)

# 3rd Best Choices ——————-————H—"-"H+"-"——"H—"Hm-"Hom""———-— "

# Construct Linear Predictor and Probabilities
prob.7.3 = prob.best(X.7.3,beta,1,2)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.7.3 = draw.y(X.7.3,prob.7.3,1,2)

# Identify Best Choices
bchoice.7.3 = id.best(cards.sets7.3,Y.7.3,1,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())

X.7.4 = remove.choicesX(Y.7.3,X.7.3)

cards.sets7.4 = remove.choicesS(Y.7.3,cards.sets7.3)

# Worst Choices ——————=————————————————— -
bchoice.7.4=t(cards.sets7.4)

B RESUL TS —mmmm oo oo oo -

# Display cards in order presented by choice set ----———----""""-"-""""""""""--
cards.sets7.1

# Identify cards in order presented by choice set ----————---""-"-""-"""""""-"-"-—
Y.bw.7 = id.bestworst(Y.7.1,cards.sets7.1,bchoice.7.4)

# Display cards in ranked order by choice set --—-—"-——""""-"-"-"""""""""""""""--
cards.ranked.7 = t(rbind(bchoice.7.1,bchoice.7.2,bchoice.7.3,bchoice.7.4))
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# ACCOUNTING: Resolved Pairs -------------------- - - - - - - - - - —\—\—(\—«(—(——"(——(——(————————

# Update resolved pair counts
resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.7)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY —— oo oo oo oo oo o e e

# To account for card ’wins’ derived from observed ’wins’ using the property of
# transitivity, e.g., if 1>2 two times and 2>3 one time then 1>3 three times
resolvedpairs.counts <- transitivity(resolvedpairs.counts)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs
# which(): gives indices of matrix (by column) where ==
unresolvedpairs_num = length(which(resolvedpairs==0))

# "Middle" choices from choice sets 1 and 2
cards.sets8.1 = matrix(cards.ranked.1_4[3:4,2:3], nrow=1, ncol=4)

# Attributes of best cards

X.8.1 = data.matrix(subset(data.frame(attribdatal,3:12])
, (Card == cards.sets8.1[1,1])|(Card == cards.sets8.1[1,2])
| (Card == cards.sets8.1[1,3])|(Card == cards.sets8.1[1,4])
,—c(Card)) ,rownames.force = NA)

# Best Choices - ——————————"""-""""""""""""""""""""—

# Construct Linear Predictor and Probabilities
prob.8.1 = prob.best(X.8.1,beta,1,4)

# Draw Y as a Multinomial Response
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# Apply random multinomial function to each row of prob matrix
Y.8.1 = draw.y(X.8.1,prob.8.1,1,4)

# Identify Best Choices
bchoice.8.1 = id.best(cards.sets8.1,Y.8.1,1,4)

# Remove best choices (Y.b_vec==0 for other than best choices)
# Convert obs matrix to a vector by row (use t())

X.8.2 = remove.choicesX(Y¥.8.1,X.8.1)

cards.sets8.2 = remove.choicesS(Y.8.1,cards.sets8.1)

# 2nd Best Choices —————"——1—1——H""—7"—H—"Hm—"Hmm"nm""Hrm—"Hm—rHmm"om-—-—H—--——————"""\" "

# Construct Linear Predictor and Probabilities
prob.8.2 = prob.best(X.8.2,beta,1,3)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.8.2 = draw.y(X.8.2,prob.8.2,1,3)

# Identify Best Choices
bchoice.8.2 = id.best(cards.sets8.2,Y.8.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())
X.8.3 = remove.choicesX(Y.8.2,X.8.2)

cards.sets8.3 = remove.choicesS(Y.8.2,cards.sets8.2)

# 3rd Best Choices —————"+1"-"1+1""H-"1n"-"—H—"-—"H—-"nm-"—r—Hm"om-——H—-————— "

# Construct Linear Predictor and Probabilities
prob.8.3 = prob.best(X.8.3,beta,1,2)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.8.3 = draw.y(X.8.3,prob.8.3,1,2)

# Identify Best Choices
bchoice.8.3 = id.best(cards.sets8.3,Y.8.3,1,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())
X.8.4 = remove.choicesX(Y.8.3,X.8.3)

cards.sets8.4 = remove.choicesS(Y.8.3,cards.sets8.3)
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# Worst Choices ——-——————H—1H+-"-—1H—"H+—"H—"H—"H—m"H—"—-"—— -
bchoice.8.4=t(cards.sets8.4)

# RESULTS ———mmmmmm oo oo oo oo o

# Display cards in order presented by choice set ———""—""-"-"-""""""""""""""""--
cards.sets8.1

# Identify cards in order presented by choice set ---——------"-"-"-"""""""""""-—
Y.bw.8 = id.bestworst(Y.8.1,cards.sets8.1,bchoice.8.4)

# Display cards in ranked order by choice set --——-——""7""""""""""""""""""""--
cards.ranked.8 = t(rbind(bchoice.8.1,bchoice.8.2,bchoice.8.3,bchoice.8.4))

# ACCOUNTING: Resolved Pairs ————————-————"———————

# Update resolved pair counts
resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked.8)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY —— o m oo oo oo oo oo oo

# To account for card ’wins’ derived from observed ’wins’ using the property of
# transitivity, e.g., if 1>2 two times and 2>3 one time then 1>3 three times
resolvedpairs.counts <- transitivity(resolvedpairs.counts)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs
# which(): gives indices of matrix (by column) where ==
unresolvedpairs_num = length(which(resolvedpairs==0))

cards.sets.all = rbind(cards.setsl1_4.1,cards.sets5.1,cards.sets6.1
,cards.sets7.1,cards.sets8.1)
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Y.bw.all = rbind(Y.bw.1_4,Y.bw.5,Y.bw.6,Y.bw.7,Y.bw.8)

cards.ranked.all = rbind(cards.ranked.1_4,cards.ranked.5,cards.ranked.6
,cards.ranked.7,cards.ranked.8)

X.all = rbind(X.1_4.1,X.5.1,X.6.1,X.7.1,X.8.1)

# CHECK IF ADDITIONAL CHOICE SETS NEEDED ----------———————-————————————————————
# List unresolved pairs -—-——————-----——————————————————————————————————————————
checklist = listunresolvedpairs(resolvedpairs)

# If list of unresolved pairs is not empty then attempt to create more choice sets
if (length(checklist) != 0) {

# CREATE ADDITIONAL CHOICE SETS —=-——=—mm=mmmmmmmmmmmmmm oo
repeat{

# Create a list of unresolved card pairs ————————————————————————————————-
pairlist = listunresolvedpairs(resolvedpairs)
if (length(pairlist) == 0) {break}

# Input: list of pairs
# Output: new choice set
ncs.l=matrix(c(newchoiceset(pairlist)), ncol = 4)

# If new choice set contains a set of unique items
if (sum(duplicated(c(ncs.1))) == 0){

# Attributes of cards in new choice set

X.1 = data.matrix(subset(data.frame(attribdatal,3:12])
, (Card == ncs.1[1,1])|(Card == ncs.1[1,2])
| (Card == ncs.1[1,3])|(Card == ncs.1[1,4])
,—c(Card)) ,rownames.force = NA); X.1

# Best Choices - ----—-—1—————"—"H—-"H—""-""-"""—"""""""—"" " ———

# Construct Linear Predictor and Probabilities
prob.1 = prob.best(X.1,beta,1,4)
rowSums (prob.1)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.1 = draw.y(X.1,prob.1,1,4)

# Identify Best Choices
bchoice.l = id.best(ncs.1,Y.1,1,4)
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# Remove best choices (Y.b_vec==0 for other than best choices)
# Convert obs matrix to a vector by row (use t())

ncs.2 = remove.choicesS(Y.1,ncs.1)

X.2 = remove.choicesX(Y.1,X.1)

# 2nd Best Choices —————1—1f"1H#—H—1+"+"H"+-"+"-"1n-"1—"H—-"m"-"m-"-"r"m-——-—o————"" """ ——

# Construct Linear Predictor and Probabilities
prob.2 = prob.best(X.2,beta,1,3)
rowSums (prob.2)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.2 = draw.y(X.2,prob.2,1,3)

# Identify Best Choices
bchoice.2 = id.best(ncs.2,Y.2,1,3)

# Remove best choices

# Convert obs matrix to a vector by row (use t())
ncs.3 = remove.choicesS(Y.2,ncs.2)

X.3 = remove.choicesX(Y.2,X.2)

# 3rd Best Choices ————————————————————————— -

# Construct Linear Predictor and Probabilities
prob.3 = prob.best(X.3,beta,1,2)
rowSums (prob.3)

# Draw Y as a Multinomial Response
# Apply random multinomial function to each row of prob matrix
Y.3 = draw.y(X.3,prob.3,1,2)

# Identify Best Choices
bchoice.3 = id.best(ncs.3,Y.3,1,2)

# Remove best choices

# Convert obs matrix to a vector by row (use t())
X.4 = remove.choicesX(Y.3,X.3)

ncs.4 = remove.choicesS(Y.3,ncs.3)

# Worst Choices ---—————+—H—1—"—H——H—"H—"H—"m-—H— o
bchoice.4=t(ncs.4)
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# RESULTS ————mmmmmm o oo oo

# Display cards in order presented by choice set --——————----—"-"""---——-
ncs.1

# Identify cards in order presented by choice set ---—----—"""""--"--
Y.bw = id.bestworst(Y.1,ncs.1,bchoice.4)

# Display cards in ranked order by choice set --————--—--—"------————-
cards.ranked = t(rbind(bchoice.1,bchoice.2,bchoice.3,bchoice.4))

# Update data of choice sets presented, best and worst choices
# and ranked choices

cards.ranked.all = rbind(cards.ranked.all,cards.ranked)
cards.sets.all = rbind(cards.sets.all,ncs.1)

Y.bw.all = rbind(Y.bw.all,Y.bw)

X.all = rbind(X.all,X.1)

# ACCOUNTING: Resolved Pairs ———-———-—————————————————————————————————

# Update resolved pair counts
resolvedpairs.counts <- resolvedpairs.counts.update(cards.ranked)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# TRANSITIVITY ——————mmmmmmm oo oo oo oo

# To account for card ’wins’ derived from observed ’wins’ using the

# property of transitivity, e.g., if 1>2 two times and 2>3 one time
# then 1>3 three times

resolvedpairs.counts <- transitivity(resolvedpairs.counts)

# Update indicator matrix of resolved pairs
resolvedpairs <- resolvedpairs.update(resolvedpairs.counts,resolvedpairs)

# Count number of unresolved pairs
# which(): gives indices of matrix (by column) where ==

unresolvedpairs_num = length(which(resolvedpairs==0))

} else if (sum(duplicated(c(ncs.1))) > 0) {break}
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# Remove "NAs" from count matrix diagonal for arithmetic
for (j in 1:16)1
resolvedpairs.counts[j,j] = 0

}

# Setup an empty scoring matrix
scores = matrix(0, nrow = 16, ncol = 16)

# Score the combination of cards {i,j}

# To handle conflicting wins:

# Element scores[i,j] indicates whether or not (1/0) card i
# won or lost to card j by majority rule

# Card pairs that are unresolved get a score of 0.5

for (i in 1:15){
for (j in (i+1):16) {
denom = resolvedpairs.counts[i,j] + resolvedpairs.counts[j,i]
win_percent = resolvedpairs.counts[i,j]/denom

if (win_percent>0.5 & denom !=0){
scores[i,j] =1

} else if (win_percent==0.5 & denom !=0){
scores[i,j] = 0.5

} else {
scores[i,j] =0

}

scores[j,i]=1-scores[i,j]

# Check unsolved pairs and score as 0.5
for (i in 1:15){
for (j in (i+1):16) {
if (resolvedpairs[i,jl==0){ # card pair unresolved
scores[i,j] = 0.5
}
scores[j,il=1-scores([i,j]
}
}

122



# Count number of times a card beat other cards
Ycounts<-rowSums (scores, na.rm=TRUE)

# Display unresolved pairs

unresolvedpairs = listunresolvedpairs(resolvedpairs)
# Convert X.all to a matrix

X.all = matrix(X.all, ncol=9)

output<-list(Y=Y.bw.all, cardsets = cards.sets.all, X=X.all, beta=beta

, ranked = cards.ranked.all, Yscores=Ycounts)
return(output)
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B.1.2 (002) Simulate Data - Random Effects.R

=+

Author: Anna Liza Antonio
Developed using R version 3.3.1
Contingencies: None

H* H=

# Program Description --—--—----------————————————————
The purpose of this code is to:
Code to generate random effects to be used in script, "(003) Simulate Data.R"

H* =

# Load the Required Libraries -----—————-"--—"-"""""""""""""""""""""""""-----—
library (MASS)

# Specifications of the Data ------——1—7"H+"-"+"7-7---—-—"7""""""""""""""-

nsubj = 100 # number of subjects
nattrib = 9 # number of attributes which describe each alternative
ndatasets = 1000 # number of datasets to generate

# Define means for multivariate normal distribution of heterogeneity ———————-

## Population Parameters
popbeta = c(1,.3,1,1.5,.75,1.25,.5,.02,.8) # example
popbetamat = matrix(rep(popbeta,nsubj), nrow = nsubj, ncol = nattrib, byrow=TRUE)

# Random Effects for Each Subject ------------—-——-—14>&7>7171V-7----4»4-—"-""""""""""""--
# We generate nsubj*ndatasets rows of random effects and use every set of 100 rows
# in the matrix (beta) to generate each of the 1000 datasets

# Variance-covariance matrix for normal distribution of heterogeneity

a =1 # example

resigma = matrix(c(rep(c(a, rep(0, nattrib)), nattrib-1), a), ncol = nattrib)
remean = c¢(0,0,0,0,0,0,0,0,0)

set.seed(1234)

rebeta = mvrnorm(n=nsubj, remean, resigma)

beta = popbetamat+rebeta # use random effects betas

# Save the data -———-------————————————————
write.csv(beta,file="truebetas_n100000.csv")
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Appendix C

Proofs

This appendix presents work completed prior to the development of the Bayesian hierarchi-

cal model for discrete choice data of Chapter 6.

Statement 1. If X s distributed according to a standard Minimum FExtreme
Value, Type I Distribution(in =0 and 5 =1), then —X is distributed according

to a Mazximum Extreme Value, Type I Distribution (u=0 and [=1).

Proof. The Gumbel (Extreme Value, Type I) distribution has two forms: the minimum
extreme value distribution and the maximum extreme value distribution. If X is a random
variable having the standard minimum extreme value distribution, then X has probability

density function

f(x) = exp(z) exp(— exp(z)) (C.1)
and the cumulative density function

F(X)=1—exp(—exp(X)). (C.2)

If X is a random variable having the standard maximum extreme value distribution, then X

has probability density function

f(x) = exp(—x) exp(— exp(—x)) (C.3)

125



and the cumulative density function

F(X) = exp(—exp(—X)). (C.4)

We now show that if X is a random variable having the standard minimum extreme
value distribution, then -X is a random variable having the standard maximum extreme

value distribution.

Let Y = -X. Then

Fy(y) =F(Y <y)=F(-X <y) = F(X > —y) (C.5)
= 1-F(X < —y) (C.6)
=1— (1 — exp(—exp(—y))) (C.7)
= exp(— exp(—y)) (C.8)
and
_d F C.9
fyly) = & y(Y) (C.9)
d
= d—y[l — (1 — exp(—exp(—y)))] (C.10)
d
= d—y(exp(— exp(—y))) (C.11)
= exp(—y) exp(— exp(—y)). (C.12)
Hence, we see that Y = -X is a random variable having the standard maximum extreme
value distribution.
O
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Statement 2. The probability that respondent i chooses alternative j as worst

alternative from a choice set containing n alternatives is

__exp(=Vy)
> ke exp(—Vir)

P(Y; = j) (C.13)
Consider the random utility model. If we assume that the random components of utility,
the €;’s, are iid with a standard Gumbel distribution (minimum) then the probability of

individual ¢ choosing alternative j as worst or least preferred is

= P(Vij + € < Vig + €ig, for all k # j) (C.15)

Then conditional on ¢;;
P(Y; = jleij) = P(—eaw < Vie — Vij + €5, for all k # j) (C.17)

is the cumulative distribution for each €;; evaluated at V;; — Vi, + €;;. Because the €;,’s are
assumed to be independent, the cumulative distribution over all k£ # j is the product of the

individual cumulative distributions,
n

P(Y; = jle;) = H P(—eir < Vi — Vij + €55). (C.18)
k=1k#j

Then by Statement 1,

n

P(Yi=jley) = ] exp{—expl—(Vie — Vi — )]} (C.19)
k=1,k#j

Because the ¢;;’s are not given, the choice probability is the integral of P(Y; = jle;;) over
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all values of ¢;; weighted by the density, f(e;;). Then

P(Y;,=j) = /_OO P(Y; = jleij) f (i) des

oo

[ TI el - Vi - )}

OO k=1,k#j
- exp[—(—ey)] exp{ - exp[— (~e;)] e (€.20)
— [T expl-exp(V — Vie) exples)
T k=1,k#j
- exp(€;;) exp|— exp(€;;)]de;;.
Let u = —exp(e;;). Then du = — exp(€;;)de;; and the limits change from €;; = —oco to u =0

and ¢;; = 0o to u = —oo. Now we have that

PY;,=j)=— /00 ﬁ {exp [uexp(Vij - Vlk)] } exp(u)du (C.21)
0 k=1k#j

0 n
— /Oo exp{u [1 + oy exp(Vi; — Vzk)] }du. (C.22)

Finally, if we let w = u[l + D ke pny exXp(Vij — Vzk)} , then

dw = |1+ Zzzl’k# exp(V;; — %k)] du and the limits of integration change from u = 0 to

w =0 and u = —o00 to w = —o0o. We now have that
1 0
Pl =4)= 1+ Zzzl,k;&j exp(Vij — Vir) /—oo explw)dw (C23)
1
1 + Zzzl,k# exp(Vij — Vir) (C24)
1 —Vi;
T+ exp(Vij) D ke ey €xXP(—Vir) . EEEE—V@;; (C-25)
Vi
e jxgzzmij e (C.26)
p(—Vy) (C.27)

B ZL exp(—Vir)
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Thus, the probability respondent i chooses alternative j as worst alternative from a choice

set containing n alternatives is given by the closed form expression,

exp(—Vy;)

P =0) = s Vi)

(C.28)
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Statement 3. The probability of a preference order or full ranking for the rank
ordered logit model and the sequential best-worst logit is not the same for all

values of V; = X,[3.

Proof. Consider the alternatives A,B,C' and D and suppose that A > B > C' > D is the
observed preference order. Under the rank ordered logit model, the probability of observing

this preference order for a single respondent is

exp(Vy) exp(Vp) exp(Ve) exp(Vp)
j€{A,B,C,D} exp(V;) Zje{B,C,D} exp(V;) Eje{c,D} exp(V;) exp(Vp)

Pror = 5 (C.29)

Under the sequential best-worst logit model, the probability of observing the same preference

order is
Popy — exp(Va) exp(—Vp) exp(Vg) exp(—Ve) (C.30)
Zje{A,B,C,D} exp(Vj) Zje{B,C,D} exp(—Vj) Zje{B,C} exp(V;) exp(—Ve)
If we assume that Pror = Pspw, then
exp(Vy) exp(Vp) exp(Ve) _ (C.31)
ZjE{A,B,C’,D} exp(V;) Zje{B,C,D} exp(V;) Zje{C,D} exp(Vj)
exp(Vy) exp(—Vp) exp(Vp) (C.32)

Zje{A,B,C,D} exp(V;) Zje{B,C,D} exp(—Vj) Zje{B,C} exp(V;)

After expanding the sums in the denominators and rearranging the terms we have that

exp(Ve)(exp(—=Vg) + exp(—Ve) + exp(—Vp))(exp(Ve) + exp(Ve)) = (C.33)

exp(—Vp)(exp(Vi) + exp(Ve) + exp(Vp)) (exp(Ve) + exp(Vp)). (C.34)
Using the distributive property and properties of exponents yields

exp(2Ve — V) = exp(Vp). (C.35)
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If we equate exponents, then
2Ve = Ve =Vp (C.36)

which implies that

_VB+VD

Ve 5

(C.37)

Thus, the probabilities of observing the observed preference order (A > B > C' > D) under
the ROL and the SBW logit models are equivalent only in the case when Vi is the arithmetic

average of Vg and Vp. ]

Example. Let V4 = 4,V5 =3,Vo =2,Vp = 1. So, Vo = Y222 = 2. Then
PROL =0.313 = PSBW- (C?)S)
Now let V4 =4,V =3,V =2,Vp = 1.5. So, Vi = 2 is not equal to VB;—VD = 2.5. Then

Pror = 0.247 # 0.252 = Pspy. (C.39)
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Appendix D

Additional Tables and Figures
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Figure D.1: Posterior mean estimates of relative importance + 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.2: Posterior mean estimates of relative importance + 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.3: Posterior mean estimates of relative importance + 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.4: Posterior mean estimates of relative importance + 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.5: Posterior mean estimates of relative importance + 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.
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Figure D.6: Posterior mean estimates of relative importance + 1 SD and the LinEst estimates
of relative importance for ten randomly selected men. Attributes IDs correspond to attribute
names as follows: 1 = Lifespan, 2 = Bowel Issues, 3 = Cutting, 4 = Taking Action, 5 =
Others’ Support, 6 = Urinary Functioning, 7 = Sexual Functioning.

138



BIBLIOGRAPHY

Afifi, A., May, S., and Clark, V. (2003). Computer-Aided Multivariate Analysis, Fourth
Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.

Allenby, G. (1994). Introduction to hierarchical Bayes modeling. In Advanced Research

Techniques Forum, number D-05 in Tutorial Notes. American Marketing Association.

Allenby, G. (1995). Incorporating prior knowledge into the analysis of conjoint studies.
Journal of Marketing Research 32, 152-162.

Allenby, G. and Lenk, P. (1994). Modeling household purchase behavior with logistic normal
regression. Journal of the American Statistical Association 89, 1218-1231.

Allenby, G. and Rossi, P. (1999). Marketing models of consumer heterogeneity. Journal of
Econometrics 89, 57-78.

Allenby, G., Rossi, P., and McCulloch, R. (2005). Hierarchical Bayes models: a practitioners
guide. SSRN Working Paper.

Allison, P. and Christakis, N. (1994). Logit models for sets of ranked items. Sociological
Methodology 24, 199-228.

Ben-Akiva, M. and Bolduc, D. (1996). Multinomial probit with a logit kernel and a general

parametric specification of the covariance structure. Working Paper.

Bergland, O. (1994). Estimation of stated preferences from incomplete ranking. In Discussion
Papers, number D-05 in Discussion Paper Series. Department of Economics and Social

Sciences, Agricultural University of Norway.

Bi, J. (2012). A review of statistical methods for determination of relative importance of
correlated predictors and identification of drivers of consumer liking. Journal of Sensory

Studies 27, 87-101.

Boyd, J. and Mellmand, J. (1980). The effect of fuel economy standards on the U.S. auto-

motive market: A hedonic demand analysis. Transportation Research 14A, 367-378.
139



Bradlow, E. T., Weiss, R. E., and Cho, M. (1998). Bayesian identification of outliers in

computerized adaptive tests. Journal of the American Statistical Association 93, 910-919.

Brownstone, D. and Train, K. (1999). Forecasting new product penetration with flexible

substitution patterns. Journal of Econometrics 89, 109-129.

Campbell, D. and Hess, S. (2010). Outlying sensitivities in discrete choice data: Conse-

quences and remedies, working paper.

Cardell, N. and Dunbar, F. (1980). Measuring the societal impacts of automobile downsizing.
Transportation Research 14A, 423-434.

Carson, R. and Louviere, J. (2011). A common nomenclature for stated preference elicitation

approaches. Enviromental and Resource Economics 49, 539-559.

Chaloner, K. (1991). Bayesian residual analysis in the presence of censoring. Biometrika 78,

637-644.

Chaloner, K. (1994). Residual analysis and outliers in Bayesian hierarchical models. In
Smith, A. and Freeman, P., editors, Aspects of Uncertainty, pages 149-157. Chichester
Wiley.

Chaloner, K. and Brant, R. (1988). A Bayesian approach to outlier detection and residual
analysis. Biometrika 75, 651-659.

Chapman, R. and Staelin, R. (1982). Exploiting rank ordered choice set data within the
stochastic utility model. Journal of Marketing Research 19, 288-301.

Cheng, S. and Long, J. S. (2007). Testing for iia in the multinomial logit model. Sociological
Methods & Research 35, 583-600.

Crabbe, M. and Vandebroek, M. (2011). Improving the efficiency of individualized designs
for the mixed logit choice model by including covariates. Computational Statistics and

Data Analysis 56, 2059-2072.

140



Dahan, E. and Saigal, C. (2012). The Voice of the Patient. In Proceedings of the Sawtooth

Software Conference, Orlando, Florida.

DeBekker-Grob, E. W., Ryan, M., and Gerard, K. (2012). Discrete choice experiments in

health economics: A review of the literature. Health Economics 21, 145-172.

Dey, D. K., Chen, M.-H., and Chang, H. (1997). Bayesian approach for nonlinear random
effects models. Biometrics 53, 1239-1252.

Dowsey, M. M., Scott, A., Nelson, E. A., Li, J., Sundararajan, V., Nikpour, M., and Choong,
P. F. M. (2016). Using discrete choice experiments as a decision aid in total knee arthro-

plasty: study protocol for a randomised controlled trial. Trials 17, 1-10.

Farrel, P., Groshen, S., MacGibbon, B., and Tomberlin, T. (2012). Outlier detection for a
hierarchical Bayes model in a study of hospital variation in surgical procedures. Statistical

Methods in Medical Research 19, 601-619.

Finn, A. and Louviere, J. (1992). Determining the appropriate response to evidence of public

concern: the case of food safety. Journal of Public Policy and Marketing 11, 12-25.

Geisser, S. (1980). Discussion of sampling and Bayes inference in scientific modelling and

robustness(box, 1980). Journal of the Royal Statistical Society: Series A 143, 416417.

Geisser, S. (1987). Influential observations, diagnostics and discovery tests. Journal of

Applied Statistics 14, 133-142.

Geisser, S. (1989). Predictive discordancy tests for exponential observations. Canadian

Journal of Statistics 17, 19-26.

Geisser, S. (1993). Predictive Inference. Chapman & Hall/CRC Monographs on Statistics
& Applied Probability. Taylor & Francis.

Gelfand, A. (1996). Model determination using sampling-based methods. In Gilks, W.,
Richardson, S., and Spiegelhalter, D., editors, Markov Chain Monte Carlo in Practice,

Chapter 9, pages 145-161. Chapman & Hall, Boca Raton, FL.
141



Gelfand, A., Smith, A., and Lee, T.-M. (1992). Bayesian analysis of constrained parameter
and truncated data problems using Gibbs samplings. Journal of the American Statistical

Association 87, 523-532.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.

Bayesian Analysis 1, 515-533.

Giergiczny, M., Valasiuk, S., Czajkowski, M., De Salvo, M., and Signorello, G. (2012).
Including cost income ratio into utility function as a way of dealing with “exploding”

implicit prices in mixed logit models. Journal of Forest Economics 18, 370-380.

Green, P. and Rao, V. (1971). Conjoint measurement for quantifying judgmental data.
Journal of Marketing Research 8, 355-363.

Greene, W. H., Hensher, D. A.; and Rose, J. (2006). Accounting for heterogeneity in the
variance of unobserved effects in mixed logit models. Transportation Research Part B:

Methodological 40, 75-92.

Gromping, U. (2015). Variable importance in regression models. Wiley Interdisciplinary

Reviews: Computational Statistics 7, 137-152.

Halbrendt, C., Wang, Q., Fraiz, C., and O’Dierno, L. (1995). Marketing problems and op-
portunities in Mid-Atlantic seafood retailing. American Journal of Agricultural Economics

77, 1313-1318.

Harris, I. R. and Burch, B. D. (2005). Measuring relative importance of sources of variation

without using variance. The American Statistician 59, 217-222.

Hauber, A. B., Gonzalez, J. M., Groothuis-Oudshoorn, C. G., Prior, T., Marshall, D. A,
Cunningham, C., [Jzerman, M. J., and Bridges, J. F. (2016). Statistical methods for the
analysis of discrete choice experiments: A report of the ISPOR conjoint analysis good

research practices task force. Value in Health 19, 300-315.

142



Hauser, J. and Rao, V. (2002). Conjoint analysis, related modeling and applications. Mar-
keting Research and Modeling: Progress and Prospects International Series in Quantitative

Marketing 14, 141-168.

Hausman, J. and McFadden, D. (1984). Specification tests for the multinomial logit model.
Econometrica 52, 1219-1240.

Hensher, D. and Greene, W. (2003). The mixed logit model: The state of practice. Trans-
portation 30, 133-176.

Hernandez-Alava, M., Brazier, J., Rowen, D., and Tsuchiya, A. (2013). Common scale val-
uations across difference preference-based measures: Estimation using rank data. Medical

Decision Making 6, 839-852.

Hsiao, C. (2003). Analysis of Panel Data. Cambridge University Press, Cambridge, United

Kingdom.

Jaynes, J., Wong, W.-K., and Xu, H. (2016). Using blocked fractional factorial designs to

construct discrete choice experiments for healthcare studies. Statistics in medicine .

Johnson, F. R., Lancsar, E., Marshall, D., Kilambi, V., Miihlbacher, A., Regier, D. A., Bres-
nahan, B. W., Kanninen, B., and Bridges, J. F. (2013). Constructing experimental designs
for discrete-choice experiments: Report of the ISPOR conjoint analysis experimental de-

sign good research practices task force. Value in Health 16, 3 —13.

Johnson, J. W. and Lebreton, J. M. (2004). History and use of relative importance indices

in organizational research. Organizational Research Methods 7, 238-257.

Johnson, R. (2000). Understanding HB: An intuitive approach. Sawtooth Software Research

Paper Series .

Kotz, S. and Nadarajah, S. (2000). Exztreme Value Distributions: Theory and Applications.

World Scientific Publishing Company, 1st edition.

143



Kruk, M. E., Riley, P. L., Palma, A. M., Adhikari, S., Ahoua, L., Arnaldo, C., Belo, D. F.,
Brusamento, S., Cumba, L. I. G., Dziuban, E. J., El-Sadr, W. M., Gutema, Y., Habtamu,
Z., Heller, T., Kidanu, A., Langa, J., Mahagaja, E., McCarthy, C. F., Melaku, Z., Shodell,
D., Tsiouris, F., Young, P. R., and Rabkin, M. (2016). How can the health system retain
women in HIV treatment for a lifetime? A discrete choice experiment in Ethiopia and

Mozambique. PLoS ONE 11, 1-14.

Kruskal, W. and Majors, R. (1989). Concepts of relative importance in recent scientific

literature. The American Statistician 43, 2—6.

Lancsar, E. and Louviere, J. (2008). Estimating individual level discrete choice models and
welfare measures using best worst choice experiments and sequential best worst MNL. In

CenSoC Working Paper Series, number 08-003.

Lancsar, E., Louviere, J., Donaldson, C., Currie, G., and Burgess, L. (2013). Best worst dis-
crete choice experiments in health: Methods and application. Social Science and Medicine

76, 74-82.

Louviere, J. (1998). Conjoint analysis modeling of stated preferences: A review of theory,

methods, recent developments and external validity. Journal of Transport Economics and

Policy 31, 375-142.

Louviere, J., Street, D., Burgess, L., Wasi, N., Islam, T., and Marley, A. (2008). Modelling
the choices of individual decision-makers by combining efficient choice experiment designs

with extra preference information. Journal of Choice Modelling 1, 128-163.

Louviere, J. J., Pihlens, D., and Carson, R. (2011). Design of discrete choice experiments:
A discussion of issues that matter in future applied research. Journal of Choice Modelling

4,1-8.

Luce, R. and Tukey, J. (1964). Simultaneous conjoint measurement: A new type of funda-

mental measurement. Journal of Mathematical Psychology 1, 1-27.

144



Lusk, J. L. and Norwood, F. B. (2005). Effect of experimental design on choice-based conjoint

valuation estimates. American Journal of Agricultural Economics 87, 771-785.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Zarembka,
P., editor, Frontiers in Economics, pages 105-142. Wiley, New York.

McFadden, D. and Train, K. (2000). Mixed MNL models for discrete response. Journal of
Applied Economics 5, 447-470.

Mehndiratta, S. (1996). Time-of-day Effects in Inter-city Business Travel. PhD thesis,

Berkley, California.

Orme, B. (2010). Getting Started with Conjoint Analysis: Strategies for Product Design and
Pricing Research. Research Publishers LLC, Madison, WS, 2nd edition. 29-37.

Orme, B. and Howell, J. (2009). Application of covariates within Sawtooth Software’s
CBC/HB program: theory and practical example. In Sawtooth Software Conference Pa-
pers (2009), Sequoia, WA. Sawtooth Software.

Paul E. Green, V. S. (1978). Conjoint analysis in consumer research: Issues and outlook.

Journal of Consumer Research 5, 103-123.

Pettit, L. (1990). The conditional predictive ordinate for the normal distribution. Journal
of the Royal Statistical Society, Series B 52, 175-184.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using
Gibbs sampling.

Rao, V. R. (2008). Developments in conjoint analysis. In Wierenga, B., editor, Handbook of
Marketing Decision Models, pages 23-53. Springer US, Boston, MA.

Retzer, J., Soofi, E., and Soyer, R. (2009). Information importance of predictors: Concept,
measures, Bayesian inference, and applications. Computational Statistics € Data Analysis

53, 2363-2377.

145



Revelt, D. and Train, K. (1998). Mixed logit with repeated choices: Households’ choices of

appliance efficiency level. Review of Economics and Statistics 53, 647-657.

Revelt, D. and Train., K. (2000). Customer-specific taste parameters and mixed logit: House-
holds’ choice of electricity supplier. Economics Working Papers E00-274, University of
California at Berkeley.

Rigby, D. and Burton, M. (2006). Modeling disinterest and dislike: A bounded Bayesian
mixed logit model of the UK market for GM food. Environmental Resource Economics

33, 485-5009.

Rossi, P. and Allenby, G. (1993). A Bayesian approach to estimating household parameters.
Journal of Marketing Research 30, 171-182.

Ryan, M., Gerard, K., and Amaya-Amaya, M. (2008). Using Discrete Choice Experiments
to Value Health and Healthcare. Springer, Dordrecht, The Netherlands, 1st edition.

Saigal, C. and Dahan, E. (2012). Voice of the Patient. In Proceedings of the Sawtooth
Software Conference 2012, pages 153-164. Sawtooth Software, Inc.

Soofi, E. S., Retzer, J. J., and Yasai-Ardekani, M. (2000). A framework for measuring the
importance of variables with applications to management research and decision models.

Decision Sciences 31, 595-625.

Sun, M., Lebanon, G., and Kidwell, P. (2012). Estimating probabilities in recommendation
systems. Journal of the Royal Statistical Society: Series C' (Applied Statistics) 61, 471-492.

Taneva, B., Giesen, J., Zolliker, P., and Mueller, K. (2008). Choice based conjoint analysis:
Discrete choice models vs direct regression. In Proceedings of the ECML PKDD Workshop

on Preference Learning.

Train, K. (2001). A comparison of hierarchical Bayes and maximum simulated likelihood for

mixed logit. Working Paper No. E00-278, University of California, Berkeley .

146



Train, K. (2009). Discrete Choice Methods With Simulation. Cambridge University Press,
New York, NY, 2nd edition.

van Dijk, J. D., Groothuis-Oudshoorn, C. G. M., Marshall, D. A., and IJzerman, M. J.
(2016). An empirical comparison of discrete choice experiment and best-worst scaling to
estimate stakeholders: risk tolerance for hip replacement surgery. Value in Health 19,

316-322.

Velandia, M., Lambert, D., Mendieta, M., Roberts, R., Larson, J., English, B., Rejesus,
R., and Mishra, A. (2011). Factors influencing cotton farmers’ perceptions about the
importance of information sources in precision farming decisions. In Proceedings of the
AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, July, 2011, Selected

Paper Series. Agricultural & Applied Economics Association.

Viney, R., Lancasa, E., and Louviere, J. (2002). Discrete choice experiments to measure
consumer preferences for health and healthcare. Pharmacoeconomics Outcomes Research

4, 89-96.

Weiss, R. (1994). Pediatric pain, predictive inference, and sensitivity analysis. Evaluation

Review 18, 651-677.

Weiss, R. (1996). An approach to Bayesian sensitivity analysis. Journal of the Royal Statis-
tical Society. Series B (Methodological) 58, 739-750.

Wittink, D. R., Krishnamurthi, L., and Nutter, J. B. (1982). Comparing derived importance

weights across attributes. Journal of Consumer Research 8, 471-474.

Wittink, D. R., Krishnamurthi, L., and Reibstein, D. J. (1990). The effect of differences in

the number of attribute levels on conjoint results. Marketing Letters 1, 113-123.

147





