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ABSTRACT OF THE DISSERTATION

Using Competitive Swarm Optimizer with Mutated Agents to Find Optimal Experimental

Designs

by

Zizhao Zhang

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2020

Professor Weng Kee Wong, Chair

Implementing optimal design can provide the most accurate statistical inference with min-

imal cost. However, optimal designs for high-dimensional models or complicated nonlinear

models can be hard to find. I propose a novel swarm algorithm, called competitive swarm op-

timizer with mutated agents (CSO-MA), to search for optimal designs for high-dimensional

and complicated nonlinear models that are useful for biomedical studies. They include logis-

tic models, Poisson-type models with multiple interacting covariates and some factors may

have correlated random effects. I first show the proposed algorithm outperforms several

state-of-the-art algorithms using benchmark functions commonly used in the engineering

literature. I then show it can either perform as efficiently as some current algorithms used

in statistics for finding optimal designs or outperform several of its competitors. Addition-

ally, I find some of the claimed optimal designs in the literature are not optimal by showing

CSO-MA-generated designs have higher statistical efficiency. Since the bulk of design work

in the literature concerns low-dimensional models, my work has the potential to break new

ground, especially in the era of big data, where, increasingly, it is more realistic to use more

complex models to reflect reality.

The proposed algorithm is a general-purpose optimization algorithm, so it is flexible

and can find exact and approximate designs, with and without constraints. In particular,

it can efficiently search for different types of optimal designs, including Bayesian optimal

ii



designs, which are especially challenging to find when there are multiple factors and there

are multi-dimensional integrals involved in the optimization problem. The results from my

research will provide new, more realistic and better quality statistical experimental designs

for biomedical researchers at a minimal cost.
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PREAMBLE

Motivation and Research Scope

This preamble presents the motivation of my dissertation work and describes the scope

of my research and the organization of this dissertation.

Motivation

There are a number of factors that motivate the research in my dissertation. First, opti-

mal design ideas continue to gain popularity in many disciplines, especially in the biomedical

sciences. Using an optimal design instead of a non-optimal design can greatly enhance the

quality of the statistical inference and save costs at the same time. For example, uniform

designs that take an equal number of observations at equal intervals across the dose range in

a dose-response study may be intuitively appealing, but indiscriminate use of such a design

can be very inefficient under some criteria or models. In some research areas, such as in

toxicology, there is an increasing mandate to use a minimal number of animals in the labora-

tory. Practitioners who adopted optimal design ideas in their work can be rewarded as can

be seen from the following direct remarks by Verotta et al. (1988), who applied a D-optimal

design to estimate binding saturation curves of an enkephalin analog in rat brain:

“The results presented in this paper show that a D-optimal design can be used in binding experi-

ments to estimate binding parameters accurately with a much smaller number of experimental points

than needed by traditional designs. D-optimal designs need only a small number of support points,

generally equal to the number of unknown parameters (three in our model) for a correct estimate of

parameter values. Traditional saturation curves for binding experiments call for many more points

requiring large amounts of tissue, materials and work.”

1



In my work, I use several examples to show that an improper choice of experimental design

can seriously harm the efficiency of a study in terms of cost or sample size. However, finding

optimal design is not an easy task, especially for high-dimensional models with many factors.

One traditional approach is to use theoretical methods to find the optimal design analytically,

but this is only possible for relatively simple scenarios. More generally, in Chapter 2, I argue

that an analytical approach can be very limiting because most theoretical results no longer

hold when the model is slightly changed, or one of the assumptions is slightly violated. This

has also resulted in the bulk of papers in the optimal design literature only concerned with

models with a small number of factors. I am convinced that an algorithmic approach for

finding optimal design is both more practical and useful, and this goal has motivated me to

find effective and flexible algorithms that can find all types of optimal designs, especially for

high-dimensional models.

Researchers in engineering and computer science have been using swarm-based and other

nature-inspired metaheuristic algorithms to solve all kinds of optimization problems success-

fully. Their optimization problems all seem much more complex and they can have mixed

types of variables (continuous, discrete). The number of variables to optimize can be in the

hundreds or more. I find their algorithmic approaches very refreshing, exciting and inspiring.

Interestingly, such algorithms are rarely used to find optimal designs in statistics and the

mainstream researchers in statistics seem to have no or limited knowledge of nature-inspired

metaheuristic algorithms and modern evolutionary algorithms. Examples of such modern

algorithms are particle swarm, differential evolutionary, bat, ant colony, and cuckoo. To

date, the use of such optimization techniques and research in the area is still very intense

and rapidly evolving, so it is necessary to constantly keep abreast of their development and

the new ones that are continuously created. Since all these algorithms are general-purpose

optimization algorithms, I am interested in finding out how well these algorithms can find all

types of optimal designs for different types of statistical models, including high-dimensional

models with many interacting variables. The latter issue is particularly pertinent in the era

of big data, where statistical models tend to have more factors/variables to enhance their

prediction ability. My primary goal then is to learn nature-inspired metaheuristic algorithms
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and create one that is effective for finding all types of optimal designs for a wide variety of

models with multiple factors and interaction terms.

There are many algorithms for finding optimal designs in the statistical literature, but

many are limiting in scope and some, even popular ones, are no longer effective in the era

of big data when models are increasingly complex and high-dimensional with many factors

to optimize. In my work, I have developed a state-of-the-art algorithm named CSO-MA

and showed that it either outperforms or performs as well as many current algorithms. In

particular, I used it and showed that several so-called optimal designs in the literature are

actually not optimal. For example, in Chapters 4, Section 4.1, Chapter 5, Section 5.3, and

Chapter 6, Section 6.2, I show that many claimed-optimal designs in the literature are in fact

not optimal because the optimizers used to find them were based on traditional algorithms or

modified algorithms that were not good enough to find the true optimal designs. Additional

examples include the optimal exact designs found in Lall et al. (2018) using the popular

Fedorov exchange algorithm are not D-optimal as reported. I found that designs generated

by popular commercial software, such as JMP, are also not always optimal as claimed. In

particular, I show some of the designs generated by JMP are less efficient relative to those

found by CSO-MA. Additionally, I show my proposed algorithm is flexible and able to find

various types of optimal designs for different types of models that contain multiple interacting

variables, whether they are linear models or not and whether they contain random effects

or not. For instance, in Chapter 5, I use CSO-MA to search for a Bayesian hierarchical

model with a couple of random-effects terms for studying HIV dynamics. Both the model

and optimality criterion function are complicated and the computational procedure becomes

complex and challenging because it involves MCMC sampling to find the optimal design.

The major contributions in my dissertation work are the introduction (or re-introduction)

of modern metaheuristics to search for optimal designs and a new and effective algorithm

for finding various types of optimal designs for high-dimensional models. In addition, I have

demonstrated that the algorithm is flexible. It either performs better than other metaheuris-

tic algorithms and current algorithms in statistics, or it can find the optimal design when

traditional algorithms cannot. My algorithm is useful because it is a general-purpose algo-

3



rithm and the bulk of the reported optimal designs in the literature to date are only for

models with only a couple of variables, whose algorithms are usually specific.

Aims and Scope of the Research

My dissertation aims to develop effective methods that can solve challenging optimal

design problems in biomedical and public health studies. These problems not only involve

advanced statistical models but also relate to complicated design criteria. Existing methods

may not be powerful enough to provide solutions for a part of difficult problems. Once a

better design or an optimal design is found, it can instantly help to organize more effec-

tive experiments with great control of the experimental resources and a guarantee of high

experimental efficiency.

In the following chapters, I propose a new optimization algorithm, competitive swarm

optimizer with mutated agents (CSO-MA). A series of benchmark tests show that CSO-

MA is a very effective optimizer. Compared to many existing metaheuristic optimization

algorithms, it can find higher quality solutions without requiring a longer runtime. Unlike

the bulk of the work in optimal design literature that concerns low-dimensional models, I

apply CSO-MA to search for different types of optimal designs for high-dimensional models,

i.e., specifically, use CSO-MA to find

(i). locally D and c-optimal approximate designs for logistic, Poisson, and negative

binomial models with up to five factors and all pairwise interactions;

(ii). locally D and c-optimal approximate designs for longitudinal fractional polynomial

mixed models, logistic mixed models, Poisson mixed models, and negative binomial mixed

models;

(iii). locally G and extended D-optimal approximate designs for fractional polynomial

mixed models;

(iv). locally D-optimal approximate designs for high-dimensional logistic models applied

to a car refueling experiment;
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(v). locally D-optimal approximate designs for high-dimensional Poisson models applied

to measure the retention factor of the drug Sulindac;

(vi). fully Bayesian optimal designs for HIV dynamics models;

(vii). fully Bayesian optimal design for a hierarchical logistic model applied to a heart

defibrillator energy experiment.

Results (i)-(iii) are entirely new and represent a new ground of finding locally optimal

approximate designs. Prior related work on these models is limited in low-dimensional

cases, such as one or two factors. Results (iv) - (vii) are developed from real optimal design

applications. Compared to the original ones, I either find designs with better criterion values,

which means previous experimental strategies should be replaced, or extend the work to

models with more factors or interactions, providing a more precise estimation solution.

All these models have broad applications in biomedical studies and public health domains.

For instance, Poisson mixed models are useful for modeling patient recruitment in multiple

clinical centers or analyzing the number of days of hospital stays by patients or length of stay

for maternity needs (Wang et al., 2002; Anisimov, 2008); longitudinal models for analyzing

clinical data over time or tracking the rate of development of depression and psychological

distress (Ormel and Wohlfarth, 1991; Gross et al., 1994). However, compared with analysis

issues, design issues for such models are seriously under-addressed and are generally more

difficult to address because

• these models can be nonlinear and can have many interacting factors;

• design criteria may not be differentiable;

• some models have a very complicated Bayesian framework;

• these models may contain random effects, etc.

In my doctoral dissertation, I will show that CSO-MA is a useful algorithm for tackling

complicated optimal design issues and can produce new optimal designs for more realistic

models commonly used in biomedical experiments, clinical trials and in public health studies.
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Organization of my Dissertation

Chapter 1 introduces the fundamentals of optimal experimental design, including the

definitions of different design criteria, the use of equivalence theorem to confirm a design’s

optimality, and some important theoretical background. Chapter 2 reviews traditional algo-

rithms for finding various types of optimal designs, including observations that inspire my

doctoral research work. Chapter 3 proposes a new nature-inspired metaheuristic algorithm

called CSO-MA with details and shows it outperforms or performs just as well as other

competitors using many benchmark functions commonly used in engineering and computer

science. The performance measures include implementation speed, frequency of success and

quality of the solution. Chapter 4 applies CSO-MA to find locally optimal designs for high-

dimensional nonlinear models with biomedical applications. Chapter 5 uses CSO-MA to

find various types of optimal designs for more complicated nonlinear mixed models, includ-

ing very challenging Bayesian optimal designs. I also demonstrate some optimal designs

reported in the literature found by other algorithms are not optimal because CSO-MA can

find designs with better criterion values. Chapter 6 demonstrates CSO-MA’s flexibility by

showing it can search for locally optimal approximate designs for a variety of criteria, such

as G-optimality, which is not differentiable, and it can also find optimal exact designs more

effectively compared to other commonly-used methods. The conclusion of this dissertation

is given at the end of Chapter 6.
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CHAPTER 1

Basic Theory of Constructing Optimal Experimental

Designs for Statistical Models

This chapter reviews the background and fundamental theory of constructing different types

of optimal approximate designs and analytic tools to confirm the optimality of a design. I

use a couple of examples to illustrate how theory can be applied to find optimal designs for a

few commonly-used nonlinear models in the medical sciences and the advantages that come

with the use of an optimal design in practice.

1.1 Introduction

Optimal experimental designs are increasingly used in practice to rein in rising experimental

costs, especially in clinical and biomedical trials, industrial applications and beyond. For

instance, Berger and Wong (2009) provided a monograph that documents different applica-

tions of optimal designs to real problems. The problems range from biomedical studies to

social sciences, including one that determines the optimal allocation of water wells in the

Los Angeles basin.

Optimal design construction typically requires a design criterion and a fully parametric

model defined on a compact space, where observations can be taken subject to a pre-specified

fixed amount of budget, which usually translates to a fixed number of observations to be

taken. The scientific design questions are the optimal choice of locations or time points for

taking measurements from the design space, whether replications are needed and if so, how

many or how often subject to the budget restriction? These issues are important because a

poorly designed study can affect the efficiency of a design for making statistical inferences.
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For instance, researchers might collect white blood cell data from patients in a biomedical

study every hour for convenience. However, this strategy might not be the most efficient for

estimating the cell’s growth or decay rate. I provide examples in my dissertation to show

that the frequently used uniform designs, while appealing, should not be blindly implemented

because they can be inefficient. This means that they can require more observations and more

design points and still provide substantially less accurate inference than a more appropriately

constructed design.

Nonlinear models are broadly applied in biomedical or public health studies to describe

the relationship between the response variable and one or more independent factors. The

parameters enter the model nonlinearly and so the Fisher Information matrix depends on

the parameters that we wish to estimate. Since the design criterion is formulated in terms

of the information matrix, the optimization problem depends on the unknown parameters.

A simple approach to handle the problem is to find locally optimal designs that assume

nominal values of the model parameters are available. The unknown model parameters are

then replaced by the nominal values and the design variables are optimized. Chernoff (1953)

was the first to propose locally optimal designs with the understanding that such optimal

designs can crucially depend on the accuracy of the nominal values. In practice, a robustness

study must be carried out to ascertain the optimal design sensitivity to the nominal values

(Kiefer and Wolfowitz, 1959). Analytical derivation of the optimal designs for most models

are not possible because of the complexity of constrained optimization problems, unless the

model is relatively simple. For instance, closed-form descriptions of the D-optimal designs

for homoscedastic polynomial models are available, but the same assertion is no longer true

for fractional polynomial models.

Algorithms for finding different types of optimal designs are continuously proposed in the

literature and I review some of them later. Some can be shown to converge to the optimum

and many do not. Some are for solving only a certain type of design problem and others are

more flexible. Many require technical assumptions and some also require the design space to

be discretized. Almost all are developed for linear models and therefore, it is not surprising

when they fail to find an optimal design for a nonlinear model, especially when it is high
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dimensional. It is thus desirable to find algorithms that work well for finding different types of

optimal designs for a given model and also require minimal technical assumptions. The main

aim of my dissertation is to develop such an algorithm and use it to solve more challenging

optimal design problems of various types, including finding fully Bayesian optimal designs

for nonlinear mixed models. Optimal designs can help improve the quality of statistical

inference at a minimal cost. Biomedical studies are particularly expensive and so can benefit

substantially from a well-designed study.

1.2 Approximate Design

Throughout, we assume that a predetermined fixed number of observations N is to be taken

for the study. There are two types of designs: approximate and exact designs. I describe a

k-point approximate design first and denote a generic approximate design η by

η =

x1 x2 · · · xk

w1 w2 · · · wk

 .

Here xi is a design point of η, which is defined on a given compact design space X . The

dimension of xi depends on the number of factors in the model, and wi is the proportion of

observations to be taken at xi and subject to the constraint
∑k

i=1wi = 1. Thus approximate

designs are essentially probability measures defined on X . Such an approximate design is

implemented by taking [Nwi] observations at xi, where [Nwi] is the nearest integer to Nwi

and subject to [Nw1] + · · · + [Nwk] = N . For example, if an approximate design in a drug

study has two design points at x1 = 0.6/g and x2 = 0.9/g and the two proportions are 0.4

and 0.6, respectively, then we assign 40% of the patients to the dose x1 = 0.6/g and 60% of

the patients to the dose x1 = 0.9/g. This means that if N = 100, the design has 40 patients

receive the dose 0.6/g and 60 patients receive the dose 0.9/g.

In contrast, exact designs work directly with the number of replications at each dose. The

proportion wi is replaced by ni, the number of replications at dose xi, i = 1, . . . , k, subject

to n1 + · · · + nk = N . While these two optimization problems appear similar, technically,
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there is a big difference. Given a design criterion, finding the optimal approximate design

is a convex optimization problem and finding the optimal exact design is not. We can use

convex analysis tools to find and confirm the optimality of an approximate design but no

analytical tool is available to confirm the optimality of an exact design; see details later in

the chapter. In what is to follow, I focus on approximate designs but show in Chapter 6, my

proposed algorithm is flexible and can also find a variety of optimal exact designs.

Throughout I assume to have a univariate outcome y and there is a fully specified re-

gression model where the mean response is E(y) = f(x,θ) and defined on a user-specified

compact space X . The parameter θ ∈ Rp is an unknown p-dimensional model parameter

vector and a common goal is to find a design that estimates the parameter as accurately

as possible. The optimal approximate design for estimating the parameter θ can be found

under a unified framework if the design criterion is a convex or concave function.

1.2.1 Optimality Criteria

The statistical worth of a design is usually measured by the Fisher information matrix

M (η,θ), which is constructed from assumed model f(x,θ), along with the assumed error

distribution. This matrix is proportional to the negative expectation of the observed Hessian

matrix obtained by differentiating the log-likelihood function twice with respect to θ. The

optimality criterion is often formulated as a concave/convex function of the information

matrix, which I will assume to be non-singular for the purpose of this dissertation. Let Ω

be the set of all possible designs on space X , which is also a convex set. Below are a few

commonly-used design criteria in practice.

• A-optimality

This criterion minimizes the average variance of the estimates of the model parameters:

min
η∈Ω

trace[M−1(η,θ)].

• D-optimality
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This criterion minimizes the volume of the confidence ellipsoid for all model parameters:

max
η∈Ω

log{det[M (η,θ)]}.

• c-optimality

This criterion minimizes the asymptotic variance of a user-selected linear unbiased esti-

mator of a predetermined linear combination of model parameters cT θ:

min
η∈Ω

cTM−1(η,θ)c.

For linear regression models, it is easy to show M (η,θ) = σ−2(XTX), where X is the

design matrix and σ2 is the variance of the error term. For nonlinear models, their informa-

tion matrices depend on the unknown parameters in θ that require estimation. The simplest

way to overcome this problem is to assume nominal values for the unknown parameters are

available. Typically, the nominal values come from similar studies, pilot studies, or experts’

opinions. Because such optimal designs rely on the nominal values, they are called locally

optimal designs. Instead of using a single best guess of the values of the unknown parameters,

which might be risky if the guesses are inaccurate, a robust option is preferable.

One option is to find a pseudo-Bayesian optimal design and assume that θ follows a

user-selected prior distribution π(θ). A pseudo-Bayesian D-optimal design then maximizes

∫
θ∈Ξp

log{det[M(η,θ)]}π(θ)dθ,

where Ξp ⊆ Rp is a known set of all plausible values of θ. Pseudo-Bayesian optimal designs

for other alphabetic optimality can be formulated similarly. Searching for pseudo-Bayesian

optimal designs is more complicated than finding locally optimal designs because the high-

dimensional integration has to be carried out numerically and efficiently before optimization

can take place.

When there is good prior information on the model, another option is to implement a
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fully Bayesian optimal design to overcome the dependence of the information matrix on the

unknown parameters. This approach is gaining popularity and assumes that the user has

in mind a specific utility function U(η) appropriate for the problem. The Bayesian optimal

design, η∗, maximizes the expectation of the utility function U(η) with respect to the future

observation y and model parameter θ

η∗ = argmax
η∈Ω

E[U(η,y,θ)]

= argmax
η∈Ω

∫
y

∫
θ

U(η,y,θ)π(y,θ)dθdy.

The difficulty with this approach is that the integration can be complicated, high-

dimensional and there is no closed-form description of the Bayesian optimal design. It

is also not clear which numerical methods are best for tackling such optimization problems.

1.2.2 Examples

In this subsection, I use three simple examples to illustrate how an optimal experimental

design is determined.

Example 1. Consider a simple linear regression model

yi = θ0 + θ1xi + εi, εi
i.i.d∼ N (0, σ2), xi ∈ X = [−1, 1].

If the aim is to find the locally D-optimal approximate design and I assume it has

two design points x1 with weight w and x2 with weight 1 − w, the information matrix is

proportional to  1 wx1 + (1− w)x2

wx1 + (1− w)x2 wx2
1 + (1− w)x2

2

 .

A direct calculation shows the determinant is

w(1− w)(x1 − x2)2.
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Since the design space is [-1, 1], it is easy to see that the determinant (or log-determinant)

is maximized by setting x1 = −1.000, x2 = 1.000 and w = 0.500. Therefore, the two-point

D-optimal approximate design is

η1 =

−1.000 1.000

0.500 0.500

 ,

and the log-determinant is 0.000.

Example 2. Consider a Poisson regression model

log[E(yi)] = θ0 + θ1xi, xi ∈ X = [−1, 1].

Suppose I am interested to estimate θ1 in the model, which means the aim is to find the

locally c-optimal approximate design with cT = (0, 1). Since this is a nonlinear model,

nominal parameter values are required to find the optimal design and I set θ0 = 3.1, θ1 = 0.7.

I continue to assume a two-point locally c-optimal approximate design exists. Let the two

design points be x1 and x2 and let their corresponding weights be w and 1−w, respectively.

A direct calculation shows the information matrix is

M (η,θ) =

 weθ0+θ1x1 + (1− w)eθ0+θ1x2 weθ0+θ1x1x1 + (1− w)eθ0+θ1x2x2

weθ0+θ1x1x1 + (1− w)eθ0+θ1x2x2 weθ0+θ1x1x2
1 + (1− w)eθ0+θ1x2x2

2

 ,

and further calculation shows the asymptotic variance of the estimated parameter of interest

is proportional to

cTM−1(η,θ)c =
h1

h2

, (1.1)

where

h1 = weθ0+θ1x1 + (1− w)eθ0+θ1x2 ,

h2 = [weθ0+θ1x1+(1−w)eθ0+θ1x2 ][weθ0+θ1x1x2
1+(1−w)eθ0+θ1x2x2

2]−[weθ0+θ1x1x1+(1−w)eθ0+θ1x2x2]2.
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To minimize the variance, I take the partial derivatives of function (1.1) with respect to

the three variables x1, x2, w and set them to equal to zero. The solutions are x1 = −1.000,

x2 = 1.000 and w = 0.668. Therefore, the two-point c-optimal approximate design for

estimating θ1 is

η2 =

−1.000 1.000

0.668 0.332

 ,

and the criterion value cTM−1(η,θ)c is 0.051.

Example 3. Atkinson et al. (2007) considered a quadratic regression model without an

intercept given by

yi = θ1xi + θ2x
2
i + εi, εi

i.i.d∼ N (0, σ2), , xi ∈ X = [0, 1].

The purpose of the study was to estimate θ2 with minimum variance. This is also a c-optimal

design problem with cT = (0, 1).

I still assume that a two-point optimal approximate design exists with design points at

x1 and x2 (x1 < x2) and their weights are w and 1−w, respectively. It is straightforward to

show that the information matrix is proportional to

wx2
1 + (1− w)x2

2 wx3
1 + (1− w)x3

2

wx3
1 + (1− w)x3

2 wx4
1 + (1− w)x4

2

 .

It is easy to note that x2 must be 1. Otherwise, a scaling constant 1/x2 can be multiplied

into the above matrix to make x2 equal to 1 without affecting the choice of w. Therefore,

the estimated variance for θ2 is proportional to

1− w + wx2
1

w(1− w)x2
1(1− x1)2

. (1.2)

Because the aim is to estimate θ2 with minimum variance, I minimize function (1.2) with

respect to x1 and w. Taking the partial derivatives of function (1.2) with respect to the two

14



variables and then setting them equal to zero, I need to solve the following two equations

(x2
1 − 1)w(1− w)x2

1(1− x1)2 − x2
1(1− x1)2(1− 2w) = 0,

w2(1− w)x2
1(1− x1)2 − (1− w + wx2

1)w(1− w)(2x1 − 6x2
1 + 4x3

1) = 0.

It can be verified that the optimal approximate design is

η3 =

0.414 1.000

0.707 0.293

 .

1.3 Equivalence Theorem

In the last section, I show three simple examples for finding optimal designs within the class

of two-point design points. Are the resulting optimal designs still optimal among all designs

in Ω? Kiefer and Wolfowitz (1960) provided us with an equivalence theorem that can be

used to confirm whether an approximate design is optimal among all designs in Ω for linear

models. White (1973) extended the theorem to the case when we have nonlinear models.

Let φ be a concave optimality criterion formulated as a function of an approximate design

η and we want to maximize φ among all designs η in Ω. Given a statistical nonlinear model

with regression function f(x,θ), the Fréchet derivative of φ evaluated at information matrix

M (η,θ) in the direction of a degenerate design x ∈ Ω is

Fφ(M ,f ′Tf ′) = lim
ε→0+

1

ε
{φ[(1− ε)M + εf ′Tf ′]− φ(M )},

where I use M = M (η,θ) and f ′ = ∂f(x,θ)
∂θ

for simplicity.
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1.3.1 D-optimality

The criterion function of the local D-optimality φ = log det is concave with respect to the

information matrix (Pázman, 1980). It follows that

Fφ(M ,f ′Tf ′) = lim
ε→0+

1

ε
{φ[(1− ε)M + εf ′Tf ′]− φ(M )}

= lim
ε→0+

1

ε
{log det[(1− ε)M + εf ′Tf ′]− log det(M )}

= lim
ε→0+

1

ε
{log

det[(1− ε)M + εf ′Tf ′]

det(M )
}

= lim
ε→0+

1

ε
{log det[(1− ε)I + εf ′Tf ′M−1]}

= lim
ε→0+

1

ε
{log[(1− ε)p det(I +

ε

1− ε
f ′Tf ′M−1)]}

= lim
ε→0+

1

ε
{log[(1− ε)p(1 +

ε

1− ε
trace(f ′Tf ′M−1) +O(ε2))]}

= lim
ε→0+

1

ε
[p log(1− ε) +

ε

1− ε
trace(f ′Tf ′M−1) +O(ε2)]

= f ′TM−1f ′ − p.

Here I denotes the p × p identity matrix and M (η,θ) is the p × p is information matrix

for the p× 1 vector of parameters θ. By the Carathéodory theorem, every M(η,θ) can be

expressed as a convex combination of no more than p(p + 1)/2 elements of the form f ′Tf ′,

which provides the evidence that only derivative in the direction of matrices with the form

f ′Tf ′ should be considered.

The sensitivity function S(x,η) of the approximate design η is the directional derivative

of the D-optimality criterion evaluated at η in the direction of a degenerate design at x is

S(x,η) =
∂f(x,θ)T

∂θ
M (η,θ)−1∂f(x,θ)

∂θ
− p.

The equivalence theorem for D-optimality states the following statements are equivalent:

1. Design η∗ is locally D-optimal;

2. S(x,η∗) ≤ 0,∀x ∈ Ω, with equality at all design points in η∗.

16



Pázman (1986) provided us with an efficiency lower bound for evaluating a design’s

proximity to the D-optimal design without knowing the optimum. Suppose the maximum

value of a design’s sensitivity function over the design space is α. The D-efficiency lower

bound for this design is e−
α
p . This can be argued from the equivalence theorem; see Pázman

(1986) for details and proof of the equivalence theorem.

Two designs η1 and η2 can be compared using their relative D-efficiency. For local

D-optimality, the ratio

RE =

{
det[M (η1,θ)]

det[M (η2,θ)]

}1/p

measures how well design η1 does relative to design η2. If η2 is the D-optimal design, RE

is between 0 and 1. For instance, if RE = 0.5, this means the design η1 has to be replicated

twice to do as well as η2.

1.3.2 c-optimality

In some studies, the primary interest is not to estimate model parameters or some of them,

but the main interest is to estimate a function of the model parameters. As a simple example,

there may be a specific interest to estimate one of the several parameters, i.e., the goal is

to estimate, say, θi in θ rather than estimating them all. One can similarly derive the

corresponding sensitivity function for c-optimality and verified that it is given by

S(η,x) = [
∂f(x,θ)T

∂θ
M−1(η,θ)c]2 − cTM−1(η,θ)c.

A similar equivalence theorem for c-optimality can be similarly derived: a design η∗ is

locally c-optimal if and only if the curve of the sensitivity function is below the zero horizontal

line and touches zero at all design points of η∗. The c-efficiency of design η1 relative to η2

is cTM−1(η2,θ)c
cTM−1(η1,θ)c

.
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1.3.3 Examples

Following the three examples shown in Section 1.2.2, I continue to display the sensitivity

function plots of three designs η1, η2 and η3 in Figure 1.1 and they confirm each design’s

optimality based on the equivalence theorem.

Figure 1.1: Left: the D-sensitivity function of design η1 in Example 1 on the design space
[-1, 1]; middle: the c-sensitivity function of design η2 in Example 2 on the design space [-1,
1]; right: the c-sensitivity function of design η3 in Example 3 on the design space [0, 1].

Suppose I propose to use a uniform design η4 for the two models in Example 1 and

Example 2 (because they are defined on the same design space [−1, 1]), which is

η4 =

−1.000 −0.500 0.000 0.500 1.000

0.200 0.200 0.200 0.200 0.200

 .

This is a popular design strategy in many studies due to its ease of use. I can calculate

its D-efficiency relative to η1 and its c-efficiency relative to η2, which are 70.7% and 10.2%,

respectively. Therefore, we should seriously consider the design for each experiment and

remind ourselves that uniform designs may not be the best choice.

The D and c-sensitivity functions of design η4 are shown in Figure 1.2, which confirm

that η4 is not optimal for the two models.
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Figure 1.2: Left: the D-sensitivity function of design η4 for the linear regression model in
Example 1 on the design space [-1, 1]; right: the c-sensitivity function of design η4 for the
Poisson regression model in Example 2 on the design space [-1, 1].

1.4 Nonlinear Models for Biomedical Applications

I am particularly attracted and interested to work on few types of nonlinear models. They are

the logistic regression model, Poisson regression model and the negative binomial regression

model. They are generalized linear models and have a broad range of applications across

various domains. The logistic model is often used for modeling binary response variable and

the other two are especially useful for modeling count data.

The logistic regression model has a binary response variable y, taking values 0 or 1 with

one or more factors x. The mean response function is

E(y) =
1

1 + exp(−θTx)
= f(x,θ), (1.3)

where θ ∈ Rp is the parameter vector of interest. Applications of the logistic model and its

generalization to 3 or 4-parameter models are plentiful across disciplines; see, for example,

Murrough et al. (2013); Stein et al. (2013), and Ribba et al. (2014). Specific examples

include analyzes of soybean growth data using a three-parameter logistic model in Davidian

and Giltinan (1993) and predicting coronary artery disease in Kurt et al. (2008).

The Poisson regression model is commonly used to study the count data and ratio data.
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It assumes the response variable follows a Poisson distribution with the mean equal to

E(y) = exp(θTx) = f(x,θ). (1.4)

An interesting application of an extension of the Poisson regression model is illustrated

in Lambert (1992), where it was used for detecting defects in the manufacturing process.

There are many other applications and generalizations of the Poisson to interesting and

diverse applications; see, for instance, Hu et al. (2012, 2007) and Kauhl et al. (2015).

The negative binomial regression model extends the Poisson model by accommodating

for over-dispersed or under-dispersed data. We model the mean of a count outcome y and

its relationship with a vector of independent variables x as follows

E(y) = exp(θTx) = f(x,θ) and Var(y) = exp(θTx)[1 + a exp(θTx)]. (1.5)

Here a is the dispersion parameter; if a > 0, the variance exceeds the mean and the data is

over-dispersed and if a < 0, the data is under-dispersed.

A direct calculation shows that the Fisher information matrix M (η,θ) for a logistic

model or a Poisson model with respect to a k-point approximate design η is proportional to

k∑
i=1

wiλixix
T
i , (1.6)

where λi = f(xi,θ)[1 − f(xi,θ)] for the logistic regression model and λi = f(xi,θ) for the

Poisson regression model. The construction of the information matrix for a negative binomial

model can be found in Rodríguez-Torreblanca and Rodríguez-Díaz (2007). It’s easy to see

that, here and elsewhere, M (η,θ) becomes singular if k < p. In my dissertation, I assume

k ≥ p throughout the following illustration.

In addition to the primary form of these models, my work involves their more complex

forms and a wide range of applications.
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1.5 A Brief Review of Theoretical Developments for Linear Models

Theoretical interests in optimal experimental design have a long history. Smith (1918) was

probably among the earliest to investigate optimal design issues for constructing optimal

experimental designs for linear regression problems using a criterion function. Wald (1943)

was the first one who proposed to maximize the determinant of XTX and led Kiefer and

Wolfowitz (1959) to investigate the problem. The term D-optimality was coined with D

standing for determinant. Intense theoretical research was followed by De la Garza et al.

(1954) and Kiefer and Wolfowitz (1959) in several of his later papers mentioned below. Hoel

(1961) began to apply this theory to polynomial linear regression models. Other criterion

functions had also been discussed; see, for instance, Elfving et al. (1952) among many others.

Chernoff (1953) was among the first to consider optimal design issues for nonlinear models

and coined the term locally optimal design, when the optimal design is constructed based

on a nominal value of the unknown parameter in the nonlinear model. Ehrenfeld (1955)

introduced A and E-optimality design criteria for estimating parameters in the linear models

using different measures of goodness of the estimates.

A series of important contributions were made in Kiefer and Wolfowitz (1959); Kiefer

et al. (1959); Kiefer and Wolfowitz (1960); Kiefer et al. (1961); Kiefer (1961), and Kiefer et al.

(1962). Some key results are the introduction of approximate designs and a unified approach

to find and confirm the optimality of an approximate design via equivalence theorems. In

particular, the equivalence of D and G-optimal designs for two very different criteria was

considered a landmark result that inspired much design research after its publication in

1959. A great appeal of working with approximate designs is applicable to solving all kind of

design problems so long as the criterion is a convex function of the information matrix. The

research for optimal designs for linear models is now quite well developed. Some interesting

results include Cook and Nachtsheim (1982), who used polynomial regression models to

approximate a general mean response function and then found the optimal designs based on

the polynomial approximation; Wong and Cook (1993), who found optimal designs under

multiple criteria with unequal interests; Atkinson and Cook (1995), who constructed optimal
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designs for heteroscedastic models under a non-differentiable criterion; and Chaloner et al.

(1984); DasGupta et al. (1991), who found Bayesian optimal designs under various setups

and investigated their robustness properties. A more thorough review of the development of

optimal designs is available in John and Draper (1975); Nguyen and Miller (1992); Cook and

Wong (1994); Chaloner and Verdinelli (1995); Ryan et al. (2016), and Ranga et al. (2014).

1.6 A Brief Review of Theoretical Developments for Nonlinear Mod-

els

Compared to linear models, finding optimal designs for nonlinear models faces more diffi-

culties. Different from linear models, constructing the information matrix for a nonlinear

model often requires some of the model parameters to be nominally known before an optimal

design can be constructed.

Generalized linear models (GLMs) have an extensive range of applications in biomedical

sciences and design issues for them have been quite well studied. For example, Ford and

Silvey (1980) and Wu (1985) used theory and constructed optimal designs for several GLMs;

White (1975) and Sebastiani and Settimi (1997) theoretically found locally D-optimal design

for one-factor logistic regression models; Chaloner and Larntz (1989) and Chaloner (1993)

also provided a couple of pseudo-Bayesian D-optimal designs for GLMs. Additional theo-

retical work was done by Sitter and Wu (1993), who found the theoretical locally A and

D-optimal designs for some GLMs Sitter and Torsney (1995); Heise and Myers (1996); Jia

and Myers (2001). This was followed by much work over a long period of time to find the the-

oretical D-optimal designs for the logistic model with two or three factors with and without

interaction terms (Haines et al., 2007; Haines and Kabera, 2018; Li and Majumdar, 2008;

Haines et al., 2007; Haines and Kabera, 2018). Optimal issues other than D-optimality,

for other types of GLMs received less attention; an exception is Rodríguez-Torreblanca and

Rodríguez-Díaz (2007) who developed locally c-optimal designs for Poisson and negative bi-

nomial models with two factors. A commonality in the optimal design literature to date is

that most work tends to focus on D-optimality and assumes that the models have one or two
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factors. If there are multiple factors, they invariably assume that the factors are additive to

simplify the analytic derivations of the optimal design.

Outside of GLMs, there is also much work to address theoretical optimal issues and

applications for nonlinear models. The emphasis is on the latter since design issues arise in

many disciplines in practice. For example, Han and Chaloner (2003) found D and c-optimal

designs for exponential regression models used in viral dynamics; Ogungbenro et al. (2009)

had a few applications of optimal designs to clinical pharmacology experiments, and Puškaš

and Miljić (2012) built D-optimal design to study the red wine ageing process.

The results obtained from the above analytical approaches depend sensitively on every

aspect of the model. A slight violation of the model assumptions will invalidate the proof.

Frequently, they demand technical conditions that may not be realistic. For example, Huang

et al. (2019) derived locally D-optimal designs for a series of logistic models under the

conditions that all model parameters have to be non-negative and there must be one and

only one categorical factor. Further, the proof cannot be amended if the model is slightly

changed. The analytical derivation of the optimal design becomes invalid when we have a

cubic term in the logistic model, or we have a different link function from the GLM family.

The upshot is that solely relying on a theoretical approach to find optimal designs has notable

limitations.

1.7 A Brief Review of Theoretical Developments for Mixed Models

Mixed models are gaining increasing attention because they incorporate inter or intra-subject

variabilities and covariate effects. This allows for greater interpretability of the results com-

pared to working with fixed effects models. However, this added level of model intricacy

makes finding optimal designs for these models a lot more challenging.

Work to date on finding optimal design for mixed models is relatively little compared to

those for fixed models. I list a few here. Cheng (1995); Liu et al. (2019) derived results for

linear regression models with random effects; Tan and Berger (1999) found optimal designs

for linear and quadratic regression models with a random intercept term; Berger and Tan
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(2004) used Brute-Force enumeration to find maximin D-optimal designs for linear mixed

models after the design space was sufficiently discretized to be small enough, Tekle et al.

(2008a) considered longitudinal responses from a logistic mixed model and found maximinD-

optimal designs, Bogacka et al. (2017) discussed how to find optimal approximate designs for

the Michaelis–Menten models with one covariate, and Tekle et al. (2008b) found D-optimal

designs for a clinical trial with different numbers of independent cohorts, comprising the

number of repeated measurements per subject over time. Most recently, Zhou et al. (2018)

found robust population designs for longitudinal linear mixed models. More recently, Jiang

et al. (2019) employed an approximation method to search for locally D-optimal designs and

Bayesian D-optimal designs for logistic mixed models with a single covariate.

The above work mainly assumes a longitudinal linear or simple nonlinear mixed models

with a couple of factors. The results are helpful and the models are commonly used in

practice. However, the models are relatively simple and the methodology or their algorithms

may not work well in a more complicated situation when the model is high dimensional

or the mean structure is hierarchical. Because of the limitations of an analytic approach

mentioned earlier, I believe an algorithmic approach is a more helpful and practical way to

find optimal designs for any given model and given design criterion. A major goal of my

dissertation work is to develop a more effective algorithm to find all types of optimal designs

for realistic models that involve multiple interacting factors and may have a more complex

mean response.
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CHAPTER 2

Review of Algorithmic Approaches

This chapter provides a selective literature review on algorithms traditionally and currently

used for finding optimal designs.

2.1 Exchange Algorithm

Exchange algorithms play an important role in searching for optimal designs. The ideas

behind these algorithms are similar: they start with a randomly-generated design or a user-

specified design and then work iteratively to replace a current design point from a set of

candidate design points by identifying a more promising point. For example, to obtain a

D-optimal design, the algorithm adds a new design point xi to the current design matrix X

such that its addition will maximally increase the determinant of the information matrix,

and simultaneously delete the design point xj that results in the minimum decrease of the

determinant. Some well-known algorithms that operate on such a principle or some slight

variations thereof, include the Fedorov exchange algorithm (Fedorov, 1972), a modification

of the Fedorov exchange algorithm (Cook and Nachtrheim, 1980) and the KL-exchange

algorithm (Atkinson and Donev, 1989). One significant shortcoming for these methods is

that the establishment of an accurate candidate set from prior knowledge, which is very

difficult when the number of factors is large or the design region is highly constrained (Jones

and Goos, 2007). Meyer and Nachtsheim (1995) developed a cyclic coordinate exchange

algorithm for constructing D-optimal exact designs. Some extension of this method can be

found in Yang et al. (2013), Sambo et al. (2014) and Overstall and Woods (2017).

Here I show the pseudo-code of using the classic Fedorov exchange algorithm to find
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locally D-optimal approximate design.

Algorithm 1 The Pseudo-code for the Fedorov Exchange Algorithm to Find D-optimal
Design
Choose a candidate design point set and select a starting design.
Define the Fedorov delta function between the design point xi and xj :

∆(xi,xj) = x′iM
−1xi − x′jM

−1xj + (x′iM
−1xj)

2 − (x′iM
−1xi)(x

′
jM

−1xj).
while exchanges are still beneficial do

Seek the pair (xi,xj) of one candidate design point and one from the current design that maximizes
the delta function.
Exchange xi and xj .

end while

2.2 Multiplicative Algorithm

The multiplicative algorithm was created by Titterington (1976, 1978) to search for locally

D-optimal approximate design on a discrete design space. For instance, we assume the

space has n design points Ω = (x1,x2, · · · ,xn) and the aim is to determine the weight

vector w = (w1, · · · , wn) that maximizes D-criterion function. The algorithm works by

iteratively updating the weight vector. At each iteration, every weight element is adjusted

by a multiplicative factor, which is determined by the magnitude of the derivative of the

criterion function at this point, i.e.,

w
(t+1)
i ∝ w

(t)
i (

∂φ(x1, · · · ,xn,w(t))

∂wi
)ρ,

where ρ is a pre-determined scaling factor. One problem for the multiplicative algorithm is

that computing the derivative of the criterion function with respect to each weight element

might be expensive if the model is complicated.

Martín and Gutiérrez (2015) combined the idea of the an exchange algorithm and the

multiplicative algorithm and proposed a new algorithm for finding locally D-optimal de-

signs. Since the exchange algorithms aim at finding more promising design points and the

multiplicative algorithm focuses on updating the weights of current design points, this new

algorithm deals with these two issues simultaneously in every iteration. However, it also

requires a prior determination of the design point pool.
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2.3 Vertex Direction Method

The vertex direction method was proposed by Fedorov (1972) and it also iteratively update

the weight vector given a discrete design space. Following the basic setup introduced in last

section, we continue to define the directional derivative by

d(i,w) =
∂φ((1− δ)w + δei)

∂δ|δ=0+

,

where ei is the vector that assigns all the mass to the i-th design point. The vertex direction

method updates w(t) to w(t+1) by first identifying the index i which maximizes d(i,w) and

then setting w(t+1) as the maximizer of the criterion function along the direction w =

(1− δ)w(t) + δeimax , where δ is a rate parameter between 0 to 1.

2.4 Nearest Neighbor Exchange Algorithm

The nearest neighbor exchange algorithm, proposed by Böhning (1986), also has an iterative

updating procedure. At every iteration, for each design point xi in a discrete design space,

we find the other design point xj that has the smallest Euclidean distance to xi. Then a

weight updating process is implemented between these two design points. More specifically,

at iteration t+ 1, we have

w
(t+1)
i = w

(t)
i − τ, w

(t+1)
j = w

(t)
i + τ,

where τ = min{w(t)
i ,max{−w(t)

j , τ
∗(i, j)}}, and τ ∗(i, j) is decided by the criterion function.

For instance, to find locally D-optimal design, we set

τ ∗(i, j) =
f ′(xj)M

−1f(xj)− f ′(xi)M−1f(xi)

2{[f ′(xi)M−1f(xi)][f ′(xj)M−1f(xj)]− [f ′(xj)M−1f(xi)]2}
.
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2.5 Cocktail Algorithm

Yu (2011) proposed the cocktail algorithm for searching locally D-optimal approximate de-

signs, which was a combination of the multiplicative algorithm, the vertex direction method

and the nearest neighbor exchange algorithm. Each iteration of the cocktail algorithm con-

tains one iteration of the vertex direction method, one iteration of the multiplicative algo-

rithm and one iteration of the nearest neighbor exchange algorithm. It has been proved that

the cocktail algorithm has a monotonic convergence property. That is, if we let the cock-

tail algorithm run forever, it will eventually converge to the locally D-optimal approximate

design.

One shortcoming of the above four algorithms is that they originally target the D-

optimality criterion. Although some modifications are now available for other concave/-

convex criteria, such as c-optimality criterion, it would be problematic to make it applicable

for more complicated situations, such as when we have a non-differentiable utility function to

construct a fully Bayesian design; see Chapter 5. Another disadvantage of these algorithms

is that they require the design space to be sufficiently discretized to find the optimal design

points accurately. This implies that with more factors in the model, the model becomes

high-dimensional, and there are more variables to optimize. The implications are that the

construction of the design space become time-consuming and tackling the optimal design

problem can become very challenging.

2.6 Mathematical Programming Algorithms

Mathematical programming approaches are recently more used as well to find optimal ex-

perimental designs. It appears that statisticians are less trained in this subfield to use

such methods but some recent publications suggest that the trend may be changing. For

example, Ouwens et al. (2006); Tekle et al. (2008b) and Abebe et al. (2014) utilized the

Broyden–Fletcher–Goldfarb–Shanno algorithm to search optimal designs for two-factor lin-

ear mixed models and two-factor logistic models. Duarte et al. (2018) applied a semidefinite
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programming technique to find optimal designs, including Bayesian optimal designs. These

methods are very efficient but require that the optimization problems have to be in a certain

form. This in turn puts restrictions on the design criterion and the types of models in the

problem. A serious limitation of mathematical programming methods is that its capability

is very much restricted by the solver. If there is no solver powerful enough to handle a high-

dimensional optimization problem, then the method will not be able to find the optimum.

2.7 Metaheuristics

Another recent and increasingly used optimization methodology is to employ metaheuris-

tics. These are general optimization strategies and can solve nearly all types of problems in

principle. A particularly interesting and powerful class of metaheuristic algorithms is those

inspired by nature, and often referred to as nature-inspired metaheuristic algorithms. Some-

times they are called global optimizers even though none guarantees that it will converge to

the global optimum. In practice, they frequently do and quickly, even for high-dimensional

optimization problems, which explain why they are widely used in engineering and com-

puter science applications. They do not require technical assumptions and all have tuning

parameters and stochastic components in them. By incorporating random components, these

algorithms can extricate from local optima and add diversity to the search process. Due to

this reason, the optimized trajectory of these algorithms cannot be fully tracked and it is

possible that they converge to a different solution in each run.

Such tools seem relatively under-used in mainstream statistical research. Genetic algo-

rithms and simulated annealing fall into these classes of algorithms and are likely the ones

that statisticians are most familiar with. For example, Broudiscou et al. (1996) and Heredia-

Langner et al. (2003) were some of the early ones to employ a genetic algorithm to search

for D-optimal designs. However, genetic algorithms and simulated annealing are relatively

dated algorithms and there are modern nature-inspired metaheuristic algorithms that have

been shown to outperform them. Recently, more modern algorithms have been employed to

find optimal designs in more challenging problems. For instance, Qiu et al. (2014) and Chen
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et al. (2015) utilized particle swarm optimization to find optimal designs of various types,

including problems with a non-differentiable criterion for finding minimax optimal designs

discussed in King and Wong (2000) and their extensions thereof.

Compared to the aforementioned exchange algorithms or the multiplicative algorithms,

mathematical programming algorithms, and especially metaheuristics, can solve a wider

range of optimal design problems. The increasingly widespread use of these algorithms

suggests that the current trend is in this direction. In the next chapter, I propose a new

nature-inspired metaheuristic algorithm and show it is effective for finding a wide range of op-

timal designs in challenging problems and that it frequently outperforms current algorithms,

including several of the state-of-the-art metaheuristic competitors.
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CHAPTER 3

Competitive Swarm Optimizer with Mutated Agents

In this chapter, I propose a novel swarm-based algorithm called competitive swarm optimizer

with mutated agents and abbreviated as CSO-MA. I use it to optimize several benchmark

functions commonly used in the engineering literature and show that CSO-MA can either

efficiently find better-quality solutions or similar solutions found by other state-of-the-art

algorithms. I implement a simulation study to compare the performance of various algo-

rithms, report properties of CSO-MA and performance measures I employ to evaluate the

comparison.

3.1 Introduction

Swarm-based and evolutionary algorithms are increasingly used in various disciplines to find

solutions to different types of optimization problems. They are generally assumption-free,

easy to implement and often able to find good quality solutions for complex or high dimen-

sional optimization problems. For example, the objective function can be non-differentiable

or non-separable. The flexibility of these algorithms enables them to tackle different types of

real-world optimization problems in engineering and computer science, and increasingly, in

other disciplines as well; see Yang et al. (2019), for example, and the many citations below.

Most swarm-based and evolutionary algorithms are initialized by generating particles

at random in a user-selected search space Ω. They represent candidate solutions for the

problem and at each iteration, they interact with one another and update their positions

according to the rules of the algorithm. For instance, in the commonly used particle swarm

optimization, each particle has a local best position representing where the particle believes
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the global optimum is, but at each iteration, the particles communicate among themselves

and arrive at a global optimum (global best). At the next iteration, each particle then

moves towards the global best position but also somewhat in the direction of its local best

position. All algorithms have stochastic components and tuning parameters and they vary by

numbers from algorithm to algorithm. Some algorithms are sensitive to the choice of tuning

parameters and some are sensitive. A commonality of these algorithms is that they are

motivated by nature, their codes are widely available and they tend to get to the proximity

of the optimum quickly. However, they do not guarantee convergence or converge to the

global optimum, although they frequently do. Because there have no or minimal technical

assumptions, rigorous proofs of convergence of these algorithms to the global optimum are

rarely available, even though there are many pseudo or incomplete proofs. Another feature

of such algorithms is that there are commonly many modified versions of the first proposed

algorithm, where each modified algorithm seeks to improve one or more aspects of the original

or last modified algorithm. Many modified versions are also motivated by the need to solve

specific types of optimization problems.

Before I present my nature-inspired metaheuristic algorithm, I describe a good repre-

sentative, particle swarm optimization (PSO), in some detail. Then I describe a modified

version of PSO for improved performance, which is competitive swarm optimizer (CSO).

Throughout this chapter, I assume that the goal is to minimize a given objective function

f(x) over a given compact space Ω ⊂ RD, i.e.,

min
x∈Ω

f(x),

and D is the number of variables to optimize in the problem.
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3.2 Swarm Optimization

3.2.1 Particle Swarm Optimization

Particle swarm optimization (PSO), proposed in Eberhart and Kennedy (1995), is one of

the most famous swarm algorithms inspired by nature. This simple algorithm is initiated

by generating a swarm of particles (candidate solutions) in the user-defined search space,

which is assumed to be a compact set. Particles coordinate and move to regions near the

perceived optimum iteratively based on each particle’s historical pathway and trajectory of

the whole swarm. PSO has been applied successfully in many fields, for example, in blind

signal separation, power dispatch and model variable selection (Ghamisi and Benediktsson,

2015; Sun et al., 2014; Ishaque and Salam, 2013; Ishaque et al., 2012; Taormina and Chau,

2015). The dimensions of these problems range from 5 to 30.

In classic PSO, each particle xi updates itself using its historical movement information

and temporary global best solution. Every particle is assigned with a velocity vector v,

which is also randomly generated upon initialization. At iteration t, the particle i will move

to a new position xt+1
i using velocity vt+1

i given by

vt+1
i = ωvti + β1R1 ⊗ (pbestti − xti) + β2R2 ⊗ (gbestt − xti) (3.1)

and xt+1
i = xti + vt+1

i , (3.2)

where R1,R2 are random vectors whose elements are independent draws from the uniform

distribution U(0, 1). The operation ⊗ means element-wise multiplication and the tuning

parameters in PSO are ω, β1, β2 reflecting the characteristics of the flock with ω representing

the inertia of the flock and the β’s representing the communicative nature and cognitive

ability of the flock. The best position that each particle has visited till iteration t is the

personal best pbestti, i = 1, · · · , n, and the best position that the swarm of particles has ever

reached till iteration t is the global best gbestt. The term best refers to positions where the

value of the objective function or its fitness value is smallest. These two centers influence
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every particle’s movement. By adding stochastic components R1 and R2 into the algorithm,

these particles have a chance to explore unseen areas where they might be able to capture

better solutions.

A drawback of metaheuristic algorithms is that the tuning parameters are generally

influential and can seriously affect the performance of the algorithms. There are recommen-

dations on how to tune the parameters in PSO for a more effective search; some examples

are Eberhart and Shi (2000); Shi and Eberhart (1998), and Carlisle and Dozier (2000). Some

proposed that these parameters be modeled as a function of the iteration number t, tem-

porary best objective values or as topological distances among the particles (Moore and

Chapman, 1999; Eberhart and Shi, 1998). Others argued for constant parameters, such as

ω ∈ [0.8, 1.2], β1 = β2 = 2 and showed that they frequently worked well (Eberhart and

Kennedy, 1995). This is a particularly attractive feature of PSO, compared with others,

such as genetic algorithm or simulated annealing, which are well-known to be hypersensitive

to choices in the tuning parameters.

A limitation of PSO is that it can prematurely converge to a local optimum without

adequately exploring the space (Bansal et al., 2011; Xinchao, 2010; Meng et al., 2010; Gang

et al., 2012; Liu et al., 2014). An effective algorithm explores the space sufficiently and

has good exploitation properties to locate the optimum when it is in the proximity of the

optimum. The latter means that once the flock is near the neighborhood of the global

optimum, it can quickly determine the optimum precisely, rather than lingers around it for

a period of time. Frequently, a trade-off between the two competing objectives is required

because algorithms that are good at space exploration have limited resources to sufficiently

exploit promising areas where the optimum is and algorithms with aggressive exploitation

strategy can easily get stuck at a local optimum. Typically, PSO does the exploration in

a few iterations and then proceeds to exploit (Nakisa et al., 2014), resulting in a decrease

of the solution quality. This premature convergence phenomenon is likely due to its strong

connection with the two centers pbest and gbest, which may be exerting undue influence and

not changing frequently enough during iterations, see, for example, Cheng and Jin (2015);

Nezami et al. (2013), and Xu et al. (2015).
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Because PSO is a very successful algorithm, there are many modified versions with dif-

ferent strategies for improving various aspects of its performance to tackle complicated or

high-dimensional optimization problems. They include parameter adaptation (Shi and Eber-

hart, 1998, 2001; Ratnaweera et al., 2004; Trelea, 2003; Campos et al., 2014), hybridization

with other optimization methods (Higashi and Iba, 2003; Robinson et al., 2002; Liu et al.,

2005; Pehlivanoglu, 2013) and swarm topological redesign (Suganthan, 1999; Kennedy, 1999;

Kennedy and Mendes, 2002; Yang et al., 2019). Simulations have shown that these amended

PSO algorithms, among others, perform better than the original version. One of the most

effective enhancements is competitive swarm optimizer (CSO), proposed by Cheng et al.

(2015), to address the premature convergence issues in PSO. CSO adopts a pairwise com-

petition mechanism to update particles at every iteration. Compared to PSO and most of

its variants, CSO has a simpler structure and its updating strategy has been shown to more

effective. In particular, many simulations using tests on a series of benchmark functions

have shown that CSO can find significantly better solutions than other state-of-the-art EAs

for different types of problems up to solving optimization problems with 5000 dimensions

(Cheng and Jin, 2015; Sun et al., 2016; Mohapatra et al., 2017; Zhang et al., 2016).

3.2.2 Competitive Swarm Optimizer

Cheng and Jin (2015) proposed CSO to tackle the premature convergence issue by recasting

the updating formulas. Like PSO, CSO first generates a swarm of n particles at positions

x1, · · · ,xn with random velocities v1, · · · ,vn in Ω. In each iteration, CSO randomly divides

them into
⌊
n
2

⌋
pairs and compares their objective function values. The algorithm then

identifies xti as the winner and xtj as the loser if these two are competed at iteration t and

f(xti) < f(xtj). The winner retains the status quo and the loser learns from the winner. The

two updating equations for CSO are

vt+1
j = R1 ⊗ vtj + R2 ⊗ (xti − xtj) + φR3 ⊗ (x̄t − xtj) (3.3)

and xt+1
j = xtj + vt+1

j , (3.4)
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where R1, R2, R3 are all random vectors whose elements are drawn from U(0, 1). Similar to

PSO, the operation ⊗ represents element-wise multiplication and the vector x̄t represents the

swarm center at iteration t. The parameter φ is the social factor that controls the influence

of the neighboring particles to the loser and a large value of φ is helpful for enhancing swarm

diversity (but possibly impacts convergence rate). This process iterates until some stopping

criteria are met.

There are three tuning parameters ω, β1, β2 in Equation (3.1) and Equation (3.3) for

PSO and only one parameter φ in Equation (3.3) for CSO, suggesting that it is simpler to

tune CSO. Further, the transitory data PSO needs to keep track of are stored in a n × D

matrix x, a n × D matrix v and a n × D matrix pbest whereas CSO needs two of these

implying that a smaller memory space is required to run CSO.

Simulation results have shown that CSO either outperforms or is competitive with many

state-of-the-art swarm algorithms, such as PSO with constriction factor (PSO-CO), gaussian

bare bones PSO (GBBPSO), or quantum PSO (QPSO). This conclusion was arrived at

after comparing CSO performance with state-of-the-art swarm algorithms using a variety of

benchmark functions with dimensions up to 5000 (Cheng and Jin, 2015; Sun et al., 2016;

Mohapatra et al., 2017; Zhang et al., 2017, 2016; Zhou et al., 2016). They showed that CSO

was frequently not only the winner but also required significantly shorter runtime.

CSO is relatively new but has many exciting applications. For example, Gu et al. (2018)

applied CSO to select variables for high-dimensional classification models; Xiong and Shi

(2018) used CSO to study a power system economic dispatch, which is typically a complex

nonlinear multivariable strongly coupled optimization problem with equality and inequal-

ity constraints, and Kumarappan and Arulraj (2016) employed CSO to find the optimal

installation of multiple distributed generation units in radial distribution network.
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3.3 Competitive Swarm Optimizer with Mutated Agents

3.3.1 Motivation

My experience with optimal designs is that it is a common phenomenon that many optimal

designs have some design points at the boundary of the design space, regardless of the models.

An intuitive explanation is that plugging extreme values into the model can help estimate

the lower and upper bound of the factor effect. Therefore, this motivates me to develop a

nature-inspired metaheuristic algorithm that facilitates particles to search more intensively

at the boundary of the design space, believing that once some design points are found, this

would hasten the search process and arrive at the optimum faster.

3.3.2 Development

The genetic algorithm (GA) is an important algorithm and represents one of the earliest

evolutionary algorithms (EAs) that gain broad attention. To date, I believe it is the most

well-known and popular evolutionary algorithm among statisticians, even though it is dated

and many more modern EAs are known to outperform GA in many ways. For example, the

differential evolutionary (DE) algorithm is an advanced version of GA that is now commonly

used among computer scientists and engineers for general optimization purposes. GA and all

its modified versions are based on biological-inspired behaviors observed in genetic studies

and they include operations, such as mutation, crossover and selection to evolve better

solutions from generation to generation (Whitley, 1994). There have been a lot of inspiring

GAs that performed surprisingly well in various fields; see, for instance, Deb et al. (2002);

Morris et al. (1998); Anderson-Cook (2005), and Leung and Wang (2001). A main limitation

of GA, as pointed out earlier, is the difficulty of specifying good tuning parameters for such

algorithms to work well.

In the field of metaheuristics, it is common to hybridize two or more such algorithms

to maximally take advantage of the especially useful features in each of the algorithms.

Which ones to hybridize with is an open question and requires a broad knowledge of the
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many metaheuristic algorithms available and their properties. A guiding principle is that

the hybridized algorithm should perform better than each of the individual algorithm. To

this end, I incorporate ideas from the genetic algorithm to enrich CSO and call the enhanced

version of CSO as competitive swarm optimizer with mutated agents or, in short, CSO-MA.

After pairing up the swarm in groups of two at each iteration, I randomly choose a loser

particle p as an agent, randomly pick a variable indexed as q and then randomly change the

value of xpq to either xmaxq or xminq, where xmaxq and xminq represent, respectively, the

upper bound and lower bound of the q-th variable. This change is similar to the “mutation”

step in GA. A conservative mutation strategy is to randomly reassign each loser particle to a

random position on the boundary. If the current optimal value is already close to the global

optimum, this change will not hurt since this mutation is implemented on a loser particle,

which is not leading the movement of the whole swarm; otherwise, this chosen agent restarts

a journey from the boundary and has a chance to escape from a local optimum.

I apply CSO-MA to test its ability to minimize several benchmark functions commonly

used to test algorithms in the engineering literature. These multidimensional functions

have different shapes, not necessarily separable, differentiable or convex and they may have

multiple local optima. The computational complexity of CSO isO(nD), where n is the swarm

size and D is the dimension of the problem to be optimized. Since the modification only

adds one coordinate mutation operation to one loser particle, its computational complexity

is the same as that of CSO. Algorithm 2 below displays the pseudo-code of CSO-MA.

3.3.3 Parameter Tuning

Tuning parameters is a perennial and critical issue for meta-heuristic algorithms because a

poor choice for them can result in very poor performance. Most of these algorithms have at

least two or three parameters, which makes a systematic understanding on how they interact

to impact the algorithm’s performance tricky.

I experimented with varying the values of the tuning parameters in CSO-MA to study

its impact on its performance. Here the tuning parameters are φ and the swarm size n. I
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Algorithm 2 The Pseudo-code for CSO-MA
A swarm of n particles.
x← Randomly assign initial positions in space to particles.
v← Randomly assign initial velocities to particles.
while not stopping criteria do

Randomly divide the swarm into
⌊
n
2

⌋
pairs.

for each pair do
Compare their objective function values and set the one with smaller value as the winner and the
other as the loser.
Update loser particles.
if xloser out of searching space then

xloser ← position at boundary.
end if
Randomly choose a loser xp and a coordinate index q.
Randomly change q-th variable of xp to either xmaxq or xminq, where xmaxq, xminq represent
the upper bound and the lower bound of q-th variable.

end for
end while

found that the original default values for the tuning parameters in CSO for φ and n can be

reliably transferred to CSO-MA and they are provided later on. I also recommend that when

a parallel-computing program or machine is available to run the algorithm, a large value of

n should be used. In the next section, I provide details and also discuss whether it is helpful

to have the number of agents that mutate at each iteration as an additional parameter in

CSO-MA and whether it has an impact on the solution quality.

3.4 Benchmark Comparisons

I use simulation to compare the performance of CSO-MA with a few state-of-the-art swarm-

based competitors using several benchmark functions commonly used in the engineering

literature (Tian et al., 2008; Yang et al., 2008a,b). I also include a non-swarm-based al-

gorithm, cuckoo search, in the comparison. I choose cuckoo search because it seems to be

one of the most competitive algorithms used by engineers today for general optimization

purposes (Gandomi et al., 2013; Yang and Deb, 2014).

I use eight benchmark functions with different mathematical properties and consider cases

when they have dimensions D = 100, 500 and 1000. These functions are frequently used for

testing or comparing different global optimization algorithms; see, for example, Yang et al.
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(2008b); Tian et al. (2008), and Yang et al. (2008a). CSO has already been shown to perform

favorably compared with many advanced swarm algorithms for minimizing these functions

and in many cases, CSO also performed the best; see the list in Section 3.2.2. Thus it

follows that if CSO-MA outperforms CSO, it also outperforms other advanced swarm-based

algorithms. (Cheng and Jin, 2015; Zhang et al., 2016; Zhou et al., 2016; Sun et al., 2016;

Mohapatra et al., 2017; Zhang et al., 2017). Table 3.1 lists the benchmark functions, their

domains, characteristics and their formulas are also given near Table 3.1.

Function Characteristics Hypercube
f1 Schwefel N.2.21 ND, NS [−100, 100]D

f2 Rosenbrock NS [−100, 100]D

f3 Sphere - [−100, 100]D

f4 Rastrigin MLM [−5, 5]D

f5 Schwefel NC, MLM [−500, 500]D

f6 Gramacy & Lee NC, MLM [0.5, 2.5]D

f7 Griewank NC, NS, MLM [−600, 600]D

f8 Ackley NC, MLM [−32, 32]D

Table 3.1: Information of the benchmark functions. MLM: multi local minima; NC: non-
convex; ND: non-differentiable; NS: non-separable. The last column exhibits the hypercubes
for evaluating these functions. Superscript D indicates the problem dimensionality.

Schwefel N.2.21:

f(x) = f(x1, x2, · · · , xD) = max
i=1,··· ,D

|xi|;

global minimum: f(x∗) = 0, x∗ = (0, 0, · · · , 0).

Rosenbrock:

f(x) = f(x1, x2, · · · , xD) =
D−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2];

global minimum: f(x∗) = 0, x∗ = (1, 1, · · · , 1).

Sphere:

f(x) = f(x1, x2, · · · , xD) =
D∑
i=1

x2
i ;

global minimum: f(x∗) = 0, x∗ = (0, 0, · · · , 0).
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Rastrigin:

f(x) = f(x1, x2, · · · , xD) = 10D +
D∑
i=1

[x2
i − 10cos(2πxi)];

global minimum: f(x∗) = 0, x∗ = (0, 0, · · · , 0).

Schwefel:

f(x) = f(x1, x2, · · · , xD) = 418.9829D −
D∑
i=1

xisin(
√
|xi|);

global minimum: f(x∗) = 0, x∗ = (420.9687, 420.9687, · · · , 420.9687).

Gramacy & Lee:

f(x) = f(x1, x2, · · · , xD) =
D∑
i=1

[
sin(10πxi)

2xi
+ (xi − 1)4];

global minimum: f(x∗) = −0.8690D, x∗ = (0.5486, 0.5486, · · · , 0.5486).

Griewank:

f(x) = f(x1, x2, · · · , xD) = 1 +
D∑
i=1

x2
i

4000
−

D∏
i=1

cos(
xi√
i
);

global minimum: f(x∗) = 0, x∗ = (0, 0, · · · , 0).

Ackley:

f(x) = f(x1, x2, · · · , xD) = −20e
−0.2

√∑D
i=1

x2
i

D + e− e
∑D
i=1 cos(2πxi)

D ;

global minimum: f(x∗) = 0, x∗ = (0, 0, · · · , 0).

In addition to CSO, I compare CSO-MA algorithm with the following algorithms: (i) a

modified CSO (MCSO) algorithm, which replaces the CSO’s pairwise competition strategy

by a triplet competition and is recognized as an improved CSO (Mohapatra et al., 2017), (ii)

the cooperatively coevolving PSO 2 (CCPSO2) algorithm that uses a Cauchy and a Gaus-

sian distribution for sampling next-generation particles, respectively, at pbest and gbest (Li
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and Yao, 2012), (iii) the multilevel cooperative coevolution (MLCC) designed to conduct a

self-adaptive neighborhood search for promising particles (Yang et al., 2008a), (iv) the sepa-

rable covariance matrix adaptation evolution strategy (SEP-CMA-ES), which generates new

candidate solutions by sampling around old particles and the sampling covariance matrix is

constructed by incorporating information from the current solution (Ros and Hansen, 2008),

(v) the efficient population utilization strategy for PSO (EPUS-PSO), which adjusts the pop-

ulation size according to the search results and (vi) the dynamic multi-swarm (DMS-PSO)

that adopts a dynamically changing neighborhood structure for each particle (Hsieh et al.,

2008; Liang and Suganthan, 2005). The last algorithm that I have included for comparison

is the cuckoo search algorithm, which uses Levy flights and random walk to update new

solutions (Yang and Deb, 2009). So it operates quite differently and is also motivated very

differently from those for swarm-based algorithms and evolutionary algorithms.

For parameter tuning, I follow the recommendations given in Cheng and Jin (2015),

which were based on a series of tests. Specifically, when optimizing 100D problems, I set

n = 100, φ = 0. For higher-dimensional optimization problems, they recommended the choice

for these tuning parameters should depend on whether the objective function is separable or

not. Specifically, for 500D problems, they suggested n = 250, φ = 0.1 for separable functions

and n = 250 and φ = 0.05 for non-separable functions; for 1000D problems, they suggested

n = 500 and φ = 0.15 for separable functions and n = 500 and φ = 0.10 for non-separable

functions. Since CSO-MA inherits the same particle updating strategy from CSO, I follow

the tuning formula for CSO and show that under the same parameter setup, the optimization

performance of CSO-MA is improved. For MCSO, the tuning values of the parameters come

from Table 3 of Mohapatra et al. (2017). For other algorithms, similar simulations have

been carried out in Cheng and Jin (2015), Mohapatra et al. (2017) and I adopt the same

parameter tuning strategy there (I refer to the parameter setup for cuckoo search algorithm

suggested in Yang and Deb (2009)). For all the algorithms, I stop running them after 5000D

function evaluations for each benchmark function, which was the guideline proposed in Tang

et al. (2007).

Algorithms and tests are written and implemented using C++ on Xcode 9.0.1 and com-
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f1 f2 f3 f4 f5 f6 f7 f8 w/t/l
CSO Mean 1.37E+01 1.18E+02 2.05E-72 5.29E+01 6.30E+03 -7.15E+01 2.22E-16 4.44E-15 5/2/1

Std dev 2.25E+00 1.03E+01 2.42E-73 1.78E+00 1.31E+02 1.07E+00 0.00E+00 0.00E+00

CSO-MA Mean 8.67E-03 9.05E+01 1.88E-33 5.33E-06 8.15E+02 -8.69E+01 2.22E-16 4.44E-15 –
Std dev 2.08E-04 3.60E+00 3.57E-35 1.52E-06 1.59E+01 2.27E-01 0.00E+00 0.00E+00

MCSO Mean 5.22E+00 8.97E+01 7.11E-78 9.28E+01 7.14E+03 -7.03E+01 2.22E-16 4.44E-15 5/2/1
Std dev 9.07E-01 2.33E+00 3.56E-78 8.01E-01 2.05E+02 1.33E+00 0.00E+00 0.00E+00

CCPSO2 Mean 7.11E+00 4.21E+02 7.56E-14 3.88E-02 3.62E+03 -6.25E+01 3.41E-03 1.61E-13 8/0/0
Std dev 7.68E+00 8.72E+01 3.41E-14 1.98E-01 4.19E+02 6.68E+00 1.42E-02 5.20E-12

MLCC Mean 3.44E+01 1.52E+02 5.29E-14 4.65E-13 1.12E+03 -8.07E+01 1.59E-12 1.06E-12 7/0/1
Std dev 8.70E+00 5.34E+01 2.35E-14 9.15E-14 8.36E+01 3.72E-01 7.77E-13 9.24E-15

SEP-CMA-ES Mean 5.15E+01 4.88E+00 7.44E-14 2.93E+02 2.65E+03 -7.88E+01 3.50E-03 2.06E+01 6/0/2
Std dev 1.91E+01 1.53E+00 9.06E-15 4.76E+01 2.49E+02 3.02E+00 1.71E-02 8.53E-03

EPUS-PSO Mean 2.24E+01 4.75E+03 9.02E-01 4.55E+02 5.79E+03 -6.74E+01 2.99E-01 2.05E+00 8/0/0
Std dev 1.11E+00 3.80E+02 8.29E-02 1.04E+01 9.53E+01 3.21E-01 2.30E-02 2.20E-01

DMS-PSO Mean 6.24E+00 2.86E+02 1.05E-20 1.73E+02 2.66E+03 -7.21E+01 6.52E-10 5.49E-13 8/0/0
Std dev 5.22E-01 3.18E+01 6.61E-22 3.52E+01 1.66E+02 1.98E+00 2.21E-11 9.86E-14

Cuckoo Mean 3.45E+01 6.57E+02 8.54E-01 4.22E+02 4.13E+03 -4.74E+01 3.62E-01 7.62E+00 8/0/0
Std dev 1.17E+00 4.95E+01 1.06E-02 1.42E+01 1.53E+03 4.33E+00 7.72E-04 3.29E-01

Table 3.2: The performance of the nine algorithms minimizing eight 100D benchmark func-
tions. The values in the last column “w/t/l” shows the number of times CSO-MA wins
(significantly better), ties (insignificant difference) and losses (significantly worse) to other
algorithms using the Wilcoxon rank test at the 0.05 significance level. The bold numbers
indicate the best performing algorithm among the nine for minimizing each of the benchmark
functions.

plied by GCC 7.2.0. All tests are run on Hoffman2 shared cluster housed at the University

of California, Los Angeles. For each function with a specific dimension, I run it ten times

and average out the outcomes due to the randomness generated by stochastic components in

these algorithms (Lampinen, 2002; Fan, 2002; Ugolotti et al., 2013). For each run, I request

the Hoffman2 shared cluster to use a 2.2 GHz Intel Xeon E5-2650v4 CPU and 8 GB memory.

3.4.1 Simulation Results

The simulation results are shown in Table 3.2, Table 3.3 and Table 3.4, where the means and

standard deviations of the results are given. The bold numbers in each column represent

the best performing algorithm among the nine algorithms for minimizing each of the eight

benchmark functions. The Wilcoxon rank test, which is a non-parametric method to test

whether there is a significant difference between two sets of measurements, is used to compare
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f1 f2 f3 f4 f5 f6 f7 f8 w/t/l

CSO Mean 4.58E+01 4.80E+02 1.92E-66 1.58E+02 4.94E+04 -2.89E+02 4.44E-16 8.88E-15 4/0/4
Std dev 9.47E+00 5.29E+00 3.99E-67 8.31E+00 7.53E+02 6.33E+00 0.00E+00 0.00E+00

CSO-MA Mean 6.88E+00 6.99E+02 5.34E-03 3.84E+01 2.10E+04 -3.50E+02 6.88E-05 4.40E-04 -
Std dev 9.41E-01 4.52E+00 7.11E-04 2.07E+00 4.25E+02 1.62E+00 8.73E-07 2.12E-05

MCSO Mean 8.34E+01 9.35E+02 1.42E-83 8.57E+02 5.67E+04 -2.43E+02 1.23E-02 1.53E-14 6/0/2
Std dev 4.42E+00 1.30E+01 7.62E-85 1.19E+01 4.07E+03 8.11E+00 3.24E-03 5.69E-15

CCPSO2 Mean 6.32E+01 7.55E+02 6.19E-11 4.04E+00 4.65E+04 -3.15E+02 1.06E-03 4.32E-13 5/0/3
Std dev 5.22E+00 4.57E+00 3.69E-12 5.29E-01 7.66E+02 6.03E+00 2.16E-03 5.57E-14

MLCC Mean 7.05E+01 9.14E+02 3.64E-13 2.02E-11 4.77E+04 -2.69E+02 2.15E-13 4.21E-13 4/0/4
Std dev 5.82E+00 7.61E+01 6.28E-14 3.05E-11 2.78E+03 1.01E+01 2.45E-13 3.94E-13

SEP-CMA-ES Mean 6.05E+01 2.87E+02 2.33E-14 2.22E+03 3.54E+04 -2.73E+02 8.06E-04 3.00E+01 6/0/2
Std dev 1.00E+00 2.75E+01 3.28E-15 1.57E+02 4.29E+02 2.10E+00 2.90E-03 4.31E-01

EPUS-PSO Mean 4.40E+01 5.63E+04 8.22E+00 4.03E+03 7.62E+04 -2.85E+02 5.95E-02 5.56E-01 8/0/0
Std dev 5.51E-01 4.14E+03 2.01E+00 1.12E+02 1.62E+03 3.07E+00 3.99E-03 2.04E-02

DMS-PSO Mean 7.35E+01 2.85E+04 5.27E-06 4.29E+03 4.30E+04 -2.88E+02 1.57E-05 8.59E+00 6/0/2
Std dev 4.00E+00 9.14E+02 8.86E-08 7.02E+01 9.35E+02 7.00E+00 2.46E-06 4.33E-01

Cuckoo Mean 6.03E+01 4.27E+04 3.27E+00 6.67E+02 6.09E+04 -1.66E+02 7.02E+00 2.54E+01 8/0/0
Std dev 2.47E+00 1.03E+03 1.02E+00 2.11E+01 1.44E+02 3.57E+00 4.19E-01 1.16E+00

Table 3.3: The performance of the nine algorithms minimizing eight 500D benchmark func-
tions. The values in the last column “w/t/l” shows the number of times CSO-MA wins
(significantly better), ties (insignificant difference) and losses (significantly worse) to other
algorithms using the Wilcoxon rank test at the 0.05 significance level. The bold numbers
indicate the best performing algorithm among the nine for minimizing each of the benchmark
functions.

the performance of CSO-MA with other algorithms. At the 0.05 significance level, all results

from the tests are significant in all three tables, suggesting the algorithm with the bold value

finds a smaller objective function value than each of the other algorithms. The last column

in each table with the heading “w/t/l” displays the number of times CSO-MA wins, ties and

losses to the corresponding algorithm.

There is a celebrated “No Free Lunch” rule that says no algorithm can outperform all other

algorithms in all situations (Wolpert and Macready, 1997). An interesting interpretation of

this theorem is recently available in McDermott (2020). In Table 3.5, I rank each algorithm’s

performance optimizing the benchmark functions. For instance, when minimizing functions

with D = 100, CSO-MA has 3 times defeating over all other eight algorithms, 3 times over

other seven algorithms, 2 time over other six algorithms, etc., and I record such result as

(3, 3, 2, ..., 0) corresponding to the header “Rank”, “Rank2”, etc. A smaller rank indicates
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f1 f2 f3 f4 f5 f6 f7 f8 w/t/l
CSO Mean 2.80E+01 1.45E+03 7.50E-02 1.60E+02 2.38E+05 -3.69E+02 1.30E-02 4.90E-01 8/0/0

Std dev 3.62E+00 1.94E+02 2.09E-05 4.16E+01 3.81E+03 3.54E+00 2.64E-04 6.68E-03

CSO-MA Mean 2.01E+01 1.19E+03 4.70E-03 1.53E+02 9.95E+04 -4.98E+02 1.24E-02 3.01E-03 -
Std dev 8.27E-01 9.12E+01 5.90E-04 6.31E+00 1.88E+03 9.84E-01 2.62E-04 9.40E-05

MCSO Mean 8.17E+01 2.03E+03 2.97E-66 2.34E+03 1.35E+05 -4.07E+02 2.85E-15 1.24E+00 6/0/2
Std dev 3.59E-01 3.02E+01 9.94E-68 2.64E+01 1.11E+04 6.00E+00 1.61E-05 3.72E-01

CCPSO2 Mean 7.45E+01 1.33E+03 5.29E-13 3.05E-01 2.45E+05 -3.57E+02 3.00E+00 1.06E-12 5/0/3
Std dev 3.98E+00 1.17E+02 9.54E-14 2.60E-01 9.33E+02 1.07E+00 8.22E-01 3.77E-13

MLCC Mean 8.99E+01 1.82E+03 8.45E-13 3.66E-10 1.88E+05 -3.46E+02 4.18E-07 1.06E-12 4/0/4
Std dev 2.65E+00 1.53E+02 4.67E-14 4.92E-11 4.87E+03 9.06E+00 2.47E-13 4.82E-13

SEP-CMA-ES Mean 4.22E+01 2.12E+03 5.92E-11 5.60E+03 2.25E+05 -3.11E+02 3.66E-04 3.42E+01 6/0/2
Std dev 5.07E+00 7.93E+01 4.41E-13 2.17E+02 9.45E+03 3.77E+00 1.08E-05 2.26E+00

EPUS-PSO Mean 5.13E+01 9.66E+04 3.98E+02 4.57E+03 6.60E+05 -2.56E+02 7.44E+00 1.56E+01 8/0/0
Std dev 1.07E+00 1.08E+03 1.77E+01 1.49E+02 1.15E+04 3.03E+00 9.62E-01 1.07E+00

DMS-PSO Mean 9.15E+01 5.74E+04 3.29E-03 3.83E+03 7.75E+05 -3.03E+02 4.11E+00 1.10E+01 7/0/1
Std dev 3.44E-01 1.55E+03 3.12E-05 9.54E+01 9.29E+03 8.07E+00 5.50E-01 4.82E-01

Cuckoo Mean 8.26E+01 9.02E+04 2.34E+01 2.54E+03 8.66E+05 -1.47E+02 1.62E+01 4.60E+01 8/0/0
Std dev 2.06E+00 2.63E+02 5.52E-01 3.06E+01 1.11E+04 2.98E+00 5.10E-01 1.66E+00

Table 3.4: The performance of the nine algorithms minimizing eight 1000D benchmark
functions . The values in the last column “w/t/l” shows the number of times CSO-MA wins
(significantly better), ties (insignificant difference) and losses (significantly worse) to other
algorithms using the Wilcoxon rank test at the 0.05 significance level. The bold numbers
indicate the best performing algorithm among the nine for minimizing each of the benchmark
functions.
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Number of times Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Average Rank

D = 100

CSO 0 3 0 2 2 0 0 1 0 3
CSO-MA 3 3 2 0 0 0 0 0 0 1
MCSO 1 4 0 0 1 1 0 0 1 2
CCPSO2 0 0 1 2 1 1 2 1 0 6
MLCC 1 2 0 1 2 1 1 0 0 3

SEP-CMA-ES 1 0 2 0 0 1 2 0 2 7
EPUS-PSO 0 0 0 0 0 1 3 1 3 8
DMS-PSO 0 0 1 3 2 2 0 0 0 5
Cuckoo 0 0 0 0 0 1 0 5 2 9

D = 500

CSO 2 2 2 1 0 1 0 0 0 1
CSO-MA 3 0 2 1 1 0 1 0 0 1
MCSO 1 1 0 0 0 2 2 1 1 6
CCPSO2 0 2 0 3 1 2 0 0 0 3
MLCC 1 1 1 1 2 0 2 0 0 4

SEP-CMA-ES 1 1 1 0 2 1 1 0 1 5
EPUS-PSO 0 1 0 0 1 1 0 2 3 8
DMS-PSO 0 0 2 1 0 1 2 1 1 7
Cuckoo 0 0 0 1 1 0 0 4 2 9

D = 1000

CSO 0 1 2 2 2 0 1 0 0 5
CSO-MA 4 0 2 1 0 1 0 0 0 1
MCSO 2 2 0 0 3 1 0 0 0 2
CCPSO2 1 3 0 1 1 2 0 0 0 4
MLCC 2 1 2 1 1 0 0 1 0 2

SEP-CMA-ES 0 0 2 2 0 2 0 1 1 6
EPUS-PSO 0 0 0 1 0 0 2 3 2 8
DMS-PSO 0 0 0 0 1 1 4 1 1 7
Cuckoo 0 0 0 0 0 1 1 2 4 9

Table 3.5: Algorithms’ rankings of minimizing f1 to f8 (D = 100, 500, 1000). A smaller
ranking value indicates a better algorithm performance.

that the algorithm has a better minimization performance. The last column in the table

displays the “Average Rank” and so tells whether the algorithm can stably solve different

optimization tasks.

From the above tables, CSO-MA outperforms the other algorithms for minimizing func-

tions f1, f5 and f6 regardless of the dimension of the problem. For functions f2 and f4,

CSO-MA provides competitive results among all the algorithms. Although CSO-MA does

relatively poor minimizing functions f3, f7 and f8, its results are acceptable because these

solutions are within 10−3 units from the true optimum. One possible explanation is that

for these functions, CSO-MA sacrifices its ability to exploit at the expense of having the

mutated agents do more space exploration. An overall observation is that CSO-MA is the

most consistent optimizer among these algorithms since, on average, it has the best per-

formance in terms of minimizing the objective functions regardless of the dimension of the

problem, which is also confirmed by its average rank for minimizing the functions by the

various algorithms.
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Other algorithms perform differently for each benchmark function, which again confirms

the “No Free Lunch” rule. CSO, MLCC and CCPSO2 can consistently provide intermediate

results while MCSO’s outputs are not stable. EPUS-PSO, DMS-PSO and Cuckoo have a

relatively poor ability optimizing these commonly-used functions.

If I set 10−3 as the tolerance level, so solutions that are within ±10−3 from the true “opti-

mal” value are deemed optimal. Under this rounding setup, CSO-MA’s overall performance

relative to the other seven algorithms for optimizing the 24 benchmark functions becomes

more impressive with 131 wins, 37 ties, 0 losses compared to the earlier more stringent

criterion with 130 wins, 4 ties, 34 losses.

3.4.2 More Mutated Agents?

The change I make in CSO-MA algorithm is to randomly select an agent from the loser list

at every iteration and reassign it at random to a point on the boundary. My results have

shown that this is an effective strategy. A natural question to ask is whether having more

mutated agents at every iteration will further enhance the performance of CSO-MA.

To address this question, I keep the benchmark test configurations fixed and compare

CSO-MA results when, the number of agents, m = 2, . . . , 10 versus the case when m = 1.

The histogram in Figure 3.1 shows the number of times significantly improved results are

obtained via the Wilcoxon test when a larger value of m is used versus m = 1. The top

histogram (a) shows different values ofm and the bottom histogram (b) shows corresponding

results when m is expressed as a percentage of n. From the two histograms, I observe that

a larger value of m tends to decrease the algorithm’s effectiveness. One explanation is that

when m increases, there is less balance between exploration and exploitation. In particular,

a larger value of m encourages the swarm to explore a larger area since more particles are

assigned to random positions on the boundary and so more likely to find a better solution.

This follows from the fact that for some optimization problems, like findingD-optimal designs

to be discussed later, design points tend to be at the boundary of the search space. However,

with a larger value of m, more particles mutate and this may make the swarm more difficult
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to exploit the current promising area.

Figure 3.1: The number of significantly better results found by the algorithm using different
m values compared to using m = 1 for optimizing the 24 benchmark functions when the
swarm size is n.

The analysis of the differences between GA and CSO-MA is that the latter has in-built

features that likely explain its out-performance when compared with its other competitors.

For example, GA requires that a part of offspring chromosomes to mutate and for CSO-MA,

there is only one mutation per iteration. This means that CSO-MA requires fewer number

of computational operations and so saves time. Further, if the size of the cohort/swarm or

the number of chromosomes is fixed, GA replaces existing “bad” chromosomes with newly-

mutated offspring chromosomes that may not identify more promising solutions, and also

loses all the information provided by the previous “bad” chromosomes. In contrast, the

amount of information lost by mutating particles, i.e., one particle and one coordinate per

iteration, in CSO-MA is relatively trivial. The upshot is that in CSO-MA, loser particles

do not lead the swarm movement, delay the movement speed, able to inform others of

unpromising areas and allow CSO-MA to explore new areas more effectively.
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3.4.3 Swarm Diversity

I have claimed that the advantage of CSO-MA over CSO is that CSO-MA realizes a more

diverse swarm. To show that, I use the swarm diameter as an index proposed by Olorunda

and Engelbrecht (2008) to measure the diversity of a swarm. This index is defined as

Dia = max
(i 6=j)

√√√√ D∑
k=1

(xik − xjk)2.

When the swarm diversity index drops to zero, this implies that the search has ended and

all particles have converged to a single point. The swarm cannot revive and find a better

solution. On the contrary, as long as the swarm diversity is above a specific level, the swarm

has a chance to explore other areas of the space.

Table 3.6 shows the swarm diameter Dia for minimizing functions f4 to f8 with CSO-MA

having 10 wins, 3 ties and 2 losses versus CSO. These values are measured at the start and

end of each search, plus one measured at the mid-point during each search. I note that these

four functions all have a lot of local minima and their global minima are not located at or

around the boundary of the search space. This means that merely having a common practice

to send particles search at or near the boundary to search for the optimum is not helpful

and these four functions are very hard to optimize. It appears that CSO-MA’s success in

finding better solutions for these functions than CSO is due to its having a more diverse

swarm during the search process. CSO also seems to run out of energy midway during its

search, whereas CSO-MA always keeps a dynamic and diversified swarm and enables it to

jump out of local optima.

CSO-MA’s enhanced performance is not necessarily limited to optimizing multimodal

functions. I observe that the results from CSO-MA for optimizing unimodal functions f1 to

f3 are comparable to those from CSO. For the space consideration, I do not display the Dia

patterns for optimizing the other functions, but note that they share a very similar pattern.

In real applications, the CPU time required to find the optimum is unknown and so it is

common to employ longer runs. The implication is that when a longer runtime is allowed,
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Function Dimension CSO’s Dia CSO’s Results CSO-MA’s Dia CSO-MA’s Results

f4

D = 100 (50.40, 0.00, 0.00) 5.29E+01 (52.61, 6.85, 5.30) 5.33E-06∗

D = 500 (103.73, 0.00, 0.00) 1.58E+02 (103.76, 5.21, 5.26) 3.84E+01∗

D = 1000 (143.18, 0.00, 0.00) 1.60E+02 (143.92, 3.48, 6.52) 4.16E+01∗

f5

D = 100 (4878.05, 0.00, 0.00) 6.30E+03 (4871.30, 914.08, 965.59) 1.31E+02∗
D = 500 (10069.29, 0.00, 0.00) 4.94E+04 (10057.30, 905.36, 1061.222) 7.53E+02∗

D = 1000 (14047.72, 0.00, 0.00) 2.38E+05 (14051.95, 604.02, 798.37) 3.81E+03∗

f6

D = 100 (9.87, 0.00, 0.00) -7.15E+01 (9.75, 0.63, 1.97) -8.69E+01∗

D = 500 (19.98, 0.00, 0.00) -2.89E+02 (19.62, 1.37, 0.67) -3.50E+02∗

D = 1000 (27.84, 0.00, 0.00) -3.69E+02 (28.11, 1.12, 1.09) -4.98E+02∗

f7

D = 100 (5829.34, 0.00, 0.00) 2.22E-16 (5816.03, 745.05, 611.29) 2.22E-16
D = 500 (12196.04, 0.00, 0.00) 4.44E-16∗ (12230.41, 708.34, 715.51) 6.88E-05
D = 1000 (16750.82, 0.00, 0.00) 1.30E-02 (16779.22, 681.06, 720.33) 1.24E-02

f8

D = 100 (315.39, 0.00, 0.00) 4.44E-15 (318.09, 44.81, 44.29) 4.44E-15
D = 500 (655.34, 0.00, 0.00) 8.88E-15∗ (639.74, 39.53, 41.36) 4.40E-04
D = 1000 (893.27, 0.00, 0.00) 4.90E-01 (885.87, 43.27, 43.41) 3.01E-03∗

Table 3.6: The average swarm diameter measured at the 1-st function evaluation, the 2500D-
th function evaluation and at the 5000D-th function evaluation when CSO and CSO-MA are
applied to minimize the benchmark functions f4 to f8, which all have many local minima.
The rightmost column displays the difference in the optimal values of the function found by
CSO and CSO-MA at the termination with an asterisk if the mean difference is found to be
significantly different from 0.

CSO-MA is likely to find a better solution than CSO.

Chi et al. (2012) proposed a mutating-to-the-boundary strategy in an improved PSO

algorithm called elastic boundary for particle swarm optimization (EBPSO). At each it-

eration of EBPSO, it defines an elastic region given the current global value. Then each

particle is examined by a criterion to determine whether it needs to fly to a boundary area

of the elastic region according to an updating function for space exploration. Compared

to their algorithm design, CSO-MA has a dominant advantage that at each iteration, only

one particle needs to be mutated (calculation complexity of the mutation step O(1)), while

for EBPSO, all particles have to be examined and some have to be mutated (calculation

complexity of the mutation step at least O(nD)). In Table 2 of Chi et al. (2012), the mean

results EBPSO obtained for minimizing four benchmark functions are 5.05E-31, 5.26E-03,

3.98E-01 and 2.85E+00. Under the same testing setup, CSO-MA’s mean results are 7.03E-

55, 4.92E-07, 2.17E-06 and 1.90E-03. These results show that CSO-MA’s mutation strategy

is more effective than EBPSO.
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3.4.4 Algorithm Speed

CSO-MA only adds a mutation operation on one particle per iteration and so the algorithmic

complexity does not change compared to the original CSO. Does CSO-MA require more

running time to find the optimum? To this end, I record the average running time for

CSO and CSO-MA to minimize each function in Table 3.7. The table shows no significant

efficiency gap between them because, for the same function, both algorithms require very

similar CPU time.

100D 500D 1000D
CSO CSO-MA CSO CSO-MA CSO CSO-MA

f1 3.0s 3.1s 94.5s 92.6s 412.3s 417.1s
f2 6.6s 6.6s 180.4s 181.9s 746.2s 758.6s
f3 3.0s 2.9s 92.9s 86.3s 411.7s 420.2s
f4 9.2s 9.1s 247.8s 249.0s 998.0s 1025.5s
f5 6.2s 6.2s 165.6s 165.0s 723.5s 734.6s
f6 9.7s 9.7s 245.2s 260.1s 1040.5s 1052.1s
f7 10.1s 10.0s 265.0s 271.4s 1144.2s 1150.3s
f8 9.5s 9.9s 257.7s 255.2s 1053.1s 1064.7s

Table 3.7: The runtime for CSO and CSO-MA completing 5000D function evaluations on
each benchmark function. Average results are given based on ten independent runs for each
function.
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CHAPTER 4

Optimal Designs for Nonlinear Fixed-effects Models and

Applications

In this chapter, I apply CSO-MA to find optimal designs for different nonlinear fixed models,

including high-dimensional logistic, Poisson and negative binomial models. The results show

that, compared to other commonly-used algorithms, CSO-MA frequently outperforms them

and is also more likely to find the complicated optimal designs. I provide three applications

of CSO-MA and show the generated optimal designs guarantee the best statistical inference

at minimal cost for the given amount of resources.

In Section 4.1, I use CSO-MA to find locally D-optimal designs for two-factor logistic

models and compare the results with the literature. A brief comparison with a modified

Fedorov exchange algorithm is also provided. In Section 4.2, I apply CSO-MA to search

locally D-optimal designs for high-dimensional logistic and Poisson models and compare

its performance with the other four algorithms. Section 4.3 covers a couple of experimental

design applications, including estimating the gender effect on the frequency of hospitalization

by acute stroke patients, testing a vision-based car refueling system, and measuring the

retention factor of the drug Sulindac.

All calculations in the following chapters are done on a Windows PC with 3.20GHz Intel

i7-8700 CPU, 32GB DDR4 2666MHz memory and 512G SSD storage. The programming

platform is MATLAB 2018a.
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4.1 Low-dimensional Models

Models with two independent factors and one interaction term are widely used in many ap-

plications. A recent theoretical result for logistic models is presented in Haines and Kabera

(2018) and D-optimal designs were constructed subject to all the model parameters, except

the intercept θ0, were non-negative. This is a common observation where artificial conditions

are imposed so that the theoretical optimal design can be found. For Poisson models, ana-

lytical results are only available for very simple models and for multiple factors, the factors

are assumed to be additive to obtain some partial theoretical results.

In this subsection, I apply CSO-MA to find locally D-optimal designs for three two-

factor logistic models with an interaction term using nominal parameters listed in the left

column of Table 4.1. I observe that CSO-MA can find exactly the same locally D-optimal

designs theoretically derived in Haines and Kabera (2018) in less than 1 second. I then

choose additional nominal values so that the technical conditions required in Haines and

Kabera (2018) are violated and test whether CSO-MA is able to find the locally D-optimal

designs for the two models with and without the interaction term. Accordingly, I choose

some parameter values to be negative and list them in the right column of Table 4.1.

Since CSO-MA has stochastic components in the algorithm, it can produce a different

result for each run. Most of the time, the results are close, although they can be quite

different occasionally. I decide to run it five times for each model and average the outputs.

I stop each searching process if the criterion function value change between two successive

iterations is less than 10−5. I use a swarm of 50 particles and choose the value of φ to be

any value between [0.05, 0.20] following the suggestion in Cheng and Jin (2015).

After plugging the new parameters listed in the last column in Table 4.1 into the logistic

models (denote them by L1, L2, L3 corresponding to the model index in Table 4.1 and the

Poisson models (denote them by P1, P2, P3 corresponding to the model index in Table 4.1),

I find that CSO-MA still finds the locally D-optimal designs for the models in 1 second on

the design space X = [−1, 1]2 and these designs are shown below.
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Index In Haines and Kabera (2018) In my simulation
1 θ0 = −1, θ1 = 1, θ2 = 2, θ3 = 2 θ0 = −1, θ1 = 1, θ2 = −2, θ3 = 2
2 θ0 = −1.7, θ1 = 1, θ2 = 2, θ3 = 1 θ0 = −1.7, θ1 = −1, θ2 = 2, θ3 = −1
3 θ0 = −3, θ1 = 2, θ2 = 3, θ3 = 1 θ0 = −3, θ1 = −2, θ2 = 3, θ3 = 1

Table 4.1: The parameters for the models having two factors and one interaction.

ηL1 =


−1.000 −0.774 0.108 1.000 1.000

1.000 −1.000 −1.000 −0.331 0.378

0.250 0.233 0.142 0.142 0.233

 , ηP1 =


−1.000 −0.333 1.000 1.000

1.000 −1.000 −1.000 −0.500

0.250 0.250 0.250 0.250

 ,

ηL2 =


−1.000 −1.000 −0.569 0.869 1.000

−0.246 0.713 1.000 1.000 −1.000

0.247 0.128 0.128 0.247 0.250

 , ηP2 =


−1.000 −1.000 0.000 1.000

0.333 1.000 1.000 −1.000

0.250 0.250 0.250 0.250

 ,

ηL3 =


−1.000 −1.000 0.366 1.000

−0.398 1.000 0.317 1.000

0.250 0.250 0.250 0.250

 , ηP3 =


−1.000 −1.000 0.236 1.000

0.000 1.000 0.382 1.000

0.250 0.250 0.250 0.250

 .

The criterion values corresponding to L1, P1, L2, P2, L3 and P3 are -9.962, 1.030, -10.920,

-4.384, -11.783 and -7.933.

After finding these designs, I plot their sensitivity functions in Figure 4.1 and they con-

firm the D-optimality of the generated designs. In summary, CSO-MA finds these locally

D-optimal designs successfully and each can be done within 1 second of CPU time. My ex-

perience is that with a total of thirty runs with five runs for each model, CSO-MA produces

very stable results and finds the D-optimal design in every run.

In the appendices, I provide the MATLAB codes of using CSO-MA to find locally D-

optimal approximate design for a two-factor additive logistic model.

4.1.1 Comparison with Exchange Algorithm

The Fedorov exchange algorithm and its variants are well-known and widely used for con-

structing D-optimal designs in the literature. One problem using these algorithms is that
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Figure 4.1: The sensitivity functions for the six designs that confirm their D-optimality.
First row (left to right): L1, L2, and L3; second row (left to right): P1, P2, and P3.

practitioners have to provide a set of candidate design points and then try to find the optimal

design whose design points must be found among the points in the candidate set, which may

not contain all the true design points of the optimal design.

Al Labadi et al. (2015) proposed a modified Fedorov exchange algorithm for constructing

locally D-optimal approximate designs by adding or exchanging two or more points simulta-

neously at each step and used the below example to show his proposed modified algorithm

is more efficiently than the standard exchange algorithm that replaces one design point one

at a time.

The regression model discussed in Al Labadi et al. (2015) is given by

E(y) = β1+
β2

1− 0.2x
+

β3

1 + 0.2x
+

β4

1− 0.4x
+

β5

1 + 0.4x
+

β6

1− 0.6x
+

β7

1 + 0.6x
+

β8

1− 0.8x
+

β9

1 + 0.8x
,

and the design space is [−1, 1]. To find the D-optimal design for estimating the parameters

in the above model, Al Labadi et al. (2015) used a discretized design space with candidate
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design points given by xi = −1 + 2i/99, i = 0, · · · , 99. Since the model contains only one

variable x, dividing the design space uniformly into 100 pieces using a step size of 0.02 seems

like a reasonable strategy to maintain a high level of precision. However, neither the modified

Fedorov exchange algorithm nor the standard one succeeded to find the locally D-optimal

approximate design, which is

ηr =

−1.000 −0.934 −0.754 −0.433 0.000 0.433 0.754 0.934 1.000

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

 .

CSO-MA finds ηr in 0.2 CPU seconds, which is faster than the two exchange algorithms.

The design found by the modified Fedorov algorithm is 99.8% D-efficient and the one found

by the standard Fedorov algorithm is 95.6% D-efficient. A possible reason is that the design

space is discretized in this problem and this means that the support points of the generated

optimal design must be among the grid points, which may not be true, especially if the grid

is not fine enough. However, having a very fine grid to search for the optimal design for

models with many factors also requires more time to generate the grid set and requires a

more powerful solver when mathematical programming methods are used. For the problem

at hand, it is not surprising that the modified Fedorov algorithm finds a more efficient design

than the one found by the standard Fedorov algorithm since the former is an enhancement of

the latter. Until recently, exchange-type algorithms also require the space to be discretized;

my experience is that the difficulty of using exchange algorithms to find optimal designs

would rise dramatically when the model is nonlinear and has many factors. In the next

section, I show that CSO-MA is also useful for finding various types of optimal designs for

different types of high-dimensional models.

4.2 High-dimensional Models

To further test CSO-MA’s capability, I apply it to search locally D-optimal designs for more

complicated models. Specifically, logistic and Poisson regression models now contain five

factors and all pairwise interactions. This means there are 16 parameters in each model,
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implying that optimal designs for these models have to have at least 16 design points; oth-

erwise, the Fisher information matrices are singular. As in the previous section, the design

space is [−1, 1]5. If we expect the optimal design has k (≥ 16) design points, there are

k − 1 weights and 5k components in the design points to optimize. If the optimal design

is minimally supported, i.e., k = 16, the number of variables to optimize is at least 95. If

k = 25, for instance, this number becomes 149 and so the problem becomes high-dimensional

rapidly.

I also compare the performance of CSO-MA with four popular stochastic algorithms,

namely particle swarm optimization (PSO), genetic algorithm (GA) (Miller et al., 1995),

cuckoo search (CS) (Yang and Deb, 2009) and CSO. They all have many interesting real-

world applications and their general effectiveness is widely documented; see, for example,

Yoshida et al. (2000); Valian et al. (2011); Yang and Deb (2014), and Syahputra (2017).

The nominal parameters for logistic models are generated randomly from U(−1, 1) and

the nominal parameters for Poisson models are generated randomly from U(−3, 3). For

each set of the nominal values listed in Table 4.2, I run each algorithm for each model ten

independent times and record the mean criterion values, their standard deviations and CPU

time as outputs.

Model index θ0, θ1, · · · , θ15

1 (logistic) [0.72, -0.25, 0.11, 0.91, 0.47, 0.63, -0.80, 0.86
0.22, 0.19, -0.82, -0.31, 0.33, -0.12, 0.10, 0.41]

2 (logistic) [-0.50, -0.10, -0.18, -0.48, 0.74, -0.63, -0.96, 0.90
0.36, -0.03, -0.93, -0.21, -0.84, -0.30, -0.67, 0.97]

3 (Poisson) [0.54, -2.70, 0.37, 1.60, 2.47, -2.44, 2.42, -0.23
-0.29, 3.00, -2.03, 1.26, -2.04, -1.86, -2.79, 0.21]

4 (Poisson) [0.17, -1.01, -0.88, -2.53, 0.34, -2.01, -1.23, 2.04
-0.82, -0.96, 1.26, -2.81, -0.17, 1.39, 1.64, -1.55]

Table 4.2: The parameter values for four simulated models: two logistic and two Poisson
models containing five factors and all pairwise interactions. The notations θ0, θ1, · · · , θ15

are the simulated parameters; for the logistic models, they are generated randomly from
U(−1, 1) and, for the Poisson models, they are generated randomly from U(−3, 3).

The average criterion values and standard deviations (in the parentheses) for these four
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Model index PSO GA CS CSO CSO-MA
1 -31.05(1.51) -29.54(0.83) -46.27(3.65) -28.80(0.37) -28.45(0.11)
2 -30.78(1.07) -29.76(1.12) -48.39(2.93) -28.91(0.54) -28.37(0.26)
3 163.11(0.92) 167.30(1.31) 64.09(0.65) 169.04(1.24) 169.88(0.09)
4 93.23(1.40) 100.14(1.71) 49.24(3.27) 100.35(0.64) 101.17(0.34)

Average runtime 64.5s 95.2s 33.6s 42.3s 43.9s

Table 4.3: The average criterion values of the generated designs found by the other four
algorithms for the four models with five factors and all pairwise interaction terms. Their
standard deviations are in parentheses and the last row reports the average CPU time for
each algorithm. The corresponding results from CSO-MA are in the last column.

models obtained by the five algorithms are summarized in Table 4.3. I observe that CSO-MA

has the best and most stable performance for searching D-optimal designs for the simulated

models. Finding the D-optimal designs for these models is not a trivial task but most of

the designs found by CSO-MA here can be deemed as highly efficient. CSO’s results are

closest to CSO-MA. PSO’s outcomes are worse. GA can find high-quality designs if it is

allowed to run longer. If we compare results obtained by GA and CSO-MA at around 40s

CPU runtime, CSO-MA could easily beat GA. CS gives the worst results.

As an illustration, I exhibit a CSO-MA-generated design for model 4 in Table 4.4 which

has a D-efficiency lower bound of 99%. I also present the plot for its sensitivity function

over a fine grid with uniformly spaced points.
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x1 x2 x3 x4 x5 w
1.000 -1.000 -1.000 -1.000 1.000 0.054
1.000 -1.000 -1.000 1.000 1.000 0.043
1.000 -1.000 1.000 -1.000 -1.000 0.053
1.000 -1.000 1.000 1.000 -1.000 0.037
1.000 1.000 -1.000 1.000 -1.000 0.054
1.000 1.000 -1.000 1.000 1.000 0.050
1.000 1.000 1.000 -1.000 -1.000 0.042
1.000 1.000 1.000 -1.000 1.000 0.052
1.000 1.000 1.000 1.000 1.000 0.048
-1.000 -1.000 -1.000 1.000 1.000 0.049
-1.000 -1.000 1.000 1.000 -1.000 0.049
-1.000 -0.259 1.000 1.000 1.000 0.051
-1.000 0.608 1.000 -1.000 1.000 0.046
-1.000 1.000 -1.000 -1.000 1.000 0.053
-1.000 1.000 -1.000 1.000 0.298 0.048
-1.000 1.000 1.000 -1.000 -1.000 0.043
-1.000 1.000 1.000 1.000 -1.000 0.049
-0.827 1.000 -1.000 -1.000 -1.000 0.046
-0.239 -1.000 -1.000 -1.000 -1.000 0.052
0.673 1.000 -1.000 -1.000 -1.000 0.035
0.752 -1.000 -1.000 1.000 -1.000 0.046

Table 4.4: A 99% locally D-efficient design for model 4 in Table 4.3.

4.3 Applications

4.3.1 Locally c-optimal Design for Estimating the Gender Effect on the Fre-

quency of Hospitalization by Acute Stroke Patients

Acute stroke hospitalization is among the most expensive of any types of hospitalization

which mainly consists of accurate diagnosis, therapeutic treatments to minimize stroke re-

currence or occurrence of other vascular problems, provision of nursing care and early rehabil-

itation during the acute phase, and coordination of discharge planning. For instance, stroke

ranks eighth in the Australian health system in terms of total financial burden, with the

greater component of the overall cost associated with institutionalization (Anderson et al.,

1994; Jørgensen et al., 1997; Diringer et al., 1999; Rundek et al., 2000). Lee et al. (2003)

applied a negative binomial model to assess the association between the number of hospi-
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Figure 4.2: The sensitivity function plot for the design in Table 4.4.

talizations for patients sustaining ischaemic stroke and their demographic characteristics,

health-related factors and medical history to plan discharge strategies, along with appropri-

ate rehabilitation and to efficiently manage the cost of acute care. The factors are listed in

Table 4.5.

Factor Value
Intercept –
Age (x1) [20, 90]

Gender (x2) Male: 1, female: 0
Indigenous status (x3) Aboriginal: 1, otherwise: 0
Area of residence (x4) Rural: 1, remote: 0

Presence of hypertension (x5) Yes: 1, no: 0
Presence of diabetes (x6) Yes: 1, no: 0

Presence of trial fibrillation (x7) Yes: 1, no: 0
Presence of transient ischaemic attack (x8) Yes: 1, no: 0
Presence of hypercholesterolaemia (x9) Yes: 1, no: 0
Presence of urinary incontinence (x10) Yes: 1, no: 0

Presence of carotid endarterectomy (x11) Yes: 1, no: 0

Table 4.5: The explanatory factors used in the negative binomial model for the acute stroke
hospitalization study (Lee et al., 2003).
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The parameter vector θ was estimated in Lee et al. (2003) to be (−1.232,−0.006, 0.060,

0.045, 0.573, 0.111, 0.288,−0.203, 0.151, 0.406, 0.550, 1.345)T and a = 3. I am especially in-

terested in estimating the effect of gender on the number of acute stroke hospitalizations. To

this end, I want to find a c-optimal design to estimate the appropriate coefficient in the model

as accurately as possible and this can be accomplished by taking c = (0, 0, 1, 0, · · · , 0)T . I use

CSO-MA to find the c-optimal design and the value of the optimality criterion is 4.16 and the

optimizer, on average, requires 57.1s to find the c-optimal design shown in Table 4.6. This

optimal design theoretically provides the most accurate inference for ascertaining gender’s

effect on the number of days of hospital stay among acute stroke patients. The c-optimal

design requires many 20-year-old subjects (x1) and so the design does not require patients’

ages to be well spread out over the range [20, 90]. Similar observations apply to binary factors

such as x4, x9, x10 and x11. This finding also shows that optimal designs providing the most

accurate inference based on technical considerations may be non-intuitive and undesirable

from a practical viewpoint.

In practice, optimal designs should be amended based on practical considerations before

implementation. The guiding principle is to modify the optimal design to meet the prac-

tical demands to the extent possible without sacrificing too much statistical efficiency. For

this reason, optimal designs are more appropriately called calibration designs and used as

benchmarks to measure the quality of the implemented design. In practice, the implemented

design may stray from the optimum to meet practical demands, provided the loss in efficiency

is not too large.

For the application at hand, it is likely desirable to have a more diverse age group of

patients in the study. A direct calculation shows that the efficiency of the same design after

I replace half the patients aged 20 by, say, patients aged 60, has a criterion value of 4.23,

which is close to the criterion value of 4.20 of the optimal design. This implies that the

modified design has a c-efficiency of 4.20/4.23 = 0.992 or 99.2% and so also works quite well

as the optimum and it has more diverse age groups of subjects in the study. Further, if more

diverse and equally spread age groups are sought, I may consider replacing values in the

first column of Table 4.6 by an equal number of patients with ages (20, 25, 30, 35, · · · , 80, 85)
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and keeping other factor settings in the design unchanged. A direct calculation shows the

criterion value of this new design is 4.26 and is 98% efficient compared to the c-optimal

design. Similar calculations apply if I wish to investigate changes in other settings of the

optimal design.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 w
20 0 0 1 0 1 0 0 1 1 1 0.06
20 0 1 1 0 0 1 0 1 1 1 0.02
20 1 0 1 0 1 0 1 1 1 1 0.19
20 0 0 1 1 1 0 1 1 1 1 0.09
27 0 1 1 0 1 0 0 1 1 1 0.06
20 1 1 1 1 1 0 0 1 1 1 0.14
20 1 0 1 1 1 0 1 1 1 1 0.01
20 0 0 1 0 1 0 1 1 1 1 0.07
31 1 1 1 0 1 1 1 1 1 1 0.02
20 1 1 1 1 1 0 1 1 1 1 0.10
28 1 1 1 1 1 0 1 1 1 1 0.02
20 0 0 1 0 1 0 1 1 1 1 0.01
20 1 0 1 1 0 0 1 1 1 1 0.02
20 0 1 1 1 1 0 1 1 1 1 0.19

Table 4.6: The c-optimal design for estimating the gender effect on the frequency of hospi-
talization by acute stroke patients.

4.3.2 Car Refueling Experiment

Grimshaw et al. (2001) described an experiment, based on a logistic model, for testing

a vision-based car refueling system with the question that whether a computer-controlled

nozzle was able to insert itself into the gas pipe correctly or not (Lukemire et al., 2018). The

experiment includes four binary explanatory factors (x1 ∼ x4 numerically taking -1 or 1):

ring type (white paper or reflective), lighting (room lighting or two flood lights and room

lights), sharpening (without or with), smoothing (without or with); six continuous factors

(x5 ∼ x10): lightning angle (50 to 90 degrees), gas-cap angle 1 (30 to 55 degrees), gas-cap

angle 2 (0 to 10 degrees), can distance (18 to 48 inches), reflective ring thickness (0.125 to

0.425 inches) and threshold step vale (5 to 15). Moreover, three potential pairwise interaction

terms are considered to be included, which are the interaction between ring type and reflective
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ring thickness, the interaction between lighting and lighting angle, the interaction between

smoothing and car distance. To fully test CSO-MA’s potential for finding the D-optimal

design for estimating all parameters in the mean function of a complex and high-dimensional

model, I include two three-factor interaction terms. The physical interpretations of the

explanatory factors are described in the accompanying table.

Variable Notation Type Range
Ring type x1 Binary -1 or 1
Lightning x2 Binary -1 or 1
Sharpening x3 Binary -1 or 1
Smoothing x4 Binary -1 or 1

Lightning Angle x5 Continuous [50, 90]
Gas-cap Angle 1 x6 Continuous [30, 55]
Gas-cap Angle 2 x7 Continuous [0, 10]
Can Distance x8 Continuous [18, 48]

Reflective Ring Thickness x9 Continuous [0.125, 0.425]
Threshold Step Value x10 Continuous [5, 15]

P-Interaction 1 x1x9 - -
P-Interaction 2 x2x5 - -
P-Interaction 3 x4x8 - -
T-Interaction 1 x6x7x8 - -
T-Interaction 2 x3x4x10 - -

Table 4.7: Variable information for the car refueling experiment.

The full model contains 10 factors and 16 parameters. To find locally D-optimal design, a

set of parameter values is proposed: θ = (3.00, 0.50, 0.75, 1.25, 0.80, 0.50, 0.80, −0.40,−1.00,

2.65, 0.65, 1.10, −0.20, 0.90,−0.36, 1.07). If I only consider the additive linear part with-

out interaction terms, corresponding locally D-optimal design had already been found in

Lukemire et al. (2018) by employing another evolutionary algorithm called “Quantum-behaved

PSO” and its average running time touching the optimal design was 140 seconds.

To initialize CSO-MA and search for locally D-optimal designs for both models (with

and without interaction terms), I set k = 20, which is the initial guess on the number of

design points and n = 200, the number of particles. Since evolutionary algorithms work

by incorporating random factors, I run the algorithm ten independent times. On average,

CSO-MA spends 24 seconds to find the optimal design for the no-interaction model and
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about 400 seconds for the model with all pairwise interactions.

Table 4.8 displays the locally 17-pointD-optimal design for the full model and its criterion

value is -7.256.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 w
1.000 -1.000 -1.000 -1.000 50.000 30.000 0.026 31.494 0.125 5.000 0.062
1.000 -1.000 1.000 -1.000 90.000 30.000 0.285 18.000 0.425 5.000 0.063
1.000 -1.000 1.000 -1.000 90.000 37.342 0.000 47.999 0.425 15.000 0.061
1.000 -1.000 1.000 1.000 68.511 55.000 0.209 29.239 0.425 15.000 0.062
1.000 1.000 -1.000 -1.000 90.000 30.000 0.085 28.026 0.125 15.000 0.062
1.000 1.000 -1.000 -1.000 90.000 31.591 0.000 34.269 0.425 5.000 0.062
1.000 1.000 1.000 -1.000 50.000 55.000 0.000 33.014 0.125 5.000 0.062
-1.000 -1.000 -1.000 -1.000 50.000 36.649 0.000 48.000 0.425 15.000 0.061
-1.000 -1.000 -1.000 -1.000 90.000 55.000 0.025 48.000 0.425 5.000 0.062
-1.000 -1.000 -1.000 -1.000 90.000 55.000 0.091 36.073 0.125 15.000 0.061
-1.000 -1.000 -1.000 1.000 75.860 30.000 0.363 18.000 0.125 15.000 0.063
-1.000 -1.000 1.000 -1.000 50.000 55.000 0.007 36.516 0.125 15.000 0.062
-1.000 -1.000 1.000 -1.000 90.000 30.000 0.029 38.137 0.425 15.000 0.020
-1.000 -1.000 1.000 -1.000 90.000 30.000 0.000 45.986 0.125 5.000 0.060
-1.000 1.000 -1.000 -1.000 50.000 30.000 0.000 34.471 0.125 15.000 0.057
-1.000 1.000 -1.000 1.000 67.477 30.000 0.070 48.000 0.125 15.000 0.063
-1.000 1.000 1.000 -1.000 50.000 30.000 0.011 18.361 0.425 15.000 0.056

Table 4.8: The locally D-optimal design for the full model of the car refueling experiment.

4.3.3 Optimal Design for Measuring the Retention Factor of the Drug Sulindac

Sulindac is an anti-inflammatory drug used to reduce pain, swelling, and joint stiffness for

arthritis patients. One special interest in Sulindac is to measure its retention factor R by

chromatography technique, which can separate Sulindac from some of its impurities. The

retention factor is the ratio of the distance that the interested material moves above the origin

to the distance that the solvent front moves above the origin when using chromatography.

Different compounds have different retention factors when in different solution systems;

thus, they can be separated. Knowing a material’s retention factor, especially when it often

appears in the form of a mixture, can further help researchers learn its concentration or other

interesting properties.

Such an experiment was described by Krier et al. (2011) where the retention factor R
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was linked with four factors that they had an interest in:

1. the gradient elution time (x1, minutes);

2. the percentage of acetonitrile at the beginning of the gradient elution (x2);

3. the percentage of acetonitrile at the end of the gradient elution (x3);

4. whether proceed isocratic elution procedure (x4).

Factors x1, x2, x3 are continuous with range [1, 5], [15%, 55%], [55%, 65%], respectively. Fac-

tor x4 is binary taking value 0 or 1 corresponding to without and with isocratic elution

procedure. A Poisson regression model was proposed in the literature and is shown below,

including some quadratic and interaction terms

logR = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4 + θ5x
2
1 + θ6x

2
2 + θ7x

2
3 + θ8x1x2 + θ9x1x3

+ θ10x1x4 + θ11x2x3 + θ12x2x4 + θ13x3x4.

In addition, I add all three-way interaction terms (θ14x1x2x3, θ15x1x2x4, θ16x1x3x4, θ17x2x3x4)

to the model so that higher-order interactive effects can be studied as well.

For illustrative purposes, I take a set of nominal values for the model parameters to be:

θ = (1.0,−0.5, 0.7, 1.2, 0.8, 0.5, 0.8,−0.4,−1.0, 2.7, 0.6, 1.7, 2.4,−1.1, 0.3, 0.6,−0.4,−0.2). CSO-

MA takes around 12 seconds to find corresponding locally D-optimal design η1 for the full

model (including all the three-way interactions) and 10 seconds to find D-optimal design

η2 for the model without any three-way interaction terms. These two optimal designs are

shown in Table 4.9 and Table 4.10.

I have not seen any D-optimal design for a four-factor Poisson model with all three-way

interaction terms and so such a design is new. Admittedly, such models may not be common

in practice, but it is not clear if it is because such optimal designs were not available before.

I demonstrated that my methodology can find such optimal designs if they are needed.
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x1 x2 x3 x4 w x1 x2 x3 x4 w
4.172 0.550 0.650 1.000 0.056 4.635 0.550 0.650 0.000 0.053
4.641 0.150 0.550 0.000 0.051 4.655 0.150 0.650 0.000 0.054
4.661 0.550 0.550 1.000 0.055 4.667 0.150 0.550 1.000 0.055
4.668 0.550 0.550 0.000 0.011 4.680 0.150 0.650 1.000 0.055
4.790 0.550 0.650 1.000 0.056 5.000 0.150 0.550 0.000 0.055
5.000 0.150 0.550 1.000 0.054 5.000 0.150 0.650 0.000 0.055
5.000 0.150 0.650 1.000 0.055 5.000 0.389 0.650 1.000 0.045
5.000 0.392 0.609 1.000 0.025 5.000 0.550 0.550 0.000 0.054
5.000 0.550 0.550 1.000 0.055 5.000 0.550 0.609 1.000 0.046
5.000 0.550 0.650 0.000 0.055

Table 4.9: Locally D-optimal design η1 for the Poisson model including all three-way inter-
actions.

x1 x2 x3 x4 w x1 x2 x3 x4 w
4.179 0.550 0.650 1.000 0.056 4.325 0.150 0.650 1.000 0.031
4.653 0.150 0.650 0.000 0.071 4.680 0.550 0.550 1.000 0.043
4.683 0.150 0.550 1.000 0.045 4.765 0.150 0.650 1.000 0.057
4.777 0.550 0.650 1.000 0.062 5.000 0.150 0.550 0.000 0.071
5.000 0.150 0.550 1.000 0.064 5.000 0.150 0.609 1.000 0.039
5.000 0.150 0.650 0.000 0.071 5.000 0.150 0.650 1.000 0.064
5.000 0.347 0.611 1.000 0.035 5.000 0.347 0.650 1.000 0.059
5.000 0.550 0.550 1.000 0.063 5.000 0.550 0.609 1.000 0.032
5.000 0.550 0.650 0.000 0.071 5.000 0.550 0.650 1.000 0.064

Table 4.10: Locally D-optimal design η2 for the Poisson model without any three-way inter-
actions.
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CHAPTER 5

Optimal Designs for Mixed-effects Models and Bayesian

Optimal Designs

This chapter applies CSO-MA to search for optimal designs for nonlinear mixed models.

These models are widely used in biomedical studies, for instance, in longitudinal studies

to monitor patients’ reactions to intervention over time. I also use CSO-MA to construct

Bayesian optimal designs, which can be challenging to find. My results show that CSO-MA

can efficiently find different types of optimal designs for models with one or more factors for

implementation or use them to calibrate other experiments.

In Sections 5.1 and 5.2, I show that CSO-MA can find optimal designs for various mixed

models, including logistic model, Poisson model, and negative binomial model. These models

can contain multiple correlated random effects, making searching for optimal designs a chal-

lenging task. Some novel and interesting questions are addressed; for instance, unlike most

of the literature treating time as a continuous factor, I propose to choose a finite number of

time points from a given candidate set that optimizes the criterion function. A couple of real

applications of Bayesian optimal designs are also presented in Sections 5.3 and 5.4, includ-

ing measuring the HIV dynamics model and heart defibrillator energy level. The Bayesian

optimal designs found by CSO-MA greatly enhance experimental efficiency.

5.1 Longitudinal Mixed Models

Mixed-effects models are increasingly used in various fields, particularly in biomedical and

public health studies. For example, longitudinal studies are increasingly analyzed using

mixed-effects models. Another example is in pharmacokinetic and pharmacodynamic studies,
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where data are invariably analyzed using nonlinear mixed models. In longitudinal studies,

design issues may involve choosing the number of time points, the locations of the time

points and how many subjects to assign to each of the time points. Additional constraints

such as the varying cost of a study at various levels or ensuring a minimum spread between

the time points can complicate the construction of an optimal design. On the other hand,

sometimes, the time points are pre-selected for practical or medical reasons, and finding an

appropriate design becomes simpler because there are fewer variables to optimize.

5.1.1 Fractional Polynomial Models

Suppose I wish to monitor the pulmonary function of the lungs of patients periodically in

a clinical trial. A common measure is forced vital capacity, which is a continuous variable.

Polynomial models are traditionally used to model the outcome over time, but increasingly,

fractional polynomial models are used because they are more versatile and provide more

flexibility to curve fitting, especially when the true relationship between the mean response

and the explanatory factors is less smooth or can experience an abrupt but smooth change.

(Royston and Wright, 1998; Long and Ryoo, 2010). Fractional polynomials are polynomials

but are allowed to have positive and negative fractions in the power for each nominal. Roys-

ton and Altman (1994) proposed such models and suggested that it is adequate to select

powers from the set S = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. For this problem, I assume each time

point can be chosen from a pre-determined discrete set T = {1, 2, · · · , Tmax}, where Tmax is

given and I want to determine the number and sampling time points for each subject in an

optimal way.

Consider a linear fractional polynomial model with a subject random effect given by

yij = θ0 + θ1t
−2
ij + θ2t

−1
ij + θ3t

−1/2
ij + θ4t

1/2
ij + θ5tij + θ6t

2
ij + θ7t

3
ij + bi + eij,

bi ∼ N (0, σ2
b ), eij ∼ N (0, σ2

e).
(5.1)

Here tij refers to the time point of the j-th visit/measurement for individual i; bi is the

random intercept term assumed to have a normal distribution with zero mean and variance
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σ2
b ; eij is an error term following a normal distribution with zero mean and variance σ2

e .

All random effects and error terms are assumed to be mutually independent of one another.

My interest is to find a locally D-optimal design to estimate the model parameters θ =

(θ0, · · · , θ7) by selecting the optimal subset of time points from T among all possible subsets

from the pre-selected and discretized design space. Thus unlike all previous discussions, the

design space is not an interval and consists of all possible subsets of T . Consequently, the

sensitivity plots displayed below for an approximate design are not the usual ones seen in a

typical design paper or monograph.

Suppose η is a design with n design points η1, · · · , ηn and each design point ηk has nk

time points (tk1, · · · , tknk). Let the weight for each subset of design points from T for the

design ηk be wj with
∑n

j=1 wj = 1. Let Jnk be a nk × nk square matrix where every element

is equal to one; let Ink be an identity matrix of dimension nk, SR = σ2
b/σ

2
e and let

Tk =


1 t−2

k1 t−1
k1 · · · t3k1

1 t−2
k2 t−1

k2 · · · t3k2

...
...

...
...

...

1 t−2
knk

t−1
knk

· · · t3knk

 .

A direct calculation shows

M(ηk) = TT
kΣ−1

k Tk

=
1

σ2
e

TT
k (Ink +

σ2
b

σ2
e

Jnk)
−1Tk

=
1

σ2
e

TT
k (Ink −

1

1 + nk
σ2
b

σ2
e

σ2
b

σ2
e

Jnk)Tk

=
1

σ2
e

TT
k (Ink −

SR

1 + nkSR
Jnk)Tk.

In practice, costs are incurred when we observe a measurement from the study and they

may vary depending on which time point the observation is taken. More generally, suppose

the cost of implementing design ηk is given by a known function c(ηk) apart from parameters.

Then I normalize the information matrix by its cost function and work with the normalized
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information matrix M∗(η) and denote it by

M∗(η) =
n∑
k=1

wk
M(ηk)

c(ηk)
.

The advantages of incorporating cost into the design have been discussed in Gagnon

and Leonov (2004) and Tekle et al. (2008b) and some commonly-used cost functions were

discussed in Zhou et al. (2018). For example, one may consider a linear cost function given

by

c(ηk) = α1 + α2nk,

where the user-defined parameters α1, α2 influence the cost of having nk visits or measure-

ments. The normalized information matrix is reminiscent of the common case seen in optimal

design literature when errors are heteroscedastic and the inverse of the error variance at a

point is represented similarly in the normalized matrix. When the cost structure is linear,

it is straightforward to observe that the optimal design depends on the ratio of the two

parameters r = α1/α2 and not on the values of α1 and α2. In the following subsections, I

apply CSO-MA to generate designs for estimating parameters in various mixed models and

some include cost considerations. All generated approximate designs have been verified to

be optimal and for space consideration, I only show some of their sensitivity plots, which

confirm the optimality of the CSO-MA-generated designs. I use 256 particles and set φ = 0.1

for the following five examples.

Example 1. If SR = 2, r = 0.5, and Tmax = 10, CSO-MA-generated design η1 is

η1 =

{1, 2, 3, 5, 8, 10} 0.832

{1, 2, 3, 6, 8, 10} 0.168

 .

It has a D-criterion value of -33.200 and CSO-MA takes 2.0 seconds to find it. This gen-

erated design has two design points, requiring about 83% of subjects have six measurements

at times 1, 2, 3, 5, 8, 10 and the other 17% of subjects have six measurements at times

1, 2, 3, 6, 8, 10. This design strategy guarantees that statistical inference for all the fixed
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parameters are estimated with maximum efficiency.

Example 2. If SR = 2, r = 5, and Tmax = 10, CSO-MA-generated design η2 is

η2 =


{1, 2, 4, 6, 8, 9, 10} 0.100

{1, 2, 3, 5, 6, 8, 9, 10} 0.260

{1, 2, 3, 4, 6, 8, 10} 0.275

{1, 2, 3, 5, 6, 8, 9, 10} 0.365

 ,

which can be interpreted the same way as the first case. It has a D-criterion value of -36.141

and CSO-MA takes 2.0 seconds to find it.

These two examples seem to suggest that a larger value of r requires subjects to be

observed more times.
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Figure 5.1: The sensitivity functions of the CSO-MA-generated designs in Example 1 (first
row) and Example 2 (second row) versus the design space comprising all subsets of possible
time points when they are appropriately ordered (right) and when they are not (left).

The sensitivity functions of the two CSO-MA-generated designs for the two examples

are displayed in Figure 5.1. Suppose the time unit is an hour and since the time interval is
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divided into {1, 2, · · · , 10}, there are 1023 possible sets of time points to observe a subject

over the 10-hour period, i.e., {1}, {2}, {3}, · · · , {10}, {1, 2}, {1, 3}, · · · , {1, 2, · · · , 10}.

This means, for example, that the first choice requires the subject to be observed once at

the end of the first 1 hour, and the last choice requires that the subject to be observed every

hour for 10 hours. The optimal approximate design selects what percentage of subjects to be

observed at different sets of time points and what the sets of time points are. To construct

the plot, I first order the sets of time points according to their values of the sensitivity

function and then plot the function across the ordered 1023 sets of time points so that the

pattern becomes visibly clear. Two plots confirm both designs’ D-optimality.

Example 3. Fractional Polynomial Models with Correlated Random Coefficients

I show that CSO-MA can generate optimal designs for models with multiple correlated ran-

dom effects. The example is illustrative in that the nominal model parameters and the

covariance matrix of the random effects are arbitrarily selected. Different from the previous

examples, I assume observations for each subject can only be taken in a continuous time

interval t ∈ [1, 10] and this study requires each subject to have exactly four observation-

s/measurements.

This model contains more random effects and is given by

yij = θ0 + θ1t
−1/3
ij + θ2t

−1/2
ij + θ3t

1/3
ij + θ4t

1/2
ij + θ5tij + θ6t

2
ij + eij,

(θ0, · · · , θ6)′ ∼ N (0,D), eij ∼ N (0, σ2
e),

(5.2)

where

D = Blockdiag(D1,D2),

D1 =


1.0 0.8 0.4

0.8 1.2 0, 5

0.4 0.5 1.9

 ,D2 =


1.3 0.6 0.6 0.3

0.6 1.2 0, 7 0.4

0.6 0.7 1.3 0.3

0.3 0.4 0.3 1.0

 .

72



The information matrix for this model can be derived in a similar manner as in Schmelter

et al. (2007). Since σ2
e does not affect the optimization process, I assume it equal to 1. The

D-criterion value of the CSO-MA-generated locally design is -60.583 and the design is

η3 =


{1.878, 4.224, 8.297, 10.000} 0.347

{1.000, 1.254, 2.015, 3.910} 0.311

{1.282, 3.000, 6.070, 9.053} 0.189

{1.000, 3.116, 6.132, 9.114} 0.153

 .

This design requires that the total sample of patients be divided unequally into four

groups, each with a different time schedule. For example, one group has 34.7% of the patients

and each patient is observed at the time points 1.878, 4.224, 8.297 and 10.000. The other

groups are similarly interpreted for the design. When implemented, this design maximizes

the D-efficiency for estimating model parameters.

5.1.2 Logistic Regression Models

Binary outcomes are ubiquitous and a logistic mixed model is commonly used to model the

binary longitudinal data. One example is when we take longitudinal measurements on some

physiological outcomes, such as examining subjects’ muscular strength and endurance by

examining whether the subject passes a push-up test. The probability of passing the test

for individual i at the time point tij can be described by a logistic model with a random

intercept term. As before, I assume each time point should be chosen from a given discrete

set T = {1, 2, · · · , Tmax}.

Suppose that i-th subject has ni measurements at ti1, · · · , tini in the study and pij is the

probability at time tij, the model is

pij =
exp(θ0 + θ1tij + bi)

1 + exp(θ0 + θ1tij + bi)
, bi ∼ N (0, σ2

b ), j = 1, · · · , ni,

where bi is the random intercept term and is normally distributed. The research question
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is to find optimal time points for each patient to estimate the parameters θ0 and θ1 as

accurately as possible.

The log-likelihood function of the above model does not have a closed form and the

information matrix thus cannot be derived analytically. One solution is to use a first-order

penalized quasi-likelihood (PQL1) for approximating the true likelihood function (Breslow

and Clayton, 1993; Jang and Lim, 2009; Abebe et al., 2014). By using the PQL1 method and

assuming a n-point design η with each design point ηi having ni time points/measurements,

the information matrix can be approximated as

M ≈
n∑
i=1

TT
i V−1

i Ti, Vi ≈W−1
i + σ2

bJni ,

where Ti is the i-th design matrix; Jni is a ni-dimensional square matrix where every element

is equal to one; Wi is a diagonal matrix given by

Wi = diag[Var(yi1|bi),Var(yi2|bi), · · · ,Var(yini|bi)].

Example 4. Logistic Mixed Models with Fractional Polynomials

The linear predictor is now a fractional polynomial in the logistic model and is given by

pij =
exp(θ0 + θ1t

−2
ij + θ2t

−1
ij + θ3t

−1/2
ij + θ4tij + bi)

1 + exp(θ0 + θ1t
−2
ij + θ2t

−1
ij + θ3t

−1/2
ij + θ4tij + bi)

, bi ∼ N (0, σ2
b ).

After the information matrix is approximated by PQL1 method, CSO-MA can search for

the optimal design. For example, I assume the nominal parameter values are: σ2
b = 0.2 and

θ = (1.0, 0.2,−3.0, 0.5,−1.2). Two relative cost coefficients are considered, which are r = 6

and r = 0.3. Moreover, time points are chosen from the set {1, 2, · · · , 6}. D-optimal design

η4-1 found by CSO-MA with r = 6 is

η4-1 =

 {1, 2, 3, 4, 6} 0.500

{1, 2, 3, 4, 5, 6} 0.500

 ,
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and its criterion value is -49.381. The second D-optimal design η4-2 with r = 0.3 is

η4-2 =
(
{1, 2, 3, 4, 6} 1.000

)
,

and its criterion value is -45.876.

These two optimal designs also suggest that when r is large, each design point is more

likely to include more time points.

5.1.3 Negative Binomial Regression Models

To demonstrate the flexibility of my approach, I now design for a count model with mixed

effects in a longitudinal study. The negative binomial regression model is a flexible model as

it can be used to model over-dispersed or under-dispersed data in a clinical trial. The count

variable can be the number of new flares in Scleroderma patients or the number of new lesions

in patients after a new treatment regimen over a period of time. Interestingly, Healy et al.

(2010) found an optimal design for a phase I/II clinical trial for treating multiple sclerosis

with gadolinium-enhanced lesions as the endpoint. However, their approach is devoid of

optimal design theory and the design was selected among a few candidate designs based

entirely on simulated error rates.

Unlike previous examples, I add a constraint that all subjects need to be observed T

times and T is user-selected. Such a constraint can arise in situations when, for example,

taking observations are either laborious or expensive or even risky in pediatric trials where

only a limited number of measurements are allowed for the young subjects. In what is to

follow, I show CSO-MA can directly accommodate such a constraint without difficulties.

In the two-drug trial, I denote the combinations of the drug treatments by xi randomly

assigned to the i-th subject and xik is the dose level of drug k. I assume all the drug levels

have been normalized to [−1, 1] and once a drug level is determined for a patient, it remains

unchanged throughout the trial. For administration purposes, each patient is required to

observe T times given the space {1, 2, 3, · · · , Tmax}. A negative binomial regression model is
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used to study the effects of explanatory factors on the count outcome. The count outcome

may be the number of allergy reactions after each treatment or the number of new lesions

occurring after each treatment as in Healy et al. (2010). I choose the negative binomial

regression model over the commonly-used Poisson regression model because the former is

flexible and can capture under or over-dispersion.

The model of interest is an additive negative binomial mixed model with three variables

including a time trend variable

log µij = θ0 + θ1xi1 + θ2xi2 + θ3tij + bi, bi ∼ N (0, σ2
b ), j = 1, · · · , T,

E(yij) = µij, Var(yij) = µij + aµij.
(5.3)

Here the parameter a is the dispersion factor and if it is positive, it suggests that the

data is over-dispersed which is usually the case for real data. The information matrix of

model (5.3) can also be approximated by the PQL1 method.

Example 5. c-optimal Approximate Design for a Negative Binomial Mixed Model

Each subject in the clinical trial receives a combination dose from the two drugs and each

subject is observed T = 3 times. The goals are to find an optimal design to determine what

combination doses and which 3 time points are best for answering the question: are the two

drugs equally effective if the same dosage levels are given to the patients?

I find the locally c-optimal approximate design with c = (0, 1,−1, 0). For illustrative

purposes, I assume the nominal model parameters are (θ0, θ1, θ2) = (0.3, 1.0,−0.5), θ3 = 1.1,

a = 1.2, σ2
b = 0.5, Tmax = 6 and T = 3. The ranges of values for the two independent

variables are x1 ∈ [−1, 1], x2 ∈ [−1, 1], after their dosage levels are appropriately scaled.

The c-optimal design found by CSO-MA is

η5 =


x1 x2 t1 t2 t3 w

−1.000 1.000 2 5 6 0.500

1.000 −1.000 1 2 6 0.500

 ,

and its criterion value is 0.501.
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CSO-MA-generated design η5 randomly assigns an equal number of patients to two-dose

combinations of the two drugs after their dosages have been normalized to [-1, 1]. Suppose

now the time unit is a week, responses from each patient are observed 3 times, once per

week, out of the 6 possible weeks. The first group received a combination of the extreme

doses from the two drugs and the second group receives the other set of extreme doses from

the two drugs. One group is observed at the 1-st, 2-nd and 6-th week, and the other group

is observed at the 2-nd, 5-th and 6-th week.

5.2 D-optimal Designs for Poisson Regression Models with Random

Coefficients

Naderi et al. (2018) discussed finding locally D-optimal designs for two-factor Poisson re-

gression models with random coefficients. Both the cases with and without an interaction

term were discussed. These models are

Yij ∼ P(λij), λij = exp(θ0j + θ1jxi1 + θ2jxi2), (5.4)

and Yij ∼ P(λij), λij = exp(θ0j + θ1jxi1 + θ2jxi2 + θ3jxi1xi2), (5.5)

i = 1, · · · , n; j = 1, · · · ,m,

where Yij is the j-th replication for the individual i at the experimental setting xi; θ0j and

θ1j, θ2j, θ3j are random effects from a multivariate normal distribution whose mean vector is

θ and covariance matrix is Σ. It can be shown that the Fisher information matrix for above

models based on a k-point design η can be expressed as

M (η) = F T
η (A−1

η +Cη)−1Fη, (5.6)
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where

Fη =


Fη,1
...

Fη,k

 , Fη,i =


1 xi

1 xi
...

...

1 xi


m rows

Aη = Blockdiag[w1λ1 exp(
1

2
Fη,1ΣF

T
η,1), · · · , wkλk exp(

1

2
Fη,kΣF

T
η,k)],

λi = exp(θTxi) and Cη = exp(FηΣF
T
η )− 1.

Naderi et al. (2018) found the D-optimal designs on a selected design space, along with

some technical restrictions that may not apply in practice. It is not clear if his/her method-

ology still works well if the design space is scaled differently or the restrictions are modified

or removed. For example, when deriving Theorem 3.1, they supposed that q1ij = exp(θ1jxi1),

q2ij = exp(θ2jxi2) and imposed constraints that 0 ≤ q1ij ≤ 1, 0 ≤ q2ij ≤ 1. These are strong

conditions for the results to hold.

If we look at the D-optimal design in the fourth row of Table 1 in Naderi et al. (2018), it

satisfies that q2ij = 0.113. If θ2j = 0.1, we have xi2 = −21.778 (the second coordinate of the

first support point), which means the design space along x2 axis should cover -21.778. If,

unluckily, the real design space for x2, say, is equal to [−5, 0], then the results from Theorem

3.1 are no longer valid. Therefore, this is a limitation of their result.

CSO-MA can quickly find D-optimal designs for the above models with and without

constraints on covariance matrix or on the design space. First, I use CSO-MA to verify

the results provided in Naderi et al. (2018) (Table 5.1). Additionally, I apply CSO-MA and

generate the D-optimal designs for models with independent or correlated random effects.

They are shown in Table 5.2.

The take home message from this subsection is that CSO-MA is a flexible algorithm and

can find different types of optimal designs quickly. It does not require technical assumptions

or limiting restrictions on optimization problems for it to work well.
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Model θ Σ Design space D-optimal design log |M |

(5.4) (log 0.5
e−1 − 0.5, 2, 3) diag(1, 0, 0) [−4, 0]2

−1.019 0.000 0.000
0.000 −0.679 0.000
0.346 0.346 308

 -11.992

(5.4) (log 10
e−1 − 0.5, 2, 3) diag(1, 0, 0) [−5, 0]2

−1.120 0.000 0.000
0.000 −0.747 0.000
0.396 0.396 208

 -4.343

Table 5.1: The D-optimal designs for Poisson mixed models shown in Naderi et al. (2018).

Model θ Σ Design space D-optimal design log |M|

(5.4) (log 5
e−1

− 0.5, 1, 1) diag(1, 0, 0) [−1, 1]2

−1.000 1.000 1.000
1.000 −1.000 1.000
0.399 0.399 0.202

 2.018

(5.4) (-1, 2, -3)

1.0 0.2 0.0
0.2 0.3 0.0
0.0 0.0 0.0

 [−1, 1]2

−0.441 1.000 1.000
−1.000 −0.153 −1.000
0.311 0.536 0.153

 -0.058

(5.5) (-0.5, 0.2, -0.3, 0.4)


0.4 0.2 0.1 0.0
0.2 1.1 0.6 0.0
0.1 0.6 1.2 0.0
0.0 0.0 0.0 0.0

 [−1, 1]2

−1.000 −1.000 −0.568 0.632 1.000
−0.464 1.000 −0.825 0.544 −1.000
0.075 0.365 0.135 0.205 0.220

 4.237

(5.5) (-0.5, 0.2, -0.3, 0.4) diag(0.3, 0.2, 0.5, 0.8) [−1, 1]2

−1.000 −1.000 −0.879 1.000 1.000
−0.870 0.969 −1.000 −0.879 0.869
0.163 0.300 0.057 0.245 0.235

 -2.573

Table 5.2: The D-optimal designs for Poisson mixed models given different sets of model
parameters.

5.3 Bayesian Optimal Design for Nonlinear Mixed Models Applied

to HIV Dynamics

Finding Bayesian optimal designs for real applications are challenging because (i) the model

is often more complex, (ii) the design criterion is expressed in terms of multiple integrals,

which may require approximations using a random sampling scheme, and (iii) there is a

general lack of an effective algorithm to optimize the design criterion.

In this subsection, I apply CSO-MA to search for Bayesian optimal exact designs for

estimating two selected parameters in a nonlinear mixed model for an HIV study (Han et al.,

2002). Eight candidate designs were available for implementation and all have 16 points.

The goal was to determine which one of the eight designs has the best design criterion value

for two prior distributions. Because the focus was on finding the best design among the eight

candidate designs, they did not find the Bayesian optimal exact design.

Han et al. (2002) used a Bayesian approach to study plasma concentration in HIV patients

under protease inhibitor monotherapy. The model is a nonlinear mixed model and the natural

logarithm of the plasma concentration from subject i at time tj after the pharmacologic delay
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of the drug effect is yij, given by

yij|θi, tj, σ2 ∼ N (s(V0i, ci, δi, tj), σ
2), j = 1, · · · , T,

θi = (log V0i, log ci, log δi)
T |V0, c, δ,Σ ∼ N (µ,Σ),

where µ = (µ1, µ2, µ3) = (log V0, log c, log δ)T and

s(V0i, ci, δi, tj) = log V0i + log[
c2
i

(ci − δi)2
e−δitj − c2

i − (ciδi)
2

(ci − δi)2
e−citj − ciδi

ci − δi
tje
−citj ].

Here V0i is the plasma concentration of HIV particles at treatment initiation; ci is the virion

clearance rate and δi is the rate at which the infected CD4 cells die (Han and Chaloner, 2004).

The expression of s(V0i, ci, δi, tj) solves a system of differential equations that describe the

transactions among virus particles, target cells, and infected cells (Nowak and May, 2000).

Han and Chaloner (2004) proposed a more complicated Bayesian model for studying

HIV dynamics and employed it to evaluate candidate designs without finding the Bayesian

optimal design. The model structure is

yij|θi, tj, σ2 ∼ N (s(θi, tj), σ
2), j = 1, · · · , T,

θi|µ,Σ ∼ N (µ,Σ), i = 1, · · · , n,

σ−2 ∼ G(α, θ),

µ ∼ N (ζ,Λ),

Σ−1 ∼ W(Φ, γ),

where (α, θ, ζ,Λ,Φ, γ) are hyperparameters. A total of T measurements are to be taken

from each subject and I want to determine the optimal time points t1, · · · , tT . The θi’s are

random effects generated from N (µ,Σ). Other prior distributions are defined accordingly.

The two main goals of the study are to estimate log c and log δ. To incorporate prior
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information on the parameters, Bayesian design criteria were used to find time points t =

(t1, · · · , tT ) that minimize E[Var(µ2|y)] and E[Var(µ3|y)], or equivalently, maximize the

the utility functions, i.e., −E[Var(µ2|y)] and −E[Var(µ3|y)]. Han and Chaloner (2004)

compared eight 16-point candidate designs and their performances are reported in Table 1 of

Han and Chaloner (2004). All design points are in [0, 7], implying that the all measurements

for the study have to be taken within seven days if the unit is a day.

Finding the Bayesian optimal design is not a trivial problem because we need to draw

samples from the posterior distribution, which does not have an explicit form. The distri-

bution of µ|y in this application cannot be obtained analytically and I resort to MCMC

method to approximate the posterior distribution. Noting that

f(µ,y) ∝
∫
f(y|µ,Σ−1, σ−2)f(µ)f(Σ−1)f(σ−2)dΣ−1dσ−2, (5.7)

where f(y|µ,Σ−1, σ−2) =
∫
f(y|θ, t)f(θ|µ,Σ−1, σ−2)dθ. I use the Metropolis-Hasting algo-

rithm to draw random samples from f(µ|y) and to estimate E[Var(µ2|y)] and E[Var(µ3|y)].

The algorithm for searching the Bayesian optimal design for this HIV dynamics model can

be summarized as follows:

1. Given an input t and hyper parameters (α, θ, ζ,Λ,Φ, γ), I hierarchically draw random

samples for µ, θ and y.

2. Given an observation y, I use formula (5.7) and apply the M-H algorithm to estimate

the posterior variance of µ|y. A multivariate normal distribution is used as the proposal

distribution, which is also the proposal distribution used in Han and Chaloner (2004).

3. I apply CSO-MA to search for the optimal design on the design space of t.

In the original work, two prior distributions π1, π2 were used with π1 defined by σ−2 ∼

G(4.5, 9.0), µ ∼ N ((11.0, 1.1,−1.0)′, diag(6.0, 0.1, 0.01)) and Σ−1 ∼ W(diag(0.26, 2.5, 2.5), 3.0).

The prior π2 is the same as π1 except that the prior variance for µ3 is 0.001 instead of 0.01.

Table 5.3 displays the results by using the above method to calculate candidate designs’

criterion values and they agree with the results reported in Table 2 of Han and Chaloner
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(2004). For space considerations, I only report the results for candidate designs 1-4. The two

CSO-MA-generated 16-point Bayesian exact designs under two prior distributions are shown

in Table 5.4 and they have smaller criterion values than the proposed candidate designs.

π1 π2

Ê[Var(µ2|y)] SD Ê[Var(µ2|y)] SD
Candidate design 1 0.02915 0.0029 0.02968 0.0014
Candidate design 2 0.02882 0.0017 0.02874 0.0019
Candidate design 3 0.03257 0.0031 0.03315 0.0023
Candidate design 4 0.03003 0.0026 0.02946 0.0018

Ê[Var(µ3|y)] SD Ê[Var(µ3|y)] SD
Candidate design 1 0.005172 0.00030 0.01117 0.0014
Candidate design 2 0.005298 0.00014 0.01120 0.0019
Candidate design 3 0.005367 0.00012 0.01103 0.0023
Candidate design 4 0.005330 0.00009 0.01089 0.0011

Table 5.3: The values of E[Var(µ2|y)] and E[Var(µ3|y)] for the candidate designs 1-4 pro-
duced from the above three-step algorithm. The corresponding standard deviation (SD)
of the criterion value averaged over ten repetitions is also reported. The results from the
three-step algorithm are very close to the results in Han and Chaloner (2004).

Objective Prior Design Estimate (SD)

E[Var(µ2|y)] π1
1.580 2.297 2.500 2.678 2.855 2.932 3.011 3.594 0.0197 (0.0013)4.028 4.115 4.146 4.155 4.200 4.591 7.000 7.000

E[Var(µ2|y)] π2
0.000 0.017 0.473 1.224 1.490 1.901 1.997 2.400 0.0214 (0.0011)3.278 4.109 5.280 5.635 5.761 6.363 7.000 7.000

E[Var(µ3|y)] π1
0.404 0.542 0.810 1.008 2.899 3.125 3.220 3.979 0.0023 (0.0006)4.336 4.379 4.389 4.485 5.236 5.554 5.706 7.0000

E[Var(µ3|y)] π2
0.000 0.212 1.078 1.588 1.792 2.711 2.901 2.933 0.0026 (0.0004)3.072 3.583 3.600 3.818 3.950 4.062 4.561 6.575

Table 5.4: The Bayesian optimal designs found by CSO-MA for minimizing E[Var(µ2|y)]
and E[Var(µ3|y)] under prior π1 and π2, along with their estimated criterion values in the
last column.

It is interesting to note that when I use the MATLAB function “fmincon” to search for

these Bayesian optimal designs, I find that the function does not perform well for optimiz-

ing the problems at hand. For instance, when the “fmincon” function was called to find

the Bayesian optimal design that minimizes E[Var(µ3|y)] under π1 and invoked sequential

quadratic programming (SQP) algorithm, I observe that the SQP-generated design repeat-

edly has a significantly worse criterion value than CSO-MA-generated designs. This suggests
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that nature-inspired metaheuristic algorithms provide a useful option when the mathematical

programming approach fails.

5.4 Bayesian Optimal Design for a Hierarchical Logistic Model Ap-

plied to Heart Defibrillator Energy Level

Clyde et al. (1995) wanted to design a study to estimate the effective heart defibrillator

energy level necessary for implanting defibrillation, which is used for restoring a normal

heart rhythm. Proper choice of the energy level is crucial since it might cause serious

injury or death to the recipient. On the other hand, having a too weak energy level for the

defibrillation would also result in failure to restore the heart rhythm to the normal level. For

this study, the range of energy levels was from 0.001 joules to 32 joules and the researchers

were interested in having an eight-point design. A total of 900 patients were available for the

study and each patient was tested at energy level x1, x2, · · · , x8. The binary variable yij for

patient in the logistic model takes on the value 1 if the defibrillation was successful at test

level xi for patient j or the value 0 if it is not successful. A hierarchical model was proposed

p(yij = 1|θj, λj) =
1

1 + exp[−θj(xij − λj)− log(0.95/0.05)]
,

φj = (log θj, log λj)|µ,V ∼ N (µ,V),

µ ∼ N (m,B),

V−1 ∼W(q, (qQ)−1),

where θj, λj are unknown parameters in the logistic model for patient j; parameter λj is the

ED95, the effective energy level that defibrillates 95% of the time, for patient j. The aim

of this study was to find an eight-point design that minimizes the posterior variance of the

estimate for ED95 under the squared error loss. The utility function was

∫
y

∫
φ

−{log(λ)− E[log(λ)|y,η]}2p(φ,y|η)dφdy.
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Given the hyperparameters q, Q, µ, B, the optimal design found in Clyde et al. (1995)

had an posterior variance 0.095. Following their modeling setup and using a similar sampling

strategy I show in the last section, the design found by CSO-MA has a posterior variance

0.077 with design points 2.196, 3.620, 4.270, 5.288, 6.508, 7.550, 8.759 and 11.572. Therefore,

the design found by CSO-MA can provide a more accurate estimation for the ED95 in this

case compared to Clyde’s design.
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CHAPTER 6

Extensions and Conclusions

This chapter discusses two additional frontiers of research for addressing challenging design

issues. In Section 6.1, I provide the theory of G-optimal design for estimating the entire

response surface over the design space, extended D-optimal designs and show how CSO-MA

can find them for hierarchical linear polynomial or fractional polynomial models. In Section

6.2, I use a few examples and demonstrate that CSO-MA is also effective for finding optimal

exact designs. In addition, I mention that the routines available in commercial statistical

packages, such as JMP or SAS, are limited in scope and they can under-perform CSO-MA in

some situations. Section 6.3 concludes with some ongoing work and a future research plan.

6.1 G and Extended D-optimal Designs for Hierarchical Linear Mod-

els

Multi-level linear models or hierarchical linear model are frequently used in the educational

arena and in the biomedical and life sciences. For example, a typical application is to

evaluate the effectiveness of a new teaching method versus a conventional method and the

intervention is delivered at the classroom level so that all students in the class receive the

same treatment. Likewise, Bastani et al. (2007) carried out a two-arm cluster randomized

cancer control and prevention trial to assess whether an intervention method that provides

information of Hepatitis B to the subjects versus health information in the other group was

effective in getting subjects tested six months after the intervention. The outcome is binary,

whether a subject received the test or not. For a continuous outcome measurement observed
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over time, yij, a common hierarchical linear model to study its changes over time is

yij = fT (xj)θi + εij. (6.1)

Here the linear regression function f(x) is user-selected; E(θi) = θ, Cov(θi) = σ2D, j =

1, · · · ,m; i = 1, · · · , n; term εij is a normally distributed error with mean 0 and standard

deviation σ.

The quality of the estimate quality from design η can be measured by the mean squared

error matrix of (θ̂1, · · · , θ̂n)

MSE(η) =
σ2

m
{ 1

n
Jn ⊗M−1(η) + (In −

1

n
Jn)⊗ [∆−∆(M−1(η) + ∆)−1∆]},

where M is the information matrix; Jn is a n-dimensional square matrix where every ele-

ment is equal to one and In is a n-dimensional identity matrix. Prus and Schwabe (2016)

proposed to search for the extended D-optimal design which minimizes the determinant of

the MSE matrix. An equivalence theorem was also derived to confirm a design’s extended

D-optimality. Let ∆ = mD and define

φ(x,η) = fT (x)M−1(η)f(x) + (n− 1)fT (x)[∆−∆(M−1(η) + ∆)−1∆]f(x). (6.2)

Prus and Schwabe (2016) showed a design η∗ is extended D-optimal if and only if

max
x

φ(x,η∗) = p+ (n− 1)trace{[M−1(η∗) + ∆]−1},

where the the maximum is achieved at every support points of η∗.

In addition, one can search for the G-optimal design that minimizes the criterion function

max
x

φ(x,η). Wong and Cook (1993) provided an equivalence theorem for G-optimal design

to minimize the maximal variance of the fitted response over the design space when there is

heteroscedasticity in a linear model and it is more complicated than that for D-optimality.

Here, an equivalence theorem can also be obtained as follows. First, define the answering
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set for a design η by

A(η) =
{
x|φ(x,η) = max

z
φ(z,η)

}
,

and let

φG(x,η) = fT (x)M−1(η)MA(µ)M−1(η)f(x) + (n− 1)fT (x)N (η,∆)MA(µ)N (η,∆)f(x),

where N (η,∆) = ∆−∆(M−1(η) + ∆)−1∆, µ is a probability measure on A(η) and

MA(µ) =

∫
A(η)

f(x)fT (x)dµ.

Then a design η∗ is G-optimal if and only if there exists a probability measure µ∗ on A(η∗)

such that

max
x

φG(x,η∗) = trace[MA(µ∗)M−1(η∗) + (n− 1)M (η∗)N (η∗,∆)MA(µ∗)N (η∗,∆)].

Moreover, the maximum is achieved at every design point of η∗.

Compared to finding a traditional D-optimal design, finding the extended D-optimal

design is computationally similar except that the information matrix is replaced by the

MSE matrix. However, finding the G-optimal design is more challenging because there is

more than one layer of optimization involved.

To search for a G-optimal design, the inner optimization step is a low-dimensional max-

imization problem represented in Equation (6.2) and the outer loop is to minimize the

obtained maximum. Accordingly, In the CSO-MA algorithm, I set φ = 0, 32 particles, 128

iterations for the inner optimization and φ = 0, 128 particles and 200 iterations for the outer

optimization task.

After finding a design η∗, I determine its answering setA(η∗) and the probability measure

µ∗ that meets the conditions in the equivalence theorem. To efficiently find all x’s that

maximize φ(x,η∗), I split the design space into two or more subspaces and then run CSO-
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MA on each subspace to search for all x’s that maximize φ(x,η∗). For instance, if the design

space X = [0, 1], I split it to [0, 0.5) and [0.5, 1]. There are no firm rules for the number of

subspaces and my suggestion is to first try with two subspaces, then aggregate all such points

to obtain A(η∗). I then sequentially increase the number of subspaces and stop the process

when splitting the design space into more subspace does not enlarge the size of A(η∗).

To find the probability measure µ∗ that meets the equivalence theorem conditions, I have

to determine the values of k, x1, · · · , xk and the corresponding weight wj at each xj in µ∗

subject to w1 + · · ·+ xk = 1. To this end, remembering that CSO-MA is a general purpose

optimization algorithm, I apply CSO-MA to minimize the following function with respect to

the variable weights wi in µ∗

{max
x

φG(x,η∗)− trace[MA(µ∗)M−1(η∗) + (n− 1)N (η∗,∆)MA(µ∗)N (η∗,∆)]}2

+
k∑
j=1

wj{φG(xj,η
∗) − trace[MA(µ∗)M−1(η∗) + (n− 1)N (η∗,∆)MA(µ∗)N (η∗,∆)]}2.

(6.3)

One problem using Equation (6.3) is that for each design η∗, I still have to find x that

maximizes φG(x,η∗). This two-layer optimization problem can also be tackled using CSO-

MA again. My experience after lots of experiments with solving the problem is that it

seems helpful to first minimize the second term of Equation (6.3). Frequently, this simplified

approach suffices to obtain the desired µ∗ and also reduce the computational time noticeably.

Specifically, this means that I find µ∗ by minimizing

k∑
j=1

wj{φG(xj,η
∗) − trace[MA(µ∗)M−1(η∗) + (n− 1)N (η∗,∆)MA(µ∗)N (η∗,∆)]}2.

(6.4)

If optimizing Equation (6.4), as a first step, does not produce the desired µ∗, I would then

proceed to optimize Equation (6.3). At this step, I set φ = 0.05, use 64 particles and 1200

iterations to run CSO-MA and suggest that the user can stop running the algorithm at
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any time once the objective value is smaller than, say, 10−5. This process can usually be

completed in 5 seconds.

The next few tables list G-optimal designs for various linear mixed models with different

assumptions on the design space and the structure of the random effects, along with their

G-optimality criterion value and a figure showing the plot of the sensitivity function of the

reported design across the design space. In the examples, all parameters such as entries in

the covariance matrix D, n and m are chosen arbitrarily and for illustrative purposes. Since

σ2 does not affect the optimization process, I set σ2 = 1.

Model yij = θi0 + θi1x
1/2
j + θi2xj + θi3x

2
j + εij

D diag(0.3, 0.5, 0.8, 0.2)
Design space [1, 3]

(n,m) (10, 5)

G-optimal design
(

1.000 1.440 2.342 3.000
0.186 0.190 0.120 0.504

)
G-criterion value 17.939

µ∗ on A(η)

(
1.000 1.431 2.338 3.000
0.233 0.224 0.100 0.443

)
G-sensitivity function Figure 6.1

Table 6.1: The G-optimal design found by CSO-MA for a fractional polynomial mixed model
with terms x1/2, x, x2 and a diagonal covariance matrix on the design space [1, 3].

Figure 6.1: φ(x,η) (left) and φG(x,η) (right) of the G-optimal design in Table 6.1.
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Model yij = θi0 + θi1x
1/2
j + θi2xj + θi3x

2
j + εij

D


0.80 0.30 0.10 0.05
0.30 0.50 0.08 0.04
0.10 0.08 0.40 0.02
0.05 0.04 0.02 0.30


Design space [1, 3]

(n,m) (8, 4)

G-optimal design
(

1.000 1.419 2.372 3.000
0.230 0.186 0.122 0.462

)
G-criterion value 15.546

µ∗ on A(η)

(
1.000 1.410 2.360 3.000
0.274 0.198 0.106 0.422

)
G-sensitivity function Figure 6.2

Table 6.2: The G-optimal design found by CSO-MA for a fractional polynomial mixed model
with terms x1/2, x, x2 and a non-diagonal covariance matrix on the design space [1, 3].

Figure 6.2: φ(x,η) (left) and φG(x,η) (right) of the G-optimal design in Table 6.2.

Model yij = θi0 + θi1x
1/3
j + θi2x

1/2
j + θi3xj + θi4x

2
j + εij

D diag(0.1, 2.0, 3.0, 3.0, 2.0)
Design space [2, 6]

(n,m) (8, 4)

G-optimal design
(

2.000 2.492 3.555 5.138 6.000
0.175 0.180 0.160 0.105 0.380

)
G-criterion value 19.081

µ∗ on A(η)

(
2.000 2.485 3.570 5.134 6.000
0.188 0.172 0.168 0.105 0.367

)
G-sensitivity function Figure 6.3

Table 6.3: The G-optimal design found by CSO-MA for a fractional polynomial mixed model
with terms x1/3, x1/2, x, x2 and a diagonal covariance matrix on the design space [2, 6].
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Figure 6.3: φ(x,η) (left) and φG(x,η) (right) of the G-optimal design in Table 6.3.

Model yij = θi0 + θi1x
1/3
j + θi2x

1/2
j + θi3xj + θi4x

2
j + εij

D


0.7 0.3 0.2 0.2 0.1
0.3 0.6 0.6 0.9 0.2
0.2 0.6 1.4 0.8 0.8
0.2 0.9 0.8 2.0 0.9
0.1 0.2 0.8 0.9 2.0


Design space [2, 5]

(n,m) (10, 5)

G-optimal design
(

2.000 2.364 3.190 4.427 5.000
0.210 0.186 0.114 0.093 0.397

)
G-criterion value 22.589

µ∗ on A(η)

(
2.000 2.359 3.183 4.407 5.000
0.219 0.185 0.117 0.091 0.388

)
G-sensitivity function Figure 6.4

Table 6.4: The G-optimal design found by CSO-MA for a fractional polynomial mixed model
with terms x1/3, x1/2, x, x2 and a non-diagonal covariance matrix on the design space [2, 6].

Figure 6.4: φ(x,η) (left) and φG(x,η) (right) of the G-optimal design in Table 6.4.
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Model yij = θi0 + θi1x
−1/2
j + θi2x

1/3
j + θi3x

1/2
j + θi4xj + θi5x

2
j + εij

D diag(0.3, 0.2, 0.3, 0.6, 0.2, 0.2)
Design space [1, 3]

(n,m) (6, 2)

G-optimal design
(

1.000 1.155 1.535 2.119 2.728 3.000
0.133 0.130 0.122 0.117 0.165 0.333

)
G-criterion value 12.772

µ∗ on A(η)

(
1.000 1.153 1.531 2.109 2.722 3.000
0.154 0.147 0.128 0.108 0.139 0.324

)
G-sensitivity function Figure 6.5

Table 6.5: The G-optimal design found by CSO-MA for a fractional polynomial mixed model
with terms x−1/2, x1/3, x1/2, x, x2 and a diagonal covariance matrix on the design space [1, 3].

Model yij = θi0 + θi1x
−1/2
j + θi2x

1/3
j + θi3x

1/2
j + θi4xj + θi5x

2
j + εij

D


0.80 0.06 0.05 0.07 0.06 0.04
0.06 1.10 0.30 0.20 0.50 0.09
0.05 0.30 0.90 0.50 0.60 0.03
0.07 0.20 0.50 1.40 0.40 0.07
0.06 0.50 0.60 0.40 1.10 0.02
0.04 0.09 0.03 0.07 0.02 0.90


Design space [1, 3]

(n,m) (6, 2)

G-optimal design
(

1.000 1.150 1.512 2.085 2.715 3.000
0.162 0.089 0.131 0.107 0.134 0.377

)
G-criterion value 14.959

µ∗ on A(η)

(
1.000 1.148 1.510 2.087 2.712 3.000
0.176 0.159 0.133 0.103 0.124 0.305

)
G-sensitivity function Figure 6.5

Table 6.6: The G-optimal design found by CSO-MA for a fractional polynomial mixed model
with terms x−1/2, x1/3, x1/2, x, x2 and a diagonal covariance matrix on the design space [1, 3].
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Figure 6.5: φ(x,η) (left) and φG(x,η) (right) of the G-optimal design in Table 6.5.

Figure 6.6: φ(x,η) (left) and φG(x,η) (right) of the G-optimal design in Table 6.6.
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In the next three tables, I not only show G-optimal designs but also extended D-optimal

designs for linear mixed models given the same model parameters and design spaces. Their

sensitivity functions are also plotted and they confirm the optimality of the CSO-MA-

generated designs. The tables also reveal the two types of designs are very close to one

another, and the G-efficiencies of the extended D-optimal designs are 99%.

Model yij = θi0 + θi1xj + θi2x
2
j + εij

D diag(0.2, 0.2, 0.3)
Design space [0, 2]

(n,m) (10, 5)

G-optimal design
(

0.000 0.966 2.000
0.146 0.140 0.714

)
G-criterion value 13.480

Extended D-efficiency 99%

Extended D-optimal design
(

0.000 0.946 2.000
0.157 0.140 0.703

)
Extended D-criterion value -71.615

G-efficiency 99%
Sensitivity functions Figure 6.7

Table 6.7: The G-optimal design and its corresponding extended D-optimal design found by
CSO-MA for a fractional polynomial mixed model with terms x, x2 and a diagonal covariance
matrix on the design space [0, 2]. Their relative efficiencies are reported.

Figure 6.7: The sensitivity functions for the G-optimal design (left) and the extended D-
optimal design (right) in Table 6.7.

94



Model yij = θi0 + θi1xj + θi2x
2
j + εij

D

0.80 0.30 0.10
0.30 0.50 0.08
0.10 0.08 0.40


Design space [0, 3]

(n,m) (11, 4)

G-optimal design
(

0.000 1.274 3.000
0.165 0.270 0.565

)
G-criterion value 19.000

Extended D-efficiency 99%

Extended D-optimal design
(

0.000 1.239 3.000
0.163 0.272 0.565

)
Extended D-criterion value -80.940

G-efficiency 99%
Sensitivity functions Figure 6.8

Table 6.8: The G-optimal design and its corresponding extended D-optimal design found
by CSO-MA for a fractional polynomial mixed model with terms x, x2 and a non-diagonal
covariance matrix on the design space [0, 3]. Their relative efficiencies are reported.

Figure 6.8: The sensitivity functions for the G-optimal design (left) and the extended D-
optimal design (right) in Table 6.8.
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Model yij = θi0 + θi1x
1/2
j + θi2xj + θi3x

2
j + εij

D diag(0.3, 0.5, 0.8, 0.2)
Design space [1, 3]

(n,m) (10, 5)

G-optimal design
(

1.000 1.440 2.342 3.000
0.186 0.190 0.120 0.504

)
G-criterion value 17.939

Extended D-efficiency 99%

Extended D-optimal design
(

1.000 1.412 2.361 3.000
0.230 0.186 0.122 0.462

)
Extended D-criterion value -71.700

G-efficiency 99%
Sensitivity functions Figure 6.9

Table 6.9: The G-optimal design and its corresponding extended D-optimal design found
by CSO-MA for a fractional polynomial mixed model with terms x1/2, x, x2 and a diagonal
covariance matrix on the design space [1, 3].. Their relative efficiencies are reported.

Figure 6.9: The sensitivity functions for the G-optimal design (left) and the extended D-
optimal design (right) in Table 6.9.
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6.2 Optimal Exact Designs

I have focused on constructing optimal approximate design problems in the previous chapters

of my dissertation. Approximate designs provide useful guidance on how to design the study

and study properties of the design. This subsection shows CSO-MA can also find optimal

exact designs that require direct optimization of the number of replicates at each design

point. Optimal exact design problems are very tough to solve because there is no unified

framework to solve them generally; in particular, there is no effective algorithm for finding

them and no equivalence theorem for confirming their optimality. Each optimal exact design

problem has to be tackled individually because each has its own mathematical complexity,

which is often intractable. Usually, esoteric number theory is often necessary to bring about

an analytic solution and so this can be limiting in practice.

Examples of optimal exact designs are available in Dette et al. (2008) and Antognini and

Zagoraiou (2010). There are few closed-form descriptions of optimal exact designs because

they are available only for relatively simple settings. Many are found numerically using many

different types of algorithms. However, after a series of experiments, I find that some designs

which were claimed as “optimal” may not be optimal since the CSO-generated exact designs

have higher efficiency. In what is to follow, I discuss three types of exchange algorithms and

show that CSO-MA can find more efficient designs than the claimed optimal designs found

by the algorithms. I now describe the three popular algorithms.

6.2.1 Coordinate Exchange Algorithm

JMP is a suite of computer programs for statistical analysis developed by the JMP business

unit of SAS Institute (https://www.jmp.com/en_us/home.html). The JMP DOE

(Design of Experiment) platforms offer solutions for finding different optimal designs and

deemed as a standard tool in this field. According to the “JMP Design of Experiments

Guide” (version 14, 2018), JMP uses the coordinate exchange algorithm for finding optimal

designs.
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Here I discuss three examples of locally D-optimal exact designs found by JMP for

additive logistic regression models with five factors and the parameters in the models are

randomly generated. For each model, I run the algorithm from JMP ten times and compare

their designs with the CSO-MA-generated designs. Then I rank the twenty designs according

to their criterion values and select the one with the best criterion value as the optimal design

(a reference for calculating other designs’ efficiency). Minimally supported locally D-optimal

exact designs are sought, so there are six support points for each generated design withN = 6.

For these three examples, our results show that the designs found by CSO-MA have higher

D-efficiencies than those reported in JMP.

(i). The model parameters are set to (θ0, · · · , θ5) = (−3,−2,−1, 1, 2, 3). The design

space is [−1, 1]5 and the number of runs is 6. The designs found by CSO-MA have an

average criterion value -2.08 (maximize the log-determinant of the information matrix), an

average efficiency 99%. The designs found by JMP DOE have an average criterion value

-2.35, average efficiency 98%. The best designs found by CSO-MA (100% efficient) and JMP

DOE (98% efficient) are displayed in Table 6.10.

CSO-MA JMP DOE
xi1 xi2 xi3 xi4 xi5 xi1 xi2 xi3 xi4 xi5

-1.000 -1.000 -1.000 -1.000 0.953 -1.000 1.000 1.000 -1.000 0.792
-1.000 1.000 -1.000 1.000 0.771 -0.112 1.000 -1.000 1.000 1.000
-1.000 1.000 1.000 -1.000 0.953 -1.000 -1.000 -1.000 1.000 -0.913
1.000 -1.000 1.000 0.395 1.000 -1.000 -1.000 -1.000 -0.927 1.000
0.787 1.000 -1.000 1.000 1.000 1.000 -1.000 1.000 -0.203 1.000
-0.924 -1.000 1.000 1.000 -1.000 -1.000 -1.000 1.000 1.000 -0.688

Table 6.10: The best designs found by CSO-MA (100% efficient as the reference) and JMP
DOE (98% efficient) for model (i).

(ii). The model parameters are set to (θ0, · · · , θ5) = (0.1,−0.5, 1.9, 3.3,−4.0,−0.4). The

design space is [−1, 1]5 and the number of runs is 6. The designs found by CSO-MA have

an average criterion value -2.44, an average efficiency 99%. The designs found by JMP DOE

have an average criterion value -2.66, an average efficiency 98%. The best designs found by

CSO-MA (100% efficient) and JMP DOE (98% efficient) are displayed in Table 6.11.

(iii). The model parameters are set to (θ0, · · · , θ5) = (0.1,−0.5, 1.9, 3.3,−4.0,−0.4). The
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CSO-MA JMP DOE
xi1 xi2 xi3 xi4 xi5 xi1 xi2 xi3 xi4 xi5

1.000 1.000 -1.000 -0.327 1.000 1.000 1.000 -1.000 -0.696 1.000
-1.000 -1.000 -0.655 -1.000 1.000 -1.000 -1.000 1.000 0.227 1.000
1.000 1.000 -1.000 -0.727 -1.000 1.000 1.000 0.389 1.000 -1.000
-1.000 1.000 0.828 1.000 1.000 1.000 -1.000 -0.515 -1.000 -1.000
1.000 -1.000 1.000 0.462 -1.000 -1.000 1.000 -1.000 -0.241 -1.000
-1.000 1.000 -1.000 0.123 -1.000 -1.000 -1.000 -1.000 -0.894 1.000

Table 6.11: The best designs found by CSO-MA (100% efficient as the reference) and JMP
DOE (98% efficient) for model (ii).

design space is [−1, 1]5 and the number of runs is 6. The designs found by CSO-MA have

an average criterion value -3.22, an average efficiency 99%. The designs found by JMP DOE

have an average criterion value -3.33, an average efficiency 98%. The best designs found by

CSO-MA (100% efficient) and JMP DOE (98% efficient) are displayed in Table 6.12.

xi1 xi2 xi3 xi4 xi5 xi1 xi2 xi3 xi4 xi5
1.000 -1.000 0.997 1.000 1.000 1.000 1.000 0.990 -1.000 -1.000
1.000 -1.000 0.515 -1.000 1.000 1.000 -1.000 1.000 1.000 -0.526
-1.000 1.000 0.256 -1.000 -1.000 -1.000 -1.000 0.669 1.000 -1.000
1.000 1.000 1.000 1.000 -1.000 -1.000 1.000 -0.585 -1.000 1.000
-1.000 1.000 -0.389 1.000 1.000 1.000 1.000 0.576 1.000 1.000
-1.000 -1.000 0.496 1.000 -1.000 1.000 -1.000 0.719 -1.000 1.000

Table 6.12: The best designs found by CSO-MA (100% efficient as the reference) and JMP
DOE (98% efficient) for model (iii).

When N is large, say, N = 20 or 30 for the above models, CSO-MA can also find more

highly efficient exact designs than those reported in JMP, but their differences in their D-

efficiencies are trivial. For instance, if the aim is to find the 20-point optimal exact design

for model (i), the exact designs found by CSO-MA have an average criterion value -5.418

and the corresponding average criterion value of JMP-generated designs is -5.428. When N

becomes larger, JMP becomes advantageous over CSO-MA in terms of CPU time needed

to find a highly D-efficient exact design. However, CSO-MA is much more flexible than the

algorithms available in JMP since we demonstrated CSO-MA can be used to find other types

of optimal designs, such as c and G-optimal designs. Overall, I find that CSO-MA is a very

promising method for searching optimal exact or approximate designs, especially for more
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complicated models than many current algorithms in the statistical literature.

6.2.2 Fedorov Exchange Algorithm

Lall et al. (2018) used Fedorov exchange algorithm to find the 6-point locally D-optimal

exact design on the design space [−1, 1]2 for a logistic model with two factors, two second-

order terms and one interaction. The nominal values of the parameters were θ0 = −1, θ1 =

2, θ2 = 0.5, θ3 = 2, θ4 = 0.1 and θ5 = 0.01.

The design found by Lall et al. (2018) is

η =


−1.000 1.000 −1.000 0.057 1.000 0.143

1.000 −1.000 −0.700 0.066 −0.026 1.000

1 1 1 1 1 1

 ,

where the first two rows indicate the 2-dimensional design points and the last row is the

number of replicates at each design point. The criterion value of η is -7.455. The CSO-MA-

generated design η∗ CSO-MA is

η∗ =


−1.000 −1.000 −0.063 0.366 0.613 0.712

1.000 −1.000 −1.000 1.000 1.000 0.000

1 1 1 1 1 1

 ,

and the criterion value of η∗ is -5.520. A direct calculation shows that design η is 95%

D-efficient relative to η∗. Therefore, CSO-MA can outperform the exchange algorithm and

find a more efficient design.

6.2.3 Approximate Coordinate Exchange Algorithm

Overstall et al. (2017) used the approximate coordinate exchange (ACE) algorithm to mini-

mize the expected loss function for finding Bayesian optimal design. In the R package “ace-

bayes” (title: Optimal Bayesian Experimental Design Using the ACE Algorithm), the ACE

algorithm was applied to find the pseudo-Bayesian D-optimal exact design for a four-factor
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additive logistic model. The prior distributions for θ0 to θ4 are all uniform with correspond-

ing lower bounds (-3, 4, 5, -6, -2.5) and upper bounds (3, 10, 11, 0, 3.5). Finally, a 6-point

exact design is provided by ACE on the design space [−1, 1]4. Under the same model setup,

the CSO-MA-generated 6-point pseudo-Bayesian exact design is more efficient. The relative

efficiency of the ACE-generated design to the CSO-MA-generated design is around 78%.

Table 6.13 lists the two designs.

ACE CSO-MA
x1 x2 x3 x4 x1 x2 x3 x4

-0.357 0.161 -0.613 0.928 -0.590 0.996 1.000 0.936
-0.917 0.914 0.698 0.261 -0.803 0.412 -1.000 -1.000
-0.884 0.429 -1.000 -0.968 0.804 -1.000 -0.999 0.893
0.370 -0.271 0.653 0.185 0.630 -0.413 1.000 -0.796
0.717 -0.347 -0.060 -0.659 -0.581 0.038 -0.433 0.866
0.747 0.059 1.000 -0.174 0.625 -0.089 0.491 -0.899

Table 6.13: The 6-point pseudo-Bayesian exact designs for a four-factor additive logistic
model with uniform priors found by ACE and CSO-MA.

I also test the reliability of using two algorithms to find the 10-point pseudo-Bayesian D-

optimal exact design under a multivariate normal prior whose mean vector is (−7.0, 1.2, 2.5,

−0.3, 16.0) and the covariance matrix Σ is

Σ =



2.66 −1.03 −0.87 0.24 −0.05

−1.03 2.91 −0.52 −0.19 0.18

−0.87 −0.52 3.73 1.19 0.52

0.24 −0.19 1.19 3.53 −0.47

−0.05 0.18 0.52 −0.47 2.14


. (6.5)

A direct calculation shows the design found by ACE is around 73% D-efficient relative

to the CSO-MA-generated design. Table 6.14 lists the two designs.
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ACE CSO-MA
x1 x2 x3 x4 x1 x2 x3 x4

-1.000 -0.288 0.046 0.533 1.000 0.571 -1.000 0.375
-0.071 1.000 -1.000 0.281 1.000 1.000 1.000 0.104
-1.000 -0.953 -0.708 0.648 -1.000 -0.909 -1.000 0.499
-0.689 0.176 -0.134 0.394 -1.000 1.000 -0.147 0.452
1.000 0.014 0.930 0.417 1.000 0.994 -1.000 0.074
0.759 -0.580 0.452 0.458 -1.000 -1.000 1.000 0.809
1.000 1.000 -0.971 0.173 1.000 1.000 1.000 0.416
0.095 -0.467 -0.447 0.678 0.892 -1.000 1.000 0.368
-0.609 0.932 1.000 0.428 -1.000 1.000 0.108 0.182
1.000 1.000 -0.825 -0.008 1.000 -1.000 0.794 0.638

Table 6.14: The 10-point pseudo-Bayesian exact designs for a four-factor additive logistic
model with a multivariate normal prior found by ACE and CSO-MA.

6.3 Conclusions

This dissertation proposes a novel optimization algorithm, CSO-MA, for finding various types

of optimal experimental designs for nonlinear models with or without random effects. I also

demonstrate it can be used to find Bayesian optimal designs and also for finding optimal

approximate or exact designs. Many of the optimal designs are new and they are found

by solving more challenging optimization problems. Unlike the statistical models typically

reported in the literature, the statistical models in my dissertation have many more factors

than those in the literature and they allow for interacting factors as well. My work shows

that CSO-MA is a flexible and powerful algorithm and can perform as well as other state-of-

the-art methods, and frequently outperforms them. For instance, many reported “optimal”

designs in the literature have less optimal criterion values than those found by CSO-MA.

For those design problems where the generated designs can be verified to be optimal via an

equivalence theorem, it is reassuring to know that all CSO-MA-generated designs have been

verified to be optimal.

There are ongoing work and future work that I plan to pursue. First, I plan to organize

and publish the CSO-MA codes, including finding optimal designs for different types of mod-

els, either in the Journal of Statistical Software or in the R Journal. Some of these codes are
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in the appendices. They will be made freely available for users interested to use CSO-MA to

find efficient designs for their studies. My immediate future work is to investigate the capa-

bility of CSO-MA to solve other statistical problems, such as finding more efficient estimates

for model parameters. This is possible since CSO-MA is a general-purpose optimization

algorithm. Already, there is some preliminary work that shows PSO can outperform max-

imum likelihood estimates for complicated likelihood functions obtained from commercial

software packages. My interest is to investigate whether CSO-MA can similarly outperform

results from SAS or STATA for obtaining more precise estimates when we have complicated

likelihood functions. These estimates include L1-estimates, ridge regression estimates and

the like.
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Appendix A

MATLAB Codes – Competitive Swarm Optimizer with

Mutated Agents

%% Function ‘ ‘ csoma ’ ’ can minimize a user−de f ined ob j e c t i v e func t i on .

%% Inputs :

%% obj_fun −− a user−de f ined ob j e c t i v e func t i on ;

%% lb −− a vec tor o f s ea r ch ing space lower bounds ;

%% ub −− a vec tor o f s ea r ch ing space upper bounds ;

%% swarmsize −− the number o f p a r t i c l e s ;

%% phi −− parameter φ ;

%% maxiter −− the number o f i t e r a t i o n s .

%% Outputs :

%% minf −− the minimum of the ob j e c t i v e func t i on ;

%% minx −− the s o l u t i o n that minimizes the ob j e c t i v e func t i on .

func t i on [ minf , minx ] = csoma ( obj_fun , lb , ub , swarmsize , phi , maxiter )

% check whether the dimension o f lower bounds matches the dimension o f

% upper bounds

a s s e r t ( l ength ( lb ) == length (ub ) , ’Not equal l ength o f bounds ’ ) ;

% check whether inputted upper bounds are g r e a t e r than lower bounds

i f a l l (ub − lb <= 0) > 0

e r r o r ( ’ Error . \n Upper bound must be g r e a t e r than lower bound . ’ )

end

% s imp l i f y no ta t i on s

S = swarmsize ;

% D i s the dimension o f the problem

D = length (ub ) ;

% randomly i n i t a l i z e a l l p a r t i c l e s
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x = rand (S , D) ;

x = bsxfun (@plus , lb , bsxfun (@times , ub−lb , x ) ) ;

v = ze ro s ( [ S D] ) ; % s e t i n i t i a l v e l o c i t i e s to 0

i t e r = 0 ;

pairnum_1 = f l o o r (S / 2 ) ;

l o s e r s = 1 : S ;

fx = arrayfun (@(K) obj_fun (x (K, : ) ) , 1 : S ) ;

randperm_index = randperm (S ) ;

whi l e i t e r <= maxiter

% update l o s e r s ’ f unc t i on va lue s

fx ( l o s e r s ) = arrayfun (@(K) obj_fun (x (K, : ) ) , l o s e r s ) ;

% c a l c u l a t e the swarm cente r

swarm_center = mean(x ) ;

% randomly permuate a l l p a r t i c l e indexes

randperm_index = randperm (S ) ;

% random pa i r i n g and compare

r p a i r s = [ randperm_index ( 1 : pairnum_1 ) ; randperm_index (S−pairnum_1+1:S ) ] ’ ;

cmask= ( fx ( r p a i r s ( : , 1 ) ) > fx ( r p a i r s ( : , 2 ) ) ) ’ ;

% l o s e r s who with l a r g e r va lue s

l o s e r s = bsxfun (@times , cmask , r p a i r s ( : , 1 ) ) . . .

+ bsxfun (@times , ~cmask , r p a i r s ( : , 2 ) ) ;

% winners who with sma l l e r va lue s

winners = bsxfun (@times , ~cmask , r p a i r s ( : , 1 ) ) . . .

+ bsxfun (@times , cmask , r p a i r s ( : , 2 ) ) ;

R1 = rand (pairnum_1 , D) ;

R2 = rand (pairnum_1 , D) ;

R3 = rand (pairnum_1 , D) ;

% update l o s e r s

v ( l o s e r s , : ) = bsxfun (@times , R1 , v ( l o s e r s , : ) ) . . .

+ bsxfun (@times , R2 , x ( winners , : ) − x ( l o s e r s , : ) ) . . .

+ phi ∗ bsxfun (@times , R3 , bsxfun (@minus , swarm_center , x ( l o s e r s , : ) ) ) ;

x ( l o s e r s , : ) = x ( l o s e r s , : ) + v ( l o s e r s , : ) ;

% check whether new p a r t i c l e s are out o f bounds .

maskl = bsxfun (@lt , x ( l o s e r s , : ) , lb ) ;

masku = bsxfun (@gt , x ( l o s e r s , : ) , ub ) ;
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mask = bsxfun (@lt , x ( l o s e r s , : ) , lb ) | bsxfun (@gt , x ( l o s e r s , : ) , ub ) ;

x ( l o s e r s , : ) = bsxfun (@times , ~mask , x ( l o s e r s , : ) ) . . .

+ bsxfun (@times , lb , maskl ) + bsxfun (@times , ub , masku ) ;

% mutation

mutation_idx = randsample ( l o s e r s , 1 ) ;

mutation_dim = randsample ( 1 :D, 1 ) ;

x (mutation_idx , mutation_dim ) = randsample ( [ lb (mutation_dim ) . . .

ub (mutation_dim ) ] , 1 ) ;

i t e r = i t e r + 1 ;

f p r i n t f ( ’ I t e r : %d\n ’ , i t e r ) ;

f p r i n t f ( ’ Best f i t n e s s : %e\n ’ , min ( fx ) ) ;

end

f p r i n t f ( ’ Best f i t n e s s : %e\n ’ , min ( fx ) ) ;

[ minf , min_index ] = min ( fx ) ;

minx = x(min_index , : ) ;

end
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Appendix B

MATLAB Codes – Locally D-optimal Design for a

Two-factor Additive Logistic Model

%% Function ‘ ‘ LogisticDOD2 ’ ’ i s the c r i t e r i o n func t i on o f f i nd i n g l o c a l l y

%% D−optimal approximate des ign f o r a two−f a c t o r add i t i v e l o g i s t i c model .

%% Inputs :

%% x −− a v e c t o r i z ed des ign ;

%% theta −− model parameter θ i n c l ud ing three nominal va lue s ;

%% k −− the number o f des ign po in t s in the des ign .

%% Outputs :

%% dc r i −− the negat ive D−c r i t e r i o n value .

f unc t i on d c r i = LogisticDOD2 (x , theta , k )

% x ( 1 : k ) : x11, x12, · · · , x1k
% x(k+1:2∗k ) : x21, x22, · · · , x2k
% x(2∗k+1:3∗k ) : w1, w2, · · · , wk

X = cat (2 , ones (k , 1 ) , reshape (x , [ k , 3 ] ) ) ;

% c a l c u l a t e the in fo rmat ion matrix

Info_mat = ze ro s (3 , 3 ) ;

tota l_weight = sum(X( : , 4 ) ) ;

X( : , 4) = X( : , 4) . / tota l_weight ;

l inear_part = X( : , [ 1 : 3 ] ) ∗ theta ;

exp_part = exp ( l inear_par t ) . / (1 + exp ( l inear_part ) ) . ^ 2 ;

f o r i =1:k

Info_mat = Info_mat + X( i , 4) ∗ exp_part ( i ) ∗ X( i , 1 : 3 ) ’ ∗ X( i , 1 : 3 ) ;

end

dc r i = −l og ( det ( Info_mat ) ) ;

end
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%% Function ‘ ‘ SF2 ’ ’ i s the D− s e n s i t i v i t y func t i on o f a g iven des ign

%% fo r a two−f a c t o r add i t i v e l o g i s t i c model .

%% Inputs :

%% genD −− a degenerate des ign ;

%% des ign −− a des ign obta ined by opt imiz ing the c r i t e r i o n func t i on ;

%% theta −− model parameter θ i n c l ud ing three nominal va lue s ;

%% k −− the number o f des ign po in t s in the des ign .

%% Outputs :

%% alpha −− the maximum of the D− s e n s i t i v i t y func t i on .

func t i on alpha = SF2(genD , des ign , theta , k )

% des ign ( 1 : k ) : x11, x12, · · · , x1k
% des ign (k+1:2∗k ) : x21, x22, · · · , x2k
% des ign (2∗k+1:3∗k ) : w1, w2, · · · , wk

X = cat (2 , ones (k , 1 ) , reshape ( des ign , [ k , 3 ] ) ) ;

% c a l c u l a t e the in fo rmat ion matrix

Info_mat = ze ro s (3 , 3 ) ;

tota l_weight = sum(X( : , 4 ) ) ;

X( : , 4) = X( : , 4) . / tota l_weight ;

l inear_part = X( : , [ 1 : 3 ] ) ∗ theta ;

exp_part = exp ( l inear_par t ) . / (1 + exp ( l inear_part ) ) . ^ 2 ;

f o r i =1:k

Info_mat = Info_mat + X( i , 4) ∗ exp_part ( i ) ∗ X( i , 1 : 3 ) ’ ∗ X( i , 1 : 3 ) ;

end

d = [1 genD ] ;

alpha = 3 − exp (d ∗ theta ) / (1 + exp (d ∗ theta ))^2 ∗ d / Info_mat ∗ d ’ ;

end

%% To f i nd the D−optimal approximate des ign , implement the f o l l ow i ng commands

theta = [−0.1 , 1 . 5 , 4 . 0 ]

k = 5 ;

Model = @(x ) LogisticDOD2 (x , theta ’ , k ) ;

% des ign space [−1 , 1]^2

lb = cat (2 , −1 ∗ ones (1 , 2∗k ) , z e r o s (1 , k ) ) ;

ub = cat (2 , 1 ∗ ones (1 , 2∗k ) , ones (1 , k ) ) ;
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swarmsize = 128 ;

phi = 0 . 1 ;

maxiter = 300 ;

[ dcr i , Ddesign ] = csoma (Model , lb , ub , swarmsize , phi , maxiter ) ;

%% To conf irm the des ign ’ s D−opt imal i ty , implement the f o l l ow i n g commands

SF = @(genD)SF2(genD , Ddesign , theta ’ , k ) ;

l b s f = [−1 −1];

ubs f = [ 1 1 ] ;

swarmsize = 64 ;

phi = 0 ;

maxiter = 200 ;

[ alpha alpha_x ] = csoma (SF , l b s f , ubsf , swarmsize , phi , maxiter ) .
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